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REMARKS ON THE DISCRETIZATION OF SOME NONCOERCIVE
OPERATOR WITH APPLICATIONS TO HETEROGENEOUS

MAXWELL EQUATIONS∗
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Abstract. We aim to provide a framework for the analysis of convergence for the Galerkin
approximation for a class of noncoercive problems. We provide a sufficient condition on the finite
element space for the convergence and optimality of the Galerkin scheme. This theory is then applied
to the study of the well-posedness and approximability of two problems in electromagnetism.
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1. Introduction. The aim of this paper is to provide a general framework for the
analysis of convergence of Galerkin schemes for a class of linear continuous operators
which are not definite (neither positive nor negative) and has, in general, no compact
inverse. More precisely, letting X be a separable Hilbert space, we consider the class
of operators verifying the following assumption.

Assumption 1. We assume that
(a) A : X → X ′ is a linear, continuous, and injective operator. We denote by M

the continuity constant;
(b) there exists a stable splitting of the space X in V ⊕W and denote by Θ the

operator associated to the mapping: u = v + w �→ v − w;
(c) there exists a compact operator T : X → X ′ and a positive α ∈ R+ such that

Re〈(A + T )u,Θu〉X ≥ α ‖u‖2
X .(1.1)

Although the present theory could in principle be generalized to a more general
expression of the operator Θ, we prefer to base the development of our main concepts
on the above framework. This makes our exposition easier and, on the other hand,
more general assumptions would be artificially complicated by the fact that we don’t
have a precise application in mind. Assumption 1 can be written in a different way,
which might make it more clear. We rephrase it in section 2.

At the continuous level the invertibility of the operator A is an immediate con-
sequence of Assumption 1. On the contrary, when we consider its Galerkin approxi-
mation, some care has to be devoted to the analysis of stability and convergence of
the associated Galerkin scheme. The standard requirement [18] on the family of finite

dimensional spaces {Xh}h>0 is that
⋃

h Xh = X, but this turns out to be insufficient
for ensuring the well-posedness of the associated Galerkin projection. Several papers
exist on this subject and the most recent ones are devoted to the discretization of
Maxwell equations; see, e.g., [20], [21], [5], [4], [17]. On the other hand, when concen-
trating on the edge elements approximation for the Maxwell problem with constant
coefficients in a bounded domain (see section 4.1 for the definition of the Maxwell
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problem), the precise structure of the operators is used to write exhaustive, but ded-
icated, results which cannot be used for similar problems. For example, when trying
to tackle the integral formulation of electromagnetic wave propagation, we find that
the problem under consideration is mathematically more intricate (being of nonlocal,
integrodifferential type) but reveals “almost” the same structure. This will be one of
the applications we treat in this paper.

It is then natural to try to extend the known results to a general class of operators
in order to fit all of them into the same framework. This is partially possible, and
the aim of this paper is to collect some results in this direction. Thus, in section 3
we consider a condition on the finite element discretization (that we call the (GAP)
property) and try to extract some consequences. The idea behind this condition goes
back to Kato [28] and is the basis of the theory developed recently in the context of
integral equations; see [14], [17], [8], [26]. We analyze further the consequences of this
condition and attempt to give a comprehensive theory. We also approach the problem
of deducing from (GAP) “spectral correctness” of the approximation in the sense of
[20], but the results in this direction are incomplete. Finally, the question of whether,
and/or when, (GAP) is a necessary condition for well-posedness is discussed but not
answered.

Section 4 is devoted to applications. More precisely, in section 4.1, we show that
the present theory easily permits the extension of the known results about the ap-
proximation of the Maxwell operator to the case of general bounded coefficients. In
section 4.2, we consider a similar physical phenomenon, but one which has a more
intricate mathematical formulation: the boundary integral formulation for electro-
magnetic wave propagation for piecewise homogeneous dielectric scatterers. Here, the
effort to set up the problem is quite major, and it is a nontrivial application of the
theory developed in this paper. We try our best to emphasize the structure of the
problem. We dedicate a lot of room to this application because it shows the generality
of the approach and, moreover, it is relevant in itself. Boundary integral discretization
of electromagnetic problems is widely used in the engineering community, but math-
ematics had failed until now to prove the well-posedness of some related boundary
element schemes.

Finally, in section 4 we inform the reader that we do not pretend that the section
is self-contained; if it were, this would make the section far too long. Instead, we give
detailed references for all results we use.

2. Setting of the problem. Let H , X be two complex separable Hilbert spaces
such that X ⊂ H with dense injection. We denote by X ′ the dual space of X when
H plays the role of pivot space. We denote by ‖ · ‖H and ‖ · ‖X the associated norms
and by (·, ·)H and (·, ·)X the inner product of H and X, respectively. Finally, 〈·, ·〉X
denotes the duality pairing in X.

First of all, we rephrase Assumption 1 in order to make more clear in which class
of operators we are interested. Suppose that A : X → X ′ verifies Assumption 1. Since
the splitting X = V ⊕W is stable, there exists a projection ΠV : X → V such that Π
is onto and ker{ΠV } = W . We denote by Π′

V its adjoint with respect to the duality
product 〈·, ·〉X . The operator A has a natural matrix representation associated with
the splitting:

A ↔
(
AV V AVW

AWV AWW

)
with

AV V = Π′
V AΠV , AWW = (I − ΠV )′A(I − ΠV ),

AVW = Π′
V A(I − ΠV ) , AWV = (I − ΠV )′AΠV .

Equation (1.1) can be expressed now by the following statement: The operator AV V −
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AWW + (AVW − AWV ) verifies the G̊arding inequality. In the applications we have
in mind, it will happen that (AVW − AWV ) is either equal to zero (the self-adjoint
case) or compact. In this case, Assumption 1 is equivalent to the requirement that
AV V : V → V ′ and −AWW : W → W ′ verify a G̊arding inequality.

Let a : X × X → C be the bilinear form associated with A, i.e., a(u, ut) =
〈Au, ut〉X . We then solve the following.

Problem 1 (continuous problem). Given f ∈ X ′, find

u ∈ X : a(u, ut) = 〈f, ut〉X ∀ut ∈ X.

It is easy to see by the following that Problem 1 is well-posed.
Theorem 2.1. For every f ∈ X ′, there exists a unique solution u ∈ X of the

problem Au = f . Finally, there exists an isomorphism Θ̃ : X → X such that Θ̃ − Θ
is compact and

Re〈Au, Θ̃u〉 ≥ α‖u‖2
X .

Proof. The fact that A is injective and A + T is invertible implies that A as
well as its adjoint is invertible (see, e.g., [23]). It is immediate to construct Θ̃ as
Θ̃ = (I + (A′)−1T ′)Θ, where A′ , T ′ are the adjoints of A , T .

Finally, we are interested in operators enjoying some further properties and show
how these have discrete counterparts for the associated Galerkin scheme.

To this aim we introduce two assumptions.
Assumption 2. Let X = V ⊕ W be the decomposition in Assumption 1; then

V ↪→ H is compact.
Assumption 3. Let X = V ⊕W be the decomposition in Assumption 1; then

Re a(v, v) ≥ β‖v‖2
X ∀ v ∈ V.

3. Discretization. In this section we analyze the Galerkin discretization of
Problem 1. Our aim is to provide sufficient conditions for the stability of the dis-
crete problem and for the quasi optimality of the discretization scheme (in the sense
of Ciarlet [18]).

The structure of this section is similar to the one chosen by Caorsi, Fernandes,
and Raffetto in [16], while some of the results are a revision of the approach chosen
in [17] and [8].

Let {Xh}h≥0 ⊂ X be a family of finite dimensional subspace verifying the follow-
ing.

Complete approximation space (CAS). limh↓0 infuh∈Xh
‖u− uh‖X = 0.

When (CAS) is verified, we say that Xh is approximating in X. We denote by
Ih : X → Xh the projection operator defined as ((u − Ihu, v))X = 0 ∀ v ∈ Xh. The
family {Ih}h>0 is uniformly bounded with respect to h, and, if (CAS) holds, Ih → I
pointwise in X.

The discrete variational problem reads as follows.
Problem 2 (Galerkin projection). Find uh ∈ Xh such that

a(uh, u
t
h) = 〈f, ut

h〉X ∀ut
h ∈ Xh.(3.1)

Gap property (GAP). We say that Xh verifies a gap property associated with
Assumption 1 when there exist two subsets Vh , Wh of Xh such that

δh = max{δ(Vh, V ), δ(Wh,W )} → 0 when h → 0,
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where

δ(Vh, V ) = sup
vh∈Vh

inf
v∈V

‖v − vh‖X
‖vh‖X

.

The (GAP) property has several consequences which are here written as theorems
and lemmas. First of all, due to (GAP), there exists a continuous operator Π : Vh → V
such that ‖vh − Πvh‖ ≤ 2δh‖vh‖X (the same for W ). This implies the following.

Lemma 3.1. The fact that δ(Vh, V ) ≤ δh, δh → 0 when h → 0 implies that every
continuous projector P0 : X → V , which is onto in V, verifies

‖vh − P0vh‖X � δh‖vh‖X , vh ∈ Vh.

Proof. It is enough to compute

‖vh − P0vh‖X = ‖vh − Πvh + Πvh − P0vh‖X
= ‖(I − P0)(vh − Πvh)‖X ≤ 2‖I − P0‖δh‖vh‖X .

We then can prove the following theorem.
Theorem 3.2. (GAP) implies that the splitting Xh = Vh ⊕ Wh is uniformly

stable ∀ h < h1 for some h1 ∈ R+.
Proof (cf. [8]). We denote by P the projection with range V and kernel W . It

commutes with conjugation. For any (vh, wh) ∈ Vh×Wh we have, with uh = vh +wh,

‖vh − Pvh‖X ≤ 2‖I − P‖δh‖vh‖X � δh‖vh‖X ,(3.2)

and similarly,

‖Pwh‖X = ‖wh − (I − P )wh‖X � δh‖wh‖X .(3.3)

We use the identity

vh = P (uh) + ((I − P )wh − wh) + (vh − Pvh)

and, by triangle inequality, we obtain

‖vh‖X ≤ ‖P (vh + wh)‖X + ‖(I − P )wh − wh‖X + ‖Pvh − vh‖X
≤ ‖P‖‖uh‖X + 2‖P‖δh‖wh‖X + 2‖I − P‖δh‖vh‖X .

Similarly,

‖wh‖X ≤ ‖I − P‖‖uh‖X + 2‖I − P‖δh‖vh‖X + 2‖P‖δh‖wh‖X .

Adding and rearranging we obtain for h small enough

‖vh‖X + ‖wh‖X ≤ 2(1 − δh max{‖P‖, ‖I − P‖})−1 max{‖P‖, ‖I − P‖}‖uh‖X .

(3.4)

Since the splitting is stable for h sufficiently small, we denote by Ph : Xh → Xh

the associated projection operator having Vh as range and Wh as kernel.
Theorem 3.3. (GAP) and (CAS) imply that Vh is approximating in V and that

Wh is approximating in W, i.e.,

lim
h↓0

inf
vh∈Vh

‖v − vh‖X = 0, lim
h↓0

inf
wh∈Wh

‖w − wh‖X = 0 ∀ v ∈ V, w ∈ W.(3.5)
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Proof. We estimate the best approximation error as follows:

inf
vh∈Vh

‖v − vh‖X ≤ ‖v − PhIhv‖X .(3.6)

It is easy to see that v − PhIhv = P (v − Ihv) + (P − Ph)(Ihv) and that, if we set
Ihv = vh + wh with vh ∈ Vh , wh ∈ Wh, we obtain

‖(P − Ph)Ihv‖X ≤ ‖Pvh − vh‖X + ‖Pwh‖X � δh‖Ihv‖X .

As a consequence,

inf
vh∈Vh

‖v − vh‖X � ‖v − PhIhv‖X

� ‖P (v − vh)‖X + δh‖Ih(v)‖X � ‖v − Ihv‖X + δh‖v‖X .

The statement is then proved since Ih is a linear and continuous operator, and (CAS)
implies that (I − Ih) is pointwise converging to 0.

Remark 3.4. In the particular case in which Wh ⊂ W , we have of course that
δ(Wh,W ) = 0. This means that the condition δ(Vh, V ) → 0 for h → 0 implies that
Wh is approximating in W .

Theorem 3.5. (GAP) implies the following:
(i) If Assumption 3 holds, then there exists an h2 such that ∀ h < h2, it holds

that

Re a(vh, vh) ≥ β

2
‖vh‖2

X .

(ii) If Assumption 2 holds, then we have the following: Let {vh}h>0 be a sequence
such that vh ∈ Vh ∀ h > 0, and it verifies ‖vh‖X ≤ 1 ∀ h; there exists
a subsequence (denoted again by {vh}h>0) and a v ∈ V such that vh → v
strongly in H.

Proof. (i) Let vh ∈ Vh. Then

Re a(vh, vh) = Re a(Πvh,Πvh) + Re{a(Πvh − vh,Πvh) − a(vh,Πvh − vh)}
≥ ‖Πvh‖2

X − 2M‖vh‖X2δh‖vh‖X .

We conclude by recalling the definition of Π and fixing h2 such that β(1 − 2δh) −
4Mδh(1 + δh) ≥ β/2.

(ii) Consider a sequence {vhj
}j∈N, hj → 0, for j → ∞ such that ‖vhj

‖X ≤ 1. We
define vj = Πvhj ; by continuity of Π, we have ‖vj‖X ≤ C. This implies that there
exists an increasing sequence jk such that vjk → v strongly in H due to Assumption
3. On the other hand, (GAP) implies that ‖vhjk

− vjk‖X ≤ Cδhjk
, where δhjk

→ 0,
when k → ∞. Hence,

‖vhjk
− v‖H ≤ ‖vjk − v‖H + ‖vhjk

− vjk‖X → 0, k → ∞,(3.7)

which means vhjk
→ v strongly in H.

Remark 3.6. Property (ii) in Theorem 3.5 is commonly called the discrete com-
pactness property for Vh and has been the object of several papers concerning edge
elements approximation for Maxwell equations. See the very recent book [32] or pa-
pers [29], [30], [2], [3], [33]. Further comments are due, and we postpone them to
section 4 (Remark 4.5).
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We come now to the well-posedness of the discrete problem. Such a result has
basically been proved in [14] (see also [8]). We report it here in its most general form.

Theorem 3.7. Let (CAS) and (GAP) hold. There exists an h3 such that ∀h <
h3, Problem 2 is well-posed. Moreover, let u ∈ X, uh ∈ Xh be the solution of Problems
1 and 2. We have

‖u− uh‖X � inf
ξh∈Xh

‖u− ξh‖X .(3.8)

Proof. As in the proof of Theorem 2.1, we have with Θ̃ := (I + (A′)−1T ′)Θ that

∀u ∈ X : Re〈Au, Θ̃u〉X ≥ α‖u‖2
X .

Moreover, Θ̃ − Θ = (A′)−1T ′Θ is compact.
Then ∥∥∥(I − Ih)Θ̃uh

∥∥∥
X

≤
∥∥∥(I − Ih)(Θ̃ − Θ)uh

∥∥∥
X

+ ‖(I − Ih)Θuh‖X .

Using (CAS) we have ∀ U ∈ X that ‖(I − Ih)U‖X → 0 as h → 0. Since Θ̃ − Θ is
compact we obtain that

εh :=
∥∥∥(I − Ih)(Θ̃ − Θ)

∥∥∥
X→X

→ 0 as h → 0.

Now let uh ∈ Xh be arbitrary. Then uh has the decomposition uh = v+w with v ∈ V ,
w ∈ W , and we have Θuh = v − w. There is also the decomposition uh = vh + wh

with vh ∈ Vh, wh ∈ Wh. We have for Θuh = v − w

‖(I − Ih)Θuh‖X =
∥∥∥(I − Ih)

(
Θuh − (vh − wh)

)∥∥∥
X

� ‖(v − w) − (vh − wh)‖X
� (‖v − vh‖X + ‖w − wh‖X).

(3.9)

Now, using the same argument as in the proof of Theorem 3.3, we have

‖v − vh‖X � (‖Pvh − vh‖X + ‖Pwh‖X) � δh‖uh‖X .

As w − wh = −(v − vh) we obtain

‖v − vh‖X + ‖w − wh‖X � δh ‖uh‖X(3.10)

and we obtain ∀ uh ∈ Xh∥∥∥(I − Ih)Θ̃uh

∥∥∥
X

≤ (εh + Cδh) ‖uh‖X ,

which implies that for sufficiently small h and ∀ uh ∈ Xh

Re〈Auh, IhΘ̃uh〉 ≥ Re〈Auh, Θ̃uh〉 − C(εh + Cδh) ‖uh‖2
X ≥ α/2 ‖uh‖2

X .

Since IhΘ̃ : Xh → Xh is bounded independently of h, we have proved that there exist
α > 0 and h� > 0 such that ∀h < h�

inf
0 	=uh∈Xh

sup
0 	=ut

h∈Xh

Re〈Auh, u
t
h〉

‖uh‖X ‖ut
h‖X

≥ α

2
.(3.11)
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It is well known that this discrete inf-sup condition implies that Problem 2 has a
unique solution and that (3.8) holds.

We end this section with a result concerning the correctness of the spectral ap-
proximation, i.e., we want to know if the Galerkin operator Ah : Xh → X ′ is a correct
spectral approximation of A. To this aim, we need to recall some definitions and
introduce some nomenclature.

First of all, we consider the solution operators S : H → X, Sh : Xh → Xh defined
as

a(Su, ut) = (u, ut)H ∀ut ∈ X , a(Shuh, u
t
h) = (uh, u

t
h)H ∀ut

h ∈ Xh.(3.12)

By Theorems 2.1 and 3.7, we know that S , Sh exist and are continuous, at least
for h sufficiently small.

Let σ(S) denote the spectrum of the operator S, and σ(Sh) the one for the
operator Sh.

Finally, following [21] (see also [20]), we define

‖S − Sh‖h = inf
uh∈Xh ,‖uh‖X≤1

‖(S − S)uh‖X .

It is known that if (CAS) holds and we also have that ‖S−Sh‖h → 0 when h → 0,
then Sh provides a correct approximation of the spectrum in the sense expressed
in [20]. We report the details of this definition only in the self-adjoint case and
refer to [20] for the general case; when S and Sh are self-adjoint, we say that Sh is
asymptotically spectrally correct if the following hold:

1. limh↓0 δ(λ, σ(Sh)) = 0∀λ ∈ σ(Sh).
2. If λ has multiplicity m, there are exactly m discrete eigenvalues converging

to λ.
3. Let λ ∈ σ(S) with multiplicity m and Eλ(S) the associated eigenspace, and

λh,i ∈ σ(Sh), i = 1, . . . ,m, the discrete approximation of λ with Eλh,i
(Sh)

the corresponding eigenspace. Then

δ(Eλ(S),⊕iEλh,i
(Sh)) , δ(⊕iEλh,i

(Sh), Eλ(S)) → 0 , h → 0.

Theorem 3.8. Let Assumption 2 hold and suppose, moreover, that

sup
wh∈Wh ,‖wh‖X≤1

inf
λh∈Xh

‖Swh − λh‖X → 0 when h → 0.

Then (CAS) and (GAP) imply that ‖Sh − S‖h → 0 when h → 0.
Proof. Let us fix xh ∈ Xh, ‖xh‖X ≤ 1. We estimate

‖(S − Sh)xh‖2
X � a((S − Sh)xh, Θ̃(S − Sh)xh)

� a((S − Sh)xh,Θ(S − Sh)xh) + εh‖(S − Sh)xh‖2
X

� inf
λh∈Xh

a((S − Sh)xh,Θ(S − Sh)xh − Θhλh)

+ εh‖(S − Sh)xh‖2
X

� inf
λh∈Xh

a((S − Sh)xh,Θ(Sxh − λh)) + εh‖(S − Sh)xh‖2
X

+ δh‖λh‖X‖(S − Sh)xh‖X ,

(3.13)

where we have used that Θ̃ − Θ is compact, the Galerkin orthogonality and, finally,
that ‖(Θ−Θh)λh‖X � δh‖λh‖X , which is an immediate consequence of (GAP). From
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(3.13), for h small enough, and using the continuity of the bilinear form a, we can
deduce that

‖(S − Sh)xh‖X � inf
λh∈Xh

‖Sxh − λh‖X + δh‖λh‖X ,(3.14)

which is “almost” a pure approximation property. Since ‖Sxh‖ � 1,

inf
λh∈Xh

‖Sxh − λh‖X = ‖Sxh − IhSxh‖X = inf
λh∈Xh‖λh‖X�1

‖Sxh − λh‖X .

It is easy to see that, ∀ xh such that ‖xh‖X ≤ 1, (3.14) implies

‖(S − Sh)xh‖X � δh + inf
λh∈Xh

‖Sxh − λh‖X .(3.15)

Now, select xh ∈ Vh. Assumption 2 ensures that there exists a ṽ ∈ V such that, up
to extractions, ‖xh − ṽ‖H → 0 when h → 0. Thus

‖(S − Sh)xh‖X � δh + ‖xh − ṽ‖H + inf
λh∈Xh

‖Sṽ − λh‖X .

Hence, (CAS) allows us to conclude that

sup
xh∈Vh ,‖Vh‖X≤1

‖(S − Sh)xh‖ → 0 when h → 0.

The statement is proved since

sup
uh∈Xh , ‖uh‖X≤1

‖(S − Sh)uh‖2
X ≤ sup

vh∈Vh , ‖vh‖X�1

‖(S − Sh)vh‖2
X

+ sup
wh∈wh , ‖wh‖X�1

‖(S − Sh)wh‖2
X ,

(3.16)

and the second term in the right-hand side is converging to 0 by assumption.
Corollary 3.9. If S|W : W → X is either compact or a multipication by a

sufficiently regular function, then Sh is asymptotically spectrally correct.
Proof. It is a consequence of (3.15) and (3.16).
Remark 3.10. This theorem is not completely satisfactory. We expect the state-

ment to hold under much weaker conditions on S|W . In the case of Maxwell equations
in bounded domains, the discrete compactness property, which is a consequence of
(GAP), turns out to be a sufficient condition for the associated Galerkin approxi-
mation to be spectrally correct [2] and also spurious free in the sense given in [16].
Finally, the following reasonable question remains open: “Letting (GAP) hold, under
Assumptions 1, 2, can we prove that at least a part of the spectrum is well approxi-
mated for h sufficiently small?”

4. Applications. We will present here two applications of this theory. They con-
cern two different problems in electromagnetism: (i) Compute solutions of Maxwell
equations in a cavity characterized by variable magnetic and electric properties. (ii)
Compute the electromagnetic diffraction due to a heterogeneous/piecewise homoge-
neous dielectric material.

Note that this section will not be self-contained in the sense that we will not recall
(with precise statements) all the known properties about the finite elements we use;
we provide instead a list of references and we try, when possible, to refer to the recent
book [32] or to the review paper [24].
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Let D (∂D, nD, resp.) denote a bounded connected Lipschitz domain (its bound-
ary and the unit outer normal to D on ∂D, resp.) and Dc denote its complement.
We set ε to be the electric permittivity and μ to be the magnetic permeability.

E and H denote the electric and magnetic fields, respectively, and we assume
they satisfy the linear time-harmonic Maxwell equations

curlE − iωμH = 0 , curlH + iωεE = J in D,(4.1)

where ω ∈ R+ is a fixed frequency and J is an imposed current density.
Let us introduce some Sobolev spaces and some operators which will be used

throughout this section. We define

H(curl, D) = {u ∈ L2(D)3 : curl u ∈ L2(D)3};
Hloc(curl, Dc) = {u ∈ L2

loc(D
c)3 : curl u ∈ L2

loc(D
c)3};

H(curl2, D) = {u ∈ H(curl, D) | curlμ−1 curl u ∈ L2(D)3 }.

We denote by γD the tangential trace operator mapping u in nD × u|∂D, u ∈
C∞(D). Let H

1/2
× (∂D) = γD{H1(D)3} and H

−1/2
× (∂D) be its dual with respect

to the natural duality pairing b(λ, ξ) =
∫
∂D

λ · (ξ × n). Note that the injection

H
1/2
× (∂D) ↪→ L2

t (∂D) := {u ∈ L2(Γ)3 : u · nD = 0} is compact.

We set X(∂D) := {λ ∈ H
−1/2
× (∂D) : divΓ λ ∈ H−1/2(∂D)}. See [7], [9], [10],

and also [14] for definitions and details. The idea to keep in mind is that vectors in
X(∂D) are tangential vector fields of Sobolev regularity −1/2, with surface divergence
of Sobolev regularity −1/2, and that the related definitions for nonsmooth boundaries
can be given as extensions of the same well-known definitions for regular manifolds.

It is known that γD : H(curl, D) → X(∂D) and γc
D : Hloc(curl, Dc) → X(∂D)

are linear continuous and admit a right inverse [12], [7]. Finally, we denote by γN the
Neumann trace operator associated with the mapping u �→ γD(μ−1 curl u). It turns
out [11], [14] that γN : H(curl2, D) → X(∂D) is linear, continuous, and admits a
right inverse. Finally, we set

H0(curl, D) = {u ∈ L2(D)3 : curl u ∈ L2(D)3 , γD(u) = 0}.

4.1. Maxwell interior problem. Let Ω be a Lipschitz bounded polyhedron in
R

3.
In this section we consider (4.1) on Ω together with a perfect conductor boundary

condition, i.e., γDE = 0 on ∂Ω. We suppose that ε , μ ∈ L∞(Ω), 0 < c0 ≤ ε(x) , μ(x) ≤
C0, for almost all x ∈ Ω.

Eliminating the field H, defining f := iωJ, and integrating by parts, we obtain
the following (well-known) variational formulation.

Problem 3. Given f ∈ L2(Ω)3, find u ∈ H0(curl,Ω) such that ∀v ∈ H0(curl,Ω)

∫
Ω

μ−1 curl u curl v − ω2

∫
Ω

εu · v =

∫
Ω

f · v.(4.2)

The following theorem is well known and has been proved, e.g., in [40] (see also
[39] for the fundamental compactness result which is the basis of this theorem).

Theorem 4.1. Problem 3 admits a unique solution u ∈ H0(curl,Ω) except for
ω ⊂ {0} ∪ {ωj}j>0, where {ωj} is a positive increasing sequence diverging to +∞. If
div J = 0, then div(εu) = 0.
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Now we decompose the space X := H0(curl,Ω) as X = V ⊕ W:

V = {u ∈ H0(curl,Ω) : div u = 0} , W = ∇H1
0 .(4.3)

It is known (see, e.g., [1]) that there exists a positive σ such that V ↪→ H1/2+σ(Ω)3.
This means in particular that

∫
Ω
εv · w is a compact bilinear form (V ↪→ L2(Ω)

is compact). Calling Θ the mapping u = v + w �→ v − w associated with the
decomposition (4.3), and a(·, ·) the bilinear form of the left-hand side of (4.2), we
have

a(u,Θu) ≥ α‖u‖2
H(curl,Ω) − c(u,Θu),

where c(·, ·) : X×X → C is a compact bilinear form. Thus, when ω is not an eigenvalue
of Problem 3, i.e., ω /∈ {0} ∪ {ωj}j>0, Problem 3 fits exactly into Assumption 1 and
also Assumption 2.

Now we pass to the discretization, and we consider the family of conforming
finite dimensional spaces {Xh}h>0 generated by Nédélec finite elements of the first
family of degree k fixed. The family {Xh}h>0 corresponds to a family of triangulations
{Th(Ω)}h>0 of the domain Ω which, we assume for simplicity, to be made of tetrahedra.
We defer the reader to [35], [22] (see also [31]), or again [24] for a precise definition.
Here we list only the properties we need:

1. The space Xh constructed by Nédélec elements of degree k is approximating
in H(curl,Ω), i.e., (CAS) is verified.

2. Let Ph be the H1
0 -conforming finite element space generated by piecewise

polynomials of degree k on Th(Ω). Then, ∇Ph = {uh ∈ Xh : curl uh = 0}.
3. Denote by Πk the Nédélec interpolant, we have that

(a) Πk is well defined on the space Vh = {v ∈ V : curl v ⊂ curlXh} and
continuous as an operator from Vh to Xh;

(b) ∀v ∈ Vh, curl v = curlΠkv, and ‖v‖H(curl,Ω) ≈ ‖Πkv‖H(curl,Ω).
Property 3 is a nontrivial property of Nédélec finite elements, which is basically

due to V. Girault, and was first used in [19]. We refer to [24] for its proof and
some comments. We set Vh = ΠkV

h and Wh = ∇Ph. We need to prove that
Xh = Vh + Wh. Letting uh ∈ Xh ⊂ X, it can be decomposed as uh = v + ∇p,
v ∈ V , ∇p ∈ W. Since curl uh = curl v, we deduce v ∈ Vh. On the other hand,
uh = Πkuh = Πkv + Πk∇p = Πkv + ∇ph, ph ∈ Ph. Thus, ∇ph ∈ Wh, Πkv ∈ Vh.

It is immediate to see that Wh ⊂ W and also Xh = Vh ⊕ Wh. We need only
prove the following.

Theorem 4.2. δ(Vh,V) , δ(Wh,W) → 0 when h → 0, i.e., (GAP) holds.
Proof. The building block of this proof basically exists in several papers; see, e.g.,

[24]. First of all, δ(Wh,W) = 0.
Let vh ∈ Vh. We know that vh = Πkv for some v ∈ Vh. Moreover, curl v =

curl vh and the regularity results proved in [1] ensure that there exists σ > 0 such
that v ∈ H1/2+σ(Ω) with the continuity estimate

‖v‖H1/2+σ(Ω)3 � ‖ curl vh‖L2(Ω)3 .

Using the approximation properties of Πk on Vh, we have that ∀v ∈ Vh,

‖v − Πkv‖L2(Ω)3 � h1/2+σ(‖v‖H1/2+σ(Ω)3 + ‖ curl vh‖L2(Ω)3)

� h1/2+σ‖vh‖H(curl,Ω).
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We are now ready to define the Galerkin approximation of Problem 3.
Problem 4 (Galerkin). Given f ∈ L2(Ω)3, let ω ∈ R+ be such that Problem 3 is

well-posed.
Find uh ∈ Xh such that ∀v ∈ Xh,∫

Ω

μ−1 curl uh · curl vh − ω2

∫
Ω

εuh · vh =

∫
Ω

f · vh.(4.4)

The general setting developed in section 3 (and Theorem 3.7) provides the fol-
lowing statement as a corollary of Theorem 4.2.

Corollary 4.3. There exists an h� such that ∀ h < h� Problem 4 is wellposed.
Moreover,

‖u − uh‖X ≤ C inf
vh∈Xh

‖u − vh‖X.

Remark 4.4. Thanks to our general setting, the proof of well-posedness for Prob-
lem 4 is completely independent of the fact that we treat general coefficients (note
that the numerical method is proved convergent under the most general assumption
of ε , μ ∈ L∞(Ω), 0 < c0 ≤ ε(x) , μ(x) < C0).

Remark 4.5 (spectral correctness). The relevant eigenvalue problem associated
with Problem 3 is, of course, the one of computing the frequency ω for which the prob-
lem is not well-posed. This fits into the theory developed in section 3 when choosing
as space H the space L2(Ω)3 endowed with the inner product (u,ut)H =

∫
Ω
εu · ut,

u , ut ∈ L2(Ω)3. In this case, it is immediate to see that the associated solution
operator S (see (3.12)) coincides with − 1

ω2 I on W, i.e., Theorem 3.8 and Corollary
3.9 can be applied and ensure asymptotic spectral correctness. This statement is not
new for Maxwell equations and has been proved in [16]. Actually, there it was proved
that the discrete compactness property (see Remark 3.6) together with the fact that
Wh is approximating in W is a necessary and sufficient condition for the spurious
free asymptotic spectral correctness (see [16] for definitions). Nonetheless, as before,
the result expressed in our framework is completely independent of the fact that we
treat general coefficients. Finally, it is easy to see that for this particular application,
the discrete compactness property is equivalent to (GAP) and δ(Wh,W) = 0.

4.2. Maxwell transmission problem. We suppose that the space is filled with
different magnetic materials; i.e., the electric permittivity and the magnetic perme-
ability ε and μ are piecewise positive constants on a fixed nonoverlapping polyhedral
partition P of R

3, R
3 =

⋃
J
j=1Ωj . Moreover, we suppose that ΩJ is the only unbounded

element of the partition and call Ω = R
3 \ ΩJ .

We define the piecewise constant function k := k(x) := ω
√
εμ and denote by

Σ the set of interfaces, i.e., Σ =
⋃J

j=1 ∂Ωi. Note that according to the notation

introduced, R
3 =

⋃J
j=1 Ωj ∪ Σ. The problem we want to solve is the following: Find

u ∈ Hloc(curl,R3 \ Σ) verifying (i)

curl curl u − k2u = 0 in R
3 \ Σ;(4.5a)

(ii) Silver–Müller condition at infinity:

∣∣∣∣curl u(r) × r

|r| − iku

∣∣∣∣ = o

(
1

|r|

)
, |r| → ∞;(4.5b)
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(iii) suitable transmission conditions on the set of interfaces Σ. In order to make
precise the transmission conditions, we need to introduce suitable notation. First of
all, for any vector v defined almost everywhere in R

3, vj always denotes its restriction
to Ωj .

Let Γj = ∂Ωj and nj be the unit outer normal to Ωj , j = 1, . . . , J ; we have at
our disposal the space X(Γj) defined at the beginning of the section. We can then
construct

X := X(Γ1) × X(Γ2) × · · · × X(ΓJ) , ξ = (ξ1, . . . , ξJ),(4.6)

endowed with the product norm ‖ξ‖X =
∑

j ‖ξj‖X(Γj). On such a space, we define
the jump operator [·] as the mapping

[ξ] : [ξ]|Γij
= ξi + ξj ∀ i, j = 1, . . . , J s.t. Γj ∩ Γi �= ∅.(4.7)

Now, if u solves (4.5a), we can construct the set of its Cauchy data as follows: Let
ξj =

(
γDuj

γNuj

)
and ξ = (ξ1, . . . , ξJ).1 Then, ξ ∈ X × X . Applying the jump operator

to each of the two lines of ξ, we impose the transmission condition as

[ξ] = f for some fixed f , f ∈ [X ]2.(4.8)

Remark 4.6. We have to be careful in the definition of transmission conditions
because the tangential trace operators depend on the orientation. Hence, the trans-
mission condition cannot be defined directly on Σ, because Σ is never orientable.

A uniqueness result is available as follows.

Theorem 4.7. The problem (4.5)–(4.8) admits at most one solution.

Proof. This is a direct consequence of Rellich’s theorem (see Müller [34] for a
proof).

4.3. Statement of the problem. In order to show existence and to discretize
the problem (4.5)–(4.8), we need to formulate it in terms of boundary integral equa-
tions on the interfaces Σ. We adopt a construction of the system of integral equations
inspired by [14]. Other derivations are possible; see, e.g., [27].

We first introduce the 1-dielectric problem: Find E ∈ Hloc(curl,Ωj ∪ Ωc
j) such

that:

curl curlE − k2
jE = 0 in Ωj ∪ Ωc

j ,

[γD]E = m; [γN ]E = j on Γj ,

Silver–Müller radiation condition at ∞,

(4.9)

where kj ∈ R+, kj = k(x)|Ωj , and m , j are imposed transmission conditions. There
exists an explicit representation for the solution E of (4.9), which reads for almost all
x ∈ Ωj ∪ Ωc

j as

E = −Ψj
SL(j) − Ψj

DL(m),

1Note that the operators γD and γN are not indexed to keep the notation shorter. If applied to
a field defined on Ωj for some j, they represent the tangential trace operators on the boundary of
Ωj , i.e., Γj . Moreover, if they are applied to a field u ∈ Hloc(curl,R3), γDu stands for the vector
(γDu1, . . . , γDuJ ), γN stands for (γNu1, γNu2, . . . , γNuJ ).
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where Ψj
SL and Ψj

DL denote the single and double layer operators for the Maxwell

problems as defined in [13]. More precisely, let G(x,y) = eik|x−y|

4π |x−y| be the standard

Helmholtz kernel; then for x ∈ Ωj ∪ Ωc
j , Ψj

SL and Ψj
DL are given by

Ψj
SLj(x) :=

∫
Γj

G(x,y)j(y) ds(y) + k−2∇
∫

Γj

G(x,y) divΓ j(y) ds(y),

ΨDLm(x) := curl

∫
Γj

G(x,y)m(y) ds(y).

Let {γD} := 1
2 (γD + γc

D), {γN} := 1
2 (γN + γc

N ). We construct the operator Aj

associated with the domain Ωj as

Aj

(
m
j

)
:=

(
{γD}
{γN}

)
(−Ψj

SLj − Ψj
DLm).(4.10)

Finally, for each Ωj , we define the antisymmetric bilinear form Bj : X(Γj)
2 ×

X(Γj)
2 → C acting on sets of Cauchy data as

Bj

((
m
j

)
,

(
m̃
j̃

))
:= −bj(m, j̃) + bj(m̃, j) ∀

(
m
j

)
,

(
m̃
j̃

)
∈ X(Γj)

2,(4.11)

where b(·, ·) is the duality pairing defined, as at the beginning of this section, as
bj(μ,λ) =

∫
Γj

μ · (λ × nj).

The following theorem has been proved in [14].
Theorem 4.8. Let W(Γj) = {λ ∈ X(Γj) : divΓ λ = 0} and let V(Γj) be any

supplement of W(Γj) in X(Γj) such that (i) V(Γj) ↪→ L2
t (Γj) is compact; (ii) the

decomposition X(Γj) = V(Γj) ⊕ W(Γj) is stable in X(Γj). Then call Θ : X(Γj)
2 →

X(Γj)
2 the operator associated with the mapping u = v+w �→ v−w componentwise.

The operator Aj is injective and verifies

ReB((A + T )ξ,Θ(ξ)) ≥ ‖ξ‖2
X , T : X(Γj)

2 → X(Γj)
2 compact.

In other words, we are within Assumptions 1 and 2. Note that the supplement
V(Γj) fulfilling the assumptions of Theorem 4.8 can be constructed in several ways
[14], [25].

We are now ready to give the integral formulation associated with (4.5)–(4.8).
Proposition 4.9. Let A = diag{A1, . . . , AJ}, and

B(ξ,λ) =

J∑
j=1

Bj(ξj ,λj), ξ , λ ∈ X 2.(4.12)

The vector field u is a solution of (4.5)–(4.8) if and only if its Cauchy data verifies
ξ = ξ0 + ξ

hom
, [ξ0] = f, and

ξ
hom

∈ X 2
hom : B(Aξ

hom
,λhom) = B(( 1

2 I − A)ξ0,λhom) ∀λhom ∈ X 2
hom.

(4.13)

The proof of this result is completely equivalent to the one for the corresponding
Helmholtz problem and can be found in [37] (see also [38] and [15]). The next section
is devoted to showing that this problem fits into our framework.
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4.3.1. Verification of Assumption 1. We want to prove that the operator
A : X 2

hom → (X 2
hom)′, (X 2

hom)′ being the dual of X 2
hom with respect to the duality

product B(·, ·) fits Assumption 1. We have the following theorem.
Theorem 4.10. Define

Whom = {ξ ∈ Xhom , divΓ ξj = 0 ∀ j}.

Then there exists a supplement Vhom of Whom in Xhom such that

Xhom = Vhom ⊕ Whom with Vhom ↪→ L2
t (Σ) compact,(4.14)

where L2
t (Σ) = ⊗J

j=1L
2
t (Γj). Moreover, the splitting is stable, i.e., the following

stability estimate holds: λ ∈ X , λ = v + w, v ∈ V, w ∈ W, and

‖v‖X + ‖w‖X � ‖λ‖X � ‖v‖X + ‖w‖X .(4.15)

Proof. We assume for simplicity that each Ωj is connected and simply connected,
we construct the space Vhom by the definition of a projector ΠVhom

: Xhom → Xhom

such that ker{ΠVhom
} = Whom, and choose Vhom = ΠVhom

(Xhom). Let ξ ∈ Xhom

and BR be a ball of radius R sufficiently large to ensure that Σ ⊂ BR. Solve the
following problems in each Ωj :

−Δpj = 0 in Ωj ∩BR,
∇pj · nj = divΓ ξj on Γj (and, for j = J ,∇pJ · nR = 0 on ∂BR).

(4.16)

We denote by ϕ the function defined as ϕj = ∇pj . We deduce then that div ϕ = 0
on BR since div ϕj = 0 in Ωj and ϕj · nj + ϕi · ni = 0 on Γij ∀ i, j, since ξ ∈ Xhom.

Using, e.g., [1], ϕ admits a vector potential in BR, V ∈ H1(BR) ∩ H0(curl, BR)
verifying

curlV = ϕ, div V = 0.

By continuity we have

‖V‖H1(BR) � ‖ϕ‖L2(BR) � ‖divΓ ξ‖−1/2,Σ.

Set ΠVhom
ξ = γDV. By construction ΠVhom

: X → H
1/2
× (Σ) and ker{ΠVhom

} =
Whom, and for vj = (γDV)j , divΓ vj = (curlV)|Ωj

· nj = ϕj · nj = divΓ ξj . Thus,

ΠVhom
is a projection and we conclude by observing that H

1/2
× (Σ) is compactly em-

bedded in L2
t (Σ).

We consider an operator Θ : X 2
hom → X 2

hom which maps ξ ∈ X 2
hom with Hodge

decomposition (Theorem 4.10 applied twice) ξ = v+w into Θ(ξ) = v−w. The next
theorem follows then as an immediate consequence of Theorems 4.8 and 4.10.

Theorem 4.11. There exists a compact operator T : X 2
hom → X 2

hom and a
constant α > 0 such that

ReB((A + T )ξ,Θ(ξ)) ≥ α
∥∥ξ

∥∥2

X 2 .(4.17)

Proof. We use the definitions of B and A:

B(Aξ,Θ(ξ)) =
∑
j

Bj(Aj(vj + wj),vj − wj)
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with ξ = v + w, v = (v1, . . . ,vJ) and w = (w1, . . . ,wJ). Applying Theorem 4.8, we

know that, for each j, there exists a compact operator Tj : X(Γj)
2 → X(Γj)

2 such
that

ReBj(Aj + Tj(vj + wj),vj − wj) ≥ ‖ξj‖X(Γj)2 .(4.18)

Summing (4.18) over j, the statement is proved.
Since we know that (4.13) admits at most one solution (as a consequence of

Theorem 4.7 and Proposition 4.9), this theorem says that (4.13) is in our framework,
i.e., it verifies Assumption 1. As a matter of fact, it verifies also Assumption 2.

4.3.2. Discretization and verification of the (GAP) property. We concen-
trate now on the discretization of the problem (4.13). First we construct a compatible
mesh on the interfaces Σ in the following way: Consider that there exists a triangu-
lation Th(BR) of a ball BR containing Σ and such that Σ is composed only of faces
of the underlying triangulation Th(BR), i.e., Σ does not cut elements of the mesh.
This automatically generates a compatible triangulation of Σ, Th(Σ) and of course
also triangulations of Γj ’s, that we denote by Th(Γj).

Each single space X(Γj) is discretized by means of Raviart–Thomas finite ele-
ments of degree k defined on Th(Γj), [36], [22]. We denote the discrete spaces by
Xh(Γj).

Now, the discrete counterpart of X is Xh = Xh(Γ1) × · · · × Xh(ΓJ), and the
discrete counterpart of Xhom is

(Xh)hom = Xh ∩ Xhom.(4.19)

Note that, thanks to the fact that the nonempty intersections Γij = Γi ∩ Γj are
discretized by means of only one triangulation, namely, Th(Σ)|Γij

, the space (Xh)hom

is well defined as a constrained subspace of Xh. We are then ready to state the
theorem.

Theorem 4.12. There exists a splitting (Xh)hom = (Vh)hom ⊕ (Wh)hom such
that

δ((Vh)hom,Vhom) → 0 when h → 0 and δ((Wh)hom,Whom) = 0.

Proof. We assume for the sake of simplicity that each Ωj is connected and simply
connected.

We set (Wh)hom = Whom ∩ Xh. An alternate definition is the following: Set
Wh(Γj) = {λh ∈ Xh(Γj) : divΓ λh = 0}. Wh(Γj) is the finite elements space
of curlΓ Ph, where Ph is the space of continuous piecewise polynomials of degree k
[22], [11], i.e., characterized by degrees of freedom attached to vertices, edges, and
triangles on Γj . Then we set Wh = Wh(Γ1)× · · · ×Wh(ΓJ); this space has for each
vertex (or edge, or triangle) belonging to an intersection Γij two sets of independent
degrees of freedom, one defining Wh(Γi) and the other Wh(Γj). Now, in (Wh)hom =
Wh ∩Xhom, the degrees of freedom belonging to these two sets are constrained to be
equal for each vertex, edge, or triangle.

Now we construct the supplement (Vh)hom. We use two intermediate finite el-
ements spaces: the Nédélec edge elements of degree k, Xh(BR), as introduced in
section 4.1, but on BR (with vanishing tangential component on ∂BR), and the
Raviart–Thomas finite elements of degree k, Yh(BR), with vanishing normal compo-
nent on ∂BR. We construct local Nédélec and Raviart–Thomas elements as Xh(Ωj) =
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Xh(BR)|Ωj
and Yh(Ωj) := Yh(BR)|Ωj

(and Xh(ΩJ) = Xh(BR)ΩJ∩BR
, Yh(ΩJ) :=

Yh(BR)|ΩJ∩BR
). We refer to [36], [6], [22] for suitable definitions and properties. We

construct the space (Vh)hom as we did for Vhom in the proof of Theorem 4.10, i.e., by
constructing a projection operator Π : (Xh)hom → (Xh)hom with ker{Π} = (Wh)hom.

Then let λh ∈ (Xh)hom, λh = (λ1,h, . . . ,λJ,h), λj,h ∈ Xh(Γj). We solve the
following:

Find Ξj,h ∈ Yh(Ωj) :

⎧⎨
⎩

div Ξj,h = 0 on Ωj ,∫
Ωj

Ξj,h curlχh = 0 ∀χh ∈ Xh(Ωj),

Ξj,h · nj = divΓ λj,h on Γj .

This problem is solvable since
∫
Γj

divΓ λj,h = 0; moreover, it is uniquely solvable [6].

Now, since λh ∈ (Xh)hom, by construction the vector Ξh, Ξh|Ωj
:= Ξj,h, belongs to

Yh(BR). Now we solve the discrete and continuous vector potential problem:

Find Ψh ∈ Xh(BR) :

{
curlΨh = Ξh on BR,∫
BR

Ψh · wh = 0 ∀wh ∈ Xh(BR) , curlwh = 0,

Find Ψ ∈ H0(curl, BR) :

{
curlΨ = Ξh on BR,
div Ψ = 0 on BR.

These problems are uniquely solvable [1]; moreover, the continuity estimate

‖Ψ‖H1(BR) + ‖Ψh‖H(curl,BR) � ‖Ξh‖L2(BR) �
J∑

j=1

‖divΓ λj‖H−1/2(Γj)(4.20)

holds.
Now the proof is basically finished. Denote by Ψj,h (Ψj , resp.) the restriction of

Ψh (Ψ, resp.) to Ωj (for j = J to ΩJ ∩BR) ∀ j.

It is enough to set Πλh = λV
h := (γD(Ψ1,h), . . . , (ΨJ,h)); by construction,

divΓ λV
j,h = curlΨj,h|Γj

· nj = Ξj,h · nj = divΓ λj,h.

Thus, ker{Π} = (Wh)hom. Set λV = (γD(Ψ1), . . . , γD(ΨJ)); by construction,
λV ∈ Vhom. It is the candidate in Vhom that is needed to verify the (GAP) property:

‖λV − λV
h ‖X � ‖Ψ − Ψh‖H(curl,BR) � ‖Ψ − Ψh‖L2(BR)

� h‖Ψ‖H1(BR) � h‖Ξh‖L2(BR)

� h

J∑
j=1

‖divΓ λj,h‖H−1/2(Γj) � h‖λV
h ‖X ,

(4.21)

which proves that δ((Vh)hom,Vhom) � h. Note that the forth estimate in (4.21)
comes from the (GAP) property for Nédélec finite elements, which has been proved
in section 4.1.

Corollary 4.13. The following Galerkin problem admits a unique solution when
h is sufficiently small: Find ξ

h
∈ (Xh)2hom such that

B(Aξ
h
,λh) = B(( 1

2 I − A)ξ0,λh) ∀λh ∈ (Xh)2hom,(4.22)
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Moreover, let ξ
hom

∈ X 2
hom be the solution of (4.13). Then it holds that

‖ξ
hom

− ξ
h
‖X 2 � inf

λh∈(Xh)2hom

‖ξ
hom

− λh‖X 2 .
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ON THE ERROR OF LINEAR INTERPOLATION AND THE
ORIENTATION, ASPECT RATIO, AND INTERNAL ANGLES OF A

TRIANGLE∗

WEIMING CAO†

Abstract. In this paper, we attempt to reveal the precise relation between the error of linear
interpolation on a general triangle and the geometric characters of the triangle. Taking the model
problem of interpolating quadratic functions, we derive two exact formulas for the H1-seminorm
and L2-norm of the interpolation error in terms of the area, aspect ratio, orientation, and internal
angles of the triangle. These formulas indicate that (1) for highly anisotropic triangular meshes
the H1-seminorm of the interpolation error is almost a monotonically decreasing function of the
angle between the orientations of the triangle and the function; (2) maximum angle condition is not

essential if the mesh is aligned with the function and the aspect ratio is of magnitude
√

|λ1/λ2| or
less, where λ1 and λ2 are the eigenvalues of the Hessian matrix of the function. With these formulas
we identify the optimal triangles, which produce the smallest H1-seminorm of the interpolation error,
to be the acute isosceles aligned with the solution and of an aspect ratio about 0.8|λ1

λ2
|. The L2-

norm of the interpolation error depends on the orientation and the aspect ratio of the triangle, but
not directly on its maximum or minimum angles. The optimal triangles for the L2-norm are those

aligned with the solution and of an aspect ratio
√

|λ1/λ2|. These formulas can be used to formulate
more accurate mesh quality measures and to derive tighter error bounds for interpolations.

Key words. anisotropic mesh, linear interpolation, aspect ratio, mesh alignment, maximum
angle condition
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1. Introduction. It is well known that on quasi-uniform meshes the accuracy of
piecewise linear interpolation is first order in the H1-norm. More precisely, denote by
Hm(Ω) the usual Sobolev spaces of order m on a bounded domain Ω ∈ R2. For any
u ∈ H2(Ω), the H1-norm of the error between u and its piecewise linear interpolation
uI can be bounded by

‖u− uI‖H1(Ω) ≤ ch|u|H2(Ω),

where h is the diameter of the triangles in the mesh, and c is a constant independent
of h and u.

If the mesh is not quasi-uniform, then the error contributed from each triangle K
can be bounded by

‖u− uI‖H1(K) ≤ c
h2

ρ
|u|H2(K),

where ρ is the diameter of the largest inscribed circle in K. This error bound guaran-
tees the H1-norm of the error converge to 0 as h → 0, as long as h

ρ remains bounded.

This is equivalent to requiring that the minimum angle of K is bounded from 0 [5].
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However, this error estimate is not tight when the triangle has only one small angle.
Babus̆ka and Aziz [2] showed that the minimum angle condition is actually not es-
sential for the convergence of linear interpolation. They improved the error bound
as

‖u− uI‖H1(K) ≤ Γ(α)h|u|H2(K),

where Γ(α) is an increasing function of the maximum angle α of K. Therefore, in
order to guarantee the convergence it is only required that the maximum angle be
bounded from π. This is the well-known maximum angle condition. This condition
is necessary and sufficient for the convergence of the linear interpolation process over
the class of functions of H2(K).

In adaptive computation, one often knows a priori or a posteriori some informa-
tion of the functions to be approximated. This information can be used to restrict
the set of functions considered and to avoid the divergence case although the trian-
gle has a maximum angle close to π. Indeed, long and thin triangles violating the
maximum angle condition have been used successfully in engineering, particularly in
computational fluid dynamics [1, 15]. For problems with very different length scales
in different spatial directions, long and thin triangles turn out to be better choices
than shape regular ones if they are properly used. This motivated an intensive study
on the error analysis for anisotropic meshes in the finite element method (FEM). For
instance, Apel [1] described an error estimate in terms of the length scales h1 and h2

along the x and y directions, respectively,

|u− uI |Wm,p(K) ≤ c
∑

α1+α2=�−m

hα1
1 hα2

2 | ∂�−mu

∂xα1∂yα2
|Wm,p(K), m = 0, 1,

where Wm,p(K) is the Sobolev space of functions whose up to mth order derivatives
are Lp-integratable. If u and K are aligned and the maximum angle condition is sat-
isfied, this estimate is asymptotically accurate, i.e., both sides of the above inequality
have the same hi order. But when the maximum angle of K approaches π, the ratio
of the error bound over the actual error norm goes to infinity [7]. Formaggia and
Perotto [7] presented another type of estimate of the H1-norm for the interpolation
error based on the eigendecomposition of the affine mapping from a standard element
to K. Their estimate is accurate when u and K are aligned and the maximum angle
of K is close to π. However, the ratio of their estimate over the actual error norm
goes to infinity when two angles of K approach π

2 .
More recent error analyses have been based on the overall mesh properties and

the behavior of the approximation functions. For instance, Berzins [4] developed a
mesh quality indicator measuring the correlation between the anisotropic features
of the mesh and those of the solutions. Kunert [11] proposed a so-called matching
function to quantify how good overall a mesh is for a specific solution. Huang [8]
introduced measures for three aspects of the mesh qualities—aspect ratio, alignment,
and adaptation—and an overall quality mesh measure based on them. He formulated
the error bounds in terms of these measures and proposed a variational formulation
to optimize the overall mesh quality measure to control the interpolation error. A
similar idea was used by Huang and Sun [9] in formulating the monitor function in
variational mesh adaptation.

Needless to say, the interpolation error depends on the solution and the size and
shape of the elements in the mesh. Understanding this relation is crucial for the



LINEAR INTERPOLATION ERROR AND TRIANGLE GEOMETRY 21

generation of efficient and effective meshes for the FEM. However, in all the error
estimates for anisotropic meshes, the relation between the error and the geometric
characters of a triangle, such as the alignment, aspect ratio, and internal angles,
has not been revealed explicitly. In the mesh generation community, this relation
is studied more closely for the model problem of interpolating quadratic functions.
This model is a reasonable simplification of the cases involving general functions,
since quadratic functions are the leading terms in the local expansion of the linear
interpolation errors. For instance, Nadler [12] derived an exact expression for the
L2-norm of the linear interpolation error in terms of the three sides �1, �2, and �3 of
the triangle K,

‖u− uI‖2
L2(K)

=
|K|
180

[(d1 + d2 + d3)
2 + d1d2 + d2d3 + d1d3],

where |K| is the area of the triangle, di = �i ·H�i with H being the Hessian matrix
of u. Bank and Smith [3] gave a similar formula for the H1-seminorm of the linear
interpolation error; see (8) in section 3. Assuming u = λ1x

2 + λ2y
2, D’Azevedo and

Simpson [6] derived the exact formula for the maximum norm of the interpolation
error

‖u− uI‖2
L∞(K) =

D12D23D31

16λ1λ2|K|2
,

where Dij = �i ·diag(λ1, λ2)�i. Based on the geometric interpretation of this formula,
they proved that for a fixed area the optimal triangle, which produces the smallest
maximum interpolation error, is the one obtained by compressing an equilateral tri-
angle by factors

√
λ1 and

√
λ2 along the two eigenvectors of the Hessian matrix of

u. Furthermore, the optimal incidence for a given set of interpolation points is the
Delaunay triangulation based on the stretching map (by factors

√
λ1 and

√
λ2 along

the two eigenvector directions) of the grid points. Rippa [13] showed that the mesh
obtained this way is also optimal for the Lp-norm of the error for any 1 ≤ p ≤ ∞.

Thought these formulas are exact, they do not describe explicitly the relation
between the error and the geometric characters of the triangle. In this paper, we
attempt to reveal this relation explicitly and precisely. Taking the model problem of
linear interpolation of quadratic functions, we derive two exact expressions for the
H1-seminorm and L2-norm of the interpolation error in terms of the area, aspect
ratio, alignment direction, and internal angles of the triangle. From these formulas
the effects of the geometric characters of a triangle can be clearly identified. They
indicate that (1) for highly anisotropic triangular meshes the H1-seminorm of the
interpolation error is almost a monotonically decreasing function of the angle between
the orientation of the triangle and the orientation of the function; (2) maximum angle
condition is critical if the mesh is not aligned with the function or if the aspect ratio
is larger than

√
|λ1/λ2|; (3) if the triangles are aligned with the function and the

aspect ratio is about
√
|λ1/λ2| or less, then the error is not sensitive to the maximum

angle of the triangle. Also, we can easily identify the best triangles which produce
the smallest H1- or L2-norm of the interpolation error. It turns out that in the sense
of the H1-seminorm, the optimal triangle with a given area is the acute isosceles
aligned with the function and of the aspect ratio about 0.8|λ1

λ2
|. The L2-norm of the

interpolation error depends on the alignment and the aspect ratio of the triangle,
but not directly on its maximum or minimum angles. The optimal triangles for the
L2-norm are those aligned with the solution and of an aspect ratio

√
|λ1/λ2|.
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The organization of this paper is as follows. In section 2 we give a precise defini-
tion of the orientation and the aspect ratio of a triangle by using the singular value
decomposition (SVD) of the affine mapping from a standard element to the triangle.
In section 3 we derive the exact formulas for the H1-seminorm and L2-norm of the
interpolation error for the quadratic functions. Then we identify in section 4 a number
of special cases that are of interests to the optimal design of meshes. Optimal choices
of the aspect ratio and the alignment direction are discussed here. In section 5 we
elaborate in more detail the effects of various geometric characters of a triangle on
the interpolation error. Finally we demonstrate by an example the accuracy of the
linear interpolation errors on different meshes.

2. Mapping and the geometric characters of a triangle. Let K be a tri-
angle in the xy-plane, and let x1,x2, and x3 be the vertices of K. Denote by �i
the vector of the side opposite to xi (in counterclockwise direction). Let K̂ be the
equilateral triangle with the vertices

ξ1 =

[
0
1

]
, ξ2 =

[
−

√
3

2
− 1

2

]
, ξ3 =

[ √
3

2
− 1

2

]
.

The three sides of K̂ are ei =
√

3[cos(2(i− 1)π/3), sin(2(i− 1)π/3)]T , i = 1, 2, 3. See
Figure 1.

ξ1

η

ξ
2

ξ
3

ξ
1

x

y

x
2

x
3

x
1

Fig. 1. Standard element K̂ and physical element K.

Let xc = 1
3 (x1 + x2 + x3) be the center of K. The affine mapping (which maps

ξi to xi) from K̂ to K can be expressed as x = Mξ + xc with

M =

(
1√
3
(x1 − x3),x2 − xc

)
.

Denote by M = UΣV ∗ the SVD of the 2 × 2 matrix M . Without loss of generality,
we assume Σ = diag(σ1, σ2) with σ1 ≥ σ2 > 0, and

U = Rφu =

[
cosφu − sinφu

sinφu cosφu

]
, V = Rφv =

[
cosφv − sinφv

sinφv cosφv

]
.

Rφu and Rφv represent the linear transform of rotation (counterclockwise) by angles
φu and φv, respectively.

The mapping x = Mξ maps K̂ into a triangle centered at the origin. Its effect
can be understood as the composition of three operations (see, e.g., [16]): (1) rotation
clockwise by angle φv; then (2) stretching by factors σ1 and σ2 in ξ and η directions,
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respectively; and finally (3) rotation counterclockwise by angle φu. A circle (centered
at (0,0)) in the ξη-plane will be mapped into an ellipse in the xy-plane with two axes
σ1 and σ2, and the longer axis forms an angle φu with the x-axis. See Figure 2.

1 σ
1

σ
2

ξ
1

φ
v

ξ
1

ξ
1

φ
u

Fig. 2. From K̂ to K under the mapping M : R∗
φv

K̂, ΣR∗
φv

K̂, RφuΣR∗
φv

K̂.

We define the aspect ratio of the triangle K as

r12 =
σ1

σ2
(1)

and define the orientation of K as the direction of angle φu with the x-axis.
It can be seen that K is equilateral if and only if σ1 = σ2 and that K is isosceles

if and only if φv = mπ
6 with integer m or σ1 = σ2. Together with the aspect ratio,

φv determines the three internal angles of the triangle. For a fixed aspect ratio, the
maximum internal angle of K is a periodic even function of φv with period π

3 , and
it is decreasing in (0, π

6 ). K is an obtuse isosceles triangle when φv = mπ
3 and an

acute isosceles triangle when φv = (2m+1)π
6 . If K is an obtuse/acute isosceles, then

its orientation is in parallel/perpendicular to its base. Furthermore, let b and h be
the length of the base and the height over the base of an isosceles triangle; then

{
σ1 =

√
3

3 b, σ2 = 2
3h, r12 =

√
3

2
b
h , φv = 0 when h ≤

√
3

2 b,

σ1 = 2
3h, σ2 =

√
3

3 b, r12 = 2√
3
h
b , φv = π

6 when h >
√

3
2 b.

For general triangles, the aspect ratio r12 can be found as follows. Let

q(K) =
1

2

(
σ1

σ2
+

σ2

σ1

)
∈ [1,∞).

This quantity can be calculated from the three sides and the area of K as (see formula
(10) below)

q(K) =
σ2

1 + σ2
2

2σ1σ2
=

|�1|2 + |�2|2 + |�3|2

4
√

3|K|
.(2)

Therefore,

r12 = q +
√
q2 − 1.

Clearly, the closer r12 is to 1, the closer K is to being equilateral. The same is
true for the quantity q(K). Therefore, both r12 and q(K) can be used to measure
the closeness of a triangle to being equilateral. Indeed, the reciprocal of the right-
hand-side expression in (2) was used by Bank and Smith [3] as the “shape regularity
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quantity” of a triangle. q(K) can also be expressed in terms of the matrix M directly.
Note that σ1 and σ2 are eigenvalues of (MTM)1/2; it is easy to see that

q(K) =
‖M‖2

F

2 det(M)
,

where ‖ · ‖F stands for the Frobenius norm of a matrix. This formula was used by
Knupp, Margolin, and Shashkov [10] in certain functionals characterizing the smooth-
ness of the mesh.

There are several other ways to define the aspect ratio and the orientation of a
triangular element in the finite element analysis. For instance, the aspect ratio is
usually defined as the ratio of the length of the longest side over the perpendicular
distance from it to the opposite vertex, or as the ratio of the diameter of the triangle
over the diameter of the largest inscribed circle in the triangle. The orientation can
be defined as the direction of the longest side. It is easy to see that these definitions
are equivalent to (1) up to some bounded constants. However, they are not precise
enough for describing accurately the behavior of the interpolation errors.

3. Formulas for H1- and L2- norms of the interpolation error. Without
loss of generality, assume K is a triangle with its center at the origin and its orientation
being the x-axis, i.e., xc = 0, φu = 0. We study the H1- and L2-norms of the error for
the linear interpolation of a quadratic function u over K. Since the first order terms
of u have no contribution to the error of linear interpolation, we assume in particular
that u = 1

2x ·Hx, where H is the Hessian of u. Since H is a 2× 2 symmetric matrix,
we may decompose it into

H = Rφh

[
λ1

λ2

]
RT

φh
,(3)

where Rφh
is the matrix of rotation by an angle φh. We also assume that λ1 ≥ |λ2|.

Other cases can be covered by simply considering the function −u. It is easy to see
that the contour lines of u are concentrical ellipses (when λ1λ2 > 0) or hyperbolas
(when λ1λ2 < 0). Their axes are multiples of 1/

√
λ1 and 1/

√
λ2, and the longer axis

(with λ2) is of angle φh with the y-axis. We define this direction as the orientation of
function u. When φh = π

2 , u is oriented along the x-axis, i.e., in the same direction
as triangle K. In this case, we say K and u are aligned. When φh = 0, u is oriented
along the y-axis, i.e., perpendicular to the orientation of K. See Figure 3.

x1

Fig. 3. Triangle K and the contour lines of a function u. φh is about −π
6

in this graph.
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Denote by uI the linear interpolation of u at the three vertices of K. Clearly the
norm of the error u− uI depends on the size and the shape of triangle K, as well as
the magnitude and the orientation of function u. We derive in this section the exact
formulas for the H1- and L2-norms of the interpolation error in terms of these factors.

Theorem 3.1. Let K be a triangle oriented along the x-axis. r12 is the aspect
ratio of K, r21 = 1/r12. Let u be a quadratic function. λ1 and λ2 are the eigenvalues
of the Hessian matrix of u, and the orientation of u is of angle φh with the y-axis;
then

‖∇(u− uI)‖2
L2(K)

=

√
3

36
|K|2
{

[(r12 + r21)(λ
2
1 + λ2

2) + (r12 − r21)(λ
2
1 − λ2

2) cos(2φh)]

+
1

2

[
− 4λ1λ2 +

1

4
( (λ1 + λ2)(r12 + r21) + (λ1 − λ2)(r12 − r21)(4)

· cos(2φh) )2
]
[(r12 + r21 + (r12 − r21) cos(6φv + 4θ)]

}
,

where φv is the rotation angle in the mapping from K̂ to K, and

θ =
1

2
atan

(
2(λ1 − λ2) sin(2φh)

(λ1 + λ2)(r12 − r21) + (λ1 − λ2)(r12 + r21) cos(2φh)

)
.(5)

Proof.

Step 1. We start with a result established by Bank and Smith in [3]. Let
ci(x, y), i = 1, 2, 3, be the barycentrical coordinates of a point (x, y) in K. The side
basis functions (taking value 1

4 at a midpoint) are

b1(x, y) = c2(x, y) c3(x, y),
b2(x, y) = c3(x, y) c1(x, y),
b3(x, y) = c1(x, y) c2(x, y).

It is easy to see that

u− uI = −1

2
(v1 b1(x, y) + v2 b2(x, y) + v3 b3(x, y)),(6)

where

vi = �i ·H�i, i = 1, 2, 3.(7)

Let v = [v1, v2, v3]
T . It is further established in [3] that

∫
K

|∇(u− uI)|2 dxdy =
1

4
v ·Bv,(8)

where

B =

(∫
K

∇bi · ∇bjdxdy

)

= 1
48|K|

⎡
⎣ |�1|2 + |�2|2 + |�3|2 2�1 · �2 2�1 · �3

|�1|2 + |�2|2 + |�3|2 2�2 · �3

symm. |�1|2 + |�2|2 + |�3|2

⎤
⎦ .
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We first derive a formula for the matrix B in terms of the singular values and the
rotation angle φv of the mapping M . Note that we assume φu = 0; therefore

�i = Mei = ΣR∗
φv

ei =
√

3

[
σ1 cosαi

σ2 sinαi

]
,

where

αi = 2(i− 1)π/3 − φv, i = 1, 2, 3.(9)

With formula (A.1) in the appendix it is easy to verify that

|�1|2 + |�2|2 + |�3|2 = 3σ2
1

3∑
i=1

cos2 αi + 3σ2
2

3∑
i=1

sin2 αi =
9

2
(σ2

1 + σ2
2).(10)

Let

fij =
σ2

1

σ2
1 + σ2

2

cosαi cosαj +
σ2

2

σ2
1 + σ2

2

sinαi sinαj .(11)

Then

�i · �j = 3(σ2
1 cosαi cosαj + σ2

2 sinαi sinαj) = 3(σ2
1 + σ2

2)fij , 1 ≤ i, j ≤ 3.

Note that |K| = 3
√

3
4 σ1σ2. We may express B as

B =

√
3

24

σ2
1 + σ2

2

σ1σ2

⎡
⎣ 1 4

3f12
4
3f13

1 4
3f23

symm. 1

⎤
⎦ ,

and rewrite the norm of the error as

‖∇(u− uI)‖2
L2(K) =

√
3

96

σ2
1 + σ2

2

σ1σ2
(12)

·
[

3∑
i=1

(vi)
2 +

8

3
(f12 v1v2 + f13 v1v3 + f23 v2v3)

]
.

Step 2. We next simplify the terms involving vi. Assume the Hessian matrix
H = (hij), and denote by

H̃ =

[ σ1

σ2
h11 h12

h12
σ2

σ1
h22

]
.(13)

Since H̃ is a 2 × 2 symmetric matrix, we may decompose it into

H̃ = Rθ

[
μ1

μ2

]
RT

θ ,(14)

where Rθ is the matrix for the counterclockwise rotation by an angle θ, and μ1 and
μ2 are the eigenvalues of H̃. By the facts that

vi = �i ·H�i = (R∗
φv

ei) · (ΣTHΣ) (R∗
φv

ei) = σ1σ2(R
∗
φv

ei) · H̃ (R∗
φv

ei)

= σ1σ2(R
∗
θR

∗
φv

ei) · diag(μ1, μ2) (R∗
θR

∗
φv

ei)
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and that

R∗
θR

∗
φv

ei =
√

3[cos(αi − θ), sin(αi − θ)]T ,

we have

vi = 3σ1σ2[μ1 cos2(αi − θ) + μ2 sin2(αi − θ)]
= 3

2σ1σ2[(μ1 + μ2) + (μ1 − μ2) cos 2(αi − θ)].

Therefore it follows from formulas (A.2) and (A.3) that

3∑
i=1

(vi)
2=

9

4
(σ1σ2)

2

[
3(μ1 + μ2)

2 +
3

2
(μ1 − μ2)

2

]

=
81

8
(σ1σ2)

2

[
μ2

1 + μ2
2 +

2

3
μ1μ2

]
.(15)

Expand vivj as follows:

vivj =
9

4
(σ1σ2)

2[(μ1 + μ2)
2 + (μ2

1 − μ2
2)(cos 2(αi − θ) + cos 2(αj − θ))(16)

+ (μ1 − μ2)
2 cos 2(αi − θ) cos 2(αj − θ)].

Let β = φv + θ. Then αi − θ = 2(i− 1)π/3 − β, and

cos 2(αi − θ) + cos 2(αj − θ) =

⎧⎨
⎩

cos(2β + π
3 ) for (i, j) = (1, 2),

cos(2β − π
3 ) for (i, j) = (1, 3),

cos(2β + π) for (i, j) = (2, 3)

and

cos 2(αi − θ) · cos 2(αj − θ) =

⎧⎪⎨
⎪⎩

− 1
4 − 1

2 cos(4β − π
3 ) for (i, j) = (1, 2),

− 1
4 − 1

2 cos(4β + π
3 ) for (i, j) = (1, 3),

− 1
4 − 1

2 cos(4β + π) for (i, j) = (2, 3).

Substituting the above formulas into (17), we have

f12 v1v2 + f13 v1v3 + f23 v2v3

= 9
4 (σ1σ2)

2 {[(μ1 + μ2)
2 − 1

4 (μ1 − μ2)
2] (f12 + f13 + f23)

+ (μ2
1 − μ2

2) [f12 cos(2β + π
3 ) + f13 cos(2β − π

3 ) + f23 cos(2β + π)]

− 1
2 (μ1 − μ2)

2 [f12 cos(4β − π
3 ) + f13 cos(4β + π

3 ) + f23 cos(4β + π)] }.

(17)

By using the definition (11) for fij , we have from formula (A.4) that

f12 + f13 + f23 = −3

4
;(18)

from formulas (A.5) and (A.6) that

f12 cos(2β + π
3 ) + f13 cos(2β − π

3 ) + f23 cos(2β + π)

= − 3
4

σ2
1 − σ2

2

σ2
1 + σ2

2

cos(2θ);
(19)
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and from formulas (A.7) and (A.8) that

f12 cos(4β − π
3 ) + f13 cos(4β + π

3 ) + f23 cos(4β + π)

= − 3
4

σ2
1 − σ2

2

σ2
1 + σ2

2

cos(6φv + 4θ).
(20)

Put (17)–(20) into (13); we may express the norm of the error as

‖∇(u− uI)|2L2(K) =
3
√

3

64
(σ2

1 + σ2
2)σ1σ2

{[
μ2

1 + μ2
2 −

σ2
1 − σ2

2

σ2
1 + σ2

2

(μ2
1 − μ2

2) cos(2θ)

]

+
1

2
(μ1 − μ2)

2

[
1 +

σ2
1 − σ2

2

σ2
1 + σ2

2

cos(6φv + 4θ)

]}
.(21)

Step 3. Finally we express μ1, μ2, and θ in terms of the eigenvalues of the Hessian
H and the aspect ratio r12 of K. According to the eigendecomposition (3) of H,

H =

[
λ1 cos2 φh + λ2 sin2 φh (λ1 − λ2) sinφh cosφh

(λ1 − λ2) sinφh cosφh λ1 sin2 φh + λ2 cos2 φh

]
.

Therefore

H̃ = (h̃ij) =

[
r12(A + D cos 2φh) D sin 2φh

D sin 2φh r21(A−D cos 2φh)

]

with

A =
1

2
(λ1 + λ2), D =

1

2
(λ1 − λ2).

Recall the eigendecomposition (14), it is not difficult to establish for the eigenvalues
μ1 and μ2 of H̃ that

μ2
1 + μ2

2 = (h̃11)
2 + (h̃22)

2 + 2(h̃12)
2

= (A2 + D2 cos2(2φh))(r2
12 + r2

21) + 2AD(r2
12 − r2

21) cos(2φh)
+ 2D2 sin2(2φh),

(μ2
1 − μ2

2) cos 2θ = (h̃11)
2 − (h̃22)

2

= (A2 + D2 cos2(2φh))(r2
12 − r2

21) + 2AD(r2
12 + r2

21) cos(2φh),

(μ1 − μ2)
2 = (h̃11 − h̃22)

2 + 4(h̃12)
2

= 4D2 + A2(r12 − r21)
2 + 2AD(r2

12 − r2
21) cos(2φh)

+D2(r12 − r21)
2 cos2(2φh)

= 4(D2 −A2) + A2(r12 + r21)
2 + 2AD(r2

12 − r2
21) cos(2φh)

+D2(r12 − r21)
2 cos2(2φh)

= − 4λ1λ2 + [A(r12 + r21) + D(r12 − r21) cos(2φh)]2

and that

tan(2θ) =
2h̃12

h̃11 − h̃22

=
2D sin 2φh

A(r12 − r21) + D(r12 + r21) cos 2φh
.

Substitute the above formulas into the right-hand side of (21) and simplify, and we
obtain the formula (5).
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We next derive the formula for the L2-norm of the linear interpolation error.
Theorem 3.2. Let K be a triangle oriented along the x-axis. r12 is the aspect

ratio of K, r21 = 1/r12. Let u be a quadratic function. λ1 and λ2 are the eigenvalues
of its Hessian, and the orientation of u is of angle φh with the y-axis. Then

‖u− uI‖2
L2(K)

=
|K|3
160

{
− 16

9
λ1λ2 + [(λ1 + λ2)(r12 + r21)(22)

+ (λ1 − λ2)(r12 − r21) cos(2φh)]2

}
.

Proof. It follows from (6) that∫
K

|u− uI |2 dxdy =
1

4
v ·B0v,(23)

where

B0 =

(∫
K

bi · bjdxdy
)
.

An elementary calculation of the integrals leads to

B0 =
|K|
180

⎡
⎣ 2 1 1

1 2 1
1 1 2

⎤
⎦ .

Therefore

∫
K

|u− uI |2 dxdy =
|K|
360

(
3∑

i=1

(vi)
2 + v1v2 + v1v3 + v2v3

)
,(24)

where v1, v2, and v3 are defined as in (7). We have similar to (17) that

v1v2 + v1v3 + v2v3 =
81

16
(σ1σ2)

2

(
μ2

1 + μ2
2 +

10

3
μ1μ2

)
,

which, together with (15), yields

∫
K

|u− uI |2 dxdy =
|K|3
40

(
(μ1 + μ2)

2 − 4

9
μ1μ2

)
.(25)

Finally, by μ1μ2 = det(H̃) = det(H) = λ1λ2 and

μ1 + μ2 = h̃11 + h̃22 = A(r12 + r21) + D(r12 − r21) cos(2φh),

we prove the conclusion of this theorem.

4. Discussion about some special cases. Denote by T1, T2, and T3 the terms
in the square brackets on the right-hand side of (5), i.e.,

T1 = (r12 + r21)(λ
2
1 + λ2

2) + (r12 − r21)(λ
2
1 − λ2

2) cos(2φh),(26)

T2 = −4λ1λ2 +
1

4
((λ1 + λ2)(r12 + r21) + (λ1 − λ2)(r12 − r21) cos(2φh))

2
,(27)

T3 = r12 + r21 + (r12 − r21) cos(6φv + 4θ).(28)
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Recall that we assume r12 = σ1/σ2 ≥ 1 and λ1 ≥ |λ2|; therefore all the three terms
above are nonnegative, and we may write

‖∇(u− uI)‖2
L2(K)

=

√
3

36
|K|2
(
T1 +

1

2
T2 · T3

)
.(29)

We may also restrict 0 ≤ φv < π
3 and 0 ≤ φh < π. Other cases are covered by the

symmetry and periodicity of the error norms. For a fixed aspect ratio, the extremum
values of T1, T2, and T3 are

T1=

{
min (T1) = 2(r21λ

2
1 + r12λ

2
2) when φh = π

2 ,
max (T1) = 2(r12λ

2
1 + r21λ

2
2) when φh = 0,

(30)

T2=

{
min (T2) = (r21λ1 − r12λ2)

2 when φh = π
2 ,

max (T2) = (r12λ1 − r21λ2)
2 when φh = 0,

(31)

T3=

{
min (T3) = 2r21 when 6φv + 4θ = (2m + 1)π,
max (T3) = 2r12 when 6φv + 4θ = 2mπ.

(32)

We give more details about these cases.
Case 1. φh = π

2 and φv = π
6 , i.e., K is an acute isosceles triangle aligned with u.

In this case, θ = 0 by (5). Therefore, T1, T2, and T3 all take their minimum values,
which yields

‖∇(u− uI)‖2
L2(K)

=

√
3

36
|K|2 [ 2(r21λ

2
1 + r12λ

2
2) + r21(r21λ1 − r12λ2)

2 ].(33)

This is the smallest H1-seminorm of the interpolation error for all the triangles with
a fixed aspect ratio and a fixed area.

We may consider the optimal choice of the aspect ratio in this case. Let

f(r) = 2
(

1
r λ

2
1 + rλ2

2

)
+ 1

r

(
1
r λ1 − rλ2

)2
= 3λ2

2r + 2(2λ2
1 − 4λ1λ2)

1
r + λ2

1
1
r3 .

It can be seen that f is decreasing in [1, r
(1)
∗ ) and increasing in (r

(1)
∗ ,∞), where

r
(1)
∗ =

√√√√λ1(λ1 − λ2) + λ1

√
(λ1 − λ2)2 + 9λ2

2

3λ2
2

.(34)

Therefore r12 = r
(1)
∗ is the best aspect ratio. Moreover, since T1, T2, and T3 all take

minimum values in this case, we conclude that the acute isosceles triangle, which is

aligned with u and of the aspect ratio r
(1)
∗ , is the best one that produces the smallest

H1-seminorm of the interpolation error among all the triangles with the same area!

It is noted that for u with λ1 = λ2 (isotropic u), the best aspect ratio is r
(1)
∗ = 1

(with isotropic K). For u with λ2 = −λ1, the best aspect ratio is r
(1)
∗ =

√
(2 +

√
13)/3

≈ 1.367. When λ1 >> |λ2|, we have

r
(1)
∗ ≈

√
2

3

∣∣∣∣λ1

λ2

∣∣∣∣ ≈ 0.816

∣∣∣∣λ1

λ2

∣∣∣∣ ,
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with which the interpolation error is of the smallest possible magnitude

‖∇(u− uI)‖2
L2(K)

≈
√

2

6
|K|2|λ1λ2| ≈ 0.235|K|2|λ1λ2|.(35)

We may also compare the above optimal choice of the aspect ratio with some
intuitive choices. For instance, if we choose r12 = 1, then

‖∇(u− uI)‖2
L2(K)

≈
√

3

36
|K|2(3(λ2

1 + λ2
2) − 2λ1λ2),(36)

which is between 0.128|K|2λ2
1 and 0.193|K|2λ2

1. If we choose r12 = |λ1
λ2

|, then in the

case λ1 >> |λ2|,

‖∇(u− uI)‖2
L2(K)

≈ 5
√

3

36
|K|2|λ1λ2| ≈ 0.240|K|2|λ1λ2|;(37)

if we choose r12 =
√
|λ1/λ2|, then we have

‖∇(u− uI)‖2
L2(K)

=

√
3

18
|K|2
√
|λ3

1λ2| ≈ 0.0962|K|2
√
|λ3

1λ2|.(38)

Note that when u and K are aligned, the inverse mapping ξ = M−1x with r12 =√
|λ1/λ2| transforms u(x, y) into const.(ξ2 ± η2) and K into an equilateral triangle.

It was shown by D’Azevedo and Simpson [6] and Rippa [13] that triangles with such
an aspect ratio lead to the smallest maximum-norm and Lp-norm of the interpolation
error among all triangles of the same area. However, this aspect ratio is not the
optimal for the interpolation error in the sense of H1-seminorm.

Case 2. φh = π
2 and φv = 0, i.e., K is an obtuse isosceles triangle aligned with u.

We have in this case

‖∇(u− uI)‖2
L2(K)

=

√
3

36
|K|2 [ 2(r21λ

2
1 + r12λ

2
2) + r12(r21λ1 − r12λ2)

2 ].(39)

This error formula differs from that of Case 1 only in the coefficient of the second
term.

To study the optimal choice of the aspect ratio in this case, let

g(r) = 2
(

1
r λ

2
1 + rλ2

2

)
+ r
(

1
r λ1 − rλ2

)2
= 3λ2

1
1
r + 2(λ2

2 − λ1λ2)r + λ2
2r

3.

It can be shown that the minimum of g is attained at

r
(2)
∗ =

√√√√λ2(λ1 − λ2) + |λ2|
√

(λ1 − λ2)2 + 9λ2
2

3λ2
2

.(40)

When λ1 = λ2, the best aspect ratio is r
(2)
∗ = 1. When λ2 = −λ2, the best aspect

ratio is r
(1)
∗ =

√
(2 +

√
13)/3 ≈ 1.367. When |λ1| >> |λ2|, we have

r
(2)
∗ ≈

⎧⎪⎪⎨
⎪⎪⎩

√√
10 + 1

3 |λ1
λ2

| ≈ 1.178

√
|λ1
λ2

| when λ1λ2 > 0,√√
10 − 1

3 |λ1
λ2

| ≈ 0.849

√
|λ1
λ2

| when λ1λ2 < 0.
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With this choice of aspect ratio, the interpolation error is of the magnitude

‖∇(u− uI)‖2
L2(K)

≈
{

0.0878|K|2
√
|λ3

1λ2| when λ1λ2 > 0,

0.281|K|2
√
|λ3

1λ2| when λ1λ2 < 0.
(41)

We may compare this case (obtuse isosceles) with the previous one (acute isosce-
les). When the triangle is aligned with u and the aspect ratio r12 ≈

√
|λ1/λ2|, the

interpolation error is nearly the same for both acute and obtuse triangles if λ1λ2 > 0.
For u with λ1λ2 < 0, ‖∇(u − uI)‖L2(K) is about 1.7 times smaller with the acute
isosceles triangle than that with the obtuse one. Furthermore, because for general
triangles with arbitrary φv, the error norm ‖∇(u−uI)‖L2(K) is between those of Case
1 and Case 2, we may conclude that the H1-seminorm of the interpolation error is
not sensitive to the maximum angle of the triangle, as long as the triangle is aligned
with the function u and the aspect ratio r12 ≈

√
|λ1/λ2| is used.

Case 3. φh = 0. In this case the orientation of u is perpendicular to the triangle.
We have

‖∇(u− uI)‖2
L2(K)

=

√
3

18
|K|2 [2(r12λ

2
1 + r21λ

2
2) + (r12λ1 − r21λ2)

2

· (r12 + r21 + (r12 − r21) cos(6φv))](42)

For given |K| and φv, it can be shown the error norm is an increasing function of r12.
Therefore, the best aspect ratio is r12 = 1. This is not surprising, since when the
triangle is perpendicular to the orientation of u, increasing the aspect ratio leads to
lower resolution in the needy direction and larger interpolation error, no matter what
value φv takes.

We should emphasize that in the above discussion on the optimal aspect ratios
the area and the orientation of the triangle are assumed fixed. In adaptive mesh
generation there may be some other constraints on the triangles in a mesh, e.g., one
side of a triangle or the vertices of the triangles are fixed. Optimal choices of the
aspect ratio subject to those constraints can be quite different from the above values.

5. General discussion about orientation, aspect ratio, and angle con-
dition. In this section we present a general discussion about the effects of the ori-
entation, aspect ratio, and the angle φv. We first study the H1-seminorm of the
interpolation error.

Mesh alignment. Given a triangle K (fixed |K|, r12, and φv), it is commonly
believed that the interpolation error is the smallest when the triangle is aligned with
the function, i.e., when φh = π

2 . We present a justification of this viewpoint. We
consider the case where both the solutions and the triangles are highly anisotropic,
i.e., we assume λ1 >> |λ2| and r12 >> 1. In this case we have for the three terms
(26)–(28) in the error norm ‖∇(u− uI)‖2

L2(K)
that

T1 = r12λ
2
1(1 + cos 2φh) + LOT,

T2 = 1
4 (r12λ1)

2(1 + cos 2φh)2 + LOT,
T3 = r12(1 + cos(6φv + 4θ)) + LOT

and for the angle θ in (5) that

tan(2θ) ≈ 2λ1 sin 2φh

λ1r12(1 + cos 2φh)
= 2r21 tanφh,
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where the lower order terms LOT include r12λ
2
2, r12λ

2
1, r21λ

2
2, etc. In this case the

error norm is dominated by

‖∇(u− uI)‖2
L2(K)

≈
√

3
36 |K|2 [r12λ

2
1 + 1

4r
3
12λ

2
1(1 + cos 2φh)(1 + cos(6φv + 4θ))]

· (1 + cos 2φh) + LOT.

Note that by (5) θ is an increasing function of φh, and cos(2φh) is a decreasing
function of φh in (0, π

2 ). Therefore, we may conclude that the H1-seminorm of the
error is almost a monotonically decreasing function of the angle φh in (0, π

2 ).
We plot in Figure 4 the graph of ‖∇(u − uI)‖2

L2(K)
versus φh for various λ1, λ2,

φv and r12. It is observed that for all aspect ratios and φv, the error is smallest when
φh is near π

2 . Also seen in Figure 4 is a small peak of the error norm around φh = π
2 .

This is because when φh is very close to π
2 , the leading terms in T1 and T2 go to 0

and the lower order terms become the major components in the error.
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Fig. 4. ‖u− uI‖2
L2(K)

versus the alignment angle φh/π with |K| = 3
√

3
4

fixed.

Aspect ratio. We are interested here in the question of, given a function u and
a fixed triangle orientation φh, how one chooses the aspect ratio of the triangle.
We plot in Figure 5 the graph of ‖∇(u − uI)‖L2(K) versus r12 with various φh. It is
observed that when φh = π

2 (K aligned with u), the best aspect ratio r12 is in between

r
(2)
∗ =

√
|λ1/λ2| and r

(1)
∗ ≈ 0.8|λ1/λ2|, while when φh ≈ 0 (K perpendicular to u),

the best aspect ratio is 1. For other φv and φh, the optimal choice of r12 lies between
1 and |λ1/λ2|. Therefore, in practice, when a good mesh alignment is ensured, the
proper aspect ratio should be between the magnitude of

√
|λ1/λ2| and 0.8|λ1/λ2|,

with the lower end taken for the mesh with mostly obtuse triangles and the upper
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Fig. 5. ‖∇(u− uI)‖2
L2(K)

versus the aspect ratio r12 with λ1 = 10, λ2 = 1, and |K| = 3
√

3
4

.

end taken for the mesh with mostly acute triangles. The less the mesh alignment, the
smaller r12 should be.

Maximum angle condition. It is well known that a good mesh for finite el-
ement approximation should respect the so-called maximum angle condition, i.e.,
the maximum angles of the triangular elements should be bounded from π. In [2],
Babus̆ka and Aziz gave an example showing that when the maximum angle con-
dition is violated, the H1-seminorm of the error of linear interpolation can go to
infinity, although the element area approaches 0. Their example is in our nota-

tion the case with λ1 = 1, λ2 = 0, |K| = ε
2 , r12 =

√
3

2ε , φh = 0, φv = 0, and thus
‖∇(u − uI)‖2

L2(K)
= 9

256 (ε + 3
8ε ). We discuss here the impact of the maximum angle

condition on the accuracy of linear interpolation. Taking as an example with λ1 = 100
and λ2 = 1, we plot in Figure 6 the graph of ‖∇(u − uI)‖2

L2(K)
versus φv with given

aspect ratios and alignment directions. It is easy to see the following:

(a) When λ1/λ2 and r12 are high, triangles with φv ≈ π
6 or π

2 produce the
smallest error, and triangles with φv ≈ 0 or π

3 produce the largest error, whether they
are aligned with u or not. This can be justified by looking into formula (5) for the
error norm. When λ1 >> |λ2| and r12 >> 1, we have θ ≈ 0. Hence, the term T3, and
therefore ‖∇(u− uI)‖L2(K), attains its minimum when φv ≈ π

6 or π
2 .

Note that the maximum internal angle of K is an even periodic function of φv

with the period π/3. It is decreasing in (0, π/6). Hence φv = 0, π/3 corresponds
to the case where the maximum internal angle of K is the largest among all the
triangles of the same aspect ratio, and φv = π/6, π/2 corresponds to the case where
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the maximum internal angle is the smallest among all triangles. Therefore, in this
case it is important to use triangles with smaller maximum internal angles, regardless
of whether or not the mesh alignment is satisfied.

(b) When the triangle is aligned with u and the aspect ratio r12 ≈
√
|λ1/λ2|, the

error is insensitive to φv and is therefore insensitive to the maximum internal angle
of the triangle. In particular, if φh = π

2 , λ1λ2 > 0, and r12 =
√

λ1/λ2, then T2 = 0,
and by (29) ‖∇(u−uI)‖L2(K) is independent of φv. See the lower left graph of Figure
6 and the analysis in Cases 1 and 2 in section 4.

(c) When r12 ≈ 1, the best φv may be different from π
6 and π

2 . However, in
this case the difference between the maximum and the minimum of the error is not
significant.
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Fig. 6. ‖∇(u− uI)‖2
L2(K)

versus the angle φv/π with |K| = 3
√

3
4

fixed.

In summary, we conclude that if the triangle is aligned with the function and
the aspect ratio is of an magnitude

√
|λ1/λ2| or smaller, then the maximum angle

condition is not essential to the H1-seminorm of the interpolation error. Otherwise,
the maximum angle is critical to the magnitude of the error.

L2-norm. From (23) we can conclude the following for the L2-norm of the linear
interpolation error:

(1) ‖u−uI‖L2(K) does not depend on the angle φv. Therefore, for a given function,
the L2-norm of its linear interpolation error depends only on the area, aspect ratio,
and orientation of the triangle. Maximum/minimum angle conditions are irrelevant
to the L2-norm of the interpolation error.

(2) ‖u − uI‖L2(K) is a π-periodic even function of φh. It is decreasing in φh in
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(0, π
2 ). When φh = π

2 (K aligned with u),

‖u− uI‖2
L2(K)

=
|K|3
40

[
(λ1r21 + λ2r12)

2 − 4

9
λ1λ2

]

is the smallest, and when φh = 0 (K perpendicular to u)

‖u− uI‖2
L2(K)

=
|K|3
40

[
(λ1r12 + λ2r21)

2 − 4

9
λ1λ2

]

is the largest.
(3) With the same orientation, it can be shown that when φh is in (0, π

4 )∪ ( 3π
4 , π)

(i.e., K is aligned more to the perpendicular direction of u), the best aspect ratio is
r12 = 1; when π

4 ≤ φh ≤ 3π
4 (i.e., K is aligned more to the orientation of u), the best

aspect ratio is

r12 =

√∣∣∣∣λ1 + λ2 − (λ1 − λ2) cos(2φh)

λ1 + λ2 + (λ1 − λ2) cos(2φh)

∣∣∣∣ .(43)

We plot in Figure 7 the L2-norm of the error versus the aspect ratio for the case of

λ1 = 400, λ2 = 1, and |K| = 3
√

3
4 .
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(4) For a fixed triangle area, the minimum L2-norm of the linear interpolation
error is attained at φh = π

2 and r12 =
√
|λ1/λ2|. The minimum value is

‖u− uI‖2
L2(K)

=

{
8
90 |K|3|λ1λ2| when λ1λ2 > 0,
1
90 |K|3|λ1λ2| when λ1λ2 < 0.

6. An example of linear interpolation on different meshes. In this section,
we present the results of piecewise linear interpolation of a quadratic function on
different types of mesh. We choose

u(x, y) = x2 + 100y2,
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(a)        (b)               (c)

Fig. 8. Three types of mesh used for piecewise linear interpolation.

which corresponds to λ1 = 100, λ2 = 1, and the orientation along the x-axis. We
consider the following three types of mesh on [0, 1] × [0, 1]:

(a) The first type of mesh is as shown in Figure 8(a). There are M and N equal
partitions in x and y directions, respectively. When M/N < 2/

√
3, all the triangles

in this mesh, except those on the top and the bottom boundaries, are aligned exactly
with the x-axis. Their aspect ratio is

r12 =
2N√
3M

and their angle φv is π
6 .

(b) The second type of mesh is as shown in Figure 8(b) with M and N equal
partitions in x and y directions, respectively. When M/N <

√
3/2, all the triangles,

except those on the left and the right boundaries, are aligned with the x-axis. Their
aspect ratio is

r12 =

√
3N

2M

and their angle φv is 0.
(c) The third type is the unstructured meshes generated in the following way. First

we create a Delaunay triangulation by using the package Triangle [14] on a rectangle
[0, 1] × [0, rs], where rs ≥ 1 is a real number. Then we compress the rectangle in y
direction by a factor rs. The desired mesh on the unit square is the image of the
Delaunay triangulation under the compression. See Figure 8(c) for a typical mesh
of this type. By Delaunay triangulation the minimum internal angle of the triangles
in the mesh is maximized, and all the triangles in the mesh over [0, 1] × [0, rs] are
approximately of the same size and close to unilateral. Therefore, most triangles in
the mesh over the unit square are roughly aligned with the x-axis (when rs > 1) and
are of the aspect ratio

r12 ≈ rs.

However, in this type of mesh the angle φv varies for different triangles (approximately
uniformly distributed between 0 and π/3).

We are interested in the accuracy of the linear interpolation of u on different
types of mesh and with various aspect ratios, in particular with the following three

ratios: (1) r
(1)
∗ = 81.6, which is the best aspect ratio (for H1-seminorm) calculated
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according to (34) for the case of acute isosceles triangles; (2) r
(2)
∗ = 11.79, which

is the best aspect ratio (in H1-seminorm) calculated according to (40) for the case

of obtuse isosceles triangles; and (3) r
(∞)
∗ =

√
|λ1

λ2
| = 10, which is the best aspect

ratio for the Lp-norm, 1 ≤ p ≤ ∞. We also report the results with the aspect ratios
r12 = λ1/λ2 = 10 and r12 = 1.

We list in Table 1 the various norms of the interpolation error with different
choices of M , N , and rs. Note that for all the meshes, the total number of elements
is around 4000 and the total number of nodes is around 2200. The smallest H1-
seminorm for type (a) meshes is with r12 = 92.37; the smallest H1-seminorm for type
(b) meshes is with r12 = 11.54. For type (c) meshes, the smallest H1-seminorm is

achieved at rs = 11.78 ≈ r
(2)
∗ . This is because for this type of mesh, the error from the

obtuse triangles (with φv ≈ 0) dominates in the global error. Therefore, the aspect

ratio close to r
(2)
∗ is the best choice for the global error norm.

For the L2-, L1-, and maximum norms, the smallest interpolation error is obtained

with r12 ≈ r
(∞)
∗ for all the three meshes.

In summary, we conclude that when the mesh is in good alignment with the
solution and most of the triangles are acute isosceles, the aspect ratio should be

chosen around r
(1)
∗ ≈ 0.8|λ1

λ2
|. If the mesh is in good alignment but with mostly obtuse

triangles, or with varied maximum internal angles, then the aspect ratio should be

chosen around r
(2)
∗ , which is approximately 1.178

√
|λ1/λ2| for the case λ1λ1 > 0, and

0.849
√
|λ1/λ2| for the case λ1λ1 < 0.

Table 1

The L1- and L2-norms, H1-seminorm, and maximum norm of the interpolation error over the
entire domain. (∗1) and (∗2) indicate the aspect ratio close to the best values for the H1 seminorm
in each case.

M×N Node # Elem # r12 ‖u−uI‖L1 ‖u−uI‖L2 |u−uI |H1 ‖u−uI‖∞

Type (a) meshes

4×500 2507 4004 144.34 5.23e−3 6.18e−3 8.28e−2 7.82e−3

5×400 2409 4005 92.37(∗1) 3.37e−3 3.97e−3 7.68e−2 5.01e−3

6×333 2341 4002 64.08 2.37e−3 2.78e−3 7.76e−2 3.50e−3

14×143 2167 4018 11.79 7.30e−4 8.01e−4 1.43e−1 9.74e−4

15×133 2152 4005 10.24 7.22e−4 7.92e−4 1.54e−1 9.64e−4

48×42 2131 4080 1.01 3.55e−3 4.20e−3 5.88e−1 7.08e−3

Type (b) meshes

3×572 2578 4004 165.11 6.19e−3 7.60e−3 7.22e+0 1.38e−2

4×445 2543 4005 96.34 3.62e−3 4.39e−3 3.21e+0 7.81e−3

5×364 2372 4004 63.04 2.39e−3 2.87e−3 1.68e+0 5.00e−3

12×160 2173 4000 11.54(∗2) 7.47e−4 8.23e−4 1.53e−1 1.01e−3

13×149 2175 4023 9.92 7.35e−4 8.08e−4 1.60e−1 9.93e−4

41×49 2125 4067 1.03 3.50e−3 4.13e−3 5.87e−1 5.22e−3

Type (c) meshes

2474 4101 100 4.24e−3 5.34e−3 2.95e+0 1.91e−2

2426 4079 81.6 3.55e−3 4.57e−3 2.48e+0 1.67e−2

2163 4036 11.78 8.38e−4 9.62e−4 1.84e−1 2.42e−3

2127 4005 10 8.34e−4 9.53e−4 1.87e−1 3.05e−3

2092 4036 1 4.15e−3 5.21e−3 6.75e−1 2.01e−2
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Appendix. We list here some basic trigonometric formulas used to derive the
results in the previous sections. Let α be any real number. Denote by αi = 2(i −
1)π/3 − α, i = 1, 2, 3.

(A.1) cos2(α1) + cos2(α2) + cos2(α3) =
3

2
,

(A.2) cos(2α1) + cos(2α2) + cos(2α3) = 0,

(A.3) cos2(2α1) + cos2(2α2) + cos2(2α3) =
3

2
,

(A.4) cos(α1) cos(α2) + cos(α1) cos(α3) + cos(α2) cos(α3) = −3

4
.

Similar relations hold for sine functions, too.

Let θ be any real number, and let β = α + θ. Then

(A.5) cos(α1) cos(α2) cos
(
2β +

π

3

)
+ cos(α1) cos(α3) cos

(
2β − π

3

)

+ cos(α2) cos(α3) cos(2β + π) = −3

4
cos(2θ),

(A.6) sin(α1) sin(α2) cos
(
2β +

π

3

)
+ sin(α1) sin(α3) cos

(
2β − π

3

)

+ sin(α2) sin(α3) cos(2β + π) =
3

4
cos(2θ),

(A.7) cos(α1) cos(α2) cos
(
4β − π

3

)
+ cos(α1) cos(α3) cos

(
4β +

π

3

)

+ cos(α2) cos(α3) cos(4β + π) = −3

4
cos(6α + 4θ),

(A.8) sin(α1) sin(α2) cos
(
4β − π

3

)
+ sin(α1) sin(α3) cos

(
4β +

π

3

)

+ sin(α2) sin(α3) cos(4β + π) =
3

4
cos(6α + 4θ).
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Abstract. This paper provides approximation orders for a class of nonlinear interpolation proce-
dures for uniformly sampled univariate data. The interpolation is based on essentially nonoscillatory
(ENO) and subcell resolution (SR) reconstruction techniques. These nonlinear techniques aim at re-
ducing significantly the approximation error for functions with isolated singularities and are therefore
attractive for applications such as shock computations or image compression. We prove that in the
presence of isolated singularities, the approximation order provided by the interpolation procedure
is improved by a factor of h relative to the linear methods, where h is the sampling rate. Moreover,
for h below a critical value, we recover the optimal approximation order as for uniformly smooth
functions.
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1. Introduction. This paper is concerned with the analysis of a class of uni-
variate high order interpolation and approximation techniques for piecewise smooth
functions, introduced by Harten [10], namely, essentially nonoscillatory (ENO) and
subcell resolution (SR) reconstructions. These methods automatically adapt near the
singularities of the approximated function, and they are by essence data dependent
and nonlinear.

While their initial motivation was in the context of finite volume methods for
shock computations, ENO-SR methods have found natural applications in data com-
pression algorithms, in particular through the development of multiscale decompo-
sitions, similar to wavelet expansions, which incorporate nonlinear reconstructions
[11, 12, 4]. In such decompositions, the wavelet coefficients are interpreted as the
errors between the sampled data and its reconstruction from a sampling at a twice
coarser scale. When dealing with data sampled from a piecewise smooth function,
the adaptive treatment of singularities results in more accurate reconstructions and
therefore in sparser decompositions than when using standard wavelet basis. In recent
years, ENO-SR techniques have been extended to two-dimensional (2D) image data,
either by tensor product [1, 2, 6] or by intrinsically 2D reconstructions [14, 3]. Other
related nonlinear multiscale representations have been introduced in [5] in the context
of the lifting scheme.

From a theoretical point of view, the adaptive treatment of singularities allows
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us to expect strictly better approximation rates than with linear methods in the case
of piecewise smooth functions and images. A rigorous analysis of this improvement
in the one-dimensional (1D) case is the main objective of this paper. Our next per-
spective, which is the object of an ongoing work, is to study in a similar way the
approximation properties of edge-adapted techniques for 2D functions and images
such as those introduced in [14, 3]. It should well be understood that the 2D case is
not a trivial generalization of the 1D case by tensor product technique: point discon-
tinuities are then replaced by edges, which are not only characterized by their spatial
locations but also by some geometrical features such as orientation and curvature. In
turn, the development and analysis of 2D edge-adapted reconstruction strategies are
significantly more involved, and the present paper can be viewed as an elementary
yet instructive “starter” to this research program.

Consider at first the following situation: from a set of uniformly sampled data
(f(kh))k∈Z, we are interested in building an interpolant Ihf , i.e., a function such that
Ih(kh) = f(kh) for all k ∈ Z. There are many ways to build an interpolant Ihf of a
prescribed order m > 0, i.e., such that if f ∈ Cm, one has

|Ihf − f | ≤ Chm sup |f (m)|.(1)

Basically, one can do it with a linear operator Ih which is (i) local, (ii) exact for
polynomials of degree m − 1, and (iii) stable. We are interested in the interpolation
of continuous functions f which are smooth everywhere except at isolated points. For
such functions, we can only expect an error bound of order O(h) with a linear method,
independently of its order.

In order to explain in a nutshell the principles of the ENO and SR techniques,
first consider the following piecewise polynomial interpolation of the data (f(kh))k∈Z:
to each interval

Ik := [kh, (k + 1)h], k ∈ Z,(2)

we attach the stencil Sk of size m around Ik, i.e.,

Sk := {(k −m1)h, . . . , (k + m2)h},(3)

where m1 ≥ 0 and m2 > 0 are fixed integers such that m1 + m2 = m− 1. We define
a unique polynomial pk ∈ Πm−1 which agrees with f on Sk. A linear interpolation
operator is then defined by

Ihf(x) = pk(x), x ∈ Ik.(4)

This interpolant has accuracy of order m: if f is Cm on [(k −m1)h, (k + m2)h], we
have the estimate

‖f − Ihf‖L∞(Ik) ≤ Chm‖f (m)‖L∞([(k−m1)h,(k+m2)h]).(5)

Clearly, for a smooth function f with an isolated singularity of f ′ situated in the
interval Ik, the order of accuracy is reduced to O(h) on all the intervals Ik+l for
l = −m2 + 1, . . . ,m1, due to the systematic use of a fixed stencil.

The principle of ENO interpolation is to allow for data-dependent stencils in order
to reduce the influence of the singularity on the approximation. For this purpose, one
typically introduces a measure of the oscillation of f on the stencil Sk. Since we
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are interested in detecting jump discontinuities in the first derivative, this measure is
typically based on the evaluation of the second order differences,

Δ2
hf(x) := f(x) − 2f(x + h) + f(x + 2h)(6)

for x = (k − m1)h, . . . , (k + m2 − 2)h. For each k, we select among all the stencils
{Sk−m2+1, . . . , Sk+m1} which contain Ik, the stencil S̃k which minimizes a chosen
measure. The ENO interpolant is then given by

Ihf(x) = p̃k(x), x ∈ Ik,(7)

where p̃k is the polynomial which agrees with f on the stencil S̃k. In comparison
with the linear interpolation based on a fixed stencil, ENO interpolation has the same
order of accuracy m and reduces the effect of an isolated singularity, since the selected
stencil will tend to avoid it. We therefore expect that the precision only deteriorates
on the interval which contains the singularity.

The goal of the SR technique is to improve the approximation properties of the
interpolant even on this interval. It is based on a detection mechanism which labels
as B (bad) an interval Ik which is suspected to contain a singularity, in the sense
that the selected stencils for its immediate neighbors tend to avoid it. Thus Ik is B
if S̃k−1 = Sk−m2 and S̃k+1 = Sk+m1+1. Other intervals are labeled as G (good). On
a G interval Ik, we use the above-described ENO interpolation to define Ihf . On a
B interval Ik, we use the polynomials p̃k−1 and p̃k+1 to predict the location of the
singularity: if these polynomials intersect at a single point ak of Ik, we define for
x ∈ Ik the interpolant by

Ihf(x) = p̃k−1(x) if x ≤ ak, p̃k+1(x) if x ≥ ak.(8)

In the case that these polynomials do not intersect at a single point of Ik, the interval
is relabeled as G and the ENO interpolation is used.

An intuitive statement is that ENO-SR interpolation has accuracy of order O(hm)
for piecewise smooth functions. Some initial results suggesting the validity of this
statement were given in [13] and in [10, 9]—for ENO and ENO-SR, respectively—in
the context of building and analyzing high order schemes for conservation laws, and
in [6] in the context of signal and image approximation and compression.

Our goal here is to investigate this statement in a rigorous way. For simplicity we
consider functions which are smooth except at one unknown point a but are globally
continuous. We also assume that f ∈ Cm(R \ {a}) in the sense that its derivatives up
to order m are uniformly bounded on R \ {a}. Thus the derivatives of f have jumps
([f ′], [f ′′], . . .) at the point a. Ideally we could hope for an estimate of the form

‖f − Ihf‖L∞ ≤ Chm sup
R\{a}

|f (m)|(9)

for all h > 0. Unfortunately, we shall see with a simple example that we cannot hope
for such a result for m > 2. In fact (9) holds for h smaller than a fixed fraction of a
critical scale hc depending itself on the function f according to

hc :=
[f ′]

4 supx∈R\{a} |f ′′(x)| .(10)

This critical scale hc corresponds to the minimal level of resolution which ensures the
detection of the singularity. To our knowledge, this notion was not used in previ-
ous works dealing with ENO and ENO-SR interpolation, particularly in the above-
mentioned references.
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Therefore we can only achieve

‖f − Ihf‖L∞ ≤ Chm sup
R\{a}

|f (m)|, h ≤ Khc(f).(11)

We shall yet prove that we have for all h > 0 an estimate of the form

‖f − Ihf‖L∞ ≤ Ch2 sup
R\{a}

|f ′′|,(12)

i.e., at least a gain of one order of accuracy relative to any linear method. Note that
since the interpolation process is local, our analysis applies also to the case of several
isolated singularities which are sufficiently separated relative to the sampling scale
(typically by mh).

When dealing with functions f which are piecewise smooth with an isolated jump
discontinuity in the function itself, there is no more hope that a nonlinear reconstruc-
tion of f from its samples f(kh) brings any improvement on the interval that contains
the jump point, since the location of this point cannot be resolved at a finer resolution
from these samples. Moreover these samples are not well defined a priori if f is not
a continuous function. We should therefore replace the point value sampling by local

averaging, in the sense that we are now given the cell averages fh
k := 1

h

∫ (k+1)h

kh
f(t)dt

for k ∈ Z. We can build ENO-SR reconstruction procedures from such data in a way
similar to that for point value data. In fact, reconstruction from cell averages can
be derived by differentiating the point value interpolant obtained from the discrete
primitive values

∑k−1
l=0 fh

l . In turn, the results that we establish for piecewise smooth
continuous functions in the point value setting can be used to establish similar results
for piecewise smooth discontinuous functions in the cell average setting.

Note that most nonlinear approximation methods that deal with local singulari-
ties are based on either adaptive mesh refinement or wavelet thresholding (see, e.g.,
[8, 7] for surveys on such nonlinear approximation). A specific feature of the present
approach is that it does not rely on any local refinement of the sampled data: the
function is accurately reconstructed from a given uniform sampling, by a locally de-
fined data dependent operator. A similar approach, yet based on different tools (in
particular Fourier analysis), was developed in [15].

Our paper is organized as follows. We first show by an example in section 2 that
one cannot hope for more than second order accuracy when a singularity occurs (still
better than first order with linear methods). We introduce in section 3 a specific sin-
gularity detection mechanism together with an ENO-SR interpolation process, which
slightly differs from the original ENO-SR, yet with the same basic principles, and we
discuss the organization of the intervals which are detected by this mechanism. We
prove in section 4 that detection always occurs for h < hc and that the position of the
singularity is accurately estimated. We then use these results in section 5 to prove
that our version of the ENO-SR interpolation technique has accuracy of order O(hm)
for h smaller than Khc, where 0 < K < 1 is a fixed constant, and that it is second
order accurate for all h > 0, which is the best that we can hope for according to
the example of section 2. These findings are demonstrated in section 6 by numerical
examples. Finally in section 7, we derive similar approximation results for piecewise
smooth discontinuous functions in the cell average setting, measuring the error in the
Lp norm as well as in the Hausdorff distance between graphs as a substitute to the
L∞ norm.
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2. An instructive example. The following elementary example is meant to
show that one cannot expect more than second order accuracy for a general class of
continuous functions with jump discontinuities, as well as to illustrate the notion of
critical scale.

Consider the functions f+ and f− which depend on h0 > 0:

f+(x) = 0 if x < 0, f+(x) = x(x− h0) if x ≥ 0,(13)

and

f−(x) = 0 if x < h0, f−(x) = x(x− h0) if x ≥ h0.(14)

We notice that both functions agree on h0Z so that if Ih is any interpolation operator
on the grid Zh, we have the following when h = h0:

Ihf+ = Ihf−.(15)

Since ‖f+ − f−‖L∞ = h2/4, by the triangle inequality we have either

‖f+ − Ihf+‖L∞ ≥ h2/8 ≥ h2

16
sup

x∈R\{0}
|f ′′

+|(16)

or

‖f− − Ihf−‖L∞ ≥ h2/8 ≥ h2

16
sup

x∈R\{h}
|f ′′

−|.(17)

Since we also have

sup
x∈R\{h}

|f (m)
− | = sup

x∈R\{0}
|f (m)

+ | = 0, m > 2,(18)

this simple example shows us that (9) cannot be achieved with m > 2. Here h0 plays
the role of a critical scale above which singularities cannot be precisely detected. For
h � h0, our nonlinear interpolation method gives an exact reconstruction of f+ and
f−. However, we certainly cannot ensure more than second order accuracy over all
piecewise smooth functions and all h > 0.

3. A modified ENO-SR detection and interpolation mechanism. For
a given approximation order m, our detection mechanism defines a set of intervals
labeled B, which potentially contain the singularity, according to the following rules:

1. If

|Δ2
hf((k − 1)h)| > |Δ2

hf((k − 1 ± n)h)|, n = 1, . . . ,m.(19)

both Ik−1 and Ik are labeled B. Notice that (19) indicates that the point kh
lies at the center of the largest second divided difference (among those being
compared). Hence either Ik−1 or Ik could potentially contain the singularity.

2. If

|Δ2
hf(kh)| > |Δ2

hf((k + n)h)|, n = 1, . . . ,m− 1,(20)

and

|Δ2
hf((k − 1)h)| > |Δ2

hf((k − 1 − n)h)|, n = 1, . . . ,m− 1,(21)

then Ik is labeled B. In this case the two largest divided differences involved
in the comparison process include Ik, which is then a candidate to contain
the singularity.
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All other intervals are labeled G.

This detection mechanism is designed in such a way that for h sufficiently small,
the interval Ik containing the singularity a is labeled B, while all intervals labeled
G are in smooth regions of f . On the other hand it is also possible that an interval
Ik might be labeled B in a smooth region at an arbitrarily small scale. In case of
such false alarms, it is crucial that the polynomials which are used to construct the
interpolation are built from stencils which only contain G intervals, i.e., from smooth
regions. This is ensured by the following lemma, which describes the organization of
the B and G intervals.

Lemma 1. The groups of adjacent B intervals are at most of size 2. They are
separated by groups of adjacent G intervals which are at least of size m− 1.

Proof. Assume that I0 and Ik are B with 1 < k < m. We have three cases:

1. I0 and Ik have been labeled B by the second rule. Then it follows that
both |Δ2

hf(0)| > |Δ2
hf((k− 1)h)| and |Δ2

hf(0)| < |Δ2
hf((k− 1)h)|, which is a

contradiction.
2. I0 has been labeled B by the second rule and Ik has been labeled B by the

first rule. Then either Ik−1 or Ik+1 is also a B interval. Hence we obtain that
both |Δ2

hf(0)| > |Δ2
hf(qh)| and |Δ2

hf(0)| < |Δ2
hf(qh)| for some q ∈ {k−1, k},

which is a contradiction. The case where I0 has been labeled B by the first
rule and Ik has been labeled B by the second rule is treated in a similar way.

3. I0 and Ik have been labeled B by the first rule; hence each one is a member of
a B-pair (two adjacent B intervals). Hence we obtain that both |Δ2

hf(ph)| >
|Δ2

hf(qh)| and |Δ2
hf(ph)| < |Δ2

hf(qh)| for some p ∈ {−1, 0} and q ∈ {k−1, k},
which is a contradiction.

We therefore obtain that no two B intervals can have a difference of indices strictly
between 1 and m, which concludes the proof.

Remark. Our detection mechanism is based only on comparing second order di-
vided differences and is therefore different from the hierarchical mechanism originally
proposed by Harten in [10]. The main motivation is that the final goal of our proce-
dure is really to detect singularities and isolate them sufficiently from false alarms in
order to derive our approximation results in an elementary way. Harten’s detection
mechanism needs to be modified to ensure Lemma 1; we need to compare a larger
number of divided differences than that necessary for the stencil selection mechanism.
The validity of Lemma 1 is crucial in order to obtain the desired approximation result,
presented in Theorem 1. In fact, one can prove that this result does not hold when
using the detection mechanism of [10], although the counterexamples seem to be of a
pathological nature and are seldom observed numerically.

Based on the above-described detection mechanism, we propose the following
interpolation procedure:

1. If Ik is a G interval, define Ihf on Ik as a polynomial pk of degree m − 1
obtained by interpolation of f on a stencil {ph, . . . , (p + m− 1)h} such that
p ≤ k < k + 1 ≤ p + m − 1 and such that this stencil contains only G
intervals. Such a stencil always exists, according to Lemma 1, yet is not
unique. In practice, we may choose the stencil which is the most centered
around the interval Ik or we may use the standard ENO procedure.

2. If Ik is an isolated B interval, we obtain polynomials p−k and p+
k of degree

m− 1 by interpolation of f on the stencils {(k−m+ 1)h, . . . , kh} and {(k +
1)h, . . . , (k +m)h} and use them to predict the location of the singularity: if
these polynomials intersect at a single point y of Ik, then for x ∈ Ik we define
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the interpolant by

Ihf(x) = p−k (x) if x ≤ y, p+
k (x) if x ≥ y.(22)

In the case where these polynomials do not intersect at a single point of Ik,
the interval is relabeled G and we return to the previous case.

3. If (Ik, Ik+1) is a B-pair, we treat Ik ∪ Ik+1 as Ik in the previous case; i.e.,
we obtain polynomials p−k and p+

k+1 of degree m− 1 by interpolation of f at
stencils {(k−m+1)h, . . . , kh} and {(k+2)h, . . . , (k+m+1)h} and use them
to predict the location of the singularity: if these polynomials intersect at a
single point y of Ik ∪ Ik+1, then for x ∈ Ik ∪ Ik+1 we define the interpolant by

Ihf(x) = p−k (x) if x ≤ y, p+
k+1(x) if x ≥ y.(23)

In the case where these polynomials do not intersect at a single point of
Ik ∪ Ik+1, both intervals are relabeled G and we return to the first case.

Note that the interpolation operator Ihf described above does not make use of the
data at midpoints of B-pairs. Hence Ihf does not interpolate f at these points. This
is a specific feature of our modified ENO-SR interpolation which greatly facilitates
the proof of our main approximation result in section 5.

4. Properties of the detection mechanism. The goal of this section is to
establish some properties of the detection mechanism which will be used in section 5
for proving the improved approximation order of Ihf announced in the introduction.

The properties are expressed by two lemmas. The first one ensures that the
singularity is always detected under some critical scale.

Lemma 2. Let f be a globally continuous function with a bounded second deriva-
tive on R \ {a} and a discontinuity in the first derivative at a point a. Define the
critical scale

hc :=
|[f ′]|

4 supx∈R\{a} |f ′′(x)| ,(24)

where [f ′] is the jump of the first derivative f ′ at the point a. Then for h < hc, the
interval Ik which contains a is labeled B. Moreover, if a is close to one endpoint
of the interval Ik by at most a quarter of its size, then the interval adjacent to this
endpoint is also labeled B.

Proof. Without loss of generality, we can assume that a is located on the first
half of the interval I0, i.e., 0 ≤ a ≤ h/2. For k > 0 and k < −1, we find that

|Δ2
hf(kh)| ≤ h2 sup

x∈R\{a}
|f ′′(x)|.(25)

For k = −1 and k = 0, the second order finite differences can be estimated by
decomposing f into

f(x) = f1(x) + f2(x),(26)

with f1(x) = [f ′](x− a)+ and f2(x) a C1 function with a bounded second derivative
on R \ {a}, such that

sup
x∈R\{a}

|f ′′
2 (x)| = sup

x∈R\{a}
|f ′′(x)|.(27)
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We therefore have for all k ∈ Z

|Δ2
hf2(kh)| ≤ h2 sup

x∈R\{a}
|f ′′(x)|.(28)

On the other hand, we have

|Δ2
hf1(−h)| = |(h− a)[f ′]|.(29)

It follows that

|Δ2
hf(−h)| ≥ |(h− a)[f ′]| − h2 sup

x∈R\{a}
|f ′′(x)|,(30)

and therefore

|Δ2
hf(−h)| ≥ h

2
|[f ′]| − h2 sup

x∈R\{a}
|f ′′(x)|.(31)

So if h < hc, we get by (24)

|Δ2
hf(−h)| > h2 sup

x∈R\{a}
|f ′′(x)|(32)

Combining this with (25), we find that if h < hc

|Δ2
hf(−h)| > |Δ2

hf(kh)|(33)

for k < −1 and k > 0. In the case where |Δ2
hf(−h)| > |Δ2

hf(0)|, we find that I−1

and I0 are a B-pair according to the first detection rule. Otherwise, if |Δ2
hf(−h)| ≤

|Δ2
hf(0)|, we find that I0 must be labeled B according to the second detection rule.

Finally, we notice that

|Δ2
hf1(0)| = |a[f ′]|,(34)

so that

|Δ2
hf(0)| ≤ |a[f ′]| + h2 sup

x∈R\{a}
|f ′′(x)|.(35)

Therefore, combining (35) and (30), we are always in the case of I−1 and I0 consti-
tuting a B-pair whenever

2h2 sup
x∈R\{a}

|f ′′(x)| < (h− 2a)|[f ′]|,(36)

which holds whenever h < hc and a < h/4.
The next lemma expresses the fact that the location of the singularity is accurately

estimated when h is less than a fixed fraction of the critical scale.
Lemma 3. There exist constants C > 0 and 0 < K < 1 such that for all

continuous f with uniformly bounded mth derivative on R\{a} and for h < Khc with
hc defined by (24), the following holds:

1. The singularity a is contained in an isolated B interval Ik (Case 1) or in a
B-pair (Ik, Ik+1) (Case 2).
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2. The two polynomials (p−k , p
+
k ) (Case 1) or (p−k , p

+
k+1) (Case 2) which are used

in the definition of Ihf have only one intersection point y inside Ik (Case 1)
or inside Ik ∪ Ik+1 (Case 2).

3. The distance between a and y is bounded by

|a− y| ≤ C
hm supR\{a} |f (m)|

|[f ′]| .(37)

Proof. Since K < 1, the first statement has already been proved in Lemma 2.
Without loss of generality, we assume that 0 ≤ a ≤ h/2. In this case we know by
Lemma 2 that I0 is B for h < hc. For the sake of notational simplicity we denote by
I = [b, c] the interval where we perform the subcell resolution process, which is either
I0 (Case 1) or I−1 ∪ I0 (Case 2) or I0 ∪ I1 (Case 2). By Lemma 2, we are ensured
that I = I−1 ∪ I0 when a < h/4, and therefore

min{|a− b|, |a− c|} ≥ h/4.(38)

We also denote by (p−, p+) the polynomials which are used in the subcell resolution
of I. Finally we note that for any 2 ≤ k ≤ m we can write

f = f−χ]−∞,a] + f+χ[a,+∞[,(39)

where f− and f+ are functions which are globally Ck over R and such that

sup
x∈R

|f (k)
± (x)| ≤ sup

x∈R\{a}
|f (k)(x)|.(40)

For example, we can define these functions by extension of f using its left or right
Taylor expansion of order k at the point a. In order to prove the second statement
of the lemma, we choose k = 2. We note that p− and p+ can also be viewed as
Lagrange interpolation of f− and f+. It then follows from classical results on Lagrange
interpolation that there exists a constant D independent of f such that for all t ∈ I,

|f±(t) − p±(t)| ≤ Dh2 sup
x∈R

|f ′′
±(x)| = Dh2 sup

x∈R\{a}
|f ′′(x)|,(41)

and

|f ′
±(t) − p′±(t)| ≤ Dh sup

x∈R

|f ′′
±(x)| = Dh sup

x∈R\{a}
|f ′′(x)|.(42)

Since |t− a| ≤ 2h when t ∈ I, we also have

|f ′
±(t) − f ′

±(a)| ≤ 2h sup
x∈R\{a}

|f ′′(x)|,(43)

and therefore we get from (42)

|f ′
±(a) − p′±(t)| ≤ (D + 2)h sup

x∈R\{a}
|f ′′(x)|, t ∈ I.(44)

It follows that for all t ∈ I,

|p′+(t) − p′−(t)| ≥ |[f ′]| − 2(D + 2)h sup
x∈R\{a}

|f ′′(x)|.(45)
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Thus, for h < 2
D+2hc the function p+ − p− is strictly monotone on I and has at most

one root. Therefore, we are ensured that p+ and p− intersect at most at a single point
inside I. In order to prove that this point y exists, we need to show that p+ − p−
has a sign change inside I. Without loss of generality, assume here that [f ′] > 0. By
second order Taylor expansion at the point a, we find that

(f+ − f−)(b) ≤ −(a− b)[f ′] + (a− b)2 sup
x∈R\{a}

|f ′′(x)|,(46)

and

(f+ − f−)(c) ≥ (c− a)[f ′] − (c− a)2 sup
x∈R\{a}

|f ′′(x)|.(47)

Combining with (41), we thus obtain

(p+ − p−)(b) ≤ −(a− b)[f ′] + ((a− b)2 + 2Dh2) sup
x∈R\{a}

|f ′′(x)|,(48)

and

(p+ − p−)(c) ≥ (c− a)[f ′] − ((c− a)2 + 2Dh2) sup
x∈R\{a}

|f ′′(x)|.(49)

Using (38), we therefore obtain

(p+ − p−)(b) ≤ −h

4
[f ′] + (2D + 4)h2 sup

x∈R\{a}
|f ′′(x)|,(50)

and

(p+ − p−)(c) ≥ h

4
[f ′] − (2D + 4)h2 sup

x∈R\{a}
|f ′′(x)|.(51)

It follows that for h < 1
4D+8hc, we have

(p+ − p−)(b) ≤ −h

8
[f ′] < 0,(52)

and

(p+ − p−)(c) ≥ h

8
[f ′] > 0,(53)

so that there exists a single intersection point y ∈ I. So defining K := 1
4D+8 , we have

proved the two first statements of the lemma.
In order to prove the third statement (37), we now choose k = m in the definition

of the extensions f+ and f−. It again follows from classical results on Lagrange
interpolation that there exists a constant D̃ such that for all t ∈ I,

|f±(t) − p±(t)| ≤ D̃hm sup
x∈R\{a}

|f (m)(x)|,(54)

and therefore, if we define g = f+ − f− and q = p+ − p−, we obtain, for all t ∈ I,

|g(t) − q(t)| ≤ 2D̃hm sup
x∈R\{a}

|f (m)(x)|,(55)
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so that for t = a,

|q(a)| ≤ 2D̃hm sup
x∈R\{a}

|f (m)(x)|.(56)

Now note that for t ∈ I and h < Khc, by (45)

|q′(t)| =
|[f ′]|

2
,(57)

and therefore

|q(a)| = |q(y) − q(a)| ≥ |y − a| |[f
′]|

2
.(58)

Combining this with (56), we therefore obtain (37) with C = 4D̃.

5. Approximation properties of Ih. We are now ready to derive our main
approximation result.

Theorem 1. For all continuous f with derivatives up to degree m uniformly
bounded on R \ {a}, the nonlinear interpolant Ihf satisfies

‖f − Ihf‖L∞ ≤ Ch2 sup
R\{a}

|f ′′|(59)

for all h > 0, with C > 0 independent of f . Moreover there exists 0 < K < 1
independent of f such that, for h < Khc with hc defined by (24), we have

‖f − Ihf‖L∞ ≤ Chm sup
R\{a}

|f (m)|.(60)

Proof. We choose for K the constant in Lemma 3. Note first that for h < Khc,
according to Lemmas 1 and 2, all the polynomials which are used in the construction
of Ih are built from stencils over which the function is smooth. It follows from classical
results on Lagrange interpolation that the estimate

|f(x) − Ihf(x)| ≤ Chm sup
R\{a}

|f (m)|(61)

holds whenever x belongs to a G interval or to an isolated B interval or B-pair which
does not contain a (i.e., false alarms do not deteriorate the convergence rate). Let
us now assume that x belongs to the group of adjacent B intervals which contains a.
Here, we shall assume, again without loss of generality, that 0 ≤ a ≤ h/2 and use the
notation I = [b, c], p+, p−, f+, f− that were introduced in the proof of Lemma 3. We
also assume that a ≤ y, the case y ≤ a being treated in a similar way. For x ∈ [b, a],
we have the estimate

|f(x) − Ihf(x)| = |f−(x) − p−(x)| ≤ Chm sup
R\{a}

|f (m)|,(62)

and for x ∈ [y, c], we have the estimate

|f(x) − Ihf(x)| = |f+(x) − p+(x)| ≤ Chm sup
R\{a}

|f (m)|.(63)

It remains to consider the case a < x < y. In this case, we have

|f(x) − Ihf(x)| = |f+(x) − p−(x)| ≤ |f+(x) − f−(x)| + |f−(x) − p−(x)|.(64)
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The second term is again bounded by Chm supR\{a} |f (m)|. For the first term, we use
second order Taylor expansion to derive

|f+(x) − f−(x)| ≤ |[f ′]|(y − a) + (y − a)2 sup
R\{a}

|f ′′|

≤ (y − a)(|[f ′]| + h sup
R\{a}

|f ′′|).

Since h < hc, this gives

|f+(x) − f−(x)| ≤ 5

4
|[f ′]|](y − a).(65)

Combining this with (37) of Lemma 3, we also obtain the bound Chm supR\{a} |f (m)|
for |f+(x) − f−(x)|, which concludes the proof in the case h < Khc.

In the case h ≥ Khc, the estimate

|f(x) − Ihf(x)| ≤ Chm sup
R\{a}

|f (m)|(66)

is guaranteed to hold only when x is at distance not less than (m + 1)h from a. We
also have the lower order estimate

|f(x) − Ihf(x)| ≤ Ch2 sup
R\{a}

|f ′′|.(67)

Let us now prove that this estimate remains valid if |x−a| ≤ (m+1)h. For this purpose
we consider the decomposition f = f1 + f2 used in the proof of Lemma 2. The errors
of polynomial interpolation of f1 and f2 are, respectively, bounded by Ch|[f ′|| and
Ch2 supR\{a} |f ′′|. Since h ≥ Khc the second bound dominates the first one so that
the above estimate is valid. The proof of the theorem is now complete.

6. Numerical examples. We consider the functions

fε(x) =

{
(x− π/6)(x− π/6 − ε) + sin(πx/8)/8, x < π/6,

sin(πx/8)/8 otherwise
(68)

for four values of ε (2−6, 2−8, 2−10, 2−12). Each of these functions is globally continu-
ous with a jump of ε in its first derivative at the point π/6, while its higher derivatives
are uniformly bounded independently of ε. The fε are piecewise polynomial functions
similar to the example in section 2, to which we add the smooth function sin(πx/8)/8
in order to avoid a 0 approximation error for h less than a critical scale.

We apply our technique with m = 4. For different values of h we compute Ihfε
for the four values of ε and plot log ‖ fε − Ihfε ‖∞ versus − log(h) in Figure 1. In
Table 1 we give the corresponding values of ‖ fε − Ihfε ‖∞.

We observe that we always have accuracy of order O(h2) and that for h smaller
than some hε, we recover the optimal accuracy of order O(h4). This is ensured by
Theorem 1 for h < Khc, where

hc :=
|[f ′

ε]|
4 supx∈R−{π/6} |f ′′

ε (x)| = ε/8

and 0 < K < 1. However, we observe that hε > ε/8, which means that the order of
accuracy O(h4) is attained even for some h > Khc.

Remark. We have performed the same test for the original SR technique of Harten
[10], modified in order to ensure that Lemma 1 is satisfied. The behavior in terms of
approximation errors and orders is absolutely similar to that shown in Figure 1 and
Table 1.
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Fig. 1. Solid, dotted, dash-dot, dashed lines: log ‖ f − Ihfε ‖∞ versus −log(h) for the different
values of ε (2−6, 2−8, 2−10, and 2−12). Circles: log(h4) versus −log(h). Stars: log(h2) versus
−log(h).

Table 1

‖ fε − Ihfε ‖∞ for different values of ε and different values of h.

ε \ h 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

2−6 6e-04 4e-04 2e-09 8e-11 2e-12 1e-13 1e-14 7e-16
2−8 6e-04 3e-04 1e-04 3e-05 1e-06 1e-13 1e-14 7e-16
2−10 7e-04 3e-04 1e-04 2e-05 3e-06 7e-07 2e-07 7e-16
2−12 7e-04 3e-04 1e-04 2e-05 4e-06 8e-07 2e-07 4e-08

7. Approximation of discontinuous functions. In this last section, we derive
similar approximation results for piecewise smooth functions with jump discontinu-
ities, sampled by their cell averages

fh
k :=

1

h

∫ (k+1)h

kh

f(t)dt.(69)

For such data, the reconstruction Ahf is defined on each interval Ik by a polynomial
or piecewise polynomial function such that its cell average on Ik coincides with fh

k . In
the case of a linear method, a polynomial qk of degree m− 2 is uniquely determined
by the fh

k−m1
, . . . , fh

k+m2−1, where m1 ≥ 0 and m2 > 0 are fixed integers such that
m1 + m2 = m− 1.

A simple connection can be established between cell average and point value
reconstructions: the polynomial pk of degree m which interpolates the point values of
the primitive F (x) =

∫ x

0
f(t)dt at the points (k −m1)h, . . . , (k + m2)h satisfies

p′k = qk.(70)
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Since these point values are given by the discrete primitive

F (kh) = h
k−1∑
l=0

fh
l , k > 0, F (kh) = h

−1∑
l=k

fh
l , k < 0 and F (0) = 0,(71)

the cell average–based reconstruction operator Ah by polynomials of degree m − 2
can thus be interpreted as

Ah = DIhPd,(72)

where Pd is the discrete primitive operator Pd({fh
k }) = {F (kh)}, Ih is the point value

interpolation operator of degree m−1, and D is the continuous differentiation Df = f ′

(see [4]). The choice of our ENO-SR point value interpolation of degree m− 1 as Ih
in the above formula leads to a natural definition of an ENO-SR cell average–based
reconstruction operator Ah.

We can use (72) in order to derive approximation results for Ah applied to piece-
wise smooth discontinuous functions from the approximation result of section 5. Here
we shall analyze the error in Lp for 1 ≤ p < ∞ on a fixed bounded interval I, since
we necessarily have an O(1) error in the L∞ norm near the discontinuity. We assume
here that f is Cm−1 on R\{a} in the sense that its derivatives up to degree m−1 are
uniformly bounded on R \ {a}, with a jump [f ] at the point a. Therefore, its approx-
imation Ahf by a linear cell average–based reconstruction will have O(1) accuracy
on the intervals Ik which are such that a is contained in [(k −m1)h, (k + m2)h], and
O(hm−1) elsewhere, resulting in a global Lp error behaving like

‖f −Ahf‖Lp(I) ≤ C max{hm−1, h1/p}.(73)

If we now consider the nonlinear approximation Ahf obtained by our ENO-SR
reconstruction, we know that

Ahf = (IhF )′,(74)

where F is the primitive of f . Since F is Cm on R \ {a}, defining the critical scale as

hc :=
|[F ′]|

4 supx∈R\{a} |F ′′(x)| =
|[f ]|

4 supx∈R\{a} |f ′(x)| ,(75)

we obtain the same conclusions as in Lemma 3 for h < Khc. We can then revisit the
proof of Theorem 1 as follows.

For h < Khc, classical results on Lagrange interpolation show that the estimate

|F ′(x) − (IhF )′(x)| ≤ Chm−1 sup
R\{a}

|F (m)|,(76)

or, equivalently,

|f(x) −Ahf(x)| ≤ Chm−1 sup
R\{a}

|f (m−1)|,(77)

holds whenever x belongs to a G interval or to a group of adjacent B intervals which
do not contain a (i.e., false alarms do not deteriorate the convergence rate). When x
belongs to the group of adjacent B intervals which contains a, the same analysis as in
the proof of Theorem 1 shows that this estimate remains valid when x is not located
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on the interval [a, y] (or [y, a]) on which we cannot avoid an O(1) error. However,
since this interval has its size estimated by

|a− y| ≤ C
hm supR\{a} |F (m)|

|[F ′]| = C
hm supR\{a} |f (m−1)|

|[f ]| ,(78)

we obtain a global Lp error behaving like

‖f −Ahf‖Lp(I) ≤ C max{hm−1, hm/p}.(79)

For h ≥ Khc, the estimate

|f(x) −Ahf(x)| ≤ Chm−1 sup
R\{a}

|f (m−1)|(80)

is valid only when x is at distance at least (m + 1)h from a. For |x− a| ≤ (m + 1)h,
we consider the decomposition F = F1 + F2 used in the proof of Lemma 2, for which
we have

|F ′
1(x) − (IhF1)

′(x)| ≤ C|[F ′]| = C|[f ]|,(81)

and

|F ′
2(x) − (IhF2)

′(x)| ≤ Ch sup
R\{a}

|F ′′| = Ch sup
R\{a}

|f ′|.(82)

Since h ≥ Khc the second bound dominates the first one. It follows that we obtain a
global Lp error behaving like

‖f −Ahf‖Lp(I) ≤ C max{hm−1, h1+1/p}.(83)

Note that both estimates (83) and (79) constitute an improvement of (73). Combining
these estimates, we find that for all h > 0

‖f −Ahf‖Lp(I) ≤ C max{hm−1, hm/p, h1+1/p}.(84)

In the case p = 1 and m > 1, we find a statement very similar to that obtained in the
point value setting: while approximation by a linear method behaves like O(h), our
ENO-SR approximation behaves like O(hm−1) for h < Khc and like O(h2) for all h.

The estimate (84) degenerates, however, to O(1) for p = ∞, which reflects the
fact that we cannot hope to approximate a function with a jump in the L∞ norm.
For such discontinuous functions, a natural substitute to the L∞ norm is given by the
Hausdorff distance between graph, namely,

d(f, g) := dH(Gf , Gg),(85)

where Gf and Gg are the completed graph of f and g and

dH(A,B) := sup
x∈A

inf
y∈B

|x− y| + sup
x∈B

inf
y∈A

|x− y|(86)

is the Hausdorff distance between sets A and B of R
2 (here |x − y| is the Euclidean

distance between x and y in R
2). Recall that the completed graph of a discontinuous

function f which admits left and right limits at its jumps consists of the points
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(x, f(x)) when f is continuous at x and of the vertical segments [f(x − 0), f(x + 0)]
at the jump points x.

The approximation accuracy in the Hausdorff distance therefore measures the
closeness in the L∞ norm away from the jumps and the accuracy in resolving the
exact location of the discontinuity. Note that this distance also penalizes the Gibbs
phenomenon, which is the persistence of oscillations at fixed amplitude in the approx-
imation near the discontinuity. In turn when applying a linear cell average–based
reconstruction of degree m − 2 > 0 to a piecewise smooth function with a jump dis-
continuity, we cannot expect any convergence in this distance and we thus have only
d(f,Ahf) = O(1).

Consider now the nonlinear approximation Ahf obtained by our ENO-SR recon-
struction. For h < Khc, we have already seen that f is approximated from both sides
with precision (77) and the jump point is approximated with accuracy (78). In this
case, the Gibbs phenomenon is avoided and we obtain the asymptotical behavior

d(f,Ahf) ≤ Chm−1.(87)

For h ≥ Khc, the detection of the jump discontinuity is not ensured. In this case, we
crudely estimate the Hausdorff distance by the L∞ norm and obtain

d(f,Ahf) ≤ ‖f −Ah‖L∞ ≤ Ch sup
x∈R\{a}

|f ′(x)| + C|[f ]|,(88)

where the second term accounts for the Gibbs phenomenon generated by the singular-
ity. Since h ≥ Khc, the first term is dominant, and we therefore obtain for all h > 0
the estimate

d(f,Ahf) ≤ Ch.(89)

The fact that we can obtain convergence rates in the Hausdorff distance is a very nice
specific feature of ENO-SR nonlinear reconstruction, which reflects in particular its
nonoscillatory nature.

We can summarize our findings on the cell average reconstruction of piecewise
smooth functions with jump discontinuities in the following statement.

Theorem 2. For all f with derivatives up to degree m− 1 uniformly bounded on
R \ {a}, the nonlinear reconstruction Ahf satisfies

‖f −Ahf‖Lp(I) ≤ C max{hm−1, hm/p, h1+1/p},(90)

and

d(f,Ahf) ≤ Ch(91)

for all h > 0. Moreover there exists 0 < K < 1 independent of f such that for
h < Khc with hc defined by (75), we have

‖f −Ahf‖Lp(I) ≤ C max{hm−1, hm/p},(92)

and

d(f,Ahf) ≤ Chm−1.(93)
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Abstract. Hermite spectral methods are investigated for linear diffusion equations and nonlin-
ear convection-diffusion equations in unbounded domains. When the solution domain is unbounded,
the diffusion operator no longer has a compact resolvent, which makes the Hermite spectral methods
unstable. To overcome this difficulty, a time-dependent scaling factor is employed in the Hermite ex-
pansions, which yields a positive bilinear form. As a consequence, stability and spectral convergence
can be established for this approach. The present method plays a similar role in the stability of the
similarity transformation technique proposed by Funaro and Kavian [Math. Comp., 57 (1991), pp.
597–619]. However, since coordinate transformations are not required, the present approach is more
efficient and is easier to implement. In fact, with the time-dependent scaling the resulting discretiza-
tion system is of the same form as that associated with the classical (straightforward but unstable)
Hermite spectral method. Numerical experiments are carried out to support the theoretical stability
and convergence results.
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1. Introduction. Spectral methods for approximating solutions of differential
equations in unbounded domains have received considerable attention, mainly due to
their high accuracy and being free from using artificial boundary conditions. The
spectral approaches employ orthogonal systems in unbounded domains, e.g., using
the Laguerre spectral methods for problems in semibounded or exterior domains [2,
4, 8, 12, 17, 18, 21] and the Hermite spectral methods for the problems in unbounded
domains [1, 5, 6, 7, 10, 20]. An alternative approximation for such problems is the
rational spectral method which has also been studied by several authors [3, 9, 11, 13,
25].

When the Hermite method is applied to second-order differential equations di-
rectly, it is found in [7] that the nonsymmetric bilinear form is not of the desired
coercity property. To see this, let us consider the following simple parabolic problem:
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{
∂tU − ν∂2

xU = f(x, t), x ∈ R, t > 0,

U(x, 0) = U0(x), x ∈ R,
(1.1)

where the diffusion constant ν > 0, and R = (−∞,∞). The solution U and its partial
derivative ∂xU have to satisfy certain decay conditions as |x| → ∞. Let PN(R) be the
space of polynomials of degree at most N and let

VN = {vN(x) = ωβφN(x) | φN(x) ∈ PN(R)} ,(1.2)

where ωβ = e−(βx)2 with β being a constant. The semidiscrete Hermite function
method for (1.1) is to find uN(t) ∈ VN such that for any ϕN ∈ PN(R),

{
(∂tuN(t), ϕN) + ν(∂xuN(t), ∂xϕN) = (f(t), ϕN), t > 0,

(uN(0), ϕN) = (U0, ϕN),
(1.3)

where (·, ·) is the conventional inner product in the L2(R) space.
We demonstrate that neither is the nonsymmetric bilinear form in (1.3) coercive

nor can a corresponding G̊arding’s type inequality be established. To show this, we
denote by Hl(x) the Hermite polynomial of degree l orthogonal on R with respect to

the weight ω1(x) = e−x2

. Let β > 0 and let

H l(x) := (2ll!
√
π)−1/2Hl(x) , H

(β)
l (x) :=

√
βH l(βx) .

Note that ‖H l‖ω1 = 1 and ‖H(β)
l ‖ωβ

= 1. Then, for uN = ωβφN with φN :=∑N
l=0 ûlH

(β)
l , we have

(∂xuN , ∂xφN) = |φN |21,ωβ
+ β2‖φN‖2

ωβ
− 2β4‖xφN‖2

ωβ
(1.4)

= −2β2
N∑
l=2

√
l(l − 2)ûlûl−2,

which cannot be controlled by ‖uN‖2
ω−1

β

=
∑N

l=0 |ûl|2. In other words, the stability

for (1.3) cannot be established by using the classical energy method. On the other
hand, the instability is observed numerically, as seen in section 6. To overcome this
difficulty, a similarity transformation was introduced by Funaro and Kavian [6], which
is defined by

s = ln(1 + t), y = x(1 + t)−
1
2 .(1.5)

With this transformation, they were able to obtain the optimal error estimate of the
Hermite function approximation for the linear problem (1.1). This similarity trans-
formation technique has been extended recently to study the nonlinear convection-
diffusion equations; see, e.g., [7, 10]. By using this transformation, the diffusion
operator in (1.1) is changed into an operator whose eigenfunctions are the Hermite
functions. This property can lead to a desired stability result. However, the trans-
formation may make the underlying equations more complicated, which leads to diffi-
culties in theoretical analysis and practical implementation. It is desirable to develop
some simpler and more efficient Hermite spectral methods.

In this paper, we present a Petrov–Galerkin Hermite spectral method which uses a
time-dependent weight function. On the one hand, the method keeps the advantage of
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the similarity transformation method, namely, it gives a positive definite bilinear form.
On the other hand, the scheme can be easily formulated in the classical form of (1.3),
without introducing any extra new terms. As a result, a priori explicit transformation
is not needed. Moreover, the time-dependent weight function behaves like a spatial
scaling. The importance of the scaling factor has been demonstrated by Tang [22] and
Schumer and Holloway [20]. We will apply the proposed method to the analysis of the
nonlinear convection-diffusion equations. Stability and optimal error estimates for the
Hermite spectral methods, in both semidiscrete and fully discrete forms, are obtained
for the nonlinear equation. It will be shown by numerical experiments that the time-
dependent weight works well for solutions with time-dependent and time-independent
decays.

An outline of the paper is as follows. In section 2 we briefly discuss the Hermite
spectral methods with a time-dependent scaling. Section 3 presents some basic prop-
erties of the Hermite functions in weighted spaces, which will be useful in the stability
and convergence analysis. In sections 4 and 5, stability and convergence analysis is
carried out for the semidiscrete and fully discrete schemes, respectively. The analysis
is devoted not only to the linear parabolic equation (1.1), but also to the nonlinear
convection-diffusion problems. In section 6, numerical results will be presented.

2. Hermite method with time-dependent scaling. We present a Petrov–
Galerkin Hermite spectral method with a time-dependent scaling for the simple model
problem (1.1). Let α = α(t) > 0. We take

α(t) =
1

2
√
νδ0(δt + 1)

,(2.1)

where δ0 and δ are some positive parameters. It can be verified that

α′(t) = −2νδ0δα
3(t).

The motivation for this choice of α can be found in Remark 4.1 in section 4. The
semidiscrete Hermite spectral method for (1.1) is to find uN(t) ∈ VN(t) such that for
any ϕN ∈ PN(R),{

(∂tuN(t), ϕN) + ν(∂xuN(t), ∂xϕN) = (f(t), ϕN), t > 0,

(uN(0), ϕN) = (U0, ϕN),
(2.2)

where the trial space VN(t) is defined by

VN(t) =
{
vN(x) = ωα(t)φN(x) | φN(x) ∈ PN(R)

}
.(2.3)

The scheme (2.2) is almost the same as (1.3): the only difference is that here the
weight function ωα in the trial function space VN varies with time. The scheme (2.2)
can be rewritten as

d

dt
(uN(t), ϕN(t)) + (uN(t), L∗ϕN(t)) = (f(t), ϕN(t)),(2.4)

where L∗ := −∂t − ν∂2
x. To simplify the computation, let

uN(x, t) =
ωα√
π

N∑
l=0

ûl(t)Hl(αx) , ϕN(x, t) =
α(t)

(2mm!)
Hm(α(t)x) (0 ≤ m ≤ N).

(2.5)
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In other words, we expand the unknown solution using the scaled Hermite functions
with a time-dependent scaling factor. The test function ϕN is now also dependent on
t. It can be verified that

(ωαHl(αx), L∗(αHm(αx)))

= −α′α−1(‖Hm‖2
ω1
δlm + (yHl, H

′
m)ω1

) − 2να2(yHl, H
′
m)ω1

+ να2‖H ′
m‖2

ω1
δlm

= δ0δνα
2‖Hm‖2

ω1
δlm + (δ0δ − 1)να2(Hl+1 + 2lHl−1, 2mHm−1)ω1

+ να2|Hm|21,ω1
δlm

= να22mm!
√
π(2δ0δδlm + (δ0δ − 1)(δ(l+2)m + 2mδlm) + 2mδlm).

Applying the above result to (2.2) gives

⎧⎨
⎩

du(t)

dt
+ να(t)2Au(t) = f(t), t > 0,

(u(0))m = α(0)(2mm!)−1(U0, Hm(α(0)x)), 0 ≤ m ≤ N,

(2.6)

where α(0) = 1/2
√
νδ0, u = (û0, û1, . . . , ûN )T . The elements of the matrix A are

given by

(A)ml =

⎧⎪⎨
⎪⎩

2(m + 1)δ0δ, l = m,

δ0δ − 1, l = m− 2,

0 otherwise, 0 ≤ l,m ≤ N,

and the entries fm of f are given by

f̂m := (f)m = α(2mm!)−1(f,Hm(αx))

= (2mm!)−1(ey
2

f(α−1y), Hm(y))ω1
.

Fully discrete methods can be designed by using (2.6) based on the method-of-lines
approach. Here we consider the Crank–Nicolson scheme. Let τ be the time-step
tk = kτ (k = 0, 1, . . . , n

T
; T = n

T
τ), and let vk = v(tk). The fully discrete Petrov–

Galerkin method for (1.1) is to find

uk
N =

ωα(tk)√
π

N∑
l=0

ûk
l Hl(α(tk)x)

such that

⎧⎪⎨
⎪⎩

uk+1 − uk

τ
+ να2(tk + τ/2)A

uk+1 + uk

2
=

fk+1 + fk

2
, 0 ≤ k ≤ n

T
− 1,

(u0)m = (2mm!)−1(ey
2

U0(y/α(0)), Hm(y))ω1 , 0 ≤ m ≤ N.

(2.7)

Since the matrix A is independent of time, the above scheme can be solved easily.

Remark 2.1. Note that the matrix A is an upper triangular matrix whose diagonal
entries are 2(m+1)δ0δ. By the classical stability theory, both the semidiscrete scheme
(2.6) and fully discrete scheme (2.7) are stable and convergent provided that δ0δ > 0.
However, δ0 = 0 in the classical approach (1.3) yields numerical instability.
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3. Approximation properties of Hermite functions. In this section, we
present some basic approximation properties for the Hermite functions and the Her-
mite polynomials. Some of them are similar to those obtained in [5, 6, 7, 19, 23, 24]
and we will only briefly outline the proofs.

Let Hσ(R) := W σ,2(R) be the Sobolev spaces with the norm ‖ · ‖σ and seminorm
| · |σ. For a nonnegative weight ω(x) on R, the inner product and norm of L2

ω(R) are
denoted by (·, ·)ω and ‖ · ‖ω, respectively. The subscript ω will be dropped whenever
ω(x) ≡ 1. For a positive integer σ, the weighted Sobolev space Hσ

ω(R) is defined by

Hσ
ω(R) =

{
v | ∂r

xv ∈ L2
ω(R), 0 ≤ r ≤ σ

}
with the seminorm and norm

|v|σ,ω = ‖∂σ
xv‖ω, ‖v‖σ,ω =

(
σ∑

r=0

|v|2r,ω

)1/2

.

Denote by Hl(x) the Hermite polynomial of degree l:

Hl(x) = (−1)lω−1
1 (x)∂l

x(ω1(x)).

In theoretical analysis, it seems more convenient to use the normalized Hermite poly-
nomials

H l(x) := (2ll!
√
π)−1/2Hl(x).

We will work with the scaled Hermite polynomial H
(β)
l (x) :=

√
βH l(βx), where β > 0

is a constant. For nonnegative integers r and l, let

Ar
l =

⎧⎪⎨
⎪⎩

l!/(l − r)!, l ≥ r ≥ 1,

1, l ≥ 0, r = 0,

0, l < r.

We have

(∂r
xH

(β)
l , ∂r

xH
(β)
m )ωβ

= β2r(∂r
xH l, ∂

r
xHm)ω1

= (2β2)r
√
Ar

lA
r
m δlm(3.1)

so that {∂r
xH

(β)
l } are orthogonal on R with respect to the weight ωβ = e−(βx)2 . Let

P β
N : L2

ωβ
(R) → PN(R) be the L2

ωβ
-orthogonal projection operator defined by

(P β
Nv − v, ϕN)ωβ

= 0 ∀ ϕN ∈ PN(R).(3.2)

For v ∈ Hr
ωβ

(R) (r < N), we have ∂r
xP

β
Nv = P β

N−r∂
r
xv and

(∂r
x(P β

Nv − v), ϕN−r)ωβ
= 0 ∀ ϕN−r ∈ PN−r(R).(3.3)

We consider the approximation by the Hermite functions; i.e., we approximate
vω−1

β by using the Hermite polynomials. Let Pβ
N : L2

ω−1
β

(R) → VN be the L2
ω−1

β

-

orthogonal projection operator defined by

(Pβ
Nv − v, ϕN)ω−1

β
= 0 ∀ ϕN ∈ VN .(3.4)
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It is easy to verify that Pβ
Nv = ωβP

β
N (vω−1

β ). For v ∈ Hr
ω−1

β

(R) (r < N), we have

∂r
xP

β
Nv = Pβ

N+r∂
r
xv and

(∂r
x(Pβ

Nv − v), ϕN+r) = 0 ∀ ϕN+r ∈ PN+r(R).(3.5)

Lemma 3.1. If r is a nonnegative integer, then v ∈ Hr
ω−1

β

(R) is equivalent to

vω−1

β ∈ Hr
ωβ

(R). Moreover,

r∑
j=0

(2β2)r−j‖∂j
x[(I − P β

m)(vω−1

β )]‖2
ωβ

≤ ‖∂r
x[(I − Pβ

m)v]‖2
ω−1

β

∀m ≥ 0,(3.6)

‖∂r
x[(I − Pβ

N)v]‖ω−1
β

≤ C(r)‖∂r
x[(I − P β

N )(vω−1

β )]‖ωβ
∀N > r,(3.7)

where P β
0 = Pβ

0 = 0 and C(r) is a constant depending only on r.
Proof. By a direct calculation,

∂r
x(ωβH

(β)
l (x)) = (−β)r2r/2

√
Ar

l+r ωβH
(β)
l+r(x).(3.8)

Using this result we can verify that {∂r
x(ωβH

(β)
l )} are orthogonal with respect to the

weight ω−1

β on R:

(∂r
x(ωβH

(β)
l ), ∂r

x(ωβH
(β)
m ))ω−1

β
= (2β2)r

√
Ar

l+rA
r
m+r(H

(β)
l+r, H

(β)
m+r)ωβ

(3.9)

= (2β2)r
√
Ar

l+rA
r
m+r δlm ∀l, m ≥ r ≥ 0.

Let v = ωβ

∑∞
l=0 v̂lH

(β)
l . Then we have

(I − Pβ
m)v = ωβ(I − P β

m)(vω−1

β ) = ωβ

∑
l≥m

v̂lH
(β)
l .

The above result, together with (3.9), gives

‖∂r
x[(I − Pβ

m)v]‖2
ω−1

β

= (2β2)r
∑
l≥m

Ar
l+r|v̂l|2

≥ (2β2)r
∑
l≥m

r∑
j=0

Aj
l |v̂l|2 ≥ (2β2)r

r∑
j=0

∑
l≥max{m,j}

Aj
l |v̂l|2

=

r∑
j=0

(2β2)r−j‖∂j
x[(I − P β

m)(vω−1

β )]‖2
ωβ

.

This proves the result (3.6). The inequality (3.7) can be established similarly.
Lemma 3.2. If 0 ≤ r ≤ σ < N , then

‖∂r
x(v − P β

Nv)‖ωβ
≤C(r, σ)(2β2N)(r−σ)/2‖∂σ

xv‖ωβ
∀ v ∈ Hσ

ωβ
(R),(3.10)

‖∂r
x(v − Pβ

Nv)‖ω−1
β

≤C(r, σ)(2β2N)(r−σ)/2‖∂σ
xv‖ω−1

β
∀ v ∈ Hσ

ω−1
β

(R),(3.11)

where C(r, σ) is a constant depending only on r and σ.
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Proof. Let v =
∞∑
l=0

v̂lH
(β)
l . Then, it follows from (3.1) that

‖∂r
x(v − P β

Nv)‖2
ωβ

=
∑
l>N

(2β2)rAr
l |v̂l|2

= (2β2)r−σ
∑
l>N

(Aσ−r
l−r )−1(2β2)σAσ

l |v̂l|2 ≤ (2β2)r−σ(Aσ−r
N+1−r)

−1‖∂σ
x (v − P β

Nv)‖2
ωβ

= (2β2)r−σ
σ−2∏

m=r−1

(
1 − m

N

)−1

Nr−σ‖∂σ
x (v − P β

Nv)‖2
ωβ

,

which gives (3.10). Using (3.7), (3.10), and (3.6) gives

‖∂r
x(v − Pβ

Nv)‖2
ω−1

β

≤ C(r)‖∂r
x[(I − P β

N )(vω−1

β )]‖ωβ

≤ C(r, σ)(2β2N)(r−σ)/2‖∂σ
x [(I − P β

N )(vω−1

β )]‖ωβ

≤ C(r, σ)(2β2N)(r−σ)/2‖∂σ
x [(I − Pβ

N)v]‖ω−1
β

,

which gives (3.11).
Lemma 3.3. Let r, σ be nonnegative integers. We have

lim
|x|→∞

x(∂r
xv)

2(x)ω−1

β (x) → 0 ∀ v ∈ Hσ
ω−1

β

(R), r ≤ σ − 1,(3.12)

‖v2ω−1

β ‖L∞(R) ≤ 2|v|1,ω−1
β

‖v‖ω−1
α

∀ v ∈ H1
ω−1

β

(R),(3.13)

|ϕN |σ,ω−1
β

≤ (4β2N)(σ−r)/2|ϕN |r,ω−1
β

∀ ϕN ∈ VN , r ≤ σ ≤ N,(3.14) ∥∥∥√ω−1

β ϕN

∥∥∥
L∞(R)

≤ 2(β2N)1/4‖ϕN‖ω−1
β

∀ ϕN ∈ VN , r ≤ σ ≤ N.(3.15)

Proof. The first two results, (3.12) and (3.13), can be obtained by the arguments

similar to those given in [5, 7]. Let ϕN = ωβ

∑N
l=0 ϕ̂lH

(β)
l ∈ VN . It follows from (3.9)

that

|ϕN |2σ,ω−1
β

= (2β2)σ−r(2β2)r
N∑
l=0

Aσ−r
l+σ A

r
l+r|ϕ̂l|2

≤ (2β2N)σ−r
σ∏

j=r+1

(
1 +

j

N

)
|ϕN |2r,ω−1

β

,

which gives (3.14). Moreover, using (3.13) and (3.14) gives

‖ω−1

β ϕ2
N‖L∞(R) ≤ 2(4β2N)1/2‖ϕN‖2

ω−1
β

≤ 4βN1/2‖ϕN‖2
ω−1

β

.

This completes the proof of this lemma.

4. Stability and convergence: Semidiscretization. To demonstrate the sta-
bility and convergence analysis for the proposed spectral method, we take the time-
dependent weight

ωα(t) = e−(α(t)x)2 ,(4.1)
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where α(t) is defined by (2.1). We expand

uN(x, t) = ωα(t)

N∑
l=0

ûl(t)H
(α(t))
l (x).(4.2)

It can be verified that ‖uN‖ω−1
α

= ‖u‖. The solution expansion (4.2) is slightly
different from the one in (2.5) but is more suitable for theoretical analysis. With this
expansion, the matrix form for the scheme (2.2) becomes

du

dt
+ να(t)2Bu = f ,(4.3)

where the elements of the matrices B and the vector f are given by

(B)ml =

⎧⎪⎪⎨
⎪⎪⎩

δ0δ(2m + 1), l = m,

(δ0δ − 1)2
√

m(m− 1), l = m− 2,

0 otherwise,

(4.4)

f̂m := (f)m = (f,H(α)
m ), 0 ≤ l,m ≤ N.

The stability and convergence properties can be established following the discussions
in section 2. To be more precise, let

δ = min{1, 2δ0δ − 1} > 0, D = 2diag(0, 1, . . . , N)(4.5)

and let I be the identity matrix. Since

uTBu ≥ δuT (D + I)u,

we obtain

‖u(t)‖2 + δν

∫ t

0

α2‖(D + I)
1/2

u(s)‖2 ds

≤ ‖u(0)‖2 + 4δ0δ
−1

∫ t

0

(δs + 1)‖(D + I)
−1/2

f(s)‖2 ds, t > 0,

(4.6)

or, equivalently,

‖uN(t)‖2
ω−1

α
+ δν

∫ t

0

|uN(t)|2
1,ω−1

α
ds(4.7)

≤ ‖uN(0)‖2
ω−1

α
+ (δν)−1

∫ t

0

‖∂−1
x f(s)‖2

ω−1
α

ds,

where ∂−1
x v(x) =

∫ x

−∞ v(y) dy.
Remark 4.1. In the classical approach (1.3), we fail to obtain the stability due

to the term ‖xφN‖ωβ
in (1.4). However, when α depends on time, an extra term is

gained in the ‖xuN‖ωα term:

d

dt
‖uN(t)‖2

ω−1
α

+ 2ν(|uN |21,ω−1
α

− α2‖uN(t)‖2
ω−1

α
)(4.8)

− 2α(α′ + 2να3)‖xuN(t)‖2
ω−1

α
= 2(f(t), uN(t))ω−1

α
.

Stability can be obtained if α is chosen to satisfy α′ + 2να3 ≤ 0.
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We now briefly outline the convergence of the approximation (2.2). Our rigorous
analysis will be carried out for the nonlinear convection-diffusion equations, which
take (2.2) as a special case. It is interesting to note that the solutions of (1.3) and
(2.2) are both of the same form: uN = Pα

NU . In fact, assuming U ∈ C(0, T ;H1
ωα

(R)),
we have from (3.5) that for any ϕN ∈ PN(R),

{
(∂tPα

NU(t), ϕN) + ν(∂xPα
NU(t), ∂xϕN) = (∂tU(t), ϕN) + ν(∂xU(t), ∂xϕN) = (f(t), ϕN),

(Pα
NU(0), ϕN) = (U0, ϕN).

(4.9)

However, the scheme (1.3) may not work since the bilinear form is not coercive. Since
uN = Pα

NU , it follows from (3.11) that if U ∈ C(0, T ;Hσ
ω−1

α
(R)) (σ ≥ 1), then

‖uN(t) − U(t)‖r,ω−1
α

≤ CN (r−σ)/2‖U(t)‖σ,ω−1
α

∀ 0 ≤ r ≤ σ, t ∈ (0, T ),(4.10)

which is analogous to the result obtained in [6] by using the similarity transformation.
The above method can be easily applied to some nonlinear equations. Consider

the nonlinear convection-diffusion equation

{
∂tU + ∂xF (U) − ν∂2

xU = f(x, t), (x, t) ∈ R × (0, T ),

U(x, 0) = U0(x), x ∈ R,
(4.11)

where F is a smooth function, the constant ν > 0, and U and ∂xU satisfy certain
decay conditions at infinity. The semidiscrete Hermite function method for (4.11) is
to find uN ∈ VN such that for any ϕN ∈ PN(R),

{
(∂tuN(t), ϕN) + (∂xF (uN(t)), ϕN) + ν(∂xuN(t), ∂xϕN) = (f(t), ϕN), t ∈ (0, T ),

(uN(0), ϕN) = (U0, ϕN).

(4.12)

We investigate the stability property of the scheme (4.12). Suppose that uN and the
term on the right-hand side of (4.12) have the errors ũN and f̃ , respectively. Then,
we have

(∂tũN , ϕN) + (∂xF̃ , ϕN) − ν(∂2
xũN , ϕN) = (f̃ , ϕN) ∀ϕN ∈ PN(R), t ∈ (0, T ),(4.13)

where F̃ := F (uN + ũN)−F (uN). Taking ϕN = ω−1
α ũN in (4.13), we obtain, similarly

to (4.8),

d

dt
‖uN(t)‖2

ω−1
α

+ δν(|uN(t)|2
1,ω−1

α
+ |ω−1

α uN(t)|21,ωα
)(4.14)

= 2(f̃(t) − ∂xF̃ (t), ũN(t))ω−1
α

≤ 2(δν)−1(‖∂−1
x f̃(t)‖2

ω−1
α

+ ‖F̃‖2
ω−1

α
) + δν|ω−1

α ũN(t)|21,ωα
.

Let M̃ be a positive constant and let

M(u) = max
0≤s≤T

‖uN(s)‖L∞(I), CF = max
|z|≤M(u)+M̃

|F ′(z)|.(4.15)
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For any given t ∈ (0, T ), if

2(α2N)1/4‖ũN(s)‖ω−1
α

≤ M̃ ∀ s ∈ (0, t),

then by (3.15),

‖ũN(s)‖L∞(I) ≤ M̃ ,

‖F̃ (s)‖ω−1
α

=

∥∥∥∥
∫ 1

0

F ′(uN(s) + θũN(s))ũN(s) dθ

∥∥∥∥
ω−1

α

≤ CF ‖ũN(s)‖ω−1
α

∀s ∈ (0, t).

Substituting the above estimates into (4.14) gives

d

dt
‖ũN(t)‖2

ω−1
α

+ δν|ũN(t)|2
1,ω−1

α
≤ 2(δν)−1(CF ‖ũN(t)‖2

ω−1
α

+ ‖∂−1
x f̃(t)‖2

ω−1
α

).(4.16)

Define

E(ũN , t) = ‖ũN(t)‖2
ω−1

α(t)

+ δν

∫ t

0

|ũN(s)|2
1,ω−1

α(s)

ds,(4.17)

ρ(ũN , f̃ , t) = ‖ũN(0)‖2
ω−1

α(0)

+ 2(δν)−1

∫ t

0

‖∂−1
x f̃(s)‖2

ω−1
α(s)

ds.(4.18)

Integrating (4.16) with respect to t yields

E(ũN , t) ≤ ρ(ũN , f̃ , t) + C

∫ t

0

E(ũN , s) ds,(4.19)

where C is a positive constant depending on (δν)−1 and CF . Then, by a nonlinear
Gronwall-like inequality [14],

E(ũN , t) ≤ eCtρ(ũN , f̃ , t) ∀ 0 < t ≤ T,(4.20)

provided that

4α(t)N1/2eCtρ(ũN , f̃ , t) ≤ M̃2.(4.21)

We now consider the convergence for the semidiscrete scheme (4.12). As we have
shown for the linear problem (1.1), the projection Pα

NU is a good comparison function.
Let u∗ = Pα

NU . Then, for any ϕN ∈ PN(R),

{
(∂tu∗(t), ϕN) + (∂xF (u∗(t)), ϕN) + ν(∂xu∗(t), ∂xϕN) = (f(t), ϕN) − (∂xg(t), ϕN),

(u∗(0), ϕN) = (U0, ϕN),

(4.22)

where g(t) = F (U(t)) − F (u∗(t)). Let eN = uN − u∗. We have

{
(∂teN(t), ϕN) + (∂xG(t), ϕN) + ν(∂xeN(t), ∂xϕN) = (∂xg(t), ϕN), t ∈ (0, T ),

(eN(0), ϕN) = 0,

(4.23)
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where G(t) = F (u∗(t) + eN(t)) − F (u∗(t)). Using the same argument as used in
deriving the stability result (4.20), we can obtain

‖eN(t)‖2
ω−1

α(t)

≤ C

∫ t

0

‖g(s)‖2
ω−1

α(s)

ds ≤ CC ′
F

∫ t

0

‖(I − Pα
N)U(s)‖2

ω−1
α(s)

ds

≤ CN−σ

∫ t

0

‖∂σ
xU(s)‖2

ω−1
α(s)

ds ≤ CN−σ‖U‖2
L2(0,T ;Hσ

ω
−1
α

(R)).

Theorem 4.1. Let U and uN be the solutions of (4.11) and (4.12), respectively.
Assume that U ∈ C(0, T ;Hσ

ω−1
α

(R)) (σ ≥ 1), F (z) ∈ C1(R), the function α(t) is

defined by (2.1), and δ defined by (4.5) is positive. Then

‖uN(t) − U(t)‖ω−1
α

≤ CN−σ/2 ∀ 0 < t < T,

where C is a constant depending on (δν)−1, δ0, δ, T , and the regularity of Uand F .

5. Stability and convergence: Fully discrete scheme. In this section, we
further discretize the scheme (4.12) by using the method-of-lines approach. Without
loss of generality, the analysis will be carried out for the nonlinear convection-diffusion
equations. Noting that

(∂xF (uN), H(α)
m ) = −

√
2mα(F (uN), H

(α)
m−1),

we can rewrite the scheme (4.12) in a matrix form as in (4.3):

du

dt
− α(t)D1/2F(uN) + να(t)2Bu = f ,(5.1)

where D,B, f are the same as in (4.4) and (4.5), and the elements of the vector F are
defined by

(F)0 = 0 , (F)m = (F (uN), H
(α)
m−1) (1 ≤ m ≤ N).

For the time discretization, we use a second-order Crank–Nicolson/leapfrog scheme,
which is implicit for the linear term and explicit for the nonlinear term [14, 15]. For
the similarity transformation method (1.5), if the step size Δs for the transformed
variable s is fixed, then the corresponding time-step in t is nonuniform. In our present
approach, a uniform time-step is employed.

Let τ be the time-step size and let tk = kτ (k = 0, 1, . . . , n
T
; T = n

T
τ). We

denote v(x, tk) by vk(x) or simply by vk and v(tk) by vk. Let

vk
t̂

=
1

2τ
(vk+1 − vk−1), vk̂ =

1

2
(vk+1 + vk−1).

For v = ωα(t)

∑∞
l=0 v̂l(t)H

(α(t))
l , we define

Dtv = ωα

∞∑
l=0

dv̂l
dt

H
(α)
l .

The fully discrete Hermite spectral method to the nonlinear convection-diffusion equa-
tion (4.11) is to find

uk
N = ωα(t)

N∑
l=0

ûk
l (t)H

(α(t))
l ∈ VN
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satisfying ⎧⎪⎪⎨
⎪⎪⎩

uk
t̂
− αkD1/2F(uk

N) + ν(αk)2Buk̂ = fk, 1 ≤ k ≤ n
T
− 1,

(u1)m = (u0)m + τ(DtU(0), H
(α(0))
m ), 0 ≤ m ≤ N,

(u0)m = (U0, H
(α(0))
m ), 0 ≤ m ≤ N,

(5.2)

where (DtU(0), H
(α(0))
m ) can be computed from du

dt (0) using the initial condition and
(5.1).

We now present a stability analysis for the scheme (5.2). Assume that the solution

and the term on the right-hand side of (5.2) have errors ũk := (˜̂u
k

0 ,
˜̂u
k

1 , . . . ,
˜̂u
k

N)T and

f̃k, respectively, with ũk
N = ωα

∑N
l=0

˜̂u
k

l H
(α)
l . Then the errors satisfy

ũk
t̂
− αkD1/2F̃k + ν(αk)2Bũk̂ = f̃k, 1 ≤ k ≤ n

T
− 1,(5.3)

where F̃k = F(uk
N + ũk

N) − F(uk
N). Multiplying both sides of (5.3) with 2ũk̂ and

assuming that δ = min{1, 2δ0δ − 1} > 0, we obtain

(‖ũk‖2)t̂ + 2δν(αk)2‖(D + I)
1/2

ũk̂‖2 ≤ 2(f̃ k̂ + αkD1/2F̃k, ũk̂)(5.4)

≤ 2(δν)−1((αk)−2‖(D + I)
−1/2

f̃k‖2 + ‖F̃k‖2) + δν(αk)2‖(D + I)
1/2

ũk̂‖2.

Let M̃ be a positive constant and let

M(u) = max
0≤k≤n

T

‖uk
N‖L∞(I), CF = max

|z|≤M(u)+M̃
|F ′(z)|.(5.5)

For a fixed n ≤ n
T
, if

‖ũk‖ = ‖ũk
N‖ω−1

α
≤ (4αkN1/2)−1/2M̃ ∀ 1 ≤ k ≤ n− 1,

then, by (3.15), we have ‖ũk
N‖L∞(I) ≤ M̃ and

‖F̃k‖ = ‖Pα
N−1(F (uk

N + ũk
N) − F (uk

N))‖ω−1
α

≤ ‖F (uk
N + ũk

N) − F (uk
N)‖ω−1

α
≤ CF ‖ũk

N‖2
ω−1

α
= CF ‖ũk‖.

Define

En(v) = ‖vn‖2 + 2δντ

n−1∑
k=1

(αk)2‖(D + I)
1/2

vk̂‖2,(5.6)

ρn(v,g) = ‖v0‖2 + ‖v1‖2 + 4(δν)−1τ

n−1∑
k=0

(αk)−2‖(D + I)
−1/2

gk‖2.(5.7)

Summing (5.4) for 1 ≤ k ≤ n− 1 gives

En(ũ) ≤ ρn(ũ, f̃) + 2(δν)−1CF τ

n−1∑
k=1

Ek(ũ).

It follows from a discrete nonlinear Gronwall-like inequality [14] that

En(ũ) ≤ eCnτρn(ũ, f̃) ∀ 0 < n ≤ n
T
,

provided that 4 max0≤k≤n α
kN1/2eCkτρk(ũ, f̃) ≤ M̃2.

Theorem 5.1. Let uN be the solution of (4.12) and let M̃ be a positive number.
Assume that the function α(t) is defined by (2.1) and that δ defined by (4.5) is positive.
For 0 < n ≤ n

T
, if
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4 max
0≤k≤n

αkN1/2eCkτρk(ũ, f̃) ≤ M̃2 ,(5.8)

then

Ek(ũ) ≤ eCkτρk(ũ, f̃) ∀ 0 < k ≤ n,

where Ek and ρk are defined by (5.6) and (5.7), respectively, and C is a constant
linearly proportional to (δν)−1 and CF .

We now analyze the convergence of the fully discrete scheme (5.2). Let u∗ = Pα
NU

with the following Hermite expansion:

u∗ = ωα

N∑
l=0

û∗lH
(α)
l .

Denote the coefficients of the above expansion by u∗ := (û∗0, û∗1, . . . , û∗N )T . It follows
from (4.22) that

uk
∗t̂ − αkD1/2F(uk

∗) + ν(αk)2Buk̂
∗ = fk − gk,(5.9)

where we split gk into gk
1 , gk

2 , gk
3 as follows:

gk =

[(
du∗
dt

)k

− uk
∗t̂

]
+ [αkD1/2(F(uk

∗) − F(Uk))] + [ν(αk)2B(uk
∗ − uk̂

∗)](5.10)

=: gk
1 + gk

2 + gk
3 .

Let ekN = uk
N − uk

∗ and ek = uk − uk
∗. Then it can be verified that

⎧⎨
⎩

ek
t̂
− αkD1/2Gk + ν(αk)2Bek̂ = gk, 1 ≤ k ≤ n

T
− 1,

e0 = 0, e1 = u∗(0) + τ
du∗
dt

(0) − u∗(τ),
(5.11)

where Gk = F(uk
∗ + ekN) −F(uk

∗). By the same arguments as in the stability analysis
above, we can obtain

‖enN‖2
ω−1

α
= ‖en‖2 ≤ C

(
‖e0‖2 + ‖e1‖2 + (δν)−1τ

n−1∑
k=0

(αk)−2‖(D + I)
−1/2

gk‖2

)
.

The last term on the right-hand side can be bounded by using the facts below:

τ
n−1∑
k=0

‖(D + I)
−1/2

gk
1‖2 ≤ Cτ4‖D3

tU‖2
L2(0,T ;H−1

ω
−1
α

(R))
,(5.12)

τ

n−1∑
k=0

‖(D + I)
−1/2

gk
2‖2 ≤ Cτ

n−1∑
k=0

‖F (uk
∗) − F (Uk)‖2

ω−1
α

(5.13)

≤ CC ′
FN

−σ‖U‖2
C(0,T ;Hσ

ω
−1
α

(R)),

τ

n−1∑
k=0

‖(D + I)
−1/2

gk
3‖2 ≤ Cτ4‖D2

tU‖2
L2(0,T ;H1

ω
−1
α

(R)).(5.14)
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The initial errors can be bounded by using the Taylor expansion:

‖e1‖ =

∥∥∥∥
∫ τ

0

(τ − s)
d2u∗
dt2

(s) ds

∥∥∥∥ ≤ τ2 max
0≤s≤τ

∥∥∥∥d
2u∗
dt2

(s)

∥∥∥∥(5.15)

≤ τ2‖D2
tU(s)‖C(0,τ ;L2

ω
−1
α

(R)).

Combining the above results, we arrive at the following optimal error estimate.
Theorem 5.2. Let U and uN be the solutions of (4.11) and (4.12), respec-

tively. Assume that U ∈ C(0, T ;Hσ
ω−1

α
(R)) (σ ≥ 1), D2

tU ∈ L2(0, T ;H1
ω−1

α
(R)) ∩

C(0, τ ;L2
ω−1

α
(R)), D3

tU ∈ L2(0, T ;H−1

ω−1
α

(R)), and F (z) ∈ C1(R). Moreover, assume

that the function α(t) is defined by (2.1), δ defined by (4.5) is positive, and τN1/8 ≤ c0
is sufficiently small. Then, for 0 ≤ n ≤ n

T
,

‖un
N − Un‖ω−1

α(tn)
≤ C(τ2 + N−σ/2),

where C is a constant depending on (δν)−1, δ0, δ, T , and the regularity of Uand F .
Remark 5.1. If the underlying PDE solution does not satisfy the exponential

decay property required by the Hermite function approximation, one may use the
Hermite polynomial approximation directly. In this case, the Hermite polynomial
approximation should be used together with a time-dependent scaling,

α(t) =
1

2
√
νδ0(δ(T − t) + 1)

.(5.16)

For the linear parabolic equation (1.1) and the nonlinear convection-diffusion equa-
tion (4.11), it can be verified that with the choice (5.16), the desired stability and
convergence results can be established in some appropriate function space.

6. Numerical results. In this section, we present some numerical examples
using the proposed method for both linear and nonlinear equations. The numerical
results will be compared with those obtained by using the classical method (1.3) and
by using the similarity transformation technique. In the following computations, the
integrals involved are computed by the Hermite–Gauss quadrature rules with N + 1
quadrature points. Let

EN(t) = ‖uN(t) − UN(t)‖ω−1
α

, EN,∞(t) =
max0≤j≤N |uN(yj , t) − U(yj , t)|

max0≤j≤N |U(yj , t)|
,

where UN ∈ VN is the interpolation of U at the Hermite–Gauss points {yj}Nj=0. The
examples used below are taken from [6] and [10], where the diffusion coefficient ν in
(1.1) is chosen as 1. In the linear case our approach is appropriate for the general
choice of ν > 0 due to the use of the scaling factor (2.1). However, for nonlinear
problems (such as Example 6.3 below) with sufficiently small values of ν, steep layers
may be developed, and in this case some special techniques such as the spectral
viscosity method [16] should be applied.

Example 6.1 (linear problem). Consider the parabolic problem (1.1) with ν = 1
and the following source term:

f(x, t) = (x cosx + (t + 1) sinx)(t + 1)−3/2e−x2/4(t+1).(6.1)
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Table 6.1

Example 6.1: Errors at t = 1 with N = 20 using different methods.

Time step Funaro and Kavian’s Classical Proposed

τ scheme [6] scheme (1.3) scheme (2.7)

250−1 2.487E-03 1.948E-04 2.958E-06

1000−1 6.203E-04 1.947E-04 1.189E-06

4000−1 1.550E-04 1.947E-04 1.177E-06

16000−1 3.886E-05 1.947E-04 1.177E-06

Table 6.2

Example 6.1: Errors of the proposed scheme (2.7) with different τ and N .

τ N EN (1) EN,∞(1) Order

1E-1 1.697E-03 9.775E-04

1E-2 1.697E-05 9.769E-06 τ2.00

1E-3 30 1.696E-07 9.769E-08 τ2.00

1E-4 1.696E-09 9.798E-10 τ2.00

10 5.161E-03 1.192E-03

1E-4 20 1.177E-06 1.246E-07 N−12.10

30 1.696E-09 9.798E-10 N−16.14

This example was used by Funaro and Kavian [6]. Its exact solution is of the form

U(x, t) =
sinx√
t + 1

e−x2/4(t+1).(6.2)

We solve the above problem with (δ0, δ) = (1.5, 0), which corresponds to the classical
approach (1.3), and with (δ0, δ) = (1, 1), which corresponds to the method proposed
in this work. For ease of comparison, we use the same mesh size as used in [6]. Table
6.1 shows the error E20(t) at t = 1 with different time-steps. Note that the result in
[6] is obtained by using (explicit) first-order forward difference in time.

Table 6.2 shows the order of accuracy for the scheme (2.7) with δ0 = δ = 1.
The numerical results are in good agreement with the theoretical prediction that the
numerical scheme (2.7) is of second-order accuracy in time and spectral accuracy in
space.

Example 6.2 (linear problem). Consider the parabolic problem (1.1) with ν = 1
and the following source term:

f(x, t) = (k(1 + 4c2x) cos k(x + t) − (k2 + 2c2(1 − 2(cx)2)) sin k(x + t)) e−(cx)2 ,

(6.3)

where c is a constant. The exact solution of this example has a time-independent
decay:

U(x, t) = sin k(x + t)e−c2x2

.(6.4)
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Table 6.3

Example 6.2: Comparison of the classical approach and the present method.

Classical method (1.3) Proposed method (2.7)

τ Steps E160(1) E160,∞(1) E160(1) E160,∞(1)

250 5.66E-07 3.93E-07 4.30E-06 1.87E-06

500 1.52E-04 8.50E-06 2.73E-06 2.03E-06
1E-3

750 3.72E+01 2.67E+00 2.08E-06 1.44E-06

1000 8.20E+06 2.02E+05 1.75E-06 1.34E-06

2500 5.66E-09 3.94E-09 4.30E-08 1.87E-08

5000 1.45E-04 8.01E-06 2.73E-08 2.03E-08
1E-4

7500 4.30E+01 2.41E+00 2.08E-08 1.44E-08

10000 8.95E+06 4.97E+04 1.73E-08 1.36E-08

The purpose for choosing this example is to demonstrate that the Hermite spectral
method with a time-dependent scaling also works well for the solutions with time-
independent decays. In our computations, the parameters k and c are taken as 5
and 0.5, respectively. We solve this problem by using a constant weight α(t) ≡
0.5, which not only corresponds to the classical method (1.3) but also matches the
exponential solution-decay exactly. We also solve the problem by using the scheme
(2.7) with (δ0, δ) = (0.6, 1). This choice of the parameters satisfies δ = 0.2 > 0,
and therefore stability and convergence are expected. It is seen from Table 6.3 that
although the classical method (1.3) matches the exponential decay exactly, the error
is accumulated due to numerical instability. On the other hand, the Hermite spectral
method with a time-dependent scaling produces highly accurate and stable numerical
approximations.

Example 6.3 (nonlinear viscous Burgers equation). Consider the viscous Burgers
equation

∂tU + U∂xU − ν∂2
xU = f(x, t), x ∈ R, t > 0.(6.5)

It was computed in [10] via the transformation

y =
x

2
√
ν(t + 1)

, s = ln(t + 1)(6.6)

for a soliton-like solution

U(x, t) = e−y2

sech2(ay − bs− c).(6.7)

We will recompute this problem with parameters a = 0.3, b = 0.5, c = −3, and ν = 1.
We use the fully discrete scheme (5.2) to solve the problem with (δ0, δ) = (1, 1).

The numerical errors at t = e − 1 are presented in Table 6.4, where the comparison
is made with those given in [10]. It is seen that the present method is more accurate
than the similarity transformation solution.

To show the rate of convergence for (5.2), we list in Table 6.5 the numerical
errors at t = 1 with various τ and N . The fully discrete scheme (5.2) is applied to
the viscous Burgers problem with (δ0, δ) = (1, 1). It again confirms the theoretical
prediction that the present method is of second-order accuracy in time and spectral
accuracy in space.
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Table 6.4

Example 6.3: Errors at t = e − 1 with τ = 0.001 ∗ t.

N Guo and Xu’s result [10] Proposed scheme (5.2)

8 1.381E-06 1.563E-05

16 1.381E-06 6.337E-07

32 1.381E-06 1.031E-07

Table 6.5

Example 6.3: Errors of the proposed scheme (5.2) with different τ and N .

τ N EN (1) EN,∞(1) Order

1E-1 5.101E-04 4.677E-03

1E-2 4.508E-06 4.548E-05 τ2.05

1E-3 40 4.454E-08 4.530E-07 τ2.01

1E-4 4.467E-10 4.372E-09 τ2.00

8 6.685E-06 1.163E-04

1E-4 16 2.684E-07 3.121E-06 N−4.64

32 7.888E-10 7.120E-09 N−8.41
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CONSTRUCTION ALGORITHMS FOR DIGITAL NETS
WITH LOW WEIGHTED STAR DISCREPANCY∗

JOSEF DICK† , GUNTHER LEOBACHER‡ , AND FRIEDRICH PILLICHSHAMMER‡

Abstract. We introduce a new construction method for digital nets which yield point sets
in the s-dimensional unit cube with low star discrepancy. The digital nets are constructed using
polynomials over finite fields. It has long been known that there exist polynomials which yield point
sets with low (unweighted) star discrepancy. This result was obtained by Niederreiter by the means
of averaging over all polynomials. Hence concrete examples of good polynomials were not known in
many cases. Here we show that good polynomials can be found by computer search. The search
algorithm introduced in this paper is based on minimizing a quantity closely related to the star
discrepancy.

It has been pointed out that many integration problems can be modeled by weighted function
spaces and it has been shown that in this case point sets with low weighted discrepancy are required.
Hence it is particularly useful to be able to adjust a point set to some given weights. We are able to
extend our results from the unweighted case to show that this can be done using our construction
algorithms. This way we can find point sets with low weighted star discrepancy, making such point
sets especially useful for many applications.

Key words. digital net, weighted star discrepancy, component-by-component algorithm
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1. Introduction. In many applications one wants to approximate an s-dimensional
integral over the unit cube,

Is(F ) :=

∫
[0,1)s

F (x)dx,

by an N point quasi-Monte Carlo (QMC) rule,

QN,s(F ) :=
1

N

N−1∑
n=0

F (xn).

For QMC rules the points x0, . . . ,xN−1 are chosen deterministically, with the aim
to obtain a small integration error. It has been shown that uniformly distributed
point sets yield a small integration error for functions from certain function classes.
Several quality measures of point sets in the unit cube are known. One popular way
of measuring the distribution quality is based on the discrepancy function Δ. For a
point set x0, . . . ,xN−1 in the s-dimensional unit cube [0, 1)s the discrepancy function
Δ is defined as

Δ(α1, . . . , αs) :=
AN (

∏s
i=1[0, αi))

N
− α1 . . . αs,
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where 0 ≤ α1, . . . , αs ≤ 1. Here AN (E) denotes the number of indices n, 0 ≤ n ≤
N − 1, such that xn is contained in the set E. By taking a norm of the discrepancy
function we obtain a measure for the irregularity of distribution of the point set. We
have the following definition (see, for example, Drmota and Tichy [4] or Kuipers and
Niederreiter [10]).

Definition 1.1. For a point set x0, . . . ,xN−1 in [0, 1)s the star discrepancy D∗
N

is defined as the supremums norm of the discrepancy function, i.e.,

D∗
N = D∗

N (x0, . . . ,xN−1) := sup
0≤αi≤1
1≤i≤s

|Δ(α1, . . . , αs)| .

Informally we will say a point set has “low” or “small” star discrepancy if the
star discrepancy is of order O((logN)s/N); see [4, Chapter 3].

The star discrepancy of a finite point set is intimately related to the worst-case
error of multivariate integration of functions with bounded variation in the sense of
Hardy and Krause. Here the basic error estimate for the integration error is given by
the Koksma–Hlawka inequality (see, for example, [10, Theorem 5.5] or [13, Theorem
2.11]), which states that

|Is(F ) −QN,s(F )| ≤ V (F )D∗
N ,

where V (F ) is the variation of F in the sense of Hardy and Krause and D∗
N is the

star discrepancy of the point set x0, . . . ,xN−1.
Having observed that different coordinates may have different influence on the

quality of the approximation, Sloan and Woźniakowski [20] introduced a generalized
(“weighted”) version of the Koksma–Hlawka inequality. The star discrepancy for this
case is then called weighted star discrepancy. We will give the definition subsequently,
but first we introduce some notation used throughout the paper. Let γ = (γi)i≥1

denote a sequence of positive real numbers, the “weights,” and let E = {1, 2, . . . , s}
denote the set of coordinate indices. For u ⊆ E let γu =

∏
i∈u γi, γ∅ = 1, |u| be the

cardinality of u, and for a vector z ∈ [0, 1)s let zu denote the vector [0, 1)|u| containing
only the components of z whose indices are in u. Moreover we write (zu,1) for the
vector that we obtain by replacing all the components of z not in u by 1. We have
the following definition (see also [20]).

Definition 1.2. For a point set x0, . . . ,xN−1 in [0, 1)s and a sequence γ =
(γi)i≥1 of weights the weighted star discrepancy D∗

N,γ is given by

D∗
N,γ = D∗

N,γ(x0, . . . ,xN−1) := sup
z∈[0,1)s

max
u⊆E
u�=∅

γu|Δ(zu,1)|,

where γu =
∏

i∈u γi.
Note that for the choice γ = 1, that is, γi = 1 for all i ≥ 1, we have D∗

N,1 = D∗
N

from Definition 1.1. Henceforth we will refer to the unweighted star discrepancy as
classical star discrepancy or simply star discrepancy.

Sloan and Woźniakowski [20] continued by showing that for all functions in the

Sobolev space W
(1,... ,1)
2 ([0, 1)s) we have

|Is(F ) −QN,s(F )| ≤ D∗
N,γ‖F‖s,γ ,

where the norm is defined as

‖F‖s,γ :=
∑
u⊆E

γ−1
u

∫
[0,1)|u|

∣∣∣∣ ∂
|u|

∂xu
F (xu,1)

∣∣∣∣ dxu.
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(Sloan and Woźniakowski [20] concentrated mainly on the Hilbertian case. See also
[11] for a more specialized treatment of the Lq case for q �= 2.) Therefore point sets
with low weighted star discrepancy guarantee a small worst-case error for numerical
integration and hence the need for point sets with low weighted star discrepancy.

Note that the best upper bounds on the classical star discrepancy are of the form
Cs(logN)s/N for some constant Cs independent of N . Because of the factor (logN)s

such bounds are useful only if N is exponentially large in the dimension s. Using
a weighted star discrepancy that focuses mainly on lower dimensional projections,
the effect of (logN)s can be much reduced, yielding useful upper bounds on the star
discrepancy even for large dimensions s.

Currently the most effective constructions of point sets with low star discrepancy
are based on the concept of (t,m, s)-nets in a base b. For a definition of such nets
see [13, Definition 4.1]. In [14] (see also [13, Chapter 4.4]) Niederreiter introduced
a special construction of such nets. This construction is based on rational functions
over finite fields.

Henceforth let p be a prime. Further let Fp((x
−1)) be the field of formal Laurent

series over the finite field Fp consisting of p elements. Thus elements of Fp((x
−1)) are

of the form

L =

∞∑
l=w

tlx
−l,

where w is an arbitrary integer and all tl ∈ Fp. Note that Fp((x
−1)) contains the

field of rational functions over Fp as a subfield. Further let Fp[x] be the set of all
polynomials over Fp and let m ≥ 1 be an integer. For a given dimension s ≥ 2, choose
f ∈ Fp[x], with deg(f) = m, and let g1, . . . , gs ∈ Fp[x]. Let ϕm be the map from
Fp((x

−1)) to the interval [0, 1) defined by

ϕm

( ∞∑
l=w

tlx
−l

)
=

m∑
l=max(1,w)

tlp
−l.

For 0 ≤ n < pm let n = n0 + n1p + · · · + nm−1p
m−1 be the p-adic expansion of n.

With each such n we associate the polynomial

n(x) =

m−1∑
r=0

nrx
r ∈ Fp[x].

Then P (g, f) is the point set consisting of the pm points

xn =

(
ϕm

(
n(x)g1(x)

f(x)

)
, . . . , ϕm

(
n(x)gs(x)

f(x)

))
∈ [0, 1)s

for 0 ≤ n ≤ pm−1. Due to the construction principle, a QMC rule using the point set
P (g, f) is often called a polynomial lattice rule. The vector g is called the generating
vector of P (g, f) or the generating vector of the polynomial lattice rule, depending
on the context.

It has been shown (see [13, Theorem 4.43]) that for a given polynomial f there al-
ways exists a vector of polynomials g such that P (g, f) has low star discrepancy. This
result was obtained by averaging over all possible choices of g. Hence good examples
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of generating vectors g were not known. Here we show that such vectors of polynomi-
als g can be found using computers. First we consider the classical unweighted case.
This is done in the following section, where we introduce a component-by-component
and a Korobov construction algorithm for polynomial lattice rules based on the quan-
tity R(g, f), which is intimately related to the star discrepancy. We show that the
resulting point set P (g, f) has low star discrepancy. In section 3 we extend those
results to the weighted case where we obtain similar results. (A similar approach
was taken by Joe [8] for ordinary lattice rules.) Note that our algorithms allow us to
adjust the digital net to given weights, thereby paying more attention to important
projections. Construction algorithms which allow such an adjustment were first in-
troduced for lattice rules; see [8]. Further note that our approach is different from the
classical approach for (t,m, s)-nets or (t, s)-sequences where one aims at minimizing
the quality parameter t. It has been shown that certain (t, s)-sequences have lower
dimensional projections of poor quality (see [12]), hence the need for more flexible
construction algorithms. Furthermore we note that in the weighted case we are able
to obtain useful upper bounds on the star discrepancy even for large dimensions s
and a relatively small number of points N (see Table 5.2 and Table 5.3). For the un-
weighted case useful upper bounds for such cases are known only from [5], but those
results are only existence results, leaving no clue on how to construct such point sets
in practice.

Our construction algorithms allow us to extend polynomial lattice rules in the
dimension. In [15] Niederreiter showed the existence of polynomial lattice rules ex-
tensible in both the number of points N and the dimension. How to extend polynomial
lattice rules in N remains an interesting open question.

Section 4 deals with the efficient calculation of R(g, f) and its weighted counter-

part R̃γ(g, f). Concretely, we show that for a given g and f the quantities R(g, f)

and R̃γ(g, f) can be computed in O(pms) operations. In section 5 we present some
numerical results and we explain how the construction cost can be further reduced by
computing R(g, f) and R̃γ(g, f) recursively with an additional storage cost of O(pm).

We introduce some notation. For an arbitrary k = (k1, . . . , ks) ∈ Fp[x]s, we
define the “inner product”

k · g =

s∑
i=1

kigi

and we write g ≡ 0 (modf) if f divides g in Fp[x]. Further, as above, we often
associate a nonnegative integer k = κ0 +κ1p+ · · ·+κrp

r with the polynomial k(x) =
κ0 + κ1x + · · · + κrx

r ∈ Fp[x] and vice versa.
Further let Gp,m := {h ∈ Fp[x] : deg(h) < m} and let |Gp,m| denote the number

of elements of Gp,m.

2. The classical star discrepancy. In this section we deal with the classical
star discrepancy of the digital net P (g, f), where the base p is restricted to prime
numbers. We show that good polynomials g1, . . . , gs (by good polynomials we mean
polynomials such that P (g, f) has low star discrepancy) may be obtained by using
a component-by-component or Korobov construction algorithm. Our algorithm de-
pends on the quantity R(g, f), which we will introduce below.

For h ∈ Gp,m we define

rp(h) :=

{
1 if h = 0,

1

pg+1 sin2(π
p κg)

if h = κ0 + κ1x + · · · + κgx
g, κg �= 0.
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For f ∈ Fp[x], with deg(f) = m, and g = (g1, . . . , gs) ∈ Gs
p,m we define the quantity

R(g, f) :=
∑

h∈Gs
p,m\{0}

h·g≡0 (mod f)

s∏
i=1

rp(hi),

where for h ∈ Gs
p,m we write h = (h1, . . . , hs). With this definitions we obtain the

following proposition.
Proposition 2.1. For the star discrepancy D∗

N (g, f) of the point set P (g, f) we
have

D∗
N (g, f) ≤ 1 −

(
1 − 1

N

)s

+ R(g, f) ≤ s

N
+ R(g, f),(2.1)

where N = pm.
Proof. From [6, Theorem 1(ii)] together with equality (2.2) in section 2.3 it follows

that

D∗
N (g, f) ≤ 1 −

(
1 − 1

N

)s

+
∑

h∈Gs
p,m\{0}

h·g≡0 (mod f)

s∏
i=1

ρ∗Walsh(hi),

where

ρ∗Walsh(h) :=

{
1 if h = 0,

1

pg+1 sin(π
p κg)

if h = κ0 + κ1x + · · · + κgx
g, κg �= 0.

Now the result follows by observing that sin−1(x) ≤ sin−2(x) for 0 < x < π.
Observe that an analogue’s result exists for lattice rules, which was used by Joe

in [8] to obtain lattice rules with small (weighted) star discrepancy. Indeed, we use
an analogues approach to [8].

We remark that a result similar to Proposition 2.1 holds for the so-called extreme
discrepancy, which is an unanchored version of the star discrepancy; see [6]. This
can be obtained by using [6, Theorem 1(i)] together with equality (2.2) in section 2.3
and hence the subsequent results can be modified to obtain construction algorithms
yielding point sets with small extreme discrepancy.

As it is much easier to analyze R(g, f) than D∗
N (g, f), we will subsequently mainly

deal with R(g, f) rather than the star discrepancy directly. The results on the star
discrepancy are then obtained via inequality (2.1).

Note that our definition of rp(h) yields a slightly weaker bound on the star dis-
crepancy than by using the original definition of ρ∗Walsh from [6]. But this change
makes it possible to compute R(g, f) at a cost of O(pms) as shown in section 4. We
will exploit this fact in our construction algorithms.

The following lemma will be useful for our subsequent investigations.
Lemma 2.2. For p ∈ N, p ≥ 2, we have

∑
h∈Gs

p,m

s∏
i=1

rp(hi) =

(
1 + m

p2 − 1

3p

)s

.

Proof. For p = 2 the result is proved in [13, Lemma 3.13]. We have

∑
h∈Gs

p,m

s∏
i=1

rp(hi) =

s∏
i=1

∑
hi∈Gp,m

rp(hi) =

⎛
⎝ ∑

h∈Gp,m

rp(h)

⎞
⎠

s

.
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Now for h ∈ Gp,m, with deg(h) = a − 1, we write h = h0 + h1x + · · · + ha−1x
a−1,

where ha−1 �= 0. Then

∑
h∈Gp,m

rp(h) = 1 +

m∑
a=1

∑
h∈Gp,m

deg(h)=a−1

rp(h)

= 1 +

m∑
a=1

1

pa

∑
h∈Gp,m

deg(h)=a−1

1

sin2
(

ha−1π
p

)

= 1 +

m∑
a=1

1

pa

p−1∑
ha−1=1

pa−1 1

sin2
(

ha−1π
p

)

= 1 +
1

p

m∑
a=1

p−1∑
ha−1=1

1

sin2
(

ha−1π
p

) .

In [3, Appendix C] it was shown that
∑p−1

h=1
1

sin2(hπ
p )

= p2−1
3 . The result follows.

As a benchmark we calculate the average of R(g, f) over all vectors g ∈ (Gp,m \
{0})s. A similar result was proved by Niederreiter [13, Remark 4.44]. We have the
following theorem.

Theorem 2.3. Let f ∈ Fp[x] be irreducible, with deg(f) = m. We have

1

|Gp,m \ {0}|s
∑

g∈(Gp,m\{0})s
R(g, f) =

1

pm − 1

((
1 + m

p2 − 1

3p

)s

− 1 − sm
p2 − 1

3p

)
.

Proof. First observe that |Gp,m \ {0}| = pm − 1. We have

1

|Gp,m \ {0}|s
∑

g∈(Gp,m\{0})s
R(g, f) =

1

(pm − 1)s

∑
g∈(Gp,m\{0})s

∑
h∈Gs

p,m\{0}
h·g≡0 (mod f)

s∏
i=1

rp(hi)

=
1

(pm − 1)s

∑
h∈Gs

p,m\{0}

s∏
i=1

rp(hi)
∑

g∈(Gp,m\{0})s

h·g≡0 (mod f)

1.

For a fixed h ∈ Gs
p,m \ {0} we have

∑
g∈(Gp,m\{0})s

h·g≡0 (mod f)

1 = |{g ∈ (Gp,m \ {0})s : h · g ≡ 0 (mod f)}|.

If h = (0, . . . , 0, hi, 0, . . . , 0), with hi �= 0, then there is no polynomial g ∈ (Gp,m \
{0})s such that h · g = higi ≡ 0 (mod f), as gi �= 0 and f is irreducible. Otherwise
the number of polynomials g ∈ (Gp,m \ {0})s is (pm − 1)s−1. Therefore we have

1

|Gp,m \ {0}|s
∑

g∈(Gp,m\{0})s
R(g, f)

=
1

pm − 1

∑
h∈Gs

p,m\{0}

s∏
i=1

rp(hi) −
1

pm − 1

s∑
i=1

∑
hi∈Gp,m\{0}

rp(hi)

s∏
j=1
j �=i

rp(0).



82 J. DICK, G. LEOBACHER, AND F. PILLICHSHAMMER

The result now follows from Lemma 2.2.
Remark 2.4. Niederreiter [13, Theorem 4.43] also proved a similar result for

arbitrary (not necessarily irreducible) polynomials f ∈ Fp[x].

2.1. A component-by-component construction of P (g, f) based on R(g, f).
So far we know from Theorem 2.3 and Proposition 2.1 that there exist polynomials
which yield point sets with low star discrepancy. In the following we show how good
polynomials can be found by computer search.

Algorithm 2.5. Given a prime p, m ≥ 1 and a polynomial f ∈ Fp[x], with
deg(f) = m,

1. set g∗1 = 1;
2. for d = 2, 3, . . . , s find g∗d ∈ Gp,m\{0} by minimizing R((g∗1 , . . . , g

∗
d−1, gd), f).

Remark 2.6. In section 4 it is shown how the quantity R(g, f) can be calculated in
O(pms) operations. Hence the cost for Algorithm 2.5 is of O(p2ms2) operations. This
order is the same as for other component-by-component construction algorithms; see
[2, 8, 19]. Further, in section 5 we explain how the construction cost can be reduced
to O(p2ms) operations with an additional storage cost of O(pm) (see also [19]).

Theorem 2.7. Let p be prime, m ≥ 1, and f ∈ Fp[x] be irreducible, with
deg(f) = m. Suppose g∗ = (g∗1 , . . . , g

∗
s ) ∈ (Gp,m \ {0})s is constructed according to

Algorithm 2.5. Then for all d = 1, 2, . . . , s we have

R((g∗1 , . . . , g
∗
d), f) ≤ 1

pm − 1

(
1 + m

p2 − 1

3p

)d

.

Proof. Since f is irreducible it follows that R(1, f) = 0 and the result follows
for d = 1. Suppose now that for some 2 ≤ d < s we have already constructed
g∗ ∈ (Gp,m \ {0})d and

R(g∗, f) ≤ 1

pm − 1

(
1 + m

p2 − 1

3p

)d

.

Now we consider R((g∗, gd+1), f). We have

R((g∗, gd+1), f) =
∑

(h,hd+1)∈G
d+1
p,m\{0}

h·g∗+hd+1gd+1≡0 (mod f)

d+1∏
i=1

rp(hi)

=
∑

h∈Gd
p,m\{0}

h·g∗≡0 (mod f)

d∏
i=1

rp(hi) + θ(gd+1)

= R(g∗, f) + θ(gd+1),

where

θ(gd+1) =
∑

hd+1∈Gp,m\{0}

⎛
⎜⎜⎝rp(hd+1)

∑
h∈Gd

p,m
h·g∗≡−hd+1gd+1 (mod f)

d∏
i=1

rp(hi)

⎞
⎟⎟⎠ .

Since g∗d+1 is a minimizer of R((g∗, gd+1), f) it follows that g∗d+1 is also a minimizer
of θ(gd+1) and hence we obtain

θ(g∗d+1) ≤
1

pm − 1

∑
gd+1∈Gp,m\{0}

θ(gd+1).
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Now we have

θ(g∗d+1)

≤ 1

pm − 1

∑
gd+1∈Gp,m\{0}

∑
hd+1∈Gp,m\{0}

⎛
⎜⎜⎝rp(hd+1)

∑
h∈Gd

p,m
h·g∗≡−hd+1gd+1 (mod f)

d∏
i=1

rp(hi)

⎞
⎟⎟⎠

=
1

pm − 1

∑
hd+1∈Gp,m\{0}

rp(hd+1)
∑

h∈Gd
p,m

d∏
i=1

rp(hi)
∑

gd+1∈Gp,m\{0}
gd+1hd+1≡−h·g∗ (mod f)

1.

Since gcd(hd+1, f) = 1 it follows that the congruence

gd+1hd+1 ≡ −h · g∗ (mod f)

has exactly one solution gd+1 ∈ Gp,m \ {0} if −h · g∗ �≡ 0 (mod f) and no solution if
−h · g∗ ≡ 0 (mod f). Therefore we obtain

θ(g∗d+1) ≤
1

pm − 1

∑
hd+1∈Gp,m\{0}

rp(hd+1)
∑

h∈Gd
p,m

d∏
i=1

rp(hi)

=
1

pm − 1

(
1 + m

p2 − 1

3p

)d ∑
hd+1∈Gp,m\{0}

rp(hd+1).

Now we obtain

R((g∗, g∗d+1), f) ≤ R(g∗, f) +
1

pm − 1

(
1 + m

p2 − 1

3p

)d ∑
hd+1∈Gp,m\{0}

rp(hd+1)

≤ 1

pm − 1

(
1 + m

p2 − 1

3p

)d ∑
hd+1∈Gp,m

rp(hd+1)

=
1

pm − 1

(
1 + m

p2 − 1

3p

)d+1

.

The result follows by induction.
From inequality (2.1) and Theorem 2.7 we obtain the following corollary.
Corollary 2.8. Let p be prime, m ≥ 1, and f ∈ Fp[x] be irreducible, with

deg(f) = m. Suppose g∗ = (g∗1 , . . . , g
∗
s ) ∈ Gs

p,m is constructed according to Algo-
rithm 2.5. Then for all d = 1, . . . , s we have

D∗
pm((g∗1 , . . . , g

∗
d), f) ≤ d

pm
+

1

pm − 1

(
1 + m

p2 − 1

3p

)d

.

2.2. A Korobov construction of P (g, f) based on R(g, f). In the method
of good lattice points one often restricts the attention to lattice points whose coordi-
nates are successive powers of a single integer. Such a choice was first proposed by Ko-
robov (see [9]) and therefore such lattice points are often called Korobov lattice points.
Here we consider now s-tuples g = (g1, . . . , gs) of polynomials that are obtained
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by taking a polynomial g ∈ Gp,m and putting gi ≡ gi−1 (mod f) with deg gi < m
for 1 ≤ i ≤ s. For such s-tuples we use the notation vs(g) ≡ (1, g, g2, . . . , gs−1) (mod
f).

Algorithm 2.9. Given a prime p, a dimension s ≥ 2, m ≥ 1, and a polynomial
f ∈ Fp[x], with deg(f) = m, find g∗ ∈ Gp,m \ {0} by minimizing R(vs(g), f).

Remark 2.10. In section 4 it is shown how the quantity R(g, f) can be calculated
in O(pms) operations. Hence the cost for Algorithm 2.9 is of O(p2ms) operations.
This order is the same as for other Korobov construction algorithms; see [22]. Note
that compared to Algorithm 2.5 the search cost is reduced, or, if one uses the method
explained in section 5, there is no additional storage cost.

Theorem 2.11. Let p be prime, s ≥ 2, m ≥ 1, and f ∈ Fp[x] be irreducible,
with deg(f) = m. Suppose g∗ ∈ Gp,m \ {0} is constructed according to Algorithm 2.9.
Then we have

R(vs(g
∗), f) ≤ s− 1

pm − 1

(
1 + m

p2 − 1

3p

)s

.

Proof. Define

Ms(f) :=
1

pm − 1

∑
g∈Gp,m\{0}

R(vs(g), f).

It follows from Algorithm 2.9 that R(vs(g
∗), f) ≤ Ms(f). Hence it suffices to show

that Ms(f) satisfies the bound. We have

Ms(f) =
1

pm − 1

∑
g∈Gp,m\{0}

∑
h∈Gs

p,m\{0}
vs(g)·h≡0 (mod f)

s∏
i=1

rp(hi)

=
1

pm − 1

∑
h∈Gs

p,m\{0}

s∏
i=1

rp(hi)
∑

g∈Gp,m\{0}
vs(g)·h≡0 (mod f)

1.

Now we recall that for an irreducible polynomial f ∈ Fp[x], with deg(f) = m ≥ 1,
and a nonzero (h1, . . . , hs) ∈ Fp[x]s with deg(hi) < m, i = 1, . . . , s, the congruence

h1 + h2g + · · · + hsg
s−1 ≡ 0 (mod f)

has at most s− 1 solutions g ∈ Gp,m \ {0}. Thus we have

Ms(f) ≤ s− 1

pm − 1

∑
h∈Gs

p,m

s∏
i=1

rp(hi).

The result now follows from Lemma 2.2.
From inequality (2.1) and Theorem 2.11 we obtain the following corollary.
Corollary 2.12. Let p be prime, s ≥ 2, m ≥ 1, and f ∈ Fp[x] be irreducible,

with deg(f) = m. Suppose g∗ ∈ Gp,m \ {0} is constructed according to Algorithm 2.9.
Then we have

D∗
pm(vs(g

∗), f) ≤ s

pm
+

s− 1

pm − 1

(
1 + m

p2 − 1

3p

)s

.
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2.3. Walsh functions and a formula for R(g, f). Before we close this section
we show that the quantity R(g, f) can be represented in terms of Walsh functions. For
an integer b ≥ 2 let ωb = e2πi/b. For a nonnegative integer h with base b representation
h = h0 + h1b + · · · + hrb

r the function bwalh : R −→ C, periodic with period one, is
defined by

bwalh(x) = ω
h0x1+···+hrxr+1

b ,

where x ∈ [0, 1) has base b representation x = x1/b+x2/b
2 + · · · (unique in the sense

that infinitely many of the xi must be different from b− 1).
It is clear from the definition that Walsh functions are piecewise constant. Further

it can be shown that for any b ≥ 2 the system {bwalh : h = 0, 1, . . . } is a complete
orthonormal system in L2([0, 1)). More information on Walsh functions can be found,
for example, in [1, 3, 16, 17, 21].

Subsequently we will make use of the following equality, which follows from [13,
Lemma 2.20] and [3, Lemma 2]. For the point set P (g, f) = {x0, . . . ,xpm−1} with

xn = (x
(1)
n , . . . , x

(s)
n ) we have

1

pm

pm−1∑
n=0

s∏
i=1

pwalhi(x
(i)
n ) =

{
1 if g · h ≡ 0 (mod f),
0 otherwise.

(2.2)

As we always consider Walsh functions in base p we will often write walh instead of

pwalh.

Lemma 2.13. Let x0, . . . ,xpm−1 be the point set P (g, f), xn = (x
(1)
n , . . . , x

(s)
n ),

0 ≤ n ≤ pm − 1. Then we have

R(g, f) = −1 +
1

pm

pm−1∑
n=0

s∏
i=1

(
1 +

pm−1∑
h=1

rp(h)walh(x(i)
n )

)
.

Proof. Note that here we use the identification of a polynomial h0 + h1x + · · · +
hm−1x

m−1 ∈ Gp,m with the integer with base p representation h0 + h1p + · · · +
hm−1p

m−1. We have

−1 +
1

pm

pm−1∑
n=0

s∏
i=1

(
1 +

pm−1∑
h=1

rp(h)walh(x(i)
n )

)

= −1 +
1

pm

pm−1∑
n=0

s∏
i=1

pm−1∑
h=0

rp(h)walh(x(i)
n )

= −1 +
1

pm

pm−1∑
n=0

pm−1∑
h1,... ,hs=0

s∏
i=1

rp(hi)walhi(x
(i)
n )

= −1 +

pm−1∑
h1,... ,hs=0

s∏
i=1

rp(hi)
1

pm

pm−1∑
n=0

s∏
i=1

walhi(x
(i)
n ).

By using (2.2) it follows that the last sum equals

−1 +
∑

h∈Gs
p,m

g·h≡0 (mod f)

s∏
i=1

rp(hi) =
∑

h∈Gs
p,m\{0}

g·h≡0 (mod f)

s∏
i=1

rp(hi) = R(g, f)

and the result follows.
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3. The weighted star discrepancy. In this section we extend the results from
the previous section to the weighted case. First we find an analogue to inequality
(2.1) for the weighted star discrepancy.

For the weighted star discrepancy D∗
N,γ of a point set x0, . . . ,xN−1 in [0, 1)s we

have

D∗
N,γ = sup

z∈[0,1)s
max
u⊆E
u�=∅

γu|Δ(zu,1)| ≤ max
u⊆E
u�=∅

γu sup
zu∈[0,1)|u|

|Δ(zu)| ≤
∑
u⊆E
u�=∅

γuD
∗
N (u),

where D∗
N (u) denotes the star discrepancy of the projection of the point set x0, . . . ,xN−1

to the coordinates given by u. If we consider the point set P (g, f), then (2.1) yields

D∗
N (u) ≤ 1 −

(
1 − 1

N

)|u|
+ R(gu, f)

for u �= ∅, where gu = (gj)j∈u and R(gu, f) is given by

R(gu, f) =
∑

h∈G
|u|
p,m\{0}

h·gu≡0 (mod f)

|u|∏
i=1

rp(hi).

Hence for the weighted star discrepancy D∗
N,γ of the point set P (g, f) we get

D∗
N,γ(g, f) ≤

∑
u⊆E
u�=∅

γu

(
1 −

(
1 − 1

N

)|u|
)

+ R̃γ(g, f),(3.1)

where

R̃γ(g, f) :=
∑
u⊆E
u�=∅

γuR(gu, f).

Remark 3.1. It was proved by Joe [8] that if the sequence of weights (γi)i≥1

satisfies
∑∞

i=1 γi < ∞, then we have

∑
u⊆E
u�=∅

γu

(
1 −

(
1 − 1

N

)|u|
)

≤ max(1,Γ)e
∑∞

i=1 γi

N
for all s ≥ 1,

where Γ :=
∑∞

i=1
γi

1+γi
.

In the following proposition we obtain a formula for R̃γ(g, f).
Proposition 3.2. We have

R̃γ(g, f) =
∑

h∈Gs
p,m\{0}

g·h≡0 (mod f)

s∏
i=1

r̃p(hi, γi),

where

r̃p(h, γ) :=

{
1 + γ if h = 0,
γrp(h) if h �= 0.

(3.2)
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Proof. Let x0, . . . ,xpm−1 be the point set P (g, f), xn = (x
(1)
n , . . . , x

(s)
n ), 0 ≤ n ≤

pm − 1. From Lemma 2.13 it follows that for u �= ∅ we have

R(gu, f) = −1 +
1

pm

pm−1∑
n=0

∏
i∈u

(
1 +

pm−1∑
h=1

rp(h)walh(x(i)
n )

)
.

Now we have

∑
u⊆E
u�=∅

γuR(gu, f)

= −
∑
u⊆E
u�=∅

γu +
∑
u⊆E
u�=∅

1

pm

pm−1∑
n=0

∏
i∈u

γi

(
1 +

pm−1∑
h=1

rp(h)walh(x(i)
n )

)

= −
(
−1 +

s∏
i=1

(1 + γi)

)
+

1

pm

pm−1∑
n=0

(
−1 +

s∏
i=1

(
1 + γi + γi

pm−1∑
h=1

rp(h)walh(x(i)
n )

))

= −
s∏

i=1

(1 + γi) +
1

pm

pm−1∑
n=0

s∏
i=1

(
pm−1∑
h=0

r̃p(h, γi)walh(x(i)
n )

)

= −
s∏

i=1

(1 + γi) +
∑

h∈Gs
p,m

s∏
i=1

r̃p(hi, γi)
1

pm

pm−1∑
n=0

s∏
i=1

walhi
(x(i)

n )

= −
s∏

i=1

(1 + γi) +
∑

h∈Gs
p,m

g·h≡0 (mod f)

s∏
i=1

r̃p(hi, γi)

=
∑

h∈Gs
p,m\{0}

g·h≡0 (mod f)

s∏
i=1

r̃p(hi, γi),

where we used (2.2).

Proposition 3.2 shows that R and R̃γ differ only by the definitions of rp and
r̃p. Hence the main part of the proofs of the theorems in section 2 apply also for
the weighted case. Only Lemma 2.2 needs to be established using r̃p. This is done
subsequently.

Lemma 3.3. Let r̃p(h, γ) be given by (3.2). Then we have

∑
h∈Gs

p,m

s∏
i=1

r̃p(hi, γi) =

s∏
i=1

(
1 + γi

(
1 + m

p2 − 1

3p

))
.

Proof. We have

∑
h∈Gs

p,m

s∏
i=1

r̃p(hi, γi) =

s∏
i=1

∑
h∈Gp,m

r̃p(h, γi) =

s∏
i=1

⎛
⎝r̃p(0, γi) +

∑
h∈Gp,m\{0}

r̃p(h, γi)

⎞
⎠

=

s∏
i=1

⎛
⎝1 + γi +

∑
h∈Gp,m\{0}

γirp(h)

⎞
⎠ =

s∏
i=1

⎛
⎝1 + γi

∑
h∈Gp,m

rp(h)

⎞
⎠
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and hence the result follows from Lemma 2.2.
Using Proposition 3.2 and Lemma 3.3 the proofs of the following results can be

obtained from section 2.
As for the classical star discrepancy (Theorem 2.3), we can now, for a given

irreducible polynomial f ∈ Fp[x] with deg(f) = m, compute the average of R̃γ(g, f)
over all vectors g ∈ (Gp,m \ {0})s.

Theorem 3.4. Let f ∈ Fp[x] be irreducible with deg(f) = m. We have

1

|Gp,m \ {0}|s
∑

g∈(Gp,m\{0})s
R̃γ(g, f) =

1

pm − 1

∑
u⊆E
|u|≥2

∏
i∈u

(
γi

(
m
p2 − 1

3p

))∏
i 	∈u

(1 + γi) .

Let cp > 0 be some constant depending only on p and let
∑∞

i=1 γi < ∞. Then it
was shown in [7] that for every δ > 0 there is some constant C ′

γ,δ > 0 such that

1

pm − 1

∑
u⊆E
|u|≥2

∏
i∈u

(γimcp)
∏
i 	∈u

(1 + γi) ≤
1

pm − 1

s∏
i=1

(1 + γi(1 + mcp)) ≤
C ′

γ,δ

pm(1−δ)
(3.3)

for all m > 0.
Hence it follows from (3.1), Remark 3.1, and (3.3) that if

∑∞
i=1 γi < ∞, then for

every irreducible polynomial f ∈ Fp[x] there exists a constant Cγ,δ, independent of
s and m, and a sequence of polynomials (gi)i≥1, with gi ∈ Gp,m \ {0}, such that the
star discrepancy of P ((g1, . . . , gs), f) satisfies

D∗
pm,γ((g1, . . . , gs), f) ≤ Cγ,δ

pm(1−δ)
for all m, s ≥ 1, and δ > 0.(3.4)

We emphasize that in this case the weighted star discrepancy is bounded indepen-
dently of the dimension. (See [20] for a thorough discussion on (strong) tractability.)

In the following subsection we introduce an algorithm which shows how the poly-
nomials gi ∈ Gp,m \ {0}, which satisfy a bound of the form (3.4), can be found by
computer search.

3.1. A component-by-component construction of P (g, f) based on R̃(g, f).
We are now ready to formulate the weighted analogue to Algorithm 2.5 and Theo-
rem 2.7.

Algorithm 3.5. Given a prime p, m ≥ 1, a polynomial f ∈ Fp[x], with deg(f) =
m, and a sequence of weights γ = (γi)i≥1,

1. set g∗1 = 1;

2. for d = 2, 3, . . . , s find g∗d ∈ Gp,m\{0} by minimizing R̃γ((g∗1 , . . . , g
∗
d−1, gd), f).

Remark 3.6. In section 4 it is shown how the quantity R̃γ(g, f) can be calculated
in O(pms) operations. Hence the cost for Algorithm 3.5 is of O(p2ms2) operations.
This order is the same as for other component-by-component construction algorithms;
see Algorithm 2.5 and [2, 8, 19]. Further, in section 5 we explain how the construction
cost can be reduced to O(p2ms) operations with an additional storage cost of O(pm)
(see also [19]).

Theorem 3.7. Let p be prime, m ≥ 1, and f ∈ Fp[x] be irreducible, with deg(f) =
m. Suppose g∗ = (g∗1 , . . . , g

∗
s ) ∈ Gs

p,m is constructed according to Algorithm 3.5. Then
for all d = 1, 2, . . . , s we have

R̃γ((g∗1 , . . . , g
∗
d), f) ≤ 1

pm − 1

s∏
i=1

(
1 + γi

(
1 + m

p2 − 1

3p

))
.
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From inequality (3.1), Remark 3.1, and Theorem 3.7 we obtain the following
corollary.

Corollary 3.8. Let p be prime, m ≥ 1, f ∈ Fp[x] be irreducible, with deg(f) =
m, and γu =

∏
i∈u γi. Suppose g∗ ∈ Gs

p,m is constructed according to Algorithm 3.5.
Then we have

D∗
pm,γ(g∗, f) ≤

∑
u⊆E
u�=∅

γu

(
1 −

(
1 − 1

pm

)|u|
)

+
1

pm − 1

s∏
i=1

(
1 + γi

(
1 + m

p2 − 1

3p

))
.

Hence it follows from Remark 3.1 and (3.3) that if
∑∞

i=1 γi < ∞, then there is a
constant C̄γ,δ, independent of s and m, such that

D∗
pm,γ(g∗, f) ≤ C̄γ,δ

pm(1−δ)
for all δ > 0.

Again we emphasize that this bound is independent of the dimension.

3.2. A Korobov construction of P (g, f) based on R̃γ(g, f). As in subsec-
tion 2.2, we also have a Korobov construction algorithm for the weighted case.

Algorithm 3.9. Given a prime p, a dimension s ≥ 2, m ≥ 1, and an irreducible
polynomial f ∈ Fp[x], with deg(f) = m, and a sequence of weights γ = (γi)i≥1, find

g∗ ∈ Gp,m \ {0} by minimizing R̃γ(vs(g), f).
We have the following result.
Theorem 3.10. Let p be a prime, s ≥ 2, m ≥ 1, and f ∈ Fp[x] be irreducible,

with deg(f) = m. A minimizer g∗ obtained from Algorithm 3.9 satisfies

R̃γ(vs(g
∗), f) ≤ s− 1

pm − 1

s∏
i=1

(
1 + γi

(
1 + m

p2 − 1

3p

))
.

We also obtain the following corollary.
Corollary 3.11. Let p be prime, s ≥ 2, m ≥ 1, f ∈ Fp[x] be irreducible,

with deg(f) = m, and γu =
∏

i∈u γi. Suppose g∗ ∈ Gp,m is constructed according to
Algorithm 3.9. Then we have

D∗
pm,γ(vs(g

∗), f) ≤
∑
u⊆E
u�=∅

γu

(
1 −

(
1 − 1

pm

)|u|
)

+
s− 1

pm − 1

s∏
i=1

(
1 + γi

(
1 + m

p2 − 1

3p

))
.

As in other Korobov-type construction algorithms (see [2, 22]), we obtain an
upper bound which depends polynomially on the dimension. Whether an upper bound
independent of the dimension can be obtained for Korobov type constructions is an
open problem. (Note that this question is open not only for the star discrepancy of
polynomial lattices but also for the L2 discrepancy (see [2]) and for the L2 discrepancy
and the star discrepancy of lattices (see [8, 22]).)

4. Calculation of R(g, f) and R̃γ(g, f). In this section we show how the

quantities R(g, f) and R̃(g, f) can be computed efficiently. We define

φp,m(x) :=

pm−1∑
h=0

rp(h) pwalh(x).
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Let x = (x1, . . . , xs), f ∈ Fp[x], with deg(f) = m, and g ∈ Gs
p,m. It follows from

Lemma 2.13 that

R(g, f) = −1 +
1

|P (g, f)|
∑

x∈P (g,f)

s∏
i=1

φp,m(xi).(4.1)

In the following we show that the function φp,m can be simplified. Let h =
h0 + h1p + · · · + hdp

d with hd �= 0. For 0 ≤ d < m and 1 ≤ hd < p let

Dd,hd,p,m(x) :=

hdp
d+pd−1∑

h=hdpd

pwalh(x);

then it follows that

φp,m(x) = 1 +

m−1∑
d=0

p−1∑
hd=1

rp(hdp
d)Dd,hd,p,m(x).

Let ωp = e2πi/p and x = x1

p + x2

p2 + · · · . We have

Dd,hd,p,m(x) =

hdp
d+pd−1∑

h=hdpd

pwalh(x) = ωhdxd+1
p

p−1∑
hd−1=0

ωhd−1xd
p · · ·

p−1∑
h0=0

ωh0x1
p .

As
∑p−1

hi=0 ω
hixi+1
p = 0 if xi+1 �= 0 and

∑p−1
hi=0 ω

hixi+1
p = p if xi+1 = 0 we have

Dd,hd,p,m(x) =

⎧⎨
⎩

ω
hdxd+1
p pd if x1 = · · · = xd = 0 or if d = 0,

0 otherwise.

We have rp(0) = 1 and for h > 0 with h = h0 + h1p + · · · + hdp
d and hd �= 0 we

have rp(h) = p−d−1 sin−2
(

hdπ
p

)
.

We restate a result from [3, Appendix C] which will be used subsequently. For
any l ∈ {0, . . . , p− 1} we have

p−1∑
h=1

ωhl
p

sin2(hπ/p)
= 2l(l − p) +

p2 − 1

3
.(4.2)

First let x1 = · · · = xm = 0; then we have

φp,m(x) = 1 +

m−1∑
d=0

p−1∑
hd=1

rp(hdp
d)pd = 1 +

m−1∑
d=0

pd
p−1∑
hd=1

1

pd+1

1

sin2
(

hdπ
p

)

= 1 +
1

p

m−1∑
d=0

p2 − 1

3
= 1 + m

p2 − 1

3p
,

where we used (4.2) with l = 0.
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Let i0 = i0(x) be such that x1 = · · · = xi0−1 = 0 and xi0 �= 0 with 1 ≤ i0 ≤ m.
Then we have

φp,m(x) = 1 +

m−1∑
d=0

p−1∑
hd=1

rp(hdp
d)Dd,hd,p,m(x)

= 1 +

i0−2∑
d=0

p−1∑
hd=1

rp(hdp
d)pd +

p−1∑
hi0−1=1

rp(hi0−1p
i0−1)pi0−1ω

hi0−1xi0
p .

Now

i0−2∑
d=0

p−1∑
hd=1

rp(hdp
d)pd =

i0−2∑
d=0

p−1∑
hd=1

pd
1

pd+1

1

sin2
(

hdπ
p

) =
1

p

i0−2∑
d=0

p−1∑
hd=1

1

sin2
(

hdπ
p

)

=
1

p

i0−2∑
d=0

p2 − 1

3
=

p2 − 1

3p
(i0 − 1),

where we used (4.2) with l = 0 again. Further we have

p−1∑
hi0−1=1

rp(hi0−1p
i0−1)pi0−1ω

hi0−1xi0
p =

p−1∑
k=1

pi0−1ω
kxi0
p

1

pi0
1

sin2
(

kπ
p

)

=
1

p

p−1∑
k=1

ω
kxi0
p

sin2
(

kπ
p

)

=
1

p

(
2xi0(xi0 − p) +

p2 − 1

3

)
,

where we used (4.2) with l = xi0 . It follows that

φp,m(x) = 1 + i0
p2 − 1

3p
+

2

p
xi0(xi0 − p) .

Thus we have

φp,m(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + i0
p2−1
3p + 2

pxi0(xi0 − p) if x1 = · · · = xi0−1 = 0 and xi0 �= 0,

with 1 ≤ i0 ≤ m,

1 + mp2−1
3p otherwise.

(4.3)

Thus using (4.1) and (4.3) we can compute R(g, f) in O(pms) operations.
Now we turn to the weighted case. We have

R̃γ(g, f) =
∑
u⊆E
u�=∅

γuR(gu, f) = −
∑
u⊆E
u�=∅

γu +
1

|P (g, f)|
∑

x∈P (g,f)

∑
u⊆E
u�=∅

γu
∏
i∈u

φp,m(xi)

= −
s∏

i=1

(1 + γi) +
1

|P (g, f)|
∑

x∈P (g,f)

s∏
i=1

(1 + γiφp,m(xi)).

Again this quantity can be computed in O(pms) operations using (4.3).
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5. Numerical results and discussion. In this section we show how the con-
struction cost can be reduced to O(p2ms) with an additional cost of O(pm) storage
(see also [19]). Further, we point out problems concerning the accuracy of the compu-
tation and how those problems can be avoided. Finally we present tables of numerical
results, showing the values of R(g, f) and R̃γ(g, f) of our construction algorithms,
and compare them with the choices of g from the so-called Salzburg tables [18].

First we compute φp,m(ϕm(n(x)g(x)
f(x) )) for all possible choices of polynomials n and

g and store the results in some array. The computation of the values φp,m(xn,k) in

the expression for R and R̃ then reduces to picking the corresponding values from the
array, performing some multiplication, and adding up the results. It is advantageous
to save these tables because they do not depend on the weights and the dimension
but only on m, and so they can be reused.

Next we compute R recursively with respect to the dimension in the component-
by-component construction. Recall that for given polynomials g1, . . . , gd we compute
N points where the kth coordinate depends on gk. We want to minimize

R((g1, . . . , gd, gd+1), f) = −1 +
1

|P (gd+1))|
∑

x∈P (gd+1)

d+1∏
i=1

φp,m(xi),

where we suppressed the dependence of the point set P (gd+1) on g1, . . . , gd. Disregard-

ing constants this amounts to minimizing the inner product
∑N−1

n=0 Φn,dφp,m(xn,d+1)

where Φn,d =
∏d

i=1 φp,m(xn,i). Obviously, the numbers Φn,d can be computed recur-
sively by

Φn,1 = φp,m(xn,1),

where the xn,1 are generated using the polynomial 1 and

Φn,d+1 = Φn,dφp,m(xn,d+1),

where the xn,d+1 are generated by the polynomial gd+1 which minimizes the inner

product
∑N−1

n=0 Φn,dφp,m(xn,d+1). In fact we can ignore the first addend since x0,i = 0

for all i and therefore Φ0,d = (1 + mp2−1
3p )d.

The weighted case is a bit more complicated. Recall that in each step we want
to minimize

R̃((g1, . . . , gd, gd+1), f)

= −
d+1∏
i=1

(1 + γi) +
1

|P (gd+1))|
∑

x∈P (gd+1)

d+1∏
i=1

(1 + γiφp,m(xi)).

In principle we could deal with this in the same way as before. But for small weights
a computer does not distinguish between (1 + γiφp,m(xi)) and 1. So if we compute

the product
∏d+1

i=1 (1 + γiφp,m(xi)) for small weights we simply get 1. This leads to
the well-known effect in component-by-component construction algorithms that from
some dimension onward one always gets the same optimizing polynomial.

So this is how we proceed: first disregard the additive constant −
∏d+1

i=1 (1 + γi)
and the multiplicative constant 1

|P (gd+1))| . Note that the first addend in the sum is
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again constant, so we may disregard it for minimization. Then write

N−1∑
n=1

d+1∏
i=1

(1 + γiφp,m(xn,i)) =

N−1∑
n=1

d∏
i=1

(1 + γiφp,m(xn,i))

+ γd+1

N−1∑
n=1

(
d∏

i=1

(1 + γiφp,m(xn,i)) − 1

)
φp,m(xn,d+1)

+ γd+1

N−1∑
n=1

φp,m(xn,d+1) .

Obviously the first term does not depend on gd+1 and is therefore irrelevant for our
minimization problem. But the last term is independent of gd+1, since for an arbitrary
gd+1 the xn,d+1 run through all nonzero m-bit numbers if n runs from 1 to N − 1 and
therefore always give the same sum.

It is therefore sufficient to minimize the inner product

N−1∑
n=1

Ψn,d φp,m(xn,d+1),

where Ψn,d = (
∏d

i=1(1+γiφp,m(xn,i))− 1). Note that the order of magnitude of Ψn,d

is not 1 (for small weights). We can compute the number Ψn,d recursively by

Ψn,1 = γ1φp,m(xn,1),

where the xn,1 are generated using the polynomial 1 and

Ψn,d+1 = Ψn,d + (Ψn,d + 1)γd+1φp,m(xn,d+1),

where the xn,d+1 are generated by the polynomial gd+1 which minimizes the inner

product
∑N−1

n=1 Ψn,dφp,m(xn,d+1). Finally, we start with the smallest weight first, i.e.,
we arrange the weights in increasing order. This seems to have the effect that we
do not always get the same polynomial for small weights. Since our proof did not
take into account the order of the weights we still get a point set with an R̃ less than
the average. However, as can be seen from Table 5.2, the resulting R̃ is consistently
bigger than for descending order.

In our tables we computed the best R’s and R̃’s for different values of N = pm and
different weights, where we restrict ourselves to the case p = 2. We write CBC for the
component-by-component construction and RCBC (reversed) for the component-by-
component construction with weights in ascending order. “Korobov Salztab” means
using a Korobov rule with the defining polynomial taken from the Salzburg tables
[18]. Since the latter were chosen to minimize the t-parameter of the net instead of
R it is not a surprise that it gives a slightly inferior value for R. However, it can be
seen that there are differences in the weighted cases, confirming the view that point
sets which are good for the unweighted case need not be good for the weighted case.
Hence there is a necessity to adjust a point set to some given weights (the weights
are determined by the task at hand), and, as we have shown in this paper, this can
be achieved using a component-by-component or a Korobov construction algorithm.

In our numerical examples we use point sets consisting of up to 213 points. The
same programs can also be used for 215 points, unfortunately requiring a rather long
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Table 5.1

Unweighted case for s = 5.

N CBC plr Korobov plr Korobov Salztab
256 11.9666 11.96530 11.99270
512 9.65717 9.66028 9.69971

1024 7.47394 7.47476 7.49051
2048 5.58371 5.58585 5.58711
4096 4.04798 4.04970 4.06461
8192 2.86040 2.86191 2.86821

Table 5.2

Weighted case for s = 50, γi = i−2.

N CBC plr RCBC plr Korobov plr Korobov Salztab
256 0.1862330 0.1929140 0.1907370 0.3237240
512 0.1309270 0.1341940 0.1351940 0.1737160

1024 0.0904281 0.0924048 0.0923820 0.1540320
2048 0.0612452 0.0626068 0.0627534 0.1313720
4096 0.0409122 0.0417111 0.0415957 0.1113260
8192 0.0270023 0.0274363 0.0274434 0.0348907

Table 5.3

Weighted case for s = 50, γi = 1
50

.

N CBC plr Korobov plr Korobov Salztab
256 0.399518 0.398798 0.413967
512 0.325541 0.325211 0.329576

1024 0.261700 0.261230 0.268513
2048 0.207947 0.207750 0.215230
4096 0.163820 0.163738 0.172557
8192 0.128152 0.128195 0.129452

computation time, although more careful programming might reduce the computation
time considerably. For an even greater number of points computing time and storage
requirements become too high for a personal computer.
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Abstract. A variant of the augmented Lagrangian-type algorithm for strictly convex quadratic
programming problems with bounds and equality constraints is considered. The algorithm exploits
the adaptive precision control in the solution of auxiliary bound constraint problems in the inner
loop while the Lagrange multipliers for the equality constraints are updated in the outer loop. The
update rule for the penalty parameter is introduced that depends on the increase of the augmented
Lagrangian. Global convergence is proved and an explicit bound on the penalty parameter is given.
A qualitatively new feature of our algorithm is a bound on the feasibility error that is independent
of conditioning of the constraints. When applied to the class of problems with the spectrum of
the Hessian matrix in a given interval, the algorithm returns the solution in O(1) matrix-vector
multiplications. The results are valid even for linearly dependent constraints. Theoretical results are
illustrated by numerical experiments including the solution of an elliptic variational inequality.

Key words. quadratic programming, box and equality constraints, augmented Lagrangians,
adaptive precision control
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1. Introduction. We shall be concerned with the problem of finding a minimizer
of a strictly convex quadratic function subject to simple bounds and linear equality
constraints, that is

minimize q(x) subject to (s.t.) x ∈ Ω(1.1)

with Ω = {x ∈ R
n : x ≥ � and Cx = 0}, q(x) = 1

2x
TAx − bTx, b ∈ R

n, � ∈ R
n,

A ∈ R
n×n symmetric positive definite, and C ∈ R

m×n. We do not require that C is a
full row rank matrix, as for some large problems it may be not trivial to verify such
assumption, but we shall assume that Ω is not empty. Let us point out that confining
ourselves to the homogeneous equality constraints does not mean any loss of generality,
as we can use a simple transform to reduce any nonhomogeneous equality constraints
to our case. Moreover, our results may be useful also in the more general case when A
is positive definite only on the kernel of C, i.e., when only RTAR is positive definite
with the matrix R formed by the basis of the kernel of C. The modification of our
algorithm can be based on observation that in the latter case there is ρ̂ > 0 such that
A+ ρ̂CTC is positive definite and that the problem (1.1) has the same solution as the
problem

minimize q̂(x) s.t. x ∈ Ω, q̂(x) =
1

2
xT (A + ρ̂CTC)x− bTx.
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We shall be especially interested in problems with the matrix A reasonably condi-
tioned and either large and sparse or defined as a product of large and sparse matrices,
so that the conjugate gradient–based methods are more efficient for the unconstrained
minimization of q than the direct solvers. We shall also assume that the matrix C is
sparse. Such problems arise, for example, from the discretization of semicoercive el-
liptic variational inequalities (e.g., Dostál [7]) or from application of the duality-based
domain decomposition to the contact problems of elasticity (e.g., Dostál, Friedlander,
and Santos [12], Dostál, Gomes Neto, and Santos [16] or Avery et al. [1]).

We restrict our attention to the algorithms that reduce problem (1.1) to a se-
quence of bound constrained quadratic programming problems. Our approach has
been motivated by an effort to exploit recent progress in the solution of the latter
problems, namely, effective application of projections and adaptive precision control
of the solution of auxiliary problems (e.g., [23, 4, 8]). Most recently, these results were
combined with the results on the gradient projections [29] to get algorithms with the
R-linear rate of convergence in terms of the bounds on the spectrum of A [10, 21]. It
simply follows that such algorithms can solve any class of problems with the spectrum
of the Hessian matrix in a given interval [a, b], a > 0, at the cost of O(1) matrix-vector
multiplications. These results were applied to the development of some optimal (i.e.,
with linear complexity) algorithms for the solution of elliptic boundary variational
inequalities [18, 19, 20].

Our development is based on the algorithm proposed by Conn, Gould and Toint
[5], who adapted the augmented Lagrangian method [2, 24] of Powell [28] and Hestenes
[26] to the solution of problems with a general cost function subject to general equality
constraints and simple bounds. When applied to (1.1), their algorithm reduces the
solution to a sequence of simple bound constrained problems of the form

minimize L(x, μk, ρk) s.t. x ≥ �,(1.2)

where

L(x, μk, ρk) = q(x) + (μk)TCx +
ρk
2
‖Cx‖2(1.3)

is known as the augmented Lagrangian function, μk = (μk
1 , . . . , μ

k
m)T is the vector of

Lagrange multipliers for the equality constraints, ρk is the penalty parameter, and ‖·‖
denotes the Euclidean norm. In [5] the authors developed basic methods of analysis,
proved the convergence results that cover also the possibility of solving inexactly
the auxiliary problems (1.2), and established that a potentially troublesome penalty
parameter is bounded. They implemented successfully their algorithm using the well-
known package LANCELOT [6]. Later, Friedlander and Santos with the present
author [15] proposed an adaptive precision control of the solution of the auxiliary
problems (1.2) based on simple observation that the precision of the solution xk of
the auxiliary problems (1.2) should be related to the feasibility of xk, i.e., ‖Cxk‖, since
it does not seem reasonable to solve (1.2) to the high precision when μk is still far
from the Lagrange multiplier corresponding to the solution of (1.1). Due to the choice
introduced for the precision control, we obtained an estimate of the rate of convergence
that does not have any term accounting for the inexact minimization. Moreover, it was
proved that the penalty parameter generated by our algorithm remains bounded even
with the inexact minimization of the auxiliary problems. It was also demonstrated
that large penalty parameters need not slow down the rate of convergence in the
inner loop [9]. The latter algorithm was then extensively used in development of
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parallel algorithms for the solution of variational inequalities [12, 16, 17]. For example,
in combination with duality-based domain decomposition methods, the algorithm
required as few as 65 conjugate gradient iterations and 3 outer iterations to solve an
elliptic variational inequality discretized by 8,454,272 nodes with 2049 nodes on the
contact interface [18], much cheaper then one direct solve of the related linear problem.
Let us point out that the precision control that we use was proposed by Hager [25] for
the solution of equality constrained problems by the augmented Lagrangian method
with the least squares update of Lagrange multipliers.

Despite the improved results on the rate of convergence, the analysis in [15]
indicates fast deterioration of the rate of convergence of the Lagrange multipliers with
the diminishing smallest eigenvalue of ĈÂ−1ĈT , where Ĉ is formed by the columns
of C with indices of the constraints that are not active at the solution and Â is the
corresponding diagonal block of A. This is not surprising, because when the matrix
Ĉ is not a full row rank matrix, then the multipliers of the solution are not uniquely
determined and there is no reason to expect fast convergence when the rows of Ĉ are
nearly dependent. In fact, the analysis of [6, 15] requires that the solution is regular,

i.e., that Ĉ is a full column rank matrix. Moreover, the estimate assumes large values
of the penalty parameter that are also related to the conditioning of ĈÂ−1ĈT . The
results turned out to be insufficient to prove numerical scalability of our algorithms
for solution of variational inequalities, despite the experimental evidence [17].

In this paper we show that it is possible to get results on convergence of the feasi-
bility error that are independent of the conditioning of the equality constraints. Our
main tool is a simple explicit bound on the penalty parameter [11] which guarantees
an increase of the augmented Lagrangian provided the precision of the solution xk

of the auxiliary bound constrained problems is proportional to the feasibility error
‖Cxk‖. We exploit this observation to propose a new, less aggressive update rule
for the penalty parameter which enables one to get an upper bound on the rate of
convergence of ‖Cxk‖ that is independent of the eigenvalues of ĈÂ−1ĈT as well as
an explicit bound on the penalty parameter that is fully independent of the con-
straints data. When implemented with one of the algorithms mentioned above in the
inner loop and applied to the class of problems with the spectrum of the Hessian
matrix in a given interval of positive numbers, our new algorithm returns the solution
of (1.1) in O(1) matrix-vector multiplications. Our results on the rate of conver-
gence of the algorithm remain valid even for the constraint matrix with dependent
rows.

In section 2 we present the algorithm and prove that it is well defined. In section
3 we prove simple inequalities that will be exploited in the analysis of the algorithm
in section 4. In section 5 we give new results on the convergence of the feasibility
error that are independent of the form of the constraints and give a result on the
“optimality” of the feasibility error estimate. The convergence results are presented
in section 6. The results are illustrated on numerical solution of model problems in
section 7. Finally, some conclusions are discussed in section 8.

2. Notation and preliminaries. Given nonempty sets of indices I,J ⊆ N ≡
{1, . . . , n}, a matrix B, and a vector x, we define the submatrix BIJ and the subvector
xI that comprise rows and columns determined by the sets I,J . For the matrix C
of problem (1.1), we shall denote by CJ the submatrix of C formed by the same rows
as C and columns in J .

The first order update of the vector of Lagrange multipliers of the problem (1.1)
and the gradients of the augmented Lagrangians (1.3) will be denoted, respectively,



INEXACT SEMIMONOTONIC AUGMENTED LAGRANGIANS 99

by

μ̃ = μ + ρCx(2.1)

and

g(x, μ, ρ) = ∇xL(x, μ, ρ) = ∇q(x) + CTμ + ρCTCx.(2.2)

For each vector v = (v1, . . . , vp) ∈ R
p, we shall denote by

‖v‖ = (v2
1 + v2

2 + · · · + v2
p)

1/2 and ‖v‖1 = |v1| + |v2| + · · · + |vp|

its Euclidean and �1−norms, respectively.
Since problem (1.1) comprises minimization of a strictly convex cost function on

a convex set, it is well known (e.g., [3]) that its solution x∗ exists and is necessarily
unique. It satisfies the Karush–Kuhn–Tucker (KKT) conditions for problems that
may be conveniently described by the projected gradient gP that is defined by

gPi (x, μ, ρ) = gi(x, μ, ρ) if xi > �i or xi = �i and gi(x, μ, ρ) < 0,

gPi (x, μ, ρ) = 0 otherwise, i.e., xi = �i and gi(x, μ, ρ) ≥ 0,
(2.3)

where g(x, μ, ρ) = (g1, . . . , gn)T . Thus the solution x∗ is the only feasible (for problem
(1.1)) vector for which there is μ such that gP (x, μ, 0) = 0, and the KKT conditions for
problem (1.2) are satisfied at x ≥ � if and only if there is μ such that gP (x, μ, ρ) = 0.

For each vector x ∈ R
n, we shall denote by A(x) and F(x) the active and free set

of x, respectively, so that

A(x) = {i ∈ N : xi = �i} and F(x) = {i ∈ N : xi �= �i}.

We shall also define the binding set

B(x, μ, ρ) = {i ∈ A(x) : gi(x, μ, ρ) ≥ 0}.

Thus B(x, μ, ρ) comprises the indices of the active constraints that satisfy the KKT
conditions for problem (1.2).

As mentioned, the earlier papers required that the solution x∗ ∈ Ω of problem
(1.1) is regular, i.e., that the gradients of all the active constraints (equalities and
inequalities) at x∗ are linearly independent. We will not need this assumption here,
although we will be able to prove some stronger results if the solution is regular.

3. Semimonotonic algorithm for bound and equality constraints. The
following algorithm is a modification of the classical augmented Lagrangian method
for the solution of strictly convex quadratic programming problems with equality con-
straints that enables adaptive precision control of the solution of auxiliary problems.

Algorithm 3.1. Given η > 0, β > 1, M > 0, ρ0 > 0, and μ0 ∈ R
m , set k = 0.

Step 1. {Inner iteration with adaptive precision control.}
Find xk such that

‖gP (xk, μk, ρk)‖ ≤ min{M‖Cxk‖, η}.(3.1)

Step 2. {Update μ.}

μk+1 = μk + ρkCxk.(3.2)
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Step 3. {Update ρ provided the increase of the Lagrangian is not sufficient.}
If k > 0 and

L(xk, μk, ρk) < L(xk−1, μk−1, ρk−1) +
ρk
2
‖Cxk‖2,(3.3)

then

ρk+1 = βρk;(3.4)

else

ρk+1 = ρk.(3.5)

Step 4. Set k = k + 1 and return to Step 1.
In Step 1 we can use any convergent algorithm for minimizing the strictly convex

quadratic function subject to the bound constraints, such as [23, 4, 10, 21, 8]. Let
us point out that Algorithm 3.1 differs from those considered by Conn, Gould, and
Toint [5] or Dostál, Friedlander, and Santos [15] by the condition on the update of
the penalization parameter in Step 3.

The next lemma shows that Algorithm 3.1 is well defined, that is, any convergent
algorithm for the solution of the auxiliary problem required in Step 1 will generate
either xk that satisfies (3.1) in a finite number of steps or a sequence of approxima-
tions that converges to the solution of (1.1). It is also clear that there is no hidden
enforcement of exact solution in (3.1) and consequently typically inexact solutions of
the auxiliary unconstrained problems are obtained in Step 1.

Lemma 3.1. Let M > 0, μ ∈ R
m, and ρ ≥ 0 be given and let {yk} denote any

sequence that converges to the unique solution y of the problem

minimize L(y, μ, ρ) s.t. y ≥ �.(3.6)

Then either {yk} converges to the solution x̂ of problem (1.1) or there is an index k
such that

‖gP (yk, μ, ρ)‖ ≤ min{M‖Cyk‖, η}.(3.7)

Proof. See [15].

4. Inequalities involving the augmented Lagrangian. In this section we
shall establish basic inequalities that relate the bound on the norm of the gradient g
of the augmented Lagrangian L to the values of the augmented Lagrangian L. These
inequalities will be the key ingredients in the proof of convergence of Algorithm 3.1.

Lemma 4.1. Let x, y, � ∈ R
n, x ≥ �, y ≥ �, μ ∈ R

m, ρ > 0, η > 0, and M > 0.
Let α denote the least eigenvalue of A and μ̃ = μ + ρCx.

(i) If

‖gP (x, μ, ρ)‖ ≤ M‖Cx‖,(4.1)

then

L(y, μ̃, ρ) ≥ L(x, μ, ρ) +
1

2

(
ρ− M2

α

)
‖Cx‖2 +

ρ

2
‖Cy‖2.(4.2)

(ii) If

‖gP (x, μ, ρ)‖ ≤ η,(4.3)
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then

L(y, μ̃, ρ) ≥ L(x, μ, ρ) +
ρ

2
‖Cx‖2 +

ρ

2
‖Cy‖2 − η2

2α
.(4.4)

(iii) If (4.3) holds and z0 ∈ Ω, then

L(x, μ, ρ) ≤ q(z0) +
η2

2α
.(4.5)

Proof. Let us denote δ = y − x, H = A+ ρCTC and recall that we assume x ≥ �
and y ≥ �, so that it may be easily verified that

δT gP (x, μ, ρ) ≤ δT g(x, μ, ρ).

Using the latter inequality with

L(x, μ̃, ρ) = L(x, μ, ρ) + ρ‖Cx‖2 and g(x, μ̃, ρ) = g(x, μ, ρ) + ρCTCx,

we get

L(y, μ̃, ρ) = L(x, μ̃, ρ) + δT g(x, μ̃, ρ) +
1

2
δTHδ

= L(x, μ, ρ) + δT g(x, μ, ρ) + ρδTCTCx +
1

2
δTHδ + ρ‖Cx‖2

≥ L(x, μ, ρ) + δT gP (x, μ, ρ) + ρδTCTCx +
1

2
δTHδ + ρ‖Cx‖2

≥ L(x, μ, ρ) + δT gP (x, μ, ρ) + ρδTCTCx +
α

2
‖δ‖2 +

ρ

2
‖Cδ‖2 + ρ‖Cx‖2.

Noticing that

ρ

2
‖Cy‖2 =

ρ

2
‖C(δ + x)‖2 = ρδTCTCx +

ρ

2
‖Cδ‖2 +

ρ

2
‖Cx‖2,

we obtain

L(y, μ̃, ρ) ≥ L(x, μ, ρ) + δT gP (x, μ, ρ) +
α

2
‖δ‖2 +

ρ

2
‖Cx‖2 +

ρ

2
‖Cy‖2.(4.6)

Using (4.1) and simple manipulations we obtain

L(y, μ̃, ρ) ≥ L(x, μ, ρ) −M‖δ‖‖Cx‖ +
α

2
‖δ‖2 +

ρ

2
‖Cx‖2 +

ρ

2
‖Cy‖2

= L(x, μ, ρ) +

(
α

2
‖δ‖2 −M‖δ‖‖Cx‖ +

M2‖Cx‖2

2α

)

−M2‖Cx‖2

2α
+

ρ

2
‖Cx‖2 +

ρ

2
‖Cy‖2

≥ L(x, μ, ρ) +
1

2

(
ρ− M2

α

)
‖Cx‖2 +

ρ

2
‖Cy‖2,

which proves (i).
If we assume that (4.3) holds, then by (4.6)

L(y, μ̃, ρ) ≥ L(x, μ, ρ) − ‖δ‖η +
α

2
‖δ‖2 +

ρ

2
‖Cx‖2 +

ρ

2
‖Cy‖2

≥ L(x, μ, ρ) +
ρ

2
‖Cx‖2 +

ρ

2
‖Cy‖2 − η2

2α
,

which proves (ii).
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Finally, let x denote the solution of the auxiliary problem

minimize L(z, μ, ρ) s.t. z ≥ �,(4.7)

let z0 ∈ Ω so that Cz0 = 0, and let δ = x− x. If (4.3) holds, then

0 ≥ L(x, μ, ρ) − L(x, μ, ρ) = δ
T
g(x, μ, ρ) +

1

2
δ
T
Hδ ≥ δ

T
gP (x, μ, ρ) +

1

2
δ
T
Hδ

≥ −‖δ‖η +
1

2
α‖δ‖2 ≥ − η2

2α
.

Since L(x, μ, ρ) ≤ L(z0, μ, ρ) = q(z0), we conclude that

L(x, μ, ρ) ≤ L(x, μ, ρ) − L(x, μ, ρ) + q(z0) ≤ q(z0) +
η2

2α
.

5. Monotonicity and feasibility.
Lemma 5.1. Let {xk}, {μk}, and {ρk} be generated by Algorithm 3.1 with η >

0, β > 1, M > 0, ρ0 > 0, and μ0 ∈ R
m. Let α denote the least eigenvalue of the

Hessian A of the quadratic q.
(i) If k ≥ 0 and

ρk ≥ M2/α,(5.1)

then

L(xk+1, μk+1, ρk+1) ≥ L(xk, μk, ρk) +
ρk+1

2
‖Cxk+1‖2.(5.2)

(ii) For any k ≥ 0

L(xk+1, μk+1, ρk+1) ≥ L(xk, μk, ρk) +
ρk
2
‖Cxk‖2 +

ρk+1

2
‖Cxk+1‖2 − η2

2α
.(5.3)

(iii) For any k ≥ 0 and z0 ∈ Ω

L(xk, μk, ρk) ≤ q(z0) +
η2

2α
.(5.4)

Proof. Let us substitute in Lemma 4.1 x = xk, μ = μk, ρ = ρk, y = xk+1, so that
by (3.1) the inequality (4.1) holds and by (3.2) μ̃ = μk+1.

If (5.1) holds, we shall get by (4.2)

L(xk+1, μk+1, ρk) ≥ L(xk, μk, ρk) +
ρk
2
‖Cxk+1‖2.(5.5)

To prove (5.2), it is enough to add

ρk+1 − ρk
2

‖Cxk+1‖2(5.6)

to both sides of (5.5) and to use that

L(xk+1, μk+1, ρk+1) = L(xk+1, μk+1, ρk) +
ρk+1 − ρk

2
‖Cxk+1‖2.(5.7)
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If we notice that, by the definition of Step 1 of Algorithm 3.1,

‖g(xk, μk, ρk)‖ ≤ η

and apply the same substitution as above to Lemma 3.1(ii), we shall get

L(xk+1, μk+1, ρk) ≥ L(xk, μk, ρk) +
ρk
2
‖Cxk‖2 +

ρk
2
‖Cxk+1‖2 − η2

2α
,(5.8)

so that, after adding the nonnegative expression (5.6) to both sides of (5.8) and using
(5.7), we get (5.3). Similarly, the definition of Algorithm 2.1 and application of the
substitution to Lemma 4.1(iii) implies the inequality (5.4).

Theorem 5.2. Let {xk}, {μk}, and {ρk} be generated by Algorithm 3.1 with
η > 0, β > 1, M > 0, ρ0 > 0, μ0 ∈ R

m. Let α denote the least eigenvalue of
the Hessian A of the quadratic q and let s ≥ 0 denote the smallest integer such that
βsρ0 ≥ M2/α.

(i) The sequence {ρk} is bounded and

ρk ≤ βsρ0.(5.9)

(ii) If z0 ∈ Ω, then

∞∑
k=1

ρk
2
‖Cxk‖2 ≤ q(z0) − L(x0, μ0, ρ0) + (1 + s)

η2

2α
.(5.10)

(iii) ‖Cxk‖ converges to 0.
Proof. Let s ≥ 0 denote the smallest integer such that βsρ0 ≥ M2/α and let I

denote the set of all indices ki such that {ρki
} are generated in Step 3 of Algorithm

3.1 by (3.4). Using Lemma 5.1(i), ρki = βρki−1
= βiρ0 for ki ∈ I, and βsρ0 ≥ M2/α,

we conclude that there is no k such that ρk > βsρ0. Thus I has at most s elements
and (5.9) holds.

By the definition of Step 3, for k > 0 either k + 1 �∈ I and

ρk
2
‖Cxk‖2 ≤ L(xk, μk, ρk) − L(xk−1, μk−1, ρk−1)

or k + 1 ∈ I and by (5.3)

ρk
2
‖Cxk‖2 ≤ ρk−1

2
‖Cxk−1‖2 +

ρk
2
‖Cxk‖2

≤ L(xk, μk, ρk) − L(xk−1, μk−1, ρk−1) +
η2

2α
.

Summing up appropriate cases of the last two inequalities for k = 1, . . . , n and taking
into account that I has at most s elements, we get

n∑
k=1

ρk
2
‖Cxk‖2 ≤ L(xn, μn, ρn) − L(x0, μ0, ρ0) + s

η2

2α
.(5.11)

To get (5.10), it is enough to replace L(xn, μn, ρn) by the upper bound (5.4).
Statement (iii) is an immediate consequence of (ii).
Theorem 5.2 suggests that it is possible to give a uniform upper bound on the num-

ber of the outer iterations of Algorithm 3.1 that is necessary to achieve a prescribed



104 Z. DOSTÁL

feasibility error for any problem of (5.12). To present explicitly this qualitatively new
feature of Algorithm 3.1, at least as compared to the related algorithms [15], let T
denote any set of indices and let for any t ∈ T be defined a problem

minimize qt(x) s.t. x ∈ Ωt(5.12)

with Ωt = {x ∈ R
nt : Ctx = 0 and x ≥ �t}, qt(x) = 1

2x
TAtx − bTt x, At ∈ R

nt×nt

symmetric positive definite, Ct ∈ R
mt×nt , and bt, �t ∈ R

nt . To simplify our exposition,
we shall assume that the bound constraints �t are not positive so that 0 ∈ Ωt. Our
optimality result reads as follows.

Theorem 5.3. Let {xk
t }, {μk

t }, and {ρt,k} be generated by Algorithm 3.1 for
(5.12) with ‖bt‖ ≥ ηt > 0, β > 1, M > 0, ρt,0 = ρ0 > 0, μ0

t = 0. Let there be an
α > 0 such that the least eigenvalue αt of the Hessian At of the quadratics qt satisfies
αt ≥ α, and let s ≥ 0 denote the smallest integer such that βsρ0 ≥ M2/α. Then for
each ε > 0 and

j ≥ 2 + s

ε2αρ0
(5.13)

there are indices kt such that

kt ≤ j and M−1‖gP (xkt
t , μkt

t , ρt,kt
)‖ ≤ ‖Ctx

kt
t ‖ ≤ ε‖bt‖.(5.14)

Proof. First notice that for any index k

ρ0k

2
min{‖Ctx

i
t‖2 : i = 1, . . . , k} ≤

k∑
i=1

ρt,i
2

‖Ctx
i
t‖2 ≤

∞∑
i=1

ρt,i
2

‖Ctx
i
t‖2.(5.15)

Denoting by Lt(x, μ, ρ) the augmented Lagrangian for the problem (5.12), we get for
any x ∈ R

p and ρ ≥ 0

Lt(x, 0, ρ) =
1

2
xT (At + ρCT

t Ct)x− bTt x ≥ 1

2
α‖x‖2 − ‖bt‖‖x‖ ≥ −‖bt‖2

2α
.

If we substitute this inequality and z0 = 0 to (5.10) and use the assumption ‖bt‖ ≥ ηt,
we get

∞∑
i=1

ρi
2
‖Ctx

i
t‖2 ≤ ‖bt‖2

2α
+ (1 + s)

η2

2α
≤ (2 + s)‖bt‖2

2α
.(5.16)

Taking for j any integer that satisfies (5.13) and denoting for any t ∈ T by kt ∈
{1, . . . , j} the index which minimizes {‖Ctx

i
t‖ : i = 1, . . . , j}, we can use (5.15) and

(5.16) with simple manipulations to obtain

‖Ctx
kt
t ‖2 = min{‖Ctx

i
t‖2 : i = 1, . . . , k} ≤ (2 + s)‖bt‖2

jαρ0
≤ ε2‖bt‖2.

The inequality

M−1‖gP (xkt
t , μkt

t , ρt,kt)‖ ≤ ‖Ctx
kt
t ‖

results easily from the definition of Step 1 of Algorithm 3.1.
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6. Convergence.
Lemma 6.1. Let {xk}, {μk}, and {ρk} be generated by Algorithm 3.1 with η >

0, β > 1, M > 0, ρ0 > 0, μ0 ∈ R
m. Then the sequence {xk} is bounded.

Proof. Since there is only a finite number of different subsets F of N and {xk} is
bounded if and only if {xk

F(xk)} is bounded, we can restrict our attention to analysis

of infinite subsequences {xk
F : F(xk) = F} that are defined by nonempty subsets F

of N .
Let F ⊆ N , F �= ∅ be such that {xk : F(xk) = F} is infinite and denote

A = N \ F . Using Theorem 5.2(i), we get that there is an integer k0 such that
ρk = ρk0 for k ≥ k0. Thus, for k ≥ k0, we can denote H = A + ρkC

TC and

gk = g(xk, μk, ρk) = Hxk + CTμk − b,

so that (
HFF CT

F
CF 0

)(
xk
F
μk

)
=

(
gkF + bF −HFA�A

CFx
k
F

)
.(6.1)

Since CFx
k
F = Cxk − CA�A, ‖gkF‖ = ‖gF (xk, μk, ρk)‖ ≤ ‖gP (xkμk, ρk)‖, and

both ‖gP (xk, μk, ρk)‖ and ‖Cxk‖ converge to zero, the right-hand side of (6.1) is
bounded. Thus both xk and μk are bounded provided the matrix of the system (6.1)
is regular. This happens when CF is a full row rank matrix (e.g., [13]).

If CF ∈ R
ps is not a full row rank matrix, then its rank r satisfies r < p and by the

singular value decomposition theorem (see Theorem 7.3.5 in [27]) there are orthogonal
matrices U = (u1, . . . , up)

T , V = (v1, . . . , vs)
T and a matrix Σ ∈ R

ps defined by a
diagonal matrix D = diag(σ1, . . . , σr, 0, . . . , 0) ∈ R

t×t, t = min{p, s} padded with

zeros so that CF = UTΣV . Thus, taking Û = (u1, . . . , ur)
T , D̂ = diag(σ1, . . . , σr)

and V̂ = (v1, . . . , vr)
T , we have CF = ÛT D̂V̂ and we can define a full row rank matrix

ĈF = D̂V̂ = ÛCF

that satisfies ĈT
F ĈF = CT

FCF and ‖ĈFxF‖ = ‖CFxF‖ for any vector x. We shall
assign to any μ ∈ R

m the vector

μ̂ = Ûμ

so that ĈT
F μ̂ = CT

Fμ. Substituting the latter identity to (6.1), we get

(
HFF ĈT

F
CF 0

)(
xk
F
μ̂k

)
=

(
gkF + bF −HFA�A

CFx
k
F

)
.(6.2)

Since CF = ÛT D̂V̂ = ÛT ĈF and ÛT is a full column rank matrix, the latter system
is equivalent to the system(

HFF ĈT
F

ĈF 0

)(
xk
F
μ̂k

)
=

(
gkF + bF −HFA�A

ĈFx
k
F

)
(6.3)

with a regular matrix. The right-hand side of (6.3) being bounded due to ‖ĈFx
k
F‖ =

‖CFx
k
F‖, we conclude that {xk

F : F(xk) = F} is bounded.
Lemma 6.2. Let {zk} denote a bounded sequence, let B denote a full column

rank matrix, and let there be a sequence {τk} such that Bτk ≥ zk. Then there is a
bounded sequence {τ̂k} such that Bτ̂k ≥ zk.
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Proof. Let us denote e = (1, 1, . . . , 1)T and consider for a given integer k a linear
programming problem of the form

min{eTBξ : Bξ ≥ zk}(6.4)

with B and zk of the lemma. Since τk satisfies Bτk ≥ zk, it follows that the problem
(6.4) is feasible. Moreover, observing that for any feasible ξ

eTBξ = eT (Bξ − zk) + eT zk ≥ eT zk,

we conclude that the problem (6.4) is also bounded from below, so that it has a
solution ξk. Using the well known duality theory of linear programming (e.g., [3]), it
follows that the dual problem

max{ηT zk : η ≥ 0 and BTη = e}(6.5)

is feasible and bounded from above, so that it attains its solution ηk at a vertex of
the convex boundary of the feasible set of the dual problem (6.5) and

(ηk)T zk = eTBξk.

Since the number of the vertices is finite, it follows that there is only a finite number
of different ηk, so that, as {zk} is bounded, there is a constant c such that eTBξk =
(ηk)T zk ≤ c for any integer k. Thus

‖Bξk‖1 ≤ ‖Bξk − zk‖1 + ‖zk‖1 = eT (Bξk − zk) + ‖zk‖1

≤ eTBξk + 2‖zk‖1 ≤ c + 2‖zk‖1.

Since {zk} is bounded and B is a full column rank matrix, also the vectors ξk are
bounded and τ̂k = ξk satisfies the statement of the lemma.

Lemma 6.3. Let {xk}, {μk}, and {ρk} be generated by Algorithm 3.1 with η >
0, β > 1, M > 0, ρ0 > 0, μ0 ∈ R

m. Then there is a bounded sequence μ̂k such that

gP (xk, μ̂k, ρk) = gP (xk, μk, ρk).(6.6)

Proof. Let B ⊂ N , B �= ∅, B �= N be such that {xk : B(xk, μk, ρk) = B} is infinite
and denote C = N \ B. Using a variant of the Gramm–Schmidt orthogonalization
process, we can find a regular matrices R such that

(
CT

C
CT

B

)
R =

(
P 0 0
Q T 0

)
,

where P and T are full column rank matrices. Thus decomposing properly R−1μk

into the blocks R−1μk = (ξk, τk, νk)T , we get

(
CT

C
CT

B

)
μk =

(
P 0 0
Q T 0

)⎛
⎝ ξk

τk

νk

⎞
⎠ =

(
P 0 0
Q T 0

)⎛
⎝ ξk

τk

0

⎞
⎠.(6.7)

Using Theorem 5.2(i), we get that there is an integer k0 such that ρk = ρk0 for
k ≥ k0. Let us denote H = A + ρk0

CTC and gk = g(xk, μk, ρk), so that for k ≥ k0

CTμk = b + gk −Hxk.(6.8)
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Substituting into (6.7), we get for k ≥ k0

CT
C μ

k = Pξk = bC + gkC −HCNxk.

Since P is full column rank matrix, ‖gkC‖ = ‖gP (xk, μk, ρk)‖ and both xk and
gP (xk, μk, ρk) are bounded, it follows that ξk is bounded. Similarly, for k ≥ k0 and
B = B(xk, μk, ρk)

CT
Bμ

k = Qξk + Tτk = bB + gkB −HBNxk ≥ bB −HBNxk.

The vectors xk being bounded due to Lemma 6.1, we can apply Lemma 6.2 to get
bounded sequence τ̂k such that

T τ̂k ≥ bB −HBNxk −Qξk.(6.9)

Let us now define for k ≥ k0 a bounded sequence

μ̂k = R

⎛
⎝ ξk

τ̂k

0

⎞
⎠

so that by (6.7)

CT
C μ̂

k = CT
C R

⎛
⎝ ξk

τ̂k

0

⎞
⎠ = Pξk = CT

C μ
k

and

gkC = gC(xk, μk, ρk) = gPC (xk, μk, ρk).(6.10)

Similarly,

CT
B μ̂

k = CT
BR

⎛
⎝ ξk

τ̂k

0

⎞
⎠ = Qξk + T τ̂k(6.11)

and by (6.9)

gB(xk, μ̂k, ρk) = HBNxk − bB + CT
B μ̂

k = HBNxk − bB + Qξk + T τ̂k ≥ 0.

Recalling that we assume that B(xk, μk, ρk) = B, the last equation together with
(6.10) yields

gP (xk, μk, ρk) = gP (xk, μ̂k, ρk).

If B = ∅ or B = N are such that {xk : B(xk, μk, ρk) = B} is infinite, we can find
the multipliers μ̂k that satisfy the statement of our lemma by specializing the above
arguments. Since there is only a finite number of different subsets B of N , we have
shown that there are the multipliers μ̂k that satisfy the statement of our lemma for
all k except possibly finite number of indices for which we shall define μ̂k = μk. This
completes the proof.

Theorem 6.4. Let {xk}, {μk}, and {ρk} be generated by Algorithm 3.1 with
η > 0, β > 1, M > 0, ρ0 > 0, μ0 ∈ R

m.
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(i) The sequence {xk} converges to the solution x∗ of (1.1).
(ii) If the solution x∗ of (1.1) is regular, then {xk} and {μk} converge to the

solution x∗ and the vector μ∗ of the Lagrange multipliers of (1.1), respectively.
Proof. Let μ̂k denote the sequence of Lemma 6.3 so that it satisfies gP (xk, μk, ρk) =

gP (xk, μ̂k, ρk). Since both xk and μ̂k are bounded, it follows that there is a cluster
point (x̄, μ̄) of the sequence (xk, μ̂k). Using Theorem 5.2(i), we get that there is k0

such that ρk = ρk0 for k ≥ k0. Moreover, by Theorem 5.2(iii) and the definition of
Step 1 of Algorithm 3.1, Cx̄ = 0 and gP (x̄, μ̄, ρk0

) = gP (x̄, μ̄, 0) = 0. Since x̄ ≥ 0,
x̄ is the solution of (1.1). The solution x∗ of (1.1) being unique, it follows that xk

converges to x̄ = x∗.
Let k0 be as above and assume that the solution x∗ of (1.1) is regular. Since we

have just proved that {xk} converges to x∗, it follows that there is k1 ≥ k0 such that
{xk} is regular for k ≥ k1. Denoting F = F(x∗) and H = A + ρk0C

T
FCF , it follows

that

gPF (xk, μk, ρk) = HFNxk − bF + CT
Fμ

k

converges to zero, so that the sequence

CT
Fμ

k = bF −HFNxk + gPF (xk, μk, ρk)

is bounded. Using that x∗ is the regular solution of (1.1) so that CT
F is a full column

rank matrix, we conclude that μk is bounded and there is a cluster point (x∗, μ̄) of
the sequence (xk, μk) that satisfies gP (x∗, μ̄, 0) = 0. Thus (x∗, μ̄) is the KKT couple
for (1.1). Since the KKT couple (x∗, μ∗) of (1.1) is unique when the solution x∗ of
(1.1) is regular, it follows that μk converges to μ̄ = μ∗.

7. Numerical experiments. We have implemented Algorithm 3.1 in Matlab
and solved two benchmarks with an aim to illustrate both its efficiency and the main
theoretical results. The inner loop (Step 1) was realized by the reduced gradient
projection algorithm with proportioning [21].

Problem 7.1. The first problem was designed to demonstrate the efficiency of
our algorithm on the solution of a class of well conditioned sparse problems. The
Hesssian matrix A = AP , P > 2, of the quadratic function q = qP is the symmetric
Toeplitz matrix of the order 2 ∗ P 2 that is fully determined by the entries a11 =
12, a12 = −1 and a1,P−1 = −1. The other vectors b = bP and l = lP are defined by
the entries bi = −1, i = 1, . . . , 2 ∗ P 2, and li = −0.125 + 0.1 ∗ cos(2 ∗ π ∗ i/P 2), i =
1, . . . , P 2. The remaining entries of the vector l are set to −∞. Finally the matrix
C = CP has P rows with 2 ∗ P 2 entries which are zeros except that ci,P 2−i+1 = 1
and ci,P 2+i = −1, i = 1, . . . , P . The matrix C is designed to enforce the relations
xP 2−i+1 = xP 2+i, i = 1, . . . , P . Using the Gersghorin theorem [27], it is easy to see
that the eigenvalues λi of any AP satisfy 8 ≤ λi ≤ 16. The initial approximation for
x in the first run of the inner loop is zero, so that no bound constraints are active.

We solved the problem with η = ‖bP ‖, β = 10 and μ0 = 0 using the stopping
criteria

∥∥gPP (x, μ, 0)
∥∥ ≤ 10−5 ‖bP ‖ and ‖CPx‖ ≤ 10−5 ‖bP ‖, where we denoted by

gP the gradient of the augmented Lagrangian

LP (x, μ, ρ) = qP +
1

2
ρ‖CPx‖2 + μTCPx.

We have not observed any update of the penalty parameter, which confirms that our
update rule is less aggressive than that introduced in [5] and used in our previous
papers.
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Table 7.1

Optimality of the semimonotonic algorithm with M = 1 and ρ = 20.

Active Equality Outer cg
P Dimension bounds constraints iterations iterations
10 200 47 10 9 38
50 5000 1239 50 9 41

100 20000 4997 100 8 39
250 125000 31193 250 8 44
500 500000 124887 500 8 44

Table 7.2

Effect of the penalty parameter ρ for P = 100 and M = 1.

Outer cg
ρ Dimension iterations iterations
1 20000 89 108

10 20000 13 42
100 20000 4 82

1000 20000 2 397

The results of numerical experiments with M = 1, P ∈ {10, 50, 100, 250, 500},
and ρ = 20 are in Table 7.1. For each value of P , the table includes also the number
of the bound constraints that are active at the solution and the number of the inequal-
ity constraints in the columns labeled “Active bounds” and “Equality constraints,”
respectively. Observe that the value of ρ is an upper bound on the spectrum of AP .
This choice may be easily implemented in a more realistic situation and seems to work
for well conditioned constraints. We can see that the number of outer iterations does
not increase with the dimension of the problem which confirms a kind of optimality
predicted by Theorem 5.3.

We examined also the effect of the choice of the penalty parameter ρ. In Table
7.2 there are the results of computations for ρ ∈ {1, 10, 100, 1000} with P = 100 and
M = 1, so that the dimension of the problem and the number of constraints was 20,000
and 100, respectively. We can observe the large number of iterations for ρ = 1000.
This is caused by the short gradient projection step (in the algorithm for Step 1)
which is inversely proportional to the penalty parameter and by the large number
of active constraints of the solution that are not active at the initial approximation.
Notice that the algorithm had to identify 4997 active bound constraints starting from
the empty active set. The number of outer iterations decreases with the increasing
penalty parameter.

To see the effect of the conditioning of the constraints, we modified the matrix
C by adding to each row the sum of the rows of the original matrix that are above
the modified row, normalized the modified rows with respect to the �2-norm, and
then normalized the whole constraint matrix with respect to the �∞-norm. We used
the penalty parameter ρ = 200. The results are in Table 7.3, which includes the
conditioning of the constraints. We can see that the number of the outer iterations
decreases although there is deteriorating conditioning of the constraints. The number
of the inner iterations also surprisingly decreases with the increasing condition number
of the constraint matrix.

To see what happens when the constraints are dependent, we first formed an
auxiliary matrix Ĉ by appending the first P/2 rows of C to C so that Ĉ had 1.5 ∗ P
rows, and then we modified the matrix Ĉ by summing and normalizing as above.
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Table 7.3

Effect of conditioning of the equality constraints for ρ = 200 and M = 1.

Equality Outer cg
P Dimension constraints iterations iterations Conditioning
10 200 10 123 263 15.0816
50 5000 50 68 171 79.5278

100 20000 100 43 143 161.4914
250 125000 2500 22 118 408.9432

Table 7.4

Experiments with dependent rows with ρ = 200 and M = 1.

Equality Outer cg
P Dimension constraints iterations iterations Conditioning
10 200 15 95 233 19.5937
50 5000 75 26 135 87.1887

100 20000 150 16 139 170.7854
250 125000 375 10 145 539.1429

Thus the resulting constraint matrix corresponding to P has the same first P rows
as the constraint matrix of the previous experiments and P/2 additional rows that
are linear combinations of the first ones. We can observe that the results in Table
7.4 are even better that those in Table 7.3. By “Conditioning” we understand here
the ratio of the largest singular value of the constraint matrix to the smallest nonzero
one. The constraint matrix corresponding to P has in these experiments P nonzero
singular values of 1.5 ∗ P .

Problem 7.2. The second problem illustrates the performance of the algorithm
on the solution of a model elliptic boundary variational inequality introduced in [14]
modifying the experimental code produced by Horák [17]. We shall describe it here
only briefly, referring the interested reader to [14] or [17].

Let us start from the following continuous problem:

Minimize q(u1, u2) =

2∑
i=1

(∫
Ωi

|∇ui|2dΩ −
∫

Ωi

fuidΩ

)

s.t. u1(0, y) ≡ 0 and u1(1, y) ≤ u2(1, y) for y ∈ [0, 1],

(7.1)

where Ω1 = (0, 1)×(0, 1), Ω2 = (1, 2)×(0, 1), f(x, y) = −5 for (x, y) ∈ (0, 1)×[0.75, 1),
f(x, y) = 0 for (x, y) ∈ (0, 1) × (0, 0.75), f(x, y) = −1 for (x, y) ∈ (1, 2) × (0, 0.25),
and f(x, y) = 0 for (x, y) ∈ (1, 2)× (0.25, 1). This problem is semicoercive due to the
lack of Dirichlet data on the boundary of Ω2.

The solution of the model problem may be interpreted as the displacement of two
membranes under the traction f . The left membrane is fixed on the left and the left
edge of the right membrane is not allowed to penetrate below the right edge of the
left membrane. The solution is unique because the right membrane is pressed down.
More details about this model problem, including some other results, may be found
in [14].

To solve the problem (7.1), we used the well established FETI domain decompo-
sition method with the natural coarse grid preconditioning that was introduced for
linear problems by Farhat, Mandel, and Roux (e.g., [22]) and adapted to variational
inequalities by Friedlander, Gomes, Santos, and the present author [12, 14]. Each
domain Ωi, i = 1, 2, was first decomposed into identical squares Ωij with sides of
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the length H. The squares were discretized by regular grids defined by the stepsize
h. We fixed the ratio H/h = 4 and considered H = 1/2, 1/4, and 1/8. After having
introduced the equality constraints and the inequalities to enforce continuity across
the artificial interfaces between the squares and nonpenetration of the edges of the
membranes, respectively, indexing contiguously the nodes and entries of correspond-
ing vectors in the subdomains, and using the finite element discretization, we get the
discretized version of problem (7.1) with the auxiliary domain decomposition that
reads

min
1

2
uTKu− fTu s.t. BIu ≤ 0 and BEu = 0.(7.2)

In (7.2), K = diag(K1, . . . ,Ks), s = 1, . . . , 2/H2 denotes a positive semidefinite block-
diagonal stiffness matrix, the full rank matrices BI and BE describe the discretized
nonpenetration and gluing conditions, respectively, and f represents the discrete ana-
logue of the linear term.

Introducing the notation

λ =

[
λI

λE

]
and B =

[
BI

BE

]
,

we can write the Lagrangian associated with problem (7.2) briefly as

L(u, λ) =
1

2
uTKu− fTu + λTBu.

It is well known [3] that (7.2) is equivalent to the saddle point problem

Find (u, λ) s.t. L(u, λ) = sup
λI≥0

inf
u

L(u, λ).(7.3)

After eliminating the primal variables u from (7.3), we shall obtain the minimization
problem

min Θ(λ) s.t. λI ≥ 0 and RT (f −BTλ) = 0,(7.4)

where

Θ(λ) =
1

2
λTBA†BTλ− λTBA†f,(7.5)

A† denotes a generalized inverse that satisfies AA†A = A, and R denotes the full rank
matrix whose columns span the kernel of A. Let us recall that the multiplication by A†

may be efficiently evaluated by means of the triangular decomposition A = LLT [14].
We shall choose R so that its entries belong to {0, 1} and each column corresponds
to some floating auxiliary subdomain Ωij with the nonzero entries in the positions
corresponding to the indices of nodes belonging to Ωij .

Although problem (7.4) is much more suitable for computations than (7.2), further
improvement may be achieved by adapting some simple observations and the results
of Farhat, Mandel, and Roux [22]. Let us denote

F = BA†BT , G = RTBT , ẽ = RT f, d̃ = BA†f,

and let λ̃ solve Gλ̃ = ẽ. We can now transform the problem (7.4) to minimization on

the subset of the vector space by looking for the solution in the form λ = μ+ λ̃. Since

1

2
λ�Fλ− λ�d̃ =

1

2
μ�Fμ− μ�(d̃− Fλ̃) +

1

2
λ̃�Fλ̃− λ̃�d̃,
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problem (7.4) is, after returning to the old notation, equivalent to

min
1

2
λ�Fλ− λ�d s.t Gλ = 0 and λI ≥ −λ̃I(7.6)

with d = d̃− Fλ̃. It is possible [19] to find λ̃ such that λ̃I ≥ 0.
Our final step is based on observation that the problem (7.6) is equivalent to

min q(λ) s.t Gλ = 0 and λI ≥ −λ̃I(7.7)

where

q(λ) =
1

2
λT (PFP + ρ̂Q)λ− λTPd

and

Q = GT (GGT )−1G, P = I −Q,

denote the orthogonal projectors on the image space of G� and on the kernel of G,
respectively, and ρ̂ is a (small) positive number. Let us point out that ρ̂ is important
rather from the point of view of analysis than in computations. In what follows we
shall denote by ρi the sum of ρ̂ and of the penalty parameter in the augmented La-
grangian. Since we implemented Step 1 of Algorithm 3.1 with the conjugate gradient
method, it is important to note that image spaces of the projectors P and Q are the
invariant subspaces of the Hessian PFP + ρQ of the augmented Lagrangian for the
problem (7.7), so that the convergence of the conjugate gradients may be fast even
for large penalty parameters [9].

Each discretization of the model problem (7.1) is determined by a couple D =
(H,h) of the decomposition and the discretization parameter H and h, respectively.
Thus using the domain decomposition and the discretization of the model problem
(7.1), we get the set of quadratic programming problems

min qD(λ) s.t. CDλ = 0 and λ ≥ eD, qD = λTADλ− bTDλ,(7.8)

that are defined for each

D ∈ T = {D = (H,h) : 0 < h < H ≤ 1, h−1 ∈ N, H−1 ∈ N, H/h ∈ N}.

Let us recall that the Hessian AD is in this case the product of eight large and sparse
matrices. More details concerning the application of FETI may be found in [14, 17].

We first solved the problems by Algorithm 3.1 with ρ0 = 100, η = ‖bD‖, β = 10,
and μ0 = 0 using the stopping criteria

∥∥gPD(λ, μ, 0)
∥∥ ≤ 10−4 ‖bD‖ and ‖CDλ‖ ≤

10−4 ‖bD‖, where we denoted by gD the gradient of the augmented Lagrangian for the
problem (7.7) with the discretization D. We kept H/h fixed so that the assumptions of
Theorem 5.3 were satisfied [19]. The results are given in Table 7.5. We can see that the
number of the outer iterations is only 3 regardless the value of the parameter H, the
dimension of the problem, and even the number of constraints. An interesting feature
of the experiments is also the small number of the conjugate gradient iterations due
to efficiency of both FETI and our algorithms. We shall discuss this point elsewhere.

Theorem 5.2 indicates that the rate of convergence of the feasibility error depends
on the initial penalty parameter. To illustrate this feature, we used varying initial
penalty parameter to solve our model problem with H/h = 8 and H = 1/4. The
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Table 7.5

Performance of the semimonotonic algorithm for H/h = 4.

Dual Number Outer Primal cg
H dimension of constraints iterations dimension iterations

1/2 47 6 3 200 23
1/4 239 28 3 800 24
1/8 1055 120 3 3200 38

Table 7.6

Development of the feasibility error ‖Cxk‖.

cg Outer
Penalty iterations iterations ‖Cx0‖ ‖Cx1‖ ‖Cx2‖ ‖Cx3‖

1 23 4 6.19e− 2 1.82e− 3 8.90e− 5 4.23e− 6
10 28 3 3.96e− 4 1.97e− 5 1.04e− 6

100 28 2 4.14e− 5 2.23e− 6
1000 24 1 4.16e− 6

dimension of the dual and the primal problem was 447 and 2592, respectively, with 28
equality constraints. The record of the development of the feasibility error is given in
Table 7.6. We observed that the penalty parameter was updated only once, after the
first iteration with ρ0 = 1, which was the only case when we recorded the decrease of
the augmented Lagrangian.

The values of the augmented Lagrangian are given in Table 7.7. Observe that
the algorithm can generate for the small penalty parameters values of the augmented
Lagrangian that are greater than its value at the solution. We conclude that the
results are in agreement with the theory.

8. Comments and conclusions. We have introduced a new update rule for
the penalty parameter that enforces at a certain stage monotonic increase of the aug-
mented Lagrangian. We implemented this rule using our earlier algorithm and proved
global convergence results for the augmented Lagrangian method. This method uses
adaptive precision control in the solution of the auxiliary problems for quadratic
programming problems with equality constraints. The precision is controlled by the
feasibility of the current iteration. The new feature of the algorithm is that it does not
take any special measures to treat the iterations that are not regular and the theory
supports convergence even in the case when the equality constraints are dependent.

The algorithm is a variant of the well established algorithm [15] which has already
proved to be useful in the development of scalable algorithms for the numerical so-
lution of elliptic variational inequalities [17] and for the solution of contact problems
of elasticity [12]. In fact, if ρ0 is chosen in the algorithm [15] to be sufficiently large
so that it is not updated, and if all the iterations are regular, then the performance
of both algorithms is identical. This paper may be considered a complement of [15]
in the sense that it explains what happens when the penalty parameter in this type
of algorithm is relatively small without any reference to convergence of the Lagrange
multipliers.

The main results of the paper are the bounds on the feasibility error and the
penalty parameters that do not depend on the form of constraints. When applied to
a class of problems with the spectrum of the Hessian matrix in a given interval, the
algorithm returns the solution in O(1) matrix-vector multiplications. In combination
with the recent results on the solution of the bound constrained quadratic program-
ming problems [10, 21], it follows that if the cost of the matrix-vector multiplication
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Table 7.7

Values of the augmented Lagrangian Lk = L(xk, μk, ρk).

Penalty L0 L1 L2 L3

1 −.2043688 −.2090037 −.2076275 −.2075860
10 −.2084112 −.2075881 −.2075860

100 −.2076722 −.2075859
1000 −.2075946

by the Hessian matrix is proportional to its dimension, the algorithm finds the approx-
imate solution to the prescribed relative precision at the optimal (i.e., asymptotically
proportional to the dimension of the problem) cost. The results were also confirmed
numerically on the solution of two model problems and were shown to be valid even
for linearly dependent constraints. The result of the paper is an important ingredi-
ent in the development of scalable algorithms for variational inequalities. We shall
describe this application in more detail elsewhere.

Let us recall that there are algorithms with even superlinear convergence (e.g.,
variants of the primal-dual interior point methods [30]), but their typical step re-
quires the solution of an auxiliary ill conditioned linear problem which may be, for
sufficiently large and sparse problems, much more expensive than the solution of the
whole problem by the algorithm presented here.
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with the numerical experiments and reading the paper. My special thanks go to A.
R. Conn and the anonymous referee for their valuable comments that resulted in
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Abstract. A variant of Murat and Tartar’s div-curl lemma is stated and proved for Nédélec’s
edge elements. Given two sequences of vector fields of this type, converging weakly in L2 as the mesh
width tends to 0, we prove that their scalar product converges in the sense of distributions when one
of the sequences consists of so-called discrete divergence-free fields whereas the other has relatively
compact curl in H−1. The proof uses a uniform norm equivalence related to discrete compactness
properties of vector finite element spaces and a super-approximation property of scalar finite element
spaces.
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1. Introduction. Given two sequences of vector fields converging weakly in L2,
the div-curl lemma of Murat [29] and Tartar [37], recalled in Theorem 1.1 below,
gives sufficient conditions under which their scalar product converges to the right
scalar field in the weak-star sense of distributions. Following Schwartz, the space of
compactly supported smooth functions is denoted D, and the space of distributions,
which contains L1 and is dual to D for a certain topology, is denoted D′.

Theorem 1.1. Suppose (uh) and (u′
h) are sequences of vector fields converging

weakly in L2 to u and u′. Suppose, furthermore, that (div uh) is relatively compact in
H−1 and that (curlu′

h) is relatively compact in H−1. Then for each φ ∈ D we have

lim
h

∫
(uh · u′

h)φ =

∫
(u · u′)φ.(1.1)

Following Folland [20] we shall refer to weak-star as vague convergence, since
this leads to adjectives more easily. Thus (1.1) expresses that the sequence (uh · u′

h)
converges vaguely to u · u′ in D′.

Over the years the curl conforming finite element (FE) spaces constructed by
Nédélec [31, 32], also referred to as edge elements since the principal degrees of free-
dom are attached to the edges, have emerged as the spaces of choice for discretizing
Maxwell’s equations (Cessenat [12], Jackson [24], Nédélec [33]). This success is based
on numerous numerical and theoretical studies; for surveys and references, see Monk
[28], Hiptmair [23], and Joly [25]. For the purposes of this paper we notice in partic-
ular that a discrete compactness property of Kikuchi [27] has been used to show that
edge element spaces do not yield spurious eigenvalues when used to compute eigen-
values of the curl curl operator, contrary to some tempting so-called nodal FE spaces
(see Boffi, Brezzi, and Gastaldi [4], Boffi, Fernandes, and Gastaldi [5], and Boffi [6]).

In this paper we prove another good property of edge elements, this time related
to nonlinear convergence theory. Most numerical schemes of electromagnetics do not
offer direct control of the divergence of the discrete vector fields. However, it is widely
acknowledged that the success of edge elements is related to weak divergence control.
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In the simplest case the mechanism is as follows: Let Xh denote the space of lowest
order Nédélec edge elements on a simplicial triangulation with mesh width h, and let
Yh denote the continuous piecewise affine functions on the same triangulation. The
first (by now standard) remark is that the cohomology group of the sequence

Yh
grad
−→ Xh

curl
−→ L2,(1.2)

has the dimension of its continuous counterpart, essentially because simplicial coho-
mology is equivalent to De Rham cohomology. This accounts for the naturality of
considering Yh and Xh together and has attracted much interest in the numerical
analysis community; see Arnold [2]. We denote by Ỹh the intersection Yh ∩ H1

0. In
the Galerkin formulation of electromagnetic problems the only information available
a priori on the divergence of an electric field uh ∈ Xh is through the graph{(

ph,

∫
uh · grad ph

)
: ph ∈ Ỹh

}
.(1.3)

How does this discrete divergence information translate into H−1 estimates on div uh?
For instance a basic question is, suppose that we have a sequence (Th) of meshes with
mesh width h → 0, yielding sequences of spaces (Xh) and (Yh) and suppose that (uh)
is a sequence of vector fields uh ∈ Xh, bounded in L2 and discrete divergence-free in
the sense that

∀ph ∈ Ỹh,

∫
uh · grad ph = 0;(1.4)

is (div uh) relatively compact in H−1?
I do not know the answer to this question but if affirmative, then a direct conse-

quence of Theorem 1.1 would be Corollary 4.2. One of the main goals of this paper
is nevertheless to prove this corollary. It is a special case of Theorem 4.1, which is a
div-curl lemma for edge elements paralleling Theorem 1.1. Thus, loosely speaking, we
prove that with respect to the convergence of edge element vector fields under div-curl
control, everything happens as if the answer to the above question were affirmative.

The paper is organized as follows. In section 2 we introduce the general setting
we shall use in this paper and check that the edge element spaces fit into it. In
section 3 we introduce some tools used to prove the proposed div-curl lemma. This
proof is provided in section 4. Finally in section 5 we establish some links between the
estimates proved in this paper, other estimates on discrete Helmholtz decompositions,
and the previously mentioned discrete compactness property of Kikuchi.

2. Setting.

2.1. Generalities. Let Ω be a connected bounded domain in R
3 with a smooth

boundary. For simplicity we suppose that Ω has the topological property that the
kernel of the curl operator on L2 = L2(Ω) is exactly the range of the gradient on H1 =
H1(Ω). The extension of the following results to general topology is straightforward
using the fact that the edge elements approximate the L2 realizations of cohomology
groups (harmonic vector fields) extremely well (see, e.g., section 2.3 in [15]). The
standard norms and seminorms on Hk are denoted ‖ · ‖k and | · |k, respectively.

Let X denote the space L2, W the kernel of the curl : X → H−1, and V its L2

orthogonal in X. Thus we have

W = {grad p : p ∈ H1},(2.1)
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and, denoting by n the exterior normal on ∂Ω,

V = {v ∈ L2 : div v = 0 and v · n|∂Ω = 0}.(2.2)

Let PV denote the projection with range V and kernel W . It is nothing but the
L2 projection onto V and it preserves the curl; i.e., for all vector fields u ∈ L2,

curlPV u = curlu.(2.3)

A less straightforward property of V is the following.
Proposition 2.1. On V , ‖ curl(·)‖−1 is a norm equivalent to the L2 norm.
Proof. The map curl : V → H−1 is continuous and injective, so it remains to

prove that it has closed range. By the closed range theorems it suffices to prove that
the range of curl : H1

0 → L2 is closed. However, this latter space is a subspace of V ,
and Theorem 3.20 (which requires C1,1 regularity of the boundary) in [1] provides a
closed subspace U of H1

0 such that curl : U → V is an isomorphism. In particular the
range of curl : H1

0 → L2 must be V , which is closed. This completes the proof.
Remark. M. Costabel has indicated to me that by slightly adapting techniques

from Girault–Raviart [22] one can show that the above result remains true for domains
whose boundary is locally the graph of Lipschitz functions.

We will use the following setting. In accordance with widespread notational con-
ventions for FE discretizations, we consider families indexed by a given countable
set of positive reals accumulating only at 0. The dummy variable is denoted h and
we are interested in the limit h → 0. Let (Xh) and (Yh) denote two sequences of
finite-dimensional spaces such that

Yh ⊂ H1 and Xh ⊂ {u ∈ L2 : curlu ∈ L2}.(2.4)

We suppose that Yh contains the constant scalar fields and that the operator grad
maps Yh onto the kernel Wh of the curl operator restricted to Xh. We denote by Vh

the L2-orthogonal of Wh in Xh. Thus we have an exact sequence

R → Yh → Xh → L2,(2.5)

and L2-orthogonal splittings

Xh = Vh ⊕Wh.(2.6)

We also put Ỹh = Yh ∩H1
0, define W̃h = grad Ỹh, and denote by Ṽh the L2-orthogonal

of W̃h in Xh.
Some approximation properties are also assumed for (Xh) and (Yh) throughout

the rest of this paper without further notice:

∀u ∈ L2, lim
h→0

inf
uh∈Xh

‖u− uh‖0 = 0,(2.7)

∀p ∈ H1, lim
h→0

inf
ph∈Yh

‖p− ph‖1 = 0,(2.8)

∀p ∈ H1
0, lim

h→0
inf

ph∈Ỹh

‖p− ph‖1 = 0.(2.9)

Of course all FE spaces satisfy them, and they can be interpreted as the pointwise
convergence of the corresponding L2 and H1 projectors.
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Unless specified otherwise, the above hypotheses are the only ones we assume in
the next sections of the paper. However, for most of our results one or two of the
following assumptions will play a crucial role.

UNE (uniform norm equivalence). There is C > 0 such that

∀h ∀vh ∈ Vh, ‖vh‖0 ≤ C‖ curl vh‖−1.(2.10)

SA (super-approximation). For any function φ ∈ D (smooth and compactly
supported) we have

lim
h→0

sup
ph∈Yh

inf
p̃h∈Ỹh

‖φph − p̃h‖1/‖ph‖1 = 0.(2.11)

When they are needed, we will specify them as part of the hypotheses of the state-
ments.

Remark. Since Yh is assumed to contain the constant functions and D is dense in
H1

0, (SA) implies (2.9).

2.2. Edge elements. Let (Th) be a family of simplicial meshes on Ω such that
(in accordance with widespread notational practice) the mesh width of Th is h. We
suppose furthermore that (Th) is shape-regular and uniform in the standard senses
(see, e.g., Braess [8, p. 61]), so that in particular inverse inequalities can be used.

Given an integer k ≥ 1 we consider (for each h) on Th the edge element space Xh of
Nédélec of the first or second family and constructed with (incomplete vector) polyno-
mials of maximum degree k, as well as the associated space Yh of continuous piecewise
polynomial functions. We suppose that these spaces have been adequately fitted near
the curved boundary as in Dubois [19]. These spaces fit into the above setting, and
in the next two propositions we check that they also satisfy (UNE) and (SA).

Proposition 2.2. The family (Xh) satisfies (UNE).
As we shall see this is a very strong statement. For instance it is a considerable

strengthening of Proposition 4.6 in [1], but has a more restrictive boundary regularity
hypothesis. It is unknown to me if the present proposition remains true for Lipschitz
domains or without the uniformity hypothesis on the meshes.

Proof. Let Πh denote the standard edge element interpolator. It maps curl-
free fields to curl-free fields, due to the commuting diagram property of standard
interpolation operators. For any vh in Vh, PV vh is in H1, due to our regularity
assumptions on the boundary, and has a piecewise smooth curl. Therefore Πh is well
defined on PV vh and we may write

curl(ΠhPV vh − vh) = curl Πh(PV vh − vh) = 0.(2.12)

Hence vh, PV vh, and ΠhPV vh have the same curl. Next we use a trick due to V.
Girault for which I refer to the proof of Lemma 4.1 in Ciarlet–Zou [16]. A Bramble–
Hilbert type error estimate for Πh, using the additional information available on
curl vh (when transported from the cells of Th to the reference cell, it lies in a fixed
finite-dimensional space), yields

‖ΠhPV vh − PV vh‖0 ≤ Ch|PV vh|1.(2.13)

Then Lemma 2.11 in [1] gives

‖ΠhPV vh − PV vh‖0 ≤ Ch‖ curl vh‖0,(2.14)

and we proceed as in the proof of Theorem 3.5 in [13].
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Putting wh = ΠhPV vh− vh ∈ Wh we remark that wh is L2-orthogonal to vh ∈ Vh

and (being a gradient) also to PV vh ∈ V . Hence we have

‖wh‖2
0 =

∫
wh · (ΠhPV vh − PV vh) ≤ ‖wh‖0‖ΠhPV vh − PV vh‖0.(2.15)

It follows that

‖wh‖0 ≤ Ch‖ curl vh‖0.(2.16)

Now, using an inverse inequality, we obtain

‖PV vh − vh‖0 ≤ ‖ΠhPV vh − PV vh‖0 + ‖ΠhPV vh − vh‖0(2.17)

≤ Ch‖ curl vh‖0(2.18)

≤ C‖ curl vh‖−1.(2.19)

Using Proposition 2.1 we deduce

‖vh‖0 ≤ ‖PV vh‖0 + ‖PV vh − vh‖0(2.20)

≤ C‖ curl vh‖−1,(2.21)

which is the desired result.
Proposition 2.3. The family (Yh) satisfies (SA).
Remark. In fact much more elaborate estimates are known and used in proofs

of super-convergence properties; see Wahlbin [39, pp. 36–37] for a discussion of the
techniques involved.

Remark. I thank one of the referees for showing me how to get rid of the uniformity
hypothesis on the meshes in the proof of this proposition.

Proof. Denote by k the maximum degree of the polynomials used to construct
the spaces Yh. Let Πh be the standard nodal interpolator. For any tetrahedron T we
denote by hT its diameter, and by ‖ · ‖T,i and | · |T,i the standard Hi(T ) norms and
seminorms, respectively.

Pick φ ∈ D. For each h, each ph ∈ Yh, and each tetrahedron T of Th, we may
write

‖φph − Πh(φph)‖T,1 ≤ Chk
T |φph|T,k+1(2.22)

≤ Chk
T

k∑
i=0

|ph|T,i,(2.23)

where we used first the standard Bramble–Hilbert lemma and second the Leibniz rule
together with the fact that the derivatives of ph of order k + 1 vanish. Next, for
2 ≤ i ≤ k, we use an inverse estimate (local to each T ) to obtain

|ph|T,i ≤ Ch1−i
T ‖ph‖T,1.(2.24)

Combining the above estimates and adding over all tetrahedra of Th yields

‖φph − Πh(φph)‖1 ≤ Ch‖ph‖1.(2.25)

This completes the proof.
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3. Three tools. The proof of the proposed div-curl lemma is based on the
following three results.

Lemma 3.1. Suppose (uh) is a sequence of vector fields uh ∈ Xh converging
weakly in L2 to u = v + w with v ∈ V and w ∈ W . Then with the decomposition
uh = vh + wh, with vh ∈ Vh and wh ∈ Wh, the sequences (vh) and (wh) converge

weakly to v and w in L2. A similar result holds for the splitting Xh = Ṽh ⊕ W̃h.
Proof. Put wh = grad ph with ph ∈ Yh with vanishing integral. Let Ph denote the

Galerkin projection onto the subspace of elements of Yh with vanishing integral, with
respect to the bilinear form

(p, p′) →
∫

grad p · grad p′.(3.1)

Then we have, for all p′ ∈ H1(Ω) with vanishing integral,

∫
grad ph · grad p′ =

∫
grad ph · gradPhp

′ =

∫
uh · gradPhp

′.(3.2)

Since (Php
′) converges strongly to p′ in H1 by the approximation property of (2.8),

the above quantity converges to

∫
u · grad p′ =

∫
w · grad p′.(3.3)

It follows that (wh) converges weakly in L2 to w. Therefore (vh) also converges weakly
to v.

To prove the similar result for the splitting Xh = Ṽh ⊕ W̃h one can use a similar
technique, relying on estimate (2.9) instead of estimate (2.8).

Proposition 3.2. Suppose (UNE) holds. Let (vh) be a sequence of vector fields
such that vh ∈ Vh. If (curl vh) converges to curl v in H−1 for some v ∈ V , then (vh)
converges to v in L2.

Proof. By Proposition 2.1, (PV vh) converges to v in L2. Also, if we let Ph denote
the L2 projection onto Xh, (Phv) converges to v in L2 by the approximation property
of (2.7). Moreover Ph maps V into Vh. We can now write

‖Phv − vh‖0 ≤ C‖ curlPhv − curl vh‖−1(3.4)

≤ C‖ curlPhv − curlPV vh‖−1(3.5)

≤ C‖Phv − PV vh‖0.(3.6)

It follows that (vh) converges to v.
Corollary 3.3. Suppose (UNE) holds. Let (vh) be a sequence of vector fields

such that vh ∈ Vh. If (curl vh) is relatively compact in H−1, then (vh) is relatively
compact in L2.

Proposition 3.4. Suppose (SA) holds. Suppose (vh) is a sequence of vector fields

vh ∈ Ṽh converging weakly in L2 to v, and (ph) is a sequence of scalar fields ph ∈ Yh

converging weakly in H1 to p. Then (vh ·grad ph) converges vaguely to v ·grad p in D′.
Proof. Pick φ ∈ D. We have

∫
(vh · grad ph)φ =

∫
vh · grad(φph) −

∫
(vh · gradφ)ph.(3.7)
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Since vh ∈ Ṽh, the first term can be replaced by

∫
vh · grad(φph − p̃h)(3.8)

for any p̃h ∈ Ỹh. It converges to 0 by (SA).
In the second term we remark that (vh ·gradφ) converges weakly to v ·gradφ in L2,

whereas (ph) converges strongly in L2 by the compactness of the injection H1 → L2.
Therefore,

∫
(vh · grad ph)φ → −

∫
(v · gradφ)p =

∫
(v · grad p)φ.(3.9)

This completes the proof.

4. Div-curl lemma for edge elements. We are now ready to prove our main
result.

Theorem 4.1. Suppose both (UNE) and (SA) hold. Suppose (uh) and (u′
h) are

sequences of vector fields uh, u
′
h ∈ Xh converging weakly in L2 to u and u′. Suppose,

furthermore, that with the decomposition uh = vh + grad ph for vh ∈ Ṽh and ph ∈ Ỹh,
(ph) is relatively compact in H1

0, and (curlu′
h) is relatively compact in H−1.

Then (uh · u′
h) converges vaguely to u · u′ in D′.

Proof. Decompose also u′
h = v′h + grad p′h with v′h ∈ Vh and p′h ∈ Yh. Recall that

by Lemma 3.1, all terms of the decompositions converge weakly. The limits will be
denoted by skipping the subscript h.

Pick φ ∈ D. Each
∫

(uh · u′
h)φ can be decomposed into several terms studied

separately.
First, we remark that (grad ph) converges strongly in L2 by the hypothesis. There-

fore we have ∫
(grad ph · u′

h) φ →
∫

(grad p · u′)φ.(4.1)

Next, we remark that by Proposition 3.2, (v′h) converges strongly in L2 to v. Hence
we have ∫

(vh · v′h)φ →
∫

(v · v′)φ.(4.2)

Finally, we remark that by Proposition 3.4 we have

∫
(vh · grad p′h) φ →

∫
(v · grad p′)φ.(4.3)

This completes the proof.
A useful special case of Theorem 4.1 is the following.
Corollary 4.2. Suppose both (UNE) and (SA) hold. Suppose (uh) and (u′

h) are
sequences of vector fields uh, u

′
h ∈ Xh converging weakly in L2 to u and u′. Suppose

furthermore that uh is discrete divergence-free (i.e., is in Ṽh) and that (curlu′
h) is

bounded in L2.
Then (uh · u′

h) converges vaguely to u · u′ in D′.
The next remark shows that on one point the hypothesis of Theorem 4.1 is not

strictly stronger than that of Theorem 1.1.
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Remark. Suppose (uh) is a sequence of vector fields uh ∈ Xh such that (div uh)
is relatively compact in H−1. Then with the decomposition uh = vh + grad ph, for
vh ∈ Ṽh and ph ∈ Ỹh, (ph) is relatively compact in H1

0.
Proof. This follows from the uniform continuity and pointwise convergence in H1

0

of the Galerkin projectors onto Ỹh with respect to the bilinear form with expression
(3.1).

5. On discrete compactness. In this section we provide results on the rela-
tionship between the estimates of this paper and some more well-known ones.

First we show that (UNE) implies a gap property of discrete Helmholtz or Hodge
decompositions, which in turn implies a discrete compactness property of edge el-
ements in the sense of Kikuchi [27] (with natural rather than essential boundary
conditions for the curl operator). The gap property proved useful in analyzing some
integral equations describing electromagnetic phenomena (Christiansen [13] and Buffa
and Christiansen [11]) whereas the discrete compactness property is crucial in the
analysis of discrete eigenvalue problems of electromagnetics (see in particular Boffi,
Brezzi, and Gastaldi [4] and Boffi, Fernandes, and Gastaldi [5]).

Then we show that a weakened (local) version of discrete compactness can be
deduced from the proposed discrete div-curl lemma (without reference to (UNE) or
(SA)).

Suppose G is a Hilbert space such that L2 ⊂ G ⊂ H−1 with continuous inclusions.
Suppose furthermore that the injection G → H−1 is compact.

Proposition 5.1. Suppose (Xh) satisfies (UNE). Then we have

lim
h→0

sup
vh∈Vh

‖vh − PV vh‖0/‖ curl vh‖G = 0.(5.1)

Proof. Indeed if this were not true we would have a subsequence (vh) with
vh ∈ Vh such that (‖ curl vh‖G) is bounded and (‖vh − PV vh‖0) does not converge
to 0. From it we can extract a subsequence such that (curl vh) converges weakly in
G. But then (curl vh) converges strongly in H−1. One obtains a contradiction with
Proposition 3.2.

Consider the Hilbert space XG of vector fields in L2 with curl in G equipped
with its natural norm ‖ · ‖0G. In XG let V G be the L2-orthogonal of (the closed
subspace) W = grad H1 and let δG(·, ·) denote the gap between subspaces in the sense
of Kato [26]. Thus for nonzero subspaces U,U ′ we have

δG(U,U ′) = sup
u∈U,‖u‖=1

inf
u′∈U ′

‖u− u′‖0G.(5.2)

Corollary 5.2. Suppose (Xh) satisfies estimate (5.1). Then we have

lim
h→0

δG(Vh, V
G) = 0.(5.3)

Proof. Just remark that

‖vh − PV vh‖0G = ‖vh − PV vh‖0 and ‖ curl vh‖G ≤ ‖vh‖0G,(5.4)

and conclude using estimate (5.1).
From this gap property in the case G = H0 = L2 one easily deduces the following

discrete compactness property. Let X0 denote the space of vector fields u in L2

such that curlu is in L2. Let V 0 denote the L2-orthogonal of the closed subspace
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W = grad H1 of X0. The elements of V 0 thus have vanishing divergence and vanishing
normal component on ∂Ω. By a result of Weber, for which we refer to Theorem 2.8
in [1], the space V 0, when equipped with the norm inherited from X0, is compactly
embedded in L2. This result has the following discrete analogue.

Corollary 5.3. Suppose (Xh) satisfies the gap property (5.3) and that (vh) is a
sequence of vector fields vh ∈ Vh, which is bounded in X0. Then there is a subsequence
which converges in L2.

Proof. If (vh) is such a sequence, then (PV vh) is bounded in V 0 and (‖vh−PV vh‖0)
tends to 0.

Concerning directly the relationship between Theorem 4.1 and the discrete com-
pactness, we make the following remark.

Proposition 5.4. Suppose that (Xh) is a family of subspaces (not necessarily
satisfying (UNE) or (SA) a priori) for which the conclusions of Theorem 4.1 (resp.,
Corollary 4.2) are true. Then for each sequence (uh) of vector fields uh ∈ Ṽh which
is bounded in L2 and such that (curluh) is relatively compact in H−1 (resp., bounded
in L2), there is a subsequence converging in L2

loc.
Proof. Indeed we can extract a subsequence converging weakly in L2 to some u.

Then we have, for all φ ∈ D, ∫
|uh|2φ →

∫
|u|2φ.(5.5)

Following standard procedure we deduce∫
|uh − u|2φ =

∫
|uh|2φ− 2

∫
(uh · u)φ +

∫
|u|2φ → 0,(5.6)

which is a characterization of L2
loc convergence.

In other words, the above local discrete compactness property can be viewed as
the special case of the discrete div-curl lemma where the sequences (uh) and (u′

h) are
equal. Furthermore, we remark that in the absence of boundary conditions on uh one
should not expect to be able to strengthen convergence from L2

loc to L2 in this result;
see Proposition 2.7 in [1].

6. Discussion. We close this paper with some remarks.
Of course, if an entire physical field is to be approximated numerically, a scheme

which is only vaguely converging is of little practical use. Indeed the consensus seems
to be to aim for rapid convergence in the energy norm. However, a method which
satisfies a given property (vague convergence, for instance) under the weakest of as-
sumptions shows a sign of robustness, in the sense that under extreme conditions
it performs as well as one can reasonably hope for. Therefore the above result can
be interpreted as a robustness property of edge elements with respect to a class of
nonlinearities.

It is sometimes useful to state properties of discretized electromagnetic fields in
terms of (nonsmooth) differentiable forms, a point of view developed by Bossavit [7]
(see Hiptmair [23] for more on this). Likewise the div-curl lemma of Murat and Tartar
can be stated in terms of differential forms (see, e.g., Taylor [38, pp. 358–359]). The
translation of the results of this paper into this framework is unproblematic. A case
of particular interest is when considering div conforming face elements [34, 10]. One
obtains a similar div-curl lemma for face elements based this time on the discrete
information on the curl (obtained by integrating against the curl of the naturally
associated edge element space).
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The question whether L2-bounded sequences in Ṽh (discrete vector fields which
are discrete divergence-free) have relatively compact divergence in H−1 is as of today
unsettled for the standard FE spaces and, as mentioned in the introduction, the
present paper can be seen as a circumvention of this question. The affirmative would
imply a slightly stronger version of Theorem 4.1 (the condition u′

h ∈ Xh can then be
dropped).

The div-curl lemma is closely related to Hardy space estimates (see, e.g., Coifman
et al. [17]) and a translation of the above results into uniform Hardy space estimates
for edge elements could be an important step forward. More generally, this lemma
is the prototype for so-called bilinear estimates which play a prominent role in the
analysis of many nonlinear PDE. The original motivation for the present work was
to develop some tools for the numerical analysis of the discretization of Yang–Mills
equations [14], where consequences of weak divergence control are investigated.
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Abstract. The quasi-interpolation operators of Clément and Scott–Zhang type are generalized
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1. Introduction. Quasi-interpolation operators, that is, operators achieving op-
timal rates of convergence also for classes of functions of low regularity have a long
history, for example, in spline theory (see, e.g., [24] for an overview). In connection
with the finite element method (FEM) such an operator was constructed by Clément
in [22], where he showed how H1-functions can be approximated by piecewise linear
functions. Subsequent refinements and variations include [5,13,16,20,21,27,36,38] to
account for higher order polynomials of fixed degree p, preservation of piecewise poly-
nomial boundary conditions, curvilinear elements, Hermite elements, and anisotropic
elements. Several of these refinements were done with a view to an application in
residual-based finite element error estimation as discussed in the monographs [4,7,40].

While quasi interpolation in the context of the h-version FEM is well documented
in the literature, the situation is less favorable for the p-version and particularly the
hp-version of the FEM, where the approximation properties of spaces of piecewise
polynomials are quantified in terms of both the local mesh size and the local poly-
nomial degree. The one-dimensional situation of polynomial approximation on an
interval has been thoroughly studied, and we refer the reader to [24] for an excel-
lent exposition of pertinent results. In higher dimensions, the situation is somewhat
less developed: Approximation results suitable for the application to the p-version
FEM/spectral method in higher dimensions can be found in the survey article [17]
(for L2-based weighted and unweighted Sobolev spaces on tensor product domains)
and [8,37] (likewise for L2-based Sobolev spaces), where, however, extra regularity of
the function to be approximated is assumed, namely, that it be in the Sobolev spaces
Hs for some s > d/2, where d ∈ N is the spatial dimension. Quasi-interpolation
operators making minimal regularity assumption have been constructed in [2, 3] (for
the Sobolev spaces W k,q); their approximation results include, however, logarithmic
factors if q �= 2.

In the present paper, we develop optimal quasi-interpolation operators suitable for
an application in the framework of the hp-version of the FEM. We exhibit two kinds
of closely related operators: Clément-type operators (see Theorem 3.1) defined on the

∗Received by the editors August 6, 2003; accepted for publication (in revised form) October 19,
2004; published electronically April 26, 2005.

http://www.siam.org/journals/sinum/43-1/43293.html
†MPI für Mathematik in den Naturwissenschaften, Inselstr. 22-26, D-04103 Leipzig, Germany.

Current address: Department of Mathematics, The University of Reading, PO Box 220, Reading
RG6 6AX, United Kingdom (j.m.melenk@reading.ac.uk).

127



128 J. M. MELENK

space L1 and Scott/Zhang-type operators (see Theorems 3.3, 3.4) defined on W 1,q (so
that traces on the boundary are defined) that preserve piecewise polynomial boundary
conditions. Both operators achieve optimal rates of convergence. The paper restricts
itself to problems in R

2. This restriction is largely due to the way the operators that
preserve piecewise polynomial boundary conditions are constructed, that is, to the
method of the proof of Theorems 3.3 and 3.4. Theorem 3.1 can readily be extended
to higher dimensions.

A particular application of the operators developed in the present paper is that
they permit the extension of the h-FEM residual-based error estimation to the hp-
FEM [34]. We illustrate the salient features in section 4.

This paper is organized as follows: In section 2, we introduce the necessary no-
tation, in particular γ-shape regular triangulations of two-dimensional domains and
the hp-FEM spaces of piecewise mapped polynomials. We emphasize that the ele-
ment maps need not be affine, which is an important aspect in hp-FEM, and that
variable approximation order is considered. Section 3, which is the heart of our
paper, presents the quasi-interpolation operators. Section 4 illustrates how the quasi-
interpolation operators of section 3 can be employed for reliable a posteriori error
estimation. Finally, section 5 is devoted to the proof of the approximation proper-
ties of our quasi-interpolation operators. Since polynomial approximation of W k,q-
functions on reference configurations and polynomial liftings rely on fairly technical
constructions, several of these constructions are relegated to the appendix.

2. Notation and assumptions. We will denote by N = {1, 2, . . . } the positive
integers; N0 = N ∪ {0} denotes the nonnegative integers.

2.1. Triangulations. We start with the standard definitions of meshes and tri-
angulations for two-dimensional domains.

A triangulation T of a set Ω ⊂ R
2 is a collection of elements K ∈ T ; associated

with each element K is an element map FK : K̂ → K, where the reference element K̂
corresponding to K is either the reference square S = (0, 1)2 or the reference triangle

T = {(x, y) ∈ R
2 | 0 < x < 1, 0 < y < min(x, 1 − x)}.(2.1)

We consider triangulations that satisfy the following standard conditions:
(M1) The element maps FK : K̂ → K = FK(K̂) are C1-diffeomorphisms between

K̂ and K; i.e., there exist domains K̂ ′ and K ′ with K̂ ⊂ K̂ ′, K ⊂ K ′ such
that FK is in fact a C1-diffeomorphism between K̂ ′ and K ′.

(M2) For two elements K, K ′ the intersection Γ := K ∩K ′ falls into exactly one of
the following categories: Γ is empty, or a vertex, or a whole edge, or K and K ′

coincide (i.e., F−1
K (Γ) and F−1

K′ (Γ) are edges, or vertices of the corresponding

reference elements K̂, K̂ ′). Additionally, we require the map

Q : F−1
K (Γ) → F−1

K′ (Γ) : x �→ (F−1
K′ ◦ FK)(x)

to be an affine homeomorphism.
(M3) Ω \ ∪K∈T is a set of Lebesgue measure zero.

A triangulation T is called γ-shape regular if additionally

h−1
K ‖F ′

K‖
L∞(K̂)

+ hK‖ (F ′
K)

−1 ‖
L∞(K̂)

≤ γ,(2.2)

where hK = diamK. We say that the triangulation is affine if all element maps
FK are affine maps. The restriction T |ω denotes the subset of T that represents the
triangulation of ω ⊂ Ω satisfying (M1)–(M3).
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Fig. 2.1. Left: interior reference patches ωint,6,1 and ωint,6,j for some j ∈ {2, . . . , 26}. Right:
boundary reference patches ωbdy,3,1 and ωbdy,3,j for some j ∈ {2, . . . , 23}.

For each element K ∈ T we denote by E(K) the set of edges of K and by N (K)
the set of vertices of K. Similarly, N (T ) denotes the set of all vertices of T and E(T )
the set of all edges. Setting

Î = (0, 1)

the assumption (M2) implies that we can define edge maps Fe : Î → e for each
e ∈ E(T ) by taking an element K such that e is an edge of K, then identifying the
edge F−1

K (e) of K̂ with Î via an affine map, and finally taking Fe as the restriction
of FK to F−1

K (e); the assumption (M2) guarantees that the map Fe obtained in this
way is independent of the choice of K. Additionally, we introduce the notion of the
patch ωV associated with a node V ∈ N (T ) by

ωV := {x ∈ Ω |x ∈ K for some K with V ∈ K}◦,(2.3)

where A◦ denotes the interior of the set A. We note that the patches ωV are open
subsets of Ω. Of importance will be the connectivity of the patches. Our tool for
classifying patches according to their connectivity will be the notion of reference
patches that we make precise in the following definition.

Definition 2.1 (reference patch). Reference patches are Lipschitz domains that
are either labeled interior or boundary patches. They are characterized as follows:

1. Interior patches: For each M ∈ N, M ≥ 3, we define 2M interior reference
patches ωint,M,j, j = 1, . . . , 2M , as follows: ωint,M,1 is defined to be the
regular polygon with M edges of length 1 that is centered at the origin 0 ∈ R

2

and is triangulated with M triangles all sharing the vertex 0. The remaining
2M−1 reference patches are obtained from this one by replacing one or several
of these isosceles triangles by parallelograms (see Figure 2.1).

2. Boundary patches: For each M ∈ N we define 2M boundary reference patches
ωbdy,M,j, j = 1, . . . , 2M , in the following way: ωbdy,M,1 ⊂ {(x, y) |x > 0, y >
0} is the polygon that consists of M isosceles triangles all sharing the vertex
0 ∈ R

2 and having angle π/(2M) at 0. The remaining 2M − 1 patches are
obtained from this one by replacing one or several of these isosceles triangles
by parallelograms (see Figure 2.1).

We will only consider triangulations whose patches can be related to these refer-
ence patches:

(M4) For each vertex V ∈ N (T ) there exists a reference patch ω̂V of the form
given in Definition 2.1 together with a homeomorphism FV : ω̂V → ωV with
FV (0) = V , which has the form

F−1
V |K = AK,V ◦ F−1

K ∀K ∈ T |ωV
,

where the maps AK,V : R
2 → R

2 are affine.
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V

Fig. 2.2. Example of a mesh excluded by (M4).

Remark 2.2. It is worth pointing out that slit domains are not excluded by (M4).
However, other kinds of domains that fail to be Lipschitz domain are not covered by
the present results: For example, domains such as the one depicted in Figure 2.2 are
not admitted since the vertex cannot be mapped to a boundary reference patch in the
way condition (M4) requires.

We finish this subsection by noting that the γ-shape regularity of the element
maps implies that only a finite number of elements can meet at a vertex.

Lemma 2.3. Let T be a γ-shape regular triangulation satisfying (M1)–(M3).
Then there exists a constant M ∈ N, which depends only on γ, such that

1. no more than M elements share a common vertex;
2. for any two elements K, K ′ with K ∩K ′ �= ∅ there holds M−1hK ≤ hK′ ≤

MhK .
If the triangulation satisfies additionally (M4), then the maps AK,V appearing in
condition (M4) satisfy

‖A′
K,V ‖L∞(K̂) + ‖A′−1

K,V ‖L∞(K̂) ≤ C

for some C > 0 that depends only on γ. Additionally, FV ∈ W 1,∞(ω̂V ) and F−1
V ∈

W 1,∞(ωV ), and we have the bound

h−1
V ‖F ′

V ‖L∞(ω̂V ) + hV ‖ (F ′
V )

−1 ‖L∞(ω̂V ) ≤ C, hV = min
K:V ∈N (K)

hK

for some C > 0 depending solely on γ.
Proof.
Step 1. The element maps FK are C1 up to the boundary of the reference elements.

The fact that the interior angles of the reference elements are nondegenerate and the
γ-shape regularity assumption (2.2) then imply that the interior angles of elements
K ∈ T are within (ε, π − ε) for an ε > 0, which depends solely on γ. The first claim
of the lemma then follows if we choose M ∈ N such that M ≥ 2π/ε.

Step 2. The γ-shape regularity assumption (2.2) also implies the existence of
C > 0 depending solely on γ such that

C−1hK ≤ |e| ≤ ChK ∀e ∈ E(K) ∀K ∈ T .

This fact together with the observation of the first step easily implies the second claim
after appropriately adjusting the constant M .

Step 3. We will only show that F−1
V ∈ W 1,∞(ωV ) with the corresponding bound

for the derivative. By assumption F−1
V |K ∈ C1(K) for each element K ∈ T |ωV

.
Then an elementwise integration by parts together with the observation F−1

V ∈
C(ωV ) implies that the weak derivative is elementwise given by (F−1

V )′|K = AK,V ·
(F−1

K )′. From this representation, we readily infer F−1
V ∈ W 1,∞(ωV ) and the desired

bound.
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2.2. Polynomial spaces. The finite element spaces that we consider are the
variable order piecewise mapped polynomials, an early implementation of which is
discussed in [23]: For each element K ∈ T , we choose a polynomial degree pK ∈ N

and collect these numbers in the polynomial degree vector p = (pK)K∈T . We then
define the space Sp(T ) ⊂ W 1,∞(Ω) by

Sp(T ) = {u ∈ C(Ω) |u|K ◦ FK ∈ ΠpK
(K̂)},(2.4)

where we set

Πp(K̂) =

{
Pp := span{xiyj | 0 ≤ i + j ≤ p} if K̂ = T ,

Qp := span{xiyj | 0 ≤ i, j ≤ p} if K̂ = S.
(2.5)

We will write Sp(T ) if the degree vector p satisfies pK = p for all K ∈ T . In this
case, we will also permit the choice p = 0, where S0(T ) reduces to a one-dimensional
space.

A key property of the spaces Sp(T ) is that we can identify “nodal shape functions”
that form a partition of unity; i.e., for each vertex V ∈ N (T ), we can find a function
ϕV ∈ S1(T ) such that

ϕV |Ω\ωV
≡ 0 and

∑
V ∈N (T )

ϕV ≡ 1 on Ω.(2.6)

A well-known consequence of the γ-shape regularity of the triangulation is that these
nodal shape functions satisfy for some constant C > 0, which depends solely on γ,

‖ϕV ‖L∞(Ω) ≤ 1, ‖∇ϕV ‖L∞(Ω) ≤ Ch−1
K ∀K ∈ T |ωV

.(2.7)

In the present paper we consider only γ-shape regular triangulations. Such trian-
gulations have the property that neighboring elements are comparable in size (cf.
Lemma 2.3). We impose a similar condition on the polynomial degree distribution:

γ−1pK ≤ pK′ ≤ γpK ∀K,K ′ ∈ T such that (s.t.) K ∩K ′ �= ∅.(2.8)

We will also employ the notation

pV := min{pK | V ∈ N (K)}, pe := min{pK | e ∈ E(K)}.(2.9)

2.3. Notation for Sobolev spaces. For domains Ω ⊂ R
2 and k ∈ N0, q ∈

[1,∞] we employ standard Sobolev spaces W k,q(Ω) as described in, e.g., [1]. For the
reference interval Î = (0, 1), κ ∈ (0, 1), and q ∈ [1,∞), we equip the space Wκ,q(Î)
with the Slobodeckij norm

‖u‖q
Wκ,q(Î)

= ‖u‖q
Lq(Î)

+

∫
Î

∫
Î

|u(x) − y(y)|q
|x− y|1+qκ

dx dy.(2.10)

We will also require the spaces W̃κ,q(Î), which consist of the functions u ∈ Wκ,q(Î)
such that their trivial extension (i.e., by zero) to R is an element of Wκ,q(R). This
space is equipped with the norm

‖u‖q
W̃κ,q(Î)

= ‖u‖q
Wκ,q(Î)

+

∫ 1

0

|u(x)|q
xκq

dx +

∫ 1

0

|u(x)|q
(1 − x)κq

dx.(2.11)
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In analogy with the spaces W̃κ,q(Î) we can define the spaces W̃κ,q
l (Î) if the trivial

extension to I ′ = {x ∈ R |x < 1} is in Wκ,q(I ′). This space is equipped with the
norm

‖u‖q
W̃κ,q

l (Î)
= ‖u‖q

Wκ,q(Î)
+

∫ 1

0

|u(x)|q
xκq

dx.(2.12)

We also note how functions transform under concatenation with the patch maps FV .
Lemma 2.4. Let T be a γ-shape regular triangulation satisfying (M1)–(M4). Let

q ∈ [1,∞]. Then for every patch ωV , V ∈ N (T ), and every u ∈ W 1,q(ωV ) we have
that û := u ◦ FV ∈ W 1,q(ω̂V ) and

‖û‖Lq(ω̂V ) ∼ h
−2/q
V ‖u‖Lq(ωV ), ‖∇û‖Lq(ω̂V ) ∼ h

1−2/q
V ‖∇u‖Lq(ωV ),(2.13)

where hV = minK:K⊂ωV
hK . The constants hidden in the ∼-notation depend solely

on γ and q.
Proof. We claim that the pull-back û is in W 1,q(ω̂V ). To see this, we first

consider the case q < ∞. For each element K of the patch ωV and its corresponding
element K ′ := F−1

V (K) ⊂ ω̂V , the assumption (M1) guarantees that FV |K′ ∈ C1(K ′)
and likewise F−1

V ∈ C1(K). Hence by standard properties of Sobolev space (see,
e.g., [1, Chap. III, Thm. 3.35]) we have for each element K that u◦FV |K′ ∈ W 1,q(K ′)
and the derivative satisfies (∇(u◦FV ))|K′ = (∇u◦FV )F ′

V . In order to see that u◦FV

is in W 1,q(ω̂V ) we have to check that the traces on the edges shared by two elements
K1, K2 of ω̂V coincide. This follows easily from the assumption (M3). The case
q = ∞ is obtained by inspection: Since the weak derivative has been identified as
(∇u ◦FV )F ′

V , one merely has to check that it is in L∞(ω̂V ), which is indeed the case.
The bounds (2.13) now follow from (2.2).

3. Quasi interpolation of nonsmooth functions. We present two types of
quasi-interpolation results for W 1,q-functions: In Theorem 3.1 we exhibit a quasi-
interpolation operator of Clément type; in Theorem 3.3 we present an operator that
additionally preserves homogeneous boundary conditions that may be imposed on
parts of the boundary. This latter operator is generalized in Theorem 3.4 to an
operator that preserves arbitrary piecewise polynomial Dirichlet boundary conditions.

In order to formulate these results, we introduce the following additional notation:
For e ∈ E(T ) we denote by N (e) the two endpoints of e, i.e., N (e) = {V ∈ N (T ) |V ∈
e}. Patches of order j ∈ N associated with an element K ∈ T or an edge e ∈ E(T )
are defined thus:

ω1
e :=

⋃
V ∈N (e)

ωV , ωj+1
e :=

⋃
V ∈N (T ):V ∈ωj

e

ωV , j = 1, 2, . . . ,(3.1)

ω1
K :=

⋃
V ∈N (K)

ωV , ωj+1
K :=

⋃
V ∈N (T ):V ∈ωj

K

ωV , j = 1, 2, . . . .(3.2)

3.1. Clément-type approximation. Quasi interpolation of Clément type takes
the following form.

Theorem 3.1 (Clément-type quasi interpolation). Let T be a γ-shape regular
triangulation of a domain Ω ⊂ R

2 satisfying (M1)–(M4) and let p be a polynomial
degree distribution satisfying (2.8). Then there exists a bounded linear operator Ihp :
L1(Ω) → Sp(T ) ⊂ L1(Ω), and there exists a constant C > 0, which depends solely on
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q ∈ [1,∞] and γ, such that for every u ∈ W 1,q(Ω) and all elements K ∈ T and all
edges e ∈ E(T )

‖u− Ihpu‖Lq(K) +
hK

pK
‖∇(u− Ihpu)‖Lq(K) ≤ C

hK

pK
‖∇u‖Lq(ω1

K),(3.3)

‖u− Ihpu‖Lq(e) ≤ C

(
he

pe

)1−1/q

‖∇u‖Lq(ω1
e).(3.4)

Proof. The proof can be found in section 5.2.

3.2. Scott–Zhang-type approximation. The operator Ihp of Theorem 3.1
does not preserve piecewise polynomial boundary conditions if applied to functions
of W 1,q(Ω). The operators of Theorem 3.1 can, however, be modified to have this
property.

Let a set B ⊂ E(T ) of boundary edges of the triangulation T be given, i.e.,

B ⊂ E(T ) and b ⊂ ∂Ω ∀b ∈ B.(3.5)

Next, we define for q ∈ (1,∞) the spaces

W 1,q
B,0 := {u ∈ W 1,q(Ω) |u|b = 0 for all b ∈ B},(3.6)

W 1,q
B,p := {u ∈ W 1,q(Ω) |u|b ◦ Fb ∈ Ppb

for all b ∈ B and (3.8) holds},(3.7)

where the continuity condition (3.8) is

for all b, b′ ∈ B and V ∈ N (b) ∩N (b′) there holds lim
x→V
x∈b

u(x) = lim
x→V
x∈b′

u(x).(3.8)

Remark 3.2. Since the edges of B are part of the boundary of ∂Ω, the function
values are understood in the sense of traces. In the case of slit domains appropriate
limits have to be taken.

We then have the following approximation results.
Theorem 3.3 (homogeneous boundary conditions). Let T be a γ-shape regular

triangulation of a domain Ω ⊂ R
2 satisfying (M1)–(M4). Let p be a polynomial degree

distribution satisfying (2.8). Let q ∈ (1,∞) and a set B ⊂ E(T ) of boundary edges be

given. Then there exists a linear operator Ihphom : W 1,q
B,0(Ω) → Sp(T ) ∩W 1,q

B,0(Ω), and
there exists a constant C > 0 depending solely on γ and q such that

‖u− Ihphomu‖Lq(K) +
hK

pK
‖∇(u− Ihphomu)‖Lq(K)≤C

hK

pK
‖∇u‖Lq(ω1

K),(3.9)

‖u− Ihphomu‖Lq(e)≤C

(
he

pe

)1−1/q

‖∇u‖Lq(ω1
e).(3.10)

Proof. The proof can be found in section 5.3.
A slightly different situation arises if nonhomogeneous piecewise polynomial bound-

ary conditions are to be preserved: The domain of influence in the local bounds is
enlarged, and we impose a restriction on the variation in polynomial degree distribu-
tion for elements near the Dirichlet part of the boundary.

Theorem 3.4 (Scott–Zhang-type quasi interpolation). Let q ∈ (1,∞) and let T
be a γ-shape regular triangulation of a domain Ω ⊂ R

2 satisfying (M1)–(M4). Let p
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be a polynomial degree distribution satisfying (2.8). Let B ⊂ E(T ) be a collection of
boundary edges. If q �= 2, assume additionally that

|pK − pK′ | ≤ γ ∀K,K ′ s.t. K ∩K ′ ∩ b �= ∅ for some b ∈ B.(3.11)

Then there exists a linear operator Ihpinhom : W 1,q
B,p(Ω) → Sp(T ) such that

(Ihpinhomu)|b = u|b ∀b ∈ B.

Furthermore, there exists a constant C > 0 depending only on γ and q such that for
all elements K ∈ T and all edges e ∈ E(T )

‖u− Ihpinhomu‖Lq(K) +
hK

pK
‖∇(u− Ihpinhomu)‖Lq(K) ≤ C

hK

pK
‖∇u‖Lq(ω4

K),

‖u− Ihpinhomu‖Lq(e) ≤ C

(
hK

pK

)1−1/q

‖∇u‖Lq(ω4
e).

Proof. The proof can be found in section 5.4.
Remark 3.5. The dependence on the domains ω4

K , ω4
e is not optimal. A careful

inspection of the proof allows slightly sharper bounds. For example, for elements K
such that ω4

K ⊂⊂ Ω we can replace ω4
K with ω1

K .

4. Residual-based a posteriori error estimation. The Clément-type inter-
polation operators can be utilized for a posteriori error estimation as discussed in [34].
The following proposition illustrates the type of results that can be obtained for a
simple model problem.

Proposition 4.1. Let T be a triangulation of a domain Ω ⊂ R
2 that satisfies

(M1)–(M4). Assume that a polynomial degree distribution p satisfies (2.8). For f ∈
L2(Ω) let u ∈ H1

0 (Ω) be the weak solution of

−Δu = f on Ω, u|∂Ω = 0.(4.1)

Let uFE ∈ Sp(T ) ∩H1
0 (Ω) be the finite element approximation to u. Then

‖∇(u− uFE)‖2
L2(Ω) ≤ C

∑
K∈T

η2
K ,(4.2)

where the local error indicators ηK are defined by

η2
K :=

(
hK

pK

)2

‖f + ΔuFE‖2
L2(K) +

∑
e∈E(K)
e �⊂∂Ω

he

pe
‖[∂nuFE ]‖2

L2(e) ,(4.3)

and [∂nuFE ] denotes the jump of the normal derivative of uFE across the edge e. The
constant C > 0 in (4.2) depends solely on γ.

Proof. The proof follows along standard lines of residual-based a posteriori error
estimation as outlined, for example, in [40]. We have the characterization

‖∇(u− uFE)‖L2(Ω) = sup
v∈H1

0 (Ω)

R(v)

‖∇v‖L2(Ω)
, R(v) :=

∫
Ω

∇(u− uFE) · ∇v dx.

(4.4)
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From the standard Galerkin orthogonality satisfied by the finite element solution
uFE , we have R(v) = 0 for all v ∈ Sp(T ) ∩ H1

0 (Ω). In particular, therefore R(v) =

R(v−Ihphomv) for all v ∈ H1
0 (Ω). Breaking up the integral over Ω into a sum of integrals

over elements and an elementwise integration by parts yields for arbitrary v ∈ H1
0 (Ω)

R(v) = R(v − Ihphomv) =
∑
K∈T

∫
K

(f + ΔuFE)(v − Ihphomv) +

∫
∂K

∂nuFE (v − Ihphomv) ds.

Hence using the abbreviations rK := f + ΔuFE and re := [∂nuFE ] for the element
residuals and edge residuals, the Cauchy–Schwarz inequality and Theorem 3.3 yield

|R(v)| ≤
∑
K∈T

‖rK‖L2(K)‖v − Ihphomv‖L2(K) +
∑

e∈E(T )
e �⊂∂Ω

‖re‖L2(e)‖v − Ihphomv‖L2(e)

≤ C

{∑
K∈T

η2
K

}1/2 {∑
K∈T

‖∇v‖2
L2(ω1

K)

}1/2

≤ C

{∑
K∈T

η2
K

}1/2

‖∇v‖L2(Ω),

where, in the last step, we employed a variation of Lemma 2.3 to conclude the
existence of a constant M > 0 depending solely on γ such that each element K ∈ T
is contained in not more than M sets of the form ω1

K′ , K ′ ∈ T . This concludes the
argument.

Proposition 4.1 shows that the error estimator defined as the sum of the error
indicators (4.1) is reliable. A corresponding lower bound, also known as efficiency
estimate, is well known in the h-FEM. The difficulty in the present case of the hp-
version is that polynomial inverse estimates have to be employed. The resulting lower
bound then turns out to be independent of the local mesh size but dependent on the
local polynomial degree. We refer to [34] for more details.

5. Proofs of the approximation results of section 3. We prove Theo-
rems 3.1, 3.3, and 3.4 in turn, since Theorem 3.3 depends on Theorem 3.1, and
Theorem 3.4 depends on both Theorem 3.1 and Theorem 3.3. For the proof of The-
orem 3.1, we require polynomial approximation results on a reference configuration,
which we choose to be a hyper cube, in section 5.1.1. For the proof of Theorems 3.3
and 3.4, we additionally require polynomial lifting results that are provided in sec-
tion 5.1.2.

5.1. Polynomial approximation and lifting.

5.1.1. Polynomial approximation. For polynomial approximation on hyper
cubes we have the following result.

Theorem 5.1. Let d ∈ N and Ii, i = 1, . . . , d, be bounded intervals. Set I =
I1×· · ·× Id. Let R ∈ N. Then for each N ∈ N0 there exists a bounded linear operator
JR,N : L1(I) → QN (I) with the following properties: For each q ∈ [1,∞] there exists
a constant C > 0, which depends only on R, q, and I, such that for all N ≥ R − 1
and all 0 ≤ r ≤ R

JR,Nu = u ∀u ∈ QR−1,(5.1)

‖u− JR,Nu‖W l,q(I) ≤ C(N + 1)−(r−l)|u|W r,q(I), l = 0, . . . , r.(5.2)

Proof. The operator JR,N is constructed as the tensor product of one-dimensional
operators that are often employed in approximation theory. The detailed arguments
can be found in Appendix A.
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5.1.2. Polynomial liftings and extensions. In order to enforce polynomial
boundary conditions, polynomial lifting results are required.

Theorem 5.2. Let K be the reference triangle or the reference square. Let
Γ = Γ ⊂ ∂K be the union of closed edges of K. Let q ∈ (1,∞). Then there exists
a constant C > 0 with the following property: For each f ∈ C(Γ) such that f is a
polynomial of degree p on each edge contained in Γ, there exists a polynomial F ∈ Pp

if K is the triangle or F ∈ Qp if K is the square such that F |Γ = f and

‖F‖Lq(T ) ≤ C‖f‖Lq(Γ),

‖F‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ).

Moreover, the mapping f �→ F is linear, and it reproduces constant functions.
Proof. The proof can be found in Appendix B.2.1.
The lifting result Theorem 5.2 allows us to construct W 1,q-stable liftings from

the boundary of the reference element. Our constructions will require an additional
lifting where the Lq-norm of the lifting is smaller than that of Theorem 5.2. This is
the merit of the next proposition.

Proposition 5.3. Let K be the reference triangle or the reference square. Let
Γ = Γ ⊂ ∂K be a union of edges of K. Let q ∈ (1,∞). Then there exists C > 0 such
that for every f ∈ C(Γ), which is a polynomial of degree p ∈ N on each edge of K,
there exists a polynomial F (if K is the reference triangle, then F ∈ P3p; otherwise
F ∈ Q4p) such that F |∂Γ = f and

p‖F‖Lq(K) + ‖F‖W 1,q(K) ≤ C‖f‖W 1−1/q,q(Γ) + Cp1−1/q‖f‖Lq(Γ).

Furthermore, the mapping f �→ F is linear.
Proof. The proof can be found in Appendix B.2.2. We mention that the proof of

Proposition 5.3 can be modified so that F ∈ P	λp
 or F ∈ Q	λp
 for arbitrarily chosen
λ > 1. The constant C > 0 does depends on λ, however.

We will also employ the following one-dimensional extension result.
Lemma 5.4. Let Î = (0, 1), q ∈ (1,∞). Let k ∈ N0. Then there exists C > 0 such

that for every p ∈ N0 with p ≥ k there exists a linear operator Zp,p−k : Pp → Pp−k

with the following properties:

Zp,p−k1 = 1, (Zp,p−ku)(0) = u(0),

‖Zp,p−ku‖Lq(Î) ≤ C‖u‖Lq(Î), ‖Zp,p−ku‖W 1−1/q,q(Î) ≤ C‖u‖W 1−1/q,q(Î),

‖Zp,p−ku− u‖
W̃

1−1/q,q
l (Î)

≤ C‖u‖W 1−1/q,q(Î).

Proof. The proof can be found in Appendix C.
For q = 2 a sharper construction is possible, namely, to take the Gauß–Lobatto

interpolant.
Lemma 5.5. Let q = 2 and λ ∈ (0, 1). Denote by I�λp� : Pp → P�λp�, the Gauß–

Lobatto interpolation operator scaled to the interval Î. Then i�λp�1 = 1, (I�λp�u)(0) =
u(0) for all u ∈ Pp, and there exists C > 0 depending only on λ such that

‖I�λp�u‖L2(Î) ≤ C‖u‖L2(Î), ‖I�λp�u‖W 1/2,2(Î) ≤ C‖u‖W 1/2,2(Î),(5.3)

‖u− I�λp�u‖W̃ 1/2,2(Î)
≤ C‖u‖W 1/2,2(Î).(5.4)

Proof. The key step of the proof consists in stability estimates for the Gauß–
Lobatto interpolation and can be obtained by combining the results of [17, Rem. 13.5]
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(L2-stability of the Gauß–Lobatto interpolation when applied to polynomials), [17, eq.
(13.27)] (stability of the Gauß–Lobatto interpolation operator in H1), and a bound
in a weighted L2-space [17, Thm. 13.4]. For a detailed version of the proof, we refer
to [25, Lem. 4.1].

5.2. Proof of Theorem 3.1. The Clément-type interpolation operator Ihp is
constructed in two steps: For each patch ωV a local approximation IV operator is
constructed; in a second step, these local approximations are combined into a global
one using the ideas of the partition of unity method [33]. The local approximation
operator IV is defined on the corresponding reference patch ω̂V by extending to a
suitable square containing ω̂V and then employing the polynomial approximation
result (Theorem 5.1).

We start by recalling a result from [33].
Lemma 5.6. Let T be a γ-shape regular triangulation triangulation of a domain

Ω ⊂ R
2 satisfying (M1)–(M3). Let q ∈ [1,∞], and let p be an arbitrary polynomial

degree distribution. Let u ∈ W 1,q(Ω) and let, for each V ∈ N (T ), a function uV ∈
SpV −1(T |ωV

) be given, where pV is defined in (2.9). Then there exists C > 0 depending
solely on γ such that the function ũ :=

∑
V ∈N (T ) ϕV uV ∈ Sp(T ) and

‖u− ũ‖Lq(K) ≤ C
∑

V ∈N (K)

‖u− uV ‖Lq(K),

‖∇(u− ũ)‖Lq(K) ≤ C
∑

V ∈N (K)

[
‖∇(u− uV )‖Lq(K) +

1

hK
‖u− uV ‖Lq(K)

]
,

‖u− ũ‖Lq(e) ≤ C
∑

V ∈N (e)

‖u− uV ‖Lq(e).

Proof. We start by ascertaining ũ ∈ C(Ω). This follows easily from the support
properties of the functions ϕV ∈ C(Ω), namely, ϕ|Ω\ωV

≡ 0, together with uV ∈
C(ωV )∩L∞(ωV ). In order to see ũ ∈ Sp(T ) we have to make sure that (ϕV uV )◦FK ∈
ΠpK

(K̂) for all K ∈ T |ωV
for all V ∈ N (T ). This follows easily from ϕV ∈ S1(T )

and uV ∈ SpV −1(T |ωV
). The essential ingredient for proving the estimates is the

observation that
∑

V ∈N (K) ϕV ≡ 1 on K for every K ∈ T and
∑

V ∈N (e) ϕV ≡ 1 on e

for every e ∈ E(T ). The bounds on (u − ũ)|K then follow from the observation that
(u− ũ)|K =

∑
V ∈N (K) ϕV (u− uV ), where the sum extends over at most four terms,

and from the bounds (2.6) on the functions ϕV .
Lemma 5.7. Let T a γ-shape regular triangulation of a domain Ω ⊂ R

2 satisfying
(M1)–(M4). Assume that the polynomial degree distribution p satisfies (2.8). Then
for each vertex V there exists a bounded linear operator IV : L1(ωV ) → SpV −1(T |ωV

),
and there exists a constant C > 0, which depends solely on γ, such that for each
u ∈ W 1,q(ωV ), each K ∈ T |ωV

, and each edge e ∈ E(T |ωV
)

‖u− IV u‖Lq(K) +
hK

pK
‖∇(u− IV u)‖Lq(K) ≤ C

hV

pV
‖∇u‖Lq(ωV ),

‖u− IV u‖Lq(e) ≤ C

(
hV

pV

)1−1/q

‖∇u‖Lq(ωV ).

Proof. Consider a patch ωV . Condition (M4) provides the patch map FV : ω̂V →
ωV and Lemma 2.4 gives ûV = u|K ◦ FV ∈ W 1,q(ω̂V ) together with

‖ûV ‖Lq(ω̂V ) ≤ Ch
2/q
V ‖u‖Lq(ωV ), ‖∇ûV ‖Lq(ω̂V ) ≤ Ch

1−2/q
V ‖∇u‖Lq(ωV ).
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Let Ŝ be a square such that ω̂V ⊂⊂ Ŝ and denote by E : L1(ω̂V ) → L1(Ŝ) the
universal linear extension operator of [39]. We then have the existence of a constant
Cq > 0, which depends solely on q ∈ [1,∞] and ω̂V , such that

‖EûV ‖Lq(Ŝ) ≤ Cq‖ûV ‖Lq(ω̂V ), ‖EûV ‖W 1,q(Ŝ) ≤ C‖ûV ‖W 1,q(ω̂V ).

Choosing N = �(pV − 1)/2� in the approximation result (Theorem 5.1), we obtain

a bounded linear operator J1,N : L1(Ŝ) → QN ⊂ PpV −1 that reproduces constant
functions and satisfies

(pV + 1)‖v − J1,Nv‖Lq(Ŝ) + ‖∇(v − J1,Nv)‖Lq(Ŝ) ≤ C‖v‖W 1,q(Ŝ) ∀v ∈ W 1,q(Ŝ).

We next define the operator JpV
: L1(ω̂V ) → PpV −1 by

JpV
v := v + J1,N ◦ E(v − v), v :=

1

|ω̂V |

∫
ω̂V

v(x) dx.

JpV
is a bounded linear operator on L1(ω̂V ), and we obtain for W 1,q-functions

(pV +1)‖v−JpV
v‖Lq(ω̂V ) +‖∇(v−JpV

v)‖Lq(ω̂V ) ≤ C‖v−v‖W 1,q(ω̂V ) ≤ C‖∇v‖Lq(ω̂V ),

where in the last estimate we employed the second Poincaré inequality. Applying this
operator to the pull-back ûV , we obtain

(pV + 1)‖ûV − JpV
ûV ‖Lq(ω̂V ) + ‖∇(ûV − JpV

ûV )‖Lq(ω̂V ) ≤ C‖∇ûV ‖Lq(ω̂V )

≤ Ch
1−2/q
V ‖uV ‖Lq(ωV ).

Returning to the patch ωV , we observe that the function upV
defined on ωV by

upV
= (JpV

ûV ) ◦ F−1
V is an element of SpV −1(T |ωV

) (this is due to the fact that
elementwise FV is the composition of an affine map and the element map) and

(pV + 1)h
−2/q
V ‖uV − upV

‖Lq(ωV ) + h
1−2/q
V ‖∇(uV − upV

)‖Lq(ωV ) ≤ Ch
1−2/q
V ‖ûV ‖Lq(ωV ).

This leads to the desired bound on elements K ∈ T |ωV
. For the bound on an edge

e ∈ E(T |ωV
), we employ a trace theorem on ω̂V before transforming back to ωV .

Checking the steps of the construction, we see that the map uV �→ upV
is linear

and that it is at the same time a bounded linear map L1(ωV ) → PpV −1.
The constant in the last estimate does depend on the reference patch ω̂V . We

observe, however, that for a given (upper bound on) γ, only finitely many reference
patches have to be considered since only finitely many elements can abut on a vertex
(cf. Lemma 2.3). This concludes the argument.

Proof of Theorem 3.1. Theorem 3.1 now follows from combining Lemmata 5.6 and
5.7. For each vertex V , we construct the local approximation IV u ∈ SpV −1(T |ωV

)
with the aid of Lemma 5.7. The operator Ihp : L1(Ω) → Sp(T ) is then defined as

Ihpu =
∑

V ∈N (T )

ϕV IV u,

where the vertex shape functions ϕV ∈ S1(T ) have the support properties of (2.6).
The operator Ihp maps indeed into Sp(T ) since IV u ∈ spV −1(T |ωV

). By inspection,
we observe that Ihp : L1(Ω) → Sp(T ) is a bounded linear operator. Its approximation
properties, when applied to W 1,q-functions, follow from Lemmata 5.6 and 5.7.
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5.3. Proof of Theorem 3.3. We modify the approximation operator of Theo-
rem 3.1 so as to enforce homogeneous Dirichlet boundary conditions. Since we need
the trace theorem to hold, the operator is now defined on W 1,q(Ω) instead of L1(Ω).
The construction of this operator is again patch oriented. The difference is that we
will change the definition of the linear maps IV for V ∈ N (B). Here, we defined

N (B) :=
⋃
b∈B

N (b).(5.5)

We first analyze the prototypical situation on a boundary reference patch.
Lemma 5.8. Let q ∈ (1,∞). Let ω̂ = ωbdy,M,j for some M ∈ N and j ∈

{1, . . . , 2M} and denote by T̂ the triangulation of ω̂. Denote by Γ0 the edge of ω̂ lying
on the x-axis and by ΓM the edge lying on the y-axis (cf. Figure 5.1). Let ΓD be either
Γ0, ΓM , or Γ0 ∪ ΓM ∪ {0}. Denote W 1,q

ΓD,0(ω̂) = {u ∈ W 1,q(ω̂) |u|ΓD
= 0}. Then for

every p ∈ N0 there exists a bounded linear map Ip : W 1,q
ΓD,0(ω̂) → Sp(T̂ ) ∩W 1,q

ΓD,0(ω̂)
such that

(p + 1)‖u− Ipu‖Lq(ω̂) + ‖∇(u− Ipu)‖Lq(ω̂) ≤ C‖∇u‖Lq(ω̂),(5.6)

where the constant C > 0 is independent of p and u ∈ W 1,q
ΓD,0(ω̂).

Proof. We will demonstrate the result for the case ΓD = Γ0 ∪ΓM ∪{0}, the other
two cases being handled similarly. The construction of Ip is done in two steps: First,
we let Jp : L1(ω̂) → Pp be the linear operator of the proof of Lemma 5.7. It satisfies
for u ∈ W 1,q(ω̂)

(p + 1)‖u− Jpu‖Lq(ω̂) + ‖∇(u− Jpu)‖Lq(ω̂) ≤ C‖∇u‖Lq(ω̂).

In particular, from the multiplicative trace inequality (see, e.g., [19, Thm. 1.6.6]) and
the fact that u|ΓD

= 0, we get

‖Jpu‖Lq(ΓD) = ‖u− Jpu‖Lq(ΓD) ≤ C(p + 1)−(1−1/q)‖∇u‖Lq(ω̂),

‖Jpu‖W 1−1/q,q(ΓD) = ‖u− Jpu‖W 1−1/q,q(ΓD) ≤ C‖∇u‖Lq(ω̂).

The function Jpu does not, however, satisfy homogeneous boundary conditions on
ΓD. This is corrected in a second step by an element-by-element construction using
appropriate polynomial liftings. To that end, we enumerate the edges of T̂ emanating
from the origin in a counterclockwise fashion as depicted in Figure 5.1. Likewise,
the elements are labeled Ki, i = 0, . . . ,M − 1. Next, we observe that the functions
u0 := (u − Jpu)|Γ0 = (Jpu)|Γ0 and uM := (u − Jpu)|ΓM

= (Jpu)|ΓM
are polynomials

of degree p. Additionally, we note that each edge Γi, i = 0, . . . ,M , is homeomorphic
to the reference interval Î = (0, 1) by means of an affine map γi : Î → Γi, which
we may choose to satisfy γi(0) = 0 for i ∈ {0, . . . ,M}. We then define a function
z ∈ C(∪M

i=0Γi) by

z ◦ γi(x) := u0 ◦ γ0(x), x ∈ Î , i = 0, . . . ,M − 1,

z ◦ γM (x) := uM ◦ γM (x).

Clearly, for i ∈ {0, . . . ,M} we have

‖z‖Lq(Γi) ≤ C
[
‖u0‖Lq(Γ0) + ‖uM‖Lq(ΓM )

]
≤ C(p + 1)−1+1/q‖∇u‖Lq(ω̂).
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Γ0
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Γ2
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K0

K1

K2

x

y

Fig. 5.1. Numbering of elements and edges of a boundary reference patch for M = 3.

We next define for each element Ki the set

Γi,i+1 := Γi ∪ Γi+1 ∪ {0} ⊂ ∂Ki, i = 0, . . . ,M − 1.(5.7)

We then ascertain

‖z‖W 1−1/q,q(Γi,i+1) ≤ C‖Jpu‖W 1−1/q,q(ΓD) ≤ C‖u‖W 1,q(ω̂).

This follows easily from the fact that for two edges Γi, Γj with i �= j we have the
characterization (see, e.g., [28, Thm. 1.5.2.3])

‖z‖q
W 1−1/q,q(Γi∪Γj∪{0}) ∼ ‖ẑi‖qW 1−1/q,q(Î)

+ ‖ẑj‖qW 1−1/q,q(Î)
+

∫ 1

0

|ẑi(x) − ẑj(x)|q
xq−1

dx,

where we wrote ẑi = z ◦ γi, ẑj = z ◦ γj . Here, the constants hidden in the ∼-notation
depend solely on Γi, Γj , and q. We finally construct with the aid of Proposition 5.3

a function Z ∈ S4p(T̂ ) such that Z|Γi = z|Γi for all i ∈ {0, . . . ,M} and

(p + 1)‖Z‖Lq(Ki) + ‖∇Z‖Lq(Ki) ≤ C
[
‖z‖W 1−1/q,q(Γi,i+1) + (p + 1)1−1/q‖z‖Lq(Γi,i+1)

]
≤ C‖∇u‖Lq(ω̂), i = 0, . . . ,M − 1.

We conclude the argument by noting that the map u �→ Jpu+Z is linear and bounded.

Since Jpu + Z ∈ S4p(T̂ ), replacing p with �p/4� gives the desired result.
Proof of Theorem 3.3. The proof of Theorem 3.3 now follows by the same argu-

ments as that of Theorem 3.1. Merely for the patches ωV with V ∈ N (B) we replace
the local approximation IV u of Lemma 5.7 with the pushforward (IpV

ûV ) ◦ F−1
V of

IpV
ûV , where IpV

ûV with ûV = u|ωV
◦ FV is defined in Lemma 5.8.

5.4. Proof of Theorem 3.4.

5.4.1. Lifting from B. The proof of Theorem 3.4 follows along the same lines as
that of Theorem 3.3. The key difference is that additionally appropriate (polynomial)
liftings are required. Providing these is the purpose of the present subsection.

We start with a “vertex lifting” result on boundary reference patches that yields
the correct value at a boundary vertex. Given a collection of boundary edges B̂ of the
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reference patch ω̂, the spaces W 1,q

B̂,p
(ω̂) on ω̂ are defined analogously to the way the

spaces W 1,q
B,p(Ω) are defined in (3.6). We then have the following lemma.

Lemma 5.9. Let ω̂ = ω̂bdy,M,j for some M ∈ N, j ∈ {1, . . . , 2M}, and denote by

T̂ the triangulation of ω̂. Let p be a polynomial degree distribution on T̂ that satisfies
(2.8). If q �= 2, assume additionally

|pK − pK′ | ≤ k ∀K,K ′ ∈ T̂ .

Define p′ := min{pK − 1 |K ∈ T̂ } ∈ N0.

Let B̂ = {Γ0} or B̂ = {ΓM} or B̂ = {Γ0,ΓM} (cf. Figure 5.1). Then there exists
a constant C > 0 that depends solely on ω̂ (i.e., on M , j) and γ of (2.8), k (if q �= 2),

q, and there exists a bounded linear operator L : W 1,q

B̂,p
(ω̂) → Sp′

(T̂ ) such that

(Lu− u)(0) = 0,(5.8)

‖Lu− u‖W 1,q(ω̂) ≤ C‖∇u‖Lq(ω̂),(5.9)

‖(Lu− u) ◦ γb‖W̃ 1−1/q,q
l (Î)

≤ C‖∇u‖Lq(ω̂) ∀b ∈ B̂,(5.10)

where γb : Î → b is the affine parametrization of b ∈ B̂ satisfying γb(0) = 0.
Proof. We employ ideas similar to those of the proof of Theorem 3.3. For simplic-

ity of notation, we consider the case B̂ = {Γ0,ΓM}; the other two cases are treated in
a similar fashion. We denote by γi : Î → Γi, i = 0, . . . ,M , the affine parametrizations
of the edges Γi, which are assumed without loss of generality to satisfy γi(0) = 0. We
will construct Lu first on the edges Γi and in a second step define Lu on the elements
via appropriate liftings. We will only consider the case q �= 2—the reader may check
that in the case q = 2, the operator Zp,p′ of Lemma 5.4 can be replaced with the
Gauß–Lobatto interpolation operator Ip′ discussed in Lemma 5.5.

We write p = max{pK |K ∈ T̂ } ∈ N. Choose b ∈ B̂. Without loss of generality,
we assume that b = Γ0. By assumption u ◦ γ0 ∈ Pp, so that we may define l0 :=
Zp,p′(u ◦ γ0), where the linear operator Zp,p′ : Pp → Pp′ is the polynomial extension
operator of Lemma 5.4. We then have l0(0) = u(0) and additionally by properties of
Zp,p′ and the trace theorem

‖l0 − u|Γ0 ◦ γ0‖W̃ 1−1/q,q
l (Î)

≤ C‖u‖W 1−1/q,q(Γ0) ≤ C‖u‖W 1,q(ω̂),(5.11)

‖l0 − u|ΓM
◦ γM‖

W̃
1−1/q,q
l (Î)

≤ C‖u‖W 1,q(ω̂).(5.12)

Next, we define

(Lu)|Γi = l0 ◦ γ−1
i , i = 0, . . . ,M.

This gives (Lu)(0) = u(0). Furthermore, this definition of (Lu)|Γi in conjunction with
the bounds (5.11), (5.12) implies

‖Lu‖W 1−1/q,q(Γi,i+1) ≤ C‖u‖W 1,q(ω̂), i = 0, . . . ,M − 1,

where we abbreviate Γi,i+1 = Γi ∪ Γi+1 ∪ {0} as in (5.7). From the lifting result

(Theorem 5.2), there exists then a function Lu ∈ Sp′
(T̂ ) with

‖Lu‖W 1,q(ω̂) ≤ C‖u‖W 1,q(ω̂).(5.13)
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Furthermore, inspection of the construction of Lu reveals that u �→ Lu is linear. Since
the operator Zp,p′ of Lemma 5.4 satisfies Zp,p′1 = 1 and the lifting of Theorem 5.2
likewise ensures that constant functions are reproduced, we conclude L1 = 1. By a
standard argument, we can therefore strengthen (5.13) to yield (5.9). The estimates
(5.10) are ensured by the way we defined (Lu)|Γi for i ∈ {0, . . . ,M}.

Lemma 5.7 allows us to construct a lifting operator as follows.
Proposition 5.10. Let T be a γ-shape regular triangulation of a domain Ω ⊂

R
2 satisfying (M1)–(M4). Let B ⊂ E(T ) be a collection of boundary edges. Let

q ∈ (1,∞) be given. Assume that the polynomial degree distribution p satisfies (2.8)
and additionally (3.11) if q �= 2. Then there exists a constant C > 0, which depends

solely on γ and q, and there exists a bounded linear operator Ihplift : W 1,q
B,p(Ω) → Sp(T )

such that

(Ihpliftu)|b = u|b ∀b ∈ B,

(Ihpliftu)|K = 0 if ωK,B = ∅,

‖Ihpliftu‖Lq(K) + hK‖∇Ihpliftu‖Lq(K) ≤ C
[
‖u‖Lq(ωK,B) + hK‖∇u‖Lq(ωK,B)

]
if ωK,B �= ∅,

where for an element K ∈ T we define

ωK,B :=
⋃

V ∈N (K)∩N (B)

ωV .(5.14)

Proof. The lifting Ihpliftu is constructed as the sum of u1 and u2. The term u1

is constructed such that the correct behavior at the vertices of the triangulation is
ensured. In this way, the construction of the lifting is then reduced to an edgewise
construction, which defines u2.

Given u ∈ W 1,q
B,p(Ω), we construct u1 ∈ Sp(T ) patchwise as

u1 =
∑

V ∈N (T )

ϕV LV u,

where the patch operators LV are defined with the aid of Lemma 5.9 according to the
following rules:

(a) if V �∈ N (B), then LV u = 0;
(b) if V ∈ N (B), then LV u is defined on the corresponding reference patch ω̂V

as (LV u)◦FV = Lû, where L is the operator of Lemma 5.9. Here, û = u◦FV

and the polynomial degrees p and p′ are defined as p = max{pK |K ∈ T |ωV
}

and p′ = min{pK |K ∈ T |ωV
} − 1.

By the choice of the polynomial degrees p′, we get u1 ∈ Sp(T ). Additionally, the
function LV u satisfies for V ∈ N (B)

(LV u)(V ) = u(V ),

‖LV u‖Lq(ωV ) ≤ C
[
‖u‖Lq(ωV ) + hV ‖∇u‖Lq(ωV )

]
,

‖∇LV u‖Lq(ωV ) ≤ C‖∇u‖Lq(ωV ).

Moreover, for edges b ∈ B and vertices V ∈ N (b) we have upon denoting by γb,V
the map γb,V : Î → b that is determined by the element maps and the condition
γb,V (0) = V , the following bound:

‖(u− LV u) ◦ γb,V ‖W̃ 1−1/q,q
l (Î)

≤ Ch
1−2/q
V ‖∇u‖Lq(ωV ) ∀b ∈ B, V ∈ N (b).
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For elements K with ωK,B = ∅, our construction implies (u1)|K = 0. For elements
K with ωK,B �= ∅ we get

u1(V ) = u(V ) ∀V ∈ N (B),

‖u1‖Lq(K) + hK‖∇u1‖Lq(K) ≤ C
[
‖u‖Lq(ωK,B) + hK‖∇u‖Lq(ωK,B)

]
,

‖(u− u1) ◦ γb‖W̃ 1−1/q,q(Î)
≤ Ch

1−2/q
b ‖∇u‖Lq(ω1

b ) ∀b ∈ B.

For the last estimate, we employed additionally Lemma C.2.
We now turn to the construction of u2. Since u1 and u coincide in the vertices that

lie on the Dirichlet boundary, we can proceed in an element-by-element fashion. For
elements K with E(K)∩B = ∅, we set u2|K = 0. For elements K with E(K)∩B �= ∅,
we construct u2|K using the following considerations: We set BK = E(K)∩B, denote

by b̂ := F−1
K (b) the pull-back of an edge b ∈ BK , and construct with the aid of the

lifting result (Theorem 5.2) on the reference element K̂ the polynomial û2,K ∈ PpK

such that

û2,K |b̂ = ((u− u1) ◦ FK)|b̂ ∀b ∈ BK ,

û2,K |F−1
K (e) = 0 ∀e ∈ E(K) \ BK ,

‖û2‖W 1,q(K̂)
≤ C

∑
b∈BK

‖(u− u1) ◦ Fb‖W̃ 1−1/q,q(Î)
≤ Ch

1−2/q
K ‖∇u‖Lq(ωK,B),

where Fb : Î → b denotes the parametrization of b determined by the element maps.
Pushing forward these estimates to the element K, the function u2|K := û2,K ◦ F−1

K

then satisfies

u2|b = (u− u1)|b ∀b ∈ BK ,

u2|e = 0 ∀e ∈ E(K) \ BK ,

‖u2‖Lq(K) ≤ Ch
2/q
K ‖û2‖Lq(K̂)

≤ ChK‖∇u‖Lq(ωK,B),

‖∇u2‖Lq(K) ≤ Ch
2/q−1
K ‖∇û2‖Lq(K̂)

≤ C‖∇u‖Lq(ωK,B).

The sum u1 + u2 is an element of Sp(T ); it satisfies (u1 + u2)|b = u|b for all b ∈ B,
and we have the estimates

‖u1 + u2‖Lq(K) + hK‖∇(u1 + u2)‖Lq(K) ≤ C
[
‖u‖Lq(ωK,B) + hK‖∇u‖Lq(ωK,B)

]
.

Inspection of the construction shows that the map u �→ u1 + u2 is linear.

5.4.2. Proof of Theorem 3.4. We are now in a position to prove Theorem 3.4.
Proof of Theorem 3.4. We employ the lifting operator Ihplift of Proposition 5.10

and the approximation operators Ihphom, Ihp of Theorems 3.3 and 3.1. We define

L := Ihplift ◦ (Id−Ihp) + Ihp,

Ihpinhom := L + Ihphom ◦ (Id−L).

Ihpinhom is a linear operator mapping into Sp(T ). We easily check that for u ∈ W 1,q
B,p(Ω)

(Ihpinhomu)|b = u|b ∀b ∈ B.
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It remains to check the approximation properties. Upon writing

(Id−Ihpinhom) = (Id−Ihphom) ◦ (Id−L),

we see that the desired approximation follow from the approximation properties of
Ihphom together with stability properties of Id−L. These stability properties can be
inferred by writing

Id−L = (Id−Ihplift) ◦ (Id−Ihp)

and then observing that Proposition 5.10 implies

‖∇(u− Lu)‖Lq(K) ≤ C

[
1

hK
‖u− Ihpu‖Lq(ω2

K) + ‖∇(u− Ihpu)‖Lq(ω2
K)

]
≤ C‖∇u‖Lq(ω3

K).

Theorem 3.3 then implies

‖u− Ihpinhomu‖Lq(K) +
hK

pK
‖∇(u− Ihpinhomu)‖Lq(K) ≤ C

hK

pK
‖∇u‖Lq(ω4

K).

From this, the desired estimate for the edges follows.

Appendix A. Approximation results.

A.1. Polynomial approximation results on hyper cubes. We establish
polynomial approximation results for the approximation of functions of Sobolev spaces
W r,q(I), where I is a hyper cube. Similar results have been obtained in [2, 3]. Our
exposition here ignores effects related to the behavior of polynomials near the end-
points of an interval. While in the one-dimensional situation a characterization of
the functions that can be approximated at a certain rate can be done using weighted
spaces, these results do not easily extend to higher dimensions. We refer to [24] for
an exposition of the one-dimensional results (so-called direct and inverse estimates)
and mention also [9,10] where related results for the two-dimensional case are proved.

We recall a one-dimensional result on simultaneous trigonometric approximation.
Lemma A.1. Let T be the one-dimensional torus and denote for r ∈ N0, q ∈ [1,∞]

by W r,q(T) the set of functions with r weak derivatives whose derivatives are in Lq(T).
Denote by TN the set of trigonometric polynomials of degree N ∈ N. Then for each
R ∈ N and each N there exists a linear operator JR,N : L1(T) → TN and a constant
CR > 0 (which depends solely on R) such that for all r ∈ N0 with 0 ≤ r ≤ R, all
q ∈ [1,∞], and all u ∈ W r,q(T)

‖ (u− JR,N u)
(j) ‖Lq(T) ≤ Cr(N + 1)−(r−j)‖u(r)‖Lq(T), j = 0, . . . , r.(A.1)

Proof. Jackson-type results of this form are well known in approximation theory.
The linear operators JR,N , whose existence is ascertained in Lemma A.1, can be chosen
as in [24, Chap. 7, eq. (2.8)]. The results concerning simultaneous approximation then
follow from combining Theorems 2.3, 2.7, and 2.8 of [24, Chap. 7] and a check that
the case q = ∞ is included in the form stated in Lemma A.1. The details can be
found in [32, Prop. E.1].

As is well known, trigonometric approximation result implies polynomial approx-
imation results by means of the transformation x = cos θ. For future reference, we
formulate this in the following proposition.
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Proposition A.2. Let I ⊂ R be a bounded interval. Let R ∈ N and q ∈ [1,∞].
Then for each N ∈ N0 there exists a linear operator JR,N : L1(I) → PN and a
constant C > 0, which depends only on R, q, I, such that for each 0 ≤ r ≤ R

‖u− JR,Nu‖W j,q(I) ≤ C(N + 1)−(r−j)‖u‖W r,q(I), j = 0, . . . , r.(A.2)

Furthermore, the linear operator JR,N may be constructed such that for 0 ≤ r ≤ R
and N ≥ R− 1

JR,Nu = u ∀u ∈ PR−1(A.3)

‖u− JR,Nu‖W j,q(I) ≤ C(N + 1)−(r−j)|u|W r,q(I), j = 0, . . . , r.(A.4)

Proof. The proof for N = 0 is trivial; we will therefore assume N ∈ N. We
will obtain the results for polynomial approximation from those for trigonometric
approximation. We construct for given u ∈ W r,q(I) the approximant JN u ∈ PN ;
tracing the steps of the construction then reveals that u �→ JN u is in fact a linear
operator. Without loss of generality, we may assume that I is such that the closed
interval I satisfies I = [− cos ε, cos ε] for some chosen ε ∈ (0, π/2).

Step 1. Define the interval Θ = (ε, π− ε). For every function v (defined on I) we
define a function vθ on Θ by vθ(θ) = v(cos θ). Then for every j ∈ N0, q ∈ [1,∞] there
exists a constant C > 0, which depends only on j, q, and ε, such that

C−1‖v‖W j,q(I) ≤ ‖vθ‖W j,q(Θ) ≤ C‖v‖W j,q(I).(A.5)

Step 2. We construct a function ũθ on the torus T with the properties that
(a) ũθ = uθ on Θ, (b) ũθ is symmetric with respect to θ = 0, and (c) ‖ũθ‖W r,q(T) ≤
C‖u‖W r,q(I). To that end, we extend uθ to a function in W r,q(R) such that the
extended function (again denoted by uθ) satisfies

‖uθ‖W r,q(R) ≤ C‖uθ‖W r,q(Θ);

such an extension is constructed, for example, in [39]. Furthermore, using smooth
cut-off functions, we may assume that this extension satisfies suppuθ ⊂ [ε/2, π−ε/2].
We then define on the interval (−π, π) the symmetric extension of uθ by

ũθ(x) :=

{
uθ(x) if x ∈ (0, π),

uθ(−x) if x ∈ (−π, 0).

By the support properties of uθ we then conclude

‖ũθ‖W r,q(T) ≤ C‖u‖W r,q(I).

Step 3. From Lemma A.1, we get for the trigonometric polynomial JN := JR,N ũθ

‖ũθ − JN‖W j,q(T) ≤ CN−(r−j)‖u‖W r,q(I).(A.6)

We wish to approximate ũθ by a symmetric trigonometric polynomial. Since ũθ is
symmetric with respect to θ = 0, we get that the trigonometric polynomial J̃N defined
by J̃N (x) = JN (−x) also satisfies

‖ũθ − J̃N‖W j,q(T) ≤ CN−(r−j)‖u‖W r,q(I).(A.7)
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Combining (A.6), (A.7), we conclude that the symmetric trigonometric polynomial

ĴN :=
1

2

(
JN + J̃N

)

satisfies

‖ũθ − ĴN‖W j,q(T) ≤ CN−(r−j)‖u‖W r,q(I).(A.8)

Step 4. Since the symmetric trigonometric polynomial ĴN can be written in the form
ĴN (θ) = PN (cos(θ)) for a polynomial PN ∈ PN , we get the desired operator JR,N

and the bound (A.2) from (A.8) and (A.5).
Step 5. As a preparation to the final step, we recall the Bramble–Hilbert lemma [19,
Lem. 4.3.8]: For r ≥ 1, we have

inf
v∈Pr−1

‖u− v‖W r,q(I) ≤ C‖u(r)‖Lq(I).(A.9)

Next, we choose a bounded linear operator Q : L1(I) → PR−1 such that Qv = v for
all v ∈ PR−1. Such a projector is constructed, for example, in [19, sect. 4.1], where it
is shown in [19, Prop. 4.3.8] that

‖u−Qu‖W r,q(I) ≤ ‖u(r)‖Lq(I), 0 ≤ r ≤ R.

We claim that the operator u �→ JR,N (u − Qu) + Qu has all the desired properties.
By exploiting the stability properties (A.2) of JR,N constructed so far we get

‖u− (JR,N (u−Qu) + Qu)‖W j,q(I) ≤ C(N + 1)−(r−j)‖u−Qu‖W r,q(I)

≤ C(N + 1)−(r−j)‖u(r)‖Lq(I).

This concludes the argument, since JR,N (u−Qu) + Qu = u for u ∈ PR−1.
The one-dimensional operator JR,N of Proposition A.2 can be tensorized to yield

the polynomial approximation result (Theorem 5.1) for functions defined on hyper
cubes. This result is proved as follows.

Proof of Theorem 5.1. The operator JR,N is taken as the tensor product of the
one-dimensional ones given by Proposition A.2. To simplify the notation, we will
drop the indices R, N and write J1, . . . , Jd to denote these one-dimensional operators
and J to denote the tensor product. From Proposition A.2 we obtain the following
stability and approximation results.

|Jiu|W l,q(Ii) ≤ C|u|W l,q(Ii), l = 0, . . . , r,(A.10)

|u− Jiu|W l,q(Ii) ≤ C(N + 1)−(r−l)|u|W l,q(Ii), 0 ≤ l ≤ r,(A.11)

where i = 1, . . . , d. These stability estimates then allow us to obtain approximation
results in the standard way. We illustrate the procedure for the case d = 2. Let α,
β ≥ 0 with α + β = l ≤ r. Since the operators ∂i and Jj commute if i �= j, we get

‖∂α
1 ∂

β
2 (u− J1 ⊗ J2u)‖Lq(I) ≤ ‖∂α

1 ∂
β
2 (u− J1u)‖Lq(I) + ‖∂α

1 ∂
β
2 J1(u− J2u)‖Lq(I)

≤ ‖∂α
1

(
(∂β

2 u) − J1(∂
β
2 u)

)
‖Lq(I) + ‖∂α

1 J1∂
β
2 (u− J2u)‖Lq(I).

We consider the first term. The function v(·, x2) = ∂β
2 u(·, x2) is defined for a.e. x2 ∈ I2

and v(·, x2) ∈ W r−β,q(I1). Hence, we obtain from (A.11) for a.e. x2 ∈ I2

‖∂α
1 (v(·, x2) − J1v(·, x2))‖Lq(I1) ≤ C(N + 1)−(r−β−α)|v(·, x2)|W r−β,q(I1).
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Substituting again the definition of v and integrating over I2 yields

‖∂α
1

(
(∂β

2 u) − J1(∂
β
2 u)

)
‖Lq(I) ≤ C(N + 1)−(r−β−α)|u|W r,q(I).

By similar arguments (here, we additionally employ the stability result (A.10)) we
can bound

‖∂α
1 J1∂

β
2 (u− J2u)‖Lq(I) ≤ C(N + 1)−(r−α−β)|u|W r,q(I).

Combining these last two estimates and summing over all combinations of α, β with
α + β = l yields the desired bound. The fact (5.1) follows readily from the property
(A.3) of the one-dimensional operators.

Appendix B. Polynomial liftings. A general trace lifting operator of the form
(B.1) was studied, for example, in [26, 30]. The subsequent observation that it also
maps polynomials to polynomials (cf. Proposition B.1) was the basis for polynomial
liftings from H1/2(∂K̂) to H1(K̂), where K̂ is the reference square or triangle [6,
14, 31]. We generalize these results to the Lq-setting. In principle, the techniques
employed here are applicable to three-dimensional problems as well, although they
are technically more involved. Polynomial lifting results for hexahedra, prisms, and
tetrahedra are available (in Hilbert space settings) in [11,12,15,35].

B.1. The operator F [f ]. We recall the definition of the reference triangle T in
(2.1) and denote its bottom side by

Γ = {(x, 0) | 0 < x < 1}.

We will view Γ as embedded in R in the natural way. We choose α ∈ (0, 1) and define
for a function f ∈ Lq(R) the extension operator by

f �→ F [f ](x, y) =
1

2αy

∫ x+αy

x−αy

f(t) dt.(B.1)

Proposition B.1. Let the extension operator be given by (B.1). Then f �→ F [f ]

is linear and F [f ] ∈ Pp if f ∈ Pp. Furthermore, F [f ]|T depends only on the values of
f on Γ, and for each q ∈ (1,∞) there exists a constant C > 0 such that for functions
f defined on Γ the following bounds hold (provided that the right-hand side is finite):

‖F [f ]‖Lq(T ) ≤ C‖(x(1 − x))1/qf‖Lq(Γ),(B.2)

‖F [f ]‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ),(B.3)

‖(x− y)F [f/t]‖Lq(T ) ≤ C‖f‖Lq(Γ),(B.4)

‖(x− y)(1 − x− y)F [f/(t(1−t))]‖Lq(T ) ≤ C‖f‖Lq(Γ),(B.5)

‖(x− y)F [f/t]‖W 1,q(T ) ≤ C

[
‖f‖W 1−1/q,q(Γ)(B.6)

+

∥∥∥∥ f(x)

x1−1/q

∥∥∥∥
Lq(Γ)

]
,

‖(x− y)(1 − x− y)F [f/(t(1−t))]‖W 1,q(T ) ≤ C‖f‖
W̃ 1−1/q,q(Γ)

.(B.7)

Here, we employed the shorthand f/t to indicate the function t �→ f(t)/t and (x −
y)F [f/t] to denote the function (x, y) �→ (x− y)F [f/t](x, y). Additionally, we have

‖F [f ]‖Lq(∂T ) ≤ C‖f‖Lq(Γ).
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Proof. We first show (B.2). From (B.11) below we bound for each fixed x ∈ (0, 1)

∫ min(x,1−x)

y=0

|F [f ](x, y)|q dy ≤ C

∫ x+αmin(x,1−x)

x−αmin(x,1−x)

|f(y)|q dy.

Integrating over x ∈ (0, 1) we get from Lemma B.3

‖F [f ]‖qLq(T ) ≤ C

∫ 1

y=0

y(1 − y)|f(y)|q dy = C‖(x(1 − x))1/qf‖qLq(Γ).

The estimate (B.4) follows immediately from (B.13) of Lemma B.2. The symmetry
of T with respect to the line x = 1/2 together with (B.4) implies

‖(1 − x− y)F [f/(1−t)]‖Lq(T ) ≤ C‖f‖Lq(Γ).

From this and (B.4) we can easily obtain (B.5) if we observe

f(t)

t(1 − t)
=

f(t)

t
+

f(t)

1 − t
.

It remains to obtain the bounds (B.3), (B.6), and (B.7). We compute

∂xF
[f ](x, y) =

1

2αy
[f(x− αy) − f(x + αy)] ,

∂yF
[f ](x, y) =

1

2α

[
− 1

y2

∫ x+αy

x−αy

f(t) dt +
α

y
(f(x + αy) + f(x− αy))

]

= − 1

2αy2

∫ x+αy

x−αy

f(t) − f(x) dt− f(x) − f(x− αy)

2y
− f(x) − f(x + αy)

2y
.

From the definition of the W 1−1/q,q-norm and the bound (B.10) of Lemma B.2 we get

‖∇F [f ]‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ),

which shows (B.3). For the bound (B.6), we compute

∂x

(
(x− y)F [f/t]

)
= F [f/t] + (x− y)∂xF

[f/t],

∂y

(
(x− y)F [f/t]

)
= −F [f/t] + (x− y)∂yF

[f/t],

and

∂xF
[f/t] =

1

2αy

[
f(x + αy)

x + αy
− f(x− αy)

x− αy

]
,

∂yF
[f/t] = − 1

2αy2

∫ x+αy

x−αy

f(t)

t
dt +

1

2y

[
f(x + αy)

x + αy
+

f(x− αy)

x− αy

]

=
−1

2αy2

∫ x+αy

x−αy

f(t)

t
− f(x)

x
dt +

1

2y

[
f(x + αy)

x + αy
− f(x)

x
+

f(x− αy)

x− αy
− f(x)

x

]
.

With (B.9) and Lemma B.3 we can bound

‖F [f/t]‖qLq(T ) ≤ C

∫ 1

x=0

∫ x+αmin(x,1−x)

x−αmin(x,1−x)

∣∣∣∣f(t)

t

∣∣∣∣
q

dt dx ≤ C

∫ 1

x=0

x(1 − x)

∣∣∣∣f(x)

x

∣∣∣∣
q

dx

≤ C

∫ 1

x=0

∣∣∣∣ f(x)

x1−1/q

∣∣∣∣
q

dx.(B.8)
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The estimate (B.15) of Lemma B.2 implies

∫
T

∣∣∣∣ (x− y)

y2

∫ x+αy

x−αy

f(t)

t
− f(x)

x
dt

∣∣∣∣
q

dx dy ≤ C
[
‖f‖q

W 1−1/q,q(Γ)
+ ‖f(x)/x‖Lq(Γ)

]
.

It remains to bound terms of the form∥∥∥∥x− y

y

(
f(x± αy)

x± αy
− f(x)

x

)∥∥∥∥
Lq(T )

.

Rearranging terms, we arrive at

∥∥∥∥x− y

y

(
f(x± αy)

x± αy
− f(x)

x

)∥∥∥∥
Lq(T )

=

∥∥∥∥ x− y

x± αy

f(x± αy) − f(x)

y
− ±α(x− y)

x± αy

f(x)

x

∥∥∥∥
Lq(T )

≤ |f |W 1−1/q,q(Γ) +

∥∥∥∥f(x)

x

∥∥∥∥
Lq(T )

,

where we employed the observation | x−y
x±αy | ≤ 1 for 0 < y < x. The term ‖ f(x)

x ‖Lq(T )

is now controlled in the desired fashion as in (B.8).
It remains to show (B.7). By symmetry considerations we obtain, analogous to

(B.6),

‖(1 − x− y)F [f/(1−t)]‖W 1,q(T ) ≤ C

[
‖f‖W 1−1/q,q(Γ) +

∥∥∥∥ f(x)

(1 − x)1−1/q

∥∥∥∥
Lq(Γ)

]
.

Since f(t)
t(1−t) = f(t)

t + f(t)
1−t , the desired bound (B.7) now follows easily.

The following lemma contains estimates of Hardy type.
Lemma B.2. Let a ≤ b, α ∈ (0, 1), T be the reference triangle. Then for

q ∈ (1,∞)

∫ b

a

∣∣∣∣ 1

x− a

∫ x

a

|g(ξ)| dξ
∣∣∣∣
q

≤
(

q

q − 1

)q ∫ b

a

|g(ξ)|q dξ,(B.9)

∫ b

a

∣∣∣∣ 1

(x− a)2

∫ x

a

g(ξ) − g(a) dξ

∣∣∣∣
q

dx ≤
(

q

q − 1

)q ∫ b

a

∣∣∣∣g(ξ) − g(a)

ξ − a

∣∣∣∣
q

dξ.(B.10)

Furthermore, for each x ∈ (0, 1) we have upon setting m := min(x, 1 − x)

∫ m

y=0

∣∣∣∣1y
∫ x+αy

x−αy

g(t) dt

∣∣∣∣
q

≤
(

q

q − 1

)q

αq−1

∫ x+αm

x−αm

|g(y)|q dy,(B.11)

∫ m

y=0

1

y2

∫ x+αy

x−αy

|g(t) − g(x)| dt dy ≤ α2q−1

(
q

q − 1

)q

(B.12)

×
∫ x+αm

x−αm

∣∣∣∣g(t) − g(x)

t− x

∣∣∣∣
q

dt.

Finally, we have for some constant C > 0 that depends only on q and α,

∫
T

∣∣∣∣(x− y)
1

y

∫ x+αy

x−αy

g(t)

t
dt

∣∣∣∣
q

dx dy ≤ C‖g‖qLq(Γ),(B.13)
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(B.14)∫
T

∣∣∣∣x− y

y2

∫ x+αy

x−αy

g(t)

t
− g(x)

x
dt

∣∣∣∣
q

dxdy ≤ C

[
‖g‖q

W 1−1/q,q(Γ)
+

∥∥∥∥g(x)

x

∥∥∥∥
Lq(Γ)

]
.

In all the above estimates, it is implicitly assumed that the right-hand side is finite.

Proof. The first estimate is the well-known Hardy inequality [29, Thm. 327]. For
the second estimate, we note

∫ b

a

∣∣∣∣ 1

|x− a|2
∫ x

a

|g(ξ) − g(a)|
∣∣∣∣
q

dx =

∫ b

a

∣∣∣∣ 1

|x− a|2
∫ x

a

|g(ξ) − g(a)|
|ξ − a| |ξ − a| dξ dx

∣∣∣∣
q

≤
∫ b

a

∣∣∣∣ 1

|x− a|

∫ x

a

|g(ξ) − g(a)|
|ξ − a| dξ

∣∣∣∣
q

dx.

The result (B.10) now follows from (B.9). The bounds (B.11), (B.12) follow from
(B.9) and (B.10), respectively. To proceed further, we note that for x ∈ (0, 1) we have

(1 − α)x ≤ x− αy ≤ x + αy ≤ (1 + α)x, 0 ≤ y ≤ min(x, 1 − x).(B.15)

We are now in a position to prove (B.13). From (B.15) and (B.11) we get (again with
the abbreviation m = min(x, 1 − x))

∫
T

∣∣∣∣ (x− y)

y

∫ x+αy

x−αy

g(t)

t
dt

∣∣∣∣
q

dx ≤ C

∫
T

∣∣∣∣1y
∫ x+αy

x−αy

g(t) dt

∣∣∣∣
q

≤ C‖g‖qLq(Γ).

We now turn to the proof of the last inequality, (B.15). We employ (B.12) and obtain

∫
T

∣∣∣∣x− y

y2

∫ x+αy

x−αy

g(t)

t
− g(x)

x
dt

∣∣∣∣
q

dy dx ≤ C

∫ 1

x=0

xq

∫ x+αm

t=x−αm

∣∣∣∣∣
g(t)
t − g(x)

x

t− x

∣∣∣∣∣
q

dt dx.

We next rewrite the integrand as

g(t)

t
− g(x)

x
=

g(t) − g(x)

t
− t− x

tx
g(x)

and arrive at

∫
T

∣∣∣∣x− y

y2

∫ x+αy

x−αy

g(t)

t
− g(x)

x
dt

∣∣∣∣
q

dy dx

≤ C

∫ 1

x=0

xq

∫ x+αm

t=x−αm

t−q

∣∣∣∣g(t) − g(x)

t− x

∣∣∣∣
q

+ C

∫ 1

x=0

xq

∫ x+αm

t=x−αm

|g(x)|q 1

|tx|q dt dx

≤ C

∫
Γ×Γ

∣∣∣∣g(t) − g(x)

t− x

∣∣∣∣
q

dt dx + C

∫
Γ

∣∣∣∣ g(x)

x1−1/q

∣∣∣∣
q

dx.

This concludes the proof of the lemma.

Lemma B.3. Let α ∈ (0, 1). Then for some C > 0 depending solely on α,

∫ 1

x=0

∫ x+αmin(x,1−x)

y=x−αmin(x,1−x)

|g(y)| dy dx ≤ C

∫ 1

y=0

y(1 − y)|g(y)| dy.
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1

1

1/2

y0

y1

y

x
y = (1 − α)x

y = (1 + α)x− α

y = (1 + α)x

y = (1 − α)x + α

Fig. B.1. Integration domain in Lemma B.3.

Proof. The integration domain is sketched in Figure B.1. Interchanging the order
of integration, we get∫ 1

x=0

∫ x+αmin(x,1−x)

y=x−αmin(x,1−x)

|g(y)| dy dx =

∫ y0

y=0

∫ y/(1−α)

x=y/(1+α)

|g(y)| dx dy

+

∫ y1

y=y0

∫ (y+α)/(1+α)

x=y/(1+α)

|g(y)| dx dy +

∫ 1

y=y1

∫ (y+α)/(1+α)

x=(y−α)/(1−α)

|g(y)| dx dy,

where y0 = 1−α
2 and y1 = 1+α

2 . The result follows by elementary calculations.

B.2. Polynomial lifting from the boundary.

B.2.1. W 1,q-stable liftings. The operator f �→ F [f ] is the basic building block
for the polynomial trace liftings of Theorem 5.2, which we now prove.

Proof of Theorem 5.2. We consider the case K̂ = T . Three cases may occur:
Γ is a single edge: We may assume Γ = {(x, 0) | 0 < x < 1} and choose F as F [f ].
Γ consists of two edges Γ1, Γ2: The function F is defined in two steps. First, the

lifting operator F of section B.1 is employed to construct a function F1 ∈ Pp with
F1|Γ1 = f |Γ1 and

‖F1‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ1), ‖F1‖Lq(Γ2) + ‖F1‖Lq(T ) ≤ C‖f‖Lq(Γ1).

We have thus reduced the problem to one where f vanishes on one of the sides Γ1,
Γ2. Without loss of generality, we assume that Γ1 = {(x, 0) | 0 < x < 1} and f |Γ2 = 0
with Γ2 = {(x, x) | 0 < x < 1/2}. The mapping f �→ (x− y)F [f/t](x, y) of section B.1
then has the desired properties.

Γ = ∂K: After having constructed a lifting from two adjacent edges as in the
above construction, we may assume that f vanishes on two sides of T . Without loss
of generality, we may therefore assume that f |Γi = 0 for i ∈ {2, 3}, where Γ1 is the
third side of ∂T given by Γ1 = {(x, 0) | 0 < x < 1}. The construction of a polynomial
F with the property F |Γ1 = f and F |Γi

= 0 for i ∈ {2, 3} is then achieved with the
operator f �→ (x− y)(1 − x− y)F [f/(t(1−t))](x, y) of section B.1.

The case of a square is proved similarly using the ideas of [6]. Note that in the
case of a square, the set Γ may be disconnected, i.e., it consists of two parallel edges
of K̂. In this event, we easily reduce the construction to the case where f vanishes
on one of the two edges and construct F ∈ Qp in the same way as the function U in
the proof of Lemma C.1.

We finally turn to the statement that constant functions are reproduced. This
follows from the observation that the lifting operator constructed above is independent
of the polynomial degree p. Since for p = 0 the constant function is reproduced, this
operator reproduces constants for any p ∈ N0.
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B.2.2. Polynomial liftings with improved Lq-bounds. The basis of the
results of section B.2.1 is the operator f �→ F [f ] of section B.1. We introduce a new
operator F̃ [f ] by

F̃ [f ](x, y) = (1 − y)pF [f ](x, y).(B.16)

We note that, if f ∈ Pp, then F̃ ∈ P2p. Furthermore, F̃ [f ]|Γ = f , where Γ =
{(x, 0) | 0 < x < 1}. We also have the following lemma.

Lemma B.4. Let T be the reference triangle. Then there exists C > 0 such that for
every p ∈ N the functions F̃ [f ], F1 := (x−y)F̃ [f/t], F2 := (x−y)(1−x−y)F̃ [f/(t(1−t))]

satisfy

p‖F̃ [f ]‖Lq(T ) + ‖F̃ [f ]‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ) + Cp1−1/q‖f‖Lq(Γ),

p‖F1‖Lq(T ) + ‖F1‖W 1,q(T ) ≤ C‖f‖W 1−1/q,q(Γ) + C‖ f(x)

x1−1/q
‖Lq(Γ) + Cp1−1/q‖f‖Lq(Γ),

p‖F2‖Lq(T ) + ‖F2‖W 1,q(T ) ≤ C‖f‖
W̃ 1−1/q,q(Γ)

+ Cp1−1/q‖f‖Lq(Γ).

Furthermore,

‖F̃ [f ]‖Lq(∂T ) ≤ C‖f‖Lq(Γ).

Proof. The lemma follows from Lemma B.5 below and the properties of the
operator F [f ] of section B.1.

This lemma allows us now to prove Proposition 5.3.
Proof of Proposition 5.3. The proof is similar to that of Theorem 5.2. The appeals

to Proposition B.1 are replaced with those to Lemma B.4.
Lemma B.5. K be the reference triangle or the reference square. Set Γ =

{(x, 0) | 0 < x < 1} and let q ∈ (1,∞). Then there exists C > 0 such that for
every p ∈ N and every function g ∈ W 1,q(K)

p‖(1 − y)pg‖Lq(K) + ‖(1 − y)pg‖W 1,q(K) ≤ C|g|W 1,q(K) + p1−1/q‖g‖Lq(Γ).

Proof. We express the function g for y > 0 as g(x, y) = g(x, 0) +
∫ y

t=0
gy(x, t) dt.

Then

(1 − y)pg(x, y) = [(1 − y)py]
1

y

∫ y

0

gy(x, t) dt + (1 − y)pg(x, 0).

Since supy∈(0,1)(1 − y)py ≤ C
p , we conclude with the Hardy inequality (B.9)

‖(1 − y)pg‖Lq(K) ≤
C

p
|g|W 1,q(K) + p−1/q‖g‖Lq(Γ).

For the bound on the derivative of (1 − y)pg, we write

∇((1 − y)pg) = p(1 − y)p−1g + (1 − y)p∇g;

we treat the first term as above and for the second term we use

|1 − y| ≤ 1 on K.
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Appendix C. One-dimensional extension operators.
Proof of Lemma 5.4. The key to this result is the following approximation result

of [18, Cor. 3.7]:

inf
v∈Pp−k

‖u− v‖L∞(J) ≤ 12(4p)k−1|J |p−k+1‖u‖L∞(Î) ∀u ∈ Pp,(C.1)

where J ⊂ Î is an arbitrary subinterval of Î and |J | denotes the length of J . We
(arbitrarily) choose J = (0, 1/2), denote by Ip−k : C(J) → Pp−k the Gauß–Lobatto
interpolation operator and set

(Zp,p−ku)(x) = (Ip−ku)(2x).

By construction (Zp,p−ku) ∈ Pp−k. Additionally, the fact that the endpoint 0 of J
is an interpolation point implies (Zp,p−ku)(0) = u(0). In order to see the remaining
estimates, we see that (C.1) together with standard inverse estimates (see, e.g., [24,
Chap. 4, Thms. 1.4 and 2.6]) implies

‖u− Ip−ku‖W 1,∞(J) ≤ Cp2‖u− Ip−ku‖L∞(J) ≤ Cρp−k‖u‖L∞(Î) ≤ Cρ̃p−k‖u‖Lq(Î)

for some suitable C > 0 and ρ̃ ∈ (0, 1) that are both independent of p and u. In
particular, since u(0) = (Ip−ku)(0), we get

max
x∈J

|u(x) − (Ip−ku)(x)|
|x| ≤ ‖u′ − (Ip−ku)′‖L∞(J) ≤ Cρ̃p−k‖u‖Lq(Î).

From this and the triangle inequality, we can easily infer the estimates

‖Ip−ku‖Lq(J) ≤ C‖u‖Lq(Î),

‖Ip−ku‖W 1−1/q,q(J) ≤ C‖u‖W 1−1/q,q(Î),∫ 1/2

0

|u(x) − Ip−ku(x)|q
xq−1

dx ≤ C‖u‖q
Lq(Î)

.

This and the change of variables x �→ 2x imply the desired bounds for Zp,p−k.
A closely related extension result is the following.
Lemma C.1. Let Î = (0, 1) and q ∈ (1,∞). Then there exists a bounded linear

operator Z : W 1−1/q,q(Î) → W 1−1/q,q(Î) with the following properties:

1.
∫ 1

x=0
|u(x)−Zu(x)|q

xq−1 dx ≤ C‖u‖q
W 1−1/q,q(Î)

;

2. if u ∈ Pp, then Zu ∈ Pp;

3. Zu(1) = 0 and
∫ 0

−1
|Zu(x)|q
(1−x)q−1 dx ≤ C‖u‖q

W 1−1/q,q(Î)
;

4. ‖Zu‖Lq(I) ≤ C‖u‖Lq(Î).

Proof. Let T be the reference triangle and identify Î with the edge of K̂ lying
on the x-axis. Consider the trapezoid T̃ := {(x, y) ∈ T | 0 < y < 1/4} and define
Γ = {(x, x) | 0 < x < 1/4}. An elementary calculation reveals

‖F [u](·, 1/4)‖W 1,∞((1/4,3/4)) ≤ C‖u‖Lq(Î)

for some appropriate C > 0. Hence, the function

U(x, y) = F [u](x, y) − 4yF [u](x, 1/4)
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satisfies

‖U‖W 1,q(T̃ ) ≤ C‖u‖W 1−1/q,q(Î), ‖U‖Lq(Γ) ≤ C‖u‖Lq(Î), U |y=1/4 = 0.

Additionally, if u ∈ Pp, then U ∈ Qp. Defining Zu(x) for x ∈ (0, 1) by (Zu)(x) =
U(x/4, x/4) and appealing to the trace theorem concludes the proof.

Lemma C.2. Let Î = (0, 1) and q ∈ (1,∞). Then u ∈ W 1−1/q,q(Î) implies that
the function ũ : x �→ xu(x) is in W 1−1/q,q(Î) and satisfies

∫ 1

0

|ũ(x)|q
xq−1

dx + ‖ũ‖q
W 1−1/q,q(Î)

≤ C‖u‖q
W 1−1/q,q(Î)

for some C > 0 that is independent of u.
Proof. The estimate ‖ũ‖W 1−1/q,q(Î) ≤ C‖u‖W 1−1/q,q(Î) follows from the smooth-

ness of the function x �→ x. The remaining estimate follows by inspection.
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Abstract. Nonconforming domain decomposition methods provide a powerful tool for the
numerical approximation of partial differential equations. For the discretization of a nonlinear multi-
body contact problem, we use linear mortar finite elements based on dual Lagrange multipliers. Under
some regularity assumptions on the solution, an optimal convergence order of h0.5+ν , 0 < ν ≤ 0.5,
can be established in two dimensions (2D) and three dimensions (3D). Compared with a standard
linear saddle point formulation, two additional terms which provide a measure for the nonconformity
and the nonlinearity of the approach have to be taken in account. Numerical examples illustrating
the performance of the nonconforming method and confirming our theoretical result are presented.
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1. Introduction. The numerical approximation of nonlinear multibody contact
problems is a challenging task. Modern discretization techniques are very often based
on flexible nonconforming approaches. Here, we provide a new optimal a priori bound
for the discretization error of the mortar method. We focus on piecewise linear dual
Lagrange multipliers which have been introduced for the lowest-order case in [Woh00].
Dual Lagrange multiplier spaces are based on a biorthogonal basis resulting in a diago-
nal mass matrix. Thus we obtain for each node on the slave side a local nonpenetration
condition. The main advantage of dual Lagrange multipliers is that fast and efficient
monotone multigrid methods [KK01] can be generalized to multibody contact prob-
lems [WK03]. In case of standard Lagrange multipliers, local monotone multigrid
methods cannot be applied.

In this paper, we give a new optimal a priori error estimate for the discretization
error in the H1-norm for the displacements and in the H−1/2-norm for the Lagrange
multiplier. The interest in contact problems and variational inequalities has led to
an increased research activity in this field. Abstract error estimates for variational
inequalities can be found, e.g., in [Fal74, BHR77, Glo84] and a priori bounds for the
discretization error of unilateral contact problems are given, e.g., in [Hc81, Hcc96].
Recently a lot of work has been done to analyze mortar formulations based on stan-
dard Lagrange multipliers. A priori error estimates for the displacements in the
H1-norm and for the Lagrange multiplier in the H−1/2-norm of order h0.75 have been
established; see, e.g., [BR03, LS99, BHL99, CHLS01], under H2-regularity assump-
tion. Using additional regularity assumptions on the Lagrange multiplier, order h
has been shown; see, e.g., [Hil00, CHLS01]. Although the order h is optimal, the
regularity assumptions are quite strong and restrictive. These first a priori results
have been considerably improved during the last couple of years. In [Ben00], order
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h0.5+ν , 0 < ν < 0.5, and order h
√
| log h| a priori results are given for the H1-norm

if the solution is H3/2+ν- and H2-regular, respectively. A new and stronger result
is given in [BR03], where order h 4

√
| log h| can be found. In [HL02], quadratic finite

elements are discussed and a priori estimates for the discretization error are given.
Most of the theoretical results are obtained for standard Lagrange multipliers and in
the two-dimensional setting.

In this paper, we consider the case of linear mortar finite elements based on dual
Lagrange multipliers in two dimensions (2D) and three dimensions (3D). Moreover,
we show order h0.5+ν a priori estimates for the displacements and the Lagrange mul-
tiplier if the solution is H3/2+ν-regular, 0 < ν ≤ 0.5. The techniques are based on
introducing locally defined truncation operators measuring the nonconformity of the
discretization and on Sobolev–Slobodeckij norms.

The rest of this paper is organized as follows. In section 2, we present the math-
ematical formulation of the nonlinear multibody contact problem. In section 3, we
then consider the mortar discretization technique and establish the optimal a priori
estimate. Finally in section 4, we provide several numerical examples illustrating the
performance of the approach and confirming our theoretical results.

2. Unilateral Signorini contact problem. In this section, we give the for-
mulation of a unilateral contact problem in linear elasticity. Let Ωk, k = m, s, denote
two elastic bodies, where Ωk ⊂ R

d, d = 2, 3, are two bounded polyhedral domains.
The nonmortar side is associated with the subdomain Ωs and the mortar side with the
subdomain Ωm. We recall that in the mortar setting, the Lagrange multiplier is de-
fined on the nonmortar side and that the displacements on the nonmortar side depend
on the ones on the mortar side. Mortar and nonmortar sides are also called master
and slave sides, respectively. This motivates the subscript s for the nonmortar side
and the subscript m for the mortar side. Let Γk := ∂Ωk be Γk = Γk,D ∪ Γk,N ∪ Γk,C

with disjoint open subsets Γk,i, i = D,N,C. We assume homogeneous Dirichlet data
on ΓD := Γs,D ∪ Γm,D and we assume that Γk,D, k = m, s, has a nonzero measure.
On ΓN := Γs,N ∪ Γm,N Neumann data are given, and Γk,C denotes the possible
contact zone between the two bodies. Furthermore, we assume that the two bod-
ies in the initial configuration are in contact on their common boundary part, i.e.,
ΓC := Γm,C = Γs,C and that ΓC is a compact subset of ∂Ωs\Γs,D. The normal vector
n := ns = −nm is assumed to be constant on ΓC . Let fk ∈ [L2(Ωk)]

d be the volume
forces on Ωk. On each domain Ωk, k = m, s, we have to consider the boundary value
problem

−divσk (uk) = fk in Ωk,

uk = 0 on Γk,D,

σk (uk)nk = pk on Γk,N

(2.1)

with given boundary stresses pk on Γk,N . The stress tensor σk on Ωk is given by
Hooke’s law

σk,ij := Ck,ijmlεk,ml,

where the components of the symmetric and positive definite tensor Ck are

Ck,ijml := λk δijδml + μk (δimδjl + δilδjm)
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with the constant Lamé parameters λk and μk on Ωk. Here εk denotes the linearized
strain tensor

εk(uk) :=
1

2

(
∇uk+

(
∇uk

)�)
.

We refer the reader to [KO88, Wri01, Lau02] for an introduction to linear elasticity
and contact problems. To specify the conditions modeling unilateral contact on the
possible contact part ΓC , we define for k = m, s the normal stress σk,n(uk) and the
tangential stress σk,T on ΓC by

σk,n(uk) :=
(
σk (uk)nk

)
· nk and σk,T (u) := σk (uk)nk − σk,n(uk)nk,

respectively. We consider frictionless unilateral contact problems, thus the contact
conditions on the possible contact boundary ΓC for k = m, s are given by

−σs,T (us) = σm,T (um) = 0,

σm,n(um) = σs,n(us) ≤ 0,

[u · n] ≤ 0,

σn(u)[u · n] = 0,

(2.2)

where [u·n] stands for the jump of the normal displacements u on the possible contact
boundary ΓC . It is defined as [u · n] := um · nm + us · ns, and the normal part of
the stresses on ΓC is given by σn(u) := σm,n(um) = σs,n(us). The third condition
is called the nonpenetration condition of the two bodies. Together with (2.1), the
contact condition (2.2) formulate the problem of frictionless unilateral contact. The
last condition in (2.2) implies that at the possible contact area ΓC , we have either zero
boundary stresses, i.e., σn(u) = 0, or contact between the two bodies, i.e., [u ·n] = 0.
We remark that we do not need any function modeling the distance between the two
bodies, since we assume that they are in contact in the reference configuration. In
the more general case, we have to replace the third condition in (2.2) by [u · n] ≤ g,
where the gap function g : Γs,C → R models the distance between the two bodies,
and the jump has to be defined in terms of a suitable parametrization. To give the
weak formulation of problem (2.1) with the contact conditions (2.2), we introduce
the product space V := [H1

∗ (Ωm)]d × [H1
∗ (Ωs)]

d, equipped with the broken H1-norm
‖v‖2

1,Ω :=
∑

k=m,s ‖v‖2
1,Ωk

, where the spaces [H1
∗ (Ωk)]

d are defined by

[H1
∗ (Ωk)]

d :=
{
vk ∈

[
H1 (Ωk)

]d
: vk|Γk,D

=0
}
.

For u := (um,us) ∈ V and v := (vm,vs) ∈ V, we define the bilinear form a(u,v)
and the linear form f(v) by

a(u,v) :=
∑

k=m,s

∫
Ωk

σk (uk) : ∇vk dx,

f(v) :=
∑

k=m,s

(∫
Ωk

fk · vk dx +

∫
Γk,N

pk · vk ds

)
.

Then the weak solution of our nonlinear contact problem (2.1) and (2.2) can be
obtained as a solution of a minimization problem on the convex subset K := {v ∈
V : [v · n] ≤ 0 on ΓC}

J(u) = min
v∈K

J(v) :=
1

2
a(v,v) − f(v);(2.3)
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see, e.g., [Hc80, BGK87]. Furthermore, the minimization problem (2.3) is equivalent
to a variational inequality on the convex subset K ⊂ V: find u ∈ K such that

a(u,v − u) ≥ f(v − u), v ∈ K.(2.4)

To give the saddle point formulation, we introduce a Lagrange multiplier space M,
being the dual space of the trace space W of [H1

∗ (Ωs)]
d restricted to ΓC . By assump-

tion ΓC is a compact subset of ∂Ωs\Γs,D, and thus we have W = [H1/2(ΓC)]d. In

the case ΓC = ∂Ωs\Γs,D, we have to work with [H
1/2
00 (ΓC)]d instead of [H1/2 (ΓC)]d.

We now define the following convex cone of Lagrange multipliers:

M+ :=
{
μ ∈ M : 〈μ,v〉ΓC

≥ 0, v ∈ W+
}
,(2.5)

where 〈·, ·〉ΓC
denotes the duality pairing between M and W, and W+ := {v ∈ W :

v · n ≥ 0}. Defining the bilinear form b(·, ·) on the product space V × M by

b(v,μ) := 〈μ · n, [v · n]〉ΓC
, μ ∈ M, v ∈ V,

we get the saddle point formulation of the unilateral contact problem without friction;
see, e.g., [Hcc96, Chapter 1.3]: find u ∈ V and λ ∈ M+ such that

a(u,v) + b(v,λ) = f(v), v ∈ V,

b(u,μ − λ) ≤ 0, μ ∈ M+.
(2.6)

The existence and uniqueness of (u,λ) ∈ V × M+ of (2.6) has been stated, e.g., in
[Hcc96, Theorem 3.11 and Remark 3.10]. Moreover, u is also the unique solution of
the minimization problem (2.3) and the variational inequality (2.4), and we find that
λ = −σs(us)n and thus λ · n = −σn(u) and λ × n = 0.

In the following, we denote by γa ⊂ ΓC the actual contact set, i.e., [u · n] = 0 on
γa and [u · n] < 0 on γc := ΓC\γa. If the displacement u is a continuous function,
then the actual contact zone γa is a well-defined and closed subset of ΓC .

3. Discretization techniques and a priori error estimates. In this section,
we consider a discrete formulation of the saddle point formulation (2.6). Mortar
techniques with standard Lagrange multiplier spaces for contact problems have been
considered and analyzed, e.g., in [BHL99, Hil00, CHLS01, HL02, BR03]. Here, we
apply these techniques to dual Lagrange multiplier spaces; see, e.g., [Woh00]. New
optimal a priori error estimates for the discretization error in the H1-norm and for
the Lagrange multiplier in the H−1/2-norm will be given. To approximate V, we
use standard conforming finite elements of lowest order on quasi-uniform simplicial,
quadrilateral, or hexahedral triangulations. The finite element space associated with
the shape regular triangulation Th,Ωk

is denoted by S1(Ωk, Th,Ωk
). The meshsize h is

defined by the maximal diameter of the elements in Th,Ωm and Th,Ωs . We define the
discrete product space Vh by

Vh :=

⎧⎨
⎩vh ∈

∏
k∈{s,m}

[
S1 (Ωk, Th,Ωk

)
]d

: vh|ΓD
=0

⎫⎬
⎭ ⊂ V.

As it is standard in the mortar context, the Lagrange multiplier space inherits its
(d− 1)-dimensional mesh from the d-dimensional triangulation on the slave side. We
assume that ΓC can be written as union of edges in 2D and faces in 3D on the slave
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side. Here, we use discontinuous piecewise linear or bilinear nodal basis functions for
the dual Lagrange multiplier. The discrete Lagrange multiplier space is denoted by
Mh and can be spanned by {ψiel, i = 1, . . . , NMh

, l = 1, . . . , d}, where el denotes
the lth unit vector, ψi the ith scalar dual basis function, and NMh

is the number of
vertices on the slave side of ΓC . In contrast to the general mortar setting, we do not
have to remove the degrees of freedom of Mh on ∂ΓC . We note that this has to be
done if Γs,D ∩ Γs,C = ∅ but not in our case. We now define the discrete space of M+

(see (2.5)) by

M+
h :=

{
μh ∈ Mh : 〈μh,vh〉ΓC

≥ 0, vh ∈ W+
h

}
,(3.1)

where W+
h := {vh ∈ Wh : vh · n ≥ 0} and Wh is the vector-valued trace space of

[S1 (Ωs, Th,Ωs)]
d restricted to ΓC . The following lemma shows that the space M+

h can
be equivalently defined by

M̂+
h :=

⎧⎨
⎩μh =

NMh∑
i=1

αiψi : αi ∈ R
d, αi = αn

i n, α
n
i ∈ R, αn

i ≥ 0, i = 1, . . . , NMh

⎫⎬
⎭ .

Lemma 3.1. M+
h = M̂+

h .

Proof. To show the equivalence, we write vh ∈ W+
h as vh =

∑NMh
i=1 (βn

i n + βt
i)ϕi

with βn
i ∈ R, βn

i ≥ 0, and βt
i ∈ R

d, βt
i · n = 0, where ϕj are the scalar nodal basis

function of S1 (Ωs, Th,Ωs) restricted to ΓC . Each μh ∈ Mh can be written in terms

of the basis functions ψi as μh =
∑NMh

i=1 (αn
i n + αt

i)ψi with αn
i ∈ R and αt

i ∈ R
d,

αt
i · n = 0. Due to the biorthogonality of the basis functions∫

ΓC

ψiϕj ds = δijcj , cj :=

∫
ΓC

ϕj ds > 0,

we have

〈μh,vh〉ΓC
=

NMh∑
i=1

(
αn
i β

n
i + αt

i · βt
i

)
ci.(3.2)

Letting μh ∈ M+
h and using the definition (3.1), the choice βt

i = 0 and βn
i = δij yields

αn
j ≥ 0 and the choice βn

i = 0 and βt
i = ±δijα

t
j yields αt

j = 0 and thus μh ∈ M̂+
h .

Letting μh ∈ M̂+
h and using (3.2) and βn

i ≥ 0, we find that μh ∈ M+
h .

We remark that this is not a conforming approach for the Lagrange multiplier
space, i.e., M+

h ⊂ M+.

Remark 3.2. Using standard Lagrange multipliers, the spaces M+
h and M̂+

h are

not the same. In that case, the convex cone M̂+
h is a subset of the convex cone M+

h .
The discrete mortar formulation of the saddle point problem (2.6) is now given

by the following: find uh ∈ Vh and λh ∈ M+
h such that

a(uh,vh) + b(vh,λh) = f(vh), vh ∈ Vh,

b(uh,μh − λh) ≤ 0, μh ∈ M+
h .

(3.3)

Existence and uniqueness of a solution follows from a discrete inf-sup condition
(see, e.g., [Woh01, Chapter 1.2.3]) for the spaces Mn

h and Vh with M+
h ⊂ Mn

h :=
{μh ∈ Mh : μh × n = 0} (see, e.g., [Hcc96, Chapter 2.4.2] or [HL02]).
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In the rest of this section, we consider optimal a priori estimates for the dis-
cretization errors in the primal and dual variables. The starting point is the following
abstract lemma; see, e.g., [HL02].

Lemma 3.3. Let (u,λ) ∈ V × M+ be the solution of (2.6) and let (uh,λh) ∈
Vh×M+

h be the solution of the discrete formulation (3.3). Then there exists a constant
0 < C < ∞ independent of the meshsize h, such that

‖u − uh‖1,Ω + ‖λ − λh‖− 1
2 ,ΓC

≤ C
{

inf
vh∈Vh

‖u − vh‖1,Ω + inf
μh∈Mn

h

‖λ − μh‖− 1
2 ,ΓC

+ max (b(u,λh), 0)
1
2 + max(b(uh,λ), 0)

1
2

}
.

Proof. The proof can be found in [HL02] for scalar-valued standard Lagrange
multipliers and quadratic finite elements. It applies also to our situation. For conve-
nience of the reader, we briefly recall the basic steps. Starting with a(u−uh,u−uh),
we find for vh ∈ Vh, using (2.6) and (3.3),

a(u − uh,u − uh) = a(u − uh,u − vh) + a(u − uh,vh − uh)

= a(u − uh,u − vh) − b(vh − uh,λ) + b(vh − uh,λh)

= a(u − uh,u − vh) − b(vh − u,λ − λh) − b(u − uh,λ − λh).

Using the continuity of the bilinear forms a(·, ·) and b(·, ·), the trace theorem, and
Korn’s inequality, we obtain the upper bound

‖u − uh‖2
1,Ω ≤ C(‖u − uh‖1,Ω + ‖λ − λh‖− 1

2 ,ΓC
)‖u − vh‖1,Ω − b(u − uh,λ − λh).

(3.4)

In terms of the discrete inf-sup condition (see, e.g., [Woh01, Chapter 1.2.3]) and
observing that ‖μh‖− 1

2 ,ΓC
= ‖μh · n‖− 1

2 ,ΓC
, μh ∈ Mn

h, we find the upper bound

‖μh − λh‖− 1
2 ,ΓC

≤ C sup
wh∈vh

b(wh,μh − λh)

‖wh‖1,Ω

= C sup
wh∈vh

b(wh,μh − λ) + a(uh − u,wh)

‖wh‖1,Ω

≤ C(‖μh − λ‖− 1
2 ,ΓC

+ ‖uh − u‖1,Ω).

Setting μ = 0 in (2.6) and μh = 0 in (3.3), we find that b(u,λ) ≥ 0 and b(uh,λh) ≥ 0.
We note that M+ and M+

h are convex cones. Using μ = 2λ and μh = 2λh, we get
b(u,λ) ≤ 0 and b(uh,λh) ≤ 0, respectively. In terms of b(u,λ) = b(uh,λh) = 0, the
third term on the right side of (3.4) can be written as

−b(u − uh,λ − λh) = b(u,λh) + b(uh,λ) ≤ max(b(u,λh), 0) + max(b(uh,λ), 0).

We remark that the term max(b(uh,λ), 0) takes into account the discrete pen-
etration of the two bodies on the actual contact set γa. The term max

(
b(u,λh), 0

)
can be greater than zero if the discrete Lagrange multiplier λh · n is negative on a
part of γc. We recall that M+

h is not a subspace of M+, and thus λh · n, λh ∈ M+
h ,

can be smaller than zero. The first two terms in the upper bound of Lemma 3.3 are
the best approximation errors. They reflect the quality of the approximation of the
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spaces vh and Mn
h. The third and the fourth terms measure the nonconformity of the

approach.
To prove optimal a priori error estimates under the Hs-regularity assumption for

the displacements u with 3
2 < s ≤ 2, we have to consider the two last terms for the

bilinear form b(·, ·) in the upper bound of Lemma 3.3. In a first step, we briefly recall
the definition of the mortar projection Πh : [L2(ΓC)]d → wh and its dual operator
Π∗

h : [L2(ΓC)]d → Mh:
∫

ΓC

(Πhw) · μh ds :=

∫
ΓC

w · μh ds, μh ∈ Mh,

∫
ΓC

vh · (Π∗
hμ) ds :=

∫
ΓC

vh · μ ds, vh ∈ wh.

In terms of the stability of Πh and Π∗
h (see the general mortar setting with dual

Lagrange multipliers in [Woh01, Chapters 1.2.1 and 1.2.2]), both operators satisfy an
approximation property

‖w − Πhw‖0,ΓC
≤ Chτ |w|τ,ΓC

, ‖μ − Π∗
hμ‖0,ΓC

≤ Chν |μ|ν,ΓC
(3.5)

for w ∈ [Hτ (ΓC)]d, 0 ≤ τ ≤ 2, and μ ∈ [Hν(ΓC)]d, 0 ≤ ν ≤ 1.
The proof of the upper bound of b(u,λh) is based on a regularity assumption for

the actual contact zone.
Assumption 3.1. Regularity assumption on γa.
• In 2D, we assume that the number of points in γ̊a ∩ γc is finite.
• In 3D, the regularity assumption will be specified in the proof of Lemma 3.5.

We now give two lemmas providing upper bounds for the consistency errors.
Lemma 3.4. Let (u,λ) ∈ v×M+ be the solution of (2.6) and let (uh,λh) ∈ vh×

M+
h be the solution of the discrete formulation (3.3). Under the regularity assumption

u ∈
[
H

3
2+ν(Ω)

]d
, 0 < ν ≤ 1

2 , we then have the a priori error estimate

b(uh,λ) ≤ C
(
h1+2ν |u|23

2+ν,Ω + h
1
2+ν |u| 3

2+ν,Ω‖u − uh‖1,Ω

)

for a positive constant C < ∞ independent of h.
Proof. For standard Lagrange multipliers, we refer the reader to [HL02]. Although

our dual basis functions of Mh are not positive, we can apply the same techniques.
Using the discrete saddle point formulation (3.3) and the definition of the mortar
projection, we find that

b(uh,μh − λh) =

∫
ΓC

((μh − λh) · n) (Πh[uh] · n) ds ≤ 0, μh ∈ M+
h .

The normal component of the mortar projection of [uh] can be written as Πh[uh] ·n =∑NMh
i=1 αn

i ϕi. Writing the normal components of μh,λh ∈ M+
h as linear combination

of the dual basis functions yields μh · n =
∑NMh

i=1 βn
i ψi and λh · n =

∑NMh
i=1 γn

i ψi,
βn
i , γ

n
i ≥ 0. Setting βn

i := γn
i + δij , we obtain

0 ≥ b(uh,μh − λh) =

∫
ΓC

ψj (Πh[uh] · n) ds = αn
j

∫
ΓC

ϕj ds.

We recall that ϕj ≥ 0 and thus αn
j ≤ 0, 1 ≤ j ≤ NMh

. This results, in combination

with λ ∈ M+, in
∫
ΓC

(λ · n) (Πh[uh] · n) ds ≤ 0. In contrast to the general mortar
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setting with crosspoints, Πh restricted to the finite element trace space on the slave
side is the identity. The approximation properties (3.5) yield the upper bound

b(uh,λ)

=

∫
ΓC

(λ · n)
(
[uh · n] − Πh[uh] · n + Πh[uh] · n

)
ds

≤
∫

ΓC

(
λ − Π∗

hλ
)
· n

(
[uh] − Πh[uh]

)
· n ds

=

∫
ΓC

(
λ − Π∗

hλ
)
· n

(
Πhu

m
h − um

h

)
· n ds

≤ ‖λ − Π∗
hλ‖0,ΓC

(
‖(um − um

h ) − Πh(um − um
h )‖0,ΓC

+ ‖um − Πhum‖0,ΓC

)
≤ hν |λ|ν,ΓC

(
h

1
2 |um − um

h | 1
2 ,ΓC

+ h1+ν |um|1+ν,ΓC

)
≤ C

(
h

1
2+ν |u| 3

2+ν,Ω‖u − uh‖1,Ω + h1+2ν |u|23
2+ν,Ω

)
.

A similar bound for the term b(u,λh) can be established.
Lemma 3.5. Let (u,λ) ∈ v × M+ be the solution of (2.6) and let (uh,λh) ∈

vh×M+
h be the solution of the discrete formulation (3.3). Under Assumption 3.1 and

the regularity assumption u ∈
[
H

3
2+ν(Ω)

]d
, 0 < ν ≤ 1

2 , we then have the a priori
error estimate

b(u,λh) ≤ Ch
1
2+ν |u| 3

2+ν,Ω‖λ − λh‖− 1
2 ,ΓC

for a positive constant C < ∞ independent of h < h0.
Proof. The regularity assumptions guarantee that [u · n] restricted to ΓC is con-

tinuous. In a first step, we consider the two-dimensional case. We denote by Ih the
Lagrange interpolation operator with respect to the mesh on the slave side. Based on
Ih, we consider a modified interpolation operator Ĩh. Let PC := {pi : 1 ≤ i ≤ NMh

}
be the set of vertices on the slave side of ΓC and WC := {wj : 1 ≤ j ≤ Nw} be the set
of points in γ̊a ∩ γc. The minimum distance between the elements in WC is denoted
by a, i.e., a = inf{|wj − wk| : 1 ≤ j = k ≤ Nw}, where | · | denotes the Euclidean
norm. By Assumption 3.1, Nw < ∞ and thus a > 0. For h < a

2 =: h0, we find
between two neighbor points in WC at least two vertices in PC .

We now define the modified Lagrange interpolation operator Ĩh as

(Ĩh [u · n])(pi) :=

{
[u · n](pi) if supp ϕi ⊂ γc,
0 else,

(3.6)

where ϕi is the standard nodal basis function associated with the vertex pi ∈ PC ; see
Figure 3.1. Using b(u,λ) = 0, we find

b (u,λh) =

∫
ΓC

([u · n] − Ĩh[u · n])
(
(λh − λ) · n

)
ds +

∫
ΓC

Ĩh[u · n]
(
(λh − λ) · n

)
ds.

(3.7)

By construction Ĩh[u · n] ≤ 0 and supp Ĩh[u · n] ⊂ supp [u · n] = γc, we then find in
terms of (2.2) and (3.1) that

∫
ΓC

Ĩh[u · n] (λh · n) ds ≤ 0,

∫
ΓC

Ĩh[u · n] (λ · n) ds = 0.(3.8)
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ΓC

pi−2 pi−1 piwpi

Ihg

≤ h

≥ a > 2h

Ĩhgg

Fig. 3.1. Functions g, Ihg, and Ĩhg.

C

pi−2 pi−1 piwpi

Ihg − Ĩhgg

Fig. 3.2. Difference of the interpolated functions Ihg − Ĩhg.

Now we get from (3.7) the estimate

b (u,λh) ≤ ‖[u · n] − Ĩh[u · n]‖ 1
2 ,ΓC

‖λh − λ‖− 1
2 ,ΓC

.(3.9)

To estimate the term ‖[u ·n]− Ĩh[u ·n]‖ 1
2 ,ΓC

, we define g := −[u ·n] and consider the

difference Ihg − Ĩhg of the interpolated functions; see Figures 3.1 and 3.2.
In terms of the inverse inequality (see, e.g., [Bra97, Chapter 6]), we get

‖Ihg − Ĩhg‖2
1
2 ,ΓC

≤ C

h
‖Ihg − Ĩhg‖2

0,ΓC
≤ C

∑
pi∈MC

(g(pi))
2
,(3.10)

where the set of points MC on the contact boundary ΓC is defined by MC := {pi ∈
PC : Ĩhg(pi) = Ihg(pi)}. Let wpi ∈ WC be the unique closest point to pi ∈ MC .
Without loss of generality, we consider a lexicographically ordering of the indices and
the case that g = 0 in the left neighborhood of wpi and g > 0 in the right neighborhood
of wpi

.

For h < a
2 , we have Ihg − Ĩhg = 0 on [pi−2, pi−1]; see Figure 3.2. The regularity

assumption on u yields g ∈ H1+ν(ΓC) and moreover g = 0 on [pi−2, wpi ]. Now the
Cauchy–Schwarz inequality gives for each point pi ∈ MC the estimate

(g(pi))
2

=

(∫ pi

wpi

g′(s) ds

)2

=
1

|wpi − pi−2|2

(∫ pi

wpi

∫ wpi

pi−2

g′(s) − g′(t)

|s− t| 1+2ν
2

|s− t| 1+2ν
2 dt ds

)2

≤ 1

|wpi
− pi−2|2

∫ pi

pi−2

∫ pi

pi−2

(
g′(s) − g′(t)

)2
|s− t|1+2ν

dt ds

∫ pi

wpi

∫ wpi

pi−2

|s− t|1+2ν dt ds

≤ C
1

|wpi − pi−2|2
|g′|2ν,[pi−2, pi]

h1+2ν |pi − wpi | |wpi − pi−2|

= C|g′|2ν,[pi−2, pi]
h1+2ν |pi − wpi |

|wpi − pi−2|
≤ C|g′|2ν,[pi−2, pi]

h1+2ν ,
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where we used the shape regularity of the triangulation. To obtain an upper bound for
‖Ihg − Ĩhg‖ 1

2 ,ΓC
, we have to sum over all pi ∈ MC . We observe that by Assumption

3.1, the number of elements in MC is finite. In terms of (3.9) and (3.10), we find now
the bound

b(u,λh) ≤ ‖λ − λh‖− 1
2 ,ΓC

(‖g − Ihg‖ 1
2 ,ΓC

+ ‖Ihg − Ĩhg‖ 1
2 ,ΓC

)

≤ Ch
1
2+ν |g|1+ν,ΓC

‖λ − λh‖− 1
2 ,ΓC

≤ Ch
1
2+ν |u| 3

2+ν,Ω‖λ − λh‖− 1
2 ,ΓC

.

If not stated otherwise, we use the same definitions and symbols in the three-
dimensional setting as for the two-dimensional situation. The regularity assumption
on u guarantees that g is continuous. In the three-dimensional case, we replace the
Lagrange interpolation operator by a quasi-interpolation operator which is defined
locally by its values at the nodes p ∈ PC

Ihg(p) :=
1

2coh

∫
Sp

g(s) ds,

where Sp is a one-dimensional interval of length 2c0h, direction z, and p is the midpoint
of Sp. The direction z is arbitrary but has to be fixed for each node p ∈ PC . The
constant c0 > 0 depends on the shape regularity of the mesh, but not on h. It is taken
such that Bp(c0h) ⊂ supp(ϕp), where Bp(c0h) is the circle with radius c0h and center
p. We note that Ih restricted to n · wh is not the identity, but it reproduces a linear
function. This operator is similar to the ones of Clément and Scott–Zhang, and thus
it is easy to verify the estimate

‖g − Ihg‖ 1
2 ,ΓC

≤ Ch
1
2+ν |g|1+ν,ΓC

.

We also define analogously to (3.6) the modified operator Ĩh

(Ĩhg)(pi) :=

{
Ihg(pi) if supp ϕi ⊂ γc,
0 else.

We note that we cannot use the standard Scott–Zhang operator because it does not
necessarily preserves the sign. The same reasoning as in the two-dimensional case
yields (3.8) and thus (3.9). Furthermore in the three-dimensional case, the estimate
(3.10) has the form

‖Ihg − Ĩhg‖2
1
2 ,ΓC

≤ C

h
‖Ihg − Ĩhg‖2

0,ΓC
≤ Ch

∑
pi∈MC

(Ihg(pi))
2
,(3.11)

and we have to estimate the terms Ihg(pi) for all pi ∈ MC . The vertices pi ∈ MC

are marked with empty circles and γc is the shaded domain, in the left picture of
Figure 3.3.

We assume that for h small enough, there exists for each p ∈ MC a shape
regular quadrilateral Rp, such that Sp is one edge, and Rp ∩ γa contains a shape
regular quadrilateral including the opposite edge of Sp, where all regularity constants
depend only on the regularity of the triangulation and of γc but neither on the node
p nor on h. This quadrilateral Rp can now be mapped by Fp to the reference square

R̂ := [0, h]2 of length h such that ĝ(ŝ) := g(F−1
p (ŝ)), restricted to the lower half

R̂2 := [0, h]× [0, 1/2h] of the square, is zero, and such that the Jacobian of Fp and its
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Sp

Rp

Fp

Fp(Sp)

Sp
p

Rp Fp(p)

R̂2

R1

R̂1
γa

γc

Fig. 3.3. Vertices in MC (left) and edge Sp; quadrilateral Rp and reference square R̂ (right).

inverse are bounded independently of h. We further assume that Fp restricted to Sp

is affine and Fp(Sp) = [0, h]×{1}. The upper half of the square is denoted by R̂1; see
the right picture of Figure 3.3. Now we can proceed as in the two-dimensional case
and find an upper bound for Ihg(p)

(Ihg(p))
2

=
1

h2

(∫ h

0

ĝ(s1, h)ds1)

)2

=
1

h2

(∫
R̂1

ĝs2(s)ds

)2

=
4

h6

(∫
R̂2

(∫
R̂1

ĝs2(s) − ĝs2(s̃)

|s− s̃|1+ν
|s− s̃|1+νds

)
ds̃

)2

≤ 4

h6

∫
R̂2

∫
R̂1

(
ĝs2(s) − ĝs2(s̃)

)2
|s− s̃|2+2ν

dsds̃

∫
R̂2

∫
R̂1

|s− s̃|2+2νds ds̃

≤ C

h6
h2+2νh4

∫
R̂

∫
R̂

(
ĝs2(s) − ĝs2(s̃)

)2
|s− s̃|2+2ν

ds ds̃

≤ Ch2ν |ĝs2 |2ν,R̂ ≤ Ch2ν |g|21+ν,Rp
.

In the last step, we have used the properties of the Jacobian of Fp. Summing over all
p ∈ MC and using a coloring argument, (3.11) yields finally as in the two-dimensional
case the upper bound

‖Ihg − Ĩhg‖ 1
2 ,ΓC

≤ Ch
1
2+ν |g|1+ν,ΓC

,

where the constant does not depend on the meshsize.
Now we combine the previous results and formulate the optimal a priori error

estimate for multibody contact problems.
Theorem 3.6. Let (u,λ) ∈ v × M+ be the solution of (2.6) and let (uh,λh) ∈

vh×M+
h be the solution of the discrete formulation (3.3). Under Assumption 3.1 and

the regularity assumption u ∈
[
H

3
2+ν(Ω)

]d
, 0 < ν ≤ 1

2 , we then have the a priori
error estimate

‖u − uh‖1,Ω + ‖λ − λh‖− 1
2 ,ΓC

≤ Ch
1
2+ν |u| 3

2+ν,Ω

for a positive constant C.
Proof. Using the well-known approximation property for the spaces vh and Mh,

the proof is a direct consequence of Lemmas 3.3, 3.4, and 3.5 and the application of
Young’s inequality.

Remark 3.7. It is possible to establish an optimal a priori estimate for the
Lagrange multiplier in a weighted L2-norm, i.e.,

√
h‖λ − λh‖0,ΓC

. The proof follows
the same lines as for the H−1/2-norm and uses an inverse estimate.
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Remark 3.8. Replacing vh by quadratic finite elements, we obtain a higher-order
a priori estimate. Quadratic finite elements and linear Lagrange multipliers yield an
order h

1
2+ν , 0 < ν < 1, upper bound for the discretization error if the solution is

H
3
2+ν-regular. Replacing the linear Lagrange multiplier space by quadratic Lagrange

multipliers does not give a higher order; see, e.g., [HL02]. For a proof and numerical
results comparing quadratic finite elements with linear Lagrange multipliers and with
quadratic Lagrange multipliers, we refer the reader to [HMW04]; see also Table 4.4.

Remark 3.9. The same theoretical results can be obtained if a different dual
Lagrange multiplier space is used, e.g., piecewise constant dual Lagrange multipliers
or continuous piecewise cubic dual Lagrange multipliers as proposed in [Woh02]

4. Numerical results. In this section, we consider different examples for multi-
body contact problems. We focus on the discretization errors of the displacement in
the L2- and the H1-norm and of the Lagrange multiplier in a weighted L2-norm
on the contact boundary. In general, multibody contact problems do not admit an
analytical solution. To evaluate the discretization errors, we compute a reference
solution denoted by uref for the displacements and a reference solution λref for the
Lagrange multiplier corresponding to a finer mesh. We note that in all our examples,
the meshsize href for the reference solution satisfies href ≤ 1/4h. A reference meshsize
of href = 1/2h does not guarantee reliable numbers for the discretization errors. For
the iterative solution of the nonlinear system, we use an inexact primal dual active
set strategy; see [HW03]. In each outer iteration step, we apply one linear multigrid
cycle. Alternatively, nonlinear Dirichlet–Neumann solvers [KW02, BSS02, EW03],
monotone multigrid methods [KK01, Kra01, WK03], or finite element tearing and
interconnecting (FETI) approaches [DFS98, DGS00, DH03] can be applied. The im-
plementation is based on the finite element toolbox UG; see [BBJ+97]. We start
with a coarse triangulation and use uniform refinement techniques. Each element is
decomposed into four subelements within the next refinement step.

Example 1. In our first example, we consider the problem depicted in Figure 4.1.
The two bodies in their reference configuration are scaled squares, Ωm := (0, 0.01) ×
(0, 0.01) and Ωs := (0.0, 0.01) × (0.01, 0.02). On Ωm, we set E = 15 × 109 and
ν = 0.2 and on Ωs, we use a different material with E = 20 × 109 and ν = 0.4. The
lower boundary of Ωm is clamped. The applied load p is given by (105, −106)� on
the left side and by (−105, −106)� on the right side of Ωm. Homogeneous Neumann
boundary conditions are applied to both sides of Ωs, and inhomogeneous Dirichlet
data are given on the top of Ωs. The displacements are set to be (0.0, −5 × 10−7)�.

The initial triangulation on level 0 is shown in the left picture of Figure 4.1. We
recall that the Lagrange multiplier −λh ·n of the mortar discretization approximates
the contact pressure. In the right picture of Figure 4.1, we give the normal and
tangential component of λh on level 6. The normal component is nonzero only in the
part of ΓC where the two bodies are actually in contact. As expected, the tangential
component is equal to zero because no friction is taken into account. The distorted
domains and stress components σ11 and σ22 are shown in the middle picture of
Figure 4.1.

We use the finite element solution on level 8 as reference solution (uref,λref). On
level 8, we have 262,144 elements on Ωs and 589,824 elements on Ωm. In Table 4.1,
we give the discretization errors of the displacements in the relative L2(Ω)-norm and
in the relative H1(Ω)-norm. The error in the Lagrange multiplier is measured in
a weighted L2(ΓC)-norm. The convergence rates in the L2-norm for the displace-
ments are approximately 1.8. Asymptotically, the convergence rates tend to 1 in the
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Fig. 4.1. Example 1: Problem definition and initial triangulation (left), stress components σ11

and σ22 on distorted domains (distortion scaled by factor 1000) (middle), and contact stresses in
normal and tangential direction (right).

Table 4.1

Example 1: Relative L2(Ω)-error and relative H1(Ω)-error of uh with respect to uref, weighted
L2(ΓC)-error of λh with respect to λref, and the numerical convergence orders.

Level ‖uh − uref‖0,Ω/‖uref‖0,Ω |uh − uref|1,Ω/|uref|1,Ω ‖λh − λref‖− 1
2
,h,ΓC

0 6.447659e− 02 − 4.447386e− 01 − 9.507368e + 02 −
1 1.947047e− 02 1.73 2.422984e− 01 0.87 3.709632e + 02 1.36
2 5.719462e− 03 1.77 1.323250e− 01 0.87 1.937997e + 02 0.94
3 1.798368e− 03 1.67 7.137496e− 02 0.89 8.890783e + 01 1.12
4 5.181605e− 04 1.80 3.815553e− 02 0.90 3.743692e + 01 1.25
5 1.551852e− 04 1.74 2.012575e− 02 0.92 1.503053e + 01 1.32
6 4.544415e− 05 1.77 1.027931e− 02 0.97 5.607133e + 00 1.42

H1(Ω)-norm. As in the linear case, we observe better convergence rates for the La-
grange multiplier. The best approximation error of the Lagrange multiplier in the
weighted L2(ΓC)-norm is of order h1.5.

Example 2. In our second example, we use the same geometry and the same
material parameters as in Example 1; see [HL02]. The upper part of Ωs and the
lower part of Ωm are clamped. Inhomogeneous Neumann data are applied to the left
part of Ωs and to the right part of Ωm. The scaled boundary forces are given by
p = (105, −106)� and p = (−105, −106)�; see Figure 4.2.

In the middle picture of Figure 4.2, the stress component σ11 is shown on the
distorted domains. The normal component of the Lagrange multiplier is given in the
right picture. In contrast to Example 1, we observe a singularity at the left endpoint of
the contact zone. Here, we use bilinear finite elements and a conforming triangulation
on the possible contact boundary ΓC . The finite element solution on level 8 is taken
as reference solution. Due to the lower regularity of the solution, we cannot expect
a convergence rate of order h. The discretization errors for the relative L2(Ω)- and
H1(Ω)-norm of the displacement are given in columns three and four of Table 4.2,
respectively. The error of the Lagrange multiplier in the weighted L2(ΓC)-norm can
be found in the last column. Asymptotically, the convergence rates tend to 0.9 in
the H1(Ω)-norm. As in Example 1, we observe a higher convergence rate for the
Lagrange multiplier. The convergence rate for the L2-norm is approximately 1.5.
The low regularity of the problem is reflected in smaller numerical convergence rates.
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Fig. 4.2. Example 2: Problem definition (left), stress component σ11 on distorted domains
(distortion scaled by factor 1000) (middle), and contact stresses in normal and tangential direction
(right).

Table 4.2

Example 2: Relative L2(Ω)-error and relative H1(Ω)-error of uh with respect to uref, weighted
L2(ΓC)-error of λh with respect to λref, and the numerical convergence orders.

Level ‖uh − uref‖0,Ω/‖uref‖0,Ω |uh − uref|1,Ω/|uref|1,Ω ‖λh − λref‖− 1
2
,h,ΓC

0 6.314604e− 01 − 8.113448e− 01 − 4.648877e + 03 −
1 3.513681e− 01 0.85 5.138377e− 01 0.66 2.210844e + 03 1.07
2 1.414198e− 01 1.31 2.786256e− 01 0.88 1.668986e + 03 0.41
3 5.196291e− 02 1.44 1.502248e− 01 0.89 9.087467e + 02 0.88
4 1.885312e− 02 1.46 8.271511e− 02 0.86 4.278806e + 02 1.09
5 6.983378e− 03 1.43 4.614857e− 02 0.84 1.994283e + 02 1.10
6 2.611373e− 03 1.42 2.576322e− 02 0.84 9.358784e + 01 1.09
7 9.293584e− 04 1.49 1.399176e− 02 0.88 4.454642e + 01 1.07

Example 3. Our third example is the Hertzian contact problem of a linear elastic
circle with a plane. In this example, the contact stresses can be computed analytically;
see [Her82, KO88]. So we are able to compare the numerically computed boundary
stresses to the analytical ones. If an elastic circle with radius r and material param-
eters E and ν is pressed by a single point load f = (0, −f)� on the top to a rigid
plane, the analytical contact pressure is given by (see, e.g., [KO88, Chapter 6.6])

p(x) =
2f

πb2

√(
b2 − x2

)
, x ≤ b, b := 2

√
fr(1 − ν2)

Eπ
,(4.1)

where b is the half-width of the contact surface and x is the distance to the center
of the contact surface. In our setting, we replace the rigid plane by a linear elastic
rectangle. Young’s modulus of the rectangle is set to be larger than the one of the
circle. We apply homogeneous Dirichlet boundary conditions at the bottom and at
the two sides of the rectangle. On the circle with radius r = 1, we set the material
parameters to be E = 7000 and ν = 0.3. For the rectangle with height w = 1, we use
E = 106 and ν = 0.45. The circle, assumed to be the slave side, is pressed by a point
load f = (0, −100)� at the top of the rectangle. The problem definition and the
geometry are shown in Figure 4.3. As done in [CSW99, KW02], we replace the point
load by a surface load to avoid a strong singularity on the upper part of the circle.
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Fig. 4.3. Example 3: Problem definition and initial triangulation (left), maximal contact
stresses (middle), and contact stresses (right).

Table 4.3

Example 3: Relative L2(Ω)-error and relative H1(Ω)-error of uh with respect to uref, weighted
L2(ΓC)-error of λh with respect to λref, and the numerical convergence orders.

Level ‖uh − uref‖0,Ω/‖uref‖0,Ω |uh − uref|1,Ω/|uref|1,Ω ‖λh − λref‖− 1
2
,h,ΓC

1 5.227370e− 02 − 4.663629e− 01 − 5.845408 + 01 −
2 1.381026e− 02 1.92 3.214708e− 01 0.54 4.998951 + 01 0.23
3 4.844067e− 03 1.51 1.807113e− 01 0.83 2.120954 + 01 1.24
4 1.350194e− 03 1.84 9.735769e− 02 0.89 8.377665 + 00 1.34
5 4.175901e− 04 1.69 5.111927e− 02 0.93 3.269378 + 00 1.36
6 1.102450e− 04 1.92 2.584385e− 02 0.98 1.168388 + 00 1.48

In order to obtain a unique discrete solution, we eliminate the horizontal degrees of
freedom of the two inner nodes on the vertical symmetry axis; see Figure 4.3.

Using (4.1), the maximal normal contact stresses of the Hertzian contact problem
is then given by λmax

n = 494.8, and for the half-width of the contact zone we find b =
0.129. The pictures on the right of Figure 4.3 illustrate the numerical approximation of
the contact stress. From level 4 on, the discrete maximal normal stress is a very good
approximation of the analytical one. In the right picture, the normal and tangential
contribution of the Lagrange multiplier are given.

To compute the discretization errors, we use the mortar finite element solution
on level 8 as reference solution. The errors are given in Table 4.3. Asymptotically,
we observe optimal convergence rates. In the L2-norm, the convergence rate tends
to 2 with increasing number of refinement steps, whereas the convergence rate in the
H1(Ω)-norm tends to 1. We observe asymptotically a convergence rate of 1.5 for the
Lagrange multiplier in the weighted L2-norm on the contact zone. This results from
the fact that the error in the energy norm restricted to a strip of width h can be
bounded by C

√
h‖u‖1,Ω.

In a last test, we consider the influence of the choice of the dual Lagrange multi-
plier on the displacement and the maximal contact stress. To do so, we compare three
different dual Lagrange multipliers. In addition to the linear Lagrange multiplier, we
use discontinuous piecewise constant and continuous piecewise cubic Lagrange multi-
pliers; see [Woh02]. Table 4.4 shows in the first two columns the relative H1-error for
the dual constant and the dual cubic Lagrange multipliers. If we compare the results
of Table 4.4 with those of Table 4.3, we find that all three of our dual Lagrange mul-
tipliers yield almost the same results. The differences in the H1-norm of the error is
negligible. This is also true for the maximal contact stress. The last three columns of
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Table 4.4

Example 3: Relative H1(Ω)-error of uh with respect to uref and the maximal contact stress
(λh · n)max for dual linear, dual constant, and dual cubic Lagrange multipliers.

Level
|uh − uref|1,Ω/|uref|1,Ω (λh · n)max

Constant Cubic Linear Constant Cubic

1 4.663629e− 01 4.663629e− 01 382.057 382.057 382.057
2 3.214712e− 01 3.214712e− 01 514.166 514.172 514.172
3 1.807105e− 01 1.807104e− 01 504.190 504.229 504.231
4 9.735749e− 02 9.735742e− 02 496.765 496.775 496.775
5 5.111913e− 02 5.111915e− 02 494.805 494.809 494.809
6 2.584384e− 02 2.584384e− 02 494.264 494.266 494.266
7 494.174 494.175 494.175
8 494.202 494.202 494.202

Fig. 4.4. Example 4: Stress components σ11 and σ12 for a symmetric (left) and nonsymmetric
(right) settings.

Table 4.4 show (λh · n)max for the three different discretizations.
Example 4. Finally, we consider an example with more than two subdomains.

We use three circles and a rigid obstacle (see Figure 4.4) and two different sets of
boundary data. The possible contact zone can be decomposed into two different
types: the contact between two elastic circles and the contact between one elastic
circle and the rigid obstacle. For this example, one circle has to have a master and
a slave interface. The contact between the rigid obstacle and the elastic body is also
discretized in terms of dual Lagrange multipliers defined on the elastic body which is
the slave side. The two pictures in the left of Figure 4.4 show the stress components
σ11 and σ12 of a symmetric boundary data. In the two pictures on the right, the
rigid obstacle forms an L-shape, and the solution is nonsymmetric.
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PRESSURE CORRECTION ALGEBRAIC SPLITTING METHODS
FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS∗

F. SALERI† AND A. VENEZIANI†

Abstract. In this paper we present a new family of methods for the effective numerical solution
of the incompressible unsteady Navier–Stokes equations. These methods resort to an algebraic split-
ting of the discretized problem based on inexact LU block factorizations of the corresponding matrix
(following [A. Quarteroni, F. Saleri, and A. Veneziani, Comput. Methods Appl. Mech. Engrg., 188
(2000), pp. 505–526]. In particular, we will start from inexact algebraic factorizations of algebraic
Chorin–Temam and Yosida type and introduce a pressure correction step aimed at improving the
time accuracy. One of the schemes obtained in this way (the algebraic Chorin–Temam pressure cor-
rection method) resembles a method previously introduced in the framework of differential projection
schemes (see [L. Timmermans, P. Minev, and F. V. de Vosse, Internat. J. Numer. Methods Fluids,
22 (1996), pp. 673–688], [A. Prohl, Projection and Quasi-Compressibility Methods for Solving the
Incompressible Navier–Stokes Equations, Teubner, Stuttgart, 1997]. The stability and the depen-
dence of splitting error on the time step of the new methods is investigated and tested on several
numerical cases.
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1. Introduction. The numerical computation of the unsteady Navier–Stokes
equations for incompressible flows in real applications requires the solution of linear
systems of large dimensions. These systems are typically not definite nor well con-
ditioned, and therefore the setup of efficient methods is mandatory. Perhaps one of
the most successful approaches is provided by the class of the projection methods
at the differential (see, e.g., [3] and, more recently, [14]) and the algebraic level (see
[20] and [22], [23]). These methods typically compute the velocity and pressure fields
separately, (i) by computing an auxiliary (or intermediate) velocity; (ii) by solving a
suitable problem for the pressure; (iii) by correcting the velocity (end-of-step velocity),
to enforce the incompressibility constraint. In [23] we have introduced a general class
of algebraic splitting methods that can be regarded in this framework. We recall, in
particular, the algebraic Chorin–Temam scheme (see [20]) and the Yosida scheme (see
[22]). These methods are based on a splitting that reduces the computational effort,
without affecting the time accuracy of the solution driven by the time discretization.
This is true for first order time discretizations, while for higher order accuracy the
setup of suitable splittings is still an open problem (see, e.g., in the framework of
differential schemes, [10]).

In the present paper, we aim at investigating splitting methods that arise when-
ever, in addition to the velocity, the pressure is obtained after a suitable correction
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step. This step is set up in order to reduce the error associated with the splitting and
obtain definitively a higher order of accuracy in time.

After a brief introduction to algebraic splitting methods (section 2), we will pro-
vide a general approach for setting up such pressure correction schemes (section 3).
Then we will analyze, in particular, the schemes arising from the pressure correc-
tion of both the algebraic Chorin–Temam and the Yosida methods. The former is
investigated in section 4. We analyze the splitting error reduction induced by the
pressure correction step and prove that in the Stokes (linear) case the scheme features
unconditional stability when starting from a backward difference (implicit) time dis-
cretization. Then (section 4.2) we establish some formal analogies between our scheme
and other pressure correction schemes proposed at a differential level (see [26]).

The pressure correction formulation of the Yosida method is investigated in sec-
tion 5. In particular, it is possible to prove that the consistency error induced by the
splitting on the matrix to be solved at each time step depends on the cube of the
time step, which is an improvement of the original Yosida scheme introduced by the
pressure correction. On the other hand, we prove that the stability of this scheme is in
general conditional, even if applied to the Stokes problem discretized with a backward
difference (implicit) scheme.

In section 6 we provide several numerical results, testing the properties of pressure
correction schemes. We analyze, in particular, the improvements induced by the
pressure correction when applied to high order time discretization schemes. Some
conclusions are drawn in section 7.

2. Inexact algebraic factorizations for the Navier–Stokes equations.
Consider an open and bounded domain Ω ⊂ R

d for d = 2, 3 with boundary ∂Ω
for a time t ≥ 0. The Navier–Stokes equations for incompressible flows in terms of
the velocity, u = u(x, t), and the pressure, p = p(x, t), read as

⎧⎨
⎩

∂u

∂t
+ (u · ∇)u − ν�u + ∇p = f ,

∇ · u = 0

(2.1)

for any (x, t) ∈ Ω×(0, T ], with T > 0. This system must be completed with the initial
condition u(x, 0) = u0(x) (where u0(x) is a given function) and suitable boundary
conditions on ∂Ω. Since in the framework of algebraic splitting methods there is a
complete independence of the numerical methods of the boundary conditions, we do
not specify a specific boundary set. It is, however, understood that some (reasonable)
boundary conditions are prescribed on ∂Ω.

In order to have a quantitative evaluation of the flow field in real applications,
a numerical approximation has to be carried out. To this aim, the problem has
to be discretized with respect to time and space variables. Concerning the space
discretization issue, we will basically refer to the Galerkin method and, in particular,
to the finite element method (FEM). The most part of what follows can, however, be
applied to other space discretization methods as well. For any details concerning the
FEM discretization of the Navier–Stokes problem, we refer the reader, e.g., to [24].
In fact, we choose functional spaces for the approximate velocity and pressure fields
which satisfy the inf-sup or LBB condition (see, e.g., [1]). We will denote by Nu the
number of velocity degrees of freedom and by Np the number of pressure degrees of
freedom.

For what concerns the time discretization, we will refer to classic backward dif-
ferences methods. Namely, we consider a decomposition of the time interval into
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N subintervals (tn, tn+1) with tn = nΔt, where Δt = T/N is the uniform positive
time step, and collocate the equation in the instants tn = nΔt. For the treatment
of the nonlinear convective term, we resort to the usual (semi-implicit) linearization
(u(tn+1) · ∇)u(tn+1) � (u(tn) · ∇)u(tn+1) or similar ones featuring higher order of
time accuracy (see, e.g., [10]). We point out, however, that the most part of the meth-
ods investigated here relies on the pattern of the matrix associated with the discrete
Navier–Stokes problem. Since the pattern is also the same for the inner iteration of a
Newton method (solution of the Jacobian), the methods introduced here can also be
applied to a fully implicit treatment of the nonlinear term.

The fully discretized and linearized incompressible Navier–Stokes equations at
the time tn+1 therefore read

Awn+1 = bn+1,(2.2)

where the vector bk =
[
bk1 , b

k
2

]T
contains forcing terms and contributions of the bound-

ary conditions, wn+1 = (un+1,pn+1)T denotes the vector of the nodal values of the
discrete velocity and pressure, and

A =

[
C DT

D 0

]
.(2.3)

Here D is the discrete divergence operator (i.e., dij = −
∫
Ω
∇ · vjqi, where {vk}

band {qk} are the basis functions for the velocity and the pressure, respectively). DT

denotes the discrete gradient operator, and C collects contributions from the time
derivative and the advection and diffusion operators. More specifically, we denote

C =
α

Δt
M + K,

where M is the velocity mass matrix, α is the coefficient of the backward difference
formula (BDF) scheme at hand for the velocity field at time tn+1, and K corresponds
to the discretization of the diffusive and of the convective terms. In the case of the
Stokes problem, K corresponds just to the Laplacian of the velocity, and it is therefore
symmetric and positive definite (s.p.d.).

System (2.2) typically features large dimensions and bad conditioning properties.
The splitting between the computation of the velocity field from that of the pressure
is almost mandatory when large three-dimensional problems are faced. This can be
obtained through inexact block LU decompositions. These strategies stem from the
following “exact” LU -block factorization of A:

A =

[
C 0
D −DC−1DT

] [
I C−1DT

0 I

]
.

Since the inverse C−1 is seldom available, we can set up different schemes, achieving
a reduction in the computational cost by suitably approximating C−1 with a matrix
H1 in the L-block and H2 in the U-block. This leads to the following inexact block
LU factorization (see [23] and also [5] and [6]):

Â =

[
C 0
D −DH1D

T

] [
I H2D

T

0 I

]
=

[
C CH2D

T

D D(H2 − H1)D
T

]
.(2.4)
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The corresponding algebraic fractional-step methods require at the generic time level
tn+1 the solution of the following systems:

L-step

⎧⎨
⎩

Cũn+1 = bn+1
1 ,

Dũn+1 − DH1D
T p̃n+1 = bn+1

2 ,
(2.5)

U-step

{
pn+1 = p̃n+1,

un+1 + H2D
Tpn+1 = ũn+1.

(2.6)

Different choices can be pursued for the approximating matrices H1 and H2. In
particular, we could take

H1 = H2 =
Δt

α
M−1

or

H1 =
Δt

α
M−1, H2 = C−1.

The former choice yields a scheme (see [20]) that can be considered the algebraic coun-
terpart of the Chorin–Temam scheme (briefly, ACT), because of the formal analogy
with the original differential splitting method. The latter choice yields the so-called
Yosida method, introduced in [23] and analyzed in [22]. See also [5] and [6].

The main difference between the two possibilities is that in the Chorin–Temam
scheme only the discretized momentum equation is perturbed, while in the Yosida
scheme only the mass conservation equation is perturbed (see [27]). In what follows,
we will say that an algebraic fractional-step method is of Yosida type if H1 = H and
H2 = C−1, and of Chorin–Temam type if H1 = H2 = H, with H being any convenient
approximation of C−1. Note that the approximation of C−1 with Δt/αM−1 stems
from a truncation to the first term of the following well-known Neumann expansion:

C−1 =
Δt

α

(
INu +

Δt

α
M−1K

)−1

, M−1 =
Δt

α

∞∑
i=0

(
−ΔtM−1K

)i
M−1.

Here INu (INp) denotes the identity matrix of dimension Nu (Np). α is the coefficient
of the term evaluated at tn+1 in the time discretization scheme adopted. For the
implicit Euler scheme, α = 1; for a BDF scheme of order two, α = 3/2; and for a
BDF scheme of order three, α = 11/6. In order to improve the accuracy of the inexact
factorization, one could choose H by taking more terms in the Neumann expansion.
This strategy has been analyzed in [27], and it can lead to some relevant instabilities,
even for the Stokes problem. In what follows, we will set

H =
Δt

α
M−1,(2.7)

so that C−1 = H + O(Δt).
As previously pointed out, note that for both approaches the pressure is only

predicted (in the L-step), while the velocity is first predicted in the L-step (with the
so-called intermediate velocity, ũn+1) and next corrected in the U-step, computing
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the end-step velocity. One could expect some improvements in the accuracy of com-
putation by resorting to a correction also for the pressure field, leading to an end-step
pressure. In the next section we investigate such schemes.

Remark. A popular modification of the schemes presented above is the so-called
incremental approach. This approach can be applied to differential projection methods
and to algebraic splittings as well. It basically consists of a reformulation of the time-
discrete Navier–Stokes problem in such a way that the pressure field pn+1 is computed
as the sum of an extrapolation σn+1p (which is a linear combination of the pressure at
the previous time steps) and an increment δn+1p. This reformulation for the algebraic
(fully discretized) problem reads

A
[

Un+1

Pn+1

]
=

[
b1

b2

]
⇒ A

[
Un+1

δn+1P

]
=

[
b1 − σn+1P

b2

]
,(2.8)

having set Pn+1 = σn+1P + δn+1P. In this way, possible errors introduced by the
splitting affect the pressure increment rather than the pressure itself. This modifica-
tion improves the accuracy of the solution. For instance, in the van Kan scheme (see
[16], [25]), we have

σn+1p = pn, δn+1p = pn+1 − σn+1 = pn+1 − pn,(2.9)

which coupled with a Crank–Nicolson time discretization yields a second order scheme
(see also [10]). Recent results (see [15]) show that the incremental approach can
improve the accuracy of the solution also for higher order time discretizations, e.g.,
coupling a BDF of order three with an incremental approach by setting

σn+1p = 2pn − pn−1, δn+1p = pn+1 − σn+1 = pn+1 − 2pn + pn−1.(2.10)

In our analysis we do not consider the incremental approach, in order to put in
evidence the role of the pressure corrections proposed in the next sections. However,
in the numerical results section, we will present and comment on the impact of the
incremental modification on pressure corrected schemes.

Remark. In the literature, there is an open discussion about the pros and cons
of algebraic or differential approaches in the splitting (see [11]). Here, we investigate
essentially an algebraic approach, even if we do not claim that this necessarily leads
to more accurate results. In fact, as previously pointed out, the algebraic approach
has, for sure, the advantage of including all the possible boundary conditions (not
only Dirichlet conditions) without taking care of the setup of special (approximate)
pressure conditions, which is conversely needed in differential splitting schemes. This
makes the algebraic approach appealing in many real problems.

3. Pressure correction algebraic schemes. Let us consider the following
modified inexact LU factorization of the matrix A, defined in (2.3),

Â =

[
C 0

D −DH1D
T

] [
I H2D

TR

0 Q

]
=

[
C CH2D

TR

D D(H2D
TR − H1D

TQ)

]
,(3.1)

where R and Q are square Np ×Np matrices that we choose in order to minimize the

difference A − Â in some sense. This (generic) factorization leads to new algebraic
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fractional step methods, where the L-step is still given by (2.5), while the U-step
becomes

U-step

{
Qpn+1 = p̃n+1,

un+1 + H2D
TRpn+1 = ũn+1.

(3.2)

Since we have now a pressure correction (3.2)1, we give to schemes in the form (2.5),
(3.2) the name pressure correction methods.

We still distinguish two approaches: the Chorin–Temam approach, in which we
set H1 = H2 = H, and the Yosida one, where H2 = C−1. In the first case, we obtain

Â =

[
C CHDTR

D D(HDTR − HDTQ)

]
.(3.3)

If we select R = Q, the (discrete) mass conservation equation is satisfied without any
approximation. This choice will be investigated in the next section.

In the second case, we have

Â =

[
C DTR

D ΣR − SQ

]
,(3.4)

where

Σ = DC−1DT , S = DHDT .(3.5)

Matrix −Σ is the so-called pressure Schur complement of A. Observe that thanks
to (2.7), S is O(Δt). In this case, if R = INp , the (discrete) momentum equation is
fulfilled exactly. We investigate this choice in section 5.

4. The algebraic Chorin–Temam pressure correction scheme. Let us in-
vestigate the choice H1 = H2, with R = Q. Since we are introducing a pressure
correction in the ACT method, we will call this choice the algebraic Chorin–Temam
pressure correction (CTPC) scheme.

The splitting error matrix is

Ê = A− Â =

⎡
⎣ 0 DT − D̂T

0 0

⎤
⎦ , D̂T = CHDTQ;(4.1)

thus the splitting error vanishes if

CHDTQ = DT .(4.2)

Matrix equation (4.2) is an overdetermined problem. In order to obtain a solution,
multiply both the sides of (4.2) by the matrix DH, yielding BQ = S, where

B = DHCHDT .(4.3)

This implies that the matrix equation (4.2) is solved up to a nonzero matrix Z such that
DHZ = 0. Observe that if the inf-sup condition is fulfilled, matrix B is nonsingular,
and then we can compute

Q = B−1S.(4.4)
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Remark. In the case of the Stokes problem, C is s.p.d., and the matrix Q corre-
sponds to solving (4.2) in the least square sense, where the solution yields the minimal
error in the norm ‖ · ‖C.

At each time step, the CTPC scheme reads (we neglect the time index n + 1 for
the sake of simplicity) as follows:

1. Intermediate velocity computation: CŨ = b1.
2. Intermediate pressure computation. SP̃ = DŨ − b2.
3. End-of-step pressure computation: SP = BP̃.
4. End-of-step velocity computation: U = Ũ − HDT P̃.

Observe that the two systems for the pressure computation share the same matrix S.
This is useful if S can be factorized all at once, allowing an effective direct strategy
for the solution of the related systems (see section 6).

Remark. In order to solve (4.2), another possibility resorts to manipulate it in
the form HDTQ = C−1DT and then solve it in the least square sense with respect
to the matrix norm ‖ · ‖H1/2 . This strategy yields Q = S−1Σ. This means that the

pressure correction step reads QP = P̃ ⇒ ΣP = SP̃. This step involves the pressure
Schur complement Σ, and it is, in fact, an (ineffective) reformulation of the pressure
matrix method (see [24]), corresponding to exploiting the exact factorization (2.3).
Therefore it is not feasible.

4.1. Stability and splitting error analysis of CTPC.

4.1.1. Preliminary results. We start with some preliminary notation and lem-
mas. Starting from the identity

CH = INu + E1, E1 = KH,(4.5)

we have

B = DH (INu + E1) DT = S + W = S
(
INp

+ E2

)
,(4.6)

where

W = DHKHDT , E2 = S−1W.(4.7)

Observe that W is O(Δt2), thanks to (2.7). Consequently, E2 is O(Δt). From (4.6)
we have

B−1 =
(
INp + E2

)−1
S−1 ⇒ B−1S =

(
INp + E2

)−1
.(4.8)

Therefore, matrix D̂T introduced in (4.1) admits the following factorization:

D̂T = CHDTB−1S = (INu + E1) DT
(
INp + E2

)−1
.(4.9)

Observe that if H is proportional to INu , as it happens in a finite difference
discretization, it is possible to verify that the matrix DH is the Moore–Penrose pseu-
doinverse of DTS−1. In general (for a finite element or a spectral discretization) this
is not true. In fact, it is possible to verify that H1/2DTS−1 is the Moore–Penrose
pseudoinverse of DH1/2. However, for the purpose of the present work, it is useful in
the following lemma.

Lemma 4.1. Matrix INu − DTS−1DH is similar to the matrix

[
0 0

0 INu−Np

]
.
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Proof. The singular value decomposition of the matrix H1/2DT reads

H1/2DT = UTΠV,(4.10)

where U is an orthogonal Nu×Nu matrix, V is an orthogonal Np×Np matrix, and Π
is the Nu ×Np matrix such that Πij = σiδij , where {σi} are the singular values and
δij is the Kronecker symbol. Observe that, thanks to the inf-sup condition, σi 
= 0 for
any i = 1, . . . , Np. Now, we have

INu − DTS−1DH = H−1/2

(
INu − H1/2DT

(
DH1/2H1/2DT

)−1

DH1/2

)
H1/2

and, thanks to (4.10),

INu −H1/2DT
(
DH1/2H1/2DT

)−1

DH1/2 = INu −UTΠV
(
VTΠTUTUΠV

)−1
VTΠTU.

Observe that ΠTΠ is the Np × Np diagonal matrix with the square of the singular
values on the diagonal. In what follows we will set Π2

0 = ΠTΠ. The thesis is a
consequence of the fact that U and V are orthogonal and that

ΠΠ−2
0 ΠT =

[
INp

0

0 0

]
.

4.1.2. Splitting error analysis. We are now in position to investigate the
splitting error matrix A− Â associated with the CTPC scheme, that is,

ÊCTPC =

⎡
⎣ 0 DT − D̂T

0 0

⎤
⎦ .

Setting

E = DT − D̂T ,(4.11)

from the definition of D̂T we can straightforwardly verify that

DHE = 0.(4.12)

This was to be expected, since we have solved the overdetermined problem (4.2), by
projecting it into the subspace image of DH. From (4.9), it follows that

E = DT − (INu + E1) DT
(
INp + E2

)−1
.(4.13)

Assuming that Δt is small enough to exploit the Neumann expansion, which makes
sense since E2 is O(Δt),

(
INp + E2

)−1
=

∞∑
k=0

(−E2)
k,

from (4.6), (4.7), (4.8), and (4.5) we have

DT − (INu + E1) DT
(
INp − E2 + E2

2 − . . .
)

= DT − (INu + E1) DT
(
INp − E2 + O(Δt2)

)
,

(4.14)
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yielding

E = −E1D
T +DTE2 + O(Δt2).

In the boxed term we put in evidence the specific contribution on the error given by
the pressure correction. Since both the matrices KHDT and DTS−1W are O(Δt), we
conclude that the splitting error is at least first order in time. Unfortunately, this
conclusion does not give significant improvements in terms of order of accuracy with
respect to the original ACT scheme. The main difference is that in the latter scheme
the splitting error is dominated by the term KHDT , while in the CTPC scheme the
matrix error is dominated by

−
(
INu − DTS−1DH

)
E1D

T .(4.15)

Thanks to Lemma 4.1, it is to be expected that the matrix in brackets, having Np

null eigenvalues, will reduce the error associated with the scheme, in comparison with
the ACT scheme, even if it is not possible to prove that the order of accuracy of the
scheme is improved. Numerical results confirm that the scheme is in general only first
order accurate in time (see section 6).

However, for some special space discretization, it is interesting to point out the
following circumstance.

Proposition 4.2. If KHDT = νDTM−1
p DHDT , the splitting error matrix E

vanishes.

Proof. From (4.13) it follows that

E
(
INp + E2

)
= DT + DTE2 − DT − E1D

T = DTE2 − E2D
T .(4.16)

If E1D
T = KHDT = νDTM−1

p DHDT , then we have E2 = νS−1DHDTM−1
p DHDT =

νM−1
p S. Recalling that S = DHDT , from (4.16) it follows that E

(
INp + E2

)
=

νDTM−1
p S − νDTM−1

p DHDT = 0. Thus, since INp
+ E2 is invertible, the thesis fol-

lows.

Observe that the hypothesis in Proposition 4.2 reinterpreted at the continuous
level yields the following identity:

−ν�∇ = −ν∇ · (∇)∇.

Moreover, in the context of finite difference space discretization the same hypothesis
has been advocated in [18] as a compatibility condition holding for a special set of
velocity boundary conditions in rectangular domains.

4.1.3. Stability analysis. The main result is the following proposition.

Proposition 4.3. Consider the Stokes problem discretized with an implicit Euler
time discretization scheme (α = 1). Then the CTPC scheme is unconditionally stable.

Proof. We consider a problem where the forcing term and the boundary conditions
are null as well, since they do not influence the stability properties of the scheme.

The CTPC scheme actually amounts to solving the following problem:

[
C D̂T

D 0

] [
Un+1

Pn+1

]
=

[
1

Δt
MUn

0

]
,(4.17)
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where C = 1
ΔtM+K (with K s.p.d.) and D̂T has been introduced in (4.1). Eliminating

the pressure unknowns in (4.17), we obtain

Un+1 =
1

Δt
C−1MUn − 1

Δt
C−1D̂T

(
DC−1D̂T

)−1

DC−1MUn.(4.18)

Observe that

D̂T
(
DC−1D̂T

)−1

= (INu + E1) DT
(
INp

+ E2

)−1
(
DC−1 (INu + E1) DT

(
INp

+ E2

)−1
)−1

= (INu + E1) DT
(
DC−1 (INu + E1) DT

)−1
.

Moreover, from the definition of E1 and C, we have

C−1 (INu + E1) = ΔtM−1
(
INu + ΔtKM−1

)−1
(INu + E1) = ΔtM−1,

so that D̂T (DC−1D̂T )−1 reduces to
(
INu + ΔtKM−1

)
DTS−1. We have therefore that

the second matrix on the right-hand side of (4.18) becomes

1

Δt
C−1D̂T

(
DC−1D̂T

)−1

DC−1M = M−1DTS−1DC−1M,

yielding

Un+1 =
1

Δt

(
M−1 − M−1DT

(
DM−1DT

)−1
DM−1

)
MC−1MUn,(4.19)

or, equivalently,

Un+1 = M−1
(
INu − DT

(
DM−1DT

)−1
DM−1

)
M

(
INu + ΔtM−1K

)
Un.(4.20)

We prove that for any Δt > 0

∥∥∥M−1
(
INu − DT

(
DM−1DT

)−1
DM−1

)
M

(
INu + ΔtM−1K

)−1
∥∥∥

2
< 1.(4.21)

For a generic matrix X, we will denote by ρX its spectral radius. First of all, observe
that

||INu − DT
(
DM−1DT

)−1
DM−1||2 = 1.(4.22)

This is, in fact, a consequence of Lemma 4.1, since the matrix in (4.22) corresponds
exactly to the matrix INu − DTS−1DH considered in the lemma. If follows that

the matrix M−1(INu − DT
(
DM−1DT

)−1
DM−1)M still has a unit spectral radius,

being similar to the one in (4.22). Now, due to the positiveness of ΔtM−1K with
respect to the scalar product weighted by the s.p.d. mass matrix M, we have that
ρ(INu+ΔtM−1K)−1 < 1. Therefore, we have

∥∥∥M−1
(
INu − DT

(
DM−1DT

)−1
DM−1

)
M

(
INu + ΔtM−1K

)−1
∥∥∥

2

≤
∥∥∥M−1

(
INu − DT

(
DM−1DT

)−1
DM−1

)∥∥∥
2

∥∥∥(INu + ΔtM−1K
)−1

∥∥∥
2
< 1.

(4.23)
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The first inequality is due to (4.22) and the fact that each matrix of the product is
s.p.d., so its norm corresponds to its spectral radius. Equations (4.18) and (4.23)
yield

||Un+1||2 < ||Un||2

for any Δt > 0, giving the unconditional stability result.
Remark. With a similar approach, it can be proved that the unconditional stability

holds also for any implicit (unconditionally stable) BDF time discretization.
Remark. It is worthwhile to point out the fact that on the stability of the scheme

the error matrix E2 does not play any role. Actually, since the error matrix E1 of the
present scheme is the same of the original ACT scheme, the unconditional stability
of CTPC could be directly inferred from the unconditional stability of ACT. E2 is
therefore set up in such a way that it should reduce the splitting error without affecting
the stability of the scheme. Other schemes featuring a high order splitting error do
not share the same stability properties. As we will see, also the pressure correction of
the Yosida scheme is affected by instabilities.

4.2. CTPC and differential pressure correction schemes. The introduc-
tion of a pressure correction for improving the numerical solution is not new in the
field of projection methods for the Navier–Stokes equations. In Timmermans, Minev,
and de Vosse [26] a variant of the second order van Kan scheme (see [16]) is proposed
for improving the pressure computation in the framework of splitting (differential)
schemes. Following Prohl [21], who has extensively analyzed this scheme, we present
the corresponding formulation starting from the Chorin–Temam method. Suppose
we have homogeneous Dirichlet conditions on the whole boundary of the computa-
tional domain Ω. First, compute the intermediate velocity ũn+1 as the solution of the
following advection-diffusion semidiscrete problem:

1

Δt

(
ũn+1 − un

)
− ν�ũn+1 + (un · ∇) ũn+1 = f ,(4.24)

with ũn+1 = 0 on ∂Ω. Then compute an “intermediate” pressure as the solution of
the following Poisson problem:

Δt�p̃n+1 = ∇ · ũn+1,(4.25)

with ∂np̃
n+1 = 0 on ∂Ω, where n is the outward normal unit vector to ∂Ω. The

end-of-step velocity is now given by

un+1 = ũn+1 − Δt∇p̃n+1.(4.26)

If we take p̃n+1 as the end-of-step pressure, we have actually the classical Chorin–
Temam scheme. In the Timmermans proposal, we take

pn+1 = p̃n+1 − ν∇ · ũn+1.(4.27)

At the semidiscrete level (time-discrete and space-continuous) it is possible to verify
that this scheme is strongly consistent with the Stokes problem, i.e., that solving
the Chorin–Temam method with the correction (4.27) amounts exactly to solve the
Stokes equations, without any splitting error. This strong consistency, however, fails
to be verified in the case of the Navier–Stokes problem. Actually, in this case, a
Lagrangian treatment of the time derivative needs to be pursued [26]. Prohl has,
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moreover, proved that this pressure correction introduces a “smoothing effect” only
on the pressure error in the interior domain, and, however, the pressure correction
step does not improve the order of accuracy of the method.

Here we want to establish some relations between the Timmermans method and
our CTPC scheme. Indeed, exploiting (4.25) we can eliminate ũn+1 in (4.27), yielding

pn+1 = p̃n+1 − νΔtΔp̃n+1 = (I − νΔtΔ) p̃n+1,(4.28)

where I denotes the identity operator.
On the other hand, concerning the CTPC scheme applied to the Stokes problem,

we assume that matrix ΔtKM−1DT can be factorized as νΔtDTM−1
p DM−1DT (as we

have assumed in Proposition 4.2). The end-of-step pressure of the CTPC schemes
becomes

Pn+1 = S−1BP̃n+1 =
(
INp

+ S−1W
)
P̃n+1

=
(
INp + Δt2S−1DM−1KM−1DT

)
P̃n+1 =

(
INp + νΔtM−1

p DM−1DT
)
P̃n+1.

A formal analogy with (4.28) can be drawn if we read matrix νDM−1DT as a discrete
counterpart of the pressure operator −νΔ.

The algebraic reformulation, actually, has some advantages. As already pointed
out (also in [26]), in the differential framework there is the problem of determining
boundary conditions for the pressure problem, which in the algebraic approach are
not required. Moreover, we point out that the CTPC scheme naturally embodies the
presence of a convective term, and it does not necessarily need a Lagrangian treatment
of the time derivative or to an explicit treatment of the convective term, as required
in the Timmermans work.

Finally, we point out that the CTPC scheme provides discrete-divergence solu-
tions, which is not true for the Timmermans method (whose divergence is null at the
continuous level).

5. The algebraic Yosida pressure correction scheme. Let us consider now
the pressure correction approach applied following the Yosida strategy, i.e., H2 = C−1

and R = INp . The splitting error matrix in this case is

ÊY PC = A− ÂY PC =

[
0 0

0 SQ − Σ

]
.(5.1)

The problem of finding out a matrix such that the splitting error vanishes this time
is clearly well posed, and the solution is

Σ − SQ = 0 ⇒ Q = S−1Σ,(5.2)

corresponding to the pressure correction step ΣPn+1 = SP̃n+1. This is another
formulation of the pressure matrix method (see [24]) and therefore is not interesting
in the perspective of the present work.

However, we would like to introduce an approximate computation of Q which is
computationally affordable. It corresponds to solve again an overdetermined problem
related to (5.2). Multiply the two sides of the first equation in (5.2) by DTM−1

p ,

yielding DTM−1
p DC−1DT = DTM−1

p DHDTQ. Since DTM−1
p D is nonsingular if the

inf-sup condition is fulfilled, we can write

C−1DT = HDTQ ⇒ DHDT = DHCHDTQ,
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corresponding to the choice Q = B−1S, which is exactly the same matrix setup for
the CTPC scheme (see (4.4), (4.3)). Dropping again the time index n+1, the Yosida
pressure correction scheme therefore reads as follows:

1. Intermediate velocity computation: CŨ = b1.
2. Intermediate pressure computation: SP̃ = DŨ − b2.
3. End-of-step pressure computation: SP = BP̃.
4. End-of-step velocity computation: CU = b1 − DTP.

Observe that the two problems for both the intermediate and end-of-step pressures
are still solved by solving the same matrix S.

5.1. Stability and splitting error analysis.

5.1.1. Splitting error analysis. Starting from (5.1), the splitting error is given
by the block (2,2) of EY PC , where,

EY PC = SB−1S − DC−1DT .

Exploiting (4.6), (4.7), (4.8), and (4.11), the previous matrix can be reduced to

EY PC = S
(
INp

+ E2

)−1 − DH (INu + E1)
−1

DT

= DHDT
(
INp

+ E2

)−1 − DH (INu + E1)
−1

DT

= DH
(
DT

(
INp

+ E2

)−1 − (INu + E1)
−1

DT
)

= DH (INu + E1)
−1

(
(INu + E1) DT

(
INp

+ S−1W
)−1 − DT

)

= −DH (INu + E1)
−1

E.

(5.3)

The splitting error associated with the Yosida pressure correction (YPC) scheme
can now be estimated, by assuming that Δt is small enough to exploit the following
Neumann expansion:

(INu + E1)
−1

=

∞∑
i=0

(−E1)
i.(5.4)

This makes sense, since, as we have pointed out, E1 = O(Δt).
Proposition 5.1. The splitting error matrix associated with the YPC scheme is

O(Δt3)
Proof. By exploiting the Neumann expansion (5.4), we have from (5.3) and (4.12)

DH (INu + E1)
−1

E = DHE − DHE1E + DHE2
1E − · · · = −DHE1E + high order terms.

(5.5)

On the other hand, we have that H = O(Δt), E1 = O(Δt), and (from the analysis
carried out in section 4.1) E = O(Δt), so that the thesis is proven.

In order to have better insight to the benefits introduced by the pressure correc-
tion, let us suppose that, besides the Neumann expansion (5.4), it is possible to also
expand (INp

+ E2)
−1, where E2 = S−1W: (INp

+ E2)
−1 =

∑∞
i=0(−E2)

i. This still
makes sense since also E2 is O(Δt). Exploiting the Neumann expansions and recalling
(4.8), we have

EY PC = S
(
INp + E2

)−1 − DH (INu + E1)
−1

DT

= S
(
INp − E2 − E2

2 + O(Δt3)
)
− DH

(
INu − E1 − E2

1 + O(Δt3)
)
DT .
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The boxed terms are the contribution of the error due to the pressure correction; i.e.,
they were absent in the original Yosida scheme. This is to outline how the pressure
correction acts. Indeed, by recalling the definition of E1 and E2 in (3.5) and (4.7),
the first two terms of the two Neumann expansions cancel themselves (in the original
Yosida scheme only the first ones were canceled), yielding

EY PC = −DHKH
(
INu − DTS−1DH

)
KHDT + O(Δt4),

the first term being O(Δt3), as already proved. Observe that the matrix in brackets
in this term is the same one investigated in Lemma 4.1, and its spectral radius is
therefore 1.

Remark. From the expression of the splitting error (5.3) and Proposition 4.2 it
follows that also for the YPC scheme the splitting error vanishes whenever KHDT =
νDTM−1

p DHDT .

5.1.2. Stability analysis. A different formulation of the matrix EY PC is needed
in order to carry out a stability analysis. Let us introduce the QR factorization
(remember that H is s.p.d.) H1/2DT = UR, where U is an orthogonal square (Nu×Nu)
matrix, and, if the inf-sup condition holds, R is a triangular full-rank Nu×Np matrix

such that R =
[
R0

0

]
, where R0 is nonsingular and square (Np ×Np). In this way, we

have the Cholesky factorization S = RT
0 R0. Matrix SB−1S therefore reads

SB−1S = S
(
DHCHDT

)−1
S

= RT
0 R0

(
RTUTH1/2

(
H−1 + K

)
H1/2UR

)−1
RT

0 R0

= RT
0

(
R−T

0 RTUTH1/2
(
H−1 + K

)
H1/2URR−1

0

)−1
R0

= RT
0

([
INp 0

] (
INu + UTH1/2KH1/2U

) [
INp 0

]T)−1

R0.

(5.6)

Matrix Σ, on the other hand, can be resorted as follows:

Σ = D
(
H−1 + K

)−1
DT = DH1/2

(
INu + H1/2KH1/2

)−1
H1/2DT

= RTUT
(
INu + H1/2KH1/2

)−1
UR =

[
RT

0 0
] (

INu + UTH1/2KH1/2U
)−1 [

RT
0 0

]T
.

(5.7)

Now set N = INu + UTH1/2KH1/2U, and since N is s.p.d., we denote

N =

[
N11 N12

NT
12 N22

]
,

where N11 is Np ×Np and N22 is (Nu −Np) × (Nu −Np). Observe that, in the case
of the Stokes problem (i.e., K is s.p.d.), from the Sylvester criterion both the diagonal
blocks are s.p.d. With these positions, we have that

SQ − Σ = RT
0

(
N−1

11 −
(
N11 − N12N

−1
22 NT

12

)−1
)

R0.(5.8)

Observe that also matrix N11 − N12N
−1
22 NT

12 is s.p.d., being the first Np × Np block
component of the inverse of N.

Since N11 is s.p.d., we can rearrange the previous matrix in the following way:

SQ − Σ = RT
0 N

−1/2
11

(
INp −

(
INp − N

−1/2
11 N12N

−1
22 NT

12N
−1/2
11

)−1
)

N
−1/2
11 R0.(5.9)
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Starting from this reformulation of the error matrix, unfortunately we are not
able to prove an unconditional stability result, even for the Stokes problem with an
implicit Euler time discretization. Indeed, we have the following results.

Proposition 5.2. In the Stokes case, discretized with the implicit Euler scheme,
error matrix SQ − Σ is symmetric and negative semidefinite.

Proof. Resorting to (5.9), consider the following scalar product:

s = xTRT
0 N

−1/2
11

(
INp

−
(
INp − N

−1/2
11 N12N

−1
22 NT

12N
−1/2
11

)−1
)

N
−1/2
11 R0x.

We prove that s ≤ 0 for each x ∈ R
Np . Set V = N

−1/2
11 N12N

−1
22 NT

12N
−1/2
11 and

J =
(
INp

− V
)−1

. As previously pointed out, J is s.d.p. The thesis amounts therefore
to prove that INp − J is negative semidefinite. First of all, observe that if we set
v = Jy, we obtain by definition v − Vv = y ⇒ Jy − VJy = y ⇒

(
INp − J

)
y =

−VJy. Therefore, since J is s.d.p. we get, with obvious notation, s = −yTVJy =

−yT J1/2J−1/2VJ1/2J1/2y = −zT J−1/2VJ1/2z, where y = N
−1/2
11 R0x and z = J1/2y.

Since V and J are both symmetric and, by construction, share the same set of or-
thogonal eigenvectors, it is possible to verify that zT J−1/2VJ1/2z ≥ 0, yielding the
thesis.

The previous result is negative in view of the stability analysis of the scheme.
Actually, it implies that the scheme introduces a mass source in the fluid. This
clearly reflects negatively on the stability of the scheme.

Proposition 5.3. In the case of the Stokes problem discretized in time with the
implicit Euler method, the YPC scheme is conditionally stable.

Proof. The YPC scheme associated with a backward Euler time discretization,
in a homogeneous Dirichlet case with null forcing terms, resorts to solve at each time
step the following system:

[
C DT

−D SQ − Σ

] [
Un+1

Pn+1

]
=

[
1

Δt
MUn

0

]
.

The conditional stability is proved by multiplying the two sides by
[
Un+1Pn+1

]T
and

applying the Young inequality. We obtain, indeed,

1

2Δt
Un+1MUn+1 + Un+1KUn+1 − |Pn+1 (SQ − Σ)Pn+1| ≤ 1

2Δt
UnMUn.

Since SQ−Σ vanishes when Δt tends to zero, it is possible to select a time step Δtmax

such that for each Δt ≤ Δtmax we have Un+1KUn+1 − |Pn+1 (SQ − Σ)Pn+1| ≥ 0,
yielding the (conditional) stability of the scheme.

The actual impact of this conditional stability on numerical results will be dis-
cussed in section 6.

Remark. In [27] the use of inexact algebraic factorizations (Yosida and ACT with-
out pressure corrections) as preconditioners for the Navier–Stokes problem has been
extensively investigated. Following the same idea, the inexact factorizations with
pressure corrections can be used in the same fashion. The outcome is a fast precon-
ditioner which seems to be an effective generalization of the well-known Cahouet–
Chabard preconditioner for the Stokes problem. Preliminary numerical results about
this preconditioner can be found in [9].
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Fig. 6.1. Divergence of the computed velocity field at Tf = 1 for different values of Δt.
Comparison between the YS and YPC schemes with a BDF1 (left), a BDF2 (center), and a BDF3
(right) time discretization scheme.

6. Numerical results. In this section we present some numerical results1 that
confirm the analysis carried out above and give a deeper insight into the real accuracy
and stability properties of the methods presented. In particular, we consider BDF
schemes of order 1, 2, and 3, both in the nonincremental and incremental formula-
tions. In particular, in the incremental case, we refer to the approach proposed in
[15], with a pressure increment as in (2.9) for a BDF of order 2 and as in (2.10) for a
BDF of order 3 (see the remark above (2.8)).

We refer to the two-dimensional nonlinear Navier–Stokes problem on the unit
domain (0, 1)2 in the time interval (0, 1) where (time-dependent) Dirichlet boundary
conditions for the velocity, initial conditions, and the forcing term are prescribed in
such a way that the analytical solution is (see [11])

u(x, y, t) = (sin(x) sin(y + t), cos(x) cos(y + t))T , p(x, y, t) = cos(x) sin(y + t).

Similar results have been obtained also for other test cases, such as the Kim and
Moin (see [17]) and the Timmermans (see [26]) cases.

For what concerns the space-discretization, we have adopted an inf-sup compat-
ible couple of finite element spaces. In particular, for the numerical results of the
present section, we resorted to a piecewise linear functions space P1 for the pressure
fields, and we have used P̃2 = P2⊕b finite elements for each component of the velocity,
where b is a cubic bubble function. Following [4], the role of the bubble function is to
give nonsingular (velocity) mass lumped matrices, which is useful in solving systems
for matrix S.

Mass conservation and pressure errors (Yosida and YPC schemes). We start fo-
cusing our attention on the Yosida (denoted by YS) and YPC schemes. In particular,
we consider the divergence of the velocity field computed by the two schemes at the
final time (Tf = 1). From the analysis of section 5.1, the first effect of the pressure cor-
rection is to modify the dependence on Δt of the residual of the mass equation, which
changes from O(Δt2) to O(Δt3), independently of the time discretization adopted.
This is clearly confirmed by Figure 6.1, where for the three different orders of BDF
schemes the divergence of the velocity field is computed for several time step sizes.
The effect of the pressure correction is evident. The circumstance that the divergence
of the computed velocity (independently of the time discretization scheme) is O(Δt3)

1Numerical results of the present section have been obtained with a MATLAB code developed
by the authors.
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Fig. 6.2. Space distribution of the pressure error for the YS (left) and the YPC (right) schemes.
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Fig. 6.3. Errors in the L∞(L2)(left) and L2(H1)(center) norms for the velocity and in the
L2(L2)norm for the pressure (right) in the case of BDF2 nonincremental time discretization. Note
that in all the figures presented in this section the error reduction with the time step stops whenever
the error is completely due to the space discretization.

is shared also by other schemes proposed in the differential splitting framework, which
are an evolution of the Timmermans scheme (see [13] and also [12]).

Another way of investigating the effect of the pressure correction is to check the
space distribution of the pressure error (see Figure 6.2). From this picture we infer
that in the algebraic approach we actually do not have significant boundary layers for
the pressure error (which is the case of “standard” differential splitting techniques),
and this is particularly true for the pressure corrected scheme, whose associated error
is significantly smaller than in the uncorrected case.

Accuracy tests (BDF2 and BDF3). We compare the numerical results obtained
for h = 1/40 for different sizes of the time step. We consider, in particular, BDF time
discretization schemes of order 2 and 3. The errors have been computed with respect
to the norms L∞(0, T, L2(Ω) × L2(Ω) and L2(0, T,H1(Ω) × H1(Ω)) for the velocity
and L2(0, T, L2(Ω)) for the pressure. (In what follows, these norms will be denoted
L∞(L2), L2(H1), and L2(L2), respectively.)

In Figure 6.3 we illustrate the results for the BDF2 nonincremental schemes.
Results suggest that the pressure correction has a relevant effect for the YS, both for
the velocity and the pressure. For the (algebraic) Chorin–Temam scheme (denoted by
CT in the figures), the pressure correction gives a significant improvement only on the
pressure. In particular, in the L∞(L2)norm, YPC exhibits a second order of accuracy
which is not shared by the other schemes (in particular CTPC). In the L2(H1)norm
all the schemes are first order accurate, even if YPC features an error significantly
lower than the others. For the pressure, results suggest that YPC is asymptotically
second order accurate, while CTPC seems to be first order, even if there is an evident
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Fig. 6.4. Errors in the L∞(L2)(left) and L2(H1)(center) norms for the velocity and in the
L2(L2)(right) norm for the pressure in the case of BDF3 nonincremental time discretization.
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Fig. 6.5. Errors in the L∞(L2)(left) and L2(H1)(center) norms for the velocity and in the
L2(L2)norm for the pressure (right) in the case of BDF2 incremental time discretization.

error reduction with respect to the uncorrected CT scheme.

In Figure 6.4 numerical results for the BDF3 nonincremental schemes are re-
ported. For what concerns the convergence order, we observe that it is substantially
unchanged with respect to the case of a BDF2 time discretization. In particular,
CTPC is first order accurate with respect to all the monitored norms (even if the
pressure is by far more accurate with respect to the CT scheme), while YPC is sec-
ond order accurate in the L∞(L2)(velocity) and L2(L2)(pressure) norms. It is first
order accurate in the L2(H1)norm of the velocity error. This means that the pressure
correction by itself yields a splitting error O(Δt2) which therefore does not affect the
accuracy of a BDF2 time discretization, while it reduces the accuracy of the BDF3
one. It is, however, worthwhile to point out that the errors in the BDF3 case are
slightly lower than the corresponding ones of the BDF2 case.

Now, let us consider the incremental case (see the remark above (2.8)). In Figure
6.5 we present the results of an BDF2 incremental scheme with a first order pressure
extrapolation. Numerical results suggest that the method is second order accurate
with respect to all the norms considered here. Actually, the improvements given by
the pressure correction are minimal on the velocity for the CTPC scheme and more
significant, if Δt is sufficiently small, for the YPC scheme. Pressure correction yields
a relevant improvement of the solution on the pressure solution for both CTPC and
YPC. For large values of Δt, YPC exhibits some strange behavior which is probably
due to the poor stability properties of the method.

Specific considerations have to be deserved to the case of BDF3 incremental ver-
sion. From the numerical results presented in Figure 6.6 we observe the following:

1. The uncorrected YS method in fact is second order accurate for the velocity
and third order accurate for the pressure.
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Fig. 6.6. Errors in the L∞(L2)(left) and L2(H1)(center) norms for the velocity and in the
L2(L2)norm for the pressure (right) in the case of BDF3 incremental time discretization.

2. The CTPC scheme features very good results also for large values of the time
step, in such a way that it is difficult to draw an order of accuracy.

3. The YPC method has a strange behavior when Δt is large, which is probably
induced by numerical instability. Surprisingly enough, under a threshold
on the time step (which in our simulations is about 10−2) the scheme is
extremely accurate, reducing immediately the error to the contribution of
the space discretization solely. We guess that in this case YPC is affected by
some instabilities possibly due to the combination of the conditional stability
of the BDF3 and of the YPC scheme. Further numerical investigations will
be carried out for a deeper analysis of this circumstance.

Remark. The pressure correction yields improvements in the accuracy of the so-
lution in particular on the pressure field. However, the computational cost is clearly
increasing, since we need to solve two linear systems for S, rather than one. This
increment can be reduced (at least in two-dimensional problems) by resorting to a
direct method of solution. Since H is a s.p.d. matrix, we exploit the QR factorization
H1/2DT = QR, where Q is an orthogonal square (Nu ×Nu) matrix and, if the inf-sup

condition holds, R is a triangular full-rank Nu ×Np matrix such that R =
[
RT

0 0
]T

,
where R0 is a nonsingular Np×Np triangular matrix. In this way, S = RT

0 R0, yielding
the Cholesky factorization of S. In this way, the solution for the system in S reduces
to the solution of two triangular systems, whose computational cost is significantly
lower. (For more details, see [27] and [19].) Another possibility for three-dimensional
computations (see [2], [8]) is based on the idea of extracting at a given time step
relevant information on the solution from the previous systems solved that share the
same matrix S.

7. Conclusions and future developments. In this paper we introduce a new
family of methods for the Navier–Stokes equations, based on a pressure correction
step. The idea of pressure correction has already been introduced in the framework
of differential schemes (Timmermans scheme), but it is new in the field of algebraic
splitting. We give a mathematical basis to this approach and numerically verify that
it actually improves solutions, yielding a reduction of the errors or even, in some cases,
an increment of the accuracy order. The latter conclusion holds true in particular for
the YPC scheme. The accuracy improvement, however, seems limited to the second
order, at least in the nonincremental approach.

The pressure correction with a BDF3 incremental time advancing gives interesting
results in the case of the CTPC scheme. While in all the other cases this method
was usually worse than the YPC, in this case it exhibits good results that need



PRESSURE CORRECTION SCHEMES FOR THE NS EQUATIONS 193

to be investigated further. YPC features very good results in the nonincremental
approach. On the other hand, whenever it is coupled with the incremental approach
it can be unstable. In fact, we proved that YPC is only conditional stable, but with
the nonincremental formulation we actually never observed numerical instabilities in
a reasonable range for the time step sizes. Actually, it seems that the incremental
approach can be somehow less stable. Moreover, it is worthwhile to mention that from
preliminary numerical results the stability bound on Δt in the BDF3 incremental time
advancing is proportional to the inverse of the viscosity. For low values of the viscosity
(which means for high Reynolds numbers) our conjecture is that the stability bound
becomes less restrictive. This observation is in agreement with the circumstance
that the use of YPC as a preconditioner of the Navier–Stokes solver is well suited in
particular for low viscosity problems (see [9] and also [7]). A more specific stability
analysis for this scheme and, in particular, the role of the incremental formulation
will be, however, the subject of a future development of this work.
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SYMMETRIC AND NONSYMMETRIC
DISCONTINUOUS GALERKIN METHODS FOR
REACTIVE TRANSPORT IN POROUS MEDIA∗

SHUYU SUN† AND MARY F. WHEELER‡

Abstract. For solving reactive transport problems in porous media, we analyze three primal
discontinuous Galerkin (DG) methods with penalty, namely, symmetric interior penalty Galerkin
(SIPG), nonsymmetric interior penalty Galerkin (NIPG), and incomplete interior penalty Galerkin
(IIPG). A cut-off operator is introduced in DG to treat general kinetic chemistry. Error estimates in
L2(H1) are established, which are optimal in h and nearly optimal in p. We develop a parabolic lift
technique for SIPG, which leads to h-optimal and nearly p-optimal error estimates in the L2(L2) and
negative norms. Numerical results validate these estimates. We also discuss implementation issues
including penalty parameters and the choice of physical versus reference polynomial spaces.

Key words. error estimates, discontinuous Galerkin methods, reactive transport, porous media,
parabolic partial differential equations, SIPG, NIPG, IIPG

AMS subject classifications. 65M12, 65M15, 65M60, 35K57

DOI. 10.1137/S003614290241708X

1. Introduction. Discontinuous Galerkin (DG) methods employ discontinuous
piecewise polynomials to approximate the solutions of differential equations, with
boundary conditions and interelement continuity weakly imposed through bilinear
forms. Even though they often have larger numbers of degrees of freedom than con-
forming approaches, DG methods have recently gained popularity for a number of
attractive features [19, 3, 4, 23, 27, 11, 25, 26, 9, 18, 15]: (1) they are element-wise
conservative; (2) they support general nonconforming spaces including unstructured
meshes, nonmatching grids and variable degrees of local approximations, thus allow-
ing efficient h-, p-, and hp-adaptivities; (3) they tend to have localized errors, allowing
sharp a posteriori error indicators and effective adaptivities; (4) they have less nu-
merical diffusion; (5) they treat rough coefficient problems and effectively capture
discontinuities in solutions; (6) they are robust and nonoscillatory in the presence
of high gradients; (7) with appropriate meshing, they are capable of delivering ex-
ponential rates of convergences; (8) they have excellent parallel efficiency since data
communications are relatively local; (9) for time-dependent problems in particular,
their mass matrices are block diagonal, providing substantial computational advan-
tages if explicit time integrations are used. In addition, by a simple extension from
the average of the fluxes on element faces, DG can provide a continuous flux field
defined over the entire domain, allowing efficient coupling with conforming methods.

Numerical modeling of reactive transport in porous media has important appli-
cations in hydrology, earth sciences, environmental protection, oil recovery, chemical
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industry, and biomedical engineering. Realistic simulations for simultaneous advec-
tion, diffusion, and chemical reactions present significant computational challenges
[2, 40, 10, 14, 24, 37, 41, 28, 7, 16, 8]. Recently, it has been shown that adap-
tive DG can effectively capture moving concentration fronts in reactive transport
[31, 33, 36, 32, 29]. A posteriori error estimates of DG for reactive transport prob-
lems have been derived in the L2(L2) [32] and L2(H1) norms [35]. In addition, DG
has been applied to coupled flow and transport problems in porous media [34, 39, 30].
However, to the best of our knowledge, optimal a priori hp-estimates in the L2(L2)
and negative norms have not been established.

The primal DG methods include four members: Oden–Babuška–Baumann DG
(OBB-DG) formulation [19], symmetric interior penalty Galerkin (SIPG) [38], non-
symmetric interior penalty Galerkin (NIPG) [23, 21], and incomplete interior penalty
Galerkin (IIPG) [12, 29]. In this paper, we analyze the three primal DG methods
with penalty, i.e., SIPG, NIPG, and IIPG, for solving reactive transport problems in
porous media. The primal DG method without penalty, i.e., the OBB-DG scheme,
has been analyzed for reactive transport problems elsewhere [22]. In the following
section, we describe the modeling equations. The DG schemes are introduced in sec-
tion 3. Section 4 contains the L2(H1) error analysis for SIPG, NIPG, and IIPG. In
section 5, a parabolic lift technique is developed, and an L2(L2) error analysis for
SIPG is conducted. Optimal negative norm estimates are derived in section 6. In
section 7, we present numerical studies of h- and p-convergences for the four primal
DG schemes. In section 8, we discuss choices of penalty parameters as well as DG
implementations using reference versus physical polynomial spaces. Conclusions are
given in the last section.

2. Governing equations. For convenience of presentation, we consider reactive
transport problems of only one species in a single flowing phase in porous media.
Results for systems of multiple species with kinetic reactions can be derived by similar
arguments. We assume that a Darcy velocity field u is given and time-independent,
and satisfies ∇ · u = q, where q is the imposed external total flow rate. In addition,
we assume that Ω is a polygonal and bounded domain in R

d (d = 1, 2, or 3) with
boundary ∂Ω = Γin ∪ Γout. Here we denote by Γin the inflow boundary and by Γout

the outflow/no-flow boundary, i.e.,

Γin := {x ∈ ∂Ω : u · n < 0},
Γout := {x ∈ ∂Ω : u · n ≥ 0},

where n denotes the unit outward normal vector to ∂Ω. Let T be the final simulation
time. The classical advection-diffusion-reaction equation in porous media is given by

∂φc

∂t
+ ∇ · (uc− D(u)∇c) = qc∗ + r(c), (x, t) ∈ Ω × (0, T ],(2.1)

where the unknown variable c is the concentration of a species (amount per volume).
Here φ is the effective porosity and is assumed to be time-independent, uniformly
bounded above and below by positive numbers; D(u) is the dispersion-diffusion tensor
and is assumed to be uniformly symmetric positive definite and bounded from above;
r(c) is the reaction term; qc∗ is the source term, where the imposed external total
flow rate q is a sum of sources (injection) and sinks (extraction); c∗ is the injected
concentration cw if q ≥ 0 and is the resident concentration c if q < 0.



DISCONTINUOUS GALERKIN FOR REACTIVE TRANSPORT 197

We consider the following boundary conditions for this problem:

(uc− D(u)∇c) · n = cBu · n, (x, t) ∈ Γin × (0, T ],(2.2)

(−D(u)∇c) · n = 0, (x, t) ∈ Γout × (0, T ],(2.3)

where cB is the inflow concentration. The initial concentration is specified by

c(x, 0) = c0(x), x ∈ Ω.(2.4)

3. Discontinuous Galerkin schemes.

3.1. Notation. Let Eh be a family of nondegenerate, quasi-uniform and possibly
nonconforming partitions of Ω composed of triangles or quadrilaterals if d = 2, or
tetrahedra, prisms, or hexahedra if d = 3. The nondegeneracy requirement (also
called regularity) is that the element is convex, and that there exists ρ > 0 such
that if hj is the diameter of Ej ∈ Eh, then each of the subtriangles (for d = 2) or
subtetrahedra (for d = 3) of element Ej contains a ball of radius ρhj in its interior.
The quasi-uniformity requirement is that there is τ > 0 such that (h/hj) ≤ τ for
all Ej ∈ Eh, where h is the maximum diameter of all elements. We assume that no
element crosses the boundaries of Γin or Γout. The set of all interior edges (for d = 2)
or faces (for d = 3) for Eh is denoted by Γh. On each edge or face γ ∈ Γh, a unit
normal vector nγ is chosen. The sets of all edges or faces on Γout and on Γin for Eh
are denoted by Γh,out and Γh,in, respectively, for which the normal vector nγ coincides
with the outward unit normal vector.

We now define the average and jump for φ ∈ Hs(Eh), s > 1/2. Let Ei, Ej ∈ Eh
and γ = ∂Ei ∩ ∂Ej ∈ Γh with nγ exterior to Ei. We denote

{φ} :=
1

2
((φ|Ei

)|γ + (φ|Ej )|γ), [φ] := (φ|Ei
)|γ − (φ|Ej )|γ .

The upwind value of a concentration c∗|γ is defined as

c∗|γ :=

{
c|Ei if u · nγ ≥ 0,

c|Ej
if u · nγ < 0.

We denote by ‖·‖m,R the usual Sobolev norm over a domain R [1]. The Sobolev
norm ‖·‖m,Ω over the entire domain Ω is also denoted simply by ‖·‖m. For s ≥ 0, we
define the broken Sobolev space

Hs(Eh) := {φ ∈ L2(Ω) : φ|E ∈ Hs(E), E ∈ Eh}.

One can show that Hs(Eh) is a normed linear space with its norm defined by

‖φ‖Hs(Eh) :=

( ∑
E∈Eh

‖φ‖2
s,E

)1/2

.

Following the tradition, we also use the notation ||| · |||s to denote the broken norm
‖·‖Hs(Eh). For a given normed space X and a number p ≥ 1, we define

Lp(0, T ;X) := {φ : φ(t) ∈ X, ‖φ‖X ∈ Lp(0, T )}.

The space Lp(0, T ;X) is also a normed linear space with its norm given by

‖φ‖Lp(0,T ;X) := ‖(‖φ‖X)‖Lp(0,T ).
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The broken norm ‖·‖Lp(0,T ;Hs(Eh)) is also written as ||| · |||Lp(0,T ;Hs) in the triple bar

notation. We denote by (·, ·)R the inner product in (L2(R))d or L2(R) over a domain
R. The inner product (·, ·)Ω over the entire domain Ω is also denoted simply by (·, ·).
We also need the space W r,s

∞ and its norm:

W r,s
∞ ((0, T ) × Ω) := {f ∈ L2((0, T ) × Ω) : ‖f‖W r,s

∞ < ∞},

‖f‖W r,s
∞ :=

∑
|α|≤r, β≤s

ess sup(0,T )×Ω(|Dα
xf | + |Dβ

t f |).

The discontinuous finite element space is taken to be

Dr(Eh) := {φ ∈ L2(Ω) : φ|E ∈ Pr(E), E ∈ Eh},(3.1)

where Pr(E) denotes the space of polynomials of (total) degree less than or equal to
r on E. Note that we present hp-results in this paper for the local space Pr, but the
results also apply to the local space Qr because Pr(E) ⊂ Qr(E).

We define a cut-off operator as

M(c)(x) := min(c(x),M),(3.2)

where M is a large positive constant. By a straightforward algebraic argument, we
can show that the cut-off operator M is uniformly Lipschitz continuous.

Lemma 1 (property of operator M). The cut-off operator M defined in (3.2) is
uniformly Lipschitz continuous with a Lipschitz constant of one; that is,

‖M(c) −M(w)‖L∞(Ω) ≤ ‖c− w‖L∞(Ω).(3.3)

We use the following hp-approximation results, which can be proved using the
techniques in [6, 5]. Let E ∈ Eh and φ ∈ Hs(E). Then there exists a constant K,
independent of φ, r, and hE , and a sequence of zhr ∈ Pr(E), r = 1, 2, . . . , such that⎧⎪⎪⎨

⎪⎪⎩

∥∥φ− zhr
∥∥
q,E

≤ K
hμ−q
E

rs−q
‖φ‖s,E , 0 ≤ q < μ,

∥∥φ− zhr
∥∥
q,∂E

≤ K
h
μ−q− 1

2

E

rs−q− 1
2

‖φ‖s,E , 0 ≤ q < μ− 1
2 ,

(3.4)

where μ = min(r + 1, s) and hE denotes the diameter of E.
We shall also use the following inverse inequalities, which can be derived using

the method in [27]. Let E ∈ Eh and v ∈ Pr(E). Then there exists a constant K,
independent of v, r, and hE , such that⎧⎪⎪⎨

⎪⎪⎩
‖Dqv‖0,∂E ≤ K

r

h
1/2
E

‖Dqv‖E , q ≥ 0,

‖Dq+1v‖0,E ≤ K
r2

hE
‖Dqv‖0,E , q ≥ 0.

(3.5)

3.2. Continuous-in-time DG schemes. We introduce a bilinear form:

B(c, w;u) :=
∑
E∈Eh

∫
E

(D(u)∇c− cu) · ∇w −
∫

Ω

cq−w

−
∑
γ∈Γh

∫
γ

{D(u)∇c · nγ}[w] − sform

∑
γ∈Γh

∫
γ

{D(u)∇w · nγ}[c]

+
∑
γ∈Γh

∫
γ

c∗u · nγ [w] +
∑

γ∈Γh,out

∫
γ

cu · nγw + Jσ
0 (c, w).
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Here sform = 1 for SIPG; sform = −1 for OBB-DG or NIPG; and sform = 0 for IIPG.
For convenience of presentation, we denote the bilinear form as BS(c, w;u) when it
is symmetric, i.e., sform = 1. We denote by q+ the injection source term and by q−

the extraction source term, i.e., q+ = max(q, 0) and q− = min(q, 0). By definition,
we have q = q+ + q−. To impose interelement continuity weakly, an interior penalty
term Jσ

0 (c, w) is formulated:

Jσ
0 (c, w) :=

∑
γ∈Γh

r2σγ

hγ

∫
γ

[c][w],(3.6)

where σ is a discrete positive function that takes the constant value σγ on the edge or
face γ. There is no penalty term, i.e., σ = 0, for OBB-DG. In the analysis of SIPG,
NIPG, and IIPG in this paper, we assume 0 < σ0 ≤ σγ ≤ σm. In addition we define
a linear functional:

L(w;u, c) :=

∫
Ω

r(M(c))w +

∫
Ω

cwq
+w −

∑
γ∈Γh,in

∫
γ

cBu · nγw.(3.7)

The reactive transport problem can be stated in the following equivalent weak
formulation.

Lemma 2 (weak formulation). If c is a solution of (2.1)–(2.3) and c is essentially
bounded, then c satisfies

(
∂φc

∂t
, w

)
+ B(c, w;u) = L(w;u, c)(3.8)

∀w ∈ Hs(Eh), s >
3

2
∀t ∈ (0, T ],

provided that the constant M for the cut-off operator is sufficiently large.
Proof. Let w ∈ Hs(Eh), s > 3/2 and E ∈ Eh. Multiplying (2.1) by w, integrating

over E, and then integrating by parts, we observe

(
∂φc

∂t
, w

)
E

−
∫
E

(uc− D(u)∇c) · ∇w +

∫
∂E

(uc− D(u)∇c) · n∂Ew

=

∫
E

qc∗w + r(c)w.

Summing it over all elements in Eh, noting the fact that the traces of the concentration
and its normal flux are continuous across element faces, and applying the boundary
conditions, we obtain the desired result.

The continuous-in-time DG approximation CDG(·, t) ∈ Dr(Eh) to the solution of
(2.1)–(2.4) is defined by

(
∂φCDG

∂t
, w

)
+ B(CDG, w;u) = L(w;u, CDG)(3.9)

∀w ∈ Dr(Eh) ∀t ∈ (0, T ],

(φCDG, w) = (φc0, w) ∀w ∈ Dr(Eh), t = 0.(3.10)

As a valuable property, DG schemes possess element-wise mass conservation.
OBB-DG satisfies local conservation strictly, whereas SIPG, NIPG, and IIPG are
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locally conservative if the concentration jump term is considered as part of the com-
puted diffusive flux:

Lemma 3 (local mass balance). The approximation of the concentration satisfies
on each element E the following local mass balance equation:∫

E

∂φCDG

∂t
−
∫
∂E\∂Ω

{D(u)∇CDG · n∂E} +

∫
∂E

CDG∗u · n∂E(3.11)

+
∑

γ⊂∂E\∂Ω

r2σγ

hγ

∫
γ

(CDG|E − CDG|Ω\E)

=

∫
E

CDG∗q +

∫
E

r(M(CDG)).

Proof. The relationship (3.11) follows immediately from the DG schemes by fixing
an element E and letting w ∈ Dr(Eh) with w|E = 1, w|Ω\E = 0.

It is also important to know that a DG scheme has a solution.
Lemma 4 (existence of a solution). Assume that the reaction rate is a locally

Lipschitz continuous function of the concentration. Then the discontinuous Galerkin
scheme (3.9) and (3.10) has a unique solution for t > 0.

Proof. We let {vi}Mi=1 be a basis of Dr(Eh) and write CDG =
∑M

i=1 ζi(t)vi(x).
Then (3.9) and (3.10) reduce to the following initial value problem:⎧⎨

⎩
A
dζ

dt
= −Bζ + R(ζ),

Aζ(0) = b,

where the mass matrix A is block-diagonal, symmetric, and positive definite. From the
properties of the cut-off operator M and the reaction function, we observe that R(ζ)
is (globally) Lipschitz continuous. It follows from the theory of ordinary differential
equations that ζ(t) exists and is unique for t > 0.

4. L2(H1) and L∞(L2) error estimates. Throughout the paper, we denote
by K a generic positive constant independent of h and r, and by ε a fixed positive
constant that may be chosen arbitrarily small.

Theorem 1 (L2(H1) and L∞(L2) error estimates). Let c be the solution to
(2.1)–(2.4), and assume c ∈ L2(0, T ;Hs(Eh)), ∂c/∂t ∈ L2(0, T ;Hs−1(Eh)), and c0 ∈
Hs−1(Eh). We further assume that c, u and q are essentially bounded, that the reac-
tion rate is a locally Lipschitz continuous function of c, and that the cut-off constant
M and the penalty parameter σ0 are sufficiently large. Then there exists a constant
K, independent of h and r, such that

‖CDG − c‖L∞(0,T ;L2) + |||D 1
2 (u)∇(CDG − c)|||L2(0,T ;L2)

+

(∫ T

0

Jσ
0 (CDG − c, CDG − c)

) 1
2

≤ K
hμ−1

rs−1−δ
|||c|||L2(0,T ;Hs) + K

hμ−1

rs−1
(|||∂c/∂t|||L2(0,T ;Hs−1) + |||c0|||s−1),

where μ = min(r + 1, s), r ≥ 1, s ≥ 2, δ = 0 for conforming meshes with triangles or
tetrahedra, and δ = 1/2 in general.

Proof. We let ĉ ∈ Dr(Eh) be an interpolant of concentration c such that the
hp-results (3.4) hold, and define

ξ = CDG − c,(4.1)
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ξI = c− ĉ,(4.2)

ξA = CDG − ĉ = ξ + ξI .(4.3)

Subtracting the weak formulation (3.8) from the DG scheme (3.9), choosing w = ξA,
we obtain

(
∂φξA

∂t
, ξA

)
+ B(ξA, ξA;u)(4.4)

= L(ξA;u, CDG) − L(ξA;u, c) +

(
∂φξI

∂t
, ξA

)
+ B(ξI , ξA;u).

The first term of the error equation (4.4) may be written in a time derivative of
an L2 norm:

(
∂φξA

∂t
, ξA

)
=

1

2

d

dt

∥∥∥√φξA
∥∥∥2

0,Ω
.

We expand the second term of (4.4) as

B(ξA, ξA;u) =
∑
E∈Eh

∫
E

(D(u)∇ξA − ξAu) · ∇ξA −
∫

Ω

q−(ξA)2

−(1 + sform)
∑
γ∈Γh

∫
γ

{D(u)∇ξA · nγ}[ξA]

+
∑
γ∈Γh

∫
γ

ξA∗u · nγ [ξA] +
∑

γ∈Γh,out

∫
γ

u · nγ(ξA)2 + Jσ
0 (ξA, ξA).

Integrating the advection term by parts, we observe

−
∑
E∈Eh

∫
E

ξAu · ∇ξA

= −1

2

∑
E∈Eh

∫
E

u · ∇(ξA)2 = −1

2

∑
E∈Eh

∫
∂E

u · n∂E(ξA)2 +
1

2

∑
E∈Eh

∫
E

q(ξA)2

= −1

2

∑
γ∈Γh

∫
γ

u · nγ [(ξA)2] − 1

2

∑
γ∈Γh,in∪Γh,out

∫
γ

u · nγ(ξA)2 +
1

2

∑
E∈Eh

∫
E

q(ξA)2.

In addition, noting that [c2] = 2{c}[c] and (c∗ − {c})sign(u · n) = [c]/2, we have

B(ξA, ξA;u) = |||D 1
2 (u)∇ξA|||20 +

1

2

∫
Ω

|q|(ξA)2 − T0 + Jσ
0 (ξA, ξA)

+
1

2

∑
γ∈Γh

∫
γ

|u · nγ |[ξA]2 +
1

2

∑
γ∈Γh,in∪Γh,out

∫
γ

|u · nγ |(ξA)2,

where T0 is defined by

T0 := (1 + sform)
∑
γ∈Γh

∫
γ

{D(u)∇ξA · nγ}[ξA].
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If the penalty parameter σ0 is chosen to be sufficiently large, we may bound T0 by
applying the Cauchy–Schwarz and inverse inequalities:

T0 ≤ h

Kr2

∑
E∈Eh

∥∥∥D 1
2 (u)∇ξA · n∂E

∥∥∥2

0,∂E
+

Kr2

h

∑
γ∈Γh

‖[ξA]‖2
0,γ(4.5)

≤ 1

2
|||D 1

2 (u)∇ξA|||20 +
1

2
Jσ

0 (ξA, ξA).

The first two terms on the right-hand side of (4.4) may be estimated, by using
Lemma 1, as

L(ξA;u, CDG) − L(ξA;u, c) =

∫
Ω

(r(M(CDG)) − r(M(c)))ξA

≤ K‖
√
φξA‖2

0 + K‖ξI‖2
0 ≤ K‖

√
φξA‖2

0 + K
h2μ

r2s
|||c|||2s.

We have a similar result for the third term:

(
∂φξI

∂t
, ξA

)
≤ K

∥∥∥∥∂ξ
I

∂t

∥∥∥∥
0

∥∥∥√φξA
∥∥∥

0

≤ K
∥∥∥√φξA

∥∥∥2

0
+ K

∥∥∥∥∂ξ
I

∂t

∥∥∥∥
2

0

≤ K
∥∥∥√φξA

∥∥∥2

0
+ K

h2μ−2

r2s−2
|||ct|||2s−1.

The fourth term on the right-hand side of (4.4) consists of eight pieces:

B(ξI , ξA;u)

=
∑
E∈Eh

∫
E

D(u)∇ξI · ∇ξA −
∑
E∈Eh

∫
E

ξIu · ∇ξA −
∫

Ω

q−ξIξA

−
∑
γ∈Γh

∫
γ

{D(u)∇ξI · nγ}[ξA] − sform

∑
γ∈Γh

∫
γ

{D(u)∇ξA · nγ}[ξI ]

+
∑
γ∈Γh

∫
γ

ξI∗u · nγ [ξA] +
∑

γ∈Γh,out

∫
γ

u · nγξ
IξA + Jσ

0 (ξI , ξA)

=:

8∑
i=1

Ti.

The Cauchy–Schwarz inequality and approximation results yield

T1 ≤ ε|||D 1
2 (u)∇ξA|||20 + K

h2μ−2

r2s−2
|||c|||2s,

T2 ≤ ε|||D 1
2 (u)∇ξA|||20 + K

h2μ

r2s
|||c|||2s,

T3 ≤ ε

∫
Ω

|q−|(ξA)2 + K
h2μ

r2s
|||c|||2s.
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We bound the terms T4 and T5 by hiding a large constant in the penalty term and by
using the inverse inequality, respectively,

T4 ≤ ε
σ0r

2

h

∑
γ∈Γh

‖[ξA]‖2
0,γ +

Kh

r2

∑
E∈Eh

‖∇ξI · n∂E‖2
0,∂E

≤ εJσ
0 (ξA, ξA) + K

h2μ−2

r2s−1
|||c|||2s,

T5 ≤ εh

Kr2

∑
E∈Eh

‖D 1
2 (u)∇ξA · n∂E‖2

0,∂E +
Kr2

h

∑
E∈Eh

‖ξI‖2
0,∂E

≤ ε|||D 1
2 (u)∇ξA|||20 + K

h2μ−2

r2s−3
|||c|||2s.

Similar applications of the Cauchy–Schwarz inequality and approximation results give

T6 ≤ ε
∑
γ∈Γh

∫
γ

|u · nγ |[ξA]2 + K
h2μ−1

r2s−1
|||c|||2s,

T7 ≤ ε
∑

γ∈Γh,out

∫
γ

|u · nγ |(ξA)2 + K
h2μ−1

r2s−1
|||c|||2s,

T8 ≤ εJσ
0 (ξA, ξA) + K

h2μ−2

r2s−3
|||c|||2s.

For conforming meshes with triangles or tetrahedra, we can choose a continu-
ous approximation ĉ to make the two terms T5 and T8 vanish. Substituting all the
estimates into (4.4), we see that

d

dt
‖
√
φξA‖2

0 + |||D 1
2 (u)∇ξA|||20 + Jσ

0 (ξA, ξA)(4.6)

≤ K‖
√
φξA‖2

0 + K
h2μ−2

r2s−2−2δ
|||c|||2s + K

h2μ−2

r2s−2
|||ct|||2s−1,

where δ = 0 for conforming meshes with triangles or tetrahedra, and δ = 1/2 in
general. Integrating (4.6) with respect to the time t, noting that

‖
√
φEA‖0(0) ≤ K

hμ−1

rs−1
|||c0|||s−1,

and applying Gronwall’s inequality, we conclude that

‖
√
φξA‖L∞(0,T ;L2) + |||D 1

2 (u)∇ξA|||L2(0,T ;L2) + (

∫ T

0

Jσ
0 (ξA, ξA))

1
2

≤ K
hμ−1

rs−1−δ
|||c|||L2(0,T ;Hs) + K

hμ−1

rs−1
(|||∂c/∂t|||L2(0,T ;Hs−1) + |||c0|||s−1).

The theorem follows by applying the triangle inequality, the approximation results
and the fact that

|||c|||L∞(0,T ;Hs−1) ≤ K|||ct|||L2(0,T ;Hs−1) + |||c0|||s−1.(4.7)

We remark that, in [22], L∞(L2) + L2(H1) error estimates for the OBB-DG
diffusion scheme applied to the transport problem established optimality in h and
suboptimality in p by 3/2. Here for SIPG, NIPG, and IIPG, we obtain optimality in
h and p for conforming meshes with triangles and tetrahedra and a loss of 1/2 in p for
general grids. Obviously, penalty terms improve the provable p-optimality of DGs.
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5. Optimal L2(L2) error estimates for the symmetric scheme. In this and
following sections, we restrict our attention to SIPG. The derivation in this section
is motivated by the h-optimal L2 result for SIPG applied to an elliptic problem by
Wheeler [38] and the h-optimal L2(L2) result for continuous Galerkin methods applied
to a parabolic problem by Palmer [20]. See also the h-optimal L2(L2) result for
continuous finite element modified methods of characteristics applied to a coupled
system of partial differential equations (PDEs) by Dawson, Russell, and Wheeler
[13] and the h-optimal L∞(L2) result for SIPG applied to a parabolic equation with
diffusion term by Arnold [4, 3]. We first recall a theorem proved in [20, 17].

Theorem 2. Consider the parabolic equation:

∂φΦ

∂t
+ ∇ · (uΦ − D∇Φ) + aΦ = f, x ∈ Ω, t ∈ (0, T ],

D∇Φ · n = 0, x ∈ ∂Ω, t ∈ (0, T ],

Φ = 0, x ∈ Ω, t = 0.

Assume that 0 < φ0 ≤ φ(t, x) ≤ φm, D is uniformly symmetric positive definite
and bounded from above, φ ∈ W 2,1

∞ ((0, T ) × Ω), Dij ∈ W 1,0
∞ ((0, T ) × Ω), ui ∈ L∞(Ω)

(u being independent of time), a ∈ L2(0, T ;L∞(Ω)) and f ∈ L2(0, T ;L2(Ω)). Then
there exists a unique solution Φ satisfying the above equation and the regularity bounds
given by

‖Φ‖L∞(0,T ;H1) + ‖Φ‖L2(0,T ;H2) ≤ K‖f‖L2(0,T ;L2),

where K is a constant independent of the input data f .
For simplicity of presentation, we consider problems with no-flow boundary con-

ditions, though the result can be generalized. We make additional assumptions:
φ ∈ W 2,1

∞ ((0, T ) × Ω), Dij ∈ W 1,0
∞ ((0, T ) × Ω), and q+ ∈ L2(0, T ;L∞(Ω)).

5.1. Parabolic lift for SIPG.
Lemma 5 (parabolic lift). Let a ∈ L2(0, T ;L∞(Ω)) and e ∈ L2(0, T ;H1(Eh))

satisfy
(
∂φe

∂t
, w

)
+ BS(e, w;u) + (ae, w) = 0 ∀w ∈ Dr(Eh) ∀t ∈ (0, T ],(5.1)

(φe,w) = 0 ∀w ∈ Dr(Eh), t = 0.(5.2)

In addition we let the assumptions in Theorem 1 hold. Then there exists a constant
K, independent of h, r, and e, such that

‖e‖L2(0,T ;L2)

≤ K
h

r
‖e‖L∞(0,T ;L2) + K

h2

r2
‖et‖L2(0,T ;L2)

+K
h

r
|||D 1

2 (u)∇e|||L2(0,T ;L2) + K
h

r
3
2−2δ

(∫ T

0

Jσ
0 (e, e)

) 1
2

+Kδ
h

3
2

r
3
2

( ∑
E∈Eh

(‖e‖2
L2(0,T ;L2(∂E)) + ‖∇e · n∂E‖2

L2(0,T ;L2(∂E)))

) 1
2

,

where δ = 0 for conforming meshes with triangles or tetrahedra, and δ = 1/2 in
general.
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Proof. Consider the backward or adjoint parabolic equation:

−∂φΦ

∂t
+ ∇ · (−uΦ − D(u)∇Φ) + (a + q+)Φ = e, x ∈ Ω, t ∈ [0, T ),(5.3)

D(u)∇Φ · n∂Ω = 0, x ∈ ∂Ω, t ∈ [0, T ),(5.4)

Φ = 0, x ∈ Ω, t = T.(5.5)

Theorem 2 suggests a unique solution Φ for (5.3)–(5.5) satisfying

‖Φ‖L∞(0,T ;H1) + ‖Φ‖L2(0,T ;H2) ≤ K‖e‖L2(0,T ;L2).(5.6)

Observing that D(u)∇Φ ·n∂Ω = 0 on ∂Ω, ∇·u = q, and [D(u)∇Φ ·nγ ] = [Φ] = 0,
we multiply both sides of the adjoint equation (5.3) by e, integrate it over the domain
Ω, and then apply integration by parts to conclude that

‖e‖2
0 = − d

dt

∑
E∈Eh

(e, φΦ)E +
∑
E∈Eh

(
φ
∂e

∂t
,Φ

)
E

+
∑
E∈Eh

((a− q−)e,Φ)E

+
∑
E∈Eh

(∇e,D(u)∇Φ)E −
∑
γ∈Γh

∫
γ

{D(u)∇Φ · nγ}[e] −
∑
E∈Eh

(e,u∇ · Φ)E

= − d

dt
(e, φΦ) +

(
φ
∂e

∂t
,Φ

)
+ (ae,Φ) + BS(e,Φ;u).

Applying the orthogonality condition (5.1), we obtain

‖e‖2
0 = − d

dt
(e, φΦ) +

(
φ
∂e

∂t
,Φ − Φ̂

)
+ (ae,Φ − Φ̂) + BS(e,Φ − Φ̂;u),(5.7)

where Φ̂ ∈ Dr(Eh) is an interpolant satisfying (3.4) element-wise. The second and
third terms on the right-hand side of (5.7) are bounded, by using the Cauchy–Schwarz
inequality and approximation results, as

(
φ
∂e

∂t
,Φ − Φ̂

)
≤ K‖et‖0‖Φ − Φ̂‖0 ≤ K

h2

r2
‖et‖0‖Φ‖2,

(ae,Φ − Φ̂) ≤ K‖a‖L∞‖e‖0‖Φ − Φ̂‖0 ≤ K
h2

r2
‖a‖L∞‖e‖0‖Φ‖2.

The last term in (5.7) is composed of eight parts:

BS(e,Φ − Φ̂;u)

=
∑
E∈Eh

∫
E

D(u)∇e · ∇(Φ − Φ̂) −
∑
E∈Eh

∫
E

eu · ∇(Φ − Φ̂) −
∫

Ω

q−e(Φ − Φ̂)

−
∑
γ∈Γh

∫
γ

{D(u)∇e · nγ}[Φ − Φ̂] −
∑
γ∈Γh

∫
γ

{D(u)∇(Φ − Φ̂) · nγ}[e]

+
∑
γ∈Γh

∫
γ

e∗u · nγ [Φ − Φ̂] +
∑

γ∈Γh,out

∫
γ

eu · nγ(Φ − Φ̂) + Jσ
0 (e,Φ − Φ̂)

=:
8∑

i=1

Ti.
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Once again, the approximation results and Cauchy–Schwarz inequality yield the esti-
mates for the terms T1, T2, and T3:

T1 ≤ K|||D 1
2 (u)∇e|||0‖∇(Φ − Φ̂)‖0 ≤ K

h

r
|||D 1

2 (u)∇e|||0‖Φ‖2,

T2 ≤ K
h

r
‖e‖0‖Φ‖2,

T3 ≤ K
h2

r2
‖e‖0‖Φ‖2.

The term T7 vanishes because of the assumed no-flow boundary condition. The re-
maining terms in the bilinear form can be bounded by applying the Cauchy–Schwarz
inequality on element faces:

T4 ≤ K
∑
E∈Eh

‖∇e · n∂E‖0,∂E‖Φ − Φ̂‖0,∂E ≤ K
h

3
2

r
3
2

( ∑
E∈Eh

‖∇e · n∂E‖2
0,∂E

) 1
2

‖Φ‖2,

T5 ≤
∑
γ∈Γh

‖{D(u)∇(Φ − Φ̂) · nγ}‖0,γ‖[e]‖0,γ ≤ K
h

r
3
2

(Jσ
0 (e, e))

1
2 ‖Φ‖2,

T6 ≤ K
h

3
2

r
3
2

( ∑
E∈Eh

‖e‖2
0,∂E

) 1
2

‖Φ‖2,

T8 ≤ (Jσ
0 (e, e))

1
2 (Jσ

0 (Φ − Φ̂,Φ − Φ̂))
1
2 ≤ K

h

r
1
2

(Jσ
0 (e, e))

1
2 ‖Φ‖2.

We note that, for conforming meshes with triangles or tetrahedra, terms T4, T6,
and T8 vanish if we choose a continuous interpolant Φ̂. Substituting all the estimates
back into (5.7), we find that

‖e‖2
0,Ω ≤ − d

dt
(e, φΦ) + K

h2

r2
‖et‖0‖Φ‖2 + K

h2

r2
‖a‖L∞‖e‖0‖Φ‖2

+K
h

r
|||D 1

2 (u)∇e|||0‖Φ‖2 + K
h

r
‖e‖0‖Φ‖2 + K

h

r
3
2−2δ

(Jσ
0 (e, e))

1
2 ‖Φ‖2

+Kδ
h

3
2

r
3
2

( ∑
E∈Eh

(‖e‖2
0,∂E + ‖∇e · n‖2

0,∂E)

) 1
2

‖Φ‖2,

where δ = 0 for conforming meshes with triangles or tetrahedra, and δ = 1/2 in
general.

We complete the proof by integrating (5.8) over the time interval [0, T ], applying
the Cauchy–Schwarz inequality in L2(0, T ), recalling the regularity bound (5.6), and
observing the fact that

(e, φΦ)(0) = (φe,Φ − Φ̂)(0)

≤ K
h

r
‖e‖0(0)‖Φ‖1(0) ≤ K

h

r
‖e‖L∞(0,T ;L2)‖Φ‖L∞(0,T ;H1).

5.2. An L2(L2) error estimate for the time derivative of the concentra-
tion. To obtain an optimal L2(L2) error estimate for the concentration, we need an
estimate for its time derivative.
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Theorem 3 (L2(L2) error estimate for ct). Let the assumptions in Theorem 1
hold. Then there exists a constant K, independent of h and r, such that

∥∥∥∥ ∂

∂t
(CDG − c)

∥∥∥∥
L2(0,T ;L2)

+ |||D 1
2 (u)∇(CDG − c)|||L∞(0,T ;L2)

≤ K
hμ−2

rs−3−δ
|||c|||L2(0,T ;Hs) + K

hμ−2

rs−2
|||∂c/∂t|||L2(0,T ;Hs−1) + K

hμ−2

rs−5/2
|||c0|||s−1,

where μ = min(r + 1, s), r ≥ 1, s ≥ 2, δ = 0 for conforming meshes with triangles or
tetrahedra, and δ = 1/2 in general.

Proof. Let ξ, ξI , and ξA be defined by (4.1)–(4.3), respectively. Subtracting (3.8)
from (3.9), choosing w = ∂ξA/∂t, and integrating the resultant equation over the time
interval [0, t], 0 < t ≤ T , we obtain

∫ t

0

(
∂φξA

∂t
,
∂ξA

∂t

)
+

∫ t

0

BS

(
ξA,

∂ξA

∂t
;u

)
(5.8)

=

∫ t

0

(
L

(
∂ξA

∂t
;u, CDG

)
− L

(
∂ξA

∂t
;u, c

))

+

∫ t

0

(
∂φξI

∂t
,
∂ξA

∂t

)
+

∫ t

0

BS

(
ξI ,

∂ξA

∂t
;u

)
.

A simple manipulation breaks the bilinear form on the left-hide side of (5.8) into
nine components:

BS

(
ξA,

∂ξA

∂t
;u

)
=

(
d

dt

7∑
i=1

Ti

)
+ T8 + T9,

where

7∑
i=1

Ti :=
1

2

∑
E∈Eh

∫
E

D(u)∇ξA · ∇ξA −
∑
E∈Eh

∫
E

ξAu · ∇ξA − 1

2

∫
Ω

q−
(
ξA

)2

−
∑
γ∈Γh

∫
γ

{
D(u)∇ξA · nγ

} [
ξA

]
+

∑
γ∈Γh

∫
γ

ξA∗u · nγ

[
ξA

]

+
1

2

∑
γ∈Γh,out

∫
γ

u · nγ

(
ξA

)2
+

1

2
Jσ

0

(
ξA, ξA

)
,

T8 :=
∑
E∈Eh

∫
E

∂ξA

∂t
u · ∇ξA,

T9 := −
∑
γ∈Γh

∫
γ

∂ξA∗

∂t
u · nγ

[
ξA

]
.

Consequently, the left-hand side of (5.8) may be written as

∫ t

0

(
∂φξA

∂t
,
∂ξA

∂t

)
+

∫ t

0

BS

(
ξA,

∂ξA

∂t
;u

)

=

∫ t

0

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+

7∑
i=1

Ti(t) −
7∑

i=1

Ti(0) +

∫ t

0

T8 +

∫ t

0

T9.
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It is easy to see that the terms
∫ t

0
‖ ∂
∂t

√
φξA‖2

0, T1(t), T3(t), T6(t), and T7(t) are
nonnegative. By applying the Cauchy–Schwarz inequality and Theorem 1, the term
T2(t) can be bounded as

|T2(t)| ≤ ε|||D 1
2 (u)∇ξA|||20 + K‖ξA‖2

0

≤ ε|||D 1
2 (u)∇ξA|||20 + K‖ξA‖2

L∞(0,T ;L2)

≤ ε|||D 1
2 (u)∇ξA|||20 + KR2

s,

where

Rs :=
hμ−1

rs−1−δ
|||c|||L2(0,T ;Hs) +

hμ−1

rs−1
(|||∂c/∂t|||L2(0,T ;Hs−1) + |||c0|||s−1).

Recalling the definition of the penalty term and applying the Cauchy–Schwarz and
inverse inequalities, we may bound the terms T4 and T5:

|T4(t)| ≤
ε

K

∑
E∈Eh

h

r2
‖D 1

2 (u)∇ξA‖2
0,∂E + εJσ

0 (ξA, ξA)

≤ ε|||D 1
2 (u)∇ξA|||20 + εJσ

0 (ξA, ξA),

|T5(t)| ≤ K
∑
E∈Eh

h

r2
‖ξA‖2

0,∂E + εJσ
0 (ξA, ξA) ≤ K‖ξA‖2

0 + εJσ
0 (ξA, ξA)

≤ KR2
s + εJσ

0 (ξA, ξA).

Applications of the approximation results and the continuity of the L2 projection give

7∑
i=1

|Ti(0)| ≤ K
h2μ−4

r2s−5
|||c0|||2s−1.

The Cauchy–Schwarz inequality and Theorem 1 imply

∣∣∣∣
∫ t

0

T8

∣∣∣∣ ≤ ε

∥∥∥∥
√
φ
∂ξA

∂t

∥∥∥∥
2

L2(0,T ;L2)

+ |||D 1
2 (u)∇ξA|||2L2(0,T ;L2)

≤ ε

∥∥∥∥
√
φ
∂ξA

∂t

∥∥∥∥
2

L2(0,T ;L2)

+ KR2
s.

An application of the Cauchy–Schwarz and inverse inequalities yields

∣∣∣∣
∫ t

0

T9

∣∣∣∣ ≤ ε

∥∥∥∥
√
φ
∂ξA

∂t

∥∥∥∥
2

L2(0,T ;L2)

+ K

∫ t

0

Jσ
0

(
ξA, ξA

)

≤ ε

∥∥∥∥
√
φ
∂ξA

∂t

∥∥∥∥
2

L2(0,T ;L2)

+ KR2
s.

Collecting the above estimates, we conclude that the left-hide side of (5.8) has the
following lower bound:
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∫ t

0

(
∂φξA

∂t
,
∂ξA

∂t

)
+

∫ t

0

BS

(
ξA,

∂ξA

∂t
;u

)

≥ 1

2

∫ t

0

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+
1

3
|||D 1

2 (u)∇ξA|||20 +
1

2

∫
Ω

∣∣q−∣∣ (ξA)2

+
1

2

∑
γ∈Γh,out

∫
γ

u · nγ

(
ξA

)2
+

1

3
Jσ

0

(
ξA, ξA

)

−KR2
s −K

h2μ−4

r2s−5
|||c0|||2s−1.

The first integrand on the right-hand side of (5.8) may be bounded, by using the
Cauchy–Schwarz inequality and the Lipschitz continuity of the cut-off operator, as

L

(
∂ξA

∂t
;u, CDG

)
− L

(
∂ξA

∂t
;u, c

)
=

∫
Ω

(
r
(
M(CDG)

)
− r (M(c))

) ∂ξA
∂t

≤ ε

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+ K ‖ξ‖2
0 ≤ ε

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+ KR2
s.

An easy application of the Cauchy–Schwarz inequality and approximation results
yields the following estimate for the second integrand:(

∂φξI

∂t
,
∂ξA

∂t

)

≤ ε

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+ K

∥∥∥∥∂ξ
I

∂t

∥∥∥∥
2

0

≤ ε

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+ K
h2μ−2

r2s−2
|||ct|||2s−1.

The third integrand may be decomposed into eight parts:

BS

(
ξI ,

∂ξA

∂t
;u

)

=
∑
E∈Eh

∫
E

D(u)∇ξI · ∇∂ξA

∂t
−

∑
E∈Eh

∫
E

ξIu · ∇∂ξA

∂t
−
∫

Ω

q−ξI
∂ξA

∂t

−
∑
γ∈Γh

∫
γ

{
D(u)∇ξI · nγ

} [∂ξA
∂t

]
−

∑
γ∈Γh

∫
γ

{
D(u)∇∂ξA

∂t
· nγ

}[
ξI
]

+
∑
γ∈Γh

∫
γ

ξI∗u · nγ

[
∂ξA

∂t

]
+

∑
γ∈Γh,out

∫
γ

u · nγξ
I ∂ξ

A

∂t
+ Jσ

0

(
ξI ,

∂ξA

∂t

)

=:

8∑
i=1

Si.

The terms S3 and S8 are bounded by applying the Cauchy–Schwarz inequality and
approximation results:

|S3| ≤ ε

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+ K
h2μ

r2s
|||c|||2s,

|S8| ≤ εJσ
0

(
ξA, ξA

)
+ KJσ

0

(
ξI , ξI

)

≤ εJσ
0

(
ξA, ξA

)
+ K

h2μ−2

r2s−3
|||c|||2s.
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Applications of the Cauchy–Schwarz and inverse inequalities yield the following esti-
mates for the remaining terms:

|S1| + |S2| + |S4| + |S6| + |S7| ≤ ε

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+ K
h2μ−4

r2s−6
|||c|||2s,

|S5| ≤ ε

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+ K
h2μ−4

r2s−7
|||c|||2s.

For conforming meshes with triangles or tetrahedra, we can choose a continuous ĉ to
force S5 = S8 = 0. Combining the bounds for the terms Si, we obtain

∫ t

0

BS

(
ξI ,

∂ξA

∂t
;u

)

≤ ε

∫ t

0

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+ εR2
S + K

h2μ−4

r2s−6−2δ
|||c|||2L2(0,T ;Hs).

By back-substituting the estimates into (5.8), we conclude that

∫ t

0

∥∥∥∥ ∂

∂t

√
φξA

∥∥∥∥
2

0

+ |||D 1
2 (u)∇ξA|||20 +

∫
Ω

∣∣q−∣∣ (ξA)2

+
∑

γ∈Γh,out

∫
γ

u · nγ

(
ξA

)2
+ Jσ

0

(
ξA, ξA

)

≤ K
h2μ−4

r2s−6−2δ
|||c|||2L2(0,T ;Hs) + K

h2μ−4

r2s−5
|||c0|||2s−1 + KR2

s

≤ K
h2μ−4

r2s−6−2δ
|||c|||2L2(0,T ;Hs) + K

h2μ−4

r2s−5
|||c0|||2s−1 + K

h2μ−2

r2s−2
|||ct|||2L2(0,T ;Hs−1).

The theorem follows from the triangle inequality, approximation results, and
(4.7).

5.3. Face error estimates. We also need an error estimate on element faces in
order to apply the parabolic lift lemma.

Theorem 4 (face error estimates). Let the assumptions in Theorem 1 hold. Then
there exists a constant K, independent of h and r, such that

( ∑
E∈Eh

∥∥CDG − c
∥∥2

L2(0,T ;L2(∂E))

) 1
2

+

( ∑
E∈Eh

∥∥∇ (
CDG − c

)
· n∂E

∥∥2

L2(0,T ;L2(∂E))

) 1
2

≤ K
hμ− 3

2

rs−2−δ
|||c|||L2(0,T ;Hs) + K

hμ− 3
2

rs−2

(
|||∂c/∂t|||L2(0,T ;Hs−1) + |||c0|||s−1

)
,

where μ = min(r + 1, s), r ≥ 1, s ≥ 2, δ = 0 for conforming meshes with triangles or
tetrahedra, and δ = 1/2 in general.

Proof. As the first term can be bounded similarly with even sharper estimates, we
only present the estimation of the second term, which can be obtained by
applying the triangle and inverse inequalities, recalling Theorem 1 and using the
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approximation results:

( ∑
E∈Eh

∥∥∇ (
CDG − c

)
· n∂E

∥∥2

L2(0,T ;L2(∂E))

) 1
2

≤
( ∑

E∈Eh

∥∥∇ (
CDG − ĉ

)∥∥2

L2(0,T ;L2(∂E))

) 1
2

+

( ∑
E∈Eh

‖∇ (ĉ− c)‖2
L2(0,T ;L2(∂E))

) 1
2

≤ r

h
1
2

( ∑
E∈Eh

∥∥∇ (
CDG − ĉ

)∥∥2

L2(0,T ;L2(E))

) 1
2

+ K
hμ− 3

2

rs−
3
2

|||c|||L2(0,T ;Hs)

≤ r

h
1
2

( ∑
E∈Eh

∥∥∇ (
CDG − c

)∥∥2

L2(0,T ;L2(E))

) 1
2

+ K
r

h
1
2

hμ−1

rs−1
|||c|||L2(0,T ;Hs)

≤ K
hμ− 3

2

rs−2−δ
|||c|||L2(0,T ;Hs) + K

hμ− 3
2

rs−2

(
|||∂c/∂t|||L2(0,T ;Hs−1) + |||c0|||s−1

)
.

5.4. An L2(L2) error estimate for the concentration.
Theorem 5 (L2(L2) error estimate for c). Let the assumptions in Theorem 1

hold. Then there exists a constant K, independent of h and r, such that∥∥CDG − c
∥∥
L2(0,T ;L2)

(5.9)

≤ K
hμ

rs−1−δ
|||c|||L2(0,T ;Hs) + K

hμ

rs−δ
|||∂c/∂t|||L2(0,T ;Hs−1) + K

hμ

rs−1/2
|||c0|||s−1,

where μ = min(r + 1, s), r ≥ 1, s ≥ 2, δ = 0 for conforming meshes with triangles or
tetrahedra, and δ = 1/2 in general.

Proof. We recall the concentration error ξ in (4.1), and the error equation:(
∂φξ

∂t
, w

)
+ B(ξ, w;u) = L

(
w;u, CDG

)
− L (w;u, c) ∀w ∈ Dr (Eh) .

We define

a(x, t) =

⎧⎪⎨
⎪⎩

− r(M(CDG(x,t)))−r(M(c(x,t)))

CDG(x,t)−c(x,t)
if CDG(x, t) − c(x, t) = 0,

0 if CDG(x, t) − c(x, t) = 0.

Consequently, we have L(w;u, CDG) − L(w;u, c) = −(aξ, ω). Noting the fact that
a ∈ L∞(0, T ;L∞) ⊂ L2(0, T ;L∞) and recalling Theorems 1, 3, and 4, we obtain (5.9)
by applying the parabolic lift argument of Lemma 5.

6. Optimal estimates in negative norms for the symmetric scheme.

6.1. Error estimates in terms of linear functionals. We again assume no-
flow boundary conditions. Given a function f ∈ L2(0, T ;L2(Ω)), we consider a linear
functional F (·) of the following form:

F (c) =

∫ T

0

∫
Ω

c(x, t)f(x, t)dx dt.

Lemma 6 (parabolic lift). Let e ∈ L2(0, T ;H1(Eh)) satisfy (5.1)–(5.2) and let the
assumptions in Theorem 1 hold. We further assume φ ∈ W s1+2,1

∞ ((0, T ) × Ω), Dij ∈
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W s1+1,0
∞ ((0, T )×Ω), ui ∈ W s1

∞ (Ω), a ∈ W s1,0
∞ ((0, T )×Ω), and q+ ∈ W s1,0

∞ ((0, T )×Ω).
Then there exists a constant K, independent of h, r, e, and f, such that

|F (e)| ≤ K ‖f‖L2(0,T ;Hs1 )

(
hμ1+1

rs1+1
‖e‖L∞(0,T ;L2) +

hμ1+2

rs1+2
‖et‖L2(0,T ;L2)

+
hμ1+1

rs1+1
|||D 1

2 (u)∇e|||L2(0,T ;L2) +
hμ1+1

rs1+
3
2−2δ

(∫ T

0

Jσ
0 (e, e)

) 1
2

+
hμ1+

3
2

rs1+
3
2

δ

( ∑
E∈Eh

(
‖e‖2

L2(0,T ;L2(∂E)) + ‖∇e · n∂E‖2
L2(0,T ;L2(∂E))

)) 1
2
)
,

where μ1 = min(r − 1, s1), r ≥ 1, s1 ≥ 0, δ = 0 for conforming meshes with triangles
or tetrahedra, and δ = 1/2 in general.

Proof. We revisit the adjoint parabolic equation (5.3)–(5.5) with e replaced by
f . By applying Theorem 2 repeatedly, we obtain a unique solution Φ for (5.3)–(5.5)
satisfying

‖Φ‖L∞(0,T ;Hs1+1) + ‖Φ‖L2(0,T ;Hs1+2) ≤ K ‖f‖L2(0,T ;Hs1 ) .(6.1)

We now consider the L2(Ω) inner product (e, f) at t ∈ (0, T ]:

(e, f) =
∑
E∈Eh

(e, f)E

=
∑
E∈Eh

(
e,−∂φΦ

∂t

)
E

+
∑
E∈Eh

(e,∇ · (−uΦ − D(u)∇Φ))E +
∑
E∈Eh

(
e, (a + q+)Φ

)
E
.

Integrating by parts, applying the orthogonality condition (5.1) and observing that
D(u)∇Φ · n∂Ω = 0 on ∂Ω, ∇ · u = q, and [D(u)∇Φ · nγ ] = [Φ] = 0, we conclude that

(e, f) = − d

dt
(e, φΦ) +

(
φ
∂e

∂t
,Φ − Φ̂

)
+
(
ae,Φ − Φ̂

)
+ BS

(
e,Φ − Φ̂;u

)
,(6.2)

where we choose an interpolant Φ̂ ∈ Dr(Eh) with element-wise optimal approximation
properties (3.4). Applying the Cauchy–Schwarz inequality and approximation results,
we obtain estimates for the second and third terms on the right-hand side of (6.2):(

φ
∂e

∂t
,Φ − Φ̂

)
≤ K ‖et‖0 ‖Φ − Φ̂‖0 ≤ K

hμ1+2

rs1+2
‖et‖0 ‖Φ‖s1+2 ,

(
ae,Φ − Φ̂

)
≤ K ‖a‖L∞ ‖e‖0 ‖Φ − Φ̂‖0 ≤ K

hμ1+2

rs1+2
‖a‖L∞ ‖e‖0 ‖Φ‖s1+2 .

Similar but tedious arguments, together with the inverse inequality and the existence
of continuous interpolants for conforming meshes with triangles or tetrahedra, yield
a bound for the fourth term:∣∣∣BS

(
e,Φ − Φ̂;u

)∣∣∣ ≤ K
hμ1+1

rs1+1
|||D 1

2 (u)∇e|||0 ‖Φ‖s1+2 + K
hμ1+1

rs1+1
‖e‖0 ‖Φ‖s1+2

+K
hμ1+1

rs1+
3
2−2δ

(Jσ
0 (e, e))

1
2 ‖Φ‖s1+2

+Kδ
hμ1+

3
2

rs1+
3
2

( ∑
E∈Eh

(
‖e‖2

0,∂E + ‖∇e · n∂E‖2
0,∂E

)) 1
2

‖Φ‖s1+2 .
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Observing the fact that

|F (e) − (e, φΦ) (0)| =

∣∣∣∣∣
∫ T

0

(
(e, f) +

d

dt
(e, φΦ)

)∣∣∣∣∣
≤

∫ T

0

∣∣∣∣(e, f) +
d

dt
(e, φΦ)

∣∣∣∣
and integrating (6.2) over the time interval [0, T ], we have

|F (e) − (e, φΦ) (0)|

≤ K ‖Φ‖L2(0,T ;Hs1+2)

(
hμ1+2

rs1+2
‖et‖L2(0,T ;L2)

+
hμ1+2

rs1+2
‖a‖L2(0,T ;L∞) ‖e‖L∞(0,T ;L2) +

hμ1+1

rs1+1
|||D 1

2 (u)∇e|||L2(0,T ;L2)

+
hμ1+1

rs1+1
‖e‖L∞(0,T ;L2) +

hμ1+1

rs1+
3
2−2δ

(∫ T

0

Jσ
0 (e, e)

) 1
2

+
hμ1+

3
2

rs1+
3
2

δ

( ∑
E∈Eh

(
‖e‖2

L2(0,T ;L2(∂E)) + ‖∇e · n∂E‖2
L2(0,T ;L2(∂E))

)) 1
2
)
.

The theorem follows from the regularity estimate (6.1) and the fact that

|(e, φΦ) (0)| =
∣∣∣(φe,Φ − Φ̂

)
(0)

∣∣∣
≤ K

hmin(r+1,s1+1)

rs1+1
‖e(·, 0)‖0 ‖Φ(·, 0)‖s1+1

≤ K
hμ1+1

rs1+1
‖e‖L∞(0,T ;L2) ‖Φ‖L∞(0,T ;Hs1+1) .

Theorem 6 (linear functional estimates). Let the assumptions in Theorem 1
hold. In addition, we assume φ ∈ W s1+2,1

∞ ((0, T ) × Ω), Dij ∈ W s1+1,0
∞ ((0, T ) × Ω),

ui ∈ W s1
∞ (Ω), q+ ∈ W s1,0

∞ ((0, T )×Ω), and that the chemical reaction term has a linear
form r(c) = k0 + k1c, where k0 = k0(x, t) and k1 = k1(x, t) are reaction parameters
with k1 ∈ W s1,0

∞ ((0, T )×Ω). Then there exists a constant K, independent of h, r, and
f, such that

∣∣F (CDG) − F (c)
∣∣ ≤ K

hμ1+μ

rs1+s−1−δ
‖f‖L2(0,T ;Hs1 ) |||c|||L2(0,T ;Hs)

+K
hμ1+μ

rs1+s−δ
‖f‖L2(0,T ;Hs1 ) |||∂c/∂t|||L2(0,T ;Hs−1)

+K
hμ1+μ

rs1+s−1/2
‖f‖L2(0,T ;Hs1 ) |||c0|||s−1,

where μ = min(r + 1, s), μ1 = min(r − 1, s1), r ≥ 1, s ≥ 2, s1 ≥ 0, and δ = 0 for
conforming meshes with triangles or tetrahedra, and δ = 1/2 in general.

Proof. Recalling the concentration error ξ in (4.1) and defining a(x, t) = −k1(x, t),
we obtain the error equation in the following form, provided that the cut-off constant
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M is chosen to be sufficiently large:

(
∂φξ

∂t
, w

)
+ BS(ξ, w;u) + (aξ, w) = 0 ∀w ∈ Dr (Eh) ∀t ∈ (0, T ].

We obtain the desired estimate by applying the parabolic lift of Lemma 6 together
with estimates in Theorems 1, 3, and 4.

6.2. Error estimates in negative norms. Assuming m is a positive integer,
we define the negative Sobolev norm ‖·‖H−m(Ω) in the usual way:

‖c‖H−m(Ω) = sup
v∈C∞

0 (Ω)\{0}

|(c, v)|
‖v‖Hm(Ω)

.

Theorem 7 (estimates in negative norms). Let the assumptions in Theorem 1
hold. In addition, we assume φ ∈ Wm+2,1

∞ ((0, T ) × Ω), Dij ∈ Wm+1,0
∞ ((0, T ) × Ω),

ui ∈ Wm
∞(Ω), q+ ∈ Wm,0

∞ ((0, T )×Ω), and that the chemical reaction term has a linear
form r(c) = k0 + k1c, where k0 = k0(x, t) and k1 = k1(x, t) are reaction parameters
with k1 ∈ Wm,0

∞ ((0, T )×Ω). Then there exists a constant K, independent of h and r,
such that

∥∥CDG − c
∥∥
L2(0,T ;H−m(Ω))

≤ K
hmin(r−1,m)+min(r+1,s)

rm+s−1−δ
|||c|||L2(0,T ;Hs)

+K
hmin(r−1,m)+min(r+1,s)

rm+s−δ
|||∂c/∂t|||L2(0,T ;Hs−1)

+K
hmin(r−1,m)+min(r+1,s)

rm+s−1/2
|||c0|||s−1,

where r ≥ 1, s ≥ 2, m ≥ 0, and δ = 0 for conforming meshes with triangles or
tetrahedra, and δ = 1/2 in general.

Proof. The theorem follows directly from Theorem 6 and the definition of negative
norms.

7. Numerical examples. We consider the problem of (2.1)–(2.4) on a domain
Ω = (0, 10)2 without injection or extraction, i.e., q = 0, and with a reaction term
r = r(x, t) independent of the concentration c. The domain is divided into two
disjoint parts: Ω = Ω1 ∪ Ω2 with Ω1 = {(x, y) ∈ Ω : y < 3 + 0.4x}. The porosity
φ has a constant value of 0.1, and the tensor D is a constant diagonal tensor with
Dii = 1.0. We impose the velocities u = (−1,−0.4) in Ω1 and u = (0, 0) in Ω2.
We choose r(x, t), cB , and c0 such that the equation has an analytical solution of
c = (1 + cos(π5x) cos(π5 y))2

−t/10. The penalty parameter is chosen according to the
method presented in the next section. The coarsest mesh we take simply consists of
the two quadrilateral elements Ω1 and Ω2. The simulation time interval is (0, 10],
and we use the backward Euler method for time integration with a uniform time step
Δt = 0.1.

7.1. Convergence of h-refinement. We solve the test case using OBB-DG,
NIPG, IIPG, and SIPG. We use polynomials of degree r = 2 and vary h by uniform re-
finements starting from the coarsest mesh. The convergence behaviors of h-refinement
in the norms of L2(L2), L∞(L2), and L2(H1) for NIPG are shown in Figure 7.1. It
is observed that the errors in all norms are O(1/n), where n is the number of degrees
of freedom. As n ∝ 1/h2 for two-dimensional spaces, the experimental convergences
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Fig. 7.1. Convergence of h-refinement for NIPG.
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Fig. 7.2. Convergence of h-refinement for SIPG.

confirm our theoretical estimates in L2(H1). In addition, the numerical results indi-
cate that the errors in NIPG do not converge optimally in L∞(L2) or L2(L2). The
convergence behaviors of OBB-DG and IIPG (not shown) are nearly identical to those
of NIPG. However, unlike NIPG, OBB-DG, and IIPG, the symmetric scheme (SIPG)
possesses optimal convergence in all norms of L2(L2), L∞(L2), and L2(H1), as shown
evidently in Figure 7.2, which also validates the predictions from our parabolic lift
arguments.

7.2. Convergence of p-refinement. The test case is solved using the four
primal DGs on the coarsest mesh with polynomials of degrees r=1, 2, 3, . . . , 10.
Figure 7.3 illustrates the convergence behaviors of SIPG in the norms of L2(L2),
L∞(L2), and L2(H1), where the expected exponential convergence rates are achieved.
The exponential convergence patterns of OBB-DG, NIPG, and IIPG (not shown) are
very similar to those of SIPG. An interesting experimental observation, which is not
covered in previous theoretical sections, is that the DG methods with polynomials
of odd orders have better performance than those of even orders; this is especially
pronounced for OBB-DG.
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Fig. 7.3. Convergence of p-refinement for SIPG.

8. Discussion.

8.1. Penalty parameters for SIPG. Numerical experiments indicate that
careful implementations of the penalty terms are crucial to SIPG: not only are the
penalty terms necessary for the convergence of SIPG, but also choices of penalty pa-
rameters significantly influence the performance of SIPG. Small penalty parameters
might result in divergences of the schemes. On the other hand, very large parameters,
though ensuring the convergence theoretically, lead to a poor condition number for
the resultant linear system, causing numerical difficulties in practice.

Reinvestigating (4.5), we see that it is sufficient to choose σγ = O(|D|1/2), where
| · | is a matrix norm. Letting σγ = σ̂|D|1/2 and σ̂ = O(1), we have

Jσ
0 (c, w) =

∑
γ∈Γh

σ̂
√
|D| r

2

hγ

∫
γ

[c][w].

For most cases, we recommend σ̂ = 1. It is found that σ̂ chosen from (0.1, 10)
works well for many test cases. For cases where aspect ratios are very high and/or
dispersion-diffusion is highly anisotropic, it is found that the following choice generally
gives better results:

Jσ
0 (c, w) =

∑
γ∈Γh

σ̂
√
|Dnγ |

r2

hm,γ

∫
γ

[c][w],

where hm,γ = minE:γ∈E(meas(E)/meas(γ)).

8.2. Reference versus physical polynomial spaces. In the definition (3.1)
of the DG space Dr(Eh), the local space Pr(E) is the set of polynomials defined over a

physical element E, rather than a reference element Ê. This distinction is unnecessary
when E is a triangle or tetrahedron because the transformation from Ê to E is affine.
But for a general quadrilateral or hexahedron, these two spaces are different. We apply
DG methods to the test case in section 7 using the uniform p-refinement in the coars-
est mesh. Figure 8.1 provides the error ratio η = ‖er‖L2(0,T ;L2(Ω))/‖ef‖L2(0,T ;L2(Ω))

during the p-refinement, where er and ef denote the DG errors based on the reference
and physical spaces, respectively. Clearly, DG solutions based on physical spaces are
more accurate than those of reference spaces for high order approximations; this is
more significant for OBB-DG than for other primal DGs. This observation suggests
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Fig. 8.1. Comparison of reference versus physical polynomial spaces for DG methods (data of
NIPG, SIPG, and IIPG are nearly identical).

that physical polynomial spaces are preferred in p- and hp-implementations of DGs.
It is also noted (not shown) that the improvement of physical over reference spaces

is less pronounced on more refined meshes, because the transformation from Ê to
E becomes closer to an affine mapping. Consequently, a choice of physical versus
reference spaces does not significantly impact h-versions of DGs.

9. Conclusions. Three primal DG methods with penalty have been analyzed
for solving reactive transport problems in porous media. The cut-off operator was
introduced in the DG formulations to ensure convergence for general nonlinear ki-
netic reactions. Error estimates in L2(H1) for the concentration were derived for
SIPG, NIPG, and IIPG, which are optimal in h and nearly optimal in p. In addition,
we established L2(H1) concentration error estimates on the element faces as well as
L2(L2) estimates for time derivatives. A parabolic lift technique for SIPG has been
developed, which yields an h-optimal and nearly p-optimal error estimate in L2(L2).
The same lift technique applied to general linear functionals gives optimal estimates
in negative norms. We have also numerically investigated the h- and p-convergence
behaviors of OBB-DG, NIPG, IIPG, and SIPG. It was demonstrated that OBB-DG,
IIPG, and NIPG possess h-optimal convergence rates in L2(H1), but lack the op-
timality in L2(L2) and L∞(L2), whereas SIPG performs h-optimally in the three
norms. For smooth problems, exponential convergence rates in p are achieved by the
four primal DG methods. In addition, it was observed that DGs with polynomials
of odd orders perform better than those of even orders. Implementations of penalty
terms are crucial to SIPG and a proper choice of the penalty parameter was proposed.
Another important issue in implementations is the selection of physical versus refer-
ence spaces, for which we recommended the physical polynomial spaces for p- and
hp-versions of DGs. As a future extension, we propose to study error estimates of
primal DG methods for transport coupled with kinetic and local-equilibrium reactions
and for multiphase flow in porous media.
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[26] D. Schötzau, C. Schwab, and A. Toselli, Stabilized hp-dgfem for incompressible flow, Math.
Models Methods Appl. Sci., 13 (2003), pp. 1413–1436.

[27] Ch. Schwab, p- and hp-Finite Element Methods, Theory and Applications in Solid and Fluid
Mechanics, Oxford University Press, Oxford, UK, 1998.



DISCONTINUOUS GALERKIN FOR REACTIVE TRANSPORT 219

[28] C. I. Steefel and P. Van Cappellen, Special issue: Reactive transport modeling of natural
systems, J. Hydrol., 209 (1998), pp. 1–388.

[29] S. Sun, Discontinuous Galerkin Methods for Reactive Transport in Porous Media, Ph.D.
thesis, The University of Texas at Austin, 2003.

[30] S. Sun, B. Rivière, and M. F. Wheeler, A combined mixed finite element and discontinuous
Galerkin method for miscible displacement problems in porous media, in Recent Progress
in Computational and Applied PDEs, Conference Proceedings for the International Con-
ference Held in Zhangjiaje in July 2001, pp. 321–348.

[31] S. Sun and M. F. Wheeler, Anisotropic and dynamic mesh adaptation for discontinuous
Galerkin methods applied to reactive transport, Comput. Methods Appl. Mech. Engrg., to
appear.

[32] S. Sun and M. F. Wheeler, A posteriori error estimation and dynamic adaptivity for sym-
metric discontinuous Galerkin approximations of reactive transport problems, Comput.
Methods Appl. Mech. Engrg., to appear.

[33] S. Sun and M. F. Wheeler, Mesh adaptation strategies for discontinuous Galerkin meth-
ods applied to reactive transport problems, in Proceedings of International Conference on
Computing, Communications and Control Technologies (CCCT 2004), Vol. I, H.-W. Chu,
M. Savoie, and B. Sanchez, eds., 2004, pp. 223–228.

[34] S. Sun and M. F. Wheeler, Discontinuous Galerkin methods for coupled flow and reactive
transport problems, Appl. Numer. Math., 52 (2005), pp. 273–298.

[35] S. Sun and M. F. Wheeler, L2(H1) norm a posteriori error estimation for discontinu-
ous Galerkin approximations of reactive transport problems, J. Sci. Comput., 22 (2005),
pp. 501–530.

[36] S. Sun and M. F. Wheeler, A dynamic, adaptive, locally conservative and nonconforming
solution strategy for transport phenomena in chemical engineering, in Proceedings of
American Institute of Chemical Engineers 2004 Annual Meeting, Austin, Texas, 2004.

[37] J. van der Lee and L. De Windt, Present state and future directions of modeling of geo-
chemistry in hydrogeological systems, J. Contam. Hydrol., 47/2 (2000), pp. 265–282.

[38] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM
J. Numer. Anal., 15 (1978), pp. 152–161.

[39] M. F. Wheeler, S. Sun, O. Eslinger, and B. Rivière, Discontinuous Galerkin method
for modeling flow and reactive transport in porous media, in Analysis and Simulation of
Multifield Problem, W. Wendland, ed., Springer-Verlag, Berlin, 2003, pp. 37–58.

[40] G. T. Yeh and V. S. Tripathi, A critical evaluation of recent developments in hydrogeo-
chemical transport models of reactive multichemical components, Water Resources Res.,
25 (1989), pp. 93–108.

[41] G. T. Yeh and V. S. Tripathi, A model for simulating transport of reactive multispecies
components: Model development and demonstration, Water Resources Res., 27 (1991),
pp. 3075–3094.



SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 43, No. 1, pp. 220–238

STABILITY AND CONVERGENCE OF FINITE-ELEMENT
APPROXIMATION SCHEMES FOR HARMONIC MAPS∗
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Abstract. This article discusses stability and convergence of approximation schemes for har-
monic maps. A finite-element discretization of an iterative algorithm due to F. Alouges is intro-
duced and shown to be stable and convergent in general only on acute-type triangulations. An
a posteriori criterion is proposed which allows us to monitor sufficient conditions for weak conver-
gence to a harmonic map on general triangulations and for adaptive mesh refinement. Numerical
experiments show that an adaptive strategy automatically refines triangulations in neighborhoods of
typical point singularities and thereby underline its efficiency.
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1. Introduction. A variational model in the theory of nematic liquid crystals
due to Oseen and Frank [29, 22, 13] leads to a minimization of the energy functional

I(v) :=
1

2

∫
Ω

k1|div v|2 + k2|v · curl v|2 + k3|v × curl v|2 + (k2 + k4)
(
tr

[
(Dv)2

]
− (div v)2

)
dx

over a space of admissible configurations

v ∈ A(uD) :=
{
v ∈ H1

(
Ω; R3

)
: v|∂Ω = uD, |v| = 1 a.e. in Ω

}
.

Here, Ω ⊆ R
3 is a bounded Lipschitz domain and represents the physical domain

in which the liquid crystal is embedded, uD ∈ H1/2(∂Ω; R3) with |uD| = 1 almost
everywhere on ∂Ω are given boundary data, and k1, k2, k3, k4 ≥ 0 are material- and
temperature-dependent constants. A vector field v ∈ A(uD) locally represents the
mean direction of the molecules that constitute the liquid crystal and a local minimizer
of I in A(uD) defines a stable configuration of the liquid crystal. The pointwise
constraint |v| = 1 models the physically motivated assumption that in the liquid
crystal phase the molecules are rod like with a fixed length.

Existence of (global) minimizers of I in A(uD) can be established if A(uD) �= ∅
[14]. Sufficient for A(uD) �= ∅ is that uD is Lipschitz continuous on ∂Ω [14]. Owing to
the nonconvex constraint |v| = 1 uniqueness and higher regularity of solutions cannot
be expected [7, 14, 15, 25, 26, 27, 28, 29]. Typically, stable points of I in A(uD) are not
continuous and have point singularities, which correspond to defects in the nematic
material. In addition to nonuniqueness and existence of singularities, the nonconvex
nature of the problem makes it extremely difficult to numerically approximate sta-
tionary points. The crux in the design of numerical schemes lies in a stable realization
of the constraint |v| = 1. In order to make the main ideas for the approximation of
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the constraint more clear we will only investigate the physically relevant one-constant
approximation of I, which assumes k1 = k2 = k3 = 1 and k4 = 0 and reduces the
minimization problem to the problem of finding harmonic maps

(P)

⎧⎪⎨
⎪⎩

Find u ∈ A(uD) which is a local minimizer for

E : A(uD) → R, v �→ 1

2

∫
Ω

|Dv|2 dx.

Solutions of (P) will be called harmonic maps. They satisfy the Euler–Lagrange
equations

−Δu = |Du|2u, |u| = 1 in Ω.

Iterative algorithms for the approximation of harmonic maps have been proposed
in [10, 19, 9] and successfully been tested numerically. Convergence of an iterative
scheme on a continuous level and stability of a related finite difference discretization
have been proved in [1]. The goal of this work is to analyze finite-element discretiza-
tions of that algorithm which allows for local mesh refinement and thereby a more
efficient resolution of point singularities of solutions. We prove that, in general, finite-
element discretizations cannot be expected to be stable and are convergent only on
structured triangulations. Sufficient for stability and convergence is that the un-
derlying triangulation is of acute type (cf. Lemma 3.2 for details). We provide an
a posteriori criterion that allows us to monitor reliability of the algorithm on general
triangulations and gives rise to automatic local mesh refinement. Numerical experi-
ments indicate that adaptive strategies are more efficient when compared to schemes
on uniform triangulations. While we restrict the analysis to the one-constant approx-
imation of I we stress that the ideas can be carried over to the full model and refer
the reader to [2] for related ideas.

An alternative approach to approximating local minimizers of I consists in reg-
ularizing the problem by introducing a penalty term ε−2‖|v|2 − 1‖2

L2(Ω) in I with

0 < ε 
 1 in order to approximate the constraint |v| = 1. Difficulties in ana-
lyzing such an approach stem from the lack of regularity of minimizers of I and
a reliable discretization of the gradient flow of the penalized formulation generally
requires very small time step sizes, which limit the practical use. For related ap-
proaches and the numerical analysis of more sophisticated models we refer the reader
to [3, 4, 20, 21, 23, 12].

The rest of this article is organized as follows. We briefly recall the definition and
the main properties of the iterative algorithm of [1] in Section 2. Section 3 discusses
finite-element discretizations of that algorithm and gives sufficient a priori conditions
for its convergence. A few numerical experiments show the efficiency of the discrete
algorithm and are presented in Section 4. Section 5 is devoted to an a posteriori
analysis and introduces local refinement indicators. The efficient performance of the
resulting adaptive strategy is illustrated by some numerical experiments in Section 6.

2. Alouges’ algorithm. For an initial u(0) ∈ A(uD) Alouges’ algorithm com-
putes a sequence

(
u(j) : j ∈ N

)
⊆ H1(Ω; R3) by iterating the following two steps:

(A1) Let w(j) ∈ Ku(j) satisfy E
(
u(j) − w(j)

)
≤ E

(
u(j) − v

)
for all v ∈ Ku(j) ,

where Ku(j) :=
{
v ∈ H1

(
Ω; R3

)
: v|∂Ω = 0, v · u(j) = 0 a.e. in Ω

}
.

(A2) Set u(j+1) :=
u(j) − w(j)

|u(j) − w(j)| .
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Given any u(j) ∈ H1(Ω; R3) step (A1) consists in minimizing an elliptic functional on
a subspace of H1(Ω; R3) and admits a unique solution w(j) ∈ Ku(j) . Supposing that
|u(j)| = 1 almost everywhere in Ω, the definition of Ku(j) yields

|u(j) − w(j)|2 = |u(j)|2 + |w(j)|2 ≥ 1

almost everywhere in Ω. Hence, u(j+1) in step (A2) is well defined and satisfies
|u(j+1)| = 1 almost everywhere in Ω. It is not difficult to verify that for a function
v ∈ H1(Ω; R3) satisfying |v| ≥ 1 almost everywhere in Ω there holds

E

(
v

|v|

)
≤ E(v),(2.1)

in particular v/|v| ∈ H1(Ω; R3) and thus u(j+1) ∈ A(uD). Noting that v ≡ 0 ∈ Ku(j)

it thus follows that

E
(
u(j+1)

)
= E

(
u(j) − w(j)

|u(j) − w(j)|

)
≤ E

(
u(j) − w(j)

)
≤ E

(
u(j)

)
.

This is the energy decreasing property of Alouges’ algorithm. The main features of
the iteration are summarized in the following theorem.

Theorem 2.1 (see [1]). Let u(0) ∈ A(uD). Suppose that the sequences
(
u(j) : j ∈

N
)

and
(
w(j) : j ∈ N

)
are generated by iterating (A1) and (A2). Then, for all j ∈ N

there holds

u(j) ∈ A(uD) and E
(
u(j+1)

)
≤ E

(
u(j)

)
.

There holds w(j) → 0 (strongly) in H1 and there exists a subsequence (u(k) : k ∈ N)
and a harmonic map u∗ ∈ A(uD) such that u(k) ⇀ u∗ (weakly) in H1.

3. Finite-element discretization and numerical analysis of (A1) and
(A2). In order to make difficulties in a finite-element discretization of (A1) and (A2)
more clear we will occasionally consider a two-dimensional situation in this section.
Therefore, we assume that n = 2 or n = 3 and that Ω is a bounded, polygonal or
polyhedral, respectively, Lipschitz domain in R

n. Given a regular triangulation T of
Ω into triangles (n = 2) or tetrahedra (n = 3), let N denote the set of nodes in T .
The lowest order finite-element space related to T is denoted by S1(T ) ⊆ H1(Ω).
The nodal basis functions (ϕz : z ∈ N ) ⊆ S1(T ) satisfy ϕz(z) = 1 and ϕz(z

′) = 0 for
z ∈ N and z′ ∈ N\{z}. We define S1

0 (T ) := {vh ∈ S1(T ) : vh|∂Ω = 0}. Throughout
this section, m is a positive integer.

The pointwise constraint |vh| = 1 is satisfied solely by functions vh ∈ S1(T )m,
which are constant in Ω. Therefore, assuming uD ∈ C(∂Ω; Rm), a reasonable finite-
element discretization of (P) replaces A(uD) by the set

Ah(T , uD) :=
{
vh ∈ S1(T )m : ∀z ∈ N ∩ ∂Ω vh(z) = uD(z),∀z ∈ N |vh(z)| = 1

}
and seeks a local minimizer of E in Ah(T , uD)

(Ph)

{
Find uh ∈ Ah(T , uD), which is a local

minimizer for E in Ah(T , uD).

Existence of solutions for the finite dimensional problem (Ph) follows from
compactness arguments. The computation of a solution, however, is not obvious.
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We propose a discrete version of Alouges’ algorithm and state sufficient conditions for
its stability and convergence.

Algorithm (Ah). Input: (T , u
(0)
h , δ), where T is a regular triangulation of Ω,

u
(0)
h ∈ Ah(T , uD) is a starting value, and δ > 0 is a termination parameter.

(a) Set j := 0.
(b) Solve the optimization problem

⎧⎨
⎩

Minimize E
(
u

(j)
h − vh

)
subject to vh ∈ S1

0 (T )m and vh(z) · u(j)
h (z) = 0 for all z ∈ N .

Denote the solution by w
(j)
h .

(c) If ‖Dw
(j)
h ‖L2(Ω) ≤ δ set (uh, wh) := (u

(j)
h , w

(j)
h ) and stop.

(d) Define

u
(j+1)
h :=

∑
z∈N

u
(j)
h (z) − w

(j)
h (z)

|u(j)
h (z) − w

(j)
h (z)|

ϕz.

(e) Set j := j + 1 and go to (b).
Output: (uh, wh) ∈ Ah(T , uD) × S1

0 (T )m.
A discrete version of (2.1) is necessary for stability of step (d) in the algorithm. It

will turn out that such an estimate in general only holds on acute-type triangulations.

3.1. Validity and possible failure of an energy decreasing property of
(Ah). The following definition gives a sufficient criterion for stability of step (d) in
Algorithm (Ah).

Definition 3.1. A regular triangulation T of Ω is said to satisfy an energy
decreasing condition (ED) if for all vh ∈ S1(T )m satisfying |vh(z)| ≥ 1 for all z ∈ N ,
|vh(z)| = 1 for all z ∈ N ∩ ∂Ω, and wh ∈ S1(T )m defined by

wh :=
∑
z∈N

vh(z)

|vh(z)|ϕz

there holds

E(wh) ≤ E(vh).

The next lemma implies that acute-type triangulations [17] allow for condition
(ED).

Lemma 3.2. Let T be a regular triangulation of Ω and suppose that
∫
Ω
∇ϕz ·

∇ϕy dx ≤ 0 for all z ∈ N\∂Ω and y ∈ N\{z}. Then T satisfies condition (ED).
Proof. For z, y ∈ N set kzy :=

∫
Ω
∇ϕz · ∇ϕy dx. Let φh ∈ S1(T )m and define

φz := φh(z) for all z ∈ N . Since
∑

y∈N kzy = 0 for all z ∈ N and since kzy = kyz for
all z, y ∈ N we have

‖∇φh‖2
L2(Ω) =

∑
z,y∈N

kzyφz · φy =
∑

z,y∈N
kzyφz · (φy − φz)

=
1

2

∑
z,y∈N

kzyφz · (φy − φz) +
1

2

∑
z,y∈N

kzyφy · (φz − φy) = −1

2

∑
z,y∈N

kzy|φz − φy|2.
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Suppose that vh and wh are as in Definition 3.1 and let vz := vh(z) and wz := wh(z)
for z ∈ N . Let z, y ∈ N be such that z �= y. If z ∈ N\∂Ω or y ∈ N\∂Ω we have
kzy ≤ 0 and hence by Lipschitz continuity of the mapping {s ∈ R

m : |s| ≥ 1} → R
m,

s �→ s/|s|, with Lipschitz constant 1 that

−1

2
kzy|wz − wy|2 = −1

2
kzy

∣∣∣∣ wz

|wz|
− wy

|wy|

∣∣∣∣
2

≤ −1

2
kzy|vz − vy|2.

If z, y ∈ N ∩ ∂Ω we have wz = vz and wy = vy and hence

‖∇wh‖2
L2(Ω) = −1

2

∑
z,y∈N

kzy|wz − wy|2 ≤ −1

2

∑
z,y∈N

kzy|vz − vy|2 = ‖∇vh‖2
L2(Ω),

which proves the lemma.
Remarks 3.3. (i) Suppose n = 2. Given neighboring nodes z ∈ N\∂Ω and

y ∈ N\{z} let T1, T2 ∈ T be such that T1 ∩ T2 equals the interior edge connecting z

and y. Let α
(1)
zy and α

(2)
zy be the angles of T1 and T2, respectively, opposite to the edge

connecting z and y. There holds [11]

∫
Ω

∇ϕz · ∇ϕy dx = −cotα(1)
zy −cotα(2)

zy .

Sufficient for
∫
Ω
∇ϕz · ∇ϕy dx ≤ 0 is that α

(1)
zy + α

(2)
zy ≤ π.

(ii) Suppose n = 3 and let z ∈ N\∂Ω and y ∈ N\{z} be such that z, y ∈ T for
some T ∈ T . Given any T ∈ T such that z, y ∈ N ∩ T let αzyT be the angle between

the two faces F
(1)
zyT , F

(2)
zyT ⊆ ∂T , which do not contain both z and y. There holds [17]

t

∫
Ω

∇ϕz · ∇ϕy dx = −
∑

T∈T , z,y∈N∩T

|F (1)
zyT | |F

(2)
zyT |

9|T | cosαzyT ,

where |F (�)
zyT | is the surface measure of F

(�)
zyT for 
 = 1, 2 and |T | denotes the volume

of T . Sufficient for
∫
Ω
∇ϕz · ∇ϕy dx ≤ 0 is that αzyT ≤ π/2 for all T ∈ T such that

z, y ∈ N ∩ T .
The conditions of Remark 3.3 are sharp in the sense of the following example.
Example 3.4. Let 0 < β < 1/2 and Ω:= (0, 1) × (0, β). Let

z1 := (0, 0), z2 := (1/2, 0), z3 := (1, 0), z4 := (0, β),

z5 := (1/2, β), z6 := (1, β), z7 := (1/4, β/2), z8 := (3/4, β/2)

and T := {T1, T2, . . . , T8} be defined through

T1 := conv{z1, z2, z7}, T2 := conv{z2, z8, z7}, T3 := conv{z2, z3, z8},
T4 := conv{z3, z6, z8}, T5 := conv{z8, z6, z5}, T6 := conv{z7, z8, z5},
T7 := conv{z7, z5, z4}, T8 := conv{z1, z7, z4};

cf. Figure 3.1. Define s := 1/2−β and set vj := (1, 0) for j = 1, 2, . . . , 6, v7 := (−1, 0),
and v8 := (1,−s). Let vh, wh ∈ S1(T )2 be such that vh(zj) = vj and wh(zj) = wj :=
vj/|vj | for j = 1, 2, . . . , 8. There holds

E(wh) > E(vh).
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T5T6T7

T1

T8

2

10

β/2

β

1/21/4 3/4

4

T T3

T

Fig. 3.1. Triangulation T in Example 3.4 that does not satisfy condition (ED) for 0 < β < 1/2.

Proof. For j, 
 = 1, 2, . . . , 8 set kj� :=
∫
Ω
∇ϕzj · ∇ϕz� dx. Since wj = vj for

j = 1, 2, . . . , 7 we have (cf. the proof of Lemma 3.2)

δ := ‖∇vh‖2
L2(Ω) − ‖∇wh‖2

L2(Ω) = −1

2

8∑
j,�=1

kj�
(
|vj − v�|2 − |wj − w�|2

)

= −
6∑

j=1

kj8
(
|(1, 0) − v8|2 − |(1, 0) − w8|2

)
− k78

(
|(−1, 0) − v8|2 − |(−1, 0) − w8|2

)
.

We use |(1, 0) − v8|2 = s2, |(−1, 0) − v8|2 = 4 + s2 and abbreviate

κ2
1 := |(1, 0) − w8|2 = 2 − 2/

√
1 + s2, κ2

2 := |(−1, 0) − w8|2 = 2 + 2/
√

1 + s2.

Using that
∑8

j=1 kj8 = 0 we verify
∑6

j=1 kj8 = −k78 − k88 and obtain

δ =
(
s2 − κ2

1

)
(k78 + k88) − k78

(
4 + s2 − κ2

2

)
= k88

(
s2 − κ2

1

)
− k78

(
4 + κ2

1 − κ2
2

)
.

Elementary calculations show that

k88 =
(
12β2 + 5

)
/(4β) and k78 =

(
1 − 4β2

)
/(4β).

With a function φ such that
√

1 + s2 = 1 + 1
2s

2 + φ(s2) we deduce

4β
√

1 + s2δ = (12β2 + 5)

(
1

2
s4 + s2φ(s2) − 2φ(s2)

)
− (1 − 4β2)(2s2 + 4φ(s2)).

Using that β2 = 1
4 − s + s2 we verify

4β
√

1 + s2δ=
(
8 − 12s + 12s2

)(1

2
s4 + s2φ(s2) − 2φ(s2)

)
− 16(s− s2)

(
1

2
s2 + φ(s2)

)

=−8s3 + 12s4 − 6s5 + 6s6 +φ(s2)(−16 + 8s− 12s3 + 12s4)

= −6s3(1 − 2s) − 6s5(1 − s) + 4sφ(s2)(2 − 3s2 + 3s3) − 2(s3 + 8φ(s2)).

Since 0 < s < 1/2 and φ(s2) < 0, the first three terms on the right-hand side are
negative. A Taylor expansion proves −s4/8 ≤ φ(s2) and implies that the last term on
the right-hand side is nonpositive. This shows δ < 0 and proves the lemma.

We include another sufficient criterion for validity of condition (ED) that allows
to construct triangulations of a large class of three-dimensional domains.

Lemma 3.5. Suppose n = 3 and assume that each T ∈ T has three mutually
perpendicular edges. Then T satisfies condition (ED).
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Proof. Let vh, wh ∈ S1(T )m be as in Definition 3.1 and let T ∈ T . Let b1, b2, b3 ∈
R

3\{0} be mutually perpendicular and such that bj = zj − yj , j = 1, 2, 3, where
zj , yj ∈ N ∩T for j = 1, 2, 3. After an appropriate rotation we may assume bj = |bj |ej
for j = 1, 2, 3, where ej is the jth canonical basis vector in R

3. Since s �→ s/|s| for
s ∈ R

m with |s| ≥ 1 is Lipschitz continuous with Lipschitz constant 1 we deduce for
j = 1, 2, 3 that

∣∣∣∣∂wh|T
∂xj

∣∣∣∣ =
1

|zj − yj |

∣∣∣∣ vh(zj)

|vh(zj)|
− vh(yj)

|vh(yj)|

∣∣∣∣ ≤ 1

|zj − yj |
|vh(zj) − vh(yj)| =

∣∣∣∣∂vh|T∂xj

∣∣∣∣,
which implies the lemma.

Remark 3.6. It can be shown [16] that if n = 3 and each T ∈ T has 3 mutually
perpendicular edges, which do not pass through the same vertex, then T is of acute
type, i.e., satisfies the conditions of Remark 3.3 (ii).

The following example defines a triangulation of the unit cube, which satisfies the
conditions of Lemma 3.5. It allows to construct triangulations that satisfy condition
(ED) of unions of finitely many quadrilaterals. Other constructions and acute-type
refinement strategies of tetrahedra can be found in [17, 16].

Example 3.7 (see [5]). Set N := {z1, z2, . . . , z8} for

z1 := (0, 0, 0), z2 := (1, 0, 0), z3 := (0, 0, 1), z4 := (1, 0, 1),
z5 := (0, 1, 0), z6 := (1, 1, 0), z7 := (0, 1, 1), z8 := (1, 1, 1).

Define T := {T1, T2, . . . , T6} with

T1 := conv{z1, z2, z3, z6}, T2 := conv{z2, z4, z3, z6}, T3 := conv{z3, z4, z8, z6},
T4 := conv{z3, z8, z7, z6}, T5 := conv{z7, z5, z3, z6}, T6 := conv{z3, z5, z1, z6}.

Then T is a regular triangulation of (0, 1)3 and satisfies the assumptions of Lemma 3.5;
cf. Figure 3.2.

5z

z1

z4

z6

z3

z2

z8z7

Fig. 3.2. Triangulation T of the unit cube defined in Example 3.7 such that each element in T
has three mutually perpendicular edges.

3.2. Well posedness and termination of algorithm (Ah). The following
lemma shows that all steps in (Ah) are well defined and that the algorithm terminates
within a finite number of iterations, provided that T satisfies condition (ED).

Lemma 3.8. Suppose T satisfies condition (ED). Given δ > 0 and u
(0)
h ∈

Ah(T , uD), Algorithm (Ah) with input (T , u
(0)
h , δ) terminates within a finite number
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M of iterations with output (uh, wh) ∈ Ah(T , uD)×S1
0 (T )m such that ‖Dwh‖L2(Ω) ≤ δ

and

E(uh) ≤ E
(
u

(0)
h

)
.

Proof. We proceed by induction to show u
(j)
h ∈ Ah(T , uD) and E(u

(j+1)
h ) ≤

E(u
(j)
h ). Suppose that for some j ≥ 0 we are given u

(j)
h ∈ Ah(T , uD). The set

L(j) :=
{
vh ∈ S1

0 (T )m : ∀z ∈ N vh(z) · u(j)
h (z) = 0

}
is a subspace of S1

0 (T )m. Hence, there exists wh ∈ L(j) such that∫
Ω

Dwh : Dvh dx =

∫
Ω

Du
(j)
h : Dvh dx(3.1)

for all vh ∈ L(j). This is equivalent to

E
(
u

(j)
h − wh

)
≤ E

(
u

(j)
h − vh

)

for all vh ∈ L(j). Thus, wh = w
(j)
h is the unique solution in step (b) of Algorithm

(Ah). Since w
(j)
h (z) · u(j)

h (z) = 0 and |u(j)
h (z)| = 1 there holds |u(j)

h (z) − w
(j)
h (z)| ≥ 1

for all z ∈ N . Hence, u
(j+1)
h is well defined and u

(j+1)
h ∈ Ah(T , uD). Since 0 ∈ L(j)

and T satisfies condition (ED) there holds E(u
(j+1)
h ) ≤ E(u

(j)
h − w

(j)
h ) ≤ E(u

(j)
h ).

Equation (3.1) with vh = wh = w
(j)
h proves E(u

(j)
h −w

(j)
h ) = E(u

(j)
h )−E(w

(j)
h ) and a

combination with the previous assertion shows

0 ≤ E
(
w

(j)
h

)
≤ E

(
u

(j)
h

)
− E

(
u

(j+1)
h

)
.

Since
(
E(u

(j)
h ) : j ∈ N

)
is monotonically decreasing and bounded from below we

conclude that it is a Cauchy sequence and hence ‖Dw
(M)
h ‖L2(Ω) ≤ δ for M sufficiently

large.

3.3. Convergence for h→0. The following theorem shows that for a sequence
of triangulations with maximal mesh size tending to 0 the sequence of outputs of
Algorithm (Ah) provides a weakly convergent subsequence whose weak limit is a
harmonic map. The important questions whether this weak limit is (globally) energy
minimizing in (P) or whether weak convergence can be improved to strong convergence
are left for future research.

Theorem 3.9. Suppose uD ∈ H1(∂Ω; R3). Let (Tk : k ∈ N) be a sequence of
regular triangulations of Ω satisfying condition (ED) with maximal mesh sizes (hk :
k ∈ N) satisfying hk → 0 for k → ∞ and let (δk : k ∈ N) be a sequence of positive

numbers such that δk → 0 for k → ∞. Suppose that u
(0)
k ∈ Ah(Tk, uD) and there

exists C0 > 0 such that ∥∥Du
(0)
k

∥∥
L2(Ω)

≤ C0

for all k ∈ N. For each k ∈ N, let (uk, wk) be the output of Algorithm (Ah) applied to

the input (Tk, u(0)
k , δk). Then there exists a subsequence (u� : 
 ∈ N) and a harmonic

map u∗ ∈ A(uD) such that u� ⇀ u∗ (weakly) in H1 and

E(u∗) ≤ lim inf
�→∞

E(u�).
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The following lemma is essential in the proof of the theorem. For c ∈ R
3 and a

matrix A ∈ R
3×3 with columns a1, a2, a3 ∈ R

3 we let c × A ∈ R
3×3 be the matrix

whose columns equal c× aj for j = 1, 2, 3.
Lemma 3.10 (see [8]). A function u ∈ A(uD) is a harmonic map if and only if

∫
Ω

(
u×Du

)
: Dφdx = 0(3.2)

for all φ ∈ H1
0 (Ω; R3) ∩ L∞(Ω; R3).

Proof. Suppose that u is a harmonic map, i.e., for all w ∈ H1
0 (Ω; R3)∩L∞(Ω; R3)

there holds ∫
Ω

Du : Dw dx =

∫
Ω

|Du|2u · w dx.

Let φ ∈ H1
0 (Ω; R3)∩L∞(Ω; R3) and set w := u× φ. Using (a× b) · c = −(a× c) · b for

any a, b, c ∈ R
3 we verify

Du : Dw = Du :
(
Du× φ + u×Dφ

)
= Du :

(
u×Dφ

)
= −

(
u×Du

)
: Dφ

almost everywhere in Ω and since u · w = 0 we find that u satisfies (3.2). Suppose
now that u satisfies (3.2) and set φ := u × w. The identity (a × b) · (c × d) =
(a · c)(b · d) − (b · c)(a · d) yields

D(u× w) :
(
u×Du) =

(
Du× w

)
:
(
u×Du) +

(
u×Dw

)
:
(
u×Du)

=
(
uTDu

)
·
(
wTDu

)
− |Du|2u · w + |u|2Dw : Du−

(
uTDw

)
·
(
uTDu

)

almost everywhere in Ω. The identity |u|2 = 1 implies uTDu = 0 almost everywhere
in Ω. An integration over Ω finishes the proof of the lemma.

Proof of Theorem 3.9. By Lemma 3.8 and the boundedness of (u
(0)
k ) in H1 there

holds ‖Duk‖L2(Ω) ≤ ‖Du
(0)
k ‖L2(Ω) ≤ C0 for all k ∈ N. Hence, there exists a subse-

quence (u� : 
 ∈ N) and u∗ ∈ H1(Ω; R3) such that u� ⇀ u∗ (weakly) in H1. Weak
lower semicontinuity of E implies E(u∗) ≤ lim inf�→∞ E(u�). Since |u�(z)| = 1 for all
z ∈ N� we have, by a T elementwise application of Poincaré’s inequality and |u�| ≤ 1
almost everywhere in Ω,

‖ |u�|2 − 1 ‖L2(Ω) ≤ CPh�

∥∥2uT
� Du�

∥∥
L2(Ω)

≤ 2CPC0h�.

Since u� → u∗ almost everywhere in Ω we deduce |u∗| = 1 almost everywhere in Ω.
Moreover, we have

∥∥u�|∂Ω − uD

∥∥
L2(∂Ω)

≤ Ch�

∥∥∂uD/∂s‖L2(∂Ω)

(here, ∂uD/∂s denotes the surface gradient of uD along ∂Ω) and compactness of the
trace operator as a mapping from H1(Ω; R3) into L2(∂Ω; R3) (cf. [24] for details)
implies u∗|∂Ω = uD. It remains to show that u∗ is a harmonic map. For all Ψ� ∈
S1

0 (T�)3 with Ψ�(z) · u�(z) = 0 for all z ∈ N� there holds by definition of w�

∫
Ω

D(u� − w�) : DΨ� dx = 0.
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Given φ ∈ C∞
0 (Ω; R3) let Φ� := φ× u� and choose Ψ� := I�(φ× u�), where I� denotes

the nodal interpolation operator on T�. We then have∫
Ω

Du� : D(φ× u�) dx =

∫
Ω

D(u� − w�) : D(Φ� − Ψ�) dx +

∫
Ω

Dw� : DΦ� dx.(3.3)

Using

Du� : D(φ× u�) = Du� : (Dφ× u� + φ×Du�) = Du� : (Dφ× u�) = Dφ : (u� ×Du�)

and u� → u∗ (strongly) in L2, Du� ⇀ Du∗ (weakly) in H1 we deduce∫
Ω

Du� : D(φ× u�) dx =

∫
Ω

Dφ : (u� ×Du�) dx →
∫

Ω

Dφ : (u∗ ×Du∗) dx.(3.4)

Since u� is T elementwise affine there holds for each T ∈ T

‖D(Φ� − Ψ�)‖L2(T ) = ‖D
(
φ× u� − I�(φ× u�)

)
‖L2(T ) ≤ Ch�‖D2(φ× u�)‖L2(T )

≤ Ch�

(
‖D2φ‖L2(T ) + ‖Dφ‖L∞(Ω)‖Du�‖L2(T )

)
,

and hence Φ� − Ψ� → 0 (strongly) in H1. Notice that u� − w� is uniformly bounded
in H1 so that ∫

Ω

D(u� − w�) : D(Φ� − Ψ�) dx → 0.(3.5)

Since Φ� is bounded in H1 and w� → 0 (strongly) in H1 we have∫
Ω

Dw� : DΦ� dx → 0.(3.6)

A combination of (3.3)–(3.6) yields∫
Ω

Dφ : (u∗ ×Du∗) dx = 0,

which, according to Lemma 3.10, shows that u∗ is a harmonic map.

4. Numerical experiments I. In this section we report on some numerical
experiments. We first discuss the implementation of Algorithm (Ah).

4.1. Uzawa iteration for the efficient solution of step (b). Step (b) of
Algorithm (Ah) requires the solution of a quadratic optimization problem with linear
constraints. This can be solved directly, but may be inefficient. We thus propose the
use of an Uzawa iteration. The optimization problem may be rewritten as a saddle
point problem and the related optimality conditions read

(SPh)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find wh ∈ S1
0 (T )3 and λ ∈ R

K such that, for all vh ∈ S1
0 (T )3,∫

Ω

Dwh : Dvh dx +
∑
z∈K

λzu
(j)
h (z) · vh(z) =

∫
Ω

Du
(j)
h : Dvh dx,

wh(z) · u(j)
h (z) = 0 for all z ∈ K.

Here, K := N ∩ Ω denotes the set of free nodes in N . The problem can be recast as

(SP′
h)

⎧⎪⎨
⎪⎩

Find x ∈ R
3N ′

and λ ∈ R
N ′

such that

A′x + BTλ = b,

Bx = 0.
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In this formulation, x ∈ R
3N ′

contains the values of wh in the free nodes and we
set N ′ := card(K). The constraint uh(z) · wh(z) = 0, z ∈ K, is realized by the
matrix B ∈ R

3N ′×N ′
. The positive definite matrix A′ ∈ R

3N ′×3N ′
is the restriction

of A to S1
0 (T )3, where A is the stiffness matrix defined through the nodal basis in

S1(T )3. Finally, b is given by the restriction of Au to the free nodes, assuming that

u contains the nodal values of u
(j)
h in N . The efficient iterative solution of (SP′

h) is
realized by an Uzawa algorithm with conjugate directions and an LU decomposition of
A′ (cf., e.g., [6]).

4.2. Numerical examples. For the first numerical experiments we specify (P)
in the following example.

Example 4.1. Set Ω := (−1/2, 1/2)3 and uD(x) := x/|x|, x ∈ ∂Ω. Then,
u(x) = x/|x|, x ∈ Ω, is the unique solution of (P) [18].

In order to satisfy the conditions that guarantee convergence in Theorem 3.9 we
construct triangulations of Ω that satisfy condition (ED) by scaling, translating, and
assembling copies of the triangulation T from Example 3.7.

Example 4.2. Given an integer k ≥ 1 set hk := 1/k,

Ck :=
{
hk(
,m, n) : 0 ≤ 
,m, n ≤ k − 1

}
− (1, 1, 1)/2,

and define, with T̃ from Example 3.7,

Tk :=
{
c + hkT : c ∈ Ck, T ∈ T

}
.

Then, Tk is a regular triangulation of Ω = (−1/2, 1/2)3 with maximal mesh size
√

3/k
and satisfies condition (ED).

We used four triangulations Tk, specified through k = 4, 8, 16, 32 in Example 4.1,
with 3N ′

k = 375, 2187, 14739, 107811 degrees of freedom (i.e., N ′
k free nodes in Tk).

We set δk := 10−4/log2(k) and define initial functions u
(0)
k ∈ Ah(T , uD) by

u
(0)
k (z) :=

{
z/|z| for z ∈ Nk ∩ ∂Ω,
(0, 1, 0) for z ∈ Nk ∩ Ω.

In all experiments the Uzawa iteration was stopped when the 
2 norm of the residual
Bx in (SP′

h) was less than 10−6. In most of the experiments this stopping criterion
was satisfied after at most 20 iterations.

Figure 4.1 displays the decay of the energy E(u
(j)
k ), j = 1, 2, . . . , in the iteration

of Algorithm (Ah) with input (Tk, u(0)
k , δk) for k = 4, 8, 16, 32. The plot shows that

the decrease in the energy is largest for the first few iterations. This yields the
conjecture that the choice of the termination criteria δk = 10−4/log2k is inefficient in
this example if one is only interested in an asymptotic behavior for h → 0.

Figure 4.2 shows the projection of the vector fields u
(j)
32 (0, ·, ·) obtained from

Algorithm (Ah) onto {(x, y, z) ∈ R
3 : x = 0} in (−1/2, 1/2)2 for j = 0, 10, 50, 315. We

observe that only a few iterations are needed to rotate vectors in such a way that only
one degree-1 singularity is present. The subsequent iterations move this singularity to

the origin. After 317 iterations Algorithm (Ah) with input (T32, u
(0)
32 , δ32) terminates

and the nodal values of the output u32 appear to be very close to the exact solution
away from 0. The value of the numerical solution at 0, where the exact solution has a
singularity, has no particular meaning and seems to depend on the triangulation and
the initial value.
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Fig. 4.1. Decay of the energy in the iteration of Algorithm (Ah) on Tk with k = 4, 8, 16, 32 in

Example 4.1 and initial u
(0)
k ∈ Ah(T, uD).

We assume that our definition of u
(0)
k is suboptimal as it admits large gradients in

a neighborhood of ∂Ω. In particular, this choice does not satisfy ‖Du
(0)
k ‖L2(Ω) ≤ C0

for hk → 0. However, even if for all z ∈ K, ξ(z) is a random unit vector in R
3 and

the starting value ũ
(0)
k ∈ Ah(T , uD) is defined by

ũ
(0)
k (z) :=

{
z/|z| for z ∈ Nk ∩ ∂Ω,

ξ(z) for z ∈ Nk ∩ Ω,

then we observe in Figure 4.3 that the energy still decreases rapidly in the first iter-
ations and becomes stationary almost as fast as for the previous choice. We assume
that the number of iterations depends on the initial energy and can be reduced with

an optimal choice of u
(0)
k . Indeed, the proof of Lemma 3.8 shows that the sequence of

corrections w
(j)
k satisfies for all 
 ≥ 0

�∑
j=0

∥∥Dw
(j)
k

∥∥2

L2(Ω)
≤

∥∥Du
(0)
k

∥∥2

L2(Ω)
,

and assuming that ‖Du
(0)
k ‖L2(Ω) ≤ C0 (for a k-independent constant C0 > 0) then

the number of iterations can be expected to grow less fast than in the presented
experiments.
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Fig. 4.2. Projection of the vector fields u
(j)
32 (0, ·, ·) onto {(x, y, z) ∈ R3 : x = 0} in (−1/2, 1/2)2

for j = 0, 10, 50, 315 in Example 4.1 and initial u
(0)
k ∈ Ah(T, uD).

h
E(

u 
  )(j)
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40
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k=16
k=32

j

Fig. 4.3. Decay of the energy in the iteration of Algorithm (Ah) on Tk with k = 4, 8, 16, 32 in

Example 4.1 with random initial data ũ
(0)
k ∈ Ah(T, uD).
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Fig. 4.4. Projection of the vector fields u
(j)
32 (0, ·, ·) onto {(x, y, z) ∈ R3 : x = 0} in (−1/2, 1/2)2

for j = 0, 10, 50, 165 in Example 4.1 with initial data ũ
(0)
32 ∈ Ah(T, uD).

Figure 4.4 shows the projection of the vector fields u
(j)
32 (0, ·, ·) onto {(x, y, z) ∈ R

3 :
x = 0} in (−1/2, 1/2)2 for j = 0, 10, 50, 165 produced by Algorithm (Ah) with initial

data ũ
(0)
32 . We observe that the algorithm immediately changes the highly unordered

initial configuration into a more stable one; after 10 iterations only one degree-1
singularity with high symmetry can be seen. The subsequent iterations move the
singularity to the origin.

5. Local refinement criteria. The main assertion of this section is a modifica-
tion of the assumptions of Theorem 3.9. It replaces the assumption that the maximal
mesh size tends to 0 and that the employed triangulations are of acute type by the
weaker assumption that certain computable quantities tend to 0. Moreover, the asser-
tion is independent of a particular scheme since the computable quantities are entirely
determined by an approximation uh.

Given a regular triangulation T of Ω let hT ∈ L∞(Ω) be the T -elementwise
constant function satisfying hT |T = diam(T ) for all T ∈ T . F denotes the set of all
faces in T and hF is defined on ∪F through hF |F := diam(F ) for all F ∈ F . For a
T -elementwise smooth (e.g., T -elementwise constant) function Σ ∈ L∞(Ω; R3×3) we
set

[
Σ · nF

]
|F :=

(
(Σ|T2

)|F − (Σ|T1
)|F

)
· nF ,
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where F ∈ F ∩Ω, T1, T2 ∈ T such that T1 ∩ T2 = F , and nF ∈ R
3 is the unit normal

vector to F pointing from T1 into T2.
Definition 5.1. Given any uh ∈ S1(T )3 let wh ∈ S1

0 (T )3 satisfy wh(z) ·uh(z) =
0 for all z ∈ N and

∫
Ω

Dwh : Dvh dx =

∫
Ω

Duh : Dvh dx

for all vh ∈ S1
0 (T )3 with vh(z) · uh(z) = 0 for all z ∈ N . For each T ∈ T set

η1(T, uh)2 :=
∥∥|uh|2 − 1

∥∥2

L2(T )
+
∥∥uh|∂Ω − uD

∥∥2

L2(∂T∩∂Ω)
,

η2(T, uh)2 :=
∥∥h1/2

F [D(uh − wh) · nF ]
∥∥2

L2(∂T∩Ω)
+ ‖Dwh‖2

L2(T ).

Note that the following assertion does not assume that uh is obtained by Algo-
rithm (Ah), that the maximal mesh sizes tend to 0, or that the triangulations satisfy
condition (ED).

Proposition 5.2. Suppose that (Tk : k ∈ N) is a sequence of regular
triangulations of Ω, and let (uk : k ∈ N) ⊆ S1(Tk)3 be such that ‖Duk‖L2(Ω) ≤ C1 for
some C1 > 0 and all k ≥ 0. Suppose that

∑
T∈Tk

η1(T, uk)
2 + η2(T, uk)

2 → 0 for k → ∞.

Then there exists a subsequence (u� : 
 ∈ N) and a harmonic map u∗ ∈ A(uD) such
that u� ⇀ u∗ (weakly) in H1 and

E(u∗) ≤ lim inf
�→∞

E(u�).(5.1)

Proof. The boundedness of ‖Duk‖2
L2(Ω) + ‖uk‖2

L2(Ω) implies the existence of a

weakly convergent subsequence (u� : 
 ∈ N ) and a weak limit u∗ ∈ H1(Ω; R3). Since∑
T∈T η1(T, u�)

2 → 0 one verifies that u∗ ∈ A(uD). The weak lower semicontinuity
of E proves (5.1). It remains to show that u∗ is a harmonic map. Given any φ ∈
C∞

0 (Ω; R3) we set Φ� := φ× u� and let Ψ� := I�Φ� be the nodal interpolant of Φ� on
T�. As in the proof of Theorem 3.9 we have to show that
∫

Ω

Du� : D(φ× u�) dx =

∫
Ω

D(u� − w�) : D(Φ� − Ψ�) dx +

∫
Ω

Dw� : DΦ� dx → 0.

A T�-elementwise integration by parts and standard interpolation estimates yield
∫

Ω

D(u� − w�) : D(Φ� − Ψ�) dx =
∑

F∈F�, F⊆Ω

∫
F

[D(uh − wh) · nF�
] · (Φ� − Ψ�) ds

≤ C

(∑
T∈T

η2(T, u�)
2

)1/2

‖DΦ�‖L2(Ω).

Hölder’s inequality implies

∫
Ω

Dw� : DΦ� dx ≤
( ∑

T∈Tk

η2(T, uk)
2

)1/2

‖DΦ�‖L2(Ω).
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The proof of Theorem 3.9 shows

∫
Ω

Du� : D(φ× u�) dx →
∫

Ω

Dφ : (u∗ ×Du∗) dx.

A combination of the assertions with Lemma 3.10 and ‖DΦ�‖L2(Ω) ≤ C shows that
u∗ is a harmonic map.

6. Numerical experiments II.

6.1. Adaptive algorithm. Proposition 5.2 motivates the following adaptive
mesh refinement algorithm. It realizes uniform mesh refinement for Θ = 0 and adap-
tive mesh refinement for Θ = 1/2. The idea is to iterate steps (b) and (d) of Algorithm
(Ah) as long as the energy is significantly decreasing. A termination criterion that
may be based on smallness of the local refinement indicators ηj(T, uh) can easily be
included.

Algorithm (AΘ
h ). Input: (T , u

(0)
h , κ), where T is a regular triangulation of Ω,

u
(0)
h ∈ Ah(T , uD), and κ > 0.

(a) Set j := 0.
(a1) Solve the optimization problem

⎧⎨
⎩

Minimize E
(
u

(j)
h − vh

)

subject to vh ∈ S1
0 (T )3 and vh(z) · u(j)

h (z) = 0 for all z ∈ N .

Denote the solution by w
(j)
h .

(a2) Define

u
(j+1)
h :=

∑
z∈N

u
(j)
h (z) − w

(j)
h (z)

|u(j)
h (z) − w

(j)
h (z)|

ϕz.

(a3) If E(u
(j+1)
h ) ≤ E(u

(j)
h ) − κ set j := j + 1 and go to (a1).

(b) Set uh := u
(j)
h .

(c) For each T ∈ T compute η(T )2 :=
∑2

j=1 ηj(T, uh)2.
(d) Mark all T ∈ T which satisfy η(T ) ≥ Θ maxS∈T η(S) for refinement and

generate a new regular triangulation T ′ such that all marked elements are
refined.

(e) Set T := T ′, construct u
(0)
h ∈ Ah(T , uD) by interpolating nodal values of uh,

and go to (a).

6.2. Numerical example. We ran Algorithm (AΘ
h ) with Θ = 0 and Θ = 1/2

in Example 4.1 and an initial triangulation of Ω into five tetrahedra. We chose the
termination criterion κ := 10−4 for the iteration in step (a) of Algorithm (AΘ

h ). The
mesh refinement was realized by a bisection strategy for Θ = 1/2 and by uniform
(red) refinement for Θ = 0.

The left plot in Figure 6.1 displays the L2 error ‖u − uh‖L2(Ω) for uniform
and adaptive mesh refinement with the iterates uh of Algorithm (AΘ

h ). We used a
logarithmic scaling on both axes to identify a relation between the number of degrees
of freedom and the L2 error.

We observe that the L2 error is significantly smaller at comparable numbers of
degrees of freedom when the refinement indicators of Proposition 5.2 are used to refine
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Fig. 6.1. L2 error for uniform and adaptive mesh refinement in Example 4.1 (left). Discrete
energies E(uh) for uniform and adaptive mesh refinement (right).
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Fig. 6.2. Midpoints of tetrahedra (indicated by dots) in the adaptively generated triangulation

T after four iterations of Algorithm (A
1/2
h ) in Example 4.1.

the mesh locally. Moreover, the experimental convergence rate for uniform meshes is
only O(h) (owing to h = N−1/3 for uniform meshes) instead of the optimal conver-
gence rate O(h2). The adaptive refinement strategy leads to an improved experimental
convergence rate. The right plot in Figure 6.1 displays the discrete energies E(uh)
for uniform and adaptive mesh refinement and we observe that the adaptive strategy
reaches a stable value for a smaller number of degrees of freedom than the uniform
refinement strategy.

Figure 6.2 displays the adapted triangulation generated by four iterations of

Algorithm (A
1/2
h ). The dots in the plot indicate the location of a midpoint of a

tetrahedron and we observe a refinement toward the origin, where the exact solution
has a point singularity.

6.3. Instability of a degree-2 singularity. The final numerical example dis-
cusses a situation that leads to more than one degree-1 singularity.

Example 6.1 (see [1, 14]). Let πs : S2 → C denote the stereographic projection
of the unit sphere S2 ⊆ R

3 into the complex numbers C and let ω(z) := z2. Set
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Fig. 6.3. Intermediate solutions uh(·, ·, 0) in (−1/2, 1/2)2 after 0, 4, 8, and 12 iterations of

Algorithm (A
1/2
h ) in Example 6.1.

Ω:= (−1/2, 1/2)3 and uD(x) := π−1
s ◦ ω ◦ πs(x/|x|) for x ∈ ∂Ω.

We employed Algorithm (AΘ
h ) with Θ = 1/2 in Example 6.1 with an initial tri-

angulation of Ω into five tetrahedra. We defined an initial function u
(0)
h by nodal

interpolation of the initial data. Figure 6.3 displays projections of intermediate solu-
tions restricted to {(x, y, 0) : −1/2 ≤ x, y ≤ 1/2} on the adapted meshes after 0, 4,
8, and 12 iterations of the algorithm. We observe that the initial degree-2 singularity
splits into two degree-1 singularities and the mesh is refined mostly between the two
singularities in which the discrete vector field has a large gradient.
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ERROR ANALYSIS OF PRESSURE-CORRECTION SCHEMES
FOR THE TIME-DEPENDENT STOKES EQUATIONS

WITH OPEN BOUNDARY CONDITIONS∗

J. L. GUERMOND† , P. MINEV‡ , AND J. SHEN§

Abstract. The incompressible Stokes equations with prescribed normal stress (open) boundary
conditions on part of the boundary are considered. It is shown that the standard pressure-correction
method is not suitable for approximating the Stokes equations with open boundary conditions,
whereas the rotational pressure-correction method yields reasonably good error estimates. These
results appear to be the first ever published for splitting schemes with open boundary conditions.
Numerical results in agreement with the error estimates are presented.

Key words. Navier–Stokes and Stokes equations, incompressibility, pressure-correction meth-
ods, open boundary conditions, finite elements, spectral approximations
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1. Introduction. In this paper we consider the time-dependent Navier–Stokes
equations with normal stress boundary conditions prescribed on parts of the boundary.
These conditions are usually imposed to model outflow boundaries or free surfaces.
For Newtonian flows, the boundary conditions in question take the form

[
pn− ν(∇u + (∇u)T )n

]
|Γ = b,

where u is the velocity vector field, p is the pressure, Γ is the boundary of the domain Ω,
n is the unit outward normal, and b is the prescribed data.

There are numerous ways to discretize the time-dependent incompressible Navier–
Stokes equations in time. Undoubtedly, the most popular one consists of using projec-
tion methods. Most of these techniques are based on the original ideas of Chorin [2]
and Temam [22]. They are usually fractional step methods composed of two substeps
such that either the Laplacian of the velocity or the pressure gradient is made ex-
plicit in one substep and (implicitly) corrected in the other substep. In both cases,
one substep always consists of the projection of some vector field onto a divergence-
free space. Following the terminology introduced in [11], a scheme is classified as a
pressure-correction (resp., velocity-correction) method if the pressure gradient (resp.,
Laplacian of the velocity) is treated explicitly in one substep and (implicitly) corrected
in the other substep. In the present paper we restrict ourselves to pressure-correction
methods. Each of the above two classes of methods has a standard form and a ro-
tational form (see [9, 10]), and each of them can be implemented either in algebraic
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form (cf. [4, 5, 15]) or in differential form. However, to the best of our knowledge,
no rigorous error analysis of any of these schemes with open boundary conditions is
available in the literature. Moreover, there is some confusion in the literature over
the performance of these methods with this type of boundary condition. The aim of
this paper is to discuss some of these issues and to derive error estimates.

We show that the standard pressure-correction schemes, implemented either in
algebraic form or in differential form (in fact, they can be shown to be equivalent),
are not suitable for approximating the Navier–Stokes equations supplemented with
open boundary conditions. However, we show that the rotational pressure-correction
schemes yield reasonable error estimates. More precisely, assuming full regularity
of the Stokes problem, the second-order rotational pressure-correction method yields
O(Δt3/2) convergence rate for the velocity in the L2-norm and O(Δt) convergence
rate for both the velocity in the H1-norm and the pressure in the L2-norm. These
estimates deteriorate if the Stokes problem does not possesses full regularity, as is
probably the case in three dimensions.

2. Preliminaries. We shall consider the time-dependent Navier–Stokes equa-
tions on a finite time interval [0, T ] and in an open, connected, bounded domain
Ω ⊂ R

d (d = 2, or 3) with a boundary Γ sufficiently smooth. We assume that
the following nontrivial partition holds: Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, meas(Γ1) �= ∅,
meas(Γ2) �= ∅.

2.1. Notation. We denote by Hm(Ω) and ‖ · ‖m (m = 0,±1, . . .) the standard
Sobolev spaces and norms. In particular, the norm and inner product of L2(Ω) =
H0(Ω) are denoted by ‖·‖0 and (·, ·), respectively. We shall also make use of fractional
Sobolev spaces Hs(Ω) which are defined by interpolation. To account for homogeneous
Dirichlet boundary conditions on Γ1, we define

X = {v ∈ H1(Ω) : v|Γ1
= 0}.(2.1)

Owing to the Poincaré inequality, ‖∇v‖0 is a norm equivalent to ‖v‖1 for all v ∈ X.
Henceforth, we redefine the norm ‖ · ‖1 in X such that ‖v‖1 := ‖∇v‖0.

We introduce two spaces of incompressible vector fields,

H = {v ∈ L2(Ω)d; ∇·v = 0; v · n|Γ1
= 0},(2.2)

V = {v ∈ H1(Ω)d; ∇·v = 0; v|Γ1 = 0},(2.3)

and we define PH to be the L2-orthogonal projection onto H, i.e.,

(u− PHu, v) = 0 ∀u ∈ L2(Ω)d, ∀v ∈ H.(2.4)

We also denote

N = {q ∈ H1(Ω); q|Γ2 = 0}.(2.5)

The following well-known lemma plays a key role in the analysis of projection methods.
Lemma 2.1. The following orthogonal decomposition of L2(Ω)d holds:

L2(Ω)d = H ⊕∇N.(2.6)

Since the nonlinear term in the Navier–Stokes equations has a marginal influence
on the splitting error, we shall hereafter consider only the time-dependent Stokes



PRESSURE-CORRECTION SCHEMES 241

equations written in terms of velocity, u, and pressure, p:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu + Au + ∇p = f in Ω × [0, T ],

∇·u = 0 in Ω × [0, T ],

u|Γ1
= 0, and (pn− ν(Du)n)|Γ2

= 0 in [0, T ],

u|t=0 = u0 in Ω.

(2.7)

Henceforth, the operators A and D may assume one of the two following forms:

Av = −2ν∇·Dv,(2.8)

Dv =

{
1
2∇v, case 1,
1
2 (∇v + (∇v)T ), case 2.

(2.9)

We recall that the symmetric positive definite bilinear form

a(u, v) = ν(Du,Dv)(2.10)

induces a norm on X that is equivalent to the H1-norm. We denote by α the coercivity
constant of a:

a(v, v) ≥ α‖∇v‖2
0 ∀v ∈ X.(2.11)

In case 1, α = ν, whereas in case 2, α = cν, where c is a constant that can be derived
by using a Korn inequality; see, e.g., [1].

To simplify our presentation, we assume that the unique solution (u, p) to the
above system is as smooth as needed.

To perform the temporal discretization of the problem, we define Δt > 0 to be
a time step and we set tk = kΔt for 0 ≤ k ≤ K = [T/Δt]. Let φ0, φ1, . . . , φK be a
sequence of functions in some Hilbert space E. We denote by φΔt this sequence, and
we use the following discrete norms:

‖φΔt‖�2(E) :=

(
Δt

K∑
k=0

‖φk‖2
E

)1/2

, ‖φΔt‖�∞(E) := max
0≤k≤K

(
‖φk‖E

)
.(2.12)

We denote by c a generic constant that is independent of small parameters like
ε, Δt, and h but possibly depends on the data and the solution. We shall use the
expression A � B to say that there exists a generic constant c such that A ≤ cB.

Let μ be a positive real number. We shall repeatedly make use of the following
interpolation result, whose proof is fairly standard and so we omit it due to the space
limitation.

Lemma 2.2. For all 0 ≤ s ≤ 1, there exists an operator Iμ,s : Hs(Ω) −→ H1
0 (Ω)

such that for all r in Hs(Ω) we have

‖r − Iμ,sr‖0 � μ
s
2 ‖r‖Hs(Ω),(2.13)

‖Iμ,sr‖1 � μ−1+ s
2 ‖r‖Hs(Ω).(2.14)

2.1.1. The inverse of the Stokes operator and its regularity index. In
this section we recall properties of the inverse of the Stokes operator. Let X ′ be the
dual space of X. We denote by 〈·, ·〉 the duality pairing between X ′ and X. The
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inverse of the Stokes operator, which we shall denote by S : X ′ −→ X, is defined as
follows. For all v in X ′, S(v) ∈ X is the solution to the dual problem

{
a(w, S(v)) − (r,∇·w) = 〈v, w〉 ∀w ∈ X,

(q,∇·S(v)) = 0 ∀q ∈ L2(Ω).
(2.15)

Obviously, we have

∀v ∈ X ′, ‖S(v)‖1 + ‖r‖0 ≤ c‖v‖X′ .(2.16)

It is well known that when Dirichlet boundary conditions on the velocity are
enforced on the entire boundary and Ω is smooth or convex, we have ‖r‖1 � ‖v‖0

(see, for instance, [23]). In the present case, where boundary conditions are mixed,
it is a nontrivial task to determine the regularity of r. It is generally expected that
the H1-regularity does not hold in the three-dimensional case. However, it is possible
that regularity in some fractional Sobolev space holds. To account for this, we make
the following definition.

Definition 2.1 (regularity index of the Stokes operator). The regularity index of
the Stokes operator is the largest number, s, such that for all v ∈ L2(Ω)d, the solution
r ∈ L2(Ω) to the dual Stokes problem (2.15) satisfies ‖r‖Hs(Ω) � ‖v‖0.

We observe from (2.16) that s ≥ 0, and it is clear that s ≤ 1. Hence, the case
s = 0 is referred to as no regularity while the case s = 1 is referred to as full regularity.
We refer to [14] for techniques to evaluate this index in two dimensions.

The operator S has interesting properties, as listed below.

Lemma 2.3. For all v in X, all 0 < γ < 1, and all 0 < μ < 1, we have

a(v, S(v)) ≥ (1 − γ)‖v‖2
0 − c(γ)

(
μ2α1‖∇·v‖2

0 + μ−2α2‖v − PHv‖2
0

)
,

with α1 = s
2 and α2 = 1 − s

2 and s being the regularity index of the Stokes operator.
In particular, for all v ∈ V , (∇S(v),∇v) = ‖v‖2

0.

Proof. Owing to the definition of S(v) and to the fact Iε,sr is zero on Γ2, we have

a(v, S(v)) = ‖v‖2
0 + (r,∇·v)

= ‖v‖2
0 + (r − Iμ,sr,∇·v) + (∇Iμ,sr, v)

= ‖v‖2
0 + (r − Iμ,sr,∇·v) + (∇Iμ,sr, v − PHv)

≥ ‖v‖2
0 −

(
μα1‖∇·v‖0 + μ−α2‖v − PHv‖0

)
‖r‖Hs(Ω).

Then using the fact that s is the regularity index of the Stokes operator (see Defini-
tion 2.1), we derive the desired bound.

Lemma 2.4. The bilinear form X ′×X ′ � (v, w) �−→ 〈S(v), w〉 := a(S(v), S(w)) ∈
R induces a seminorm on X ′ that we denote by | · |�, and

∀v ∈ X ′, |v|� = a(S(v), S(v))1/2 � ‖v‖X′ .

Proof. It is clear that the bilinear form is symmetric, 〈S(v), w〉 = a(S(v), S(w)) =
〈S(w), v〉, and positive, 〈S(v), v〉 = a(S(v), S(v)); hence, 〈S(v), w〉 induces a semi-
norm on X ′. Furthermore, |v|2� = 〈S(v), v〉 = a(S(v), S(v)) � ‖v‖2

X′ . The proof is
complete.



PRESSURE-CORRECTION SCHEMES 243

3. Standard pressure-correction methods. For purely Dirichlet boundary
conditions, the second-order pressure-correction scheme is known to be one-order more
accurate than the original projection scheme of Chorin–Temam (cf. [25, 3, 21, 7]).
Using the second-order backward difference formula (BDF2) to discretize the time
derivative, the second-order pressure-correction scheme takes the following form:

Set u0 = u0, p0 = p|t=0, which can be computed from the data, and compute
(ũ1, u1, p1) by using the scheme below with BDF2 replaced by the backward Euler
formula. Then, for k ≥ 1, compute (ũk+1, uk+1, pk+1) such that⎧⎨

⎩
3ũk+1 − 4uk + uk−1

2Δt
+ Aũk+1 + ∇pk = f(tk+1),

ũk+1|Γ1
= 0 and (pkn− ν(Dũk+1)n)|Γ2

= 0

(3.1)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3uk+1 − 3ũk+1

2Δt
+ ∇(pk+1 − pk) = 0,

∇·uk+1 = 0,

uk+1 · n|Γ1
= 0 and (pk+1 − pk)|Γ2 = 0.

(3.2)

The first substep accounts for viscous effects, whereas the second one accounts for
incompressibility. The second substep is usually referred to as the projection step, for
it is a realization of the identity uk+1 = PH ũk+1. We emphasize that it is essential,
for stability considerations, that (pk+1 − pk)|Γ2

= 0 is enforced. Otherwise, (3.2) can
not be interpreted as a projection step. Note that the boundary conditions in (3.2)
lead to the series of equalities

∂

∂n
pk+1|Γ1

=
∂

∂n
pk|Γ1

= · · · =
∂

∂n
p1|Γ1

,

pk+1|Γ2 = pk|Γ2 = · · · = p1|Γ2 ,
(3.3)

which are certainly inaccurate since they are almost never satisfied by the exact
solution. In the purely Dirichlet case, i.e., Γ2 = ∅, it is possible to deduce a reasonably
good approximation result for the pressure in the L2-norm. But when Γ2 �= ∅ the
pressure approximation is severely degraded.

Not being aware of any published convergence result for the scheme (3.1)–(3.2),
we shall prove the following result.

Theorem 3.1. If (u, p), the solution to (2.7), is smooth enough in space and
time, the solution to (3.1)–(3.2) satisfies the following error estimates:

‖pΔt − pΔt‖�∞(L2(Ω)) + ‖uΔt − ũΔt‖�∞(H1(Ω)d) � Δt
1
2 ,

‖uΔt − uΔt‖�2(L2(Ω)d) + ‖uΔt − ũΔt‖�2(L2(Ω)d) � Δt
s+1
2 ,

where s is the regularity index of the Stokes operator.
Proof. As will become clear in the course of the proof, using BDF2 instead of

the backward Euler formula does not improve the accuracy in the presence of open
boundary conditions. So to simplify the presentation, we consider the backward Euler
formula for the time derivative:⎧⎨

⎩
ũk+1 − uk

Δt
+ Aũk+1 + ∇pk = f(tk+1),

ũk+1|Γ1
= 0 and (pkn− ν(Dũk+1)n)|Γ2

= 0

(3.4)
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and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uk+1 − ũk+1

Δt
+ ∇(pk+1 − pk) = 0,

∇·uk+1 = 0,

uk+1 · n|Γ1
= 0 and (pk+1 − pk)|Γ2

= 0.

(3.5)

Technically, the proof is very similar to those in Shen [21] and Guermond [6]; hence
we show only those steps where the consistency error is degraded.

Let us introduce the interpolation operator IΔt,1 : H1(Ω) �−→ H1
0 (Ω) defined in

Lemma 2.2. This operator is such that for all r in H1(Ω),

‖IΔt,1r − r‖0 � Δt
1
2 ‖r‖1,(3.6)

‖∇IΔt,1r‖0 � Δt−
1
2 ‖r‖1.(3.7)

Without introducing any essential extra error, we can take p0 = IΔt,1p|t=0, which
implies pk|Γ2 = 0 for all k.

Now we introduce the following notation:
{
ek = u(tk) − uk, ẽk = u(tk) − ũk,

ψk = IΔt,1p(tk+1) − pk, qk = IΔt,1p(tk) − pk.

The weak form of the error equation that corresponds to the viscous step (3.4) is
given by

1

Δt
(ẽk+1 − ek, v) + a(ẽk+1, v) − (ψk,∇·v) = (R(tk+1), v)

+ (p(tk+1) − IΔt,1p(tk+1),∇·v) ∀v ∈ X,

where R(tk+1) = 1
Δt (u(tk+1) − u(tk)) − ut(t

k+1) = O(Δt). Note that the surface
integrals resulting from the integration by parts cancel on both Γ1 and Γ2 due to the
boundary conditions in (3.4).

Taking v = 2Δtẽk+1 in the above equation and using (3.6), we can derive

2Δt(p(tk+1) − IΔt,1p(tk+1),∇·ẽk+1) � Δt2 + αΔt‖ẽk+1‖2
1,

‖ẽk+1‖2
0 + ‖ẽk+1 − ek‖2

0 + αΔt‖ẽk+1‖2
1 − 2Δt(ψk,∇·ẽk+1) ≤ ‖ek‖2

0 + cΔt2.(3.8)

Note that the consistency error is degraded at this step; more precisely, a Δt factor
is already missing in the above estimate.

The error equation corresponding to the projection step (3.5) can be written as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

Δt
ek+1 + ∇qk+1 =

1

Δt
ẽk+1 + ∇ψk,

∇·ek+1 = 0,

ek+1 · n|Γ1
= 0 and qk+1|Γ2

= 0.

Taking the square of the first relation above and multiplying the result by Δt2, we
infer

‖ek+1‖2
0 + Δt2‖∇qk+1‖2

0 = ‖ẽk+1‖2
0 + Δt2‖∇ψk‖2

0 − 2Δt(ψk,∇·ẽk+1).(3.9)
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Note that integration by parts can be performed on both sides owing to the fact that
qk+1|Γ2 = 0 = ψk|Γ2 . Now we have

Δt2‖∇ψk‖2
0 = Δt2‖∇qk + ∇(IΔt(p(tk+1) − p(tk)))‖2

0,

≤ Δt2(‖∇qk‖2
0 + cΔt1−

1
2 ‖∇qk‖0 + c′Δt2(1−

1
2 ))

≤ Δt2(1 + Δt)‖∇qk‖2
0 + cΔt2,

where the consistency error is also degraded by a factor of O(Δt). Combining this
result and the previous one, we have

‖ek+1‖2
0 + Δt2‖∇qk+1‖2

0 ≤ ‖ẽk+1‖2
0 + Δt2(1 + Δt)‖∇qk‖2

0

− 2Δt(ψk+1,∇·ẽk+1) + cΔt2.
(3.10)

The first error estimate of the theorem is obtained by combining (3.8) and (3.10),
using the discrete Gronwall lemma, and repeating the whole argument for time in-
crements. The second estimate can be derived by a duality argument similar to that
used in the proof of Lemma 4.4.

Remark 3.1. Note that the error on the pressure in the L2-norm is O(Δt
1
2 ),

whereas it is O(Δt) when Dirichlet boundary conditions are enforced on the whole
boundary. It is clear that the artificial Dirichlet boundary condition (3.3) is re-
sponsible for this poor convergence property. Since using an inexact factorization
(cf. [4, 5, 15, 16, 17, 13]) of the discrete Stokes operator does not enforce the Dirichlet
boundary condition on Γ2 explicitly, some authors have argued that the inexact factor-
ization scheme does not suffer from the error due to the artificial Dirichlet boundary
condition. However, it can be shown (see [12] for details) that the inexact factorization
scheme actually enforces the artificial Dirichlet boundary condition weakly and hence
suffers from the same accuracy loss as its PDE counterpart. In other words, mere al-
gebraic manipulations cannot overcome essential difficulties encountered in functional
analysis.

Remark 3.2. Note that the need to integrate by parts the term 2Δt(∇ψk+1, ẽk+1)
in (3.9) is critical, and it is made possible by enforcing the homogeneous Dirichlet
boundary condition on the pressure at Γ2 in the projection step (3.2).

We finish this section by recalling that to simulate outflow boundary conditions,
an alternative set of conditions is p|Γ2

= 0, u × n|Γ2
= 0. This set of conditions is

not equivalent to the zero normal stress conditions studied above. Nevertheless, an
interesting property of these boundary conditions is that they are compatible with
the pressure-correction algorithm (3.1)–(3.2); i.e., they yield near optimal convergence
rates. We refer to [8] for other technical details on this matter.

4. Rotational pressure-correction methods. In this section, we show that
the rotational pressure-correction scheme introduced in [24] improves, by a factor of

Δt1/2, the error estimates of the standard pressure-correction scheme. It is proved in
[11, 10] that when Dirichlet boundary conditions are enforced on the entire boundary,
the same improvement holds. The main result is stated in Theorem 4.1.

4.1. Rotational form. When applied to problems with open boundary condi-
tions on Γ2, the rotational pressure-correction scheme takes the following form:

Set u0 = u0, p0 = p|t=0, which can be computed from the data, and compute
(ũ1, u1, p1) by using the scheme shown below with BDF2 replaced by the backward
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Euler formula. Then, for k ≥ 1, compute (ũk+1, uk+1, pk+1) such that⎧⎨
⎩

3ũk+1 − 4uk + uk−1

2Δt
+ Aũk+1 + ∇pk = f(tk+1),

ũk+1|Γ1
= 0, (pkn− ν(Dũk+1)n)|Γ2

= 0,

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3uk+1 − 3ũk+1

2Δt
+ ∇φk+1 = 0,

∇·uk+1 = 0,

uk+1 · n|Γ1 = 0, φk+1|Γ2 = 0.

(4.2)

φk+1 = pk+1 − pk + χ∇·ũk+1,(4.3)

where χ is a tunable positive coefficient.
Remark 4.1. As originally introduced in [24], the coefficient χ was taken to be

equal to α, defined in (2.11), which is simply ν in the Newtonian case. The analysis
performed in [11, 10] shows that this choice is sufficient to guarantee stability and
convergence when Dirichlet boundary conditions are enforced. However, when natural
boundary conditions are enforced on parts of the boundary, the analysis (see below)
shows that χ should be chosen such that

0 < χ < 2α inf
v∈X

‖∇v‖2

‖∇·v‖2
.(4.4)

Owing to the inequality ‖∇·v‖2 ≤ d‖∇v‖2, where d is the space dimension, it is
sufficient to choose

0 < χ <
2

d
α.(4.5)

4.2. A corresponding singularly perturbed system. To better understand
the behavior of the scheme (4.1)–(4.3), we examine first a singularly perturbed system
corresponding to the limiting case as Δt → 0 (with ε ∼ Δt). This system of PDEs
is obtained by eliminating uk from (4.1)–(4.2) and dropping some higher-order terms
in ε: ⎧⎪⎪⎨

⎪⎪⎩

∂tu
ε + Auε + ∇pε = f, uε|Γ1 = 0, (pεn− ν(Duε)n)|Γ2 = 0,

∇·uε − ε∇2φε = 0,
∂φε

∂n
|Γ1 = 0, φε|Γ2 = 0,

ε∂tp
ε = φε − χ∇·uε,

(4.6)

with uε|t=0 = u(0) and pε(0) = p(0).

4.2.1. An estimate on ∇·uε. The following lemma is the key to obtaining
improved error estimates.

Lemma 4.1. Provided u and p are smooth enough in time and space, we have

‖∇·uε‖L∞(L2(Ω)d) +
√
ε‖∇φε‖L∞(L2(Ω)) � ε

5
4 .

Proof. We set e = uε − u and q = pε − p. Subtracting (4.6) from (2.7), we find

et + Ae + ∇q = 0; e|Γ1 = 0, (qn− ν(De)n)|Γ2 = 0,(4.7)

∇·e− ε∇2φε = 0,
∂φε

∂n
|Γ1

= 0, φε|Γ2
= 0,(4.8)

εqt = φε − χ∇·e− εpt,(4.9)

with e(0) = 0 and q(0) = 0.
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Taking the inner product of the time derivative of (4.7) with et, we find

1

2
∂t‖et‖2

0 + α‖∇et‖2
0 − (qt,∇·et) ≤ 0.(4.10)

The inner product of (4.9) with ∇·et yields

(qt,∇·et) =
1

ε
(φε,∇·et) − (pt,∇·et) −

χ

2ε
∂t‖∇·e‖2,(4.11)

and the inner product of the time derivative of (4.8) with φε yields

1

ε
(φε,∇·et) = −(∇φε

t ,∇φε).(4.12)

The above two relations lead to

(qt,∇·et) = −1

2
∂t‖∇φε‖2

0 − (pt,∇·et) −
χ

2ε
∂t‖∇·e‖2.(4.13)

Substituting this expression into (4.10) we obtain

1

2
∂t‖et‖2

0 + α‖∇et‖2
0 +

1

2
∂t‖∇φε‖2

0 +
χ

2ε
∂t‖∇·e‖2

0 ≤ −(pt,∇·et).(4.14)

At this point, one would like to replace ∇·et by ε∇2φε
t in (pt,∇·et) and integrate

by parts. The integration by parts is not possible since neither pt nor ∂nφ
ε
t is zero at

the boundary Γ2. To account for this fact, we introduce the interpolation operator
Jε : H1(Ω) �−→ H1

0 (Ω) ⊂ N such that Jε = I√ε,1, where Iμ,s has been defined in

Lemma 2.2. Recall that for all r in H1(Ω), Lemma 2.2 (with μ =
√
ε, s = 1) yields

‖Jεr − r‖0 � ε
1
4 ‖r‖1, ‖∇Jεr‖0 � ε−

1
4 ‖r‖1.(4.15)

We rewrite (4.14) as

1

2
∂t

(
‖et‖2

0 + ‖∇φε‖2 +
χ

ε
‖∇·e‖2

0

)
+ α‖∇et‖2

0 = −(pt − Jεpt,∇·et) + ε(∇Jεpt,∇φε
t ).

Note that we used the fact that Jεpt is zero at Γ2 to integrate by parts. This is the
key argument in this proof. Since e(0) = 0 and q(0) = 0, we infer et(0) = 0. Since
∇ · uε(0) = ∇ · u(0) = 0, we derive from (4.8) that φε(0) = 0. By integrating in time
between 0 and t, we obtain

1

2

(
‖et‖2

0 + ‖∇φε‖2
0 +

χ

ε
‖∇·e‖2

0

)
+ α

∫ t

0

‖∇et‖2
0dτ

≤ −(pt − Jεpt,∇·e) +

∫ t

0

(pττ − Jεpττ ,∇·e)dτ

+ ε(∇Jεpt,∇φε) −
∫ t

0

ε(∇Jεpττ ,∇φε)dτ

≤ 1

4

(χ
ε
‖∇·e‖2

0 + ‖∇φε‖2
0

)
+

∫ t

0

(χ
ε
‖∇·e‖2

0 + ‖∇φε‖2
0

)
dτ

+ c ε‖pt − Jεpt‖2
L∞(0,t;L2(Ω)) + c′ ε2‖Jεpt‖2

L∞(0,t;H1(Ω))

+ c ε‖ptt − Jεptt‖2
L2(0,t;L2(Ω)) + c′ ε2‖Jεptt‖2

L2(0,t;H1(Ω)).
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Using the estimates (4.15), we infer

1

4

(
‖et‖2

0 + ‖∇φε‖2
0 +

χ

ε
‖∇·e‖2

0

)
+ α

∫ t

0

‖∇et‖2
0dτ ≤

∫ t

0

(χ
ε
‖∇·e‖2

0 + ‖∇φε‖2
0

)
dτ + c ε

3
2 .

An application of the Gronwall lemma leads to

‖et‖2
0 + ‖∇φε‖2

0 +
χ

ε
‖∇·e‖2

0 +

∫ t

0

‖∇eτ‖2
0dτ � ε

3
2 .(4.16)

The proof is complete.

4.2.2. L2-estimate on the velocity. An estimation of the error on the velocity
in the L2-norm is given by the following lemma.

Lemma 4.2. Provided u and p are smooth enough in time and space, then

‖u − uε‖L2(L2(Ω)d) � ε
5+s
4 ,(4.17)

where s is the regularity index of the Stokes operator.
Proof. We multiply (4.7) by S(e). Owing to Lemma 2.4 we infer

1

2
∂t|e|2� + a(e, S(e)) = 0.

Using Lemma 2.3 with μ =
√
ε, we obtain

1

2
∂t|e|2� +

1

2
‖e‖2

0 � εα1‖∇·e‖2
0 + ε−α2‖e− PHe‖2

0.

From the definition of φε, it is clear that ε∇φε = e − PHe; we then derive from the
estimates in Lemma 4.1 that

1

2
∂t|e|2� +

1

2
‖e‖2

0 � εα1‖∇·e‖2
0 + ε1−α2ε‖∇φε‖2

0 � ε
5
2 (εα1 + ε1−α2).

Since α1 = 1 − α2, we find

1

2
∂t|e|2� +

1

2
‖e‖2

0 � ε
5
2+α1 = ε

5+s
2 .

The proof is completed using an integration in time.

4.3. Error estimates for the time discrete case. The main result in this
paper is the following.

Theorem 4.1. Let 0 < χ < 2α
d . Assuming that the solution to (2.7) is smooth

enough in time and space, the solution (uk, ũk, pk) to (4.1)–(4.3) satisfies the estimates

‖uΔt − uΔt‖�2(L2(Ω)d) + ‖uΔt − ũΔt‖�2(L2(Ω)d) � Δt
5+s
4 ,

‖uΔt − ũΔt‖�2(H1(Ω)d) + ‖pΔt − pΔt‖�2(L2(Ω)) � Δt
3+s
4 ,

where s is the regularity index of the Stokes operator.
Remark 4.2. With full Stokes regularity, i.e., s = 1, the L2-norm of the error on

the velocity is O(Δt
3
2 ), and the H1-norm of the error on the velocity and the L2-norm

of the error on the pressure are O(Δt). In view of Lemma 4.1 and of the first estimate

in Lemma 4.3, we believe that the H1-estimates can be improved up to O(Δt
5
4 ) by a



PRESSURE-CORRECTION SCHEMES 249

sophisticated argument using weighted seminorms in time as in [18, 20]. However,
the details of this proof are beyond the scope of this paper. Numerical results reported
in section 5 seem to confirm this conjecture, at least in two dimensions.

The proof of Theorem 4.1 is carried out in a way similar to that of Theorem 4.1
in [10], but since there are several important differences in the proofs of the underlying
lemmas, we give all the details. In particular the error analysis reveals why a homo-
geneous Dirichlet boundary condition must be enforced on φk+1 on Γ2; it explains
also the origin of the factor χ in (4.3).

Let us first introduce some notation. For any sequence ϕ0, ϕ1, . . . , we set

δtϕ
k = ϕk − ϕk−1, δttϕ

k = δt(δtϕ
k), δtttϕ

k = δt(δttϕ
k),

and {
ek = u(tk) − uk, ẽk = u(tk) − ũk,

ψk = p(tk+1) − pk, qk = p(tk) − pk.
(4.18)

It is straightforward to show that (ũ1, u1, p1) obtained by using the scheme (4.1)–(4.3),
with BDF2 replaced by backward Euler, satisfies the following estimates:

‖e1‖0 + ‖ẽ1‖0 + Δt
1
2 (‖∇e1‖0 + ‖∇ẽ1‖0) � Δt2,

‖q1‖0 � Δt.
(4.19)

Note that for any bilinear form (·, ·) and any sequences a0, a1, . . . , and b0, b1, . . . ,
the following holds:

δt(a
k+1, bk+1) = (δta

k+1, bk+1) + (ak, δtb
k+1).(4.20)

The error estimates of Theorem 4.1 are proved through a succession of lemmas.
The following result is the discrete counterpart of Lemma 4.1.

Lemma 4.3. Under the hypotheses of Theorem 4.1, we have

‖∇·ũΔt‖�∞(L2(Ω)) +
√

Δt‖∇φΔt‖�∞(L2(Ω)) � Δt
5
4 ,

‖δtẽΔt‖�2(H1(Ω)d) � Δt
7
4 ,

‖δtẽΔt − δteΔt‖�2(L2(Ω)d) � Δt
9
4 .

Proof. Upon defining

Rk = ∂tu(tk) − 3u(tk) − 4u(tk−1) + u(tk−2)

2Δt
,(4.21)

then, for k ≥ 2, the equations that control the time increments of the errors are⎧⎨
⎩

3δtẽ
k+1 − 4δte

k + δte
k−1

2Δt
+ Aδtẽ

k+1 + ∇δtψ
k = δtR

k+1,

δtẽ
k+1|Γ1

= 0, (δtψ
kn− ν(Dδtẽ

k+1)n)|Γ2
= 0

(4.22)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3

2Δt
δte

k+1 −∇φk+1 =
3

2Δt
δtẽ

k+1 −∇φk,

∇·δtek+1 = 0,

δte
k+1 · n|Γ1 = 0, φk+1|Γ2 = φk|Γ2 = 0.

(4.23)



250 J. L. GUERMOND, P. MINEV, AND J. SHEN

We take the inner product of (4.22) with 4Δt δtẽ
k+1 and obtain

2(δtẽ
k+1, 3δtẽ

k+1 − 4δte
k + δte

k−1) + 4αΔt‖∇δtẽ
k+1‖2

0

− 4Δt(∇·δtẽk+1, δtψ
k) = 4Δt(δtẽ

k+1, δtR
k+1)

≤ γαΔt‖∇δtẽ
k+1‖2

0 + cΔt7,

(4.24)

where γ will be chosen later, and we have used the coercivity of the bilinear form a
together with the fact that ‖δtRk+1‖0 � Δt3. Note also that we have used the
inequality 2ab ≤ γa2 + b2/γ, which holds for all γ > 0. We shall repeatedly use this
standard trick hereafter without mentioning it anymore.

Let us denote I = 2(δtẽ
k+1, 3δtẽ

k+1 − 4δte
k + δte

k−1); then we have

I = 6(δtẽ
k+1, δtẽ

k+1 − δte
k+1) + 2(δtẽ

k+1 − δte
k+1, 3δte

k+1 − 4δte
k + δte

k−1)

+ 2(δte
k+1, 3δte

k+1 − 4δte
k + δte

k−1).

Let I1, I2, and I3 be the three terms in the right-hand side. Using the algebraic
identities

2(ak+1, ak+1 − ak) = |ak+1|2 + |ak+1 − ak|2 − |ak|2,(4.25)

2(ak+1, 3ak+1 − 4ak + ak−1) = |ak+1|2 + |2ak+1 − ak|2 + |δttak+1|2(4.26)

− |ak|2 − |2ak − ak−1|2,

we derive

I1 = 3‖δtẽk+1‖2
0 + 3‖δtek+1 − δtẽ

k+1‖2
0 − 3‖δtek+1‖2

0,

I3 = ‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0 + ‖δtttek+1‖2

0 − ‖δtek‖2
0 − ‖2δtek − δte

k−1‖2
0.

Owing to (4.23) and using the fact that ek ∈ H, we derive the following equality:

3

2Δt
I2 = −2(∇δtφ

k+1, 3δte
k+1 − 4δte

k + δte
k−1) = 0.

Collecting all the above results, we obtain

3‖δtẽk+1‖2
0 − 3‖δtek+1‖2

0 + ‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0

+ 3‖δtek+1 − δtẽ
k+1‖2

0 + ‖δtttek+1‖2
0

+ (4 − γ)αΔt‖∇δtẽ
k+1‖2

0 − 4Δt(∇·δtẽk+1, δtψ
k)

≤ cΔt7 + ‖δtek‖2
0 + ‖2δtek − δte

k−1‖2
0.

(4.27)

Taking the square of (4.23) and integrating over the domain, we obtain

3‖δtek+1‖2
0 +

4

3
Δt2‖∇φk+1‖2

0 = 3‖δtẽk+1‖2
0 +

4

3
Δt2‖∇φk‖2

0

+ 4Δt(∇·δtẽk+1, φk).
(4.28)

Note that integration by parts on (δte
k+1,∇φk+1) and (δtẽ

k+1,∇φk) is legitimate
because both φk+1|Γ2 and φk|Γ2 are zero. Since φk = pk − pk−1 − χ∇· ẽk, we can
bound the inner product in the right-hand side of (4.28) as follows:

4Δt(∇·δtẽk+1, φk) = 4Δt(∇·δtẽk+1, pk − pk−1 − χ∇·ẽk)
= 2χΔt(−‖∇·ẽk+1‖2

0 + ‖∇·ẽk‖2
0 + ‖∇·δtẽk+1‖2

0)

− 4Δt(∇·δtẽk+1, δtψ
k) + 4Δt(∇·δtẽk+1, δtp(tk+1)).

(4.29)
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To control the troublesome term Δt‖∇·δtẽk+1‖2
0 we use

χ‖∇·v‖2
0 ≤ 2γ′α‖∇v‖2

0 ∀v ∈ X.(4.30)

Due to the condition χ, (4.4), we know that the constant γ′ is such that 0 < γ′ < 1.
Summing (4.27), (4.28), and (4.29), and using (4.30), we finally obtain

‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0 +

4

3
Δt2‖∇φk+1‖2

0 + 2χΔt‖∇·ẽk+1‖2
0

+ (4 − 4γ′ − γ)αΔt‖∇δtẽ
k+1‖2

0 + 3‖δt(ek+1 − ẽk+1)‖2
0 + ‖δtttek+1‖2

0(4.31)

≤ ‖δtek‖2
0 + ‖2δtek − δte

k−1‖2
0 +

4

3
Δt2‖∇φk‖2

0 + 2χΔt‖∇·ẽk‖2
0

+ 4Δt(∇·δtẽk+1, δtp(tk+1)) + cΔt7.

At this point, we are formally at the same stage as (4.14). To integrate by parts in
time the term (∇·δtẽk+1, δtp(tk+1)), we use (4.20) as follows:

(∇·δtẽk+1, δtp(tk+1)) = δt(∇·ẽk+1, δtp(tk+1)) − (∇·ẽk, δttp(tk+1)).

Next, we use the interpolation operator defined in (4.15). Let us denote Rk+1 =
p(tk+1) − JΔt(p(tk+1)) (where JΔt = I√Δt,1). Then we have

1

Δt
‖δttRk+1‖2

0 + ‖∇δttJΔt(p(tk+1))‖2
0 � Δt

7
2 .

Since JΔt(p(tk+1)) is zero on Γ2, we have

(∇·δtẽk+1, δtp(tk+1)) = δt(∇·ẽk+1, δtRk+1) + δt(∇·ẽk+1, δtJΔt(p(tk+1)))

− (∇·ẽk, δttRk+1) − (∇·ẽk, δttJΔt(p(tk+1)))

= δt(∇·ẽk+1, δtRk+1) +
2Δt

3
δt(∇φk+1,∇δtJΔt(p(tk+1)))

− (∇·ẽk, δttRk+1) − 2Δt

3
(∇φk,∇δttJΔt(p(tk+1)))

≤ δt(∇·ẽk+1, δtRk+1) +
2Δt

3
δt(∇φk+1,∇δtJΔt(p(tk+1)))

+
χΔt

2
‖∇·ẽk‖2

0 +
Δt2

3
‖∇φk‖2

0 + cΔt
7
2 .

By inserting this bound into (4.31), we obtain

‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0 +

4

3
Δt2‖∇φk+1‖2

0 + 2χΔt‖∇·ẽk+1‖2
0

+ (4 − 4γ′ − γ)αΔt‖∇δtẽ
k+1‖2

0 + 3‖δt(ek+1 − ẽk+1)‖2
0 + ‖δtttek+1‖2

0

≤ ‖δtek‖2
0 + ‖2δtek − δte

k−1‖2
0

+
4

3
Δt2(1 + Δt)‖∇φk‖2

0 + 2χΔt(1 + Δt)‖∇·ẽk‖2
0

+ 4Δtδt(∇·ẽk+1, δtRk+1) +
8Δt2

3
δt(∇φk+1,∇δtJΔt(p(tk+1))) + cΔt

9
2 .
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Summing up the relation above for l = 2, . . . , k and taking into account (4.19), we
obtain

‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0 +

4

3
Δt2‖∇φk+1‖2

0 + 2χΔt‖∇·ẽk+1‖2
0

+ (4 − 4γ′ − γ)αΔt

k∑
l=2

‖∇δtẽ
l+1‖2

0 + 3

k∑
l=2

‖δtel+1 − δtẽ
l+1‖2

0

≤ c
(
‖δte2‖2

0 + ‖2δte2 − δte
1‖2

0 + Δt2‖∇φ2‖2
0 + Δt‖∇·ẽ2‖2

0 + Δt
7
2

)

+ Δt
k∑

l=2

(
4

3
Δt2‖∇φl‖2

0 + 2χΔt‖∇·ẽl‖2
0

)

− 4Δt(∇·ẽk+1, δtRk+1) − 8Δt2

3
(∇φk+1,∇δtJΔt(p(tk+1)))

+ 4Δt(∇·ẽ2, δtR2) +
8Δt2

3
(∇φ2,∇δtJΔt(p(t2)))

≤ cΔt
7
2 +

2

3
Δt2‖∇φk+1‖2

0 + χΔt‖∇·ẽk+1‖2
0

+ Δt

k∑
l=2

(
4

3
Δt2‖∇φl‖2

0 + 2χΔt‖∇·ẽl‖2
0

)
.

Since 0 < γ′ < 1, we can choose γ such that 4 − 4γ′ − γ ≥ 0. Then an application of
the discrete Gronwall lemma yields the desired result.

Remark 4.3. Note that to balance the term −(∇·δtẽk+1, ψk) in (4.27) it is nec-
essary to integrate by parts the term (δtẽ

k+1,∇φk) in (4.28). This is possible only
because the Dirichlet boundary condition φk|Γ2 = 0 is enforced. This fact is the main
reason why we enforce a homogeneous Dirichlet boundary condition on φk+1 in (4.2).
This argument shows the importance of the error analysis (or stability analysis) per-
formed in the proof of Lemma 4.3. The necessity of the Dirichlet boundary condition
also becomes clear when one understands that (4.2) is a realization of uk+1 = PH ũk+1,
since the orthogonal complement of H is ∇N according to Lemma 2.1.

Remark 4.4. The introduction of the parameter χ together with the bound (4.4)
is justified by step (4.30). Whether the bound (4.4) is sharp is not yet clear.

Lemma 4.4. Under the hypotheses of Theorem 4.1, we have

‖uΔt − ũΔt‖�2(L2(Ω)d) + ‖uΔt − uΔt‖�2(L2(Ω)d) � Δt
5+s
4 .

Proof. By using the relation el = ẽl + 2Δt
3 ∇φl, for all l ≥ 2, one obtains

⎧⎨
⎩

3ẽk+1 − 4ẽk + ẽk−1

2Δt
+ Aẽk+1 + ∇γk = Rk+1,

ẽk+1|Γ1 = 0, (γkn− ν(Dẽk+1)n)|Γ2
= 0,

(4.32)

where ∇γk stands for the collection of all the gradient terms.
As in the time continuous case, we make use of the inverse Stokes operator. By

taking the inner product of (4.32) with 4ΔtS(ẽk+1) and using the identity (4.26), we
obtain

|ẽk+1|2� + |2ẽk+1 − ẽk|2� + |δttẽk+1|2� + 4Δt a(ẽk+1, S(ẽk+1))

= 4Δt (Rk+1, S(ẽk+1)) + |ẽk|2� + |2ẽk − ẽk−1|2�.
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Using Lemma 2.3 with μ =
√

Δt and Lemma 4.3, we infer

4a(ẽk+1, S(ẽk+1)) ≥ 2‖ẽk+1‖2
0 − c(Δtα1 ‖∇·ẽk+1‖2

0 + Δt−α2 ‖ẽk+1 − ek+1‖2)

≥ 2‖ẽk+1‖2
0 − c(Δtα1 ‖∇·ẽk+1‖2

0 + Δt1−α2 Δt‖∇φk+1‖2

≥ 2‖ẽk+1‖2
0 − cΔtα1+

5
2 ≥ 2‖ẽk+1‖2

0 − cΔt
5+s
2 .

We also derive from the Cauchy–Schwarz inequality and (2.16) that

4Δt(Rk+1, S(ẽk+1)) ≤ cΔt‖Rk+1‖2
X′ + Δt‖ẽk+1‖2

0 ≤ c′Δt5 + Δt‖ẽk+1‖2
0.

Combining these two estimates, we obtain

|ẽk+1|2� + |2ẽk+1 − ẽk|2� + Δt‖ẽk+1‖2
0 ≤ |ẽk|2� + |2ẽk − ẽk−1|2� + cΔt1+

5+s
2 .

The desired result is now an easy consequence of the discrete Gronwall lemma. The
estimate on ‖uΔt−uΔt‖0 is obtained by using the triangular inequality ‖uΔt−uΔt‖0 ≤
‖uΔt − ũΔt‖0 + 2Δt

3 ‖∇φΔt‖0 (derived from (4.2)) and Lemma 4.3.
The key for obtaining improved estimates on ‖ẽΔt‖�2(H1(Ω)d) and ‖qΔt‖�2(L2(Ω))

is to derive an improved estimate on 1
2Δt (3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1). To this end, for
any sequence of functions φ0, φ1, . . . , we define

Dtφ
k+1 :=

1

2
(3φk+1 − 4φk + φk−1).

Lemma 4.5. Under the hypotheses of Theorem 4.1, we have

Δt−1‖(Dtẽ)Δt‖�2(L2(Ω)d) � Δt
3+s
4 .

Proof. We use the same argument as in the proof of the L2-estimate, but we use
it on the time increment δtẽ

k+1. For k ≥ 2 we have

3δtẽ
k+1 − 4δtẽ

k + δtẽ
k−1

2Δt
+ Aδtẽ

k+1 + ∇δtγ
k+1 = δtR

k+1.

Taking the inner product of the above relation with 4ΔtS(δtẽ
k+1), using Lemma 2.3

with μ =
√

Δt, and repeating the same arguments as in the previous lemma, we
obtain

|δtẽk+1|2� + |2δtẽk+1 − δtẽ
k|2� + |δtttẽk+1|2� + Δt‖δtẽk+1‖2

0

≤ cΔt‖δtRk+1‖2
0 + cΔt(Δtα1‖∇·δtẽk+1‖2

0 + Δt−α2‖δtẽk+1 − δte
k+1‖2

0)

+ |δtẽk|2� + |2δtẽk − δtẽ
k−1|2�.

Applying the discrete Gronwall lemma, and using the initial estimates and Lemma 4.3,
we obtain

‖δtẽΔt‖2
l2(L2(Ω)d) � Δt

7+s
2 .

We conclude by using the fact that 2Dtẽ
k+1 = 3δtẽ

k+1 − δtẽ
k.

We are now in position to prove the remaining claims in Theorem 4.1.
Lemma 4.6. Under the hypotheses of Theorem 4.1, we have

‖uΔt − ũΔt‖�2(H1(Ω)d) + ‖pΔt − pΔt‖�2(L2(Ω)) � Δt
3+s
4 .
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Proof. By adding the viscous step and the projection step, it is clear that we have

{
Aẽk+1 + ∇(qk+1 + χ∇·ẽk+1) = hk+1,

∇·ẽk+1 = gk+1, ẽk+1|Γ1 = 0, ((qk+1 + χ∇·ẽk+1)n− (Dẽk+1)n)|Γ2
= 0,

(4.33)

where

hk+1 = Rk+1 − Dte
k+1

Δt
, gk+1 = −2Δt

3
∇2φk+1.(4.34)

Owing to Lemma 4.3, we have

‖gk+1‖0 = ‖∇·ẽk+1‖0 � Δt
5
4 ∀k.(4.35)

Since ek = PH ẽk, owing to Lemma 4.5, we infer

Δt−1‖δteΔt‖l2(L2(Ω)d) ≤ Δt−1‖δtẽΔt‖l2(L2(Ω)d) � Δt
3+s
4 .

Hence, we have

‖hΔt‖�2(X′) � ‖RΔt‖�2(L2(Ω)d) + Δt−1‖DtẽΔt‖�2(L2(Ω)d) � Δt
3+s
4 .(4.36)

Now, we apply the following standard stability result for nonhomogeneous Stokes
systems to (4.33) (cf. [23]):

‖ẽk+1‖1 + ‖(qk+1 + χ∇·ẽk+1)‖0 � ‖hk+1‖X′ + ‖gk+1‖0.(4.37)

Owing to (4.35) and (4.36), we derive

‖ẽΔt‖�2(H1(Ω)d) + ‖(q + χ∇·ẽ)‖�2(L2(Ω)) � Δt
3+s
4 .

Then, from

‖qk+1‖0 ≤ ‖qk+1 + χ∇·ẽk+1‖0 + χ‖∇·ẽk+1‖0,

we derive ‖qΔt‖l2(L2(Ω)) � Δt
3+s
4 .

Thus, all the results in Theorem 4.1 have been proved.

5. Numerical results and discussions.

5.1. Standard pressure-correction scheme. We take the exact solution (u1,
u2, p) of the linearized Navier–Stokes equations to be

u1(x, y, t) = sinx sin(y + t), u2(x, y, t) = cosx cos(y + t), p(x, y, t) = cosx sin(y + t).

We set Ω = ]0, 1[
2
, Γ2 = {(x, y) ∈ Γ, x = 0}. This solution satisfies the following open

boundary conditions:

−∂xu2|Γ2 = 0, p − ∂xu1|Γ2 = 0.

To confirm the results in Theorem 3.1, we have carried out convergence tests
in time using P2/P1 finite elements as well as the P

2
N × PN−2 Legendre–Galerkin

method [19] (where Pk denotes the space of polynomials of degree less than or equal
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Fig. 5.1. Errors vs. Δt, standard pressure-correction scheme: Note that the curves correspond-
ing to the error on the velocity in H1-norm and the pressure in L2-norm almost coincide.

to k). We use the standard BDF2 pressure-correction scheme, which enforces a homo-
geneous Dirichlet boundary condition on the pressure increment at the open boundary
in the projection step.

For the finite elements, the errors at t = 1 for three meshes (h = 1/20, 1/40,
1/80) and 5.10−4 ≤ Δt ≤ 10−1 are reported in the left panel of Figure 5.1. Note that
the error for small time steps is dominated by the spatial discretization error. The
reference slope represents the asymptotic convergence rate as h → 0.

For the Legendre–Galerkin method, the results with N = 40 are reported in the
right panel of Figure 5.1. For the range of time steps explored, the spatial discretiza-
tion error is negligible compared to the time discretization error.

These tests clearly indicate that the L2-error of the velocity (resp., the pressure)

is of order Δt (resp., Δt
1
2 ), which are consistent with Theorem 3.1.

5.2. Rotational pressure-correction scheme. We again use the analytical
solution described above to test the time accuracy of the rotational pressure-correction
scheme (4.1)–(4.3).

We first report the results with P2/P1 finite elements. We use h = 1/80 to
guarantee that the error in space is significantly smaller than the splitting error. The
results are reported in the left panel of Figure 5.2. The convergence rate of the error
on the velocity in the L2-norm is close to O(Δt3/2), and that of the H1-norm behaves

like O(Δt5/4), which is higher than the O(Δt) rate predicted by Theorem 4.1 (see
Remark 4.2 and Lemma 4.3). The convergence rate of the error on the pressure in the

L∞-norm is O(Δt), and that of the L2-norm is between O(Δt) and O(Δt
3
2 ). These

rates are mostly consistent with the error estimates in Theorem 4.1. The accuracy
saturation observed for small time steps comes from the spatial discretization error.

The results using the Legendre–Galerkin method are reported in the right panel
of Figure 5.2. We note that the convergence rate for the error on the velocity in

the L2-norm is of order O(Δt
3
2 ), as predicted by Theorem 4.1. The convergence

rates on all the other quantities are also close to O(Δt
3
2 ), which is higher than what

Theorem 4.1 predicts (see Remark 4.2).
To complete this series of tests, we have performed convergence tests in three
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Fig. 5.3. Pressure-correction scheme with P2/P1 finite elements in three dimensions. Errors
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dimensions using P2/P1 finite elements. The boundary conditions and the source
term in the Stokes equations are set so that the solution is given by

u1(x, y, z, t) = sinx sin(y + z + t), u2(x, y, z, t) = cosx cos(y + z + t),

u3(x, y, z, t) = cos(x) sin(y + t), p(x, y, t) = cosx sin(y + z + t).

Both the standard and the rotational forms of the BDF2 pressure-correction
scheme were tested. We show in Figure 5.3 the maximum in time of the L2-norm
of the errors on the velocity and the pressure for both schemes. On the left panel we
compare the standard and rotational forms of the scheme using h = 1/40. Unfortu-
nately, using a higher uniform resolution in space was not possible due to the high
cost of the computations. The grid with a stepsize h = 1/40 already contains close to
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500,000 P2 nodes. On the right panel we show the errors for the rotational form of the
scheme using three different meshes: h = 1/10, 1/20, 1/40. The convergence rates of
the standard version of the scheme are clearly lower than those of the rotational form.
The slopes for both the velocity and the pressure errors obtained with the rotational
form of the scheme are slightly lower than the best possible estimate following from

the claim of Theorem 4.1. The rates O(Δt
4
3 ) and O(Δt

5
6 ) seem to correspond to a

regularity index s < 1.

6. Concluding remarks. In this paper, we have analyzed pressure-correction
schemes for approximating the incompressible Navier–Stokes equations with pre-
scribed normal stress boundary conditions enforced on parts of the boundary. Our
conclusions are twofold.

First, we have shown that the convergence rates of standard pressure-correction
methods are too poor to be recommendable for approximating the Navier–Stokes
equations in these circumstances. The main reason for the poor accuracy is that
an artificial homogeneous Dirichlet boundary condition on the pressure has to be
imposed to ensure stability.

Second, we have shown that the rotational pressure-correction method leads to
reasonably good error estimates. More precisely, assuming full regularity of the Stokes
problem, we have shown that the second-order rotational pressure-correction method
yields O(Δt3/2) accuracy for the velocity in the L2-norm and O(Δt) accuracy for
the velocity in the H1-norm and the pressure in the L2-norm. To the best of our
knowledge, the results presented in this paper are the first published convergence
estimates for a splitting method solving the time-dependent Stokes equations with
open boundary conditions.

Finally, it is clear that even though the second-order rotational pressure-correction
method yields the best error estimates to date, these are still suboptimal and more
research is needed to find a splitting scheme with better properties.
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POLYNOMIAL FITTING FOR EDGE DETECTION IN
IRREGULARLY SAMPLED SIGNALS AND IMAGES∗
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Abstract. We propose a new edge detection method that is effective on multivariate irregular
data in any domain. The method is based on a local polynomial annihilation technique and can
be characterized by its convergence to zero for any value away from discontinuities. The method is
numerically cost efficient and entirely independent of any specific shape or complexity of boundaries.
Application of the minmod function to the edge detection method of various orders ensures a high
rate of convergence away from the discontinuities while reducing the inherent oscillations near the
discontinuities. It further enables distinction of jump discontinuities from steep gradients, even in
instances where only sparse nonuniform data is available. These results are successfully demonstrated
in both one and two dimensions.
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1. Introduction. Edge detection is of fundamental importance in image analy-
sis. In particular, a reliable and efficient edge detection method can both provide the
possibility of processing an image with high accuracy as well as serve to simplify the
analysis of images by drastically reducing the amount of data to be processed. Among
the many common criteria relevant to edge detector performance, there are two very
important issues. The first and most obvious issue is the possibility of failing to find
real edge points and/or falsely identifying nonedge points. Regardless of specific types
of data (regular or irregular) and domains, it is imperative that the edges occurring
in the image should not be missed, and that there be no spurious responses. This is
critical since the edges of the image constitute piecewise smooth regions. Hence errors
in edge identification could also have drastic consequences on image reconstruction.
The second issue is the necessity for simple implementation and cost efficiency.

To address these issues, this study constructs an edge detection method based on
local Taylor expansions. Indeed, several well-known methods exist in the univariate
case (see, e.g., [2], [3], [4], [5], [11], and the references therein). However, for the bi-
variate case, particularly with irregular points, no successful method has thus far been
developed. Recent developments (see [1] and [15]) in essentially nonoscillatory (ENO)
and weighted essentially nonoscillatory (WENO) methods for hyperbolic conservation
laws and Hamilton–Jacobi equations on multidimensional unstructured meshes also
utilize Taylor expansions to determine regions of analyticity. For uniform sampling,
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we note that while ENO and WENO methods identify stencils yielding the “most”
smooth polynomial interpolations, they do not distinguish between, say, steep gradi-
ents and edges. In our method, Taylor expansions are used for the exclusive purpose
of determining the true edges of an image by incorporating various orders and stencil
sizes.

In this paper we present an edge detection method for multivariate irregular data
that has the following desirable properties: (I) It can be applied to any irregular data
in any domain. (II) It is independent of any specific shape of discontinuities in both
the univariate and bivariate cases. (III) The method depends only on locally sampled
signals, making it easy to implement numerically, since for each point our scheme needs
only to solve a simple matrix and no global system of equations needs to be solved.
(IV) It has a fast rate of convergence to zero away from the discontinuities. The benefit
of the last property is that the edge detection method will be able to distinguish jumps
from steep gradients more readily than methods of slower convergence. There will be
additional considerations, as it will become apparent that high order edge detection
methods produce more oscillations in the neighborhoods of the jump discontinuities.
To distinguish true jump locations from neighborhood oscillations, we find from [13]
that the minmod function (see Definition 3.1), typically used for reducing oscillations
in the presence of shocks in numerical solutions for conservation laws (see, e.g., [7]),
may help to reduce oscillations in the presence of jump discontinuities. We extend
this idea to our edge detection method for the case of multivariate irregular data and
moreover provide a proof for its convergence rate to zero away from the discontinuities,
which has previously not been accomplished.

This study is primarily concerned with the detection of jump discontinuities (or
fault detection). While it is important to consider the effects of a noisy environment
on an edge detection method, it is beyond the scope of this introductory paper. Hence
we leave the study of noise for future investigations.

This paper is organized as follows: In section 2 we present the formulation of the
edge detection method. In section 3 we use this formulation to construct an edge
detection method for the one-dimensional case and employ the minmod function to
the edge detection method. Section 4 is devoted to analyzing the behavior of the edge
detection method in two dimensions. Finally, some numerical algorithms are provided
in Appendices A and B.

2. General formulation for edge detection. Let us first introduce the fol-
lowing notation, which will be used throughout this paper:

For x = (x1, . . . , xd) in R
d, |x| := (x2

1 + x2
2 + · · ·+ x2

d)
1/2 stands for its Euclidean

norm. For any finite set of points S in R
d we use the notation KS for the convex

hull of the set S. We denote by N := {1, 2, . . . , } the set of natural numbers and
by Z+ := {0, 1, 2, . . . , } the set of nonnegative integers. For any α ∈ {(α1, . . . , αd) :

α1, . . . , αd ∈ Z+} := Z
d
+, we set |α|1 :=

∑d
k=1 αk, and α! := α1! · · ·αd!. Throughout

α is a multivariate nonnegative integer that will change dimension based upon the
dimension under discussion. We denote a uniform grid of density h as hZ

d := {hα|α ∈
Z
d}. We use the usual notation �s� to indicate the smallest integer greater than or

equal to s. For any m ∈ Z+, Πm denotes the space of all polynomials of degree ≤ m
in d ∈ N variables where the dimension of Πm is denoted by

md :=

(
m + d

d

)
.(2.1)
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We recall the Dirac delta function

δi,j =

{
1 if i = j,
0 if i �= j.

(2.2)

Finally, throughout this paper we use A to represent an arbitrary constant that may
change value.

We introduce an edge detection method on the set of irregularly distributed points
in a bounded domain Ω in R

d. Let S be a set of discrete points in Ω and let f
be a piecewise smooth function known only on S. In order to identify the jump
discontinuities of f , we construct a function Lmf , m ∈ N, which can be characterized
by the asymptotical convergence property,

Lmf(x) −→ 0,

for any x away from discontinuities, with the convergence rate depending in part on
the given positive integer m. The choice of m is user dependent, but a higher number
m provides a faster rate of convergence in smooth regions of f .

The edge detection method presented here is based on a local polynomial annihi-
lation property. The general form of Lmf is given by the following two step method.
In the first step, for any x ∈ Ω, we choose a set

Sx := Smd,x := {x1, . . . , xmd
},(2.3)

which is a local set of md (2.1) points around x. In practice, though the dimension d
can be arbitrary, we consider only the case d ≤ 2 and note that for d > 2 the method
is the same although the numerical algorithms are more complicated.

In order to annihilate polynomials up to degree m − 1, we solve a linear system
for the coefficients cj(x), j = 1, . . . ,md, given by

∑
xj∈Sx

cj(x)pi(xj) =
∑

|α|1=m

p
(α)
i (x), α ∈ Z

d
+,(2.4)

where pi, i = 1, . . . ,md, is a basis of Πm. Note that the solution (2.4) exists and is
unique. Our edge detector Lmf is defined, using the solution of (2.4), as

Lmf(x) =
1

qm,d(x)

∑
xj∈Sx

cj(x)f(xj).(2.5)

Here qm,d(x) is a suitable normalization factor depending on m, the dimension d, and
the local set Sx (2.3). In the following sections, we will determine qm,d(x) specifically
for d = 1, 2. Indeed, for the univariate case the normalization factor qm,d(x) is impor-
tant in detecting the jump amount at a discontinuity. However, in the multivariate
case, it is no longer meaningful since the jump amount varies depending on the direc-
tions at a discontinuity. In this case qm,d(x) can be used to estimate the magnitude
of the jump in its normal direction, as will be explained later.

It is evident from (2.5) that Lmf is local in the sense that it employs data only in
a small neighborhood of x. It is also apparent that (2.5) detects edges regardless of
the geometrical aspects of the discontinuities. Furthermore, we will show that Lmf(x)
converges to zero away from the discontinuities with a certain rate depending on m
and the local smoothness of the function f .
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3. Edge detection in one dimension.

3.1. Formulation. Throughout section 3, let f be a piecewise smooth function
on an interval [a, b], known only at the finite discrete points

S ⊂ [a, b], #S =: N < ∞,

which we will call “nodes.” Suppose that f has jump discontinuities with well-defined
one-sided limits, and let

J = {ξ : a ≤ ξ ≤ b}

denote the set of jump discontinuities of f in [a, b]. We define the local jump function
corresponding to f as

[f ](x) := f(x+) − f(x−),

where f(x+) and f(x−) are the right- and left-hand limits of the function f at x.
Clearly, if f is continuous at x, then [f ](x) = 0 and for any ξ ∈ J , [f ](ξ) = f(ξ+) −
f(ξ−) �= 0.

The ability to find the locations and corresponding amplitudes of the jump discon-
tinuities depends on the accuracy of the approximation to the jump function [f ](x).
Hence we construct Lmf(x) in (2.5) to be an approximation to [f ](x) such that

Lmf(x) −→
{

[f ](ξ) if xj−1 ≤ ξ, x ≤ xj for ξ ∈ J ,
0 if Ix ∩ J = ∅,(3.1)

where Ix is the smallest closed interval such that Sx ⊂ Ix, with Sx defined in (2.3). In
this way, a jump discontinuity ξ ∈ J is identified by its enclosed cell, xj−1 ≤ ξ ≤ xj ,
and the convergence rate of the approximation Lmf(x) to the jump function [f ](x) is
given in terms of

h(x) := max{|xi − xi−1| : xi−1, xi ∈ Sx}.(3.2)

Clearly h(x) is dependent upon the density of Sx.
The function Lmf for the univariate case is defined as follows: For the given

positive integer m, we choose a local set Sx of m1 points around x. Here m1 is the
dimension of Πm in R as given by (2.1), i.e., m1 = m+ 1. The coefficients utilized in
the edge detection method are determined by the solution of the linear system

∑
xj∈Sx

cj(x)pi(xj) = p
(m)
i (x), i = 1, . . . ,m1,(3.3)

where pi, i = 1, . . . ,m1, is a basis of Πm. Clearly, the coefficients cj(x) are uniquely
determined by the local set Sx, and are of order O(h(x)−m) as h(x) → 0. Fortunately,
an explicit formula exists for cj(x) that will be described later in Theorem 3.2.

Next, by defining

S+
x := {xj ∈ Sx|xj ≥ x} and S−

x := Sx \ S+
x ,(3.4)

we set the normalization factor in (2.5) as

qm(x) := qm,1(x) :=
∑

xj∈S+
x

cj(x),(3.5)
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such that qm(x) �= 0. Note from (3.3) that it is clear that qm(x) is of order O(h(x)−m)
as well.

Finally, the edge detection method (2.5) in the one-dimensional case is

Lmf(x) =
1

qm(x)

∑
xj∈Sx

cj(x)f(xj).(3.6)

There is no restriction in choosing the sets S+
x and S−

x in (3.4), but from a practical
point of view, a good choice is to put almost the same numbers of nodes on each side
of x. For instance, if m is odd, one may choose S+

x and S−
x such that #S+

x = #S−
x .

These sets will have to be adjusted near the boundary of the domain, and naturally
will become more one-sided.

In order for Lmf in (3.6) to be successful, it should approximate the jump function
[f ](x) with high accuracy. Theorem 3.1 shows that Lmf(x) converges to zero away
from the jump discontinuities of f with a certain rate depending on m and the local
smoothness of f .

Theorem 3.1. Let m ∈ N and Lmf(x) be defined as in (3.6) using a local set Sx

with #Sx = m1 = m + 1. Then we have

Lmf(x) =

{
[f ](ξ) + O(h(x)) if xj−1 ≤ ξ, x ≤ xj,
O(hmin(m,k)(x)) if f ∈ Ck(Ix) for k > 0,

where h(x) is given in (3.2) and Ix is the smallest closed interval such that Sx ⊂ Ix.
Proof. Assume first that f ∈ Ck(Ix) for some k > 0. Denote km := min(k,m) > 0

and let Tkm−1f be the Taylor expansion of f of degree km − 1 around x, namely,

Tkm−1f(·) =

km−1∑
α=0

(· − x)αf (α)(x)/α!.

Since Tkm−1f is a polynomial of degree less than m, the definition of cj(x) in (3.3)
implies that

∑
xj∈Sx

cj(x)Tkm−1f(xj) = 0.(3.7)

By rewriting f = Tkm−1f + Rkm−1f , where Rkm−1f is the remainder of Taylor ex-
pansion, it follows from (3.7) that

|Lmf(x)| =

∣∣∣∣ 1

qm(x)

∑
xj∈Sx

cj(x)Rkm−1f(xj)

∣∣∣∣
=

∣∣∣∣ 1

qm(x)

∑
xj∈Sx

cj(x)(xj − x)kmf (km)(ζj)/km!

∣∣∣∣
≤ Ahkm(x)

1

|qm(x)|
∑

xj∈Sx

|cj(x)|

for some ζj between x and xj , where the last inequality is implied since |x − xj | ≤
mh(x) for any xj ∈ Sx and |f (km)(x)/km!| is bounded for x ∈ Ix. Since both cj(x)
and qm(x) are O(h−m(x)), it is clear that |Lmf(x)| ≤ Ahkm(x).
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Next, consider the case that xj−1 ≤ ξ, x ≤ xj for ξ ∈ J and xj−1, xj ∈ Sx. With-
out loss of generality, assume that ξ is the only discontinuity of f in a neighborhood
Iξ and Sx ⊂ Iξ. Invoking the notation S+

x and S−
x in (3.4), we have

Lmf(x) =
1

qm(x)

∑
xj∈S+

x

cj(x)f(xj) +
1

qm(x)

∑
xj∈S−

x

cj(x)f(xj)

=
1

qm(x)

∑
xj∈S+

x

cj(x)
[
f(ξ+) + (xj − ξ)f ′(ζ+

j )
]

+
1

qm(x)

∑
xj∈S−

x

cj(x)
[
f(ξ−) + (xj − ξ)f ′(ζ−j )

]

for some ζ+
j and ζ−j . Since (2.4) implies that

∑
xj∈Sx

cj(x) = 0, it follows that

∑
xj∈S+

x

cj(x) = −
∑

xj∈S−
x

cj(x).

Utilization of (3.5) yields

Lmf(x) = (f(ξ+) − f(ξ−)) + O(h(x))

to complete the proof.
Next, Theorem 3.2 establishes the relationship between the edge detection method

(3.6) and Newton divide differences, which are frequently employed to determine
smooth regions in finite difference schemes (see, for example, [6], [9], and [12]). This
beneficial relationship provides an explicit formula for the coefficients cj(x) without
solving the linear system (3.3). Denoting Sx =: {x1, . . . , xm1} with m1 = m+1, recall
the definition of the m1th degree Newton divided difference for a smooth function f(x)
on Sx:

f [Sx] := f [x1, x2, . . . , xm1
] =

f [x1, x2, . . . , xm1−1] − f [x2, x3, . . . , xm1 ]

x1 − xm1

(3.8)

=

m1∑
j=1

f(xj)

ωj(Sx)
=

f (m)(ξ)

m!
,

where ξ ∈ (x1, xm1) and

ωj(Sx) :=

m1∏
i=1
i�=j

(xj − xi).(3.9)

Theorem 3.2. Under the same conditions and notation as Theorem 3.1, the
coefficients cj(x) can be directly solved as

cj(x) =
m!

ωj(Sx)
, j = 1, . . . ,m1,(3.10)

with ωj(Sx) in (3.9). Furthermore, the Lmf(x) in (3.6) can be expressed as

Lmf(x) =
m!

qm(x)
f [Sx].
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Proof. Since the coefficients cj(x) that solve (3.3) are independent of the basis
of Πm, it is enough to consider the basis pi(x) = xi−1 for i = 1, . . . ,m1. The mth
derivative of these basis functions satisfies

p
(m)
i (x) = m!δi,m1

for all x ∈ R.(3.11)

By (3.8), it is possible to conclude that pi[Sx] = δi,m1 , yielding m!pi[Sx] = p
(m)
i (x),

i = 1, . . . ,m1. Hence by (3.8) we have

m!

m1∑
j=1

pi(xj)

ωj(Sx)
= p

(m)
i (x), i = 1, . . . ,m1,

indicating that the coefficients cj(x) can also be formulated by (3.10).
Given the direct representation (3.10) of the coefficients cj(x) as the solution of

the linear system (3.3), the edge detection method (3.6) can be expressed as

Lmf(x) =
1

qm(x)

∑
xj∈Sx

cj(x)f(xj),

=
m!

qm(x)

∑
xj∈Sx

f(xj)

ωj(Sx)
=

m!

qm(x)
f [Sx],

finishing the proof.
Remark 3.1. Let x ∈ (a, b) be fixed and let I+

x be the smallest closed interval
such that S+

x ⊂ I+
x . Choosing f = χI+

x
with χI+

x
the characteristic function on I+

x ,
Theorem 3.2 implies that the normalization factor qm(x) in (3.5) can be written as

qm(x) =
∑

xj∈S+
x

cj(x)

=
∑

xj∈Sx

cj(x)χI+
x

(xj) = m!χI+
x

[Sx].

Thus, the assumption qm(x) �= 0 is reasonable.
Remark 3.2. As discussed above, for any given data (S, f |S), the evaluation of

Lmf(x) involves only finite local data (Sx, f |Sx) around x. Accordingly, if S is a
set of irregular points, the coefficients cj(x) may vary depending on the location x.
However, if the given set S is uniform, say,

S := {a + nh | n = 0, . . . , N}, h =
b− a

N
> 0,(3.12)

then there exists only one set of coefficients cj(x) = cj , j = 1, . . . ,m1, which are
independent of the position x inside [a, b] (but away from the boundary). Specifically,
(3.10) can be directly applied to obtain the coefficients

cj =
m!

ωj(Sx)
=

m!

h
∏m1

i=1,i �=j(j − i)
, j = 1, . . . ,m1,

which in turn yields the normalization factor qm = qm(x) in (3.5). Hence
cj
qm

in (3.6)
is bounded and independent of both h and x, and consequently the numerical com-
putation of (3.6) is further simplified, while keeping the same convergence properties
in Theorem 3.1.
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Fig. 3.1. (a) Graph of f1(x). (b) Random sampling of f1(x) on N = 64 points.

To demonstrate the efficacy of the edge detection method Lmf(x), let us consider
the following example.

Example 3.1.

f(x) :=

{
cos(3πx), −1 ≤ x < 0,

2
1+3e−50x+25 − 1, 0 < x ≤ 1.

(3.13)

The function f(x) has an edge at x = 0 and the corresponding jump function

[f ](x) =

{
−2 if x = 0,
0 else.

(3.14)

We wish to approximate [f ](x), based on the scattered grid point values generated
randomly by MATLAB and depicted in Figure 3.1(b). Figure 3.2 demonstrates the
application of Lmf(x) for m = 1, 3, 4, and 6.

Observe in Figure 3.2 that the application of (3.6) encounters some problems in
the approximation of jump functions. Specifically, as m increases, oscillations that
occur in the neighborhood of a jump discontinuity can be misidentified as true edges.
On the other hand, for smaller m, there is a risk of identifying a steep gradient as
an edge, especially in regions where the scattered grid points are far apart. We wish
to avoid the possibility of misidentification due either to the low resolution problems
associated with the low order edge detection or to the oscillations inherent in the high
order case. Presented in the following section is the minmod edge detection method
that helps to prevent the edge detection method (3.6) from misidentifying edges.

3.2. Minmod edge detection in one dimension. It was observed in [13] that
the minmod function, typically used in numerical conservation laws to reduce oscilla-
tions (see, e.g., [7]), could also be applied to distinguish true jump discontinuities from
neighborhood oscillations. In what follows we describe the oscillating behavior near
the jump discontinuities that results from using our local edge detector (3.6). Thus
motivated, we extend the use of the minmod function and incorporate various orders
of m for nonuniform grids. Moreover, we provide the proof of its convergence rate
to zero away from the discontinuities. We will refer to this technique as the minmod
edge detection method.
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Fig. 3.2. The edge detection method Lmf(x) given by (3.6) for (a) m = 1, (b) m = 3, (c)
m = 4 , and (d) m = 6.

The next theorem describes the behavior of the edge detection method (3.6) in
the neighborhoods of discontinuities and motivates the need for further refinement by
the minmod function.

Theorem 3.3. Let m ∈ N and Lmf(x) be defined as in (3.6) using Sx with
#Sx = m1, and let

Qm(ξ, x) :=
∑

xj∈S+
ξ

cj(x)(3.15)

with S+
ξ := {xj ∈ Sx|xj ≥ ξ} as given in (3.4). Then

Lmf(x) =

{
Qm(ξ,x)
qm(x) [f ](ξ) + O(h(x)) if Ix ∩ ξ �= ∅ for ξ ∈ J,

O(hmin(m,k)(x)) if f ∈ Ck(Ix) for k > 0.

Here, Ix is the smallest closed interval such that the local set Sx ⊂ Ix.
Proof. Assume first that Ix ∩ J = ∅ and therefore f ∈ Ck(Ix) for some k > 0. It

is therefore possible to conclude by Theorem 3.1 that Lmf(x) = O(hmin(m,k)(x)).
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Next, let us consider the case that Ix ∩ J �= ∅. Without loss of generality, assume
that ξ is the only discontinuity of f in a neighborhood Ix. Invoking the notation S+

ξ

and S−
ξ in (3.4), we see that

Lmf(x) =
1

qm(x)

∑
xj∈S+

ξ

cj(x)f(xj) +
1

qm(x)

∑
xj∈S−

ξ

cj(x)f(xj)

=
1

qm(x)

∑
xj∈S+

ξ

cj(x)
[
f(ξ+) + (xj − ξ)f ′(ζj)

]

+
1

qm(x)

∑
xj∈S−

ξ

cj(x)
[
f(ξ−) + (xj − ξ)f ′(ζj)

]

with ζj between xj and ξ. Here, from the condition
∑

xj∈Sx
cj(x) = 0 in (3.3), it is

clear that

Qm(ξ, x) :=
∑
j∈S+

ξ

cj(x) = −
∑
j∈S−

ξ

cj(x).

Hence

Lmf(x) =
Qm(ξ, x)

qm(x)
(f(ξ+) − f(ξ−)) + O(h(x)),

which completes the proof.
The behavior characterized in Theorem 3.3 is visible in Figure 3.2 as m increases

in (3.6). Specifically, the edge detection method approximates the jump function with
high order outside the neighborhoods of the discontinuities. Unfortunately, inside the
neighborhoods of the discontinuities the edge detection method oscillates according

to the fraction Qm(ξ,x)
qm(x) [f ](ξ).

The minmod edge detection method, as defined below, uses the minmod function
to exploit the characteristics of the edge detection method of various orders both inside
and outside the neighborhoods of the discontinuities to ensure the highest order of
convergence possible away from the discontinuity, as well as to reduce the oscillations
inside the neighborhoods of discontinuities.

Definition 3.1. For a given finite set M ⊂ N of positive integers, consider the
set LMf = {Lmf : R → R |m ∈ M}. The minmod function is defined by

MM

(
LMf(x)

)
=

⎧⎪⎨
⎪⎩

min
m∈M

Lmf(x) if Lmf(x) > 0 for all m ∈ M,

max
m∈M

Lmf(x) if Lmf(x) < 0 for all m ∈ M,

0 otherwise.

(3.16)

Theorem 3.4 characterizes the convergence of the minmod function applied to
the set of edge detectors Lmf of various order m and demonstrates its ability to
distinguish jump discontinuities from neighborhood oscillations.

Theorem 3.4. If M = {1, 2, . . . , μ}, we have

MM

(
LMf(x)

)
=

{
[f ](ξ) + O(h(x)) if xj−1 ≤ ξ, x ≤ xj,
O(hmin(Mx,k)(x)) if f ∈ Ck(Ix),
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where Ix is the smallest closed interval such that Sx ⊂ Ix with #Sx ≤
(Mx+1

1

)
, and

Mx is defined by

Mx := max
{
m ∈ M|#Sx = m1, Ix ∩ J = ∅

}
.(3.17)

Proof. For x ∈ [a, b], assume without loss of generality that xj−1 ≤ x ≤ xj for
some xj−1, xj ∈ S. If there exists ξ ∈ J such that xj−1 ≤ ξ ≤ xj , then by Theorem 3.1
we have

Lmf(x) = [f ](ξ) + O(h(x))

for any m ∈ M. Therefore, it is possible to conclude that

MM
(
LMf(x)

)
= [f ](ξ) + O(h(x)).

If J ∩ [xj−1, xj ] = ∅, then by definition we have Mx ≥ 1. Also from the definition
of Mx, for any m ∈ M such that m ≤ Mx and #Sx = m1 we have Ix ∩ J = ∅.
Therefore, Theorem 3.1 implies that Lmf(x) = O(hmin(m,k)(x)), yielding

MM
(
LMf(x)

)
= O(hmin(Mx,k)(x))

to complete the proof.
By including 1 ∈ M in Theorem 3.4, first order convergence is ensured at edges,

even in the case where edges are in neighboring centers. Large values are also in-
cluded in the set M so that there will be a high order of convergence away from the
discontinuity.

The minmod edge detection method relaxes the assumption for edge resolution
in Theorem 3.1, specifically that edge detection is possible only if a maximum of one
edge is contained in each local set, or equivalently

#
(
[xj , xj+m1 ] ∩ J

)
≤ 1 for j = 1, . . . , N −m1,(3.18)

where J is the set of discontinuities of f on [a, b]. In this case, only a certain density of
edges can be resolved, i.e., only one discontinuity can be resolved for each m1 points.
Furthermore, the order of the method is restricted to the “closeness” of the edges in
terms of their grid point location. Theorem 3.4 relaxes this assumption so that edge
resolution is possible if J , the set of discontinuities of f on [a, b], satisfies

#
(
[xj , xj+1] ∩ J

)
≤ 1 for j = 1, . . . , N − 1,(3.19)

i.e., the edges can occur at neighboring grid point values. If this requirement is not
satisfied, the problem is clearly underresolved.

The superior convergence properties of the minmod edge detection method for
Example 3.1 with M = {1, 2, . . . , 6} are evident in Figure 3.3. Of particular interest
is the ability of the minmod edge detection method to resolve the local jump function
even when the first order approximation, as displayed in Figure 3.2(a), detects edges in
smooth regions that are artifacts of the variability of the function and sparse sampling.
Residual small oscillations that are still evident can be removed by a thresholding
process.

The algorithm in Appendix A details the one-dimensional edge detection compu-
tation of Examples 3.1, where the particular choice of local sets, reconstruction grid
points, and basis functions are specified.
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Fig. 3.3. The minmod edge detection method, MM(LMf(x)), for Example 3.1. Here M =
{1, 2, . . . , 6}.

4. Edge detection in two dimensions.

4.1. Formulation. Throughout section 4, let f be a piecewise smooth function
on a domain Ω ⊂ R

2 known only on the set of discrete nodes

S ⊂ Ω, #S =: N < ∞.

Though d indicates an arbitrary dimension, here we consider only the bivariate case.
The higher-dimensional case can be similarly constructed with more complicated nu-
merical algorithms.

In two dimensions a jump discontinuity at x = ξ is identified by its enclosed points
(i.e., triangular points) and is characterized by the convergence property away from
the discontinuities. Specifically, the enclosed points can be defined by the Delaunay
triangulation for S that consists of the set of lines connecting each point to its natural
neighbors [10]. These sets of lines form elementary triangles whose vertices consist of
points in S. A triangle is considered elementary if every combination of vertex pairs
are natural neighbors. Let the number of elementary triangles of the set S be defined
as NT . We denote the set of vertices of all elementary triangles in the Delaunay
triangulation of S as

TS =

{
Tj

∣∣∣∣Tj := {xj
1, x

j
2, x

j
3} ⊂ S for j = 1, . . . , NT

}
,(4.1)

where Tj is the set of vertices for an elementary triangle.
Since discontinuities are identified at specific points by their enclosed cells, the

local sets Sx are chosen to include points that characterize these cells. For arbitrary
x ∈ Ω, we can assume without loss of generality that x ∈ KTj ⊂ Ω. Recall that KTj is
the convex hull of the set of vertices Tj ∈ TS . Therefore the local set Sx for arbitrary
x ∈ Ω can now be defined specifically to include the set that characterizes its enclosed
points as

Sx := Tj ∪ STj ,(4.2)

where Tj ∈ TS , x ∈ KTj , and STj is the set of the m2 − 3 closest points to x in the
set S \Tj . To illustrate how Sx is chosen, Figure 4.1 depicts a region of the Delaunay
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(a) (b)

Fig. 4.1. A region of the Delaunay triangulation of 256 randomly sampled points on [−1, 1] ×
[−1, 1]. (The region is enlarged for visibility purposes.) (a) The elementary triangle Tj that satisfies
x ∈ KTj

, represented by circles. (b) Pictorial representation of the local set Sx := Tj ∪ STj
, where

#Sx = 10.

triangulation of 256 randomly sampled points on [−1, 1] × [−1, 1]. Figure 4.1(a) dis-
plays a point x and the elementary triangle Tj that satisfies x ∈ KTj . Figure 4.1(b)
exhibits a local set Sx as defined in (4.2), where #Sx = 10.

In order to quantify the convergence rate of the edge detection method, we define

h(x) := max
x∈KSx

min
xj∈Sx

|x− xj |,(4.3)

which is dependent upon the density of the local set Sx.
Recall that for a given positive integer m, the dimension of Πm in R

2 is denoted
by m2 (2.1). If Sx is a local set of m2 points around x, the function Lmf is given by

Lmf(x) =
1

qm,2(x)

∑
xj∈Sx

cj(x)f(xj),(4.4)

where the coefficients cj(x), j = 1, . . . ,m2, are dependent upon the local set Sx and
satisfy the linear system∑

xj∈Sx

cj(x)pi(xj) =
∑

|α|1=m

p
(α)
i (x), i = 1, . . . ,m2, α ∈ Z

2
+.(4.5)

Here pi, i = 1, . . . ,m2, form a basis of Πm. Further illustration of the application of
(4.5) for a particular basis of Πm is detailed in Appendix B. It is easy to check that
cj(x) = O(h(x)−m), implying that qm,2(x) = O(h(x)−m) as well. Recall that in the
one-dimensional case, the constant qm,1 is used to determine the jump amplitude at
a discontinuity. In the bivariate case, the jump amplitude may vary depending on
the paths through a given discontinuity, so quantifying the jump amount at such dis-
continuity points is not meaningful. However, in the case where jump discontinuities
arise locally along a simple curve, we can estimate the jump magnitude in the normal
direction with a suitable qm,2(x) and then apply the minmod edge detection method
from (3.16) to pinpoint the edges. This will be discussed further in section 4.2. For
now we limit our discussion to detecting edges without consideration of their jump
amounts.
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Since cj(x) = O(h(x)−m), it is possible to bound Lmf uniformly by defining

qm(x) = qm,2(x) :=
∑

xj∈Px

cj(x),(4.6)

where Px can be a suitable subset of Sx such that qm(x) �= 0. This will be discussed
later following Definition 4.1, where we will see that the versatility of Px can be utilized
to provide a good approximation to the jump magnitudes in the normal directions of
the edges in the multivariate case.

Theorem 4.1 establishes the convergence rate of Lmf(x), defined in (4.4), away
from the discontinuities of f .

Theorem 4.1. Suppose f is a piecewise smooth function on a domain Ω in R
2

known only on discrete nodes S. Let J denote the set of jump discontinuities of f in
Ω, and let Lmf be defined as in (4.4) with m ∈ N. Then if f ∈ Ck(KSx) for some
k > 0, we have

Lmf(x) = O(hmin(k,m)(x)).

Proof. The technique of proving Theorem 3.1 is adapted in a straightforward
fashion to prove this theorem. Assuming that f ∈ Ck(KSx) for some k > 0, we define
km := min(k,m) and then separate f into two parts:

f = Tkm−1f + Rkm−1f,

where Tkm−1f is the Taylor polynomial of f of degree (km − 1) around x, namely,

Tkm−1f(y) =
∑

|α|1≤km−1

(y − x)αD(α)f(x)/α!,(4.7)

and Rkm−1f is its remainder. Then from the definition of cj(x) in (4.5) we see that

∑
xj∈Sx

cj(x)Tkm−1(xj) = 0,

leading to the relation

Lmf(x) =
1

qm(x)

∑
xj∈Sx

cj(x)Rkm−1f(xj)

=
1

qm(x)

∑
xj∈Sx

cj(x)
∑

|α|1=km

(xj − x)αD(α)f(ζj)/α!

for some ζj between xj and x. Since cj(x) and qm(x) are both O(h(x)−m), we obtain
the relation Lmf(x) = O(hkm(x)), which completes the proof.

Remark 4.1. As in the univariate case, if the data are given on a uniform grid
S, we can find a unique set of coefficients cj(x) = cj , j = 1, . . . ,m2, with m2 given in
(2.1), and apply it to construct Lmf(x), regardless of the position x (away from the
boundary of Ω) and the density h(x) of points. Let U be a set of integers around the
origin with #U = m2, and assume that for any x, the shape of the stencil of Sx is
the same as U; i.e., there exists ν(x) ∈ hZ

2 ∩ Ω such that

Sx = ν(x) + hU, h > 0.(4.8)
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Solving the linear system

∑
j∈U

cj
jα

α!
= δm2,|α|1 , α ∈ Z

2
+, |α|1 ≤ m2,(4.9)

we define Lmf as follows:

Lmf(x) =
1

qm

∑
j∈U

cjf(ν(x) + jh),(4.10)

where qm is also independent of x. Note that cj and qm are bounded by a constant,
while if Sx is a scattered data set, they are O(h−m(x)). A straightforward application
of the proof in Theorem 4.1 shows that for the uniform case with h = h(x), we have

Lmf(x) = O(hmin(k,m)).

4.2. Minmod edge detection in two dimensions. As in the one-dimensional
case, the utilization of the minmod edge detection method increases the area of con-
vergence away from the discontinuities of f . Theorem 4.1 establishes that for a certain
order m, the edge detection method Lmf(x) defined in (4.4) converges to zero away
from the discontinuities if KSx ∩J = ∅. Here J denotes the set of jump discontinuities
of f in Ω. Theorem 4.2 demonstrates that the minmod edge detection method con-
verges to zero away from the discontinuities if KTj

∩ J = ∅, where Tj ∈ TS is defined
in (4.1). Clearly this is an improvement since KTj

⊂ KSx
.

Theorem 4.2. If x ∈ KTj
and KTj

∩ J = ∅ for some Tj ∈ TS (4.1), then the
minmod edge detection method (3.16) for the set M = {1, 2, . . . , μ} has the property

MM
(
LMf(x)

)
= O(hmin(Mx,k)(x)),

where Mx is defined as

Mx := max
{
m ∈ M : KSx ∩ J = ∅, #Sx = m2

}
,(4.11)

and f ∈ Ck(KSx) for some k > 0 with #Sx ≤
(Mx+2

2

)
.

Proof. Assume that x ∈ KTj and KTj ∩J = ∅ for some Tj ∈ TS . Since KTj ∩J = ∅
we have Mx ≥ 1. Then for any m ∈ M such that m ≤ Mx, the corresponding
local set Sx such that #Sx = m2 will satisfy Sx ∩ J = ∅. Theorem 4.1 then gives
Lmf(x) = O(hmin(m,k)(x)). Therefore

MM
(
LMf(x)

)
= O(hmin(Mx,k)(x)),

which finishes the proof.
As in the case of one dimension, the choice of M in Theorem 4.2, an arbitrary

set of positive integers, is purposeful. By including 1 ∈ M, first order convergence is
ensured at the neighboring cells of discontinuities. Large values are also included in the
set M so that there will be a high order of convergence away from the discontinuities.

Recall that for any particular point x ∈ Ω, the normalization factor qm(x) in (4.6)
is defined for a subset Px ⊂ Sx such that qm(x) �= 0. Theorem 4.3 demonstrates that
for a particular Px the minmod edge detection method will provide a good approxi-
mation to the jump magnitudes in the normal directions of the edges. To accomplish
this approximation, we provide the following definition.
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Definition 4.1. For an arbitrary point x ∈ Ω of a piecewise smooth function f ,
define the subset Px of the local set Sx ⊂ S as

Px = arg max
P

{#P|P ⊂ Sx, and f ∈ Ck(KP) for some k > 0}.(4.12)

Therefore Px is the largest subset of the local set Sx such that f ∈ Ck(KPx
) for some

k > 0. (A technique for approximating this particular Px is provided in Appendix B.)
As in the one-dimensional case, qm(x) can be considered as a generalized version

of divided difference for the characteristic function χPx
on Sx (see the “Remark”

following Theorem 3.2). Hence, the condition qm(x) �= 0 is reasonable. Further, it is
assumed without loss of generality in the following analysis that for a small enough
local set, if Px �= Sx, then f ∈ Ck(KPc

x∩Sx) for some k > 0. Here Pc
x indicates the

complement of the set Px. This assumption is similar to the one-dimensional case,
where it is assumed that each local set contains at most one discontinuity. If this
assumption is not true, the problem is clearly underresolved.

Theorem 4.3 characterizes the minmod edge detection method for the two-dimen-
sional edge detection function |Lmf | in (4.4). In this case, we use the absolute value
of (4.4) since the jump amplitude may vary depending on paths through a given
discontinuity.

Theorem 4.3. For each m ∈ N, define Lmf as in (4.4) with qm(x) given in
(4.6). If x ∈ KTj for some Tj ∈ TS , then the minmod edge detection method (3.16)
for the set M = {1, 2, . . . , μ} has the property

MM
(∣∣LMf(x)

∣∣) =

{
[F ](x) + O(h(x)) if KTj

∩ J �= ∅,
O(hmin(Mx,k)(x)) if KTj

∩ J = ∅,

where Mx is defined in (4.11), f ∈ Ck(KSx
) for some k > 0 with #Sx ≤

(Mx+2
2

)
,

and

[F ](x) := max
{
|f(u) − f(v)| : u ∈ KPx

∩KTj
, v ∈ KPc

x∩Sx
∩KTj

}
.(4.13)

Proof. For any given integer m ∈ M, choose the local set Sx such that #Sx = m2.
Assume first KTj ∩J �= ∅. Then clearly Px,Pc

x∩Sx �= ∅. Now, for some βj , γj ∈ (0, 1),
we have

|Lmf(x)| =

∣∣∣∣ 1

qm(x)

∑
xj∈Px

cj(x)f(xj) +
1

qm(x)

∑
xj∈Pc

x∩Sx

cj(x)f(xj)

∣∣∣∣
=

∣∣∣∣ 1

qm(x)

∑
xj∈Px

cj(x)

[
f(u) +

∑
|α|1=1

(xj − u)αDαf(u + βj(xj − u))

]

+
1

qm(x)

∑
xj∈Pc

x∩Sx

cj(x)

[
f(v) +

∑
|α|1=1

(xj − v)αDαf(v + βj(xj − u))

]∣∣∣∣
for any u ∈ KPx ∩KTj and v ∈ KPc

x∩Sx ∩KTj . From the condition
∑

j∈Sx
cj(x) = 0,

we see from (4.6) that

qm(x) =
∑

xj∈Px

cj(x) = −
∑

xj∈Pc
x∩Sx

cj(x),

and therefore

|Lmf(x)| = |f(u) − f(v)| + O(h(x)).
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(a) (b)

Fig. 4.2. (a) f1(x) from Example 4.1 sampled on random points with #S = 1282. (b) The
minmod edge detection method of MM(LMf1(x)) for M = {1, 2, 3, 4}.

Since u and v are arbitrary points in the sets KPx∩KTj
and KPc

x∩Sx
∩KTj

, respectively,
we obtain that |Lmf(x)| = [F ](x)+O(h(x)), where [F ](x) is defined in (4.13), yielding

MM
(∣∣LMf(x)

∣∣) = [F ](x) + O(h(x)).

Next, assume that KTj ∩ J = ∅. By definition, Mx ≥ 1. Then for any m ∈ M
such that m ≤ Mx, the corresponding local set Sx such that #Sx = m2 will satisfy
Sx ∩ J = ∅. Theorem 4.1 then gives Lmf(x) = O(hmin(m,k)(x)). Clearly it can be
concluded that

MM
(∣∣LMf(x)

∣∣) = O(hmin(Mx,k)(x)),

which finishes the proof.
To demonstrate the efficacy of the minmod edge detection method in two dimen-

sions we consider the following example.
Example 4.1.

f1(x) := f1(u, v) :=

{
uv + cos (2πu2) − sin (2πu2) if u2 + v2 ≤ 1

4 ,

10u− 5 + uv + cos (2πu2) − sin (2πu2) if u2 + v2 > 1
4

for −1 ≤ u, v ≤ 1.
Note that the edges comprise the circle u2 + v2 = 1

4 with the exception of u = 1
2 ,

where the function is smooth. Figure 4.2(a) shows f1(x) sampled on a MATLAB
randomly generated data set S with #S = 1282. Figure 4.2(b) displays the results of
applying the minmod edge detection method to Lmf1 with m ∈ M = {1, 2, 3, 4}. Of
particular interest is the ability of the minmod edge detection method to resolve the
positions and magnitudes in the normal direction of the edges even in areas of sparse
sampling and steep gradients.

Let us now turn our attention to a practical example often used as a benchmark
test for edge detection in magnetic resonance imaging (MRI).
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(a) (b)

Fig. 4.3. (a) f2(x) from Example 4.2 sampled on random points with #S = 1282. (b) The
minmod edge detection method of MM(LMf2(x)) for M = {1, 2, 3, 4}.

Example 4.2. The so-called Shepp–Logan phantom, f2(x), defined in Appendix C.
Note that the edges of the Shepp–Logan phantom comprise various ellipses of

different sizes and orientations, some of which overlap. Figure 4.3(a) shows the Shepp–
Logan phantom (denoted as f2(x)), sampled on a MATLAB randomly generated data
set S with #S = 1282. Figure 4.3(b) displays the results of applying the minmod
edge detection method on Lmf2(x) with m ∈ M = {1, 2, 3, 4}. Of particular interest
is the ability of the minmod edge detection method to resolve edges that reside in
neighboring centers.

The algorithm in Appendix B details the two-dimensional edge detection compu-
tation for Examples 4.1 and 4.2, where the particular choice of local sets, reconstruc-
tion points, and basis functions are specified. Although no formal computational cost
studies were conducted, our experiments indicate that the two-dimensional algorithm
experiences minimal increase in computational effort.

5. Concluding remarks. In this paper we have introduced an edge detection
method (2.5) based on a local polynomial annihilation property on a set of irreg-
ularly distributed points in a bounded domain Ω ⊂ R

d. The method successfully
captures discontinuities that are identified by their enclosed cells by characterizing
the convergence away from the discontinuities. Although the convergence of the edge
detection method can be of high order away from discontinuities, there are problem-
atic oscillations in the neighborhoods of discontinuities. The minmod function (3.6)
for one-dimensional global edge detection methods enables the distinction of jump
discontinuities from neighborhood oscillations by the effective use of the information
intrinsic to the edge detection approximation. The resulting minmod edge detection
method ensures the highest rate of convergence up to the enclosed points of disconti-
nuities.

The edge detection method described in our study is local, numerically cost ef-
ficient, and entirely independent of any specific shape or complexity of boundaries.
Furthermore, it demonstrates the ability to detect edges of piecewise smooth functions
with steep gradients as well as in low resolution environments with sparse, nonuniform
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sampling. For uniformly distributed points, the cost of computation is significantly
reduced since the coefficients in the edge detection method are constant for every type
of local stencil.

This study is concerned with the detection of jump discontinuities. Our future
work will focus on integrating this method to real signals and images in various sci-
entific disciplines, where noise, poor resolution, and numerical efficiency all become
critical issues. We also are currently generalizing our method to determine jump
discontinuities in the derivatives, critical for resolving texture in images.

Appendix A. One-dimensional edge detection algorithm. For any x ∈
[a, b], let Sx be the closest m1 = m + 1 points to x in S. As a basis of Πm, choose
pi(x) = xi−1 for i = 1, . . . ,m1. The minmod function for M = {1, 2, . . . , μ} will be
reconstructed on the points xj+ 1

2
= 1

2 (xj+1 + xj) with j = 1, . . . , N − 1.
for m = 1 to μ and j = 1 to N − 1

step 1. For each xj+ 1
2
, define S+

x
j+ 1

2

= {xn|xn > xj+ 1
2
} and set r = #S+

x
j+ 1

2

.

step 2. Calculate the coefficients

ci(xj+ 1
2
) =

m!

ωi(Sx
j+ 1

2

)
, i = 1, . . . ,m1,

where ωi(Sx
j+ 1

2

) is defined as in (3.9).

step 3. Calculate the normalization factor

qm(xj+ 1
2
) =

m1∑
i=m1−r+1

ci(xj+ 1
2
).

step 4. Compute the jump function

Lmf(xj+ 1
2
) =

1

qm(xj+ 1
2
)

m1∑
i=1

ci(xj+ 1
2
)f(xi+j+r−m1

).

end (m, j)
step 5. Apply minmod edge detection method MM

(
LMf(xj+ 1

2
)
)
.

Appendix B. Two-dimensional edge detection algorithm. Let S := {xj :=
(uj , vj) | j = 1, . . . , N} ⊂ Ω and choose pα(x) = uα1vα2 for x = (u, v) and α =
(α1, α2) ∈ Z

2
+ such that |α|1 ≤ m as a basis of Πm. The minmod function for

M = {1, 2, . . . , μ} will be reconstructed on the set

DTS =

{
x̄j

∣∣∣∣x̄j =

∑3
i=1 x

j
i

3
, where Tj = {xj

1, x
j
2, x

j
3} ∈ TS for j = 1, . . . , NT

}
.(B.1)

for m = 1 to μ and j = 1 to NT

step 1. For x̄j in (B.1), determine Sx̄j
as in (4.2) with #Sx̄j

= m2 =
(
m+2

2

)
.

Set Sx̄j = {x1, . . . , xm2} such that f(x1) ≤ f(x2) ≤ · · · ≤ f(xm2).
step 2. Solve the linear system

∑
xi∈Sx̄j

ci(x̄j)pα(xi) =

{
0 if α1 + α2 < m,
α1!α2! if α1 + α2 = m

for α1, α2 = 0, . . . ,m, such that α1 + α2 ≤ m.
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step 3. Calculate qm(x̄j) as in (4.6). Here the subset Px (4.12) of Sx̄j
is com-

puted as

Px = {x1, . . . , xr},

where

|f(xr+1) − f(xr)| = max
i=1,...,m2−1

|f(xi+1) − f(xi)|.

If such r is not unique, choose the smallest one.
step 4. Calculate Lmf(x̄j) = 1

qm(x̄j)

∑
xi∈Sx̄j

ci(x̄j)f(xi).

end (m, j)
step 5. Apply minmod edge detection method MM

(
LMf(x̄j)

)
.

Appendix C. Shepp–Logan phantom algorithm. The Shepp–Logan phan-
tom is a piecewise smooth function on the domain Ω = [−1, 1] × [−1, 1] in R

2. For
any arbitrary point (u, v) ∈ Ω the value of the Shepp–Logan phantom z = f(u, v) is
calculated as follows:
for each point (u, v)

let z = 0, ξ1 = (u − .22) cos(.4π) + v sin(.4π), η1 = −(u − .22) sin(.4π) +
v cos(.4π), ξ2 = (u+.22) cos(.6π)+v sin(.6π), and η2 = −(u+.22) sin(.6π)
+ v cos(.6π).

if ( u
.69 )2 + ( v

.92 )2 ≤ 1,

then z = 2.
if ( u

.06624 )2 + (v+.0184
.874 )2 ≤ 1,

then z = z − .98.

if ( ξ1
.31 )2 + ( η1

.11 )2 ≤ 1 or ( ξ2
.41 )2 + ( η2

.16 )2 ≤ 1,

then z = z − .02.

if (u−.35
.3 )2 + ( v

.6 )2 ≤ 1, or ( u
.21 )2 + (v−.35

.25 )2 ≤ 1, or ( u
.046 )2 + (v−.1

.046 )2 ≤ 1, or

( u
.046 )2+(v+.1

.046 )2 ≤ 1, or (u+.08
.046 )2+(v+.605

.023 )2 ≤ 1, or ( u
.023 )2+(v+.605

.023 )2 ≤
1, or (u−.06

.023 )2 + (v+.605
.023 )2 ≤ 1,

then z = z + .01.
end.
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A DISCONTINUOUS PETROV–GALERKIN METHOD
WITH LAGRANGIAN MULTIPLIERS

FOR SECOND ORDER ELLIPTIC PROBLEMS∗
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Abstract. We present a discontinuous Petrov–Galerkin (DPG) method for the finite element
discretization of second order elliptic boundary value problems. The novel approach emanates from
a one-element weak formulation of the differential problem. This procedure, which is typical of
discontinuous Galerkin (DG) methods, is based on introducing variables defined in the interior and
on the boundary of the element. The interface variables are suitable Lagrangian multipliers that
enforce interelement continuity of the solution and of its normal derivative, thus providing the proper
connection between neighboring elements. The internal variables can be eliminated in favor of the
interface variables using static condensation to end up with a system of reduced size in the sole
Lagrangian multipliers. A stability and convergence analysis of the novel formulation is carried
out and its connection with mixed-hybrid and DG methods is explored. Numerical tests on several
benchmark problems are included to validate the convergence performance and the flux-conservation
properties of the DPG method.

Key words. Petrov–Galerkin formulations, mixed and hybrid finite element methods, discon-
tinuous Galerkin methods, elliptic problems
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1. Introduction and motivation. Recent years have seen an ever increasing
use, development, and analysis of discontinuous methods in the approximation of
boundary value problems. Within this active research area, discontinuous Galerkin
(DG) formulations certainly occupy a prominent position (we refer to [19] for a survey
on the state-of-the-art of the literature on DG methods) and their success in the
approximation of hyperbolic problems has extended their use to cover the case of
parabolic and elliptic equations.

A considerable impulse in the direction of extending the use of DG methods to
parabolic and elliptic equations is due to the contributions given in [6, 7], where
discontinuous finite elements of high order are used in the numerical solution of the
compressible Navier–Stokes equations. Two methodological aspects in [6, 7] are of
particular importance for their influence on later research activity.

The first aspect is the technique used to accommodate the viscous terms aris-
ing in the momentum and energy balance equations within the structure of the DG
formulations traditionally devoted to hyperbolic problems. The technique consists of
introducing a new unknown, related to the gradient of the conservative variables, and
then providing a consistent approximation for the new unknown. This strategy is
closely related to classical mixed methods and is one of the starting motivations of the
work conducted, although in different directions, in [2, 3, 16] and in the present article.
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The second aspect is the extension of the concept and use of numerical fluxes in
the treatment of boundary terms arising from integration by parts of the equations
at the element level. Numerical fluxes are a key ingredient of any performing DG
formulation and must be properly designed to impart stability and accuracy to the
approximation. This is usually done by borrowing their expression from finite volume
techniques, as discussed in [3] in the case of DG methods applied to the numerical
solution of elliptic boundary value problems. The choice of numerical fluxes in DG
methods is not trivial since it must be tailored to the problem at hand, leading in
some cases to an involved implementation of the resulting scheme, a drawback that
is quite common to many high-order finite volume formulations.

The motivation of the discontinuous Petrov–Galerkin (DPG) method proposed in
the present article strongly arises from this latter observation. It is indeed a fact that
the values of the variables on the element boundaries (or an appropriate representa-
tion of them) are the ingredients to be used to provide the necessary coupling between
neighboring elements. Having this clearly in mind, an alternative approach to numer-
ical flux definition may be pursued by introducing independent interface variables
that are single-valued functions solely defined on element boundaries (hybrid inter-
face variables). The hybrid interface variables are suitable Lagrangian multipliers
that enforce the continuity of the displacement (the scalar variable of the problem)
and of the normal stress (the vector variable of the problem) across the interfaces
of the finite element triangulation. By doing so, proper interelement connection can
be enforced without needing to exhibit any specific upfront recipe for the numerical
flux. Therefore, the DPG method establishes a connection between DG and hybrid
methods, a connection that is presently the object of analogous research activity by
many authors in different areas (see, for example, [21, 22, 20]).

The DPG method was proposed in [10], where a stability and convergence analysis
of the formulation was carried out in one spatial dimension. Then, the method was
applied to the numerical solution of scalar advective-diffusive models [12, 11] and of
fluid-mechanical problems in both compressible and incompressible regimes [17].

In the present article we carry out the theoretical analysis of the stability and
convergence properties of the novel formulation applied to the solution of an ellip-
tic boundary value model problem in two spatial dimensions, an aspect that was
still lacking. We also discuss the efficient computer implementation of the scheme,
thus strengthening the connection between the DPG methodology and classical DG
and mixed-hybrid approaches. Numerical results are then shown to demonstrate the
convergence and conservation properties of the novel formulation.

The paper is organized as follows: in section 2 we introduce the one-element weak
formulation that is the starting point of the DPG approach. In section 3 we set up
the formulation at the continuous level and we carry out its stability analysis. In
section 4 we introduce the corresponding approximation and in section 5 we discuss
the construction of appropriate finite element spaces, addressing in particular the case
of the element of lowest degree (DPG0) for which we carry out a stability and error
analysis in section 6. We address the issue of an efficient implementation of the DPG0

formulation in section 7. In section 8 we present some numerical results to validate
the convergence performance, while in section 9 we assess the conservation properties
of the DPG method. Finally, in section 10 we end with some concluding remarks.

2. One-element formulation of the elliptic model problem. We consider
the following elliptic model problem:

−div∇u = f in Ω, u = gD on ΓD, ∇u · n = gN on ΓN ,(2.1)
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where Ω is an open bounded set of R
2 with Lipschitz continuous boundary Γ = ∂Ω

such that Γ = ΓD ∪ ΓN , ΓD �= ∅, and where f , gD, and gN are given functions.
Problem (2.1) will be referred to as the primal formulation and u as the primal
unknown. Upon introducing the auxiliary unknown σ = ∇u, problem (2.1) may be
rewritten as the first order system

{
−div σ = f in Ω, σ = ∇u in Ω,

u = gD on ΓD, σ · n = gN on ΓN .
(2.2)

Problem (2.2) will be referred to as the mixed formulation of (2.1). In this latter
context we shall refer in a generalized sense to the mixed unknowns u and σ as
displacements and stresses, respectively.

Given a triangulation Th of Ω made of triangles, we consider the following one-
element weak form of problem (2.2) (see section 3.1 for the notation):

∀K ∈ Th, find (σK , uK) such that

⎧⎪⎪⎨
⎪⎪⎩

∫
K

σK · qK dx +

∫
K

uK div qK dx −
∫
∂K

u∂K q∂K · nK ds = 0 ∀ qK ,
∫
K

σK · ∇vK dx −
∫
∂K

σ∂K · nK v∂K ds =

∫
K

fK vK dx ∀vK ,

(2.3)

where σK , uK , qK , and vK belong to spaces of smooth vector and scalar functions
defined on K and where the symbols σ∂K and u∂K represent the traces on ∂K of σK

and uK , respectively, properly accounting for the boundary conditions. Notice that a
formal integration by parts has been performed on both equations in (2.2).

System (2.3) is a general setting from which both discontinuous Galerkin and
hybrid formulations can be derived, the latter after a suitable use of integration by
parts in (2.3)1 or (2.3)2. The common factor shared by DG and hybrid formulations
relies on the role played by the variables traced on the element interfaces that are the
connectors demanded to preserve the proper coupling between K and its neighbors.

In DG methods the interelement constraints are enforced by defining on ∂K
specific expressions for σ∂K and u∂K as functions of the internal variables, the so-
called numerical fluxes (see [2, 3, 16]).

In hybrid formulations the variables traced on the element interfaces are instead
suitable Lagrange multipliers and are additional unknowns of the problem. In particu-
lar, primal mixed-hybrid methods [35, 37] are obtained by integrating by parts (2.3)1,
while dual mixed-hybrid methods [14] are obtained by integrating by parts (2.3)2.
System (2.3) is thus in dual-primal mixed-hybrid form. In both cases a symmetric
Galerkin formulation is obtained from the nonsymmetric formulation (2.3) and only
one Lagrangian multiplier is introduced, with the conclusion that in hybrid formula-
tions a different numerical treatment is applied to the displacement and stress fields.

The choice of introducing independent interface unknowns as interelement con-
nectors, thus avoiding the need of ad hoc definition of the numerical fluxes, while pre-
serving at the same time a completely parithetic (and discontinuous) approximation
of u and σ on Th, as in DG formulations, is the main idea underlying the DPG method
discussed in the forthcoming sections.

3. The DPG formulation. In what follows we introduce the DPG formulation
and carry out a stability and convergence analysis of the method.
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3.1. Notation and functional setting. We let Ω = ∪K be a regular partition
Th of the domain Ω into triangular elements K (see [18]); i.e., we suppose that there
exists a constant σ ≥ 1 such that (hK/ρK) ≤ σ for all K ∈ Th, hK being the diameter
of K and ρK = sup {diam(S) |S is a ball contained inK}. We let Eh be the set of
the edges of Th, and the edge shared by the elements K and K ′ will be referred to
as eK−K′ . For each element K ∈ Th, we denote by ∂K the Lipschitz continuous
boundary of K and by nK the unit outward normal vector along the boundary ∂K.
We also let ∂KD = ∂K ∩ΓD, ∂KN = ∂K ∩ΓN . Moreover, if v is any function defined
in Ω, we denote by vK its restriction to the element K and by v∂K its restriction to
the element boundary ∂K. Similarly, if η is any function defined on Eh, we denote by
η∂K its restriction on Eh ∩ ∂K.

Given an integer m ≥ 0 and the real numbers p, q ∈ [1,∞), we define the following
local space:

Wm,p(K) = {v ∈ Lp(K) |Dαv ∈ Lp(K)∀α, |α| ≤ m} ∀K ∈ Th,

endowed with the usual norm and seminorm ||v||m,p,K and |v|m,p,K . When p = 2,
Wm,2(K) is the usual Hm(K) Sobolev space (see [27, 28]), and the simplified notation
||.||m,K and |.|m,K will be used. We also introduce the local space

Wq(div;K) =
{
τ ∈ (Lq(K))2 |div τ ∈ Lq(K)

}
,

endowed with the usual graph norm ||τ ||q,div,K . When q = 2, the space W2(div;K)
is the Sobolev space H(div;K) (see [14]).

From now on, p and q will be chosen to be conjugate numbers, i.e., 1/p+1/q = 1.
It will be useful in what follows to consider the space of the traces on ∂K of functions
v ∈ W 1,p(K) and τ ∈ Wq(div;K). Notice that the trace v∂K belongs to the space
W 1/q,p(∂K), while the normal trace τ · n|∂K belongs to the space W−1/q,q(∂K); the
spaces W 1/q,p(∂K) and W−1/q,q(∂K) are endowed with the following norms:

||τ · n||−1/q,q,∂K = sup
v∈W 1,p(K)

〈τ · n, v〉∂K
||v||1,p,K

∀ τ ∈ Wq(div;K)(3.1)

and

||v||1/q,p,∂K = sup
τ∈Wq(div;K)

〈τ · n, v〉∂K
||τ ||Wq(div;K)

∀ v ∈ W 1,p(K).(3.2)

Note that for p = q = 2 the quantity in (3.1) is the standard norm ||τ · n||−1/2,∂K .

3.2. DPG weak formulation. Proceeding along the same lines as in [23, 24],
we assume henceforth that 4

3 < p < 2, and thus 2 < q < 4.
We introduce the trial function spaces

Σ = (Lq(Ω))2, U = Lq(Ω),

Λ =

{
λ ∈

∏
K∈Th

W 1/q,p(∂K), λK = λK′
on eK−K′ ∀K,K ′ ∈ Th,

λK = gD on ∂KD ∀K ∈ Th
}
,

M =

{
μ ∈

∏
K∈Th

H−1/2(∂K), μK + μK′
= 0 on eK−K′ ∀K,K ′ ∈ Th,

μK = gN on ∂KN ∀K ∈ Th
}
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and the test function spaces W =
∏

K∈Th
Wq(div;K) and V =

∏
K∈Th

H1(K). We
set X = (U × Λ), Y = (Σ × M) and we introduce the compact notation ũ = (u;λ)
and σ̃ = (σ;μ). The DPG weak formulation of problem (2.1) is obtained from (2.3)
by introducing the hybrid variables λ and μ to represent the values u∂K and σ∂K ,
respectively, and by summing up on the triangles and reads:

find (ũ, σ̃) ∈
(
X × Y

)
such that

{
a(σ̃, q) + b1(ũ, q) = 0 ∀q ∈ W,

b2(σ̃, v) = (f, v) ∀v ∈ V,
(3.3)

where (·, ·) is the usual L2 product and where we have set

a(σ̃, q) =
∑

K∈Th

∫
K

σ · q dx, b1(ũ, q) =
∑

K∈Th

(∫
K

u divq dx−
∫
∂K

λq · n ds

)
,

b2(σ̃, v) =
∑

K∈Th

(∫
K

σ · ∇v dx−
∫
∂K

μ v ds

)
.

Due to the simultaneous presence of the two Lagrangian multipliers λ and μ, the
resulting scheme lacks the formal symmetry of a standard Galerkin mixed-hybrid
formulation and becomes a DPG method for the numerical approximation of second
order boundary value problems. It is characterized by a completely equal treatment
of the mixed variables u and σ. Indeed, since the integration by parts has relaxed all
the regularity requirements on u and σ at the expense of more regular test functions
q and v, an equal-order interpolation for these internal fields is allowed in the finite
element approximation of (3.3).

Remark 3.1. The choice of the unknowns and of the corresponding functional set-
ting in (3.3) allows one to interpret the DPG formulation as a (suitable) hybridization
of the dual-mixed problem (2.2), the hybridization procedure being carried out here
“on the continuous level” rather than “on the discrete level” as done in the classical
reference work [1]. The advantage of dual-mixed formulations with hybridization on
standard dual-hybrid formulations is that the former yield an approximation of the
normal stresses that is continuous on each edge of Th, while the latter ensure flux con-
servation only in an average sense over the patch of elements surrounding each node
of the triangulation. In [1], this goal is achieved by introducing a hybrid variable
that appears only as a discrete function (the so-called λ-trick), while with the present
functional setting, functions in W 1/q,p(∂K) need not be continuous at the vertices of
∂K, which allows for a fully discontinuous approximation of the hybrid variable over
Eh. Notice that the extra amount of regularity (q > 2) required to achieve the desired
conservation properties has no practical limiting consequences on the choice of the
finite element spaces for the approximation of functions in Wq(div;K).

Remark 3.2. Given the above functional spaces, it will be possible to prove the
(weak) coerciveness of a(·, ·), b1(·, ·), and b2(·, ·) in norms weaker than the natural
ones (cf. Propositions 3.3, 3.4, and 3.5, Corollary 3.7, and the corresponding discrete
ones in section 6.1). This, however, will be enough [23, 24] to establish uniqueness of
the weak solution of (3.3) and of its corresponding finite element discretization (see
section 6.1), as well as superconvergence error estimates for the approximation λh of
the hybrid variable λ in a natural boundary norm (see section 6.3).

Remark 3.3. Whenever continuous test functions q and v are used in (3.3), we
recover the dual-primal method proposed and analyzed in [30]. Therefore, the DPG
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method can be fully regarded as a hybridization of the above-mentioned scheme.
Moreover, the mixed system obtained by taking continuous test functions on Ω for σ
and u in (3.4)1 and (3.6)1 yields, upon summing over Th, the primal-dual formulation
proposed and analyzed in [39].

Remark 3.4. Equation (3.3)1 may be thought of as derived from the following
integral form:∫

K

(σK −∇uK) · qK dx +

∫
∂K

(u∂K − λ∂K)η∂K ds = 0 ∀ q, η,(3.4)

where q and η are smooth enough test functions. Choosing η∂K = qK · nK |∂K and
integrating by parts yields∫

K

(σK · qK + uKdiv qK) dx −
∫
∂K

λ∂K q∂K · nK ds = 0 ∀q.(3.5)

Similarly, (3.3)2 may be thought of as derived from the following integral form:∫
K

(div σK + fK)vK dx +

∫
∂K

(σ∂K · nK − μ∂K) ξ∂K ds = 0 ∀ v, ξ,(3.6)

where v and ξ are smooth enough test functions. Choosing ξ∂K = v∂K and integrating
by parts yields ∫

K

σK · ∇ vK dx −
∫
∂K

μ∂K v∂K ds = 0 ∀v.(3.7)

The DPG weak formulation can then be formally interpreted as a mixed-hybrid virtual
work principle where nonvanishing virtual variations δu = v and δ(σ · n) = q · n are
allowed on ∂KD and ∂KN , respectively (see, e.g., [4] for an extensive discussion of
this topic).

3.3. Existence and uniqueness of the DPG solution. In this section we
prove the existence and uniqueness of the solution of problem (3.3). To do so, we
make use of the generalized saddle point problem theory introduced in [33] and further
developed in [8]. For ease of presentation, we assume henceforth that Γ ≡ ΓD with
gD = 0.

Lemma 3.1 (existence). Assume that the solution u of problem (2.1) is such that
σ ∈ (Lq(Ω))2 ∩ H(div; Ω), where σ = ∇u. Then, we have that ũ = (u, u|Eh

) and
σ̃ = (σ, (σ · n)|Eh

) is a solution of problem (3.3).
Proof. Taking v ∈ H1

0 (Ω) in (3.3)2 yields (see [14, Chap. 3, Prop. 1.1])

∑
K∈Th

∫
∂K

μv ds = 0 ∀v ∈ H1
0 (Ω).

Then (3.3)2 becomes ∫
Ω

σ · ∇v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω),

from which it follows that σ = ∇u is a solution. Similarly, taking q ∈ Wq(div; Ω) in
(3.3)1 yields

∑
K∈Th

∫
∂K

λ q · n ds = 0 ∀q ∈ Wq(div; Ω).
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Then (3.3)1 becomes

∫
Ω

∇u · q dx +

∫
Ω

u div q dx = 0 ∀q ∈ Wq(div; Ω),

for which u is a solution.
Let us now go back to the hybrid fields; integrating by parts the first term in the

bilinear form b2(·, ·), we obtain

∑
K∈Th

(∫
∂K

vσ · n ds−
∫
∂K

μ v ds

)
= 0 ∀v ∈ V,

which shows that μ|∂K = σ · n|∂K is a solution (recall indeed that σ ∈ H(div; Ω)

implies σK · nK + σK′ · nK′ = 0 ∀eK−K′). Proceeding similarly with the bilinear
form b1(·, ·), we obtain

∑
K∈Th

∫
∂K

(u− λ)q · n ds = 0 ∀q ∈ W,

which shows that λ|∂K = u|∂K is a solution. The consistency of the continuous DPG
formulation with the original problem is thus proved.

Before dealing with the issue of the uniqueness of the solution of problem (3.3),
we state the following useful property that is an extension of the Helmholtz decom-
position principle to the present functional setting (cf. [14, Chap. VII, Prop. 3.4 and
Remark 3.3] and [25]).

Proposition 3.2. Every function w ∈ (Lq(Ω))2 admits the orthogonal decom-
position

w = ∇ξ ⊕ curlφ,

where ξ ∈ W 1,q
0 (Ω), φ ∈ W 1,q(Ω) \ R, and curlφ = ( ∂φ

∂x1
,− ∂φ

∂x2
)T .

Using the above proposition, we can characterize the null spaces K1 and K2

associated with the bilinear forms b1(·, ·) and b2(·, ·) as follows:

K1 = {q ∈ W | b1(ũ, q) = 0∀ũ ∈ X} = {q ∈ Wq(div; Ω) |div q = 0 in Ω} ,

K2 = {σ̃ ∈ Y | b2(σ̃, v) = 0∀v ∈ V } = {σ ∈ K1; μ = σ · n on ∂K ∀K ∈ Th} .

The continuous bilinear forms b1(·, ·) and b2(·, ·) induce the following orthogonal de-
compositions in terms of the closed subspaces K1 and K2, respectively:

W = K1 ⊕W1 and Y = K2 ⊕W2,

where W1 = K⊥
1 and W2 = K⊥

2 .
In order to prove the uniqueness of the solution of the DPG weak formulation,

let us check the weak coerciveness of a(·, ·) and the inf-sup condition for b1(·, ·) and
b2(·, ·).

Proposition 3.3. There exists a constant δ > 0 such that

sup
q∈K1

a(σ̃, q) ≥ δ||σ||0,Ω ||q||0,Ω ∀σ̃ ∈ K2,(3.8)
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sup
σ̃∈K2

a(σ̃, q) > 0 ∀q ∈ K1, q �= 0.(3.9)

Proof. Let σ̃ ∈ K2 and take q∗ ∈ K1. Condition (3.8) is immediately verified
with δ = 1 by taking q� = σ̃ since a(σ̃, q∗) = ||σ||0,Ω ||q∗||0,Ω ∀ σ̃ ∈ K2. Now let
q ∈ K1, q �= 0, and σ̃∗ ∈ K2. Taking σ̃∗ = q, condition (3.9) is immediately veri-
fied.

Proposition 3.4. There exists a constant γ1 > 0 such that

sup
q∈W

b1(ũ, q) ≥ γ1||u||0,Ω||q||0,Ω ∀ũ ∈ X.(3.10)

Proof. Let ũ ∈ X and q∗ = ∇w, where w is the solution of the Dirichlet problem

�w = u in Ω, w = 0 on Γ.

Since u ∈ Lq(Ω), we have q∗ ∈ Wq(div; Ω), and there exists a constant C such that
||q∗||0,Ω ≤ C||u||0,Ω. Moreover, it is easy to verify that b1(ũ, q

∗) = ||u||20,Ω from which
(3.10) immediately follows.

Proposition 3.5. There exists a constant γ2 > 0 such that

sup
σ̃∈X

b2(σ̃, v) ≥ γ2||σ||0,Ω||v||0,Ω ∀v ∈ V.(3.11)

Proof. Let v ∈ V and σ∗ ∈ Wq(div; Ω), divσ∗ �= 0 and μ∗ = σ∗ · n on ∂K,
∀K ∈ Th. Then, after integrating by parts over each element K ∈ Th, we have

b2((σ
∗;μ∗), v) = −

∑
K∈Th

∫
K

v divσ∗ dx,

from which we prove (3.11) following the same proof as in Proposition 3.4.
The following theorem is an immediate consequence of the previous results.
Theorem 3.6. Under the regularity assumptions stated in Lemma 3.1, problem

(3.3) admits a unique solution (ũ, σ̃) ∈ (X × Y ).
Having proved Propositions 3.3, 3.4, and 3.5, we can state the following stability

result.
Corollary 3.7. The solution (σ̃, ũ) of the DPG problem (3.3) satisfies the

estimate

|||ũ|||X ≤ K1||f ||0,Ω, |||σ̃|||Y ≤ K2||f ||0,Ω,

where |||ũ|||2X = ||u||20,Ω + ||λ||2Λ, |||σ̃|||2Y = ||σ||20,Ω + ||μ||2M , and where K1 = (c21 +

c22)
1/2, K2 = (c23 + c24)

1/2, with

c1 =
δ(2 + γ2) + 2

γ2δ
, c2 =

2

δ
, c3 =

δ(2 + γ2) + 2

γ2δ
, c4 =

2

δ
.

4. The DPG finite element approximation. Given the finite-dimensional
spaces

Xh ⊂ X, Yh ⊂ Y, and Wh ⊂ W, Vh ⊂ V,

the DPG finite element approximation of problem (2.1) reads:
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find (ũh, σ̃h) ∈
(
Xh × Yh

)
such that

{
a(σ̃h, qh) + b1(ũh, qh) = 0 ∀qh ∈ Wh,

b2(σ̃h, vh) = (f, vh) ∀vh ∈ Vh.
(4.1)

We have to define the spaces Xh, Vh,Wh, Vh and specify their degrees of freedom.

The choice of the finite element spaces is absolutely nontrivial in mixed Petrov–
Galerkin formulations. The idea is first to lay down the properties we want the trial
finite element spaces to satisfy and then to select accordingly the discrete test finite
element spaces in order to end up with a stable and convergent approximate scheme.

4.1. Trial finite element spaces. The objectives we want the discrete approx-
imation to achieve are the highest possible level of discontinuity and an equal-order
interpolation for uh and σh and for λh and μh, respectively. The motivation for adopt-
ing equal-order interpolation for both mixed and hybrid variables is that by doing so
the numerical performance of a scheme may be significantly enhanced. As a matter of
fact, mixed formulations can be interpreted as a phase-space approach. Established
approaches in dynamics problems applications suggest that an equal-order treatment
of the two fields is the right key to achieving correct energy conservation (see [9]).

A natural choice for both internal and interface unknown fields is to consider on
each triangle K polynomial finite elements of equal order, respectively, in K and on
each edge of ∂K. Henceforth we let k be a nonnegative integer and we denote by
Pk(K) the space of all polynomials of degree ≤ k on K and by Rk(∂K) the space
of all functions defined over the boundary ∂K of K whose restrictions to any side
e ∈ ∂K are polynomials of degree ≤ k. Notice that functions in Rk(∂K) need not be
continuous at the vertices of K.

We take on each triangle K ∈ Th

Xk
h(K) = Pk(K) ×Rk(∂K), Y k

h (K) = (Pk(K))2 ×Rk(∂K),(4.2)

and we set

Xk
h =

∏
K∈Th

Xk
h(K), Y k

h =
∏

K∈Th

Y k
h (K),(4.3)

where functions belonging to Rk(∂K) are single-valued on each internal edge and
satisfy the appropriate boundary conditions on ΓD and ΓN , respectively. For brevity
of notation we also set X k

h (K) = Xk
h(K) × Y k

h (K) and X k
h = Xk

h × Y k
h .

4.2. Test finite element spaces. Let us now address the issue of properly
choosing the finite element test spaces for the DPG approximation. We will start by
setting up necessary conditions for the dimension of the test finite element spaces in
order for the linear system arising from (4.1) to be a square one. The stability of the
approximation will provide a sufficient criterion for explicitly selecting the discrete
test functions.

We start with performing a count of the total degrees of freedom corresponding
to the choice (4.2) as a function of the polynomial degree k. Subtracting the total
number of constraints enforced by the definition of the hybrid field finite element
spaces from the previously obtained amount provides the total number of equations
that must be written to end up with a square algebraic linear system for each value
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of k. Denoting by NE, Ned, Ni, and Nb the number of triangles, edges, internal edges,
and boundary edges, respectively, we have

dim(X k
h ) =

3

2
(k + 1)(k + 6)NE,(4.4)

while the total number of constraints is Nc = (k+1)(2 Ni + Nb).

Applying Euler’s theorem (Ned = (3 NE + Nb)/2), we can express the total number
of constraints as a function of NE as Nc = 3(k+1)NE, from which it follows that the
dimension of the global finite element test space

Vk
h(K) = W k

h (K) × V k
h (K), Vk

h = W k
h × V k

h

that is needed to end up with a square linear system for each value of k is

dim(Vk
h) = dim(X k

h ) − Nc =
3

2
(k + 1)(k + 4)NE.(4.5)

Looking at (4.4) and (4.5) it clearly appears that for each k, the degrees of free-
dom for both trial and test spaces as well as the total number of constraints can all
be expressed as a function of the sole number of mesh triangles NE. Therefore, the
proper design of the finite element test function spaces can be carried out at the single
element level. Precisely, denoting by Nc(K) the number of constraints on triangle K,
relation (4.5) can be written at the element level as

dim(Vk
h(K)) = dim(X k

h (K)) − Nc(K) =
3

2
(k + 1)(k + 4) ∀K ∈ Th.(4.6)

This equation expresses the balance between degrees of freedom, constraints, and
number of equations that must be fulfilled independently on each single element K.
Based on these constraints, we start in the next section with the construction of the
finite element test space X k

h (K) in the lowest degree case k = 0. The resulting local
finite element space will be denoted as DPG0(K) = X 0

h (K) × V0
h(K) ∀K ∈ Th.

5. Choice of the finite element spaces. In this section we discuss in detail
the lowest order finite element approximation DPG0 and then we use this procedure
as a guideline for the generation of higher order elements.

5.1. DPG0 finite element approximation. Setting k = 0, relation (4.6) gives

dim(Vk
h(K)) = dim(W 0

h (K)) + dim(V 0
h (K)) = 6 ∀K ∈ Th.

The minimal choice for the scalar finite element test space is V 0
h (K) = P1(K). By

doing so, 3 degrees of freedom are left for the vector finite element test space, which can
be conveniently saturated by setting W 0

h (K) = RT0(K), where RTk(K) = (Pk(K))2⊕
xPk(K) ∀K ∈ Th is the Raviart–Thomas finite element space of degree k [36]. The
DPG0 local finite element space is then defined on each element as

DPG0(K) =
(
P0(K) ×R0(∂K) × (P0(K))2 ×R0(∂K)

)
︸ ︷︷ ︸

X 0
h(K)

×
(
RT0(K) × P1(K)

)
︸ ︷︷ ︸

V0
h(K)

.

(5.1)
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5.2. Higher order DPG methods. Higher order finite elements will be con-
sistently denoted as DPGk(K) = X k

h (K) × Vk
h(K) ∀K ∈ Th. Under the assumption

that the local finite element trial space is defined as in (4.2)–(4.3), the question is how
to construct a suitable test finite element space such that the following conditions are
satisfied:

1. the dimension of the test finite element space is

dim(Vk
h(K)) = dim(W k

h (K)) + dim(V k
h (K)) =

3

2
(k + 1)(k + 4) ∀K ∈ Th;

(5.2)

2. the following inf-sup condition is verified:

μh ∈ Rk(∂K),

∫
∂K

μh vh ds = 0 ∀v ∈ V k
h (K) implies μh = 0.(5.3)

The first condition ensures that we end up with a square system. The second condition
forces a restriction on the minimum order of the polynomial space for vh. There is no
need of such a condition for the term

∫
∂K

λh qh · n ds since both λh and the normal

traces of functions in W k
h (K) are discontinuous on ∂K.

In the construction procedure, we must distinguish between the case when k is
an even or an odd integer. Indeed, using the results stated by Lemmas 4 and 6 in [35]
(where the same compatibility problem occurs), we have that condition (5.3) holds if

{
vh ∈ Pk+1(K) for k even, k ≥ 0,

vh ∈ P̂(K), Pk+1(K) ⊂ P̂(K) ⊂ Pk+2(K) for k odd, k ≥ 1.
(5.4)

In the first case (k even), the family of finite element spaces is immediately built
by setting V k

h (K) = Pk+1(K) and then suitably saturating the degrees of freedom
implied by (5.2)

dim(W k
h (K)) = dim(Vk

h(K)) − dim(V k
h (K)) = k2 + 5k + 3 ∀K ∈ Th(5.5)

by choosing W k
h (K) = BDFMk+1(K), k ≥ 0 (for the definition of this space and its

properties, see [13, 14]).
The situation is more complicated when k is odd. In this case the choice vh ∈

Pk+1(K) is not allowed by (5.4), while the choice vh ∈ Pk+2(K) is acceptable but
unnecessarily expensive. In [35] it has been shown that in order to satisfy condition
(5.4) it is sufficient to enrich the space Pk+1(K) with a single additional degree of

freedom suitably excerpted from the space Pk+2(K). Setting thus V k
h (K) = P̂(K),

relation (5.2) becomes for each K ∈ Th

dim(W k
h (K)) = dim(Vk

h(K)) − dim(V k
h (K)) = k2 + 5k + 2.(5.6)

A possible choice is then

W k
h (K) = RTk(K) ⊕Bk−1(K) ⊕Bk(K) ⊕ · · · ⊕B2k−3(K), k ≥ 1,

where (k + 1)(k + 3) degrees of freedom are saturated by the RTk space and the
remaining (k − 1) degrees of freedom are saturated by adding (k − 1) bubble func-
tions Bl defined as (see [38]) Bl(K) = {q | q = curl (bKw)} , with w ∈ Pl(K), bK =∏3

i=1 zi(x), zi, i = 1, 2, 3, being the barycentric coordinates in K.
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To summarize, the family of DPGk finite element spaces is defined as

Xk
h(K) = Pk(K) ×Rk(∂K), Y k

h (K) = (Pk(K))2 ×Rk(∂K), k = 0, 1, 2, . . . ,

and letting m = 0, 1, 2, . . . , we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W 2m
h (K) = BDFM2m+1(K), V 2m

h (K) = P2m+1(K), k = 2m,

W 2m+1
h (K) = RT2m+1(K) ⊕B2m(K) · · · ⊕B4m−1(K), V 2m+1

h (K) = P̂(K),

k = 2m + 1.

Notice that with the above choices the matrix arising from the term
∫
∂K

λhqh · n ds
is always square and nonsingular since both λh|∂K and qh · n|∂K belong to the same
finite element space due to the properties of the RTk and BDFMk+1 spaces (see [14,
Chap. 3]).

6. Stability and convergence analysis of the approximate DPG0 solu-
tion. In this section and in the remainder of the article, we focus our attention on the
member of the DPGk family of lowest degree, the DPG0 finite element. Numerical
results on the convergence performance of higher order elements of the family can be
found in [10].

6.1. Existence and uniqueness of the DPG0 solution. We start proving
the uniqueness (and thus the existence) of the solution of problem (4.1). To do so,
we characterize the discrete null spaces Kh

1 and Kh
2 as

Kh
1 = {qh ∈ Wh | b1(ũh, qh) = 0∀ũh ∈ Xh}

= {qh ∈ Wh | qK · nK + qK′ · nK′ = 0 ∀eK−K′ , div qh = 0 in Ω} ,

Kh
2 = {σ̃h ∈ Yh | b2(σ̃h, vh) = 0∀v ∈ Vh}

= {σh ∈ Σ |σK · nK + σK′ · nK′ = 0 ∀eK−K′ ; μh = σh · n on ∂K ∀K ∈ Th} .

The continuous bilinear forms b1(·, ·) and b2(·, ·) induce the following orthogonal de-
compositions in terms of the closed subspaces Kh

1 and Kh
2 , respectively:

Wh = Kh
1 ⊕Wh

1 and Yh = Kh
2 ⊕Wh

2 , where Wh
1 = Kh,⊥

1 , Wh
2 = Kh,⊥

2 .

Moreover, the following properties hold.
Proposition 6.1. There exists a constant δ′ > 0 independent of h such that

supqh∈Kh
1
a(σ̃h, qh) ≥ δ′||σh||0,Ω ||qh||0,Ω ∀σ̃h ∈ Kh

2 ,

supσh∈Kh
2
a(σ̃h, qh) > 0 ∀qh ∈ Kh

1 , qh �= 0.
(6.1)

Proof. Let σ̃h ∈ Kh
2 and take q∗

h ∈ Kh
1 . Condition (6.1)1 is immediately verified

with δ′ = 1 by taking q∗
h = σ̃h since a(σ̃h, q

∗
h) = ||σh||0,Ω ||q∗

h||0,Ω ∀ σ̃h ∈ Kh
2 . Now

let qh ∈ Kh
1 , qh �= 0 and σ̃∗

h ∈ Kh
2 . Taking σ̃∗

h = qh, condition (6.1)2 is immediately
verified.

Proposition 6.2. There exists a constant γ′
1 > 0 independent of h such that

sup
qh∈Wh

b1(ũh, qh) ≥ γ′
1||uh||0,Ω||qh||0,Ω ∀ũh ∈ Xh.(6.2)
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Proof. Let ũh ∈ Xh and take q∗ ∈ Wh such that q∗
K ·nK +q∗

K′ ·nK′ = 0 on eK−K′

∀K,K ′ ∈ Th. Then using Lemma 7.2.1 of [34] and noting that ||qh||H(div;Ω) ≥ ||qh||0,Ω,
condition (6.2) immediately follows.

To prove the discrete inf-sup condition for the bilinear form b2(·, ·), we need to

introduce the space Ṽ =
∏

K∈Th
(H1(K) \ R), equipped with the norm |||v|||Ṽ =

(
∑

K∈Th
|v|21,K)1/2. Notice that this norm is indeed a norm on the space Ṽ and is

equivalent to the norm ||·||V for functions v ∈ Ṽ . We also consider a finite-dimensional

approximation of Ṽ , i.e., the space Ṽh ⊂ Ṽ defined as Ṽh =
∏

K∈Th
P1(K) \ R.

Proposition 6.3. There exists a constant γ′
2 > 0 independent of h such that

sup
σ̃h∈Yh

b2(σ̃h, vh) ≥ γ′
2||σh||0,Ω|||vh|||Ṽ ∀vh ∈ Ṽh.(6.3)

Proof. Let vh ∈ Ṽh. Take σ∗
h ∈ Σh such that σ∗

h = ∇vh on K ∀vh ∈ Ṽh, ∀K ∈ Th
and set μ∗

h ≡ 0. Then we have b2(σ̃
∗
h, vh) = ||σ∗

h||0,Ω|||vh|||Ṽ , and (6.3) immediately
follows with γ′

2 = 1.
Remark 6.1. The above proof reveals that the choice vh = constant on each

K ∈ Th by itself does not allow us to state condition (6.3). However, taking vh = 1 on
K and equal to zero elsewhere is a possible and significant choice since it provides the
local conservation property of the DPG formulation −

∫
∂K

μh ds =
∫
K
f dx. Moreover,

a global conservation property can be shown to hold as well by taking vh ≡ 1 on Ω,
yielding the relation −

∫
Γ
μh ds =

∫
Ω
f dx. A detailed discussion of this subject will

be carried out in section 9.
Remark 6.2. Choosing σ∗

h = 0, the bilinear form b2(·, ·) yields the familiar relation
of primal hybrid formulations

∑
K∈Th

∫
K
μhvh = 0 ∀vh ∈ Vh, which admits the unique

solution μh ≡ 0.
The following theorem is an immediate consequence of the previous results.
Theorem 6.4. The DPG0 approximation of problem (2.2) admits a unique so-

lution (ũh, σ̃h) ∈ (Xh × Yh).

6.2. Error estimates. In the following sections we establish optimal error esti-
mates for the mixed variables uh and σh and for the hybrid variables λh and μh.

6.2.1. Projection operators. In view of the error analysis of the DPG formu-
lation, it is useful to introduce some approximation operators. We denote by PK the
projection operator from L2(K) onto P0(K) satisfying the approximation property

||v − PKv||0,K ≤ Ch|v|1,K ∀v ∈ H1(K).(6.4)

From the operator PK , for all v ∈ L2(Ω), we construct the global operator Ph as

Phv|K = PKv ∀K ∈ Th.(6.5)

We also need to introduce the projection operator ρ0
h from

∏
K∈Th

L2(∂K) onto

R0(∂K) such that, for all λ ∈
∏

K∈Th
L2(∂K), we have

∫
∂K

(ρ0
hλ− λ)r0 ds = 0 ∀r0 ∈ R0(∂K), ∀K ∈ Th.(6.6)

Remark 6.3. The operator ρ0
h is well defined since, by Sobolev’s embedding

theorem [27, 28], we have that W 1/q,p(∂K) ↪→ L2(∂K).
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6.2.2. Error estimates for the mixed variables. The following optimal error
estimates hold.

Theorem 6.5. Let (u,σ) be the solution of (3.3) and let (uh,σh) be the solution
of (4.1). If σ ∈ (H1(Ω))2, then there exists a positive constant C independent of h
such that

||u− uh||0,Ω ≤ Ch(|u|1,Ω + |σ|1,Ω),

||σ − σh||0,Ω ≤ Ch|σ|1,Ω.
(6.7)

Proof. From (3.3) and (4.1) we have{
a(σ̃ − σ̃h, qh) + b1(ũ− ũh, qh) = 0 ∀qh ∈ Wh,

b2(σ̃ − σ̃h, vh) = 0 ∀vh ∈ Vh.
(6.8)

Taking qh ∈ Kh
1 , the first relation in (6.8) becomes

a(σ̃ − σ̃h, qh) = 0 ∀qh ∈ Kh
1 .(6.9)

Let us introduce the decomposition σ̃h = (σh, μh) = σ̃0
h+σ̃⊥

h , where σ̃0
h = (σ0

h, μ
0
h) ∈

Kh
2 and σ̃⊥

h = (σ⊥
h , μ

⊥
h ) ∈ Wh

2 . Introducing the projection operator Π̃h = ((Ph)2, ρ0
h),

where Ph and ρ0
h have been defined in (6.5) and (6.6), respectively, and using the

decomposition σh = (σ0
h + σ⊥

h ), equation (6.9) reads

a((Π̃hσ)0 − σ0
h, qh) = a(Π̃hσ − σ, qh) + a(σ⊥

h − (Π̃hσ)⊥, qh) ∀qh ∈ Kh
1 ,

which, using the coercivity and continuity of the bilinear form a(·, ·), yields

||(Π̃hσ)0 − σ0
h||0,Ω ≤ (||Π̃hσ − σ||0,Ω + ||(Π̃hσ)⊥ − σ⊥

h ||0,Ω).(6.10)

Now we need to bound the quantity ||(Π̃hσ)⊥ − σ⊥
h ||0,Ω. Using (6.5) into (6.8)2, we

get

b2(Π̃hσ̃ − σ̃h, vh) = b2(Π̃hσ̃ − σ̃, vh) = −
∑

K∈Th

∫
∂K

(ρ0
hμ− μ)vh ds ∀vh ∈ Vh.

(6.11)

Recalling Lemma 9 in [35], we have that∫
∂K

(σ · n − ρ0
hμ)v ds ≤ C

hK

ρK
|σ|1,K |v|1,K ∀v ∈ H1(K).

Using this latter relation in (6.11) and the discrete inf-sup condition for b2(·, ·), we
get the estimate

||(Π̃hσ)⊥ − σ⊥
h ||0,Ω ≤ Ch|σ|1,Ω.(6.12)

Now, gathering (6.10) and (6.12) and using the triangle inequality, we get (6.7)2.
Let us now prove (6.7)1. Taking qh ∈ Wh

1 in the first equation of (6.8) we get

b1(ũ− ũh, qh) = a(σh − σ, qh) ∀qh ∈ Wh
1 .

Introducing the projection operator P̃h = (Ph, ρ
0
h), we write the latter relation as

b1(P̃hũ− ũh, qh) = a(σh − σ, qh) ∀qh ∈ Wh
1 .

Then using the discrete inf-sup condition for b1(·, ·), we get

||Phu− uh||0,Ω ≤ C||σ − σh||0,Ω ≤ Ch|σ|1,Ω.(6.13)

Eventually, using (6.7)2, (6.4), and the triangle inequality, we get (6.7)1.
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6.3. Error estimates for the hybrid variables. In this section, we derive
a priori error estimates for the discretization errors associated with the hybrid vari-
ables λh and μh. In doing this, we shall prove some equivalence results between the
DPG0 method and hybrid formulations, both of primal and dual type.

To start with, we let WNC
h,0 denote the set of nonconforming functions in Vh that

are affine on each K ∈ Th and are continuous at the midpoint of each edge and vanish
at the midpoint of each edge of Γ. Then, we define u∗

h ∈ WNC
h,0 as the piecewise linear

nonconforming function such that∫
∂K

u∗
h ηh ds =

∫
∂K

λh ηh ds ∀ηh ∈ R0(∂K), ∀K ∈ Th,(6.14)

which implies in particular that u∗
h(xMP,i) = λh,ei for each edge ei ∈ ∂K, xMP,i being

the coordinate vector of the midpoint of ei. Using the fact that qh · nK ∈ R0(∂K)
and (6.14), we get∫
∂K

λhqh·nK ds =

∫
∂K

u∗
hqh·nK ds =

∫
K

u∗
hdivqh dx +

∫
K

qh·∇u∗
h dx ∀qh ∈ Wh(K).

Substituting this latter expression in (4.1)1, we obtain∫
K

(σh −∇u∗
h) · qh dx +

∫
K

(uh − u∗
h)divqh dx = 0 ∀qh ∈ Wh(K).(6.15)

Taking qh ∈ (P0(K))2 in (6.15) yields

σK
h = ∇u∗

h ∀K ∈ Th,(6.16)

while taking qh = (x, y)T in (6.15) and using (6.14) yields

uK
h =

∫
K
u∗
h dx

|K| = PKu∗
h =

1

3

3∑
i=1

λh,ei ∀K ∈ Th.(6.17)

Relation (6.17) shows that uK
h is the average value of u∗

h on K and thus the average
value of the hybrid variables λh on the edges of the element. Let us now consider
(4.1)2 and take vh ∈ WNC

h,0 . Equation (4.1)2 becomes

∑
K∈Th

∫
K

∇u∗
h · ∇vh dx =

∑
K∈Th

∫
K

fvh dx ∀vh ∈ WNC
h,0 .(6.18)

Relation (6.18) shows that u∗
h actually coincides with the solution uNC

h ∈ WNC
h,0

of problem (2.1), which is obtained with the nonconforming finite element approxi-
mation (see [35]).

Then, the following error estimate can be proved.
Theorem 6.6. Let u be the solution of problem (2.1) such that u ∈ H2(Ω) ∩

H1
0 (Ω), and let u∗

h be the solution of problem (6.18) such that (6.14) holds. Then,
under the assumption that the polygonal domain Ω is convex, we have (see [35])

||u− u∗
h||0,Ω ≤ Ch2|u|2,Ω.(6.19)

The above theorem is a superconvergence result for the piecewise linear noncon-
forming extension over Ω of the hybrid variable λh computed by the DPG0 formula-
tion. Moreover, the estimate (6.19) can be regarded as the counterpart for the DPG
formulation of Theorem 2.2 in [1] valid for the dual-mixed method with hybridization.
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Considering again (4.1)2 and taking this time vh ∈ Vh, we obtain

∫
∂K

μh vh ds =

∫
K

∇u∗
h · ∇vh dx−

∫
K

fvh dx ∀vh ∈ Vh(K), ∀K ∈ Th,(6.20)

which coincides with the postprocessing procedure discussed in [37, section 19] for the
primal-hybrid formulation. This result actually demonstrates that the hybrid field μh

computed by the DPG0 approximation coincides with the field ph · n computed by
the primal-hybrid formulation. We then have the following result.

Theorem 6.7. Under the assumptions of Theorem 6.6 and the condition stated
in Remark 6.2, we have

||σ · n − μh||−1/2,h ≤ Ch|σ|1,Ω,

where ∀ξ ∈ R0(∂K) we define the norm ||ξ||−1/2,h = (
∑

e∈Eh
|e|||ξ||20,e)1/2 (see [1]).

Proceeding along the above guideline, it is possible to further explore the con-
nection existing between the DPG0 formulation and the dual-mixed method. In view
of establishing this connection, we assume henceforth f to be piecewise constant
over Th. Under this hypothesis, we can use the following result proved in [29]:

uDM
h − PKu∗

h = uDM
h − uK

h = −fK

4

(
|x2

CG,K | − 1

|K|

∫
K

|x|2 dx
)

=
1

144
fK

3∑
i=1

|ei|2 = O(h2
K) ∀K ∈ Th,

(6.21)

where xCG,K is the coordinate vector of the center of gravity of K and uDM
h ∈ P0(K)

is the solution computed by the dual-mixed method. Using the result (6.21) and
recalling the standard estimates for the dual-mixed approximation (see [23, 14]) gives
by the triangle inequality the following result.

Theorem 6.8. Let (u,σ) be the solution of (2.1) and (uh,σh) be the solution of
(4.1). If the triangulation Th is uniformly regular and σ ∈ (H1(Ω))2, divσ ∈ H1(Ω),
then

||Phu− uh||0,Ω ≤ Ch2(|σ|1,Ω| + |divσ|1,Ω).(6.22)

Relation (6.22) can be interpreted as a superconvergence result for uh at the
center of gravity of each triangle K. This latter result also allows us to derive an
optimal estimate for the quantity ||ρ0

hλ − λh||1/q,p,∂K . To proceed, we first need to
recall the following result [23].

Lemma 6.9. For all T ∈ W−1/q,q(∂K) there exists a unique qh ∈ RT0(K) such
that ∀K ∈ Th we have∫

∂K

(qh · n − T ) r0 ds = 0 ∀r0 ∈ R0(∂K).(6.23)

Furthermore, if Th is uniformly regular, then there is a constant C independent of K
such that

||qh||0,K ≤ Ch2/p−1||T ||−1/q,q,∂K , ||divqh||0,K ≤ Ch2/p−2||T ||−1/q,q,∂K ,(6.24)

where the norm ||.||−1/q,q,∂K has been defined in (3.1).
For the definition of a uniformly regular triangulation, see [18].
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We are now in a position to state the following result.
Theorem 6.10. Under the assumptions of Theorem 6.8, we have

||ρ0
hλ− λh||1/q,p,∂K ≤ Ch2/p (|σ|1,Ω + |divσ|1,Ω) ∀K ∈ Th.(6.25)

Proof. Let q be any element of Wq(div;K) and let qh ∈ RT0(K) be defined by
(6.23) with T = q · n|∂K and such that qh|K = qh, qh|K′ = 0 ∀K ′ �= K, ∀K ∈ Th.
Subtracting the first equation of (4.1) from the first equation of (3.3), we get

∫
∂K

qh · n(λ− λh) ds =

∫
K

(σ − σh) · qh dx +

∫
K

(u− uh) divqh dx,

which can be written as∫
∂K

qh · n(ρ0
hλ− λh) ds =

∫
K

(σ − σh) · qh dx +

∫
K

(PKu− uh) divqh dx.

Owing to the definition of qh, using (6.24), (6.22), and the definition (3.2), we even-
tually get the estimate (6.25).

Since p < 2, estimate (6.25) can be regarded as a superconvergence property
for λh.

To conclude our equivalence analysis, we show that

μK
h = σDM

h · nK ∀K ∈ Th,(6.26)

where σDM
h ∈ RT0(K) is the solution computed by the dual-mixed method. We recall

the following result proved in [29]:

σh ≡ ∇u∗
h = σDM

h + (x− xCG)
fK

2
∀K ∈ Th.

Substituting the above relation into (4.1)2, integrating by parts, and observing that
divσDM

h + fK = 0, we obtain

∫
∂K

(μK
h − σDM

h · nK)vh dx = 0 ∀vh ∈ P1(K),

which clearly implies μh = σDM
h · nK on ∂K. This result shows that the values μh

are actually the degrees of freedom of the variable σDM
h and as such provide a simple

procedure to recover a self-equilibrated stress field within each element satisfying
interelement traction reciprocity.

6.4. Elliptic problem with variable coefficients. We come now to briefly
addressing the extension of the DPG0 method to the case of an elliptic model problem
with variable coefficients. With this aim, we consider the Poisson problem

−div(a(x)∇u) = f in Ω, u = 0 on Γ,(6.27)

where a = a(x) is a symmetric positive definite matrix-valued function. The mixed
form of (6.27) reads

−div σ = f in Ω, σ = a(x)∇u in Ω, u = 0 on Γ.(6.28)

In this case, the discrete formulation (4.1) becomes
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find (uh, λh; σh, μh) ∈ (Xh × Yh) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
K∈Th

(∫
K

a−1σh · qh dx +

∫
K

uhdivqh dx−
∫
∂K

λh qh · n ds

)
= 0 ∀qh ∈ Wh,

∑
K∈Th

(∫
K

σh · ∇vh dx−
∫
∂K

μh vh ds

)
=

∫
Ω

fvh dx ∀vh ∈ Vh.

(6.29)

We again let u∗
h be a nonconforming approximation of the solution u of problem (6.27)

satisfying (6.14). Taking qh ∈ (P0(K))2 in (6.29)1 and integrating by parts as done
in the case a(x) ≡ 1, we obtain

∫
K

(
a−1σh · qh −∇u∗

h · qh

)
dx = 0 ∀K ∈ Th.

Upon introducing the harmonic average of a(x) defined as α̃K := ( 1
|K|
∫
K

(a(x))−1 dx)−1,

we immediately get the equivalence

σh = α̃−1∇u∗
h ∀K ∈ Th.

Taking vh ∈ WNC
h,0 in (6.29)2 and using the previous relation yields

∑
K∈Th

∫
K

α̃−1
K ∇u∗

h · ∇vh dx =
∑

K∈Th

∫
K

fvh dx ∀vh ∈ WNC
h,0 ,(6.30)

demonstrating that u∗
h turns out to be the nonconforming approximation of problem

(6.28) with harmonic averaging of the coefficient a(x). It is relevant to observe that u∗
h

actually differs from the solution uNC
h of the standard nonconforming approximation

of problem (6.28), which would simply read

∑
K∈Th

∫
K

aK ∇uNC
h · ∇vh dx =

∑
K∈Th

∫
K

fvh dx ∀vh ∈ WNC
h,0 ,

where aK := 1
|K|
∫
K
a(x) dx is the usual average of a(x) on K. In the presence of

strong variations of the coefficient a, the harmonic average is well known to provide
superior accuracy and stability compared to the standard average (see [5, 1, 15, 31]).

7. Computer implementation of the DPG method. The object of the
present section is to discuss an efficient computer implementation of the DPG0 method.
The main issue is to reduce the dimension of the algebraic linear system arising from
(4.1). To start with, we consider the following system of 6 equations in 9 unknowns
that arises from the contribution of each triangle in (4.1):

[
A B C ∅
D ∅ ∅ E

]
⎛
⎜⎜⎝

σ
u
λ
μ

⎞
⎟⎟⎠ =

(
0
f

)
,(7.1)

where the bold symbols represent the vectors of unknowns and given data, and f is
the right-hand side integral in (4.1)2.

On the one hand, one can exploit the nature of hybrid formulations of the DPG
method performing a static condensation of the internal variables in favor of the hybrid
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variables. Defining the new variable σ̂ = [σ,u]T , system (7.1) can be rewritten as

[
A C ∅
D ∅ E

]⎛
⎝ σ̂

λ
μ

⎞
⎠ =

(
0
f

)
, with A = [A, B] , D = [D, ∅] .(7.2)

The (3 × 3) matrix A is nonsingular, so that σ̂ can be eliminated in favor of the sole
edge variable λ, obtaining the following reduced system of 3 equations in 6 interface
unknowns:

−DA−1Cλ + Eμ = f ∀K ∈ Th,(7.3)

which is the algebraic form of (6.20). The matrix E is square and nonsingular because
it emanates from the bilinear form

∫
∂K

μh vh ds, μh ∈ R0(∂K), vh ∈ P1(K), which
satisfies the discrete inf-sup condition. Therefore, we can eliminate μ in favor of the
sole unknown λ:

μ = E−1DA−1Cλ + E−1f ∀K ∈ Th.(7.4)

Enforcing the condition that the hybrid variable μh is single-valued on each inter-
nal edge yields a square symmetric and positive definite linear system for the sole
unknown λ of dimension Ni.

On the other hand, one can instead exploit the DG nature of the DPG method,
eliminating the hybrid variables (counterpart of the numerical fluxes) in favor of the
internal variables. Since both E and C are square nonsingular matrices, λ and μ can
be eliminated in favor of σ̂, obtaining on each element K ∈ Th

λ = Aσ̂, μ = E−1(f −Dσ̂).(7.5)

After some algebra, one sees that the first relation in (7.5) expresses λh on each element
as a discrete Taylor expansion of u about the center of gravity of the element, while
the second relation in (7.5) represents a conservative finite volume-like discretization
of the equilibrium equation. Enforcing now the hybrid variables to be single-valued
on each internal edge of the triangulation, we end up with a square nonsingular
linear algebraic system of dimension 3NE in the sole internal (and fully discontinuous
over Th) unknown vector σ̂.

It is interesting to compare the computational effort associated with the two
implementation approaches discussed above. Using Euler’s theorem (2 Ni + Nb =
3NE) shows that the cost of the solution of the system in the discontinuous unknown
σ̂ is (asymptotically) twice the cost associated with the solution of the system in the
sole hybrid unknown λ. The superior efficiency of this latter formulation makes it
preferable in computations, and it is the reason why it has been used in all of the
numerical examples shown in the next sections.

8. Numerical results. In this section we present the results obtained by apply-
ing the DPG0 formulation to the numerical solution of two elliptic model problems.

8.1. Elliptic model problem 1. We consider problem (2.1) on the unit square
with Γ ≡ ΓD, such that the exact solution is the “bubble function” u = x(1−x)y(1−y),
with the right-hand side f computed accordingly. In Figure 8.1 (left) we show the
computed convergence rates using four different unstructured meshes for the quantities
||u− uh||0,Ω, (◦); ||Phu− uh||0,Ω, (∇); ||u− u∗

h||0,Ω, (�); and ||ρ0
hλ− λh||−1/2,h, (∗),

while in Figure 8.1 (right) we show the computed convergence rates for the quantities
||σ −σh||0,Ω, (�), and ||ρ0

hμ−μh||−1/2,h, (◦). The computed errors are in agreement
with the theoretical estimates of section 6.2.
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Fig. 8.1. Error norms for the elliptic model problem 1.
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Fig. 8.2. Problem setting for the flow in a porous medium (left) and associated velocity field
(right).

8.2. Elliptic model problem 2. We study the problem of a two-dimensional
steady flow system in a porous medium modeled by Darcy’s law [32]: find the hydraulic
potential P and the associated velocity field q = κ∇P , where κ is the hydraulic
conductivity tensor such that

{
−div q = 0 in Ω, q = κ∇P in Ω,

P = PD on ΓD, q · n = qN on ΓN .
(8.1)

In Figure 8.2 (left) we show the computational domain, the boundary conditions,
and the piecewise constant values of κ which are seen to attain strong variations
on Ω. In Figure 8.2 (right), we show the velocity field represented as an RT0 finite
element function reconstructed over Ω from the computed values μh as in (6.20). The
continuity of the normal component of the velocity field across interelement edges is
a crucial property when computing the flow streamlines (see [32] for a discussion of
this issue).

9. Conservation properties of the DPG method. The present section is
aimed at enlightening through a numerical example the conservation properties of the
DPG method. We observe that
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computed by the CG method with no postprocessing and interface fields computed by the DPG0

method.

1. integral global conservation is achieved by taking in (4.1) qh ≡ [1, 1]T and
vh ≡ 1 in Ω, respectively;

2. integral local conservation is achieved by taking in (4.1) qh = [1, 1]T and
vh = 1, in any subdomain S ⊆ Ω and zero elsewhere, respectively.

In the standard continuous Galerkin (CG) method neither the first nor the second
choice for the test function is admissible [26]. Recovering fluxes that enjoy the desired
conservation properties requires a postprocessing procedure, thus adding additional
computational cost to the basic CG discretization. Moreover, if, for example, a nodal
flux approach is used as in [26], overshoots and undershoots appear when a node
coincides with an endpoint of the interface, since there the flux is artificially enforced
to be continuous.

To numerically assess these concepts, we solve the Poisson equation on the domain
Ω = [0, π] × [0, π] with u = 0 on Γ = ∂Ω and f = 1. To test local conservation
properties, we split Ω into the subdomains Ω1 = [0, 3

4π] × [0, π], Ω2 = [ 34π, π] × [0, π]
such that Ω = Ω1 ∪ Ω2 and with boundaries Γ1 and Γ2, respectively. From the exact
solution of the problem (see [40]), we compute the fluxes σ ·n = ∇u ·n on Γ (Figure
9.1), Γ1 (Figure 9.2, left), and Γ2 (Figure 9.2, right) and we compare them with the
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numerical fluxes obtained from the displacement field uCG of a piecewise linear CG
approximation and with the field μh obtained from the DPG0 (using the same grid).
The DPG fluxes are accurate and do not exhibit spurious oscillations at the endpoints
of the boundaries. Moreover, the global equilibrium

∫
Ω
f dx+

∫
Γ

σ·n ds = 0 is verified
to machine precision by the DPG approximation.

10. Conclusions. In this article we have presented the DPG method for the
finite element discretization scheme of second order elliptic boundary value problems.
A stability and convergence analysis of the novel formulation has been carried out,
and numerical results have been shown to validate the computational performance
of the novel formulation. Introducing the DPG formulation has established a clear
connection between mixed-hybrid and DG methods. This result is the motivation and
starting point for future investigations and applications of the novel scheme to deal
with more general problems.
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Abstract. We will consider both explicit and implicit fully discrete finite volume schemes for
solving three-dimensional Maxwell’s equations with discontinuous physical coefficients on general
polyhedral domains. Stability and convergence for both schemes are analyzed. We prove that the
schemes are second order accurate in time. Both schemes are proved to be first order accurate in
space for the Voronoi–Delaunay grids and second order accurate for nonuniform rectangular grids.
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1. Introduction. The finite volume method (FVM) has been developed as a
practical compromise between the finite difference method (FDM) and the finite ele-
ment method (FEM) in the numerical solutions of electromagnetic problems [1, 2, 3,
4, 6, 9, 10, 11, 15, 16]. It allows for unstructured grids, as the FEM does, but it is
typically explicit and as computationally efficient as the FDM.

Even though FEMs provide excellent tools for solving electromagnetic problems
on geometrically complex domains, marching techniques applied to FEMs produce im-
plicit schemes. In order to obtain an explicit scheme to solve Maxwell’s equations on
domains which are geometrically complicated, FVMs are considered. There has been
serious stability problems with some FVM approximations of the Maxwell’s equa-
tions. In this paper we will present a class of FVMs for which we prove stability and
convergence. We will in particular consider inhomogeneous media with discontinuous
coefficients. The methods presented here are based on the semidiscrete techniques
introduced by Chung, Du, and Zou [4, 6]. Rigorous analysis of fully discrete FVMs
for electromagnetics is rarely seen in the literature. It is the purpose of this paper to
provide stability and convergence analysis of two fully discrete FVMs. The first one
is the leapfrog scheme. We will analyze this scheme by using the approach suggested
in Nicolaides and Wang [13], where an FVM for Maxwell’s equations with constant
coefficients is considered. The second one is the Crank–Nicolson scheme. This scheme
is unconditionally stable, so that larger time steps can be used. In addition to stability
and convergence, we also prove existence and uniqueness of solution of the discrete
problem resulting from the implicit Crank–Nicolson discretization.

Let us first introduce notation and formulate the differential equations to be
approximated. Let Ω be a polyhedral domain in R

3 and T > 0. Then the electric
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field E(x, t) and the magnetic field H(x, t) satisfy the Maxwell’s equations

ε
∂E

∂t
− curl H = J in Ω × (0, T ),(1.1)

μ
∂H

∂t
+ curl E = 0 in Ω × (0, T ),(1.2)

div(εE) = ρ in Ω × (0, T ),(1.3)

div(μH) = 0 in Ω × (0, T ),(1.4)

where J(x, t) and ρ(x, t) are the applied current density and the charge density, re-
spectively. We also have the constitutive relations D = εE and B = μH, where D and
B are the electric flux density and the magnetic flux density, respectively. The paper
is concerned with the case where the domain Ω is composed of two distinct dielectric
materials. Let Ω1 ⊂ Ω be a polyhedral subdomain and Ω2 = Ω\Ω̄1. We assume the
electric permittivity ε and the magnetic permeability μ are piecewise constant func-
tions such that ε = εi and μ = μi in Ωi, where εi and μi are positive constants for
i = 1, 2. We supplement the system (1.1)–(1.4) with the perfect conductor boundary
condition E×n = 0 and initial condition. On the interface Γ := ∂Ω1, E and H satisfy

[E × m] = 0, [εE · m] = ρΓ,(1.5)

[H × m] = 0, [μH · m] = 0,(1.6)

where ρΓ(x) is the surface charge density, m is the unit normal of ∂Ω1, and [f ] :=
f2|Γ−f1|Γ is the jump of the function f across the interface with fi = f |Ωi for i = 1, 2.

The rest of the paper is organized as follows. In section 2, we will describe the tri-
angulation of the domain as well as some discrete vector spaces and operators defined
on it. In section 3, we will briefly summarize the finite volume spatial discretization
of Maxwell’s equations. In section 4, we will derive both explicit and implicit fully
discrete finite volume schemes. They are based on leapfrog and Crank–Nicolson time
discretization, respectively. Convergence and stability will be analyzed in case of gen-
eral tetrahedral grids. In section 5, we extend the schemes to nonuniform rectangular
grids. It can be shown that the spatial convergence is one order higher. We will also
provide an example in one space dimension to show the optimality of our estimates
in this section.

2. Discrete vector spaces. In this section, we will briefly summarize the tri-
angulation of the domain as well as discrete vector spaces and operators defined on it.
The domain Ω is triangulated by the standard Voronoi–Delaunay triangulation (cf.
[8]). We will refer to the Delaunay triangulation, which contains tetrahedral cells, as
the primal grid and the Voronoi triangulation, which contains polyhedral cells and
are formed by connecting the circumcenters of adjacent primal cells, as the dual grid.
The primal grid is chosen so that the faces of the primal cells align with the interface
Γ. For a more detailed description and assumption of the triangulation, see Chung,
Du, and Zou [6]. Throughout this paper, we use K to represent a generic constant
which is independent of the mesh size and the physical coefficients ε and μ.

Now, we will discuss the discrete vector spaces and operators. Let F1 and M1 be
the number of interior primal faces and interior primal edges, respectively. Then F1 is
also the number of dual edges and M1 is also the number of dual faces. The individual
primal face and edge will be denoted by κj and σk with sj = |κj | and hk = |σk|. The
corresponding quantities related to the dual grid are denoted by primed form such as
κ′
j , σ

′
k, s

′
j , and h′

k. Let (·, ·) be the standard Euclidean inner product. For any u and
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v in R
F1 , we define the inner product (u, v)W := (Su,D′v), where S := diag(sj) and

D′ := diag(h̄′
j) with h̄′

j := (μ−1
1 aj + μ−1

2 (1 − aj))h
′
j . Here aj , 0 ≤ aj ≤ 1, is the ratio

of the length of the portion of σ′
j that belongs to Ω1 over the length of σ′

j . We also

define an inner product in R
M1 by (u, v)W ′ = (S′u,Dv), where S′ := diag(s̄′j) and

D := diag(hj) with s̄′j := (ε1bj + ε2(1 − bj))s
′
j and bj , 0 ≤ bj ≤ 1, is the ratio of the

area of the portion of κ′
j that belongs to Ω1 over the area of κ′

j .
Each primal and dual edge is assigned a direction. Direction is also assigned to

each primal and dual face such that it is the same as the corresponding dual and
primal edge, respectively. We say σ′

j ∈ ∂κ′
i is oriented positively along ∂κ′

i if the
direction of σ′

j agrees with the one of ∂κ′
i formed by the right-hand rule with the

thumb pointing in the direction of σi. Otherwise, we say σ′
j is oriented negatively

along ∂κ′
i. We define an F1 ×M1 matrix G as

(G)ji :=

⎧⎪⎨
⎪⎩

1 if σ′
j is oriented positively along ∂κ′

i,

−1 if σ′
j is oriented negatively along ∂κ′

i,

0 if σ′
j does not meet ∂κ′

i.

Then, for w ∈ R
M1 and v ∈ R

F1 , we define Cw := GDw and C ′v := GTD′v, which
also satisfy the following discrete Green’s formula:

(Cw,D′v) = (C ′v,Dw).(2.1)

See [5, 6, 12, 13, 14] for more details about these operators and related topics.

3. FVM. The FVM proposed in Chung and Zou [4] can be stated as follows:
Find E ∈ R

M1 and B ∈ R
F1 such that

S′ dE

dt
− C ′B = J̃ ,(3.1)

S
dB

dt
+ CE = 0,(3.2)

where J̃ ∈ R
M1 is defined by (J̃)j :=

∫
κ′
j
J · n dσ. Convergence and stability analysis

of the semidiscrete scheme (3.1)–(3.2) was given in Chung, Du, and Zou [6]. In the
following sections, we will give our main results in this paper, which are the full
discretizations of the semidiscrete scheme (3.1)–(3.2).

For subsequent analysis, derived in [4], we have

sj
d

dt
(Bf )j + (CEe)κj

= 0,(3.3)

s̄′j
d

dt
(E′

f )j − (C ′B′
e)κ′

j
= J̃j ,(3.4)

where Bf , B′
e, E′

f , and Ee are average quantities defined in Chung, Du, and Zou
[4, 6].

4. Fully discrete schemes. In this section, we will give two different time
discretizations for (3.1)–(3.2). First, we will consider an explicit scheme, which is
a standard leapfrog scheme. With a stability condition, this scheme can be shown
to be first order convergent in space and second order convergent in time. Second,
we will consider an implicit scheme, which is a Crank–Nicolson time discretization of
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(3.1)–(3.2). It can be shown that this method is unconditionally stable with the same
rate of convergence as the explicit counterpart.

Consider a uniform partition of [0, T ] with NT subintervals. Let Δt := T/NT .
For n = 0, 1, . . . , NT − 1, we define tn := nΔt and tn+ 1

2
:= (n+ 1

2 )Δt. For subsequent
analysis, we define

cm := (min(ε1, ε2) min(μ1, μ2))
− 1

2 .

We also denoted by M2 the maximum of the ratios of maximum to minimum side
lengths over adjacent tetrahedra and by M3 the maximum number of sides over all
dual faces. Furthermore, by min(h) we mean the minimum side length over all primal
and dual edges.

4.1. Explicit scheme. We will apply a leapfrog scheme to (3.1)–(3.2). We
approximate E(t) at tn and B(t) at tn+ 1

2
with approximations denoted by En and

Bn+ 1
2 , respectively. Given (En, Bn+ 1

2 ), the next approximation (En+1, Bn+ 3
2 ) will

be obtained by solving

S′(En+1 − En) − ΔtC ′Bn+ 1
2 = J̃n+ 1

2 ,(4.1)

S(Bn+ 3
2 −Bn+ 1

2 ) + ΔtCEn+1 = 0,(4.2)

where J̃n+ 1
2 :=

∫ (n+1)Δt

nΔt
J̃(s) ds. The initial conditions are given by E0 := Ee(t0) and

B
1
2 := B′

e(t 1
2
). The value of B′

e(t 1
2
) can be calculated by using (1.2) and the Taylor

series method. Now, we have the following stability estimate.
Theorem 4.1. Under the stability condition

δ := Δtcm
M2M

1
2
3

min(h)
< 1,(4.3)

the fully discrete scheme (4.1)–(4.2) is stable. Moreover, the following stability esti-
mate holds for 1 ≤ k ≤ NT − 1:

‖Ek‖2
W ′ + ‖Bk+ 1

2 ‖2
W

≤ 2(1 + δ)

1 − δ
(‖E0‖2

W ′ + ‖B 1
2 ‖2

W ) +
4T

(1 − δ)2

∫ T

0

‖S′−1J̃(t)‖2
W ′ dt.

(4.4)

Proof. Multiplying (4.1) by D(En+1 +En) and (4.2) by D′(Bn+ 3
2 +Bn+ 1

2 ) yields

(En+1 − En, En+1 + En)W ′ − Δt(C ′Bn+ 1
2 , D(En+1 + En)) = Rn+ 1

2 ,

(Bn+ 3
2 −Bn+ 1

2 , Bn+ 3
2 + Bn+ 1

2 )W + Δt(CEn+1, D′(Bn+ 3
2 + Bn+ 1

2 )) = 0,

where Rn+ 1
2 := (J̃n+ 1

2 , D(En+1+En)). Let k be an integer satisfying 1 ≤ k ≤ NT −1.
Adding all equations from n = 0 to n = k − 1 and using (2.1), we have

‖Ek‖2
W ′ + ‖Bk+ 1

2 ‖2
W

= ‖E0‖2
W ′ + ‖B 1

2 ‖2
W + Δt(C ′B

1
2 , DE0) − Δt(DEk, C ′Bk+ 1

2 ) +

k−1∑
n=0

Rn+ 1
2 .

(4.5)
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Notice that

Δt(C ′B
1
2 , DE0) ≤ Δt‖(DS

′−1)
1
2C ′(SD′)−

1
2 ‖2‖B

1
2 ‖W ‖E0‖W ′ .

By the definition of the matrix 2-norm, ‖(DS
′−1)

1
2C ′(SD′)−

1
2 ‖2 is bounded above

by the square root of the largest eigenvalue of (SD′)−
1
2D′GDS

′−1GTD′(SD′)−
1
2 . By

Gershgorin’s theorem, the largest eigenvalue of GGT is bounded above by 3M3, as
every primal face has 3 sides and every dual face has at most M3 sides. So,

‖(DS
′−1)

1
2C ′(SD′)−

1
2 ‖2 ≤ cm max

1≤j≤F1

(
maxj(h)

minj(h)2

)
(3M3)

1
2 ,

where maxj(h) and minj(h) are the local maximum and local minimum of side lengths
around a primal face κj , respectively. So, we have

Δt(C ′B
1
2 , DE0) ≤ Δtcm

M2M
1
2
3

min(h)
(‖B 1

2 ‖2
W + ‖E0‖2

W ′).

A similar inequality holds for Δt(C ′Bk+ 1
2 , DEk). Hence, (4.5) can be written as

‖Ek‖2
W ′ + ‖Bk+ 1

2 ‖2
W ≤ 1 + δ

1 − δ
(‖E0‖2

W ′ + ‖B 1
2 ‖2

W ) +
1

1 − δ

k−1∑
n=0

Rn+ 1
2 .

Now, (4.4) follows from the Cauchy–Schwarz inequality.
We are now in a position to study the convergence theory of the method (4.1)–

(4.2). To do so, for brevity, we define

e(E)n := En − Ee(tn), e(B)n := Bn −B′
e(tn),(4.6)

f(E)n := En − E′
f (tn), f(B)n := Bn −Bf (tn).(4.7)

Then we subtract (4.1) by (3.4) and (4.2) by (3.3) to obtain

S′(f(E)n+1 − f(E)n) − ΔtC ′e(B)n+ 1
2 = P

n+ 1
2

1 ,(4.8)

S(f(B)n+ 3
2 − f(B)n+ 1

2 ) + ΔtCe(E)n+1 = Pn+1
2 ,(4.9)

where

P
n+ 1

2
1 := J̃n+ 1

2 − S′(E′
f (tn+1) − E′

f (tn)) + ΔtC ′B′
e(tn+ 1

2
),(4.10)

Pn+1
2 := −S(Bf (tn+ 3

2
) −Bf (tn+ 1

2
)) − ΔtCEe(tn+1).(4.11)

Multiplying (4.8) by De(E)n + De(E)n+1 and (4.9) by D′e(B)n+ 3
2 + D′e(B)n+ 1

2 ,
adding the two resulting equations, and using (2.1), (4.6), and (4.7), we have

(e(E)n+1 − e(E)n, e(E)n + e(E)n+1)W ′

+ (e(B)n+ 3
2 − e(B)n+ 1

2 , e(B)n+ 3
2 + e(B)n+ 1

2 )W

= ((E′
f (tn+1) − Ee(tn+1)) − (E′

f (tn) − Ee(tn)), e(E)n + e(E)n+1)W ′

+ ((Bf (tn+ 3
2
) −B′

e(tn+ 3
2
)) − (Bf (tn+ 1

2
) −B′

e(tn+ 1
2
)), e(B)n+ 3

2 + e(B)n+ 1
2 )W

+ (P
n+ 1

2
1 , D(e(E)n + e(E)n+1)) + (Pn+1

2 , D′(e(B)n+ 3
2 + e(B)n+ 1

2 ))

+ Δt(C ′e(B)n+ 1
2 , De(E)n) − Δt(De(E)n+1, C ′e(B)n+ 3

2 ).
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Adding from n = 0 to n = k − 1, we have

‖e(E)k‖2
W ′ + ‖e(B)k+ 1

2 ‖2
W

= − Δt(De(E)k, C ′e(B)k+ 1
2 )

+

k−1∑
n=0

{
((E′

f (tn+1) − Ee(tn+1)) − (E′
f (tn) − Ee(tn)), e(E)n + e(E)n+1)W ′

+ ((Bf (tn+ 3
2
) −B′

e(tn+ 3
2
)) − (Bf (tn+ 1

2
) −B′

e(tn+ 1
2
)), e(B)n+ 1

2 + e(B)n+ 3
2 )W

+(P
n+ 1

2
1 , D(e(E)n + e(E)n+1)) + (Pn+1

2 , D′(e(B)n+ 1
2 + e(B)n+ 3

2 ))
}
.

(4.12)

Next, we will prove the following truncation error for the discretization of the
semidiscrete scheme (3.1)–(3.2) by leapfrog time stepping. We will use a dot to
represent the time derivative.

Lemma 4.2. Assume (B,E) ∈ H2(0, T ;W 1,p(Ωr)
3)2 for 2 < p ≤ 3 and r = 1, 2.

Then for general unstructured grids,

k−1∑
n=0

‖S′−1P
n+ 1

2
1 ‖W ′ ≤ cmK(Δt)2

2∑
r=1

‖μ− 1
2

r B‖H2(0,T ;W 1,p(Ωr)3),(4.13)

k−1∑
n=0

‖S−1Pn+1
2 ‖W ≤ cmK(Δt)2

2∑
r=1

‖ε
1
2
r E‖H2(0,T ;W 1,p(Ωr)3).(4.14)

Proof. We will give a proof for (4.13). The proof for (4.14) can be done in a
similar way. For the jth dual face, using (3.4) and (4.10), we have

(P
n+ 1

2
1 )j = −

∫ (n+1)Δt

nΔt

(C ′B′
e)j(s) ds + Δt(C ′B′

e)j(tn+ 1
2
).

By the Sobolev embedding theorem, (P
n+ 1

2
1 )j defines a bounded linear functional

on W 2,1(nΔt, (n + 1)Δt) and vanishes for any linear functions in time. So by the
Bramble–Hilbert lemma [7] and the standard scale change technique, we have

|(Pn+ 1
2

1 )j | ≤ K(Δt)2
∫ (n+1)Δt

nΔt

|(C ′B̈′
e)j(s)| ds.

Using the tangential continuity of H across the interface Γ, we conclude that (C ′B̈e)j
vanishes for constant functions in space. By the Bramble–Hilbert lemma and scale
change argument,

|(C ′B̈′
e)j | ≤ Kh2− 3

p |Ḧ|W 1,p(τ ′
k∪τ ′

l )
3 ,

where τ ′k and τ ′l are the two dual cells sharing the same dual face κ′
j . So, we have

|(Pn+ 1
2

1 )j | ≤ Kh2− 3
p (Δt)2

∫ (n+1)Δt

nΔt

|Ḧ|W 1,p(τ ′
k∪τ ′

l )
3 ds.

Hence, the result (4.13) follows from the definitions of cm and the W ′-norm.
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The following theorem gives the main result of this section. It states that the
explicit scheme (4.1)–(4.2) is first order convergent in space and second order conver-
gent in time under an assumption on the regularity of the true solution and a CFL
stability condition.

Theorem 4.3. Assume that (E,B) ∈ H2(0, T ;W 1,p(Ωr)
3)2, 2 < p ≤ 3, r =

1, 2, is the solution to (1.1)–(1.2) and (En, Bn+ 1
2 ) is the solution to the explicit fully

discrete scheme (4.1)–(4.2). Then, under the stability condition (4.3),

max
0≤n≤NT−1

(‖En − Ee(tn)‖W ′ + ‖Bn+ 1
2 −B′

e(tn+ 1
2
)‖W )

≤ K

1 − δ
(h + cm(Δt)2)

2∑
r=1

‖(ε
1
2
r E, μ

− 1
2

r B)‖H2(0,T ;W 1,p(Ωr)3)2 .
(4.15)

Proof. The proof is based on (4.12). First, by resembling the techniques used in
the proof of Theorem 4.1, we have

Δt(De(E)k, C ′e(B)k+ 1
2 ) ≤ Δtcm

M2M
1
2
3

min(h)
(‖e(B)k+ 1

2 ‖2
W + ‖e(E)k‖2

W ′).

Second, by integrating in time and the definition of the W ′-norm, we have

‖(E′
f (tn+1) − Ee(tn+1)) − (E′

f (tn) − Ee(tn))‖2
W ′ ≤ Δt

∫ (n+1)Δt

nΔt

‖Ė′
f − Ėe‖2

W ′ ds.

Using Theorem 5.1 of [6],

((E′
f (tn+1) − Ee(tn+1)) − (E′

f (tn) − Ee(tn)), e(E)n + e(E)n+1)W ′

≤Kh
√

Δt max
0≤n≤k

‖e(E)n‖W ′

2∑
r=1

‖ε
1
2
r Ė‖L2(nΔt,(n+1)Δt;W 1,p(Ωr)3).

Similarly, we have

((Bf (tn+ 3
2
) −B′

e(tn+ 3
2
) − (Bf (tn+ 1

2
) −B′

e(tn+ 1
2
)), e(B)n+ 1

2 + e(B)n+ 3
2 )W

≤Kh
√

Δt max
0≤n≤k

‖e(B)n+ 1
2 ‖W

2∑
r=1

‖μ− 1
2

r Ḃ‖L2((n+ 1
2 )Δt,(n+ 3

2 )Δt;W 1,p(Ωr)3).

Third, by the Cauchy–Schwarz inequality,

(P
n+ 1

2
1 , D(e(E)n + e(E)n+1)) ≤ ‖S′−1P

n+ 1
2

1 ‖W ′‖e(E)n + e(E)n+1‖W ′ ,

(Pn+1
2 , D′(e(B)n+ 1

2 + e(B)n+ 3
2 )) ≤ ‖S−1Pn+1

2 ‖W ‖e(B)n+ 1
2 + e(B)n+ 3

2 ‖W .

Now, by using (4.13)–(4.14) and collecting all of the above results, we have shown
the desired convergence estimate.

4.2. Implicit scheme. In this section, we will consider an implicit scheme for
(3.1)–(3.2). We will apply a standard Crank–Nicolson time discretization. The ap-
proximate solutions of E(t) and B(t) will be obtained at tn and denoted by En and
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Bn, respectively. Given (En, Bn), the next approximation (En+1, Bn+1) will be ob-
tained by solving

S′(En+1 − En) − Δt

2
(C ′Bn + C ′Bn+1) = J̃n+ 1

2 ,(4.16)

S(Bn+1 −Bn) +
Δt

2
(CEn + CEn+1) = 0.(4.17)

That is, in each time step, we need to solve a linear system Ax = b for x with

A :=

(
S′ −Δt

2 C ′
Δt
2 C S

)
and b :=

(
J̃n+ 1

2 + S′En + Δt
2 C ′Bn

SBn − Δt
2 CEn

)
.(4.18)

The question of well-posedness of problem (4.16)–(4.17) will be given by the following
theorem. We emphasize here that the scheme is unconditionally stable with respect
to the time step Δt.

Theorem 4.4. The implicit fully discrete scheme (4.16)–(4.17) is well-posed.
Moreover, the following stability inequality holds for 1 ≤ n ≤ NT :

‖En‖2
W ′ + ‖Bn‖2

W ≤ 2‖E0‖2
W ′ + 2‖B0‖2

W + 4T

∫ T

0

‖S′−1J̃(t)‖2
W ′ dt.(4.19)

Proof. We first show that the system (4.16)–(4.17) has a unique solution. To do
this, we prove that all eigenvalues of the matrix A in (4.18) are nonzero. We rewrite
A as

A =

(
S′ 0
0 S

)
+

Δt

2

(
0 −C ′

C 0

)
.

By the definitions of C and C ′, it suffices to consider the matrix

A1 :=

(
S′D−1 −Δt

2 GT

Δt
2 G SD

′−1

)
.

Let x = (x1 x2), where x1 ∈ C
M1 and x2 ∈ C

F1 , be an eigenvector of A1 of unit
length. Then

x∗A1x = (x1)
∗S′D−1x1 + (x2)

∗SD
′−1x2 + Δt Im((x2)

∗Gx1)i,

where ∗ denotes the conjugate transpose and i =
√
−1. Hence, all eigenvalues of A1

have positive real part, which shows that the matrix A1 is invertible.
To prove the stability estimate, we multiply (4.16) by D(En+1 + En) and (4.17)

by D′(Bn+1 + Bn) and add up the two resulting equations using (2.1) to get

‖En+1‖2
W ′ + ‖Bn+1‖2

W = ‖En‖2
W ′ + ‖Bn‖2

W + (J̃n+ 1
2 , D(En+1 + En)).(4.20)

By induction, we have, for any 0 ≤ n ≤ NT ,

‖En‖2
W ′ + ‖Bn‖2

W = ‖E0‖2
W ′ + ‖B0‖2

W +

n∑
k=1

(J̃k− 1
2 , D(Ek + Ek−1)).

Now, (4.19) follows from a standard application of Cauchy–Schwarz inequality.
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If we compare (4.5) and (4.20), we see that the appearance of terms of the form

Δt(DEk, C ′Bk+ 1
2 ) makes the explicit scheme (4.1)–(4.2) conditionally stable, while

the absence of these terms makes the implicit scheme (4.16)–(4.17) unconditionally
stable.

We are now in a position to study the convergence theory of the method (4.16)–
(4.17). Applying the same technique used to prove (4.12), we have

‖e(E)k‖2
W ′ + ‖e(B)k‖2

W

=

k−1∑
n=0

{
((E′

f (tn+1) − Ee(tn+1)) − (E′
f (tn) − Ee(tn)), e(E)n + e(E)n+1)W ′

+ ((B′
f (tn+1) −Be(tn+1)) − (B′

f (tn) −Be(tn)), e(B)n + e(B)n+1)W

+ (Q
n+ 1

2
1 , D(e(E)n + e(E)n+1)) + (Q

n+ 1
2

2 , D′(e(B)n + e(B)n+1))
}
,

(4.21)

where

Q
n+ 1

2
1 := J̃n+ 1

2 − S′(E′
f (tn+1) − E′

f (tn)) +
Δt

2
(C ′B′

e(tn) + C ′B′
e(tn+1)),(4.22)

Q
n+ 1

2
2 := −S(Bf (tn+1) −Bf (tn)) − Δt

2
(CEe(tn) + CEe(tn+1)).(4.23)

Similar to Lemma 4.2, we have the following consistency error estimate of the
Crank–Nicolson time discretization of (4.16)–(4.17). The proof is similar to that of
Lemma 4.2.

Lemma 4.5. Assume that (B,E) ∈ H2(0, T ;W 1,p(Ωr)
3)2 for 2 < p ≤ 3 and

r = 1, 2. Then on general unstructured grids,

k−1∑
n=0

‖S′−1Q
n+ 1

2
1 ‖W ′ ≤ cmK(Δt)2

2∑
r=1

‖ε
1
2
r E‖H2(0,T ;W 1,p(Ωr)3),(4.24)

k−1∑
n=0

‖S−1Q
n+ 1

2
2 ‖W ≤ cmK(Δt)2

2∑
r=1

‖μ− 1
2

r B‖H2(0,T ;W 1,p(Ωr)3).(4.25)

The following theorem gives the main result in this section. It can be proved by
using a technique similar to that used to prove Theorem 4.3.

Theorem 4.6. Assume that (E,B) ∈ H2(0, T ;W 1,p(Ωr)
3)2, 2 < p ≤ 3, r = 1, 2,

is the solution to (1.1)–(1.2) and (En, Bn) is the solution to the implicit fully discrete
scheme (4.16)–(4.17). Then

max
0≤n≤NT

(‖En − Ee(tn)‖W ′ + ‖Bn −B′
e(tn)‖W )

≤ K(h + cm(Δt)2)

2∑
r=1

‖(ε
1
2
r E, μ

− 1
2

r B)‖H2(0,T ;W 1,p(Ωr)3)2 .
(4.26)

5. Analysis on rectangular grids. In this section, we will consider the explicit
finite volume scheme (4.1)–(4.2) and the implicit finite volume scheme (4.16)–(4.17)
on rectangular grids. It is clear that all primal and dual elements are cuboids and all
faces are rectangles. All definitions that we made in previous sections can be made
in exactly the same way on nonuniform rectangular grids. For instance, M3 = 4 for
rectangular grids. It can be shown that the two schemes (4.1)–(4.2) and (4.16)–(4.17)
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are second order convergent in space. The second order convergence comes from the
fact that the circumcenter of a cuboid is also its barycenter. In section 5.2, we give a
one-dimensional counterexample to show that without taking the barycenter as dual
node the scheme may reduce to first order.

5.1. Convergence analysis. We will first consider convergence analysis on the
explicit fully discrete scheme (4.1)–(4.2) for nonuniform rectangular grids. It is easy
to show that

‖e(E)k‖2
W ′ + ‖f(B)k+ 1

2 ‖2
W

= − Δt(De(E)k, C ′e(B)k+ 1
2 )

+

k−1∑
n=0

{
((E′

f (tn+1) − Ee(tn+1)) − (E′
f (tn) − Ee(tn)), e(E)n + e(E)n+1)W ′

− (f(B)n+ 3
2 − f(B)n+ 1

2 , (Bf (tn+ 3
2
) −B′

e(tn+ 3
2
)) + (Bf (tn+ 1

2
) −B′

e(tn+ 1
2
)))W

+ (P
n+ 1

2
1 , D(e(E)n + e(E)n+1)) + (Pn+1

2 , D′(e(B)n+ 1
2 + e(B)n+ 3

2 ))
}
.

(5.1)

The following theorem gives the convergence result for the explicit finite volume
scheme (4.1)–(4.2) on nonuniform rectangular grids.

Theorem 5.1. Assume that

B(x, t) ∈ H1(0, T ;H3(Ωr)
3),

E(x, t) ∈ H1(0, T ;H3(Ωr)
3) ∩H2(0, T ;W 2,p(Ωr)

3),

for p > 3 and r = 1, 2, is the solution to (1.1)–(1.2) and (En, Bn+ 1
2 ) is the solution to

the explicit fully discrete scheme (4.1)–(4.2) on nonuniform rectangular grids. Then,
under the stability condition δ < 1

2 ,

max
0≤n≤NT−1

(‖En − Ee(tn)‖W ′ + ‖Bn+ 1
2 −Bf (tn+ 1

2
)‖W )

≤ K

1 − δ
(h2 + cm(Δt)2)

×
2∑

r=1

{
‖(ε

1
2
r E, μ

− 1
2

r B)‖H1(0,T ;H3(Ωr)3) + ‖ε
1
2
r E‖H2(0,T ;W 2,p(Ωr)3)

}
.

(5.2)

Proof. The proof is based on (5.1).
(i) To begin, notice that the first term on the right-hand side of (5.1) can be

estimated as follows:

Δt(De(E)k, C ′e(B)k+ 1
2 )

= Δt(De(E)k, C ′f(B)k+ 1
2 ) + Δt(De(E)k, C ′(Bf (tk+ 1

2
) −B′

e(tk+ 1
2
))).

Applying the technique used in proving Theorem 4.1, we have

Δt(De(E)k, C ′f(B)k+ 1
2 ) ≤ Δtcm

M2M
1
2
3

min(h)
(‖e(E)k‖2

W ′ + ‖f(B)k+ 1
2 ‖2

W ).
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Applying (2.1) and [6, Lemma 5.2], we have

Δt(De(E)k, C ′(Bf (tk+ 1
2
) −B′

e(tk+ 1
2
)))

= Δt(Ce(E)k, D′(Bf (tk+ 1
2
) −B′

e(tk+ 1
2
)))

= Δt(Ce(E)k, D′uk+ 1
2 ) + Δt(Ce(E)k, ξk+ 1

2 )

= Δt(De(E)k, C ′uk+ 1
2 ) + Δt(De(E)k, C ′D

′−1ξk+ 1
2 ),

where ‖uk+ 1
2 ‖W and ‖D′−1ξk+ 1

2 ‖W are O(h2). So, we obtain

Δt(De(E)k, C ′(Bf (tk+ 1
2
) −B′

e(tk+ 1
2
)))

≤ Δtcm
M2M

1
2
3

min(h)
(2‖e(E)k‖2

W ′ + ‖uk+ 1
2 ‖2

W + ‖D′−1ξk+ 1
2 ‖2

W ).

(ii) By Lemma 5.3 in [6] with φ = e(E)n + e(E)n+1, we have

(Ė′
f (tn) − Ėe(tn), e(E)n + e(E)n+1)W ′

= (v̇, e(E)n + e(E)n+1)W ′ + (D′ẇ, C(e(E)n + e(E)n+1))

+ (S
′−1λ̇, e(E)n + e(E)n+1)W ′ .

So, we have

((E′
f (tn+1) − Ee(tn+1)) − (E′

f (tn) − Ee(tn)), e(E)n + e(E)n+1)W ′

=

∫ (n+1)Δt

nΔt

{
(v̇, e(E)n + e(E)n+1)W ′ + (D′ẇ, C(e(E)n + e(E)n+1))

+ (S
′−1λ̇, e(E)n + e(E)n+1)W ′

}
ds

≤ 2( max
0≤n≤k

‖e(E)n‖W ′) ×
∫ (n+1)Δt

nΔt

‖v̇ + S
′−1λ̇ ds‖W ′

+

∫ (n+1)Δt

nΔt

(D′ẇ, C(e(E)n + e(E)n+1)) ds.

By the definition of the W ′-norm and the estimate of ‖v̇‖W ′ from [6],

∫ (n+1)Δt

nΔt

‖v̇ ds‖2
W ′ ≤ Δt

∫ (n+1)Δt

nΔt

‖v̇‖2
W ′ ds

≤ Kh4Δt

2∑
r=1

‖ε
1
2
r Ė‖2

L2(nΔt,(n+1)Δt;H3(Ωr)3).

Similarly, by the definition of the W ′-norm and the estimate of ‖S′−1λ̇‖W ′ from [6],
we have

∫ (n+1)Δt

nΔt

‖S′−1λ̇ ds‖2
W ′ ≤ Kh4Δt

2∑
r=1

‖ε
1
2
r Ė‖2

L2(nΔt,(n+1)Δt;H3(Ωr)3).
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Using (4.9) and the mean value theorem for integral, we have

∫ (n+1)Δt

nΔt

(D′ẇ, C(e(E)n + e(E)n+1)) ds

= − 1

Δt

∫ (n+1)Δt

nΔt

{
(D′ẇ, S(f(B)n+ 3

2 − f(B)n−
1
2 )) − (D′ẇ, Pn

2 + Pn+1
2 )

}
ds

= − (D′ẇ(ηn+ 1
2 ), S(f(B)n+ 3

2 − f(B)n−
1
2 )) +

1

Δt

∫ (n+1)Δt

nΔt

(D′ẇ, Pn
2 + Pn+1

2 ) ds,

where tn < ηn+ 1
2 < tn+1. Applying summation by parts,

k−1∑
n=0

(D′ẇ(ηn+ 1
2 ), S(f(B)n+ 3

2 − f(B)n−
1
2 ))

= (D′ẇ(ηk−
3
2 ), Sf(B)k−

1
2 ) + (D′ẇ(ηk−

1
2 ), Sf(B)k+ 1

2 )

−
k−2∑
n=1

(D′(ẇ(ηn+ 3
2 ) − ẇ(ηn−

1
2 )), Sf(B)n+ 1

2 ).

The first two terms on the right-hand side of the previous equation can be bounded
by using the estimate of ‖ẇ‖W from [6]. For the third term, we notice that

|ẇ(ηn+ 3
2 ) − ẇ(ηn−

1
2 )|2 ≤ 3Δt

∫ (n+2)Δt

(n−1)Δt

|ẅ|2 ds.

By the definition of the W -norm and the estimate of ‖ẇ‖W from [6],

‖ẇ(ηn+ 3
2 ) − ẇ(ηn−

1
2 )‖2

W ≤ Kh4Δt

2∑
r=1

‖ε
1
2
r Ë‖2

L2((n−1)Δt,(n+2)Δt;W 2,p(Ωr)3).

By the Sobolev embedding theorem and the estimate of ‖ẇ‖W from [6], we get

1

Δt

∫ (n+1)Δt

nΔt

(D′ẇ, Pn
2 + Pn+1

2 ) ds

≤ max
0≤s≤T

‖ẇ(s)‖W ‖S−1(Pn
2 + Pn+1

2 )‖W

≤Kh2‖S−1(Pn
2 + Pn+1

2 )‖W
2∑

r=1

‖ε
1
2
r E‖H2(0,T ;W 2,p(Ωr)3),

where the last term can be estimated by (4.14).
(iii) Using (4.9) and (4.11), we have

S(f(B)n+ 3
2 − f(B)n+ 1

2 )

= − ΔtCe(E)n+1 + Pn+1
2

= − ΔtCe(E)n+1 −
∫ (n+ 3

2 )Δt

(n+ 1
2 )Δt

SḂf ds− ΔtCEe(tn+1).

By (3.3), we have S(f(B)n+ 3
2 − f(B)n+ 1

2 ) = Cφ with

φ = −Δte(E)n+1 +

∫ (n+ 3
2 )Δt

(n+ 1
2 )Δt

Ee(s) ds− ΔtEe(tn+1).
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Hence, by Lemma 5.2 from [6], we have

(f(B)n+ 3
2 − f(B)n+ 1

2 , Bf (tn+ 3
2
) −B′

e(tn+ 3
2
))W

= (f(B)n+ 3
2 − f(B)n+ 1

2 , un+ 3
2 )W + (f(B)n+ 3

2 − f(B)n+ 1
2 , D

′−1ξn+ 3
2 )W .

Applying summation by parts, we obtain

k−1∑
n=0

(f(B)n+ 3
2 − f(B)n+ 1

2 , un+ 3
2 )W

= (f(B)k+ 1
2 , uk+ 1

2 )W −
k−1∑
n=1

(f(B)n+ 1
2 , un+ 3

2 − un+ 1
2 )W .

We remark that a similar result holds for (f(B)n+ 3
2 − f(B)n+ 1

2 , D
′−1ξn+ 3

2 )W .
(iv) We have

(P
n+ 1

2
1 , D(e(E)n + e(E)n+1)) ≤ ‖S′−1P

n+ 1
2

1 ‖W ′‖e(E)n + e(E)n+1‖W ′ ,

which can be estimated by using (4.13).
(v) Notice that

(Pn+1
2 , D′(e(B)n+ 1

2 + e(B)n+ 3
2 ))

= (Pn+1
2 , D′(f(B)n+ 1

2 + f(B)n+ 3
2 ))

+ (Pn+1
2 , D′((Bf (tn+ 3

2
) −B′

e(tn+ 3
2
)) + (Bf (tn+ 1

2
) −B′

e(tn+ 1
2
)))).

The first term on the right-hand side can be estimated by using (4.14). Notice that
Pn+1

2 can be written as Cφ̃ for some φ̃. So, by Lemma 5.2 from [6], we have

(Pn+1
2 , D′(Bf (tn+ 3

2
) −B′

e(tn+ 3
2
))) = (Pn+1

2 , D′un+ 3
2 ) + (Pn+1

2 , ξn+ 3
2 ),

which can be estimated by using (4.14) and the estimates of ‖u‖W and ‖D′−1ξ‖W
from [6].

Finally, we will state, without proof, the convergence estimate for the implicit
fully discrete scheme (4.16)–(4.17) for nonuniform rectangular grids.

Theorem 5.2. Assume that

B(x, t) ∈ H1(0, T ;H3(Ωr)
3),

E(x, t) ∈ H1(0, T ;H3(Ωr)
3) ∩H2(0, T ;W 2,p(Ωr)

3),

for p > 3 and r = 1, 2, is the solution to (1.1)–(1.2) and (En, Bn) is the solution
to the implicit fully discrete scheme (4.16)–(4.17) on nonuniform rectangular grids.
Then

max
0≤n≤NT

(‖En − Ee(tn)‖W ′ + ‖Bn −Bf (tn)‖W )

≤K(h2 + cm(Δt)2)

×
2∑

r=1

{
‖(ε

1
2
r E, μ

− 1
2

r B)‖H1(0,T ;H3(Ωr)3) + ‖ε
1
2
r E‖H2(0,T ;W 2,p(Ωr)3)

}
.

(5.3)



316 ERIC T. CHUNG AND BJORN ENGQUIST

5.2. A counterexample. We see from the previous sections that the spatial
convergence of the FVM on rectangular grids is one order higher than that on general
unstructured mesh. One main difference between these two grids is that the circum-
center of a rectangle coincides with its barycenter. Without choosing the barycenter as
dual node, the scheme remains first order accurate. We will show this by considering
the following one-dimensional example. Consider the system

ut = vx,

vt = ux,

with initial conditions

u(x, 0) = 0, v(x, 0) =
1

2
x2.

The exact solution to this problem is given by

u(x, t) = xt, v(x, t) =
1

2
(x2 + t2).

Now, we consider a uniform grid with mesh size h. A dual node within each primal
interval is chosen such that the distance between the left end point and the dual node
is αh for fixed 0 < α < 1. Therefore, the distance between the right end point and
the dual node is (1 − α)h. Also, the distance between two consecutive dual nodes is
h. We consider the semidiscrete scheme

d

dt
uj =

v′j+1 − v′j
h

,

d

dt
v′j =

uj − uj−1

h
,

where uj is defined corresponding to the primal node xj , while v′j is defined corre-
sponding to the dual node x′

j . By a direct computation, it can be shown that the
following is a solution to the semidiscrete scheme:

uj = xjt + (α2 − (1 − α)2)ht,

v′j =
1

2
((x′

j)
2 + t2),

resulting in an O(h) error.
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A LEAST-SQUARES MIXED FINITE ELEMENT METHOD FOR
BIOT’S CONSOLIDATION PROBLEM IN POROUS MEDIA∗

JOHANNES KORSAWE† AND GERHARD STARKE†

Abstract. A least-squares mixed finite element method for the coupled problem of flow and
deformation is presented and analyzed in this paper. For the analysis, we restrict ourselves to fully
saturated conditions for the flow process and to a linearly elastic material law for the deformation
process. This is known in the literature as Biot’s consolidation problem. For simplicity, the analysis
is presented for the problem in two space dimensions. Our least-squares approach is motivated
by the fact that all process variables, i.e., fluid pressure and flux as well as displacement field
and stress tensor, are approximated directly by suitable finite element spaces. Ellipticity of the
corresponding variational formulation is proven for the stationary case as well as for the subproblems
arising at each step of an implicit time discretization in the general time-dependent case. Standard
H1-conforming piecewise linear and quadratic finite elements are used for the fluid pressure and for
(each component of) the displacement, respectively. For the flux and stress components, the H(div)-
conforming Raviart–Thomas spaces (of lowest order) are used. Computational results are presented
for some two-dimensional test problems.

Key words. Biot’s consolidation, least-squares finite element method, porous media

AMS subject classifications. 65M60, 65M15

DOI. 10.1137/S0036142903432929

1. Introduction. In recent years, a lot of effort has been dedicated to the the-
oretical and numerical treatment of models for fluid flow and deformation in porous
media. Our model will be based on the classical phenomenological approach by Biot
[2] using the concept of effective stresses. Modern formulations based on multiphase
mixture theories were developed in the last 30 years; see the monograph by de Boer
[12] for an overview. Much of current research concerned with the numerical treat-
ment of such coupled problems is devoted to the extension to two-phase flow and
elastoplastic deformation models. The classical Biot consolidation problem assumes a
fully saturated porous medium and a linearly elastic material law leading to a linear
parabolic system. We restrict our attention to this linear problem since our aim is
to analyze a least-squares mixed finite element method in the simplest possible situa-
tion. The novelty of our least-squares approach is the introduction of approximation
spaces for the fluid flux and the stress tensor in addition to the primary variables fluid
pressure and displacement field.

The numerical treatment of Biot’s consolidation problem by the Taylor–Hood
finite element spaces was studied by Murad and Loula in [16] and [17]. This work
was continued with a detailed analytical investigation in the contribution by Murad,
Thomée, and Loula [18]. A general reference for the use of the finite element method
for the numerical simulation of fluid flow and deformation processes in porous media
is the monograph by Lewis and Schrefler [15]. A nonlinearly elastic material law
for fluid-saturated porous solids is considered in Ehlers and Eipper [13]. Wang and
Kolditz [21] investigate the numerical treatment of elastoplastic material behavior
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using a Drucker–Prager model for some two-dimensional plane strain problems under
fully saturated conditions. Wieners et al. [22] consider saturated porous medium
flow in three spatial dimensions where the material behavior of the porous skeleton
is assumed to be elastoviscoplastic. Taylor–Hood elements are used in [22] for the
approximation of the displacement field and fluid pressure.

Our purpose in this paper is the derivation and study of a least-squares finite
element approach to the coupled mechanical and flow problem. The least-squares
approach introduces finite element spaces for the approximation of all the process
variables involved in our model. In the case of fluid flow in deformable porous media
these consist of fluid pressure and flux as well as displacement field and stress tensor.
At first sight this appears to increase the computational work by introducing more
variables compared to standard approaches involving only pressure and displacements.
However, the introduction of these variables does, in general, lead to significant sim-
plifications at various stages of the solution algorithm. First, the variables coupling
the flow and deformation processes are used directly to describe the problem, which
makes it straightforward to derive the underlying variational formulation. In this
way, all the variables of interest can be approximated directly and, for fluid flux and
for the stress tensor, more accurately than by postprocessing from the results of the
standard formulation. Moreover, the finite element spaces used for approximating the
different process variables can be chosen independently since no inf-sup compatibility
conditions are required in the least-squares finite element approach. Finally, the local
evaluation of the least-squares functional provides an a posteriori error estimator at
no additional cost.

The equivalence of the least-squares functional to the displacement components
and fluid pressure measured in the H1 norm and to the stress components and fluid
flux measured in the H(div) norm is the main analytical contribution of this paper.
This ellipticity result ensures that the boundary value problem under consideration is
well-posed and leads to finite element approximation estimates in a straightforward
way. In the stationary case, the proof rests upon the results in [7] for the flow part and
[9, 6] for the deformation part. For the time-dependent case a more careful analysis
is carried out to establish ellipticity of the corresponding least-squares formulation.
Standard H1-conforming linear and quadratic finite elements are then used for the
fluid pressure and the displacement components, respectively. The fluid flux and
the stress components are approximated by the H(div)-conforming Raviart–Thomas
spaces of lowest order.

For the mechanical part of the model we restrict ourselves to linear elastic material
behavior. For linear elasticity a least-squares mixed finite element approach using
displacement and stress as process variables has been proposed recently in [9, 10, 6].
This approach was extended to incompressible Newtonian flow in [8]. The first-order
system studied in [8] has some similarities to the deformation part of the consolidation
problem under investigation here. For the fluid flow part of the model we assume
fully saturated conditions for our analysis. However, variably saturated porous media
can also be treated using a least-squares mixed finite element approach for variably
saturated subsurface flow, which was studied in [20] and [19]. The combination of
these two methods for the treatment of the coupled problem of variably saturated
fluid flow and mechanical deformation has been tested numerically in [14].

The remainder of this paper is organized as follows. In section 2 we present the
least-squares mixed formulation of Biot’s consolidation problem. The ellipticity of
the bilinear form associated with the least-squares functional for the stationary case
is proved in section 3. Ellipticity for the least-squares formulation resulting from an
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implicit Euler time discretization of the time-dependent problem is established in sec-
tion 4. Section 5 provides the appropriate finite element spaces with the corresponding
approximation properties and discusses the issue of error estimation. Finally, the re-
sults of computational experiments are presented in section 6.

2. Least-squares formulation of Biot’s consolidation problem. We start
this section with a review of the least-squares formulation of linear elasticity due to
[9] and [6]. We consider the equations of linear elasticity in the form

div σ = 0 in Ω,

σ − Cε(u) = 0 in Ω,

u = 0 on Γelas
D ,

σ · n = g on Γelas
N ,

(2.1)

where Ω ⊂ R
2 is a bounded domain with the boundary divided into two disjoint parts

Γelas
D and Γelas

N such that Γ
elas

D ∪ Γ
elas

N = ∂Ω. For simplicity we assume that Γelas
D and

Γelas
N are both of positive length. The operator C is the linear mapping from strains

to stresses given by

Cε = 2μ ε + λ (tr ε) I , ε ∈ R
2×2,(2.2)

with the Lamé constants λ, μ. We allow λ > 0 to be arbitrarily large; i.e., the
treatment of nearly incompressible materials is possible, but we assume that μ is
on the order of one. Note that this can be achieved by a suitable rescaling of the
displacements u. The strain tensor in linear elasticity is given by

ε(u) =

[
∂1u1

1
2 (∂2u1 + ∂1u2)

1
2 (∂2u1 + ∂1u2) ∂2u2

]
,(2.3)

the symmetric gradient of u. The traction boundary conditions in (2.1) are treated
by extending the boundary values g on Γelas

N to a function σN ∈ H(div,Ω)2. Such
an extension exists if we assume g ∈ H−1/2(ΓN ) and can be constructed as fol-
lows: Denote by G ∈ H1/2(ΓN ) the antiderivative (componentwise) of g along ΓN

parametrized with respect to arc length (which implies that the tangential derivative
n × ∇G = g). Using well-known lifting theorems (see, e.g., [11, section IV.4]) an
extension Ψ ∈ H1(Ω) with Ψ = G on ΓN is obtained. It can easily be verified that
σN = ∇⊥G has the desired properties (note that even div σN = 0 holds). This leads
to the problem of finding

σ̂ ∈ HΓelas
N

(div,Ω)2 = {τ ∈ H(div,Ω)2 : τ · n = 0 on Γelas
N },

u ∈ H1
Γelas
D

(Ω)2 = {v ∈ H1(Ω)2 : v = 0 on Γelas
D }

with σ = σN + σ̂ and u satisfying the system (2.1).
From now on, the standard norm on L2(Ω) (or L2(Ω)2, L2(Ω)2×2, respectively)

is abbreviated by ‖ · ‖. Introducing the least-squares functional

Felas(σ,u) = ‖div σ‖2 + ‖C−1/2σ − C1/2ε(u)‖2 ,(2.4)

our aim is then to minimize Felas(σ,u) among all σ = σN+σ̂ with σ̂ ∈ HΓelas
N

(div,Ω)2

and u ∈ H1
Γelas
D

(Ω)2. The scaling by C1/2 is necessary for the proper balance between
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both terms of the functional in the nearly incompressible case. The theoretical foun-
dation of this choice of scaling is given in [9] and [6].

The fully saturated flow problem in the absence of deformation reads

div w = 0 in Ω,

w + κ∇p = 0 in Ω,

p = pD on Γflow
D ,

w · n = 0 on Γflow
N .

(2.5)

The splitting of the boundary ∂Ω = Γ
flow

D ∪ Γ
flow

N into a Dirichlet and Neumann part
will, in general, not be the same as for the elasticity problem. We assume, however,
that Γflow

D has positive length. In (2.5), w denotes the volumetric flux of the fluid and
p the pressure potential in Ω. Note that, in this definition, the true pressure in the
porous medium may be recovered from p by adding the effect of the fluid weight due
to gravity. Moreover, the diffusion parameter κ denotes the quotient of permeability
and fluid viscosity. Assuming pD ∈ H1/2(ΓD), we may extend these boundary values
to a function in H1(Ω) also denoted by pD (see again [11, section IV.4]). Our aim is to
find w ∈ HΓflow

N
(div,Ω) and p = pD + p̂ with p̂ ∈ H1

Γflow
D

(Ω) such that the least-squares

functional

Fflow(w, p) = ‖div w‖2 + ‖w + κ∇p‖2(2.6)

is minimized. Here we assume that the percolation parameter κ is on the order of
one, which can be achieved by a suitable rescaling of the pressure p. κ may vary in
the domain Ω as long as κ ≤ κ ≤ κ holds with positive constants κ, κ.

The consolidation process is described by a model which couples flow and defor-
mation. The system (2.1), modeling the elastic deformation, needs to be modified in
such away that it includes the stress field caused by the fluid pressure. To this end,
the stress part σ associated with the material deformation, called effective stress, is
introduced as a process variable, and the momentum balance equation is modified
such that it incorporates stresses and forces connected to the fluid pressure. This
leads to

div (σ − pI) = 0 in Ω ,

σ − Cε(u) = 0 in Ω ,

u = 0 on Γelas
D ,

σ · n = g on Γelas
N .

(2.7)

Note that the displacement field u of this model is defined with respect to the equilib-
rium under gravity. The true effective stress in the porous medium may be computed
from σ by adding the effect of its own weight due to gravity. The mass balance equa-
tion in the fluid flow model (2.5) needs to take care of the change in pore space due
to the displacement, which leads to

div w + ∂tdiv u = 0 in Ω,

w + κ∇p = 0 in Ω,

p = pD on Γflow
D ,

w · n = 0 on Γflow
N .

(2.8)

Note again that in this model p has the character of a hydraulic potential and does not
represent the true pressure in the porous medium. The pressure includes an additional
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term due to the effect of the weight of the fluid under gravity. Using an implicit time
discretization, one obtains from this system

div w +
1

k
(div u − div uold) = 0 in Ω,

w + κ∇p = 0 in Ω,

p = pD on Γflow
D ,

w · n = 0 on Γflow
N ,

(2.9)

where k is the time-step length and uold denotes the displacement field at the previous
time-step. The least-squares functional associated with the coupled problem (2.7),
(2.9) is given by

F(σ,u,w, p;uold) = ‖div (σ − pI)‖2 + ‖C−1/2σ − C1/2ε(u)‖2

+

∥∥∥∥div w +
1

k
(div u − div uold)

∥∥∥∥
2

+ ‖w + κ∇p‖2 .
(2.10)

The least-squares variational formulation consists in finding σ = σN + σ̂ with σ̂ ∈
HΓelas

N
(div,Ω)2, u ∈ H1

Γelas
D

(Ω)2, w ∈ HΓflow
N

(div,Ω), and p = pD+p̂ with p̂ ∈ H1
Γflow
D

(Ω)

such that F(σ,u,w, p;uold) is minimized.

We abbreviate the standard inner product on L2(Ω) (or L2(Ω)2, L2(Ω)2×2, re-
spectively) by ( · , · ). Associated with the quadratic least-squares functional (2.10) is
then the bilinear form

B(σ,u,w, p; τ ,v, z, q) = (div (σ − pI),div (τ − qI))

+ (C−1/2σ − C1/2ε(u), C−1/2τ − C1/2ε(v))

+

(
div w +

1

k
div u,div z +

1

k
div v

)

+ (w + κ∇p, z + κ∇q) .

(2.11)

The quadratic minimization problem above is then equivalent to the following vari-
ational problem: Find σ̂ ∈ HΓelas

N
(div,Ω)2, u ∈ H1

Γelas
D

(Ω)2, w ∈ HΓflow
N

(div,Ω), and

p̂ ∈ H1
Γflow
D

(Ω) such that

B(σ̂,u,w, p̂; τ ,v, z, q)

= − (divσN ,div (τ − qI)) − (C−1/2σN , C−1/2τ − C1/2ε(v))

+

(
1

k
div uold,div z +

1

k
div v

)
− (κ∇pD, z + κ∇q)

(2.12)

for all τ ∈ HΓelas
N

(div,Ω)2, v ∈ H1
Γelas
D

(Ω)2, z ∈ HΓflow
N

(div,Ω), and q ∈ H1
Γflow
D

(Ω).

3. Ellipticity of the least-squares formulation: Stationary case. In this
section, we prove that the bilinear form (2.11) is coercive and continuous on the
product space HΓelas

N
(div,Ω)2×H1

Γelas
D

(Ω)2×HΓflow
N

(div,Ω)×H1
Γflow
D

(Ω). More precisely,

in order to get approximation results which are uniform with respect to the Lamé
parameters μ and λ, our aim is to show coercivity and continuity with constants
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which are independent of these parameters. To this end, we introduce the norm

|||(τ ,v, z, q)||| =
(
‖div τ‖2 + ‖C−1/2τ‖2 + ‖C1/2ε(v)‖2

+‖div z‖2 + ‖z‖2 + ‖∇q‖2
)1/2

.
(3.1)

Under our assumption on the boundary conditions, Korn’s inequality, i.e.,

‖v‖2 + ‖∇v‖2 ≤ CK‖C1/2ε(v)‖2 ,(3.2)

for all v ∈ H1
Γelas
D

(Ω)2 holds (cf. [3, section VI.3]). Moreover, the Poincaré–Friedrichs

inequality

‖q‖2 ≤ CF ‖∇q‖2(3.3)

is satisfied for all q ∈ H1
Γflow
D

(Ω) (cf. [3, section II.1]). Therefore, |||( · , · , · , ·)||| defined

in (3.1) is a norm on the product space HΓelas
N

(div,Ω)2 ×H1
Γelas
D

(Ω)2 ×HΓflow
N

(div,Ω)×
H1

Γflow
D

(Ω).

Since the bilinear form B(·, ·, ·, ·; ·, ·, ·, ·) is symmetric, the Cauchy–Schwarz in-
equality gives us

B(σ,u,w, p; τ ,v, z, q) ≤ F(σ,u,w, p;0)1/2F(τ ,v, z, q;0)1/2 .(3.4)

It is therefore sufficient to show that

α |||(τ ,v, z, q)|||2 ≤ F(τ ,v, z, q;0) ≤ β |||(τ ,v, z, q)|||2(3.5)

holds for all (τ ,v, z, q) ∈ HΓelas
N

(div,Ω)2×H1
Γelas
D

(Ω)2×HΓflow
N

(div,Ω)×H1
Γflow
D

(Ω) with

positive constants α, β which are independent of the Lamé parameter λ.
The following lemma states these equivalence results for the least-squares func-

tionals (2.4) and (2.6) associated with the deformation and flow subproblems, respec-
tively. Our analysis of the coupled problem will be based on these results.

Lemma 3.1. There are positive constants αelas and βelas such that

αelas|||(τ ,v,0, 0)|||2 ≤ Felas(τ ,v) ≤ βelas|||(τ ,v,0, 0)|||2(3.6)

holds for all (τ ,v) ∈ HΓelas
N

(div,Ω)2 ×H1
Γelas
D

(Ω)2 uniformly as λ → ∞.

Furthermore, there are positive constants αflow and βflow such that

αflow|||(0,0, z, q)|||2 ≤ Fflow(z, q) ≤ βflow|||(0,0, z, q)|||2(3.7)

holds for all (z, q) ∈ HΓflow
N

(div,Ω) ×H1
Γflow
D

(Ω).

The equivalence (3.6) for the linear elasticity problem has been established in [9]
and [6]. The stationary flow problem has been studied in [7], where (3.7) has been
proven.

The least-squares functional associated with the stationary problem is given by

Fstat(σ,u,w, p) = ‖div (σ − pI)‖2 + ‖C−1/2σ − C1/2ε(u)‖2

+ ‖div w‖2 + ‖w + κ∇p‖2 .
(3.8)

Our aim is to prove that this functional is equivalent to |||(·, ·, ·, ·)|||2 uniformly in the
Lamé parameters, which is the statement of the following theorem.
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Theorem 3.2. There are positive constants αstat and βstat such that

αstat|||(τ ,v, z, q)|||2 ≤ Fstat(τ ,v, z, q) ≤ βstat|||(τ ,v, z, q)|||2(3.9)

holds for all (τ ,v, z, q) ∈ HΓelas
N

(div,Ω)2 × H1
Γelas
D

(Ω)2 × HΓflow
N

(div,Ω) × H1
Γflow
D

(Ω)
uniformly as λ → ∞.

Proof. Since div (qI) = ∇q, we have

Fstat(τ ,v, z, q) = Felas(τ ,v) + Fflow(z, q) + ‖∇q‖2 − 2(div τ ,∇q) .(3.10)

The proof of the lower bound in (3.9) is based on

Fstat(τ ,v, z, q) ≥ Felas(τ ,v) + Fflow(z, q) +

(
1 − 1

η

)
‖∇q‖2 − η‖div τ‖2

≥ (1 − η)‖div τ‖2 + ‖C−1/2τ − C1/2ε(v)‖2

+ αflow

(
‖div z‖2 + ‖z‖2

)
+

(
αflow + 1 − 1

η

)
‖∇q‖2 ,

where we are still free to choose η ∈ (0, 1). Choosing η in such a way that

1

η
− 1 =

1

2
αflow , i.e., η =

2

2 + αflow
,

leads to

Fstat(τ ,v, z, q) ≥ (1 − η)Felas(τ ,v) +
1

2
αflow|||(0,0, z, q)|||2

≥ αflow

2 + αflow
αelas|||(τ ,v,0, 0)|||2 +

1

2
αflow|||(0,0, z, q)|||2

≥ min

{
αflow

2 + αflow
αelas,

1

2
αflow

}
|||(τ ,v, z, q)|||2 .

For the upper bound in (3.9), we use (3.6), (3.7), and Cauchy–Schwarz inequality to
obtain from (3.10)

Fstat(τ ,v, z, q) ≤ βelas|||(τ ,v,0, 0)|||2 + βflow|||(0,0, z, q)|||2 + 2‖∇q‖2 + ‖div τ‖2

≤ (βelas + 1)|||(τ ,v,0, 0)|||2 + (βflow + 2)|||(0,0, z, q)|||2

≤ max{βelas + 1, βflow + 2}|||(τ ,v, z, q)|||2 .

4. Ellipticity of the least-squares formulation: Time-dependent case.
For the analysis of the time-dependent least-squares functional (2.10) we make the
assumption that

Γelas
N = Γflow

D =: Γ1 and Γelas
D = Γflow

N =: Γ2 .

This has the physical meaning that the normal stress is prescribed on the same part
of the boundary as the fluid pressure. Similarly, the displacements and the normal
flux are set to zero on the same boundary segments. This is not unrealistic from a
physical point of view even though more general situations may occur in practice (see
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the examples in section 6). We introduce as new variables

σ̃ = σ − pI and w̃ = w +
1

k
u(4.1)

and observe that

σ ∈ HΓ1(div,Ω)2 , p ∈ H1
Γ1

(Ω) =⇒ σ̃ ∈ HΓ1(div,Ω)2 ,

w ∈ HΓ2(div,Ω) , u ∈ H1
Γ2

(Ω)2 =⇒ w̃ ∈ HΓ2(div,Ω) .

For the time-dependent case, the behavior of the least-squares formulation for different
time-step sizes is of interest. In order to eliminate the dependence of the equivalence
constants on the time-step length as much as possible, we scale the least-squares
functional (2.10) with k as

Fk(σ,u,w, p;uold) = ‖div (σ − pI)‖2 + ‖C−1/2σ − C1/2ε(u)‖2

+ k

∥∥∥∥div w +
1

k
(div u − div uold)

∥∥∥∥
2

+ k‖w + κ∇p‖2 .
(4.2)

Note that it is sufficient to consider the case κ ≡ 1 in the analysis since

‖w + κ∇p‖2 ≥ κ‖κ−1/2w + κ1/2∇p‖2 = κ
(
κ−1‖w‖2 + 2(w,∇p) + κ‖∇p‖2

)
≥ κmin{κ−1, κ}

(
‖w‖2 + 2(w,∇p) + ‖∇p‖2

)
= min{κκ−1, κ2}‖w + ∇p‖2 ,

‖w + κ∇p‖2 ≤ κ‖κ−1/2w + κ1/2∇p‖2 = κ
(
κ−1‖w‖2 + 2(w,∇p) + κ‖∇p‖2

)
≤ κmax{κ−1, κ}

(
‖w‖2 + 2(w,∇p) + ‖∇p‖2

)
= min{κκ−1, κ2}‖w + ∇p‖2 .

Our analysis is then carried out with respect to the scaled norm

|||(τ ,v, z, q)|||k =
(
‖div τ‖2 + ‖C−1/2τ‖2 + ‖C1/2ε(v)‖2

+ k
(
‖div z‖2 + ‖z‖2 + ‖∇q‖2

))1/2

.

(4.3)

The following lemma states that it is sufficient to prove ellipticity with respect to
the transformed variables.

Lemma 4.1. For the norm |||( · , · , · , · )|||k defined in (4.3) and under the
transformation (4.1), the equivalence

1

γ
|||(τ ,v, z, q)|||2k ≤ |||(τ̃ ,v, z̃, q)|||2k ≤ γ|||(τ ,v, z, q)|||2k(4.4)

for all (τ ,v, z, q), (τ̃ ,v, z̃, q) ∈ HΓ1(div,Ω)2 ×H1
Γ2

(Ω)2 ×HΓ2(div,Ω)×H1
Γ1

(Ω) holds
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with

γ = max

{
2 , 1 +

4CK

k
, 1 +

2

k
+

2CF

k(λ + μ)

}
.

Here, CK and CF denote the constants from Korn’s inequality (3.2) and the Poincaré–
Friedrichs inequality (3.3), respectively.

Proof. The left inequality in (4.4) follows from

|||(τ ,v, z, q)|||2k =

∥∥∥∥
∣∣∣∣
(

τ̃ + qI,v, z̃ − 1

k
v, q

)∥∥∥∥
∣∣∣∣
2

k

= ‖div (τ̃ + qI)‖2 + ‖C−1/2(τ̃ + qI)‖2 + ‖C1/2ε(v)‖2

+ k

(
‖div (z̃ − 1

k
v)‖2 + ‖z̃ − 1

k
v‖2 + ‖∇q‖2

)

≤ 2‖div τ̃‖2 + 2‖C−1/2τ̃‖2 + ‖C1/2ε(v)‖2 +
2

k
‖div v‖2 +

2

k
‖v‖2

+ 2k‖div z̃‖2 + 2k‖z̃‖2 + (k + 2)‖∇q‖2 + 2‖C−1/2(qI)‖2

≤ 2
(
‖div τ̃‖2 + ‖C−1/2τ̃‖2

)
+

(
1 +

4CK

k

)
‖C1/2ε(v)‖2

+ 2k
(
‖div z̃‖2 + ‖z̃‖2

)
+

(
1 +

2

k
+

2CF

k(λ + μ)

)
k‖∇q‖2 .

For the last inequality, we have used

‖div v‖2 + ‖v‖2 ≤ 2‖∇v‖2 + ‖v‖2 ≤ 2CK‖C1/2ε(v)‖2 ,

‖C−1/2(q I)‖2 = (q I, C−1(q I)) =
1

λ + μ
‖q‖2 ≤ CF

λ + μ
‖∇q‖2

(recall from (2.2) that C I = 2(λ + μ) I). The right inequality in (4.4) follows along
the same lines from

|||(τ̃ ,v, z̃, q)|||2k =

∥∥∥∥
∣∣∣∣
(

τ − qI,v, z +
1

k
v, q

)∥∥∥∥
∣∣∣∣
2

k

.

We prove the equivalence of the functional with respect to the transformed vari-
ables under (4.1). The following lemma will be useful in the analysis.

Lemma 4.2. The antisymmetric part of the stress tensor,

as τ̃ =
1

2
(τ̃ − τ̃T ),

satisfies

‖as τ̃‖2 ≤ 2μ‖C−1/2(τ̃ + q I) − C1/2ε(v)‖2 .(4.5)
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Proof. Using the special structure of C in (2.2), we are led to

‖C−1/2(τ̃ + q I) − C1/2ε(v)‖2

= (C−1(τ̃ + q I), τ̃ + q I) − 2(τ̃ + q I, ε(v)) + (Cε(v), ε(v))

=

(
C−1

(
τ̃11 + q τ̃12
τ̃21 τ̃22 + q

)
,

(
τ̃11 + q τ̃12
τ̃21 τ̃22 + q

))

− 2

((
τ̃11 + q τ̃12
τ̃21 τ̃22 + q

)
,

(
ε11 ε12

ε21 ε22

))
+

(
C
(
ε11 ε12

ε21 ε22

)
,

(
ε11 ε12

ε21 ε22

))

=
1

2μ

((
∗ τ̃12
τ̃21 ∗

)
,

(
∗ τ̃12
τ̃21 ∗

))

− 2

((
∗ τ̃12
τ̃21 ∗

)
,

(
∗ ε12

ε21 ∗

))
+ 2μ

((
∗ ε12

ε21 ∗

)
,

(
∗ ε12

ε21 ∗

))
.

This leads to

‖C−1/2τ − C1/2ε(v)‖2 =

∥∥∥∥∥
( ∗ 1√

2μ
τ12 −

√
2με12

1√
2μ

τ21 −
√

2με21 ∗

)∥∥∥∥∥
2

≥
∥∥∥∥ 1√

2μ
τ12 −

√
2με12

∥∥∥∥
2

+

∥∥∥∥ 1√
2μ

τ21 −
√

2με21

∥∥∥∥
2

≥ 1

2

∥∥∥∥ 1√
2μ

(τ12 − τ21) −
√

2μ(ε12 − ε21)

∥∥∥∥
2

=
1

2

∥∥∥∥ 1√
2μ

(τ12 − τ21)

∥∥∥∥
2

=
1

4μ
‖τ12 − τ21‖2 =

1

2μ
‖as τ‖2 .

Theorem 4.3. There are positive constants α̃ and β̃ such that

α̃|||(τ̃ ,v, z̃, q)|||2k ≤ Fk(τ ,v, z, q;0) ≤ β̃|||(τ̃ ,v, z̃, q)|||2k(4.6)

holds for all (τ̃ ,v, z̃, q) ∈ HΓ1(div,Ω)2 ×H1
Γ2

(Ω)2 ×HΓ2(div,Ω) ×H1
Γ1

(Ω) uniformly
as λ → ∞.

Proof. Writing the functional with respect to the transformed variables gives

Fk(τ ,v, z, q;0)

= ‖div τ̃‖2 + ‖C−1/2(τ̃ + qI) − C1/2ε(v)‖2 + k‖div z̃‖2 + k

∥∥∥∥z̃ + ∇q − 1

k
v

∥∥∥∥
2

.

The right inequality in (4.6) follows from straightforward application of the Cauchy–
Schwarz inequality, and we may therefore restrict our attention to the lower bound.

Integration by parts, the elementary estimates

2(tr τ̃ , q) ≤ ξ

2
‖tr τ̃‖2 +

2

ξ
‖q‖2 and 2(z̃,v) ≤ kη‖z̃‖2 +

1

kη
‖v‖2

with constants ξ, η ∈ (0, 1) to be selected appropriately, and the inequality
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‖as τ̃‖2 ≤ 2μ‖C−1/2(τ̃ + q I) − C1/2ε(v)‖2

shown in Lemma 4.2 will be the basis of the following chain of inequalities. With
suitable positive constants A,B, and D to be chosen later, we have

max{A, 1 + B,D} Fk(τ ,v, z, q;0)

≥ A ‖div τ̃‖2
+ (1 + B)‖C−1/2(τ̃ + q I) − C1/2ε(v)‖2

+ Dk‖div z̃‖2 + k

∥∥∥∥z̃ + ∇q − 1

k
v

∥∥∥∥
2

= A‖div τ̃‖2 + B‖C−1/2(τ̃ + q I) − C1/2ε(v)‖2 + ‖C−1/2τ̃ − C1/2ε(v)‖2

+ ‖C−1/2(q I)‖2 + Dk‖div z̃‖2 + k‖z̃ + ∇q‖2 +
1

k
‖v‖2

+ 2(tr (C−1τ̃ ) − div v, q) − 2(z̃ + ∇q,v)

≥ A‖div τ̃‖2 +
B

2μ
‖as τ̃‖2 + ‖C−1/2τ̃ − C1/2ε(v)‖2 +

1

k
‖v‖2

+ Dk‖div z̃‖2 + k‖z̃ + ∇q‖2 +
1

λ + μ
‖q‖2 + 2

(
1

2(λ + μ)
tr τ̃ , q

)
− 2(z̃,v)

≥ A‖div τ̃‖2 +
B

2μ
‖as τ̃‖2 + ‖C−1/2τ̃ − C1/2ε(v)‖2 − ξ

4(λ + μ)
‖tr τ̃‖2

− 1

k

(
1

η
− 1

)
‖v‖2 + Dk‖div z̃‖2 + k

(
‖z̃ + ∇q‖2 − η‖z̃‖2

)

−
(

1

ξ
− 1

)
1

λ + μ
‖q‖2 =: G1(τ̃ ,v) + G2(z̃, q) .

This implies

Fk(τ ,v, z, q;0) ≥ min

{
1

A
,

1

1 + B
,

1

D

}
(G1(τ̃ ,v) + G2(z̃, q)) ,(4.7)

and we are left with estimating G1 and G2 separately.

For the first term, we use

‖tr τ̃‖2 = 2(λ + μ)(tr (C−1τ̃ ), tr τ̃ )

= 4(λ + μ)

(
1

2
(tr (C−1τ̃ )) I,

1

2
(tr τ̃ ) I

)

≤ 4(λ + μ)(C−1τ̃ , τ̃ ) = 4(λ + μ)‖C−1/2τ̃‖2 ,

(τ̃ , ε(v)) = (τ̃ − as τ̃ , ε(v)) = (τ̃ − as τ̃ ,∇v)

= −(div τ̃ ,v) − (as τ̃ ,∇v),
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and Korn’s inequality (3.2) to obtain

G1(τ̃ ,v) ≥ A‖div τ̃‖2 +
B

2μ
‖as τ̃‖2 + ‖C−1/2τ̃ − C1/2ε(v)‖2 − ξ‖C−1/2τ̃‖2

− CK

k

(
1

η
− 1

)
‖C1/2ε(v)‖2

= A‖div τ̃‖2 +
B

2μ
‖as τ̃‖2 + (1 − ξ)‖C−1/2τ̃‖2 − 2(τ̃ , ε(v))

+

(
1 − CK

k

(
1

η
− 1

))
‖C1/2ε(v)‖2

= A‖div τ̃‖2 +
B

2μ
‖as τ̃‖2 + (1 − ξ)‖C−1/2τ̃‖2 + 2(div τ̃ ,v)

+ 2(as τ̃ ,∇v) +

(
1 − CK

k

(
1

η
− 1

))
‖C1/2ε(v)‖2

=

(
A− 1

ρ

)
‖div τ̃‖2 + (1 − ξ)‖C−1/2τ̃‖2 +

(
1 − CK

k

(
1

η
− 1

))
‖C1/2ε(v)‖2

+

∥∥∥∥ 1

ρ1/2
div τ̃ + ρ1/2v

∥∥∥∥
2

− ρ‖v‖2

+

∥∥∥∥∥
(

B

2μ

)1/2

as τ̃ +

(
2μ

B

)1/2

∇v

∥∥∥∥∥
2

− 2μ

B
‖∇v‖2

≥
(
A− 1

ρ

)
‖div τ̃‖2 + (1 − ξ)‖C−1/2τ̃‖2

+

(
1 − CK

k

(
1

η
− 1

)
− CK max

{
ρ,

2μ

B

})
‖C1/2ε(v)‖2 .

Choosing

η =
1

1 + k
4CK

, ρ =
1

4CK
, A = 8CK , B =

2μ

ρ
= 8μCK

leads to

G1(τ̃ ,v) ≥ 4CK‖div τ̃‖2 + (1 − ξ)‖C−1/2τ̃‖2 +
1

2
‖C1/2ε(v)‖2 .(4.8)

Note that ξ ∈ (0, 1) is still free to be chosen appropriately for the estimation of G2

below.
For the second term, the Poincaré–Friedrichs inequality (3.3) leads to

G2(z̃, q) ≥ Dk‖div z̃‖2 + k
(
‖z̃ + ∇q‖2 − η‖z̃‖2

)
−
(

1

ξ
− 1

)
CF

λ + μ
‖∇q‖2

= Dk‖div z̃‖2 + k(1 − η)‖z̃‖2 + 2k(z̃,∇q) +

(
k −

(
1

ξ
− 1

)
CF

λ + μ

)
‖∇q‖2

= Dk‖div z̃‖2 + k(1 − η)‖z̃‖2 − 2k(div z̃, q) +

(
k −

(
1

ξ
− 1

)
CF

λ + μ

)
‖∇q‖2

≥ Dk

2
‖div z̃‖2 + k(1 − η)‖z̃‖2 +

(
k −

(
1

ξ
− 1

)
CF

λ + μ
− k

2CF

D

)
‖∇q‖2 .
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Here, we may choose

ξ =
1

1 + k(λ+μ)
3CF

, D = 6CF ,

which implies

G2(z̃, q) ≥ k

(
D

2
‖div z̃‖2 + (1 − η)‖z̃‖2 +

1

3
‖∇q‖2

)
.(4.9)

Therefore,

G1(τ̃ ,v) + G2(z̃, q) ≥ min

{
A

2
, 1 − ξ,

1

4
,
D

2
, 1 − η,

1

3

}
|||(τ̃ ,v, z̃, q)|||2k,

which, together with (4.7), completes our proof.
Finally, our main result follows easily from Theorems 4.3 and 4.1.
Theorem 4.4. There are positive constants α and β such that

α|||(τ ,v, z, q)|||2k ≤ Fk(τ ,v, z, q;0) ≤ β|||(τ ,v, z, q)|||2k(4.10)

holds for all (τ ,v, z, q) ∈ HΓ1(div,Ω)2 ×H1
Γ2

(Ω)2 ×HΓ2(div,Ω) ×H1
Γ1

(Ω) uniformly
as λ → ∞.

Remark. The equivalence constants in (4.10) and (4.6) still depend on the time-
step length k. The behavior of the finite element approximation obtained with the
least-squares method for small k is of particular interest in connection with the reduced
regularity of Biot’s consolidation problem for t → 0 analyzed in detail in [18]. A
closer inspection of the proof of Theorem 4.3 shows that (4.6) can be sharpened to
the following inequalities with constants α∗, β∗ now independent of k:

Fk(τ ,v, z, q;0) ≥ α∗(‖div τ̃‖2 + k‖C−1/2τ̃‖2 + ‖C1/2ε(v)‖2

+ k‖div z̃‖2 + k2‖z̃‖2 + k‖∇q‖2) ,
(4.11)

Fk(τ ,v, z, q;0) ≤ β∗
(
‖div τ̃‖2 + ‖C−1/2τ̃‖2 + ‖C1/2ε(v)‖2 +

1

k
‖v‖2

+ k‖div z̃‖2 + k‖z̃‖2 + k‖∇q‖2 + ‖q‖2

)
.

(4.12)

5. Finite element approximation. The finite element approximation of the
least-squares formulation consists in minimizing the least-squares functional in (2.10)
with respect to suitable finite-dimensional subspaces of HΓelas

N
(div,Ω)2 ×H1

Γelas
D

(Ω)2 ×
HΓflow

N
(div,Ω)×H1

Γflow
D

(Ω). In analogy to the derivation in section 2, the minimization

with respect to these finite-dimensional spaces leads to a linear variational problem
of the form (2.12) with respect to these finite-dimensional spaces. This leaves us with
the question of choosing appropriate finite element spaces for

σ̂ ∈ HΓelas
N

(div,Ω)2 , u ∈ H1
Γelas
D

(Ω)2 , w ∈ HΓflow
N

(div,Ω) , p̂ ∈ H1
Γflow
D

(Ω) .

In contrast to the situation for mixed finite element approaches based on a saddle
point formulation, the finite element spaces do not have to satisfy the compatibility
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condition by Ladyshenskaja–Babuška–Brezzi. Instead the spaces can be chosen com-
pletely independently of each other in the least-squares approach. The convergence
of the least-squares mixed finite element method is only governed by the ellipticity of
the least-squares functional, i.e., its equivalence to a meaningful norm of the error,
and by the approximation properties of the finite element spaces.

Our finite element spaces are based on a sequence of triangulations {Th} of the
domain Ω. Suitable finite element spaces for H(div,Ω) are the Raviart–Thomas spaces
given by piecewise polynomials of the form

sh|T =

(
p
(I)
m−1

p
(II)
m−1

)
+ xp

(III)
m−1

on each triangle T ∈ Th, where p
(I)
m−1, p

(II)
m−1, and p

(III)
m−1 denote polynomials of degree

m−1. For m = 1, the case we use in our numerical computations presented in section
6, this implies

sh|T =

(
αT

βT

)
+ γT

(
x1

x2

)
.

The Raviart–Thomas space of degree m is also characterized as those polynomials of
degree m (componentwise) with the property that the trace of sh · n on each edge is
a polynomial of degree m− 1. Raviart–Thomas spaces are used in our computations
for the approximation of each component of the stress tensor and for the fluid flux.
Note that the boundary values for σ · n and w · n can easily be prescribed for these
spaces since the degrees of freedom in the above basis representation are associated
with these quantities. For the approximation of each component of the displacement
and for the hydraulic potential, standard conforming piecewise polynomial spaces are
used.

We investigate the theoretical approximation properties of our least-squares ap-
proach on a sequence of triangulations under sufficient regularity assumptions if we
use the finite element spaces mentioned above. For the Raviart–Thomas elements, we
have

‖σ − Phσ‖ ≤ Chm|σ|m,Ω , ‖div (σ − Phσ)‖ ≤ Chm|div σ|m,Ω ,

‖w − Phw‖ ≤ Chm|w|m,Ω , ‖div (w − Phw)‖ ≤ Chm|div w|m,Ω ,

with a suitable interpolation operator Ph (cf. [5, Proposition III.3.9]). The standard
finite element interpolation estimates (see, for example, [3, section II.6]) imply

‖u − Qhu‖ ≤ Chm|u|m,Ω , ‖∇ (u − Qhu)‖ ≤ Chm|u|m+1,Ω ,

‖p−Qhp‖ ≤ Chm|p|m,Ω , ‖∇ (p−Qhp)‖ ≤ Chm|p|m+1,Ω ,

where Qh denotes the standard interpolation operator.
With (4.12) the above interpolation estimates lead to

Fk(σh,uh,wh, ph;uold) = Fk(σ − σh,u − uh,w − wh, p− ph;0)

≤ β∗C2h2m

(
|div σ̃|2m,Ω + k|σ̃|2m,Ω + |u|2m+1,Ω +

1

k
|u|2m,Ω

+ k|div w̃|2m,Ω + k|w̃|2m,Ω + k|p|2m+1,Ω + |p|2m,Ω

)

≤ β∗C2h2m

(
|u|2m+1,Ω +

1

k
|u|2m,Ω + k|div w|2m,Ω + k|p|2m+1,Ω + |p|2m,Ω

)
.

(5.1)
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If we combine this with (4.11), we obtain

‖div (σ̃ − σ̃h)‖ + k1/2‖C−1/2(σ̃ − σ̃h)‖ + ‖C1/2ε(u − uh)‖
+ k1/2‖div (w̃ − w̃h)‖ + k‖w̃ − w̃h‖ + k1/2‖∇(p− ph)‖

≤
√

β∗

α∗Chm

(
|u|m+1,Ω +

|u|m,Ω

k1/2
+ k1/2|div w|m,Ω + k1/2|p|m+1,Ω + |p|m,Ω

)
.

In particular, for the approximation of the primal variables,

‖∇(u − uh)‖ + k1/2‖∇(p− ph)‖

≤
√

β∗

α∗Chm

(
|u|m+1,Ω +

|u|m,Ω

k1/2
+ k1/2|div w|m,Ω + k1/2|p|m+1,Ω + |p|m,Ω

)(5.2)

holds.
In comparison, the standard mixed approach is based on the variational formula-

tion of finding u ∈ H1
Γ2

(Ω)2 and p ∈ pD + H1
Γ1

(Ω) such that

(C ε(u), ε(v)) − (p,div v) = (g,v)Γ1
− (pD,n · v)Γ1

−(div u, q) − k(κ∇p,∇q) = −(div uold, q)
(5.3)

holds for all v ∈ H1
Γ2

(Ω)2 and q ∈ H1
Γ1

(Ω). By ( · , · )Γ1 , the inner product in L2(Γ1)
is meant. If a compatible pair of finite element spaces satisfying the inf-sup condition
is used, then approximation bounds are obtained which are uniform as k → 0. In
particular, for the Taylor–Hood elements combining piecewise polynomials of degree
m for u with piecewise polynomials of degree m− 1 for p, the estimates

‖∇(u − uh)‖ ≤ Chm|u|m+1,Ω ,

‖p− ph‖ + k1/2‖∇(p− ph)‖ ≤ C
(
hm + k1/2hm−1

)
|p|m,Ω

(5.4)

for m ≥ 2 can be deduced from the results (for the case k = 0) in [4, section 12.6]. The
regularity results in [18, Lemma 2.2] imply for the solution of the initial-boundary
value problem (2.7), (2.8)

|u(t)|m+1,Ω + |p(t)|m,Ω ≤ CRt
−m/2 ,(5.5)

where the constant CR depends on the boundary data g and pD. Of course, (5.5) only
holds under suitable assumptions on the boundary conditions and on the smoothness
of ∂Ω. Based on these regularity estimates, the a priori estimates (5.4) for the mixed
method lead to

‖∇(u − uh)‖ + ‖p− ph‖ + k1/2‖∇(p− ph)‖ ≤ C

((
h

k1/2

)m

+

(
h

k1/2

)m−1
)

.

(5.6)

In comparison, for our least-squares approach we obtain

‖∇(u − uh)‖ + k1/2‖∇(p− ph)‖ ≤ C

(
h

k1/2

)m

(5.7)

using (5.2). Note, however, that our motivation for the least-squares approach in this
paper is the simultaneous approximation for the stress and flux variables as well as
the availability of the least-squares functional as an a posteriori estimator for adaptive
refinement of the finite element triangulation.
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Table 6.1

Material parameters for numerical experiments.

Parameter Value

Young’s modulus E 30 kN
m2

Poisson ratio ν 0.2

percolation coefficient κ 10−4 m4

kNs
boundary condition σ0 1 kN

m2

6. Computational experiments. In this section, we study the behavior of the
approximate solution of Biot’s consolidation problem by the least-squares formulation
(2.12). To this end, we consider two test examples with different properties in a two-
dimensional domain. Both examples are taken from [17].

Example 1. The first example is a two-dimensional simulation of a one-dimensional
consolidation problem in a column of porous soil of depth 1 with rigid and impermeable
walls. This column shall be loaded on the top by a pressure σ0 and is free to drain.
This one-dimensional problem has an analytic solution which is given in terms of an
infinite sum (see [17]). It is therefore perfectly suited for an illustration of the effects
at the beginning of the simulation for different time-step sizes k.

For the two-dimensional simulation of the one-dimensional consolidation problem,
a box of 0.1 m width and 1 m depth with the origin located on the upper left corner
is used as simulation domain Ω with the following boundary conditions:

p = 0, σxy = 0, σyy = −σ0 on {(x, y) ∈ ∂Ω : y = 0},
w = 0, ux = 0, σyx = 0 on {(x, y) ∈ ∂Ω : x = 0},
w = 0, ux = 0, σyx = 0 on {(x, y) ∈ ∂Ω : x = 0.1},
w = 0, σxy = 0, uy = 0 on {(x, y) ∈ ∂Ω : y = −1}.

As initial conditions, u = 0 is prescribed in Ω for t = 0. The material parameters are
given in Table 6.1.

The computations are based on the lowest-order case of finite element spaces (m =
1 in the notation of section 5) except for the displacement, which is approximated by
piecewise quadratic functions. Our observations indicate that the overall finite element
approximation is not satisfactory if only piecewise linear functions are used for the
displacement. Note, however, that the choice of quadratic finite elements does not lead
to uniform convergence for nearly incompressible materials. Uniform approximation in
the incompressible limit could be achieved by the use of nonconforming finite elements.
A detailed study of this topic for the elasticity subproblem using the least-squares
functional (2.4), including computational results, is given in [6].

For t → 0, the pressure front involves large gradients, as shown in Figure 6.1.
This is caused by the Dirichlet boundary condition p = 0 at y = 0, which contradicts
the asymptotic behavior p → σ0 for t → 0 for all x ∈ (0, 1). Due to this behavior, the
length of the time-step influences the choice of an initial grid, which is fine enough
to resolve this front. For this purpose, a nonuniform initial coarse triangulation is
used in our computations which is refined near the top of the domain. Six steps
of adaptive refinement are then performed starting from this initial triangulation of
1725 degrees of freedom for the time-step lengths k = 100, 1, and 0.001. The local
evaluation of the least-squares functional is used as an a posteriori error estimator
for the adaptive refinement process (cf. [1]). Tables 6.2, 6.3 and 6.4 demonstrate the
effect of adaptive refinement by means of reduction of the least-squares functional. We
give the total number of degrees of freedom (DOF) and the value of the least-squares
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Fig. 6.1. Pressure front for times t = 1, 0.1, and 0.01.

functional (LSF). Moreover, the ratio

ρ =
LSF|current level

LSF|previous level
· DOF|current level

DOF|previous level

is listed in these tables. Ideally, for piecewise linear finite elements in two dimensions,
the reduction rate of the least-squares functional

LSF|current level

LSF|previous level
,

which represents the square of the approximation error, should be inversely propor-
tional to the increase in the number of unknowns

DOF|current level

DOF|previous level
.

In other words, ρ should be roughly 1 for an optimal order of convergence in the
adaptive process. In each of the tables, these numbers are given for times t = k and
t = 10 k to account for the time dependence of the problem.

The numbers show a nearly optimal convergence of the computed approximation
according to a reduction of the least-squares functional proportional to the inverse
of the increase in number of degrees of freedom (i.e., ρ ≈ 1 in Tables 6.2–6.4). The
estimates (5.1) and (5.5) from the previous section imply

Fk(σh,uh,wh, ph;uold) ≤ C

k
h2 .

Fortunately, Tables 6.2, 6.3, and 6.4 show that the dependence of the functional mini-
mum is by far not as dramatic as suggested by this formula in the actual computations.

Example 2. The second example is a true two-dimensional footing problem as
given also in [17]. The simulation domain is a 8× 5 m block of porous soil as given in



LEAST-SQUARES FOR BIOT’S CONSOLIDATION PROBLEM 335

Table 6.2

Example 1: Approximation for k = 100.

t = k t = 10 k
Level DOF LSF ρ DOF LSF ρ

0 1725 1.7834e-04 - 1725 2.4235e-09 -
1 2373 8.2168e-05 0.634 2418 1.0607e-09 0.614
2 3471 4.6874e-05 0.834 3390 6.3210e-10 0.835
3 5073 2.8543e-05 0.890 4767 4.1312e-10 0.919
4 7431 1.7257e-05 0.886 6900 2.4882e-10 0.872
5 11022 1.1527e-05 0.991 9780 1.6488e-10 0.939
6 15504 8.3054e-06 1.014 13830 1.2034e-10 1.032
7 22461 5.4254e-06 0.946 19464 8.2040e-11 0.959

Table 6.3

Example 1: Approximation for k = 1.

t = k t = 10 k
Level DOF LSF ρ DOF LSF ρ

0 1725 5.4981e-03 - 1725 1.9241e-03 -
1 2328 3.1445e-03 0.772 2355 6.1131e-04 0.434
2 3336 2.1637e-03 0.986 3507 3.9092e-04 0.952
3 4668 1.5917e-03 1.029 4758 1.9642e-04 0.682
4 6837 1.1903e-03 1.095 6765 1.3249e-04 0.959
5 10163 8.1069e-04 1.012 10203 9.3223e-05 1.061
6 14692 5.7497e-04 1.025 14910 5.7600e-05 0.903
7 21550 4.2002e-04 1.071 21651 3.8023e-05 0.959

Table 6.4

Example 1: Approximation for k = 0.001.

t = k t = 10 k
Level DOF LSF ρ DOF LSF ρ

0 1725 3.8117e-02 - 1725 3.6349e-02 -
1 2490 3.1330e-02 1.186 2553 2.7627e-02 1.125
2 3669 2.3306e-02 1.096 3939 1.8255e-02 1.019
3 5433 1.7161e-02 1.090 6162 1.1972e-02 1.026
4 7773 1.2844e-02 1.071 9114 8.2663e-03 1.021
5 10660 9.8728e-03 1.054 14487 6.2077e-03 1.194
6 15619 7.5567e-03 1.121 21562 4.5356e-03 1.087
7 22054 5.6481e-03 1.055 30802 3.6467e-03 1.149

Figure 6.2. At the base of this domain the soil is assumed to be fixed and impervious,
while at the upper left part of the domain a uniform load of intensity σ0 is applied
in a strip of length 1 m. The simulated domain then constitutes the right half of a
model which is cut in the middle along its symmetry axis.

For the material parameters and the applied load the same values as in the pre-
vious example are used. As the initial condition we use u = 0 in Ω for t = 0, and the
boundary data is given as follows:

p = 0, σxy = 0, σyy = −σ0 on {(x, y) ∈ ∂Ω : y = 0, x ≤ 1},
p = 0, σxy = 0, σyy = 0 on {(x, y) ∈ ∂Ω : y = 0, x > 1},
w = 0, ux = 0, σyx = 0 on {(x, y) ∈ ∂Ω : x = 0},
w = 0, ux = 0, σyx = 0 on {(x, y) ∈ ∂Ω : x = 8},
w = 0, σxy = 0, uy = 0 on {(x, y) ∈ ∂Ω : y = −5}.

The finite element approximation spaces are also identical to those for Example 1.
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Fig. 6.2. Example 2: Simulated domain with applied loads.

Table 6.5

Example 2: Approximation of stationary problem.

Level DOF LSF ρ
0 600 6.6029e-02 -
1 872 2.8771e-02 0.633
2 1379 1.5896e-02 0.874
3 2158 9.8770e-03 0.972
4 3349 6.4977e-03 1.021
5 5372 4.1945e-03 1.035
6 8135 2.8438e-03 1.027
7 12421 1.9623e-03 1.054
8 18775 1.3011e-03 1.002

For the consolidation of the material, the following three different stages have been
considered in [17]. For t = 0, an incompressible Stokes system needs to be solved, and
then the consolidation process starts. The stationary state of the system can finally
be obtained by the solution of decoupled deformation and flow problems.

Table 6.5 shows the results for the approximation of the stationary problem using
eight steps of adaptive refinement. In this example, the stationary solution is actually
p ≡ 0 for the fluid flow problem and reduces to an elastic deformation problem. The
nearly optimal behavior of the adaptive algorithm can be seen from the numbers in
Table 6.5.

The solution of the time-dependent problem is shown for various t in Figure 6.3.
The graphs show the increasingly steeper gradients with a singular behavior for t → 0.

That the time-dependent problems become more difficult for decreasing k due to
this singular nature of the problem can be observed in Tables 6.6, 6.7, and 6.8 where
the numerical results are listed for time-step lengths k = 10000, 100, and 1 and for
two different times t = k and t = 10k. Six steps of adaptive refinement with an initial
grid of 1348 degrees of freedom are used. The notation is the same as in Example 1.

The triangulation after four steps of adaptive refinement for k = 1 and t = 3 is
shown in Figure 6.4.

If we compare our results with those of Murad and Loula [17], we see a qualita-



LEAST-SQUARES FOR BIOT’S CONSOLIDATION PROBLEM 337

0

5

10

−5

0
0

50

100

150

200

pressure p

0

5

10

−5

0
0

100

200

300

400

pressure p

0

5

10

−5

0
0

200

400

600

800

pressure p

0

5

10

−5

0
0

200

400

600

800

pressure p

Fig. 6.3. Pressure front for times t = 1000, 100, 10, and 1.

Table 6.6

Example 2: Approximation for k = 10000.

t = k t = 10 k
Level DOF LSF ρ DOF LSF ρ

0 1348 2.4550e-02 - 1348 2.4646e-02 -
1 2043 1.2671e-02 0.782 2043 1.2741e-02 0.784
2 3225 7.7514e-03 0.966 3225 7.7915e-03 0.965
3 5022 4.9485e-03 0.994 5040 4.9251e-03 0.988
4 7884 3.3426e-03 1.060 7892 3.3626e-03 1.069
5 12189 2.1854e-03 1.011 12235 2.1872e-03 1.008
6 19003 1.4009e-03 0.999 18795 1.4257e-03 1.001

Table 6.7

Example 2: Approximation for k = 100.

t = k t = 10 k
Level DOF LSF ρ DOF LSF ρ

0 1348 4.3685e-02 - 1348 2.9035e-02 -
1 1971 2.5940e-02 0.868 2053 1.4850e-02 0.779
2 3045 1.8177e-02 1.083 3164 9.6709e-03 1.004
3 4868 1.1921e-02 1.049 4915 6.0689e-03 0.975
4 7343 8.0240e-03 1.015 7602 4.1349e-03 1.054
5 11086 5.4508e-03 1.026 11695 2.7232e-03 1.013
6 16675 3.7071e-03 1.023 17930 1.8196e-03 1.024
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Table 6.8

Example 2: Approximation for k = 1.

t = k t = 10 k
Level DOF LSF ρ DOF LSF ρ

0 1348 2.2133e-01 - 1348 1.7277e-01 -
1 1981 1.7234e-01 1.144 2178 1.0841e-01 1.014
2 3223 1.3144e-01 1.241 3631 7.6777e-02 1.181
3 5128 1.0526e-01 1.274 5466 5.6833e-02 1.114
4 7746 8.5335e-02 1.225 8730 4.0558e-02 1.140
5 11831 6.7470e-02 1.208 13301 2.7934e-02 1.049
6 17558 5.4181e-02 1.192 20830 1.8262e-02 1.024

Fig. 6.4. Adaptively refined grid for k = 1 and t = 3.

tively similar behavior. The oscillations for small t which are present in the numerical
results in [17], however, are avoided in our least-squares formulation. Adaptive refine-
ment near the load boundary is crucial for the good performance of our least-squares
approach as is the proper scaling of the individual terms in the least-squares func-
tional.
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Abstract. Least-squares finite element methods for first-order formulations of the Poisson
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prove optimal convergence in the “energy” norm (equivalent to a norm on H1(Ω) × H(Ω, div)) for
all variables and optimal L2 convergence for the scalar variable. However, showing optimal L2

convergence for the flux has proven to be impossible without adding the redundant curl equation to
the first-order system of partial differential equations. In fact, numerical evidence strongly suggests
that nodal continuous flux approximations do not posses optimal L2 accuracy. In this paper, we show
that optimal L2 error rates for the flux can be achieved without the curl constraint, provided that one
uses the div-conforming family of Brezzi–Douglas–Marini or Brezzi–Douglas–Duran–Fortin elements.
Then, we proceed to reveal an interesting connection between a least-squares finite element method
involving H(Ω, div)-conforming flux approximations and mixed finite element methods based on the
classical Dirichlet and Kelvin principles. We show that such least-squares finite element methods
can be obtained by approximating, through an L2 projection, the Hodge operator that connects
the Kelvin and Dirichlet principles. Our principal conclusion is that when implemented in this way,
a least-squares finite element method combines the best computational properties of finite element
methods based on each of the classical principles.
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1. Introduction. Stable mixed finite element methods for the Poisson equation1

(written in a first-order form in terms of a scalar variable and a flux) require the use
of finite element spaces that satisfy an appropriate inf-sup condition. For methods
based on the Dirichlet principle, the inf-sup condition can be easily satisfied but
for the dual Kelvin principle, it imposes complicated restrictions on the choice of
spaces; see [11]. In either case, it is well known that pairs of standard nodal-based,
continuous finite element spaces fail the inf-sup condition and lead to unstable mixed
methods. It is also well known that the inf-sup condition is circumvented if one
uses such simple element pairs in finite element methods based on L2 least-squares
variational principles. Ever since such least-squares finite element methods for first-
order formulations of the Poisson equation were first considered in [24], this fact
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1Although we consider only the Poisson problem, much of what we discuss can be easily extended
to more general second-order elliptic partial differential equations.
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has been deemed as an important advantage of those methods over mixed Galerkin
methods.

Already in [24], optimal L2 error estimates for least-square finite element methods
were established for the scalar variable; however, there, no optimal L2 convergence
results were obtained for nodal approximations of the flux. This situation persisted in
all subsequent analyses: optimal L2 error estimates for the flux could not be obtained2

without the addition of a “redundant” curl equation; see, e.g., [13, 14, 15, 25, 27].
Moreover, computational studies in [16] strongly suggested that optimal L2 conver-
gence may in fact be nearly impossible if one uses pairs of standard nodal-based
continuous finite element spaces. A notable exception was a case studied in [16] for
which optimal L2 error estimates for both the scalar variable and the flux were ob-
tained when these variables were approximated by continuous nodal spaces built on
a criss-cross grid. The key to their proof was the validity of the grid decomposition
property (GDP) which was established for the criss-cross grid in [17]. So far, the
criss-cross grid remains the only known case of a continuous nodal-based finite ele-
ment space for which the GDP can be verified. More importantly, it was shown in [17]
(see also [7]) that the GDP is necessary and sufficient for the stability of the mixed
finite element method based on the Kelvin principle.

The correlation between the stability of mixed finite element methods and the
optimal accuracy of least-squares finite element methods, established in [16], opens
up the intriguing possibility that optimal L2 accuracy for the flux may be obtainable
for a least-squares finite element method, provided that this variable is approximated
by H(Ω,div)-conforming elements that are stable for mixed finite element methods
based on the Kelvin principle. Today, the stability of mixed finite element methods
based on the Kelvin principle is well understood, and many examples of stable finite
element pairs are known. The first goal of our study is to show that the use of some of
these spaces in a least-squares finite element method will indeed help to improve the L2

accuracy of the flux approximation. Our second goal is to offer a new perspective on
least-squares principles as resulting from a choice for the approximation of the Hodge
∗-operator that connects two mutually dual “energy” principles. Among other things,
such an interpretation shows, in our context, why the use of H(Ω,div)-conforming
elements is in fact more natural than the use of equal-order C0 spaces.

While our conclusions may disappoint the adherents of equal-order implementa-
tions, our results do not void least-squares finite element methods as a viable com-
putational alternative. To the contrary, they demonstrate that when implemented
correctly, a least-squares finite element method combines the best computational prop-
erties of finite element methods based on both the Dirichlet and Kelvin principles, and
at the same time manages to avoid the indefinite linear systems that make the latter
more difficult to solve. Although we reach this conclusion in the specific context of
mixed and least-squares finite element methods for the Poisson problem, the idea of
defining the latter type of method so that it inherits the best characteristics of a
pair of mixed methods that are related through duality may have considerably wider
application.

In the rest of this section, we briefly review the notation used throughout the
paper. Then, in section 2.1, we recall the Dirichlet and Kelvin principles and the

2A somewhat different situation exists for negative-norm-based least-squares finite element meth-
ods, for which it is known that the L2 accuracy of the flux is optimal with respect to the spaces
used; however, for such methods, no error bound for the divergence of the flux could be established;
see [10].
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associated first-order div-grad formulation of the boundary value problem for the
Poisson equation. There, in the context of the Kelvin principle, we also review basic
definitions and properties of stable H(Ω,div)-conforming mixed finite elements spaces
for the flux and show that they satisfy the GDP. For the sake of brevity, we restrict
attention to the well-known Raviart–Thomas (RT), Brezzi–Douglas–Marini (BDM),
and Brezzi–Douglas–Duran–Fortin (BDDF) classes of affine families of finite elements.
Section 3 deals with least-squares finite element methods for first-order formulations
of the Poisson problem. After a brief review of known error estimates in H1(Ω) ×
H(Ω,div), we turn our attention to the L2 accuracy and the rarely discussed case
of least-squares finite element methods using RT, BDM, or BDDF approximations of
the flux. We show that BDM and BDDF spaces lead to optimal convergence of the
flux in L2. In section 4, we offer an interpretation of such least-squares finite element
methods which is derived with the help of some notions from exterior calculus and
differential forms.

1.1. Notation. Throughout, Ω denotes a bounded region in R
n, n = 2, 3, with

a Lipschitz continuous boundary Γ = ∂Ω. We assume that Γ consists of two disjoint
parts denoted by ΓD and ΓN . For p > 0, Hp(Ω) denotes the Sobolev space of order
p with norm and inner product denoted by ‖ · ‖p and (·, ·)p, respectively. When
p = 0, we use the standard notation L2(Ω). The symbol | · |k, 0 ≤ k ≤ p, denotes
the kth seminorm on Hp(Ω). Vector-valued functions and vector analogues of the
Sobolev spaces are denoted by lower- and upper case bold-face font, respectively, e.g.,
u, H1(Ω), L2(Ω), etc. We recall the space

H(Ω,div) = {u ∈ L2(Ω) | ∇ · u ∈ L2(Ω)},

which is a Hilbert space when equipped with the norm

‖u‖H(Ω,div) = (‖u‖2
0 + ‖∇ · u‖2

0)
1/2.

To deal with the boundary conditions, we introduce the spaces

H1
D(Ω) = {φ ∈ H1(Ω) | φ = 0 on ΓD}

and

HN (Ω,div ) = {v ∈ H(Ω,div) | v · n = 0 on ΓN}.

Details about all the notation just introduced may be found, e.g., in [11, 18].
Throughout, we will refer to the problem

−Δφ + γφ = f in Ω, φ = 0 on ΓD, and ∂φ/∂n = 0 on ΓN(1.1)

as the Poisson problem, even though that terminology is usually reserved for the case
γ = 0.

2. Mixed finite element methods for the Poisson problem. So as to pro-
vide a background for some of the discussions of sections 3 and 4 concerning least-
squares finite element methods, we consider, in this section, primal and dual mixed
finite element methods for the Poisson problem.

2.1. The generalized Dirichlet and Kelvin principles. The Dirichlet and
Kelvin principles arise in a variety of applications. Mathematically, they provide two
variational formulations for the Poisson problem and also form the basis for defining
mixed finite element methods for approximations of the solution of that problem.
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2.1.1. The generalized Dirichlet principle. Consider the functional

D(φ,w; f) =
1

2

∫
Ω

(
|w|2 + γ|φ|2

)
dΩ −

∫
Ω

fφ dΩ

and the minimization problem

min
(φ,w)∈H1

D
(Ω)×∇H1

D
(Ω)

D(φ,w; f) subject to w + ∇φ = 0,(2.1)

where γ ≥ 0 is a given function that is assumed to satisfy ‖γ‖L∞(Ω) ≤ C for some con-
stant C ≥ 0. The minimization principle (2.1) is known as the (generalized) Dirichlet
principle.3 Although the constraint w + ∇φ = 0 can be directly substituted into the
functional to eliminate the flux w,4 it will be more profitable for our discussions to
continue to consider the form (2.1).

With the help of a Lagrange multiplier u to enforce the constraint w + ∇φ = 0
and the Lagrangian functional

LD(φ,w,u; f) =
1

2

∫
Ω

(
|w|2 + γ|φ|2

)
dΩ −

∫
Ω

fφ dΩ −
∫

Ω

u · (w + ∇φ) dΩ,

the constrained minimization problem (2.1) can be transformed into the unconstrained
optimization problem of determining saddle-points (φ,w,u) ∈ H1

D(Ω) × ∇H1
D(Ω) ×

∇H1
D(Ω) of LD(φ,w,u; f). It is not difficult to see that the optimality system ob-

tained by setting the first variations of LD(φ,w,u; f) to zero is given by the following:
seek (φ,w,u) ∈ H1

D(Ω) ×∇H1
D(Ω) ×∇H1

D(Ω) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

w · v dΩ +

∫
Ω

∇φ · v dΩ = 0 ∀v ∈ ∇H1
D(Ω),

∫
Ω

(w − u) · q dΩ = 0 ∀q ∈ ∇H1
D(Ω),

−
∫

Ω

u · ∇ψ dΩ +

∫
Ω

γφψ dΩ =

∫
Ω

fψ dΩ ∀ψ ∈ H1
D(Ω).

(2.3)

The first and second equations may be easily combined to yield the simplified system

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

u · v dΩ +

∫
Ω

∇φ · v dΩ = 0 ∀v ∈ ∇H1
D(Ω),

∫
Ω

∇ψ · u dΩ −
∫

Ω

γψφ dΩ = −
∫

Ω

fψ dΩ ∀ψ ∈ H1
D(Ω),

(2.4)

involving only φ ∈ H1
D(Ω) and u ∈ ∇H1

D(Ω).
If solutions to the constrained minimization problem (2.1) or, equivalently, of

(2.4), are sufficiently smooth, then without much difficulty one obtains that

3For f = 0, γ = 0, and appropriate boundary conditions, the Dirichlet principle in the inviscid
fluid mechanics setting states that among all irrotational velocity fields, the one that minimizes the
kinetic energy is the solenoidal one. In the solid mechanics setting, w is a tensor, and a simplified
version of (2.1) is the energy minimization principle.

4This results in the certainly more familiar form for the (generalized) Dirichlet principle:

min
φ∈H1

D
(Ω)

D̃(φ; f), where D̃(φ; f) =
1

2

∫
Ω

(|∇φ|2 + γ|φ|2) dΩ −
∫

Ω

fψ dΩ.(2.2)



344 P. BOCHEV AND M. GUNZBURGER

{∇ · u + γφ = f and u + ∇φ = 0 in Ω,

φ = 0 on ΓD and u · n = 0 on ΓN .
(2.5)

Note that from the second equation of (2.3) we also have that w = u. Eliminating the
flux u from (2.5) (again assuming that sufficient smoothness is available), one obtains
the Poisson problem5 (1.1) for the scalar variable φ.

2.1.2. The generalized Kelvin principle. Now consider the functional

K(λ,u) =
1

2

∫
Ω

(
|u|2 + γ|λ|2

)
dΩ

and the minimization problem

min
λ∈L2(Ω), u∈HN (Ω,div)

K(λ,v) subject to ∇ · u + γλ = f.(2.7)

The minimization principle (2.7) is known as the (generalized) Kelvin principle;6 it is
dual to the (generalized) Dirichlet principle.7

With the help of a Lagrange multiplier φ to enforce the constraint and the La-
grangian functional

LK(λ,u, φ; f) =
1

2

∫
Ω

(
|u|2 + γ|λ|2

)
dΩ −

∫
Ω

φ(∇ · u + γλ− f) dΩ,

the constrained minimization problem (2.7) can be transformed into the unconstrained
problem of determining saddle-points (λ,u, φ) ∈ L2(Ω) × HN (Ω,div ) × L2(Ω) of
LK(λ,u, φ; f). It is not difficult to see that the optimality system obtained by setting

5Note that since ∇ψ ∈ L2(Ω), one can easily combine the two equations in (2.4) to yield the
more familiar weak formulation∫

Ω

∇φ · ∇ψ dΩ +

∫
Ω

γψφ dΩ =

∫
Ω

fψ dΩ ∀ψ ∈ H1
D(Ω)(2.6)

for the Poisson problem (1.1). Again, it will be more profitable for our discussion to continue to use
(2.4) instead of the more familiar form (2.6).

6Setting f = 0 and γ = 0 and allowing for an inhomogeneous boundary condition for u · n,
the Kelvin principle for inviscid flows states that, among all incompressible velocity fields, the one
that minimizes the kinetic energy is irrotational. In structural mechanics (where u is a tensor), a
simplified version of (2.7) is known as the complimentary energy principle.

7Unlike the case of the Dirichlet principle, if γ = 0, one cannot directly use the constraint
∇ · u + γλ = f to eliminate one of the variables. If γ > 0, then it is possible to use the constraint to
eliminate the scalar variable λ. In fact, in the latter case we are led to the problem

min
u∈HN (Ω,div)

K̃(u; f), where K̃(u; f) =
1

2

∫
Ω

(
|u|2 +

1

γ
|∇ · u − f |2

)
dΩ.(2.8)

Comparing (2.2) and (2.8), we already see a big difference between the Kelvin and Dirichlet principles,

in addition to the obvious difficulty seen in (2.8) for the case γ = 0. The functional D̃(·; f) in (2.2)
involves all first derivatives of the scalar variable φ, which is why we can minimize it over the space

H1
D(Ω). On the other hand, the functional K̃(·; f) in (2.8) only involves the combination ∇ · u of

first derivatives of the flux u, which is why we can minimize it only with respect to a subspace of
H(Ω, div), and not with respect to H1(Ω).
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the first variations of L(λ,u, φ; f) to zero is given by the following: seek (λ,u, φ) ∈
L2(Ω) ×HN (Ω,div ) × L2(Ω) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

u · v dΩ −
∫

Ω

φ∇ · v dΩ = 0 ∀v ∈ HN (Ω,div ),

∫
Ω

γ(λ− φ)μdΩ = 0 ∀μ ∈ L2(Ω),

−
∫

Ω

ψ∇ · u dΩ −
∫

Ω

γψλ dΩ = −
∫

Ω

fψ dΩ ∀ψ ∈ L2(Ω).

(2.9)

For γ 	= 0, the second and third equations may be easily combined to yield the
simplified system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

u · v dΩ −
∫

Ω

φ∇ · v dΩ = 0 ∀v ∈ HN (Ω,div ),

−
∫

Ω

ψ∇ · u dΩ −
∫

Ω

γψφ dΩ = −
∫

Ω

fψ dΩ ∀ψ ∈ L2(Ω),

(2.10)

involving only φ ∈ L2(Ω) and u ∈ HN (Ω,div ). If γ = 0, then (2.9) directly reduces
to (2.10) so that the latter holds for any γ ≥ 0.

The duality of the Dirichlet and Kelvin principles extends to the optimality sys-
tems (2.4) and (2.10). For example, they are respectively described using the dual op-
erators ∇ and −∇·. The domain of ∇ is all of H1

D(Ω), while its range is a constrained
subspace of L2(Ω) consisting of irrotational functions. In contrast, the domain of ∇·
is a constrained subspace of L2(Ω) and its range is all of L2(Ω). We note again the
difference between the domain spaces of the two operators: H1

D(Ω) involves all first
derivatives of the scalar variable, while HN (Ω,div) only involves a combination of
first derivatives of the flux.

2.2. Stable mixed finite element spaces. Finite element approximations of
the mixed problems (2.4) and (2.10) are not stable unless the spaces chosen to ap-
proximate φ and u satisfy the inf-sup condition. To keep our presentation reasonably
short and devoid of unnecessary technical details, we focus on affine families of stable
spaces defined on simplicial triangulations Th of the domain Ω into elements K. In
two dimensions, K are triangles, and in three dimensions, they are tetrahedra. The
symbol Pk(K) denotes the space of all polynomials of degree less than or equal to k
defined on K.

Nodal C0 finite element spaces built from mth degree polynomials, m ≥ 1, are
denoted by8 W0

m(Ω). We recall that there exists an interpolation operator I0 into
W0

m(Ω) such that for any φ ∈ Hm+1(Ω),

‖φ− I0φ‖0 + h‖∇(φ− I0φ)‖0 ≤ Chm+1|φ|m+1.(2.11)

8The reasoning leading to the choice of notation Wi
k for the finite element spaces we employ will

become clear later.
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We denote by W1
m(Ω) the space ∇(W0

m(Ω)).9 We will use the pair of finite element
spaces W0

m(Ω) and W1
m(Ω) to discretize the Dirichlet principle.

For the Kelvin principle, we will use the10 BDMk and RTk spaces on Ω that are
built from the individual element spaces

BDMk(K) = (Pk(K))n and RTk(K) = (Pk(K))n + xPk(K)

in a manner that ensures the continuity of the normal component across element
boundaries; see [11, pp. 113–116] for details and definitions of the corresponding
element degrees of freedom. Since BDMk and RTk both contain complete polynomials
of degree k, their approximation properties in L2 are the same. In particular, one can
show that for either the BDMk or RTk spaces there exists an interpolation operator
I2 such that

‖u − I2u‖0 ≤ Chr|u|r ∀u ∈ Hr(Ω) and 1 ≤ r ≤ k + 1.(2.12)

Since RTk also contains the higher-degree polynomial component xPk(K), it has bet-
ter accuracy in H(Ω,div) than does BDMk. Note, however, that this additional
component does not help to improve the L2 accuracy of RTk spaces because it does
not increase the order of complete polynomials contained in RTk to k+1. In summary,
we have the following estimates for the error in the divergence of the interpolant (see
[11, p. 132]):

‖∇ · (u − I2u)‖0 ≤ Chk‖∇ · u‖k for BDMk spaces(2.13)

and

‖∇ · (u − I2u)‖0 ≤ Chk+1‖∇ · u‖k+1 for RTk spaces.(2.14)

In what follows, we will denote by W2
k(Ω) the RT and BDM spaces having equal

approximation orders with respect to the divergence operator, i.e.,

W2
k(Ω) = {v ∈ H(Ω,div)|v|K ∈ W2

k(K)},

where W2
k(K) is one of the finite element spaces RTk−1(K) or BDMk(K). We can

now combine (2.13) and (2.14) into a single statement: there exists an interpolation
operator I2 into W2

k(Ω) such that

‖∇ · (u − I2u)‖0 ≤ Chk‖∇ · u‖k.(2.15)

Note, however, that from (2.12) we have that the interpolation operator I2 into W2
k(Ω)

satisfies

‖u − I2u‖0 ≤ Chr|u|r

{
for 1 < r ≤ k if W2

k(K) = RTk−1,

for 1 < r ≤ k + 1 if W2
k(K) = BDMk.

(2.16)

9In our setting, W1
m(Ω) is a space of vector-valued functions that are discontinuous with respect

to the simplicial triangulation Th and whose components belong to a subspace Pm−1(K) in each K.
Functions belonging to W1

m(Ω) must be curl-free within each element K (since they are gradients of
function belonging to W0

m(Ω)), so that, except for m = 1, they are not complete (m − 1)st degree
polynomials. However, the precise, explicit characterization of W1

m(Ω), e.g., the construction of
a basis, is not difficult (using their irrotational property), and moreover, as we shall see, it turns
out not to be necessary in practice. For future reference, we note that functions belonging to the
approximating space W0

m(Ω) for the scalar variable are continuous across element boundaries, so that
the tangential components of functions belonging to the approximating space W1

m(Ω) = ∇(W0
m(Ω))

for the flux are automatically also continuous across element boundaries.
10To simplify notation, from now on we will denote both the BDM and BDDF spaces simply by

BDM.
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We denote by W3
k(Ω) the space ∇· (W2

k(Ω)). For mixed finite element methods based
on the Kelvin principle, we will use the finite element spaces RTk−1 or BDMk to
approximate the flux. For characterizations of these spaces and the associated spaces
W3

k(Ω) = ∇ · (W2
k(Ω)) for the scalar variable, see [11].

2.2.1. Stable mixed finite element spaces for the Dirichlet principle.
A mixed finite element method based on the Dirichlet principle may be defined by
discretizing (2.4), i.e.,

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

uh · vh dΩ +

∫
Ω

∇φh · vh dΩ = 0 ∀vh ∈ W1
m(Ω),

∫
Ω

∇ψh · uh dΩ −
∫

Ω

γψhφh dΩ = −
∫

Ω

fψh dΩ ∀ψ ∈ W0
m(Ω).

(2.17)

Since W1
m(Ω) ≡ ∇(W0

m(Ω)), note that, even at the discrete level, we may again
eliminate the flux approximation to obtain the equivalent discrete problem

∫
Ω

∇φh · ∇ψh dΩ +

∫
Ω

γψhφh dΩ =

∫
Ω

fψh dΩ ∀ψ ∈ W0
m(Ω),(2.18)

which we recognize as the standard Galerkin discretization of (2.2) or (2.6). In fact,
using the pair of spaces W0

m(Ω) and W1
m(Ω) for approximating the scalar variable and

the flux, respectively, in the discretization (2.17) of (2.4) is equivalent11 to using the
scalar space W0

m(Ω) in the standard Galerkin discretization (2.18) of (2.2) and then
letting the approximation of the flux be the gradient of the resulting approximation
of the scalar variable.

In this way we see that for discretizations of (2.4), i.e., the Dirichlet principle, the
required inf-sup condition is completely benign in the sense that it can be avoided
by eliminating the flux approximation uh from (2.17), then solving (2.18) for the ap-
proximation φh of the scalar variable using a standard continuous nodal finite element
space W0

m(Ω), and, at the end, determining the approximation to the flux from the
exact relation uh = −∇φh. The required inf-sup condition is implicitly satisfied by
the pair of spaces W0

m(Ω) and W1
m(Ω) = ∇(W0

m(Ω)). If one insists on solving (2.4),
then one needs to explicitly produce a basis for W1

m(Ω); this is easily accomplished.

From either (2.17) or (2.18) one obtains, for the Dirichlet principle, that if φ ∈
Hm+1(Ω) ∩H1

D(Ω), then

‖φ− φh‖0 ≤ hm+1‖φ‖m+1,(2.19)

while the flux approximation is less accurate:

‖u − uh‖0 = ‖∇(φ− φh)‖0 ≤ hm‖φ‖m+1.(2.20)

2.2.2. Stable mixed finite element spaces for the Kelvin principle. For
discretizations of (2.10), i.e., the Kelvin principle, the inf-sup condition is much more
onerous in the sense that defining a pair of stable finite element spaces for the scalar
variable and the flux is not so straightforward a matter.

11Here, by equivalent we mean that they yield exactly the same approximate solutions.
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The mixed finite element method associated with (2.10), i.e., the Kelvin principle,
is given by the following: seek (φh,uh) ∈ W3

k(Ω) ×W2
k(Ω) such that

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

uh · vh dΩ −
∫

Ω

φh∇ · vh dΩ = 0 ∀vh ∈ W2
k(Ω),

∫
Ω

ψh∇ · uh dΩ +

∫
Ω

γψhψh dΩ =

∫
Ω

fψh dΩ ∀ψh ∈ W3
k(Ω).

(2.21)

For the γ = 0 case, we refer to [11] for a proof that (W3
k(Ω),W2

k(Ω)) is a stable pair
for the mixed finite element problem (2.21). Moreover, one can show [11, Proposition
1.2, p. 139] that for any sufficiently regular exact solution of (2.10) one has the error
estimate

‖u − uh‖0 ≤ Chr‖u‖r

{
for 1 < r ≤ k if W2

k(K) = RTk−1,

for 1 < r ≤ k + 1 if W2
k(K) = BDMk,

(2.22)

while the error in the divergence is of the same order in both cases,

‖∇ · (u − uh)‖0 ≤ Chr‖∇ · u‖r for 1 < r ≤ k,(2.23)

as is the error in the scalar variable:

‖φ− φh‖0 ≤ Chr(‖φ‖r + ‖u‖r) for 1 < r ≤ k.(2.24)

These results also hold for the γ > 0 case, since the mixed finite element problem
(2.21) is identical to what one obtains for penalty methods for the γ = 0 case; see,
e.g., [11, 18], for details.

We have thus seen that the duality between the Dirichlet and Kelvin principles
propagates to their numerical approximations by mixed finite element methods that
themselves have, in a sense, complementary computational properties. For example,
for the Dirichlet principle, one directly approximates the scalar variable in the H1-
conforming finite element space W 0

m(Ω), and the flux is approximated in the finite
element space W 1

m(Ω) = ∇(W 0
m(Ω)). With respect to L2(Ω) norms, the mixed approx-

imation φh to φ satisfies the optimal bound (2.19), while the approximation uh of the
flux u is less accurate; see (2.20). For the Kelvin principle, the situation is reversed in
the sense that now one directly approximates the flux in the HN (Ω,div )-conforming
finite element space W2

k(Ω) and the scalar variable in W3
k(Ω) = ∇ · (W2

k(Ω)). The
approximation uh to u now satisfies the optimal bound (2.22), while the scalar ap-
proximation is less accurate when W2

k(Ω) = BDMk.
We have also seen the differences in how easily one can satisfy the inf-sup condi-

tion for mixed methods based on the two principles. From (2.18), one sees that for the
Dirichlet principle one can essentially avoid the inf-sup condition, or, if one insists on
using the mixed formulation (2.17), one can easily construct a stable pair of spaces.
This is closely related to the fact that the null space of the gradient consists of the
constant function and is trivial to approximate. On the other hand, for the Kelvin
principle, one has to construct a pair of finite element spaces such that the space for
approximating the scalar variable is the divergence of the space for approximating
the flux and the latter is a subspace of H(Ω,div). This is a much more difficult con-
struction since the divergence operator has a decidedly nontrivial null space that is
much harder to approximate than the (trivial) null space of the gradient. Compared
to the finite element subspaces that can be used for approximations of the Dirichlet
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principle, for the Kelvin principle this leads to the need to define more complicated
finite element subspaces for the flux such as the RT and BDM spaces or continuous
piecewise linear subspaces based on the criss-cross grid.

It is important to note that if one uses C0 finite element spaces for both the scalar
variable and the flux, then (2.17) and (2.21) are identical discrete systems. It is well
known that this leads to unstable approximations, so that one cannot use such pairs
of finite element spaces in mixed methods derived from either the Dirichlet or Kelvin
principles.

2.3. The grid decomposition property. We continue our study of mixed
methods based on the Kelvin principle by showing that the spaces W2

k(Ω) satisfy the
GDP.12

Theorem 2.1. For every uh ∈ W2
k(Ω), there exist wh, zh in W2

k(Ω) such that 13

uh = wh + zh,(2.25)

∇ · zh = 0,(2.26) ∫
Ω

wh · zh dΩ = 0,(2.27)

‖wh‖0 ≤ C(‖∇ · uh‖−1 + h‖∇ · uh‖0).(2.28)

Proof. Given a uh ∈ W2
k(Ω), define wh to be a solution of the following mixed

problem: seek (φh,wh) ∈ W3
k(Ω) ×W2

k(Ω) such that

∫
Ω

wh · vh dΩ −
∫

Ω

φh∇ · vh dΩ = 0 ∀vh ∈ W2
k(Ω),

∫
Ω

ψh∇ · wh dΩ =

∫
Ω

ψh∇ · uh dΩ ∀ψh ∈ W3
k(Ω).

(2.29)

The second component is then defined as the algebraic complement

zh = uh − wh(2.30)

of uh. Therefore, the first GDP property (2.25) is trivially satisfied.
To prove (2.26), we use the second equation in (2.29) to conclude that

∫
Ω

ψh∇ · zh dΩ =

∫
Ω

ψh(∇ · uh −∇ · wh) dΩ = 0 ∀ψh ∈ W3
k(Ω).

Assume now that ∇ · zh 	= 0. From the definition of W3
k(Ω), it follows that the

divergence operator is a surjective mapping W2
k(Ω) �→ W3

k(Ω). Therefore, there exists

12An analogous “GDP” can be defined in the context of the Dirichlet principle; it requires that for
every φh ∈ W0

k(Ω) there exist λh, χh ∈ W0
k(Ω) such that φh = λh + χh, ∇χh = 0,

∫
Ω
λhχhdΩ = 0,

and ‖λh‖0 ≤ C(‖∇φh‖−1 + h‖∇φh‖0). Of course, these conditions are trivially satisfied since
∇χh = 0 and χh ∈ W0

k(Ω) imply that χh = 0 and therefore λh = φh. Again, the fact that the null

space of the gradient operator with respect to H1
D(Ω) is trivial plays a crucial role in the triviality of

the GDP for the Dirichlet principle. On the other hand, for the Kelvin principle, the fact that the
null space of the divergence operator with respect to HN (Ω, div ) is decidedly not trivial also plays
a crucial role in the GDP for that principle. All this, of course, is related to the observations made
above about the inf-sup conditions for the two principles.

13In its original form (see [17]), the GDP was formulated without the term h‖∇ · uh‖0 in (2.28).
However, thanks to the multiplicative h factor, this term will not affect the L2 error rates.
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a nonzero element ψ̂h ∈ W3
k(Ω) such that ψ̂h = ∇ · zh. Then,

0 =

∫
Ω

ψ̂h∇ · zh dΩ =

∫
Ω

ψ̂hψ̂h dΩ 	= 0,

a contradiction.
To show that wh and zh are orthogonal, we use the first equation in (2.29) with

vh = zh: ∫
Ω

wh · zh dΩ =

∫
Ω

φh∇ · zh dΩ = 0.

To prove the last GDP property (2.28), we will need the solution (φ,w) of the
first-order problem

{∇ · w = ∇ · uh and w + ∇φ = 0 in Ω,

φ = 0 on ΓD and w · n = 0 on ΓN .

It will be also necessary to assume that this problem has full elliptic regularity, i.e.,
w ∈ H1(Ω) and φ ∈ H2(Ω). Lastly, we recall the a priori bounds

‖w‖0 ≤ ‖∇ · uh‖−1 and ‖w‖1 ≤ ‖∇ · uh‖0.

Then, from (2.22)

‖w − wh‖0 ≤ Ch‖w‖1.

Using this error estimate, the a priori bounds, and the triangle inequality yields that

‖wh‖0 ≤ ‖wh − w‖0 + ‖w‖0

≤ Ch‖w‖1 + ‖∇ · uh‖−1 ≤ Ch‖∇ · uh‖0 + ‖∇ · uh‖−1.

It was shown in [17] that the GDP, i.e., (2.25)–(2.28), along with the relation
W3

k(Ω) = ∇ · (W2
k(Ω)), are necessary and sufficient for the stability of a mixed finite

element method based on the Kelvin principle.

3. Least-squares finite element methods. A least-squares finite element
method for the Poisson equation replaces the search for saddle-points of the La-
grangian functional, either LD(φ,w,u, f) or LK(λ,u, φ, f), by a search for the un-
constrained global minimizer of the quadratic functional

J(φ,u; f) =
1

2

(
‖∇ · u + γφ− f‖2

0 + ‖∇φ + u‖2
0

)
.(3.1)

The least-squares variational principle

min
(φ,u)∈H1

D
(Ω)×HN (Ω,div)

J(φ,u; f)(3.2)

then has a solution that minimizes the L2 residuals of the first-order system (2.5). It
is clear that this solution coincides with the solution of (2.5) or, equivalently, (1.1),
and that it can be determined from the following first-order optimality system for
(3.2): seek (φ,u) ∈ H1

D(Ω) ×HN (Ω,div ) such that

Q((φ,u); (ψ,v)) = F(ψ,v) ∀ (ψ,v) ∈ H1
D(Ω) ×HN (Ω,div),(3.3)
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where

Q((φ,u); (ψ,v)) =

∫
Ω

(∇ · u + γφ)(∇ · v + γψ) dΩ

+

∫
Ω

(∇φ + u) · (∇ψ + v) dΩ

(3.4)

and

F(ψ,v) =

∫
Ω

f(∇ · v + γψ) dΩ.(3.5)

To define a least-squares finite element method, we restrict (3.2) to the conforming
subspace W0

m(Ω) ×W2
k(Ω) ⊂ H1

D(Ω) ×HN (Ω,div ). The least-squares finite element
approximation is then obtained from the following discrete optimality system: seek
(φh,uh) ∈ W0

m(Ω) ×W2
k(Ω) such that

Q((φh,uh); (ψh,vh)) = F(ψh,vh) ∀ (ψh,vh) ∈ W0
m(Ω) ×W2

k(Ω).(3.6)

The next theorem states that

|||ψ,v||| = (Q((ψ,v); (ψ,v)))1/2

is an equivalent norm on H1
D(Ω) × HN (Ω,div ). We call it the energy norm corre-

sponding to the least-squares principle.

Theorem 3.1. There exist positive constants C1 and C2 such that for any
(ψ,v) ∈ H1

D(Ω) ×HN (Ω,div),

C1

(
‖ψ‖2

1 + ‖v‖2
H(Ω,div)

)
≤ |||ψ,v|||2 ≤ C2

(
‖ψ‖2

1 + ‖v‖2
H(Ω,div)

)
.(3.7)

For a proof, see any of [12, 13, 14, 27]. Theorem 3.1 implies that both the continuous
variational problem (3.3) and its finite element restriction (3.6) are uniquely solvable
and that their solutions are bounded by the norm of the data.

Note for later use that (3.3) and (3.6) imply the standard finite element orthog-
onality relation

Q((φ− φh,u − uh); (ψh,vh)) = 0 ∀ (ψh,vh) ∈ W0
m(Ω) ×W2

k(Ω).(3.8)

3.1. Error estimates in H1(Ω) × H(Ω, div). In this section, we review the
convergence properties of least-squares finite element methods for the Poisson equa-
tion with respect to the H1(Ω)×H(Ω,div) norm. Most of the details are omitted, as
the proofs follow by standard elliptic finite element arguments.

Theorem 3.2. Assume that the solution (φ,u) of (3.3) satisfies (φ,u) ∈ H1
D(Ω)∩

Hm+1(Ω) × HN (Ω,div ) ∩ Hk+1(Ω) for some integers k,m ≥ 1. Let (φh,uh) ∈
W0

m(Ω) × W2
k(Ω) be the solution of the least-squares finite element problem (3.6).

Then, there exists a constant C > 0 such that

‖φ− φh‖1 + ‖u − uh‖H(Ω,div) ≤ C
(
hk‖u‖k+1 + hm‖φ‖m+1

)
.(3.9)

The error estimate (3.9) remains valid when uh is approximated by the C0 space
(Pk(Ω))n.
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Proof. Since (φh,uh) is a projection with respect to the energy norm ||| · |||,

|||φ− φh;u − uh||| ≤ |||φ− ψh;u − vh||| ∀ψh ∈ W0
m(Ω), vh ∈ W2

k(Ω).

Then, (3.9) easily follows from the norm equivalence relation (3.7) and the approxi-
mation theoretic estimates (2.11)–(2.15).

Theorem 3.2 shows that the errors in uh and φh will be equilibrated whenever
k = m. For example, if any of the pairs (RT0, P1), (BDM1, P1), or ((P1)

n, P1) are
used in the least-squares finite element method, the a priori bound (3.9) specializes
to

‖φ− φh‖1 + ‖u − uh‖H(Ω,div) ≤ Ch (‖u‖2 + ‖φ‖2) .

Therefore, the asymptotic accuracy of all three pairs in the norm of H1(Ω)×H(Ω,div)
is the same. For this reason, in the implementation of the least-squares finite element
method, one usually chooses the C0 pair ((P1)

n, P1) because it is the easiest to im-
plement. Indeed, the ability to use equal-order interpolation has been often cited as a
primary reason for choosing to use least-squares finite element methods. Nevertheless,
the C0 pair is not flawless because optimal L2 norm errors for the flux approxima-
tion have proven impossible to obtain without augmenting (2.5) with an additional
redundant curl constraint equation. Also, as we have already mentioned, numerical
studies in [16] indicate that the L2 convergence of the flux is indeed suboptimal with
C0 finite element spaces.

The curl constraint, first introduced in the least-squares finite element setting
in [15] and subsequently utilized by many others (see, e.g., [12, 13, 14, 25]), makes
the least-squares functional norm-equivalent on H1(Ω) × H1(Ω). However, in some
situations the curl equation may unduly restrict the range of the differential operator
and should be avoided. In the next section, we will see that if the nodal approximation
of the flux is replaced by an approximation in W2

k(Ω), it may be possible to recover
optimal L2 convergence rates without adding the curl constraint. As in [16], the key
to this is the GDP.

3.2. Error estimates in L2. Throughout this section, we let (φ,u) and (φh,uh)
∈ W0

m(Ω) ×W2
k(Ω) denote the solutions of (3.3) and (3.6), respectively. We assume

that the solution of the problem

−Δψ + γψ = η in Ω, ψ = 0 on ΓD,
∂ψ

∂n
= 0 on ΓD(3.10)

satisfies the regularity estimate

‖ψ‖s+2 ≤ C‖η‖s for s = 0, 1 and ∀ η ∈ Hs(Ω).(3.11)

This additional regularity is necessary since our L2 error estimates are based on a
duality argument.

3.2.1. L2 error estimates for the scalar variable. Our first lemma bounds
the negative norm of the error in the first equation in (2.5) in terms of the energy
norm of the total error. Note that (3.11) of course implies that ‖∇ψ‖s+1 ≤ C‖η‖s for
s = 0, 1.

Lemma 3.3. Let (φh,uh) be a least-squares finite element approximation of (φ,u).
Then,

‖∇ · (u − uh) + γ(φ− φh)‖−1 ≤ Ch|||φ− φh,u − uh|||.(3.12)
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Proof. Let η ∈ H1
0 (Ω) be an arbitrary function, let ψ solve the boundary value

problem (3.10), and let v = −∇ψ. One then obtains
∫

Ω

(∇ · (u − uh) + γ(φ− φh)) η dΩ

=

∫
Ω

(∇ · (u − uh) + γ(φ− φh))(∇ · v + γψ) dΩ

= Q(φ− φh,u − uh;ψ,v) = Q(φ− φh,u − uh;ψ − I0ψ,v − I2v)

=

∫
Ω

(∇ · (u − uh) + γ(φ− φh))(∇ · (v − I2v) + γ(ψ − I0ψ) dΩ

+

∫
Ω

(∇(φ− φh) + (u − uh)) · (∇(ψ − I0ψ) + (v − I2v)) dΩ

≤ C((‖∇ · (u − uh)‖0 + ‖φ− φh‖0)(‖∇ · (v − I2v)‖0 + ‖ψ − I0ψ‖0)

+(‖∇(φ− φh)‖0 + ‖u − uh‖0)(‖∇(ψ − I0ψ)‖0 + ‖v − I2v‖0)),

where we have successively used ∇ψ + v = 0, the error orthogonality (3.8), the
definition of Q(·, ·; ·, ·), and the Cauchy–Schwarz inequality. Using the interpolation
error estimates (2.11)–(2.15) and the regularity assumption (3.11), we have that

‖∇ · (v − I2v)‖0 ≤ Ch‖v‖2 ≤ Ch‖η‖1

‖v − I2v‖0 ≤ Ch‖v‖2 ≤ Ch‖η‖1

‖∇(ψ − I0ψ)‖0 ≤ Ch‖ψ‖2 ≤ Ch‖η‖1

‖ψ − I0ψ‖0 ≤ Ch2‖ψ‖2 ≤ Ch2‖η‖1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∀ η ∈ H1
0 (Ω).

Combining the last two sets of results, we easily obtain that, for all η ∈ H1
0 (Ω),

∫
Ω

(∇ · (u − uh) + γ(φ− φh)) η dΩ ≤ Ch(‖φ− φh‖1 + ‖u − uh‖H(Ω,div))‖η‖1,

while the left inequality in (3.7) gives
∫

Ω

(∇ · (u − uh) + γ(φ− φh)) η dΩ ≤ Ch|||φ− φh,u − uh||| ‖η‖1 ∀ η ∈ H1
0 (Ω).

The lemma follows by taking a supremum over η ∈ H1
0 (Ω).

Next, we bound the L2 error in φh by the energy norm.
Lemma 3.4. Let (φh,uh) be a least-squares finite element approximation of (φ,u).

Then,

‖φ− φh‖0 ≤ Ch|||φ− φh,u − uh|||.(3.13)

Proof. Let ψ solve the boundary value problem

{−�ψ + γψ = φ− φh in Ω,

ψ = 0 on ΓD and ∂ψ/∂n = 0 on ΓN .
(3.14)

The regularity assumption (3.11) implies that

‖ψ‖2 ≤ C‖φ− φh‖0.(3.15)
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Using the definition of ψ, integration by parts, and the definition of the least-squares
form (3.4) yields

‖φ− φh‖2
0 =

∫
Ω

(φ− φh)(−�ψ + γψ) dΩ =

∫
Ω

(∇(φ− φh) · ∇ψ + γ(φ− φh)ψ) dΩ

=

∫
Ω

(∇(φ− φh) + (u − uh)) · ∇ψ dΩ

−
∫

Ω

(u − uh) · ∇ψ dΩ +

∫
Ω

γ(φ− φh)ψ dΩ

= Q(φ− φh,u − uh;ψ, 0) +

∫
Ω

(1 − γ)(∇ · (u − uh) + γ(φ− φh))ψ dΩ.

Using the error orthogonality (3.8), the definition (3.14) for ψ, and the regularity
assumption (3.15) yields

Q(φ− φh,u − uh;ψ, 0) = Q(φ− φh,u − uh;ψ − I0ψ, 0)

≤ |||φ− φh,u − uh||| ‖ψ − I0ψ‖1 ≤ Ch|||φ− φh,u − uh||| ‖ψ‖2

≤ Ch|||φ− φh,u − uh||| ‖φ− φh‖0.

In addition, the definition (3.14) for ψ, (3.15), and (3.12) imply that∫
Ω

(1 − γ)(∇ · (u − uh) + γ(φ− φh))ψ dΩ ≤ ‖∇ · (u − uh) + γ(φ− φh)‖−1‖ψ‖1

≤ C‖∇ · (u − uh) + γ(φ− φh)‖−1‖φ− φh‖0

≤ Ch|||φ− φh,u − uh||| ‖φ− φh‖0.

The lemma easily follows by combining the last three results.
Corollary 3.5. Assume that the regularity assumption (3.11) is satisfied, and

assume that the solution (φ,u) of (3.3) satisfies (φ,u) ∈ H1
D(Ω) ∩ Hm+1(Ω) ×

HN (Ω,div ) ∩ Hk+1(Ω) for some integers k,m ≥ 1. Let (φh,uh) ∈ W0
m(Ω) ×W2

k(Ω)
be the solution of the least-squares finite element problem (3.6). Then, there exists a
constant C > 0 such that

‖φ− φh‖0 ≤ C(hk+1‖u‖k+1 + hm+1‖φ‖m+1).(3.16)

Proof. The corollary follows simply by a direct application of (3.7) and (3.9) to
(3.13).

The optimal L2 error bound (3.16) for the scalar variable does not depend on
whether or not the finite element space for the flux satisfies (2.25)–(2.28), i.e., the
GDP. Thus, it remains valid even when equal-order C0 finite element functions are
used for the flux approximations, a result first shown in [24]. On the other hand, we
will see that the GDP is needed if one wants to improve the L2 accuracy of the flux.

3.2.2. L2 error estimate for the flux. Ultimately, the final L2 error estimates
for approximations to the flux depend on whether W2

k(Ω) represents the RTk−1 or
the BDMk family. To this end, we need the following result.

Lemma 3.6. Let (φh,uh) ∈ W0
m(Ω) ×W2

k(Ω) be the least-squares finite element
approximation defined by (3.6). Then,14

‖u − uh‖0 ≤ C
(
h|||φ− φh,u − uh||| + h‖∇ · (u − vh)‖0 + ‖u − vh‖0

)
(3.17)

14It is clear from the proof of this lemma that it holds for any flux approximation that satisfies
the GDP.
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for any vh ∈ W2
k(Ω).

Proof. Let vh be an arbitrary element of W2
k(Ω). From Theorem 2.1, we know

that there exist zh and wh, also in W2
k(Ω), such that

uh − vh = wh + zh

and the properties (2.26)–(2.28) hold. We recall for later use that

‖∇ · v‖−1 ≤ ‖v‖0 ∀v ∈ HN (Ω,div).(3.18)

We now bound the two GDP components of uh − vh in L2. To estimate ‖wh‖0, we
successively use (2.28), (3.18), (3.12), (3.7), and (3.13) to obtain

‖wh‖0 ≤ C(‖∇ · (uh − vh)‖−1 + h‖∇ · (uh − vh)‖0)

≤ C(‖∇ · (u − uh)‖−1 + h‖∇ · (u − uh)‖0

+ ‖∇ · (u − vh)‖−1 + h‖∇ · (u − vh)‖0)

≤ C(‖∇ · (u − uh) + γ(φ− φh)‖−1 + h‖∇ · (u − uh)‖0

+ ‖γ(φ− φh)‖−1 + ‖u − vh‖0 + h‖∇ · (u − vh)‖0)

≤ C(h|||φ− φh,u − uh||| + ‖φ− φh‖0 + ||u − vh‖0 + h‖∇ · (u − vh)‖0)

≤ C(h|||φ− φh,u − uh||| + ||u − vh‖0 + h‖∇ · (u − vh)‖0).

To estimate ‖zh‖0, we use the error orthogonality (3.8) with ψh = 0 and vh = zh.
Since from (2.26) we have that ∇ · zh = 0, this identity reduces to

∫
Ω

(∇(φ− φh) + (u − uh)) · zh dΩ = 0,

from which integrating by parts and again using ∇ · zh = 0 yields

∫
Ω

(u − uh) · zh dΩ = 0.

Using this result and the orthogonality of zh and wh (see (2.27)), we obtain

‖zh‖2
0 =

∫
Ω

zh · zh dΩ =

∫
Ω

(zh + wh) · zh dΩ

=

∫
Ω

(uh − vh) · zh dΩ =

∫
Ω

(u − vh) · zh dΩ,

so that

‖zh‖0 ≤ ‖u − vh‖0.

To complete the proof, we note that

‖u − uh‖0 ≤ ‖u − vh‖0 + ‖uh − vh‖0 ≤ ‖u − vh‖0 + ‖wh‖0 + ‖zh‖0

and then use the bounds on zh and wh.
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Let us now inspect (3.17). The first term on the right-hand side is exactly the
same one as in the L2 bound (3.13) for the scalar variable. Let us further assume
that the approximation orders of the spaces used for the scalar variable and the flux
are equilibrated, i.e., φh ∈ W0

r (Ω) and uh ∈ W2
r (Ω) for some r ≥ 1. Then,

|||φ− φh,u − uh||| ≤ Chr(‖φ‖r+1 + ‖u‖r+1).

The additional factor h multiplying this term in (3.17) will increase the order of that
term to r + 1, just as in (3.16). However, (3.17) contains the two additional terms
h‖∇ · (u− vh)‖0 and ‖u− vh‖0. Recall that W2

r (Ω) represents RT and BDM spaces
that are equilibrated with respect to the divergence error. Therefore, after setting
vh = I2u, from (2.15) it follows that

‖∇ · (u − vh)‖0 ≤ Chr‖u‖r+1.

After multiplication by h, the order of this term also increases to r+ 1. However, the
order of the last term will depend on whether W2

r (Ω) represents a BDM or RT space.
Indeed, from (2.16),

‖u − vh‖0 ≤ C

{
hr‖u‖r if W2

r (Ω) = RTr−1,

hr+1‖u‖r+1 if W2
r (Ω) = BDMr.

The next corollary summarizes these observations.

Corollary 3.7. Assume that the regularity assumption (3.11) is satisfied, and
assume that the solution (φ,u) of (3.3) satisfies (φ,u) ∈ H1

D(Ω) ∩ Hr+1(Ω) ×
HN (Ω,div ) ∩ Hr+1(Ω) for some integer r ≥ 1. Let (φh,uh) ∈ W0

r (Ω) × W2
r (Ω)

be the solution of the least-squares finite element problem (3.6). Then, there exists a
constant C > 0 such that

‖u − uh‖0 ≤ C

{
hr(‖u‖r+1 + ‖φ‖r+1) if W2

r (Ω) = RTr−1,

hr+1(‖u‖r+1 + ‖φ‖r+1) if W2
r (Ω) = BDMr.

(3.19)

Consider, for example, the lowest-order case for which r = 1, W0
1 (Ω) = P1,

and W2
1 (Ω) is either RT0 or BDM1. If the least-squares finite element method is

implemented with RT0 elements, (3.19) specializes to

‖u − uh‖0 ≤ h(‖u‖2 + ‖φ‖2).

If instead we use BDM1 elements, we then obtain the improved error bound

‖u − uh‖0 ≤ h2(‖u‖2 + ‖φ‖2).

It is worth repeating that the reason for this difference in the L2 errors is the structure
of the RT spaces. Since RT0 = (P0)

n + xP0, the approximation properties of RT0 in
L2 are the same as those of P0. However, it is easy to see that, thanks to the extra
term xP0, ∇· (RT0) = P0; i.e., the divergence of u is approximated to the same order
as the field itself. For numerical examples with least-squares methods that illustrate
this feature of RT spaces, we refer to [2].
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4. Least-squares finite element methods and duality. We already saw that
a least-squares finite element method implemented using equal-order C0 finite element
spaces approximates the scalar variable with the same accuracy as a Galerkin (or,
equivalently, a mixed) method for the Dirichlet principle. However, the approximation
properties of the Kelvin principle are only partially inherited in the sense that the
accuracy in the approximation to the divergence of the flux is recovered, but the
accuracy in the flux approximation itself may be of one order less. This should not
be too much of a surprise because C0 elements provide stable discretization only for
the Dirichlet principle (with the exception of the criss-cross grid; see [16]). While
least-squares minimization is stable enough to allow for the approximation of scalar
variables and the flux by equal-order C0 finite element spaces, it cannot completely
recover from the fact that such spaces are unstable for the Kelvin principle.

The key observation from section 3.2 is that a least-squares finite element method
can inherit the computational properties of both the Dirichlet and the Kelvin princi-
ples, provided the scalar variable and the flux are approximated by finite element
spaces that are stable with respect to these two principles. Then, as our analysis
showed, least-squares finite element solutions recover the accuracy of the Dirichlet
principle for the scalar variable and the accuracy of the Kelvin principle for the flux.

In a way, we see that, implemented in this particular manner, the least-squares
finite element method represents a balanced mixture of the two principles. Below,
we provide an explanation of this observation using the apparatus of differential form
calculus, albeit in a simplified form and without an explicit reference to differential
forms on manifolds. For consistency, in what follows, H(Ω, grad), H(Ω, curl ), and
H(Ω,div) denote spaces of square integrable functions whose gradients, curls, and
divergences, respectively, are also square integrable.15

The De Rham differential complex

R ↪→ H(Ω, grad)
∇�−→ H(Ω, curl )

∇×�−→ H(Ω,div)
∇·�−→ L2(Ω) �−→ 0(4.1)

is an exact sequence of spaces in the sense that each operator maps the space on its
left to the kernel of the next operator in the sequence, and the last mapping is a
surjection. We will now start to use the identifications

W0(Ω) = H(Ω, grad), W1(Ω) = H(Ω, curl ), W2(Ω) = H(Ω,div), W3(Ω) = L2(Ω)

to indicate that these function spaces are comprised of proxies for differential forms of
orders 0, 1, 2, and 3, respectively.16 Exact sequences of finite element spaces provide
piecewise polynomial approximations of the proxies. Commonly used terminologies
for the finite element subspaces of W0, W1, W2, and W3 are nodal, edge, face, and
volume (or discontinuous) elements, respectively.

Differential forms have always played a fundamental role in classical mechanics
and numerical methods for Hamiltonian systems; see, e.g., [3, 6]. Their place as
an abstraction tool for discretization of elliptic boundary value problems was perhaps
first recognized in [21], while [8, 9] further affirmed their importance in computational
electromagnetism.

Subsequently, the idea that a stable partial differential equation discretization can
be developed using a discrete equivalent of the De Rham complex has been exploited
by many researchers in finite element, finite volume, and finite difference methods

15Here we treat the case of n = 3; similar developments can be carried out for the two-dimensional
case.

16This should explain the seemingly peculiar choice of notation introduced earlier in the paper.
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[1, 5, 19, 20, 22, 23, 26]; see [4] for a more extensive bibliography. In particular, for
second-order elliptic problems, a key tool for encoding their structure is provided by
the factorization or Tonti diagrams; see [19, 20]. Essentially, these diagrams break
the problem into topological relations between different spaces in a De Rham com-
plex connected by metric relations expressed by the Hodge ∗-operator, a linear map
Wk(Ω) �→ Wn−k(Ω). The factorization diagram for the Poisson problem (see, e.g.,
[20, 26]) is

W0(Ω) φ
∇−→ −u W1(Ω)

ξ = ∗φ � � q = ∗u

W3(Ω) f − γξ
∇·←− q W2(Ω)

(4.2)

We will refer to the relation and the variables on the top of the diagram as the
primal variables and equilibrium equation. The dual variables and their “equilibrium”
equation are represented by the bottom part of the diagram. The dual and primal
variables serve as proxies for 0, 1 and 2, 3 differential forms, respectively.

The horizontal links in (4.2) correspond to the differential equations

∇φ = −u and ∇ · q = −γξ + f,

while the vertical links provide the “constitutive” relations

ξ = ∗φ and q = ∗u.
The importance of structures such as (4.2) stems from the fact that they encode
fundamental relationships between spaces and operators that are required for the
stability of discretizations; see, e.g., [1, 4, 9, 20, 22].

Let us now show that the Dirichlet and Kelvin principles are obtained from (4.2)
by the approximation of the Hodge operator by an identity operator and subsequent
elimination of the dual or the primal variables, respectively.

If the dual variables are substituted by the primal ones according to

ξ = φ and q = u,

then the dual equation in (4.2) must be modified to account for the fact that u
is a proxy of a 1-form, rather than of a 2-form. As such, u is in the domain of
the curl operator but not in the domain of the divergence operator. Thus, in the
dual equilibrium equation, we replace the divergence operator by a weak divergence
operator defined through the following variational statement:

∇̃· : W1(Ω) �→ W0(Ω), ∇̃ · u = φ,

if and only if ∫
Ω

φψ dΩ = −
∫

Ω

u · ∇ψ dΩ ∀ψ ∈ W0(Ω).

This changes the original factorization diagram to one in terms of only the primal
variables:

W0(Ω) φ
∇−→ −u W1(Ω)

η = φ ↓ ↓ v = u

W0(Ω) f − γφ
∇̃·←− u W1(Ω)

(4.3)
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The partial differential equation system represented by this diagram is17

∇φ + u = 0 in W1(Ω),

−
∫

Ω

u · ∇ψ − γφψ dΩ =

∫
Ω

fψ dΩ ∀ψ ∈ W0(Ω).

One recognizes (4.3) as the optimality system (2.4) for the Dirichlet principle. The
diagram (4.3) can be viewed as a representation of this principle.

If instead the primal variables are eliminated according to

φ = ξ and u = q,

then the primal equilibrium equation in (4.2) must be modified to account for the
fact that ξ is a proxy of a 3-form, rather than for a 0-form. As such, ξ is not in the
domain of the gradient operator, which therefore must be replaced by a weak one:

∇̃ : W3(Ω), �→ W2(Ω), ∇̃ξ = q,

if and only if
∫

Ω

q · v dΩ = −
∫

Ω

ξ∇ · v dΩ ∀v ∈ W2(Ω).

The factorization diagram in terms of the dual variables is then given by

W3(Ω) ξ
∇̃−→ −q W2(Ω)

φ = ξ ↑ ↑ u = q

W3(Ω) f − γξ
∇·←− q W2(Ω)

(4.4)

The problem represented by this diagram is
∫

Ω

q · v dΩ −
∫

Ω

ξ∇ · v dΩ = 0 ∀v ∈ W2(Ω),

∇ · v + γξ = f in W3(Ω).

Now the second equation is an exact relation, and we see that, by elimination of the
primal variables, we recover the optimality system (2.10) for the Kelvin principle.

It is now clear that each of the classical variational principles for the system (1.1)
can be derived from (4.2) by elimination of one of the sets of variables (primal or dual)
and relaxation of the complementary equilibrium equation. Elimination of variables,
on the other hand, can be interpreted as approximation of the Hodge ∗-operator by
an identity. This, of course, immediately leads to the following question: what kinds
of variational principles can be obtained by using other ways of approximating the
Hodge operator? Here, we will focus on one particular method wherein this operator
is replaced by an L2 projection. Not surprisingly, we will see that this approximation
leads eventually to a least-squares principle for the first-order formulation of (1.1),
but one that is necessarily implemented with spaces for the scalar inherited from the

17The first equation can also be stated in variational form; see (2.4). However, we write it in
algebraic form to stress the fact that it represents an exact relationship.
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Dirichlet principle, and, for the flux, from the Kelvin principle. Thus, in a sense, the
least-squares method, when implemented in this manner, is indeed a mixture of the
two classical principles that combines their best properties.

The idea is to keep both the primal and dual sets of variables, but to replace the
Hodge operator by an optimization problem that penalizes the discrepancy between
these sets. Then, the primal and dual equations become linear constraints that must
be satisfied by the minimizers of this functional. Therefore, we are led to the following
constrained optimization problem: seek (φ,u, ξ,q) in W 0(Ω) × W1(Ω) × W2(Ω) ×
W3(Ω) such that

J (φ,u, ξ,q) =
1

2
(‖ξ − φ‖2

0 + ‖q − u‖2
0) �→ min(4.5)

subject to

∇φ + u = 0 and ∇ · q + γξ = f.(4.6)

In this problem, the Hodge operator is approximated by the L2 projections

(∗0) : W0(Ω) �→ W3(Ω) and (∗1) : W1(Ω) �→ W2(Ω)

defined implicitly via the optimization process.
It is possible to solve (4.5)–(4.6) by using Lagrange multipliers to enforce the

constraints. However, a better strategy (that also reduces the number of variables)
is to note that the constraint equations can be satisfied exactly if the spaces chosen
for φh, uh, ξh, and qh are from a discrete exact sequence. It is also important to
note that primal and dual variables can be approximated by discrete exact sequences
that are not necessarily defined on the same mesh. Thus, assume that for the primal
side we have chosen W0

m(Ω) and W1
m(Ω) to approximate φ and u, respectively, while

for the dual side we work with the spaces W2
k(Ω) and W3

k(Ω) to approximate q and
ξ, respectively. In this manner, each set of variables is represented in the discrete
problem by an internal approximation, and we can use the equilibrium equations
(rather than the constitutive relations) to eliminate ξh and uh. This leads to the
following discrete minimization problem in terms of φh and qh only:

min
W0

m(Ω)×W2
k
(Ω)

1

2
(‖∇ · qh + γφh − f‖2

0 + ‖qh + ∇φh‖2
0).(4.7)

While this problem appears identical to a least-squares formulation derived directly
from (2.5), the manner in which it was obtained retains the information about the
origins of the different variables. In particular, we see that in (4.7), the scalar variable
is inherited from the primal Dirichlet principle, while the flux is inherited from the
dual Kelvin principle. As was shown in section 3.2, when this is taken into account
in the choice of approximating finite element spaces, the computational properties
of both principles are recovered by (4.7). This is perhaps the most important point
of our discussion. Another important distinction between (4.7) and a nodal-based
implementation of a least-squares principle is that (4.7) leads to a conservative ap-
proximation in the following sense. Once φh and qh are found, we can recover the
eliminated dual and primal variables so as to obtain four fields φh, uh, ξh, and qh

that exactly satisfy the relations

∇φh + uh = 0 and ∇ · qh + γξh = Π3f.

The operator Π3 that appears above is the L2 projection into the subspace W3
k of

L2(Ω), while the discrete Hodge operators can be identified with L2 projections from
nodal to discontinuous elements and from edge to face elements, respectively.
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5. Conclusions. We have demonstrated that least-squares finite element meth-
ods for the first-order Poisson equation can combine the best properties of the clas-
sical Dirichlet and Kelvin principles if their implementation uses spaces consistent
with the origins of the scalar variable and the flux. In particular, we have shown
that a least-squares formulation can be viewed as resulting from a particular choice
in the approximation of the Hodge operator. From this point of view, the scalar
variable is inherited from the Dirichlet principle and requires approximation by nodal
elements. The flux is inherited from the Kelvin principle and must be approximated
by H(Ω,div) conforming families to enable recovery of optimal L2 rates without the
addition of curl constraints.

When implemented in this manner, the least-squares finite element method can
be deemed superior to both the classical Galerkin and mixed methods because, on
the one hand, it provides optimal approximation of all fields with the possibility of
recovering an approximation that is conservative in the sense explained earlier, while,
on the other hand, it leads to symmetric and positive definite algebraic systems of
equations.
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and about science and mathematics in general. Without his guidance and contribu-
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Abstract. An iterative algorithm that approximates the polyconvex envelope fpc of a given
function f : Rn×m → R, i.e., the largest function below f which is convex in all minors, is estab-
lished. Also presented are a rigorous error analysis with a focus on reliability and optimal orders of
convergence, an efficient strategy that reduces the large number of unknowns, as well as numerical
experiments.
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1. Introduction. A nonconvex variational problem due to [BJ] modeling phase
transitions in crystalline solids and allowing for microstructure reads

(M) Minimize I(u) :=

∫
Ω

f(x, u,∇u) dx among u ∈ A

for a bounded Lipschitz domain Ω ⊆ R
n, p ≥ 1, a (nonconvex) continuous energy

density f : R
n × R

m × R
n×m → R satisfying p-growth conditions, and a space of

admissible deformations A ⊆ W 1,p(Ω; Rm) containing boundary conditions. Since I
may not be weakly lower semicontinuous, minimizing sequences develop oscillations
in the gradient variable, and their weak limits do not in general minimize I (see, e.g.,
[Da2, M, R2]). Together with a Young measure generated by a minimizing sequence in
the sense of [B2], weak limits contain the most relevant information about microscopic
and macroscopic effects. Moreover, each weak limit of a minimizing sequence is a
solution of a relaxed problem in which f is replaced by its quasi-convex envelope fqc

(see, e.g., [Da2, M, R2]). In general, it is not possible to compute fqc explicitly or
even approximately in order to define the relaxed problem. Therefore, it is desirable
to know upper and lower bounds for fqc, and it is the aim of this paper to establish a
reliable and efficient algorithm that computes a lower bound. Numerical schemes for
the approximation of upper bounds can be found in [Do, DW, Ba2].

Error estimates for the approximation of (M) are available for the case either that
A contains affine boundary conditions on ∂Ω defined through certain F ∈ R

n×m (see,
e.g., [L, CM, BP]) or that fqc is convex (see, e.g., [NW2, CP1, CP2, CR, Ba1]). In
the first case theoretical convergence rates for the approximation of (M) and thereby
of fqc(·, ·, F ) are stated, but, owing to mesh-dependent oscillations, those approaches
cannot be expected to lead to efficient numerical algorithms. In the second case
efficient algorithms are available, but the proposed numerical schemes are restricted
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to scalar problems. An algorithm that checks for different notions of convexity for a
class of functions can be found in [DH].

By computing a (polyconvex) Young measure solution for (M) with affine bound-
ary conditions, our iterative algorithm approximates the polyconvex envelope [B1,
Da1] fpc of f as a lower bound for fqc. A straightforward discretization linearizes
nonlinear constraints and results in a large but linear optimization problem. We show
that for a large class of functions f the approximation is very accurate. The effi-
cient iterative strategy for the solution of the linear optimization problem is based
on results in [R1] that state sharp estimates on the support of a (polyconvex) Young
measure solution for (M). Moreover, the strategy employs and generalizes a multilevel
scheme of [CR] for the approximation of scalar nonconvex variational problems.

The proposed algorithm can be employed for the simultaneous (polyconvex) re-
laxation and approximation of nonconvex variational problems. This approach results
in discrete problems with two numerical scales that reflect microscopic and macro-
scopic effects. We refer to [NW1, HH, ML, Kr, Ba1, Do, DW] for related numerical
experiments. Moreover, in combination with the algorithms of [Do, DW, Ba2] for the
approximation of an upper bound, the results of this paper allow are to numerically
check for equality of polyconvex and rank-1 convex envelopes.

The rest of the paper is organized as follows. We present the approximation
scheme with an error estimate in section 2. Some preliminaries in section 3 lead to
the proof of the main result, which is given in section 4. Section 5 is devoted to
a reliable and efficient algorithm that realizes the approximation scheme. Numerical
experiments that illustrate the high efficiency and accuracy of the proposed algorithm
are reported in section 6. Section 7 discusses the effective numerical solution of (M)
based on the approximation of polyconvex envelopes.

2. Approximation scheme and main results. Throughout this article we
suppose that f in (M) is independent of x and u; i.e., f : R

n×m → R, is continuous,
and satisfies, for certain cf > 0, c′f ≥ 0, p > 0, and all F ∈ R

n×m,

f(F ) ≥ cf |F |p − c′f .(2.1)

The polyconvex envelope fpc of f is for F ∈ R
n×m given by (see [B1, Da1])

fpc(F ) = inf

{
τ+1∑
�=1

��f(A�) : A� ∈ R
n×m, �� ≥ 0,

τ+1∑
�=1

�� = 1,

τ+1∑
�=1

��T (A�) = T (F )

}
.

Here, T (A) ∈ R
τ is a vector containing all minors of the matrix A ∈ R

n×m in a fixed

order and τ denotes its length; there holds |T (A)| ≤ cT |A|min{n,m}
∞ if | · |∞ denotes

the maximum norm and |A|∞ ≥ 1. Choosing a set of points Nd,r := dZ
n×m ∩ Br(0)

for r ≥ d > 0 and Br(0) := {A ∈ R
n×m : |A|∞ < r} such that F ∈ convNd,r, an

approximation of fpc(F ) reads

fpc
d,r(F ) := inf

{ ∑
A∈Nd,r

θAf(A) : ∀A ∈ Nd,r, θA ≥ 0,

∑
A∈Nd,r

θA = 1,
∑

A∈Nd,r

θAT (A) = T (F )

}
.

The latter infimum defines a finite-dimensional linear optimization problem and ad-
mits a solution and a Lagrange multiplier λF

d,r ∈ R
τ associated with the constraint
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∑
A∈Nd,r

θAT (A) = T (F ). Our main results concerning the approximation of polycon-
vex envelopes are summarized in Theorem A. We refer to section 4 for more general
assertions and to [BKK] for conditions that ensure fpc ∈ C1,α

loc (Rn×m) together with
explicit bounds on |fpc|C1,α(Bd(F )).

Theorem A. Suppose that F ∈ convNd,r, p ≥ min{n,m} =: n ∧m, r ≥ 1, the
computable a posteriori condition

cT (n ∧m)|λF
d,r| ≤ pcfr

p−n∧m and cT |λF
d,r|rn∧m − cfr

p + c′f ≤ λF
d,r · T (F ) − fpc

d,r(F )

is satisfied, and f ∈ C1,α
loc (Rn×m) for some α ∈ [0, 1]. Then fpc

d,r(F ) = f̃pc
d (F ) for

a polyconvex function f̃pc
d : R

n×m → R , fpc
d,r(F ) = fpc

d,s(F ) for all s ≥ r, and there
exists r′ ≥ r such that

|fpc
d,r(F ) − fpc(F )| ≤ c1 d

1+α|f |C1,α(Br′ (0))
.

If, additionally, α > 0 and fpc ∈ C1,α
loc (Rn×m), then

|λF
d,r ·DT (F ) −Dfpc(F )| ≤ c2 d

α
(
|f |C1,α(Br′ (0))

+ |fpc|C1,α(Bd(F ))

)
.

The constants c1, c2 > 0 depend only on n and m.
It can be shown that λF

d,r and fpc
d,r(F ) remain bounded for r → ∞, so that the

a posteriori condition of the theorem is satisfied if p > n∧m and if r is large enough.
The direct computation of fpc

d,r(F ) requires the solution of a linear optimization prob-
lem with (r/d)nm unknowns and would therefore be very expensive. The combination
of an active set strategy (due to [CR] for min{n,m} = 1) with local grid refinement
and coarsening to avoid checking a maximum principle in all nodes of Nd,r leads to a
very efficient but still reliable iterative algorithm that computes fpc

d,r(F ).

3. Preliminaries. Throughout this article, | · | denotes the Frobenius norm of a
vector or a matrix in R

n, R
m, R

τ , or R
n×m; e.g., for A ∈ R

n×m with entries (A)j,k ∈ R

for j = 1, . . . , n and k = 1, . . . ,m

|A|2 =

n∑
j=1

m∑
k=1

(A)2j,k.

The maximum norm of a vector or a matrix is denoted by | · |∞, e.g., |A|∞ =
maxj,k |(A)j,k|; there holds |v|∞ ≤ |v| ≤

√
�|v|∞ for all v ∈ R

�.
Given r > 0 and G ∈ R

�, we set Br(G) := {A ∈ R
� : |A − G|∞ < r} and, for a

positive parameter d > 0 with d ≤ r, define (cf. the left plot in Figure 1)

Nd,r := dZ
n×m ∩Br(0) ⊆ R

n×m;

Z denotes the set of all integers. We let ωd,r be the interior of the union of all

closed (nm)-dimensional cubes Q ⊆ Br(0) with vertices in Nd,r, and define a uniform
triangulation Td,r of ωd,r by setting (cf. the left plot in Figure 1)

Td,r :=
{
Q ⊆ ωd,r : Q is a closed cube with vertices in Nd,r and edges of length d

}
.

Note that each Q ∈ Td,r is the convex hull of 2nm nodes M1, . . . ,M2nm ∈ Nd,r; i.e.,
Q = conv {M1, . . . ,M2nm}. To Td,r we associate the set of continuous Td,r-elementwise
(nm)-linear functions

S1(Td,r) :=
{
vh ∈ C(ωd,r) : ∀Q ∈ Td,r, vh|Q is a polynomial of partial degree ≤ 1

}
.
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Fig. 1. Left: set of nodes Nd,r (filled circles) and Q ∈ Td,r (shaded small box). Right:
decomposition of the matrix F in the proof of Lemma 3.1 for n = 2 and m = 1.

The nodal interpolation operator Id,r on Td,r is for v ∈ C(ωd,r) defined by

Id,rv :=
∑

A∈Nd,r

v(A)ϕA.

Here, for each A ∈ Nd,r the function ϕA ∈ S1(Td,r) satisfies ϕA(A) = 1 and ϕA(B) = 0
for all B ∈ Nd,r \ {A}. There exists cI > 0 such that

‖Id,rg − g‖L∞(ωd,r) ≤ cId
1+α|g|C1,α(Br(0))(3.1)

for α ∈ (0, 1] and g ∈ C1,α
loc (Rn×m) or for α = 0 and a locally Lipschitz continuous

function g : R
n×m → R; |g|C1,α(Br(0)) denotes the α-Hölder constant of Dg on Br(0)

if α > 0, i.e.,

|g|C1,α(Br(0)) := sup
G,H∈Br(0)

|Dg(G) −Dg(H)|
|G−H|α ,

and the Lipschitz constant |g|C1,0(Br(0)) := |g|Lip,r = |g|Lip(Br(0)) of g on Br(0) if
α = 0.

The operator T : R
n×m → R

τ for A ∈ R
n×m is defined by

T (A) =
(
(A)1,1, . . . , (A)1,m, (A)2,1, . . . , (A)2,m, . . . ,

(A)n,1, . . . , (A)n,m, adj2A, . . . , adjn∧mA
)
,

where for 2 ≤ � ≤ n ∧m = min{n,m}, adj�A is a vector containing all � × � minors
of A and

τ := τ(n,m) =

n∧m∑
�=1

σ(�) for σ(�) =
m!n!

(�!)2(m− �)!(n− �)!
.

There exists cT > 0 (which depends on n and m) such that |T (A)| ≤ cT |A|n∧m
∞ for all

A ∈ R
n×m with |A|∞ ≥ 1; for n = m = 2 we have adj2A = detA and we can choose

cT = 2
√

2.
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The following observation is of central importance in our analysis. It shows that
the values of the nodal basis functions in S1(Td,r) define a rank-1 decomposition of a
matrix F ∈ ωd,r.

Lemma 3.1. Let Q ∈ Td,r and M1, . . . ,M2nm ∈ Nd,r be such that Q = conv {M1,
. . . ,M2nm}. Let F ∈ Q and define θι := ϕMι

(F ) ≥ 0, ι = 1, . . . , 2nm. There holds

2nm∑
ι=1

θι = 1 and

2nm∑
ι=1

θιT (Mι) = T (F ).(3.2)

Proof. We construct convex coefficients that satisfy (3.2) and then show that
they equal ϕMι(F ). Suppose first that d = 1 and Q = [0, 1]n×m is the unit cube in
R

n×m so that {M1, . . . ,M2nm} = {0, 1}n×m are the vertices of Q. Set F 0,1 := F and
�0,1 := 1. Then, for j = 1, . . . , n and k = 1, . . . ,m set � := (j − 1)m + k and define
F �,2ι−1, F �,2ι ∈ R

n×m, ι = 1, . . . , 2�−1, by setting, for j′ = 1, . . . , n and k′ = 1, . . . ,m,

(
F �,2ι−1

)
j′,k′ :=

{(
F �−1,ι

)
j′,k′ for (j′, k′) �= (j, k),

0 for (j′, k′) = (j, k),(
F �,2ι

)
j′,k′ :=

{(
F �−1,ι

)
j′,k′ for (j′, k′) �= (j, k),

1 for (j′, k′) = (j, k).

Moreover, set θ�,2ι−1 := 1 − (F �−1,ι)j,k and θ�,2ι := (F �−1,ι)j,k and

��,2ι−1 := ��−1,ι
(
1 −

(
F �−1,ι

)
j,k

)
, ��,2ι := ��−1,ι

(
F �−1,ι

)
j,k

.(3.3)

(The right plot in Figure 1 schematically displays the decomposition for n = 2 and
m = 1.) The decomposition of F has the following properties:

(i)
{
Fnm,ι : ι = 1, . . . , 2nm

}
= {0, 1}n×m;

(ii) θ�,2ι−1, θ�,2ι ≥ 0, θ�,2ι−1 + θ�,2ι = 1, and F �−1,ι = θ�,2ι−1F �,2ι−1 + θ�,2ιF �,2ι

for � = 1, . . . , nm and ι = 1, . . . , 2�−1;
(iii) rank(F �,2ι−1 − F �,2ι) = 1 for � = 1, . . . , nm and ι = 1, . . . , 2�−1;
(iv) ϕFnm,ι(F ) = �nm,ι for ι = 1, . . . , 2nm.
The proofs of (i)–(iii) follow directly from the decomposition. To verify (iv) we

note that, according to (3.3), each �nm,ι, ι = 1, . . . , 2nm, defines a polynomial in
F of partial degree ≤ 1. Moreover, if F ∈ {0, 1}n×m, then F = Fnm,ι for some
ι ∈ {1, . . . , 2nm}, and by construction we then have �nm,ι = 1 and �nm,ι′ = 0 for
ι′ ∈ {1, . . . , 2nm} \ {ι}. This proves (iv).

Set θι := �nm,ι for ι = 1, . . . , 2nm. The assertion of the lemma (for Q =
conv {0, 1}n×m) follows from an induction over � = 1, . . . , 2nm with (i)–(iv) and the
fact that T is affine along rank-1 connections. The case Q �= [0, 1]n×m follows with a
dilation and a translation from the special case.

4. Proof of Theorem A. This section is devoted to the proof of Theorem A,
which follows from several propositions that state more general results. The first
proposition is a partial version of Theorem A but does not state sufficient conditions
for an efficient choice of r. Throughout this section we consider a fixed F ∈ R

n×m

and assume that either α = 0 and f is locally Lipschitz continuous or α ∈ (0, 1] and
f ∈ C1,α

loc (Rn×m).
Proposition 4.1. There exists r′ = r′(F ) > 0 such that

|fpc(F ) − fpc
d,r′(F )| ≤ 2cId

1+α|f |C1,α(Br′ (0))
.
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Proof. Let t > 0 be such that |f |C1,α(Bt(0)) > 0. By definition of fpc(F ) there exist

�� ≥ 0 and A� ∈ R
n×m, � = 1, . . . , τ + 1, such that

∑τ+1
�=1 �� = 1,

∑τ+1
�=1 ��T (A�) =

T (F ), and

fpc(F ) ≤
τ+1∑
�=1

��f(A�) ≤ fpc(F ) + cId
1+α|f |C1,α(Bt(0)).(4.1)

Choose r′ ≥ t such that A1, . . . , Aτ+1 ∈ ωd,r′ . For each � = 1, . . . , τ + 1, Lemma 3.1

guarantees the existence of M
(�)
ι ∈ Nd,r′ and θ

M
(�)
ι

= ϕ
M

(�)
ι

(A�) ≥ 0, ι = 1, . . . , 2nm,

such that
∑2nm

ι=1 θ
M

(�)
ι

= 1,
∑2nm

ι=1 θ
M

(�)
ι

T (M
(�)
ι ) = T (A�), and A� ∈ Q� = conv {M (�)

1 ,

. . . ,M
(�)
2nm} ∈ Td,r′ . For A ∈ Nd,r′ and B ∈ R

n×m let χA(B) = 1 if A = B and
χA(B) = 0 otherwise. Setting for each A ∈ Nd,r′

θ̃A =

τ+1∑
�=1

2nm∑
ι=1

�� θM(�)
ι

χA(M (�)
ι )(4.2)

defines a feasible (θ̃A : A ∈ Nd,r′) to compute fpc
d,r′(F ) so that

fpc(F ) ≤ fpc
d,r′(F ) =

∑
A∈Nd,r′

θAf(A) ≤
∑

A∈Nd,r′

θ̃Af(A),(4.3)

where (θA : A ∈ Nd,r′) is optimal in fpc
d,r′(F ). Since |f |C1,α(Bt(0)) ≤ |f |C1,α(Br′ (0))

and
θ
M

(�)
ι

= ϕ
M

(�)
ι

(A�), estimates (3.1) and (4.1)–(4.3) imply

0 ≤ fpc
d,r′(F ) − fpc(F )

≤
∑

A∈Nd,r′

θ̃Af(A) −
τ+1∑
�=1

��f(A�) + cId
1+α|f |C1,α(Br′ (0))

=

τ+1∑
�=1

��

(
2nm∑
ι=1

θ
M

(�)
ι

f(M (�)
ι ) − f(A�)

)
+ cId

1+α|f |C1,α(Br′ (0))

=

τ+1∑
�=1

��
(
Id,r′f(A�) − f(A�)

)
+ cId

1+α|f |C1,α(Br′ (0))

≤ 2cId
1+α|f |C1,α(Br′ (0))

,

(4.4)

which proves the proposition.
Remark 4.1. The assumption f ∈ C1,α

loc (Rn×m) can be replaced by f ∈ C1,α
loc (Ud),

where Ud = {G ∈ R
n×m : infH∈U |G − H|∞ < d} for U = {H ∈ R

n×m : fpc(H) =
f(H)}.

The subsequent lemma states the Kuhn–Tucker optimality conditions for the lin-
ear optimization problem that defines fpc

d,r(F ) and which we will refer to through

fpc
d,r(F ). In particular, the lemma characterizes the Lagrange multiplier λF

d,r men-
tioned in section 2. The equations have first been employed in the context of relax-
ation in the calculus of variations in [R1, R2] and have further been exploited in the
numerical approximation of scalar nonconvex variational problems in [CR, Ba1].

Lemma 4.1. There exists λF
d,r ∈ R

τ such that

max
A∈Nd,r

(
λF
d,r · T (A) − f(A)

)
≤ λF

d,r · T (F ) − fpc
d,r(F ).(4.5)
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Conversely, any (θA : A ∈ Nd,r) that is feasible in fpc
d,r(F ) is optimal if there exists

λF
d,r ∈ R

τ such that (4.5) holds with fpc
d,r(F ) replaced by

∑
A∈Nd,r

θAf(A).
Employing the optimality conditions of Lemma 4.1, we can state sufficient con-

ditions that ensure that r ≤ r′ is large enough so that fpc
d,r(F ) = fpc

d,r′(F ), where r′

is as in Proposition 4.1. If p > n ∧m, condition (4.6) below can be employed as an
a posteriori criterion to iteratively enlarge r.

Proposition 4.2. Let λF
d,r ∈ R

τ be as in Lemma 4.1, suppose p ≥ n∧m, r ≥ 1,
and

cT (n ∧m)|λF
d,r| ≤ pcfr

p−n∧m and(4.6)

cT |λF
d,r|rn∧m − cfr

p + c′f ≤ λF
d,r · T (F ) − fpc

d,r(F ).

Then, there holds

max
A∈dZn×m

(
λF
d,r · T (A) − f(A)

)
≤ λF

d,r · T (F ) − fpc
d,r(F )(4.7)

and fpc
d,r′(F ) = fpc

d,r(F ) for all r′ ≥ r.

Proof. Since cT (n ∧m)|λF
d,r| ≤ pcfr

p−n∧m and p ≥ n ∧m, the mapping

{t ∈ R : t ≥ r} → R, t �→ cf t
p − c′f − cT |λF

d,r|tn∧m

is monotonically increasing. Since |T (G)| ≤ cT |G|n∧m
∞ for all G ∈ R

n×m with |G|∞ ≥
1, we have, for all A ∈ dZ

n×m \ Nd,r, i.e., for all A ∈ dZ
n×m with |A|∞ > r ≥ 1,

λF
d,r · T (A) − f(A) ≤ cT |λF

d,r||A|n∧m
∞ − cf |A|p∞ + c′f ≤ cT |λF

d,r|rn∧m − cfr
p + c′f .

Then, the second inequality in (4.6) implies, for all A ∈ dZ
n×m \ Nd,r,

f(A) ≥ λF
d,r · T (A) − λF

d,r · T (F ) + fpc
d,r(F ),

while the optimality conditions (4.5) guarantee, for all A ∈ Nd,r,

f(A) ≥ λF
d,r · T (A) − λF

d,r · T (F ) + fpc
d,r(F ).

The last two estimates prove (4.7). Let r′ ≥ r, and let (θ̃A : A ∈ Nd,r′) be a solution

to fpc
d,r′(F ). Employing (4.7) and

∑
A∈Nd,r′

θ̃AT (A) = T (F ), we infer

fpc
d,r′(F ) =

∑
A∈Nd,r′

θ̃Af(A) ≥
∑

A∈Nd,r′

θ̃A
(
λF
d,r · T (A) − λF

d,rT (F ) + fpc
d,r(F )

)
= fpc

d,r(F ).

The obvious estimate fpc
d,r′(F ) ≤ fpc

d,r(F ) concludes the proof.

We now turn to estimates for λF
d,r, for which we need to construct a polyconvex

extension of fpc
d,r(F ) to R

n×m. Note that the subsequent definition of this extension
does not depend on F ; i.e., it depends only on d.

Definition 4.1. Let f̃d be the nodal interpolant of f on R
n×m with respect to

nodes in dZ
n×m; i.e., f̃d(A) = f(A) for all A ∈ dZ

n×m, f̃d is continuous, and f̃d|Q̃
is (nm)-linear for each cube Q̃ ⊆ R

n×m with vertices in dZ
n×m and edges of length

d. Then let f̃pc
d be the polyconvex envelope of f̃d; i.e., for A ∈ R

n×m,

f̃pc
d (A) = inf

{
τ+1∑
�=1

��f̃d(A�) : A� ∈ R
n×m, �� ≥ 0,

τ+1∑
�=1

�� = 1,

τ+1∑
�=1

��T (A�) = T (A)

}
.
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The following lemma shows that f̃pc
d can be approximated arbitrarily well by

convex combinations of nodal values of f .
Lemma 4.2. For all ε > 0 and all A ∈ R

n×m there exist Bκ ∈ dZ
n×m, γκ ≥ 0,

κ = 1, . . . , 2nm(τ +1), such that
∑2nm(τ+1)

κ=1 γκ = 1,
∑2nm(τ+1)

κ=1 γκT (Bκ) = T (A), and

f̃pc
d (A) ≤

2nm(τ+1)∑
κ=1

γκf(Bκ) ≤ f̃pc
d (A) + ε.(4.8)

Remark 4.2. Employing optimality conditions for the minimization problem
f̃pc
d (A) in Definition 4.1, one can show that the infimum is attained if p > n ∧ m.

In this case one may choose ε = 0 in Lemma 4.2.
Proof of Lemma 4.2. By definition of f̃pc

d (A) there exist A� ∈ R
n×m and �� ≥ 0,

� = 1, . . . , τ + 1, such that
∑τ+1

�=1 �� = 1,
∑τ+1

�=1 ��T (A�) = T (A), and

τ+1∑
�=1

��f̃d(A�) ≤ f̃pc
d (A) + ε.

For each � = 1, . . . , τ + 1 let Q̃� = conv
{
M

(�)
1 , . . . ,M

(�)
2nm

}
be a cube in R

n×m with

vertices M
(�)
1 , . . . ,M

(�)
2nm ∈ dZ

n×m, edges of length d, and such that A� ∈ Q̃�. By
Lemma 3.1 (with r = r̃ for some r̃ large enough so that A� ∈ Q̃� ⊆ ωd,r̃), there exist

θ
M

(�)
ι

≥ 0, ι = 1, . . . , 2nm, such that
∑2nm

ι=1 θ
M

(�)
ι

= 1,
∑2nm

ι=1 θ
M

(�)
ι

T (M
(�)
ι ) = T (A�),

and

f̃d(A�) =

2nm∑
ι=1

ϕ
M

(�)
ι

(A�)f(M (�)
ι ) =

2nm∑
ι=1

θ
M

(�)
ι

f(M (�)
ι ).

This implies

τ+1∑
�=1

2nm∑
ι=1

��θM(�)
ι

f(M (�)
ι ) ≤ f̃pc

d (A) + ε,

which, after appropriate relabeling, is (4.8).
The following assertion is due to Ball [B1].

Lemma 4.3. There exist convex functions f̂ , f̂d : R
τ → R such that

fpc = f̂ ◦ T and f̃pc
d = f̂d ◦ T.

For g = f or g = f̃d the function ĝ = f̂ or ĝ = f̂d, respectively, can be defined by

ĝ(X) = inf

{
τ+1∑
�=1

��g(A�) : A� ∈ R
n×m, �� ≥ 0,

τ+1∑
�=1

�� = 1,

τ+1∑
�=1

��T (A�) = X

}
.

Remark 4.3. The function ĝ is not unique, and the presented formula can be
found in [Da2].

An estimate for the difference between f̂ and f̂d follows immediately.
Lemma 4.4. (i) Let Bτ = {E1, . . . , Eτ} be the canonical basis in R

τ . There exists
r′ > 0 such that, for all E ∈ ±Bτ , there holds

|f̂d(T (F ) + dE) − f̂(T (F ) + dE)| ≤ 2cId
1+α|f |C1,α(Br′ (0))

.
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(ii) Let Bn×m = {E1, . . . , Enm} be the canonical basis in R
n×m. There exists

r′ > 0 such that, for all E ∈ ±Bn×m, there holds

|f̂d(T (F + dE)) − fpc(F + dE)| ≤ 2cId
1+α|f |C1,α(Br′ (0))

.

Proof. (i) Let E ∈ ±Bτ , and let t > 0 be such that |f |C1,α(Bt(0)) > 0. By definition

of f̂ and f̂d there exist A�, A
(d)
� ∈ R

n×m and ��, �
(d)
� ≥ 0, � = 1, . . . , τ + 1, such that∑τ+1

�=1 �� =
∑τ+1

�=1 �
(d)
� = 1,

∑τ+1
�=1 ��A� =

∑τ+1
�=1 �

(d)
� A

(d)
� = T (F ) + dE, and

f̂(T (F ) + dE) ≤
τ+1∑
�=1

��f(A�) ≤ f̂(T (F ) + dE) + cId
1+α|f |C1,α(Bt(0))

as well as

f̂d(T (F ) + dE) ≤
τ+1∑
�=1

�
(d)
� f(A

(d)
� ) ≤ f̂d(T (F ) + dE) + cId

1+α|f |C1,α(Bt(0)).

Let r′ ≥ t be such that A�, A
(d)
� ∈ ωd,r′ for all � = 1, . . . , τ + 1. If f̂(T (F ) + dE) ≥

f̂d(T (F ) + dE), then

0 ≤ f̂(T (F ) + dE) − f̂d(T (F ) + dE)

≤
τ+1∑
�=1

�
(d)
�

(
f(A

(d)
� ) − fd(A

(d)
� )

)
+ cId

1+α|f |C1,α(Br′ (0))

≤ 2cId
1+α|f |C1,α(Br′ (0))

.

Otherwise, if f̂(T (F ) + dE) ≤ f̂d(T (F ) + dE), then

0 ≤ f̂d(T (F ) + dE) − f̂(T (F ) + dE)

≤
τ+1∑
�=1

��
(
fd(A�) − f(A�)

)
+ cId

1+α|f |C1,α(Br′ (0))

≤ 2cId
1+α|f |C1,α(Br′ (0))

.

Choosing r′ maximal so that for each E ∈ ±Bτ one of the last two estimates holds
proves the first part of the lemma.

(ii) The proof of the second assertion is similar to the proof of (i) and uses the

fact that f̂ ◦ T = fpc.
The next lemma is the key observation for the estimates for λF

d,r for which we
employ the concept of subgradients. Some elementary facts about the subgradient
are cited in the following remark.

Remark 4.4 (see [C]). Let h : R
� → R be a continuous convex function. For

v0 ∈ R
� define

∂h(v0) := {s ∈ R
� : ∀v ∈ R

�, s · (v − v0) ≤ h(v) − h(v0)}.

The following hold: (i) If g : R → R
� is affine and g(0) = v0, then ∂(h ◦ g)(0) =

∂h(v0)·Dg(0). (ii) If � = 1, then ∂h(v0) ⊆
[
(h(v0)−h(v0−s))/s, (h(v0+s)−h(v0))/s

]
for all s > 0. (iii) If h(v0) ≤ h(v) for all v ∈ R

�, then 0 ∈ ∂h(v0).
Lemma 4.5. Suppose that

max
A∈dZn×m

(
λF
d,r · T (A) − f(A)

)
≤ λF

d,r · T (F ) − fpc
d,r(F ).
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Then it holds that f̃pc
d (F ) = fpc

d,r(F ) and λF
d,r ∈ ∂f̂d(T (F )).

Proof. We show that f̃pc
d (F ) = fpc

d,r(F ) and

max
A∈Rn×m

(
λF
d,r · T (A) − f̃pc

d (A)
)
≤ λF

d,r · T (F ) − f̃pc
d (F ).(4.9)

Then the asserted inclusion is deduced from these observations as follows. Let ε > 0.
For X ∈ R

τ there exist A� ∈ R
n×m, �� ≥ 0, � = 1, . . . , τ + 1, such that

∑τ+1
�=1 �� = 1,∑τ+1

�=1 ��T (A�) = X, and

f̂d(X) ≥
τ+1∑
�=1

��f̃d(A�) − ε.

Using f̃pc
d ≤ f̃d, f̃

pc
d (F ) = f̂d(T (F )), and (4.9), we deduce

f̂d(X) − λF
d,r ·X ≥

τ+1∑
�=1

��
(
f̃d(A�) − λF

d,r · T (A�)
)
− ε

≥
τ+1∑
�=1

��
(
f̃pc
d (A�) − λF

d,r · T (A�)
)
− ε

≥ f̃pc
d (F ) − λF

d,r · T (F ) − ε

= f̂d(T (F )) − λF
d,r · T (F ) − ε.

By arbitrariness of ε > 0, the convex function X �→ f̂d(X) − λF
d,r ·X, X ∈ R

τ , has a
minimum in T (F ) so that (iii) in Remark 4.4 implies the asserted inclusion.

To verify f̃pc
d (F ) = fpc

d,r(F ) we note that f̃pc
d (F ) ≤ fpc

d,r(F ) and let ε > 0. By

Lemma 4.2 there exist Bκ ∈ dZ
n×m, γκ ≥ 0, κ = 1, . . . , 2nm(τ + 1), such that∑2nm(τ+1)

κ=1 γκ = 1,
∑2nm(τ+1)

κ=1 γκT (Bκ) = T (F ), and

2nm(τ+1)∑
κ=1

γκf(Bκ) ≤ f̃pc
d (F ) + ε.

The hypothesis of the lemma implies, for κ = 1, . . . , 2nm(τ + 1),

f(Bκ) ≥ λF
d,r · T (Bκ) − λF

d,r · T (F ) + fpc
d,r(F ),

and this estimate yields

f̃pc
d (F ) ≥

2nm(τ+1)∑
κ=1

γκf(Bκ) − ε ≥ fpc
d,r(F ) − ε,

which, by arbitrariness of ε > 0, shows f̃pc
d (F ) ≥ fpc

d,r(F ) and hence yields f̃pc
d (F ) =

fpc
d,r(F ).

To prove (4.9), let A∗ ∈ R
n×m be maximal in the left-hand side of (4.9). For ε > 0

Lemma 4.2 guarantees the existence of Cκ ∈ dZ
n×m and δκ ≥ 0, κ = 1, . . . , 2nm(τ+1),

such that
∑2nm(τ+1)

κ=1 δκ = 1,
∑2nm(τ+1)

κ=1 δκT (Cκ) = T (A∗), and

2nm(τ+1)∑
κ=1

δκf(Cκ) ≤ f̃pc
d (A∗) + ε.



APPROXIMATION OF POLYCONVEX ENVELOPES 373

Then the hypothesis of the lemma and f̃pc
d (F ) = fpc

d,r(F ) imply

max
A∈Rn×m

(
λF
d,r · T (A) − f̃pc

d (A)
)
≤ λF

d,r · T (A∗) − f̃pc
d (A∗)

≤
2nm(τ+1)∑

κ=1

δκ
(
λF
d,r · T (Cκ) − f(Cκ)

)
+ ε

≤
2nm(τ+1)∑

κ=1

δκ max
A∈dZn×m

(
λF
d,r · T (A) − f(A)

)
+ ε

≤ λF
d,r · T (F ) − fpc

d,r(F ) + ε

= λF
d,r · T (F ) − f̃pc

d (F ) + ε,

which, by arbitrariness of ε > 0, is (4.9) and therefore concludes the proof.

Provided that f̂ is of class C1,α
loc , we have an estimate for |λF

d,r −Df̂(T (F ))|.
Proposition 4.3. Assume that the hypothesis of Lemma 4.5 is satisfied, suppose

that α > 0, and let f̂ ∈ C1,α
loc (Rτ ). There exists r′ > 0 such that

|λF
d,r −Df̂(T (F ))| ≤ 4

√
τcId

α|f |C1,α(Br′ (0))
+
√
τdα|f̂ |C1,α(Bd(T (F ))).

Proof. Let Bτ = {E1, . . . , Eτ} be the canonical basis in R
τ . Lemma 4.5 proves

|λF
d,r −Df̂(T (F ))| ≤ sup

S∈∂f̂d(T (F ))

|S −Df̂(T (F ))|

≤
√
τ sup

S∈∂f̂d(T (F ))

|S −Df̂(T (F ))|∞

=
√
τ sup

S∈∂f̂d(T (F ))

max
E∈±Bτ

|(S −Df̂(T (F ))) · E|.

Let S ∈ ∂f̂d(T (F )) and E ∈ ±Bτ . Since f̂d is convex, (i) and (ii) in Remark 4.4 show

S · E ∈ ∂f̂d(T (F )) · E ⊆ [S−(E), S+(E)] for

S±(E) = ± f̂d(T (F ) ± dE) − f̂d(T (F ))

d
.

Assume without loss of generality S−(E) ≤ S+(E). Lemma 4.4 and Proposition 4.1

(note that f̂(T (F )) = fpc(F ) and f̂d(T (F )) = fpc
d,r(F )) prove

S+(E) ≤
f̂(T (F ) + dE) − f̂(T (F )) + 4cId

1+α|f |C1,α(Br′ (0))

d

and

S−(E) ≥
f̂(T (F )) − f̂(T (F ) − dE) − 4cId

1+α|f |C1,α(Br′ (0))

d
.

From these estimates, the mean value theorem, and Hölder continuity of Df̂ we infer

|(S −Df̂(T (F ))) · E| ≤ 4cId
α|f |C1,α(Br′ (0))

+ dα|f̂ |C1,α(Bd(T (F ))),

which concludes the proof.
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It is not known under which conditions there holds f̂ ∈ C1,α
loc (Rτ ) or under which

conditions there exists a convex function f̃ ∈ C1,α
loc (Rτ ) such that f̃ = fpc ◦ T . A

result in [BKK] shows that if

lim inf
G→∞

f(G)

|G|p > 0 and lim sup
G→∞

f(G)

|G|p+1
= 0

or

f(G)

|G|p → ∞ as G → ∞ and lim sup
G→∞

f(G)

|G|p+1
< ∞

and if there exists c > 0 such that, for all G ∈ R
n×m, there exists S ∈ ∂f(G) such

that

f(G + H) − f(H) − S ·H ≤ cmax{f(G), 1}|H|1+α

for all H ∈ B1(0), then fpc ∈ C1,α
loc (Rn×m). Observing that Df̂(T (F )) · DT (F ) =

Dfpc(F ), a small modification (that does not use any regularity of f̂) of the proof of
Proposition 4.3 yields the following result.

Proposition 4.4. Assume that the hypothesis of Lemma 4.5 is satisfied, suppose
that α > 0, and let fpc ∈ C1,α

loc (Rn×m). Then, there exists r′ > 0 such that

|λF
d,r ·DT (F ) −Dfpc(F )| ≤ 4

√
nmcId

α|f |C1,α(Br′ (0))
+
√
nmdα|fpc|C1,α(Bd(F )).

Proof. Let Bn×m = {E1, . . . , En×m} be the canonical basis in R
n×m. Lemma 4.5

proves

|λF
d,r ·DT (F ) −Dfpc(F )| ≤

√
nm sup

S∈∂f̂d(T (F ))

max
E∈±Bn×m

|(S ·DT (F ) −Dfpc(F )) · E|.

Let S ∈ ∂f̂d(T (F )) and E ∈ ±Bn×m. Convexity of t �→ f̂d(T (F + tE)) shows
(S ·DT (F )) · E ∈ [S−(E), S+(E)] (cf. Remark 4.4) for

S±(E) = ± f̂d(T (F ± dE)) − f̂d(T (F ))

d
.

Assuming S−(E) ≤ S+(E), Lemma 4.4, f̂(T (F )) = fpc
d,r(F ), and Proposition 4.1 show

S+(E) ≤
fpc(F + dE) − fpc(F ) + 4cId

1+α|f |C1,α(Br′ (0))

d

and

S−(E) ≥
fpc(F ) − fpc(F − dE) − 4cId

1+α|f |C1,α(Br′ (0))

d
.

These estimates, the mean value theorem, and the Hölder continuity of Dfpc imply

|(S ·DT (F ) −Dfpc(F )) · E| ≤ 4cId
α|f |C1,α(Br′ (0))

+ dα|fpc|C1,α(Bd(F ))

and thereby prove the proposition.
Proof of Theorem A. This is a combination of Propositions 4.1, 4.2, and 4.4 and

Lemma 4.5.
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5. Efficient computation of fpc
d,r(F ). As mentioned in the introduction, the

direct computation of fpc
d,r(F ) is very expensive. To reduce the number of unknowns

we use a multilevel scheme with local mesh refinement and coarsening.

5.1. Grid coarsening and local refinement. The following propositions de-
fine criteria that allow us to add nodes to and remove nodes from Nd,r to obtain a
set of nodes that leads to a good approximation of fpc

d/2,r(F ), provided that we com-

puted (an approximation of) fpc
d,r(F ). The first assertion allows us to remove nodes

A ∈ Nd/2,r that cannot lead to volume fractions θA larger than a given threshold
δ = c/M for a known constant c and a (large) parameter M .

Proposition 5.1. Let (θA : A ∈ Nd,r) be feasible and optimal for fpc
d,r(F ) with

corresponding multiplier λF
d,r ∈ R

τ . For each A ∈ Nd,r let M(A) ≥ M > 0 and set

Z = {A ∈ Nd,r : λF
d,r · T (A) − f(A) ≤ λF

d,r · T (F ) − fpc
d,r(F ) − dM(A)}.

Let

Z ′ = {A′ ∈ Nd/2,r : ∃A ∈ Z, |A−A′| ≤ d}.

Then for any (θ′A′ : A′ ∈ Nd/2,r) that is feasible and optimal for fpc
d/2,r(F ) there holds

∑
A′∈Z′

θ′A′ ≤
(|f |Lip,r + |λF

d,r||T |Lip,r)

M
.

Proof. For A′ ∈ Z ′ and A ∈ Z such that |A−A′| ≤ d, there holds

f(A′) ≥ f(A) − d|f |Lip,r

≥ fpc
d,r(F ) + λF

d,r · T (A) − λF
d,r · T (F ) + dM(A) − d|f |Lip,r

≥ fpc
d,r(F ) + λF

d,r · T (A′) − λF
d,r · T (F ) + dM(A) − d|f |Lip,r − d|λF

d,r||T |Lip,r.

Let B′ ∈ Nd/2,r \ Z ′ and B ∈ Nd,r be such that |B′ − B| ≤ d. Employing (4.5) and
arguing similarly as in the previous estimate, we infer

f(B′) ≥ fpc
d,r(F ) + λF

d,r · T (B′) − λF
d,r · T (F ) − d|f |Lip,r − d|λF

d,r||T |Lip,r.

Let (θ′A′ : A′ ∈ Nd/2,r) be feasible and optimal for fpc
d/2,r(F ). The previous two

estimates imply

fpc
d/2,r(F ) =

∑
A′∈Nd/2,r

θA′f(A′) =
∑

A′∈Z′

θA′f(A′) +
∑

B′∈Nd/2,r\Z′

θB′f(B′)

≥ fpc
d,r(F ) − (|f |Lip,r + |λF

d,r||T |Lip,r)d +
∑

A′∈Z′

θA′Md.

Using fpc
d/2,r(F ) ≤ fpc

d,r(F ), we are then able to deduce
∑

A′∈Z′ θA′ ≤
(|f |Lip,r + |λF

d,r||T |Lip,r)/M .

A more efficient and even more reliable assertion can be formulated if we have
explicit estimates for |fpc

d,r(F )− fpc
d/2,r(F )| and |λF

d,r −λF
d/2,r|. Sufficient for this is the

knowledge of r′ in Theorem A and f̂ ∈ C1,1
loc (Rτ ) with f̂ as in Lemma 4.3.
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Proposition 5.2. For each A ∈ Nd,r let M(A) > 0, suppose that |λF
d,r−λF

d/2,r| ≤
cLMd, and let Z and Z ′ be as in Proposition 5.1. Assume that for all A ∈ Nd,r there
holds

cLM |T |Lip,r′ + |λF
d,r| |T |Lip,r′ + 4cI |f |Lip,r′ + cLM |T (A)| + cLM |T (F )| < M(A).

(5.1)

Then for any (θA : A ∈ Nd/2,r) that is feasible and optimal for fpc
d/2,r(F ) there holds

θA′ = 0 for all A′ ∈ Z ′.
Proof. Let A′ ∈ Z ′ and A ∈ Z such that |A−A′| ≤ d. By the hypotheses and by

Lipschitz continuity of f and T there holds

λF
d/2,r · T (A′) − f(A′)

= λF
d,r · T (A) − f(A) + (λF

d/2,r −λF
d,r) ·T (A′)+λF

d,r · (T (A′)−T (A))+ (f(A) − f(A′))

≤ λF
d,r · T (A) − f(A) + cLMd|T (A′)| + d|λF

d,r||T |Lip,r′ + d|f |Lip,r′

≤ λF
d,r · T (F ) − fpc

d,r(F ) − dM(A) + cLMd|T (A′)| + d|λF
d,r||T |Lip,r′ + d|f |Lip,r′ .

The definitions of Z and Z ′, Proposition 4.1, and again the assumed estimate for
|λF

d,r − λF
d/2,r| show

λF
d,r · T (F ) − fpc

d,r(F ) − dM(A) + cLMd|T (A′)| + d|λF
d,r||T |Lip,r′ + d|f |Lip,r′

= λF
d/2,r · T (F ) − fpc

d/2,r(F ) +
(
λF
d,r − λF

d/2,r

)
· T (F ) +

(
fpc
d/2,r(F ) − fpc

d,r(F )
)

− dM(A) + cLMd|T (A′)| + d|λF
d,r||T |Lip,r′ + 2cId|f |Lip,r′

≤ λF
d/2,r · T (F ) − fpc

d/2,r(F ) + cLMd|T (F )| + d|λF
d,r||T |Lip,r′ − dM(A)

+ 2cId|f |Lip,r′ + cLMd|T (F )| + 2cId|f |Lip,r′ .

Employing the Lipschitz continuity of T once more proves

λF
d/2,r · T (F ) − fpc

d/2,r(F )

+ d
(
cLM |T (A′)| + |λF

d,r||T |Lip,r′ + 2cId|f |Lip,r′ + cLM |T (F )| −M(A)
)

≤ λF
d/2,r · T (F ) − fpc

d/2,r(F ) + d
(
cLM |T |Lip,r′ + cLM |T (A)| + |λF

d,r||T |Lip,r′

+ 4cI |f |Lip,r′ + cLM |T (F )| −M(A)
)
.

In view of (5.1), the last three estimates imply, for all A′ ∈ Z ′,

λF
d/2,r · T (A′) − f(A′) < λF

d/2,r · T (F ) − fpc
d/2,r(F ).(5.2)

The optimality conditions ensure, for all A ∈ Nd/2,r,

λF
d/2,r · T (A) − f(A) ≤ λF

d/2,r · T (F ) − fpc
d/2,r(F ).(5.3)

Let (θA : A ∈ Nd/2,r) be feasible and optimal for fpc
d/2,r(F ), and suppose that there is

A ∈ Z ′ such that θA > 0. Then, (5.2) and (5.3) imply

fpc
d/2,r(F ) =

∑
A∈Nd/2,r

θAf(A)

>
∑

A∈Nd/2,r

θA
(
λF
d/2,r · T (A′) − λF

d/2,r · T (F ) + fpc
d/2,r(F )

)
= fpc

d/2,r(F ).(5.4)

This is a contradiction and proves θA = 0 for all A ∈ Z ′.
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5.2. Prediction of the active set. Following an idea in [CR] for the approx-
imation of scalar nonconvex variational problems, we can further remove nodes tem-
porarily from a mesh with nodes N ; e.g., N ⊆ Nd,r is a refinement of N2d,r, using
an iterative method that we establish in the following lemma. The method consists
of defining an appropriate subset X ⊆ N and seeking for a solution of a lower-
dimensional subproblem. For a discrete set N ⊆ R

n×m we define

fpc
N (F ) := min

{∑
A∈N

θAf(A) : ∀A ∈ N , θA ≥ 0,
∑
A∈N

θA = 1,
∑
A∈N

θAT (A) = T (F )

}
.

Optimality conditions for fpc
N (F ) guarantee the existence of some λF

N ∈ R
τ such that

max
A∈N

(
λF
N · T (A) − f(A)

)
≤ λF

N · T (F ) − fpc
N (F ).(5.5)

Conversely, any (θA : A ∈ N ) that is feasible in fpc
N (F ) is optimal if there exists

λF
N ∈ R

τ such that (5.5) holds with fpc
N (F ) replaced by

∑
A∈N θAf(A).

Given X ⊆ N , we consider the following lower-dimensional subproblem of fpc
N (F ):

fpc
N ,X(F ) := min

{∑
A∈X

θAf(A) : ∀A ∈ X, θA ≥ 0,
∑
A∈X

θA = 1,
∑
A∈X

θAT (A) = T (F )

}
.

The next lemma states sufficient conditions on X such that fpc
N ,X(F ) = fpc

N (F ) and
directly leads to an iterative algorithm.

Lemma 5.1. Let (θA : A ∈ N ) be feasible and optimal for fpc
N (F ) with multiplier

λF
N ∈ R

τ . Assume that εAS > 0 and λ̃F ∈ R
τ satisfy supA∈N |(λ̃F − λF

N ) · T (A)| ≤
εAS/2. If

X =

{
A ∈ N : λ̃F · T (A) − f(A) ≥ max

A′∈N

(
λ̃F · T (A′) − f(A′)

)
− εAS

}

and if the optimization problem fpc
N ,X(F ) is feasible, then fpc

N ,X(F ) = fpc
N (F ).

Proof. The optimality conditions (5.5) show (cf. (5.4) in the proof of Proposi-
tion 5.2), for all A ∈ N ,

θA > 0 =⇒ A ∈ Y := {A′ ∈ N : λF
N · T (A′) − f(A′) = λF

N · T (F ) − fpc
N (F )}.

Hence it suffices to show that Y ⊆ X. Let A ∈ Y . By assumption on εAS , the
definitions of X and Y , and (5.5), there holds

λ̃F · T (A) − f(A) ≥ λF
N · T (A) − f(A) − εAS

2
= λF

N · T (F ) − fpc
N (F ) − εAS

2
= max

A′∈N

(
λF
N · T (A′) − f(A′)

)
− εAS

2
≥ max

A′∈N

(
λ̃F · T (A′) − f(A′)

)
− εAS ,

i.e., A ∈ X.
Given some λ̃F , we do in general not know εAS to define X as in the lemma.

We may, however, enlarge εAS successively until the optimality conditions (5.5) are
satisfied. Having computed a solution for some parameter d, we may then use the
corresponding multiplier to define X on a finer mesh.
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5.3. An iterative, adaptive algorithm. The ideas of the preceding proposi-
tions lead to the following algorithm that iteratively computes, for prescribed d0 > 0,
r0 > 0, M > 0, and J > 0, a solution to fpc

d0/2J ,2�r0
(F ), where for some � ≥ 0, r = 2�r0

satisfies the conditions of Theorem A for d = d0/2
J if p > n ∧m. If p = n ∧m, we

suppose that r0 is large enough, i.e., r0 ≥ r′ for r′ as in Theorem A. We assume that
F ∈ ωd0,r0 .

Algorithm (Apc, adapt
r0,d0,J,F,M ).

(a) Set j := 0, d := d0, r := r0, λ̃
F := 0, N := Nd,r, and εAS := ∞.

(b) Define

X :=
{
A ∈ N : λ̃F · T (A) − f(A) ≥ max

A′∈N

(
λ̃F · T (A′) − f(A′)

)
− εAS

}
∪
{
A ∈ Nd,r : |F −A| ≤ d

}
.

(c) Compute fpc
N ,X(F ) and obtain a multiplier λF

N ∈ R
τ .

(d) If for all A ∈ N there holds

λF
N · T (A) − f(A) ≤ λF

N · T (F ) − fpc
N (F ),

go to (f).
(e) Set λ̃F := λF

N , εAS := 2εAS , and go to (b).
(f) If p = n ∧m or

cT (n ∧m)|λF
N | ≤ pcfr

p−n∧m and

cT |λF
N |rn∧m − cfr

p + c′f ≤ λF
N · T (F ) − fpc

N (F ),

go to (h).
(g) Set r := 2r, λ̃F := λF

N , and go to (b).
(h) If j < J , define

N =
{
A′ ∈ Nd/2,r :∃A ∈ N , |A−A′| ≤ d,

λF
N · T (A) − f(A) > λF

N · T (F ) − fpc
N (F ) −Md

}
,

set λ̃F := λF
N , εAS := d, d := d/2, j := j + 1, and go to (b).

(j) Stop.

Remark 5.1. (i) We set εAS = d in step (h), since in the optimal case (if f̂ ∈
C1,1

loc (Rτ )) Proposition 4.3 guarantees |λF
d,r − λF

d/2,r| ≤ O(d) so that the conditions of

Lemma 5.1 are satisfied up to some constant of order O(1).

(ii) Note that Nd/2,r need not be computed explicitly, since we can add nodes to
and remove nodes from N locally.

(iii) Adding
{
A ∈ Nd,r : |F −A| ≤ d

}
to X in step (b) guarantees the feasibility

of fpc
N ,X(F ).

6. Numerical experiments I. In this section we report on the practical per-
formance of Algorithm (Apc, adapt

r0,d0,J,F,M ) when applied to three choices of f for which
explicit formulae for fpc and frc are known.

Example 6.1 (see [Da2]). For n = m = 2 and F ∈ R
2×2 let

f(F ) := (|F |2 − 1)2.
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Then (2.1) holds for p = 4 and cf = (c−2)/c, c′f = 2c−1 for all c > 2, and we choose
c = 3. In this example fpc = fqc = f∗∗, where f∗∗ is the convex envelope of f and
for F ∈ R

2×2 given by

f∗∗(F ) =

{
(|F |2 − 1)2 for |F | ≥ 1,

0 for |F | ≤ 1.

Example 6.2 (see [Ko, DW]). For n = m = 2,

A1 :=

(
5/4 0
0 3/4

)
and A2 :=

(
3
√

8/8 3/8

−5/8 5
√

3/8

)
,

and F ∈ R
2×2 let

f(F ) :=
1

2
min

{
|F −A1|2, |F −A2|2

}
.

Then (2.1) holds for p = 2, cf = 1/23, and c′f = max{|A1|2, |A2|2}/2 = 17/16. Here,

f∗∗ �= fpc = fqc and fpc is for F ∈ R
2×2 given by

fpc(F ) =

⎧⎨
⎩

f1(F ) for f1(F ) − f2(F ) ≤ −λ/2,
f2(F ) −

(
f2(F ) − f1(F ) + λ/2

)
/(2λ) for |f1(F ) − f2(F )| ≤ λ/2,

f2(F ), for f1(F ) − f2(F ) ≥ λ/2,

where fj(F ) = |F −Aj |2/2, j = 1, 2, and λ = |A1 −A2|.
Example 6.3 (see [KS, Do]). For n = m = 2 and F ∈ R

2×2 a modification
proposed in [Do] (to ensure continuity of f) of an energy density occurring in an
optimal design problem in [KS] reads

f(F ) :=

{
1 + |F |2 for |F | ≥

√
2 − 1,

2
√

2|F | for |F | ≤
√

2 − 1.

Then (2.1) holds for p = 2, cf = 1, and c′f = 0. Letting �(F ) :=
√

|F |2 + 2|detF | for

F ∈ R
2×2, there holds

fpc(F ) = fqc(F ) =

{
1 + |F |2 for �(F ) ≥ 1,

2(�(F ) − |detF |) for �(F ) ≤ 1.

Note that f∗∗ �= fpc in this example.
We tested Algorithm (Apc, adapt

r0,d0,J,F,M ) in Examples 6.1–6.3. The implementation of
the algorithm was performed in Matlab with a generation of the adaptively refined
grids in C. The experiments were performed on a node of a Compaq SC-Cluster with
four Alpha-EV68 processors (1 GHz, 8 MB Cache/CPU) and 32 GB RAM.

We set r0 = 1, d0 = 1, M = 1, J = 5, and

F =
1

5

(
π 1
−1 π

)

to run Algorithm (Apc, adapt
r0,d0,J,F,M ) in Example 6.1. The a posteriori criterion of Propo-

sition 4.2 enforced the algorithm to enlarge r0 from 1 to 4 on the first level, i.e., for
the largest d. Table 1 presents the errors

e = |fpc
d,r(F ) − fpc(F )| and e′ = |λF

d,r ·DT (F ) −Dfpc(F )|,
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Table 1

Discretization parameter d; errors e = |fpc
d,r(F ) − fpc(F )| and e′ = |λF

d,r ·DT (F ) −Dfpc(F )|;
number of active, possible, and theoretical nodes; and CPU-time needed to compute fpc

d,r(F ) in

Example 6.1.

d e e′ #X #N #Nd,r CPU-time

1 0.656 637 2.000 000 266 6,561 6,561 0.1 s
1/2 0.037 543 0.325 927 132 160 83,521 0.2 s
1/4 0.009 873 0.206 980 237 768 1,185,921 0.2 s
1/8 0.000 177 0.001 392 2,137 3,920 17,850,625 0.7 s
1/16 0.000 010 0.000 058 14,360 33,920 276,922,881 3.7 s

Table 2

Discretization parameter d; errors e = |fpc
d,r(F ) − fpc(F )| and e′ = |λF

d,r ·DT (F ) −Dfpc(F )|;
number of active, possible, and theoretical nodes; and CPU-time needed to compute fpc

d,r(F ) in

Example 6.2.

d e e′ #X #N #Nd,r CPU-time

1 0.165 961 0.454 711 6,561 6,561 6,561 0.9 s
1/2 0.072 351 0.115 344 794 43,568 83,521 1.1 s
1/4 0.014 273 0.042 726 1,311 167,136 1,185,921 1.4 s
1/8 0.004 031 0.063 871 1,766 715,504 17,850,625 2.4 s
1/16 0.001 139 0.017 684 4,889 3,082,192 276,922,881 6.5 s
1/32 0.000 204 0.011 032 12,140 13,694,256 4,362,470,401 21.8 s

the number of nodes in the set N , the number of activated nodes in X, the theoretical
number of nodes (i.e., the number of nodes in Nd,r), and the CPU-time in seconds
needed to compute fpc

N (F ).
We observe that e converges to 0 with experimental rate 4, and the experimental

convergence rate for e′ is better than linear. Due to the grid coarsening strategy
and the active set strategy, the number of activated nodes in X, i.e., the size of each
linear optimization problem, is remarkably small when compared to the possible and
theoretical numbers of nodes, and the CPU-time needed to obtain an absolute error
of about 10−5 is only 3.7 seconds. We obtained similar numbers e and e′ for the more
reliable choice M = 100, but the number of activated nodes and the CPU-time was
significantly larger; e.g., 9.4 seconds were needed to achieve e ≤ 10−3.

To test Algorithm (Apc, adapt
r0,d0,J,F,M ) in Example 6.2 we set J = 6, r0 = 4, d0 = 1,

M = 10, and

F =
1

10

(√
2/3 1/3√
5/5

√
2/3

)
.

Table 2 presents the errors and the numbers of nodes as in the previous example.
The error e converges with an experimental convergence rate 1.8, i.e, e ≈ d1.8, and
there seems to be approximately linear decay in e′, but convergence cannot be de-
duced. The choice M = 10 is very optimistic in this example and leads to very small
sets N .

We ran Algorithm (Apc, adapt
r0,d0,J,F,M ) in Example 6.3 with M = 100, J = 6, r0 = 4,

d0 = 1, and

F =
1

5

(
π 0
0 π

)
.
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Table 3

Discretization parameter d; errors e = |fpc
d,r(F ) − fpc(F )| and e′ = |λF

d,r ·DT (F ) −Dfpc(F )|;
number of active, possible, and theoretical nodes; and CPU-time needed to compute fpc

d,r(F ) in

Example 6.3.

d e e′ #X #N #Nd,r CPU-time

1 0.328 922 0.162 697 81 81 81 0.1 s
1/2 0.095 387 0.458 318 457 625 625 0.2 s
1/4 0.024 647 0.160 972 689 6,561 6,561 0.3 s
1/8 0.000 806 0.167 216 1,276 83,521 83,521 0.6 s
1/16 0.000 389 0.079 923 1,618 513,280 1,185,921 1.2 s
1/32 0.000 180 0.032 843 2,213 2,128,048 17,850,625 3.6 s

Table 3 presents the errors e and e′; the numbers of activated, possible, and theoretical
nodes; and the CPU time as in the previous examples. We observe that e converges
at least linearly to 0, while e′ seems to converge linearly, at least for d ≤ 1/8.

7. Numerical experiments II. In this section we outline how our Algorithm
(Apc, adapt

r0,d0,J,F,M ) may be used for the effective numerical simulation of nonconvex vecto-
rial variational problems, and we report on two numerical experiments. The proposed
algorithm aims to numerically relax and minimize variational problems of the form
(M′), i.e.,

(M′) Minimize I (u) :=

∫
Ω

f(∇u) dx

among u ∈ A := {v ∈ W 1,p(Ω; Rm) : v|ΓD
= uD},

where f is continuous and satisfies p-growth conditions, Ω ⊆ R
n is a bounded Lipschitz

domain, ΓD ⊆ ∂Ω is closed and of positive surface measure, and uD = ũ|ΓD
for some

ũD ∈ C(Ω; Rm). We further suppose that Ω is polyhedral and let T be a regular
triangulation of Ω such that ΓD is matched exactly by edges (respectively, faces) of
elements in T . We let S1(T )m denote the lowest order finite element space on T which
consists of all globally continuous T -elementwise affine functions in W 1,p(Ω; Rm).
Finally, we let ũD,h be the nodal interpolant of ũD on T . The following algorithm is
capable of finding an approximation of a weak limit of an infimizing sequence for the
nonconvex vectorial variational problem (M′). The approximation scheme realizes a

steepest descent approach and exploits the fact that Algorithm (Apc, adapt
r0,d0,J,F,M ) provides

an approximation of Dfpc(F ).

Algorithm (Anvvp). Input: u
(0)
h ∈ S1(T )m with u

(0)
h |ΓD

= ũD,h|ΓD
, parameters

r0, d0, J , M for Algorithm (Apc, adapt
r0,d0,J,·,M ), and a termination criterion δ > 0.

(a) Set j := 0.
(b) Let rh ∈ S1(T )m satisfy rh|ΓD

= 0 and

∫
Ω

∇rh · ∇vh dx = −
∫

Ω

(
λ
∇u

(j)
h

d/4,r ·DT (∇u
(j)
h )

)
· ∇vh dx

for all vh ∈ S1(T )m with vh|ΓD
= 0.

(c) Compute t∗ ∈ [0, 1], which is a local minimizer in [0, 1] for

t �→
∫

Ω

fpc
d,r

(
∇(u

(j)
h + trh)

)
dx.
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Table 4

Minimal energies for various approaches to the numerical solution of (M′) in Example 7.1.

h f fpc fpc
d,r frc

d

1/8 0.244 128 0.199 761 0.252 177 (0.313 327) 0.202 507
1/16 0.234 894 0.199 761 0.216 076 (0.274 192) 0.208 264
1/32 0.233 769 0.199 761 0.202 994 (0.261 244) 0.245 633

(d) Stop and set uh := u
(j)
h if t∗ < δ.

(e) Set u
(j+1)
h := u

(j)
h + t∗rh, j := j + 1, and go to (b).

Output: uh ∈ S1(T )m.
We specify f , Ω, ũD, and T in two examples. The first example involves affine

boundary data on ∂Ω.
Example 7.1 (see [DW]). Set n = m := 2, Ω := (0, 1)2, ũD(x) := Bx + c for

B =

(
1/2 1/4
−1/4 15/32

)

and c := (0, 1/4), and let f be as in Example 6.2. Given an integer k > 0, let
hk := 1/k and Tk be the triangulation of Ω that consists of 2k2 triangles which are
halved squares of side length h and with diagonals parallel to (1, 1).

For � = 1, 2, 3 we ran Algorithm (Anvvp) with r0 = 2, M = 10, J� = 2 + �,

and k� = 22+� in Example 7.1. The initial u
(0)
h was chosen as u

(0)
h = ũD,h + ξh,

where ξh ∈ S1(T )2 with ξh|ΓD
= 0 is obtained from a linear interpolation of random

values ξh(z) ∈ [−h�, h�]
2 in the free nodes z of T . The termination criterion δ was

set to δ = 0.03, and Algorithm (Anvvp) terminated after 175, 86, and 8 iterations for
� = 1, 2, and 3, respectively. Table 4 displays the numerically relaxed energies for
the output uh�

in Example 7.1 and compares them to values that we obtained when
fpc
d,r(F ) and λF

d,r ·DT (F ) are replaced by f and Df , fpc and Dfpc, and a numerical
approximation frc

d of frc in steps (b) and (c) of Algorithm (Anvvp). (The numbers for
frc
d are taken from [DW].) We observe that Algorithm (Anvvp) significantly reduces

the initial (numerically relaxed) energies shown in brackets in the fourth column of
Table 4. Moreover, we may deduce from the numerical results that the (numerically
relaxed) energies of the outputs of Algorithm (Anvvp) converge to the optimal value
fpc(B) = 0.199761 for (d, h) → 0. No experimental convergence can be deduced
when the original function f or the numerically obtained approximation of the rank-1
convex envelope frc

d were employed.

Figure 2 displays the initial u
(0)
h , the numerical solution obtained from direct nu-

merical minimization of (M′), and the numerical solution obtained from the numerical
relaxation realized by Algorithm (Anvvp) in Example 7.1. We observe mesh-dependent
oscillations in the stress field defined by the numerical solution when no relaxation
is used, while we observe a rather smooth stress field when the nonconvex vectorial
variational problem is numerically polyconvexified.

The second example incorporates nonaffine boundary conditions on ΓD.
Example 7.2 (see [DW]). Let n, m, Ω, ΓD, f , and T be as in Example 7.1, and

define for x ∈ Ω

ũD(x) :=
x− (1/2, 1/2)√∣∣x− (1/2, 1/2)

∣∣2 + 1/4
.
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Fig. 2. (a) Initial deformation u
(0)
h , (b) numerical solution for direct minimization employing

f with modulus of the related stress field |Df(∇uh)|, and (c) numerical solution uh obtained from

numerical relaxation with Algorithm (Anvvp) with stress field |λ∇uh
d/4,r

·DT (∇uh)| in Example 7.1.

Table 5

Minimal energies for various approaches to the numerical solution of (M′) in Example 7.2.

h f fpc fpc
d,r frc

d

1/8 0.186 939 0.170 023 0.231 421 (0.244 203) 0.175 216
1/16 0.189 875 0.168 945 0.186 094 (0.198 793) 0.173 716
1/32 0.188 556 0.168 583 0.173 779 (0.186 396) 0.183 599

Table 5 displays the minimal energies for various approaches to the numerical
simulation of (M′) in Example 7.2. As in the previous example, we observe that the
results obtained by Algorithm (Anvvp) (with the same parameters as in the previous
experiment) with the approximated polyconvex envelope of f approach the value
that we obtained with the exact polyconvex envelope fpc. The minimal energies
obtained with the nonrelaxed functional and with the discrete approximation of the
rank-1 convex envelope of f (numbers for frc

d are taken from [DW]) do not show a
convergent behavior. As in the previous experiment, we observe in Figure 3 mesh-
dependent oscillations in the numerical solution obtained from a direct minimization
scheme. No significant oscillations can be found in the numerical solution computed
with Algorithm (Anvvp) and displayed in Figure 3(c).
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Fig. 3. (a) Initial deformation u
(0)
h , (b) numerical solution for direct minimization employing

f with modulus of the related stress field |Df(∇uh)|, (c) and numerical solution uh obtained from

numerical relaxation with Algorithm (Anvvp) with stress field |λ∇uh
d/4,r

·DT (∇uh)| in Example 7.2.

Remark 7.1. (i) A good initial u
(0)
h may be obtained from solving (M′) with f

replaced by a convex function, e.g., F �→ |F |2/2, as a preprocessing step in Algorithm
(Anvvp).

(ii) A postprocessing procedure based on the algorithms in [Do, DW, Ba2] may be
included in Algorithm (Anvvp), which approximates the rank-1 convex envelope ap-
plied to ∇uh almost everywhere in Ω. Then, if (up to numerical tolerances) there
holds fpc(∇uh) = frc(∇uh) almost everywhere in Ω, one has that fqc(∇uh) =
fpc(∇uh) and (provided that fpc ≤ fqc ≤ frc are smooth enough) that Dfqc(∇uh) =
Dfpc(∇uh) almost everywhere in Ω. In this case, uh serves as an approximation of a
stationary point of the quasi-convex relaxation of (M).

(iii) The computation of fpc
d,r(∇u

(j)
h ) and λ

∇u
(j)
h

d,r in steps (b) and (c) of Algorithm
(Anvvp) has to be done on each element of the triangulation T (since ∇uh is T -
elementwise constant). This may be time-consuming but can be parallelized without
communication costs.
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Abstract. First-order system least squares (FOSLS) is a recently developed methodology for
solving partial differential equations. Among its advantages are that the finite element spaces are not
restricted by the inf-sup condition imposed, for example, on mixed methods and that the least-squares
functional itself serves as an appropriate error measure. This paper studies the FOSLS approach
for scalar second-order elliptic boundary value problems with discontinuous coefficients, irregular
boundaries, and mixed boundary conditions. A least-squares functional is defined, and ellipticity
is established in a natural norm of an appropriately scaled least-squares bilinear form. For some
geometries, this ellipticity is independent of the size of the jumps in the coefficients. The occurrence
of singularities at interface corners, cross points, reentrant corners, and irregular boundary points is
discussed, and a basis of singular functions with local support around singular points is established.
A companion paper shows that the singular basis functions can be added at little extra cost and lead
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also independent of the size of coefficient jumps for some geometries.
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Ω1 Ω2

Ω3

ΓN

ΓD

Fig. 1.1. Polygonal domain Ω with subdomains Ωi, i = 1, 2, 3, and two cross points.

for the pressure p, where the scalar function a may have large jump discontinuities
across interfaces. Of particular interest here is accurate approximation of the flux,

u = a∇p.(1.2)

For the purposes of discussion, consider problem (1.1) posed on a domain, Ω,
composed of a union of polygonal subdomains, Ωi, in which the coefficient a is con-
stant on each subdomain (see Figure 1.1). In general, the flux, u, will be infinite at
certain points, which we will call singular points (see, for example, Strang and Fix
[30, Chapter 8]). Singular points can be of several types:

Cross points: corner points of the boundary of Ωi that lie in the interior of Ω (�
in Figure 1.1);

Boundary cross points: corner points of Ωi on the boundary of Ω that touch
another subdomain, Ωj (■ in Figure 1.1);

Reentrant corners: reentrant corners of Ω (© in Figure 1.1);
Irregular boundary points: points on the boundary of Ω that separate the Dirichlet

boundary, ΓD, from the Neumann boundary, ΓN , for which the interior angle is greater
than π/2 (● in Figure 1.1).

The solution, p, can be expressed as the sum of a finite number of singular func-
tions plus a function that is locally smooth, that is, in H2(Ωi) for each i. Each singular
function is associated with a singular point and, near the singular point, has the form
rαΦ(θ), where (r, θ) are polar coordinates about the singular point and 0 < α < 1.
The character of a singular function depends only on local information near the sin-
gular point and is not difficult to compute (see section 5 and [3] for details).

There are many finite element methods for approximating the solution of (1.1).
Some yield an approximate solution without specific knowledge of the singular func-
tions, while others use the singular functions either implicitly or explicitly. Below we
describe the major approaches.

Standard Galerkin method. The standard Galerkin method (cf. Strang and Fix
[30]) establishes a weak form and seeks the approximation of p in H1(Ω). Convergence
deteriorates near the singular points. Early work using H1 singular basis functions
can be found in the monograph by Strang and Fix [30, section 8.2]. There, H1

singular basis functions for p were introduced to eliminate the deteriorating finite
element approximation near singular points. (See also Cox and Fix [16] and Grisvard
[19, section 8.4.2].) A multilevel approach for simultaneously finding the approximate
solution and determining the coefficients of the singular basis functions is developed
by Brenner and Sung [9]. In [10], Cai and Kim describe a method that is equivalent
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to a Petrov/Galerkin method in which the singular basis functions are added to the
trial space and the dual singular basis functions are added to the test space.

Mixed methods. In mixed finite element methods (see, e.g., [8, Chapter 10]), p and
u are usually approximated by different finite element spaces, and, roughly speaking, a
Galerkin condition is imposed on the first-order system resulting from (1.1) and (1.2).
Normally, the pressure, p, is approximated in L2 and the flux, u, is approximated in
H(div). Only the integral of the flux is computed along edges of elements, and the
pointwise resolution of singularities in the flux is poor.

The least squares methodology for systems of first order is by now several decades
old and had its first application in continuum mechanics (see, for example, [21, 31, 22,
26, 15, 23]). Only fairly recently has it produced H1 equivalent forms to which optimal
multigrid solvers have been applied (see, for example, [12]). For a thorough review of
the least-squares methodology, see [5] and the references therein. The following is an
overview of specific least-squares methods and their applicability to the problem at
hand.

Least-squares in H(div). A similar approach is based on the FOSLS approach
developed and analyzed, e.g., in [11, 12, 27, 28]. This methodology replaces the
Galerkin condition by the minimization of a least-squares functional associated with
a first-order system derived from (1.1) and (1.2). Assuming that f ∈ L2(Ω), the
least-squares functional can be defined using the L2(Ω)-norm. Even in the presence
of discontinuities, this translates to ellipticity with respect to the H1-norm for the
pressure, p, and the H(div)-norm in the flux variable, u. This approach, like the
mixed method approach, computes only the integral flux and again does not resolve
the singularity in the flux variable.

Weighted least-squares in H(div)∩H(curl). Augmenting the basic system with the
curl-condition, ∇×(u/a) = 0 (see [12, 27]), leads to ellipticity with respect to a scaled
version of the H(div) ∩ H(curl) norm in the flux variable. Standard finite element
spaces, for example piecewise polynomials with the appropriate jump conditions across
interfaces, are not dense in the scaled H(div) ∩H(curl) norm, and thus convergence
cannot be obtained. However, the use of an appropriate weight function near each
singular point yields ellipticity in a weighted (and scaled) H(div)∩H(curl) norm. The
piecewise polynomial spaces are dense in this new space. The weighting effectively
ignores the singularity while insulating the rest of the region from the presence of
the singularity. For the case of reentrant corners, weighted least-squares approaches
are presented and analyzed in [17, 16]. Specifically, the method presented in [17] for
corner singularities does not rely on the explicit knowledge of the flux singularity at
the corner. Its analytic part is computed implicitly. For a weighted least-squares
approach in a more general setting, see [25].

Inverse norm functionals. Another potentially more general form of the least-
squares approach is based on the H−1(Ω)-norm (see [6, 7, 13, 4]). Such schemes
based on “inverse” norms can, in principle, be applied when f ∈ H−1(Ω), although
the theory has so far restricted f to L2(Ω). Thus, both the H−1(Ω) and L2(Ω)
versions of FOSLS have been developed under the same general assumptions that are
usually in force for mixed methods. Standard finite element spaces are dense in L2,
and thus convergence is obtained, although only in an L2 sense. This approach uses
norms that do not generally take the coefficients of the equation into account and thus
have performance that deteriorates for problems with large jumps in the coefficients.

FOSLL* functionals. A more recently developed approach, called FOSLL* [14],
can be viewed as a least-squares method based on an inverse norm that involves
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the operator and thus has superior properties in the presence of large jumps in the
coefficients. In addition, it handles the more general case, f ∈ H−1(Ω).

Least-squares in H(div) ∩ H(curl). The current paper is concerned with least-
squares functionals using finite element spaces in H(div)∩H(curl). This paper builds
on the theory developed in [2]. Here, and in the companion paper [3], we describe
a least-squares approach that includes a curl-condition, ∇ × (u/a) = 0. While the
theory developed in [11] and [12] already allows for discontinuous coefficients, special
care must be taken to prove ellipticity, in an appropriate norm, with constants that
grow as slowly as possible with respect to the size of the jumps. For this purpose,
an appropriate scaling of the least-squares functional that depends on the size of a in
different parts of the domain is introduced.

The flux components will, in general, not be in H1(Ω), nor will they be in H1(Ωi).
Here, we construct singular basis functions for the flux, u, that are in the scaled
H(div) ∩ H(curl) but not in H1(Ωi) and have support only near singular points.
These are included in our finite element space. As a result, the flux can be computed
very accurately near cross points. For standard mixed methods, it would be necessary
to make sure that the Ladyzhenskaya–Babuška–Brezzi condition (cf. [8, section 10.5])
is satisfied for the finite element spaces that include the singular function. This is not
the case for our first-order system least-squares approach.

In this paper and the companion paper [3], we show that one can add singular
basis functions at little additional cost. A singular basis function is composed of a
singular function multiplied by a cut-off function that takes the value one in a region
around the singularity (the platform) and drops from one to zero in a narrow region
around the platform (the fringe). The key is that the singular basis functions satisfy
a homogeneous equation of type (1.1) in the platform. Thus, these singular basis
functions are orthogonal to any standard basis function that is either supported com-
pletely inside the platform or supported completely outside the platform and fringe.
Nonzero inner products arise only between singular basis functions and standard ba-
sis functions whose support intersects the fringe. As a result, the cost of adding a
singular basis function is proportional to the number of grid points in the fringe. In
our approach, the fringe has a width of one element, so this additional cost is O(

√
N),

where N is the number of grid points.

In this paper, we introduce the problem in section 2; then, in section 3, we
construct a scaled FOSLS functional for p and u and show that this functional is
continuous and coercive in a scaled H1 × H(div) ∩ H(curl)-norm. The coercivity
and continuity constants are shown to depend on the coefficient a in a complicated
way that involves the geometry of the partition of Ω. We then introduce a flux-only
functional for u alone and show that it is continuous and coercive in the scaled version
of H(div) ∩H(curl). In section 4, we introduce the div-curl operator associated with
the flux-only functional and discuss its properties. Then, in section 5, we show that
the solution, u, can be decomposed as

u = u0 +

M∑
m=1

Nm∑
n=1

bm,nsm,n,

where sm,n are a finite number of singular basis functions associated with singular
points xm, m = 1, . . . ,M , and u0 ∈ H1(Ωi) for every i. Thus, u0 can be approximated
by standard finite elements within each domain, provided that they posses the proper
jumps across domain interfaces.
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In the companion paper [3], we show how to compute approximate singular basis
functions, and then we construct a finite element basis using them. We develop error
estimates by way of new results for nonconforming spaces in the FOSLS context. We
prove that the accuracy of singular basis functions need only be O(hp), p > 1/2.
Finally, we develop a multilevel algorithm that includes singular basis functions on
all coarser levels and provide numerical results that illustrate its performance.

Our restriction to two-dimensional problems is mainly for the purpose of exposi-
tion. However, technical complications arise in higher dimensions. For example, two
different types of singularities, associated with edges and with corners or cross points,
arise in three dimensions. We do not consider these additional complications in the
present paper.

2. Problem statement and preliminaries. Consider the following prototype
problem on a bounded domain Ω ⊂ �2:

−∇ · (a∇p) = f in Ω,
p = 0 on ΓD,

n · a∇p = 0 on ΓN ,
(2.1)

where n denotes the outward unit vector normal to the boundary, f ∈ L2(Ω), and
a(x1, x2) is a scalar function that is uniformly positive and bounded in Ω a.e. but may
have large jumps across interfaces. Suppose that ΓD has positive measure, so that
the Poincaré–Friedrichs inequality

‖p‖0,Ω ≤ γ‖∇p‖0,Ω(2.2)

holds for all functions satisfying the boundary conditions in (2.1). Then (2.1) has a
unique solution in H1(Ω).

Following [12], we rewrite (2.1) as a first-order system by introducing the flux
variable, u =

√
a∇p:

u −
√
a∇p = 0 in Ω,

−∇ ·
√
au = f in Ω,
p = 0 on ΓD,

n ·
√
au = 0 on ΓN .

(2.3)

Since u/
√
a = ∇p with p ∈ H1(Ω), we then have (cf. [18, Theorem 2.9])

∇×
(

u√
a

)
:= ∂1

(
u2√
a

)
− ∂2

(
u1√
a

)
= 0 in Ω .

(By the term ∂k, we mean ∂/∂xk, k = 1, 2.) Moreover, the homogeneous Dirichlet
boundary condition on ΓD implies the tangential flux condition

τ ·
(

u√
a

)
:=

n1u2 − n2u1√
a

= 0 on ΓD.

(Here, τ is the counterclockwise unit tangent vector.)

Adding these equations to first-order system (2.3) yields the augmented, but
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consistent, system

u −
√
a∇p = 0 in Ω,

−∇ ·
√
au = f in Ω,

∇×
(

u√
a

)
= 0 in Ω,

p = 0 on ΓD,
n ·

√
au = 0 on ΓN ,

τ ·
(

u√
a

)
= 0 on ΓD.

(2.4)

Problems (2.1) and (2.4) are equivalent in that their unique solutions are in corre-
spondence (p solves (2.1) if and only if p and u =

√
a∇p solve (2.4)). If ΓN is not

connected, then we add the constraint

∫
ΓNi

τ ·
(

u√
a

)
= 0(2.5)

for every disjoint piece, ΓNi , of ΓN . This constraint is necessary to ensure that the
flux-only functional described below (see (3.17)) has a unique solution.

For both scalar and vector quantities, denote the standard Sobolev spaces as
L2(Ω) and Hk(Ω), with respective norms ‖ · ‖0,Ω and ‖ · ‖k,Ω. We also define the
spaces

H(div a; Ω) := {v ∈ L2(Ω)2 : ∇ ·
√
av ∈ L2(Ω)} ,

H(curl a; Ω) :=

{
v ∈ L2(Ω)2 : ∇×

(
v√
a

)
∈ L2(Ω)

}
,

V := {q ∈ H1(Ω) : q = 0 on ΓD} ,

W :=

{
v ∈ H(div a; Ω) ∩H(curl a; Ω) : n ·

√
av = 0 on ΓN ,

τ ·
(

v√
a

)
= 0 on ΓD,

∫
ΓNi

τ ·
(

u√
a

)
= 0

}
.

Denote the respective seminorm and norm on W by

|v|2
W

:=

∥∥∥∥ 1√
a
∇ ·

√
av

∥∥∥∥
2

0,Ω

+

∥∥∥∥√a∇× 1√
a
v

∥∥∥∥
2

0,Ω

,(2.6)

‖v‖2
W

:= |v|2
W

+ ‖v‖2
0,Ω.

We show in Lemma 3.3 below that this seminorm is in fact a norm on W by estab-
lishing a Poincaré–Friedrichs-type inequality.

Note that v ∈ W is characterized by the fact that, across any curve in Ω with
normal n and tangent τ , both n ·

√
av and τ · 1√

a
v are continuous (a.e.). (For the first

condition see, for example, [32, Chapter 6.2]. The second condition can be derived
analogously.) We refer to the continuity of these two terms at lines of discontinuity of
a as interface conditions for u ∈ W. Clearly, for the solution of (2.1), we have p ∈ V
and u ∈ W, so it is appropriate to pose (2.4) on these spaces.
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As mentioned above, our main interest is in the solution of (2.1) when a(x1, x2)
has large jumps. For this purpose, we assume that

Ω =

J⋃
i=1

Ωi,(2.7)

where Ωi are mutually disjoint, open, simply connected, polygonal regions (see Figure
1.1). Assume also that the restriction of a(x1, x2) to Ωi is in C1,1(Ωi) and that

c1ωi ≤ a(x1, x2) ≤ c2ωi for all (x1, x2) ∈ Ωi,(2.8)

with order one constants c1, c2 and arbitrary positive constants ωi. In other words,
a(x1, x2) is assumed to be of approximate size ωi throughout Ωi for each i, but ωi is
allowed to have large variations over i. In the bounds derived below, we separate the
dependence on the variation in {ωi} from the variation within each Ωi, that is, on c1,
c2, and

c3 := max
1≤i≤J

‖∇a‖0,Ωi
< ∞.(2.9)

Given this decomposition of Ω, define the split seminorms and norms, respectively,
as follows:

|v|2k,S :=

J∑
i=1

|v|2k,Ωi
(2.10)

and

‖v‖2
k,S := ‖v‖2

0,Ω +

k∑
j=1

|v|2j,S .(2.11)

Let Hk
S(Ω) denote the closure of C∞(Ω) in the split norm, and define

W1
S := H1

S(Ω) ∩ W.(2.12)

We now show that if a is piecewise constant (c1 = c2 in (2.8)) with respect to the
decomposition, then

‖v‖1,S = ‖v‖
W

for every v ∈ H1
S(Ω).(2.13)

We first need to establish two lemmas. For the first lemma, consider one polyg-
onal, simply connected subdomain, Ωi, of Ω, with vertices labeled x1,x2, . . . ,xK in
counterclockwise order. Letting xK+1 = x1, denote by Γj the side connecting xj and
xj+1. If Γj makes angle θj with the positive x1-axis, then nj = (sin(θj), − cos(θj))

t

and τ j = (cos(θj), sin(θj))
t are the outward unit normal and counterclockwise unit

tangent to Γj , respectively.
Lemma 2.1. Assume that Ωi is a polygonal domain and that u = (u1, u2)

t ∈
(H2(Ωi))

2; then∫ ∫
Ωi

∂1u1∂2u2dz =

∫ ∫
Ωi

∂2u1∂1u2dz −
∫
∂Ωi

(τ · u)d(n · u)

+
1

2

K∑
j=1

(
(τ j · u)(nj · u)|xj

− (τ j−1 · u)(nj−1 · u)|xj

)
.

(2.14)
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Proof. First, assume that Ω is simply connected. For u ∈ H2(Ωi), Green’s identity
yields

∫ ∫
Ωi

∂1u1∂2u2dz =

∫ ∫
Ωi

∂2u1∂1u2dz +

∫
∂Ωi

u1du2.

The definition of ni and τ i and a bit of algebra yield
∫

Γj

(τ j · u)d(nj · u) =
1

2
(τ j · u)(nj · u)|xj+1

xj
+

1

2
u1u2|xj+1

xj
−
∫

Γj

u1du2.

Summing over the edges yields the result. The result for a general connected polygonal
domain is established by cutting Ωi into simply connected polygonal subdomains and
adding the result.

Lemma 2.2. For every u ∈ W1
S, we have

∫ ∫
Ω

∂1u1∂2u2dz =

∫ ∫
Ω

∂2u1∂1u2dz.(2.15)

Proof. First, let u ∈ H2
S(Ω) ∩W. The space W is characterized by the property

that, for u ∈ W, both
√
an · u and 1√

a
τ · u are continuous (a.e.) across any curve in

Ω. Thus, (n ·u)(τ ·u) is continuous (a.e.). In particular, this holds for the polygonal
boundaries between the regions Ωi. Let Γij denote the edge joining Ωi and Ωj .
Summing the boundary integrals in (2.14) over each Ωi shows that Γij is traversed
once in each direction. Thus, only integrals on the boundary of Ω survive. This yields

∫ ∫
Ω

∂1u1∂2u2 =

∫ ∫
Ω

∂2u1∂1u2(2.16)

+
1

2

K̃∑
j=1

((τ̃ j · u)(ñj · u) − (τ̃ j−1 · u)(ñj−1 · u)) |x̃j
,(2.17)

where the x̃j now denote the K̃ vertices x̃j on the boundary of Ω, and the ñj and τ̃ j

are the corresponding standard normal and tangent vectors. The boundary conditions
imposed on W now imply (2.15) for u ∈ H2

S(Ω) ∩ W. The proof is completed by
noting that Lemma 4.3.1.3 in [19] implies that H2

S(Ω)∩W is dense in W1
S = H1

S(Ω)∩
W.

The next result has important implications for the decomposition of W.
Theorem 2.3. Suppose a = ωi (constant) on Ωi. Then

|u|1,S = |u|
W

for every u ∈ W1
S .(2.18)

Proof. By definition,

|u|2
W

=

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
2

0,Ω

+

∥∥∥∥√a∇× 1√
a
u

∥∥∥∥
2

0,Ω

=

J∑
i=1

(∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
2

0,Ωi

+

∥∥∥∥√a∇× 1√
a
u

∥∥∥∥
2

0,Ωi

)

=
J∑

i=1

(‖∇ · u‖2
0,Ωi

+ ‖∇ × u‖2
0,Ωi

).



394 BERNDT, MANTEUFFEL, McCORMICK, AND STARKE

The theorem now follows from Lemma 2.2 and the easily verified relation

‖∇ · u‖2
0,Ωi

+ ‖∇ × u‖2
0,Ωi

= |u|1,Ωi
+ 2〈∂1u1, ∂2u2〉0,Ωi

− 2〈∂2u1, ∂1u2〉0,Ωi
.

Corollary 2.4. Suppose that a(x, y) is now allowed to vary according to (2.8)
and (2.9). Then,

1

δ
‖u‖

W
≤ ‖u‖1,S ≤ δ‖u‖

W
for u ∈ W1

S ,

where

δ =

√√√√1 + c3

(
c3 +

√
c23 + 8

4

)

and c3 is defined in (2.9).
Proof. Observe that∥∥∥∥ 1√

a
∇ ·

√
au

∥∥∥∥
0,Ωi

≤ ‖∇ · u‖0,Ωi +

∥∥∥∥1

2
(∇a) · u

∥∥∥∥
0,Ωi

,

∥∥∥∥√a∇× 1√
a
u

∥∥∥∥
0,Ωi

≤ ‖∇× u‖0,Ωi +

∥∥∥∥1

2
(∇⊥a) · u

∥∥∥∥
0,Ωi

.

(Here, we use the notation ∇⊥a := (−∂2a, ∂1a)
t.) Using the ε-inequality twice now

yields

|u|2
W,Ωi

≤
(
‖∇ · u‖0,Ωi +

c3
2
‖u‖0,Ωi

)2

+
(
‖∇ × u‖0,Ωi +

c3
2
‖u‖0,Ωi

)2

≤ (1 + ε)(‖∇ · u‖2
0,Ωi

+ ‖∇ × u‖2
0,Ωi

) +

(
1 +

1

ε

)
c23
2
‖u‖2

0,Ωi

for any ε > 0. Choosing ε = c3
( c3+

√
c23+8

4

)
, summing over i, and appealing to Theorem

2.3 yields the lower bound. The upper bound is proved in a similar
fashion.

Remark 1. Following the development in section 4.3 in [19], the above results
can be extended to problem (2.1) with boundary conditions that involve both the
conormal and tangential derivatives, as long as the coefficients remain constant on
each edge. We believe that Theorem 2.3 also holds for regions Ω for which ∂Ωi are
piecewise C1,1, but this remains an open question.

3. The least-squares functional. We now turn to the construction of the
least-squares functional. An appropriate scaling of the equations in (2.4) leads to

Gα(u, p; f) := α‖u −
√
a∇p‖2

0,Ω +

∥∥∥∥ 1√
a
∇ ·

√
au +

1√
a
f

∥∥∥∥
2

0,Ω

+

∥∥∥∥√a∇× 1√
a
u

∥∥∥∥
2

0,Ω

(3.1)

and associated bilinear form

(3.2) Fα((u, p); (v, q)) = α〈u −
√
a∇p,v −

√
a∇q〉0,Ω

+

〈
1√
a
∇ ·

√
au,

1√
a
∇ ·

√
av

〉
0,Ω

+

〈√
a∇× 1√

a
u,

√
a∇× 1√

a
v

〉
0,Ω

,
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where α ≥ 0 will be determined later. Here, for the sake of notational simplicity, we
agree that 〈·, ·〉0,Ω is meant componentwise for vector functions, e.g., if w = (w1, w2)
and z = (z1, z2), then

〈w, z〉0,Ω = 〈w1, z1〉0,Ω + 〈w2, z2〉0,Ω .

The solution of (2.4) also solves the minimization problem

Gα(u, p; f) = min
(v,q)∈W×V

Gα(v, q; f)(3.3)

and, therefore, the variational problem

Fα((u, p); (v, q)) = −
〈

1√
a
f,

1√
a
∇ ·

√
av

〉
0,Ω

for all (v, q) ∈ W × V .(3.4)

In Theorem 3.2, we will show that (Fα((v, q); (v, q)))1/2 is uniformly equivalent to
the scaled norm defined for (v, q) ∈ W × V by

(3.5) |||(v, q)|||α

:=

(∥∥∥∥ 1√
a
∇ ·

√
av

∥∥∥∥
2

0,Ω

+

∥∥∥∥√a∇× 1√
a
v

∥∥∥∥
2

0,Ω

+ α‖v‖2
0,Ω + α‖

√
a∇q‖2

0,Ω

)1/2

.

Note that, for sufficiently smooth a, we get

|||(v, q)|||α ∼
(
‖∇ · v‖2

0,Ω + ‖∇ × v‖2
0,Ω + α‖v‖2

0,Ω + α‖
√
a∇q‖2

0,Ω

)1/2
,(3.6)

although our assumptions on a do not admit this equivalence in general.
Before we prove the main result, we must establish a scaled Poincaré–Friedrichs

inequality. By assumption, ΓD in (2.1) is a set of positive measures on ∂Ω. Thus, a
standard proof can be used to establish

‖p‖0,Ω ≤ γ0‖∇p‖0,Ω,(3.7)

for p ∈ V , where γ0 depends only on Ω. In fact, we may choose γ0 so that (3.7)
holds on any subdomain composed of a union of the Ωi whose closure is connected
and intersects ΓD in a set of positive measure. In this sense, γ0 depends also on the
partitioning (2.7).

Instead of (3.7), we seek scaled inequalities of the form

‖
√
ap‖0,Ω ≤ c4γ0‖

√
a∇p‖0,Ω and

∥∥∥∥ 1√
a
p

∥∥∥∥
0,Ω

≤ c5γ0

∥∥∥∥ 1√
a
∇⊥p

∥∥∥∥
0,Ω

,

for p ∈ V . Of course, if each subdomain is such that ΓD ∩ Ωi is of positive measure,
then we may choose, for example, c4 =

√
c2/c1 (see (2.8)). In general, c4 and c5

depend on a(x1, x2) in a more complicated way that we now characterize.
For each Ωi, there is a connected path λi in Ω from ΓD to Ωi that passes through,

say, Ωj1 , Ωj2 , . . . , Ωjk = Ωi (k ≤ J) in turn, where ΓD ∩ Ωj1 and Ωj� ∩ Ωj�−1
, � =

2, . . . , k, all have positive measure. We call such a path admissible. Now, let c1, c2,
and ωi be as in (2.8) and define

Ci = min
λi

max
�=1,. . . ,k

ωi

ωj�

, Di = min
λi

max
�=1,. . . ,k

ωj�

ωi
,(3.8)
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and

c4 =

√
c2
c1

max
i=1,. . . ,J

√
Ci, c5 =

√
c2
c1

max
i=1,. . . ,J

√
Di.(3.9)

Note that, for certain geometries, c4 or c5 might depend on the maximum global
variation in a(x1, x2). However, for other geometries, c4 or c5 may be small even for
arbitrary large global a-variations. We refer to this property by saying that c4 and c5
are P -uniform, meaning that c4 and c5 depend on a-variations along the best path to
ΓD, but are otherwise independent of the jumps in a.

Lemma 3.1. There exists a P -uniform constant, γ ∈ (0,
√
Jγ0], such that

‖
√
ap‖0,Ω ≤ c4γ‖

√
a∇p‖0,Ω for all p ∈ V,(3.10) ∥∥∥∥ 1√

a
p

∥∥∥∥
0,Ω

≤ c5γ

∥∥∥∥ 1√
a
∇⊥p

∥∥∥∥
0,Ω

for all p ∈ V,(3.11)

where c4 and c5 are the P -uniform constants defined in (3.9).
Proof. Choose Ωi and any of its admissible paths. By (3.7), we have

k∑
�=1

‖p‖2
0,Ωj�

≤ γ2
0

k∑
�=1

‖∇p‖2
0,Ωj�

.

In particular,

‖p‖2
0,Ωi

≤ γ2
0

k∑
�=1

‖∇p‖2
0,Ωj�

.

From (2.8), we have

‖
√
ap‖2

0,Ωi
≤ c2ωi‖p‖2

0,Ωi
≤ c2ωiγ

2
0

k∑
�=1

‖∇p‖2
0,Ωj�

= c2γ
2
0

k∑
�=1

ωi

ωj�

ωj�‖∇p‖2
0,Ωj�

≤ c2
c1

γ2
0Ci

k∑
�=1

‖
√
a∇p‖2

0,Ωj�
.

Summation over i now yields (3.10) with γ ≤
√
Jγ0. The proof of (3.11) is analo-

gous.
Theorem 3.2. If we choose α ≤ 1/c24, where c4 is defined in (3.9), then there

exist P -uniform constants γ1 and γ2 such that

Fα((u, p); (u, p)) ≥ γ1|||(u, p)|||2α for all (u, p) ∈ W × V,(3.12)

and

Fα((u, p); (v, q)) ≤ γ2|||(u, p)|||α |||(v, q)|||α for all (u, p) , (v, q) ∈ W × V.(3.13)

Proof. The proof is similar to the proof of [11, Theorem 3.1] (see also [27, The-
orems 2.1 and 2.2]). We include it here because we must confirm that the constants
γ1 and γ2 are P -uniform. The main part of the proof consists of showing that the
functionals

F̂α((u, p); (v, q)) := α〈u −
√
a∇p,v −

√
a∇q〉0,Ω +

〈
1√
a
∇ ·

√
au,

1√
a
∇ ·

√
av

〉
0,Ω
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and

Ŝα(u, p;v, q) := α〈u,v〉0,Ω + α〈
√
a∇p,

√
a∇q〉0,Ω +

〈
1√
a
∇ ·

√
au,

1√
a
∇ ·

√
av

〉
0,Ω

satisfy

C1Ŝα(u, p;u, p) ≤ F̂α((u, p); (u, p))(3.14)

and

F̂α((u, p); (v, q)) ≤ C2(Ŝα(u, p;u, p))1/2(Ŝα(v, q;v, q))1/2,(3.15)

with constants C1 and C2 that are P -uniform. Since on ∂Ω we either have p = 0 or
n ·

√
au = 0, then integration by parts confirms that

〈u,
√
a∇p〉0,Ω + 〈∇ ·

√
au, p〉0,Ω = 0.

For any β > 0, which we specify later, we have

F̂α((u, p); (u, p)) = α〈u,u〉0,Ω + α〈
√
a∇p,

√
a∇p〉0,Ω − 2α〈u,

√
a∇p〉0,Ω

+

〈
1√
a
∇ ·

√
au,

1√
a
∇ ·

√
au

〉
0,Ω

+ 2αβ〈∇ ·
√
au, p〉0,Ω

+ 2αβ〈u,
√
a∇p〉0,Ω + α2β2〈

√
ap,

√
ap〉0,Ω − α2β2〈

√
ap,

√
ap〉0,Ω

= α〈u + (β − 1)
√
a∇p,u + (β − 1)

√
a∇p〉0,Ω

+

〈
1√
a
∇ ·

√
au + αβ

√
ap,

1√
a
∇ ·

√
au + αβ

√
ap

〉
0,Ω

+ α(2β − β2)〈
√
a∇p,

√
a∇p〉0,Ω − α2β2〈

√
ap,

√
ap〉0,Ω

≥ α(2β − β2)〈
√
a∇p,

√
a∇p〉0,Ω − α2β2〈

√
ap,

√
ap〉0,Ω

≥ α(2β − (1 + γ2)β2)‖
√
a∇p‖2

0,Ω ,

where we used the assumption that α ≤ 1/c24 and where γ is from Lemma 3.1. Choos-
ing β = 1/(1 + γ2) leads to

F̂α((u, p); (u, p)) ≥ βα‖
√
a∇p‖2

0,Ω .

We then also have

α‖u‖2
0,Ω ≤ 2α(‖u −

√
a∇p‖2

0,Ω + ‖
√
a∇p‖2

0,Ω) ≤ 2

(
1 +

1

β

)
F̂α((u, p); (u, p))

and, clearly,

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
2

0,Ω

≤ F̂α((u, p); (u, p)),

which completes the proof of (3.14).
Upper bound (3.15) follows from

F̂α((u, p); (v, q)) ≤ 2(F̂α((u, p); (u, p)))1/2(F̂α((v, q); (v, q)))1/2
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and

F̂α((u, p); (u, p)) = α‖u −
√
a∇p‖2

0,Ω +

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
2

0,Ω

≤ 2

(
α‖u‖2

0,Ω + α
∥∥√a∇p

∥∥2

0,Ω
+

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
2

0,Ω

)
(3.16)

= 2Ŝα(u, p;u, p).

The proof of Theorem 3.2 is completed by adding the term ‖
√
a∇× (u/

√
a)‖2

0,Ω

to both sides of inequalities (3.14) and (3.16).
Theorem 3.2 establishes coercivity and continuity of the least-squares bilinear

form Fα((·, ·); (·, ·)) in terms of the norm |||(·, ·)|||α. This norm equivalence depends
on the jumps in a along the best path to the Dirichlet boundary, but is otherwise
independent of the jumps in a.

The scaling of the norm |||(·, ·)|||α has the following physical interpretation. Fo-
cusing first on p, imagine that the error q as measured by the term ‖

√
a∇q‖2

0,Ω is

balanced over the domain; that is,
√
a∇q is roughly constant. Then, in areas where√

a is relatively small, ∇q is correspondingly relatively large, and one has to expect
a less accurate approximation (in the L2 sense) there compared to areas where

√
a is

large and ∇q is therefore small. In contrast, approximation of the velocity u =
√
a∇p

(assuming the error v is balanced in the sense of the term |v|21,Ω +α‖v‖2
0,Ω; see (3.6))

can be expected to have balanced accuracy (in the L2 sense) over Ω. Ellipticity with
constants that are independent of the global jumps in a asserts that the scaling in
Fα((·, ·); (·, ·)) correctly reflects these attributes.

Uniform coercivity and continuity of F in the norm |||(·, ·)|||α allows for effective
computation of u and p together by finite element and multigrid techniques. Notice
that the result is valid for all α ∈ [0, 1/c24]. Proof of Theorem 3.2 for the case α = 0 is
trivial, with γ1 = γ2 = 1. Moreover, this choice reveals a perhaps simpler alternative:
we can use a two-stage approach (cf. [13]) that first minimizes the flux-only functional,

G0(u; f) =

∥∥∥∥ 1√
a
(∇ ·

√
au + f)

∥∥∥∥
2

0,Ω

+

∥∥∥∥√a∇×
(

u√
a

)∥∥∥∥
2

0,Ω

,(3.17)

over u ∈ W, then fixes u/
√

a and minimizes the Poisson functional,

GP

(
p;

u√
a

)
=

∥∥∥∥∇p− u√
a

∥∥∥∥
2

0,Ω

,

over p ∈ V . The efficacy of this two-stage approach is confirmed by the uniform
coercivity and continuity of GP (p; 0) in the H1(Ω) seminorm ‖∇p‖2

0,Ω, which by (3.7)
is itself a norm on V , and of G1(u; 0) in the W seminorm as defined in (2.6), which
we now demonstrate is a norm on W by establishing a Poincaré–Friedrichs inequality.

Lemma 3.3. We have

‖u‖0,Ω ≤ c6γ|u|W for all u ∈ W,(3.18)

where c6 = max{c4, c5} (see 3.9) and γ is from Lemma 3.1.
Proof. Consider a Helmholtz decomposition on W: for u ∈ W, there exist

p, ψ ∈ H1(Ω) such that

u =
√
a∇p +

1√
a
∇⊥ψ,(3.19)
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where p is unique the solution of (2.1) with f = −∇ ·
√
au and ψ is the unique (up to

a constant) solution of

−∇ ·
(

1

a
∇ψ

)
= −∇× 1√

a
u in Ω,

ψ = Ci on ΓNi
,

n · 1

a
∇ψ = 0 on ΓD,

(3.20)

where Ci are arbitrary constants, one of which may be set to zero. Since u ∈ W, it
satisfies the integral constraints

∫
ΓNi

τ · 1√
a
u = 0

for each disjoint piece of ΓN . Thus, we may set the constants Ci = 0, and (3.20) will
have a unique solution.

Note that the decomposition is orthogonal in the L2 sense:

〈√
a∇p,

1√
a
∇⊥ψ

〉
0,Ω

= 0.(3.21)

We thus have

‖u‖2
0,Ω = ‖

√
a∇p‖2

0,Ω +

∥∥∥∥ 1√
a
∇⊥ψ

∥∥∥∥
2

0,Ω

.(3.22)

Now,

−∇ · a∇p = −∇ ·
√
au,

so that, using (3.10),

‖
√
a∇p‖2

0,Ω = 〈−∇ · a∇p, p〉0,Ω
= 〈−∇ ·

√
au, p〉0,Ω

=

〈
− 1√

a
∇ ·

√
au,

√
ap

〉
0,Ω

≤
∥∥∥∥ 1√

a
∇ ·

√
au

∥∥∥∥
0,Ω

‖
√
ap‖0,Ω

≤ c4γ

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
0,Ω

‖
√
a∇p‖0,Ω,

which yields

‖
√
a∇p‖0,Ω ≤ c4γ

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
0,Ω

.(3.23)
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Similarly, using (3.11),

∥∥∥∥ 1√
a
∇⊥ψ

∥∥∥∥
2

0,Ω

=

〈
−∇× 1

a
∇⊥ψ, ψ

〉
0,Ω

=

〈
−∇× 1√

a
u, ψ

〉
0,Ω

=

〈
−
√
a∇× 1√

a
u,

1√
a
ψ

〉
0,Ω

≤
∥∥∥∥√a∇× 1√

a
u

∥∥∥∥
0,Ω

∥∥∥∥ 1√
a
ψ

∥∥∥∥
0,Ω

≤ c5γ

∥∥∥∥√a∇× 1√
a
u

∥∥∥∥
0,Ω

∥∥∥∥ 1√
a
∇⊥ψ

∥∥∥∥
0,Ω

,

which yields

∥∥∥∥ 1√
a
∇⊥ψ

∥∥∥∥
0,Ω

≤ c5γ

∥∥∥∥√a∇× 1√
a
u

∥∥∥∥
0,Ω

.(3.24)

The result now follows from (3.22)–(3.24), where c6 = max{c4, c5}.
For simplicity of discussion, the following sections focus on the two-stage approach

described above.

4. Scaled div-curl operator. We are now in a position to define the scaled div-
curl operator and develop some tools that will aid in the proof of the decomposition
of W in the next section. Define L : W → (L2(Ω))2 as follows:

L :=

⎡
⎣

1√
a
∇ ·

√
a

√
a∇× 1√

a

⎤
⎦ ,(4.1)

with domain D(L) = W. It is straightforward to verify that the adjoint of L is given
by

L∗ := −
[√

a∇ 1√
a
,

1√
a
∇⊥√a

]
,(4.2)

with domain

D(L∗) :=

{
q :

(
1√
a
q1,

√
aq2

)t

∈ (H1(Ω))2, q1 = 0 on ΓD, q2 = Ci on ΓNi

}
,

(4.3)

where Ci are arbitrary constants, one of which may be set to zero. We summarize
properties of L and L∗ in the following lemma.

Lemma 4.1. The operator L is continuous and coercive on W, the range R(L)
is closed in (L2(Ω))2, and

R(L)⊥ = N (L∗) =

{(
0
1√
a

)}
.
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Proof. The first result follows directly from Lemma 3.3. For the second result,
note for u ∈ W we have

‖u‖W ≤ (c6γ + 1)|u|W = ‖Lu‖ ≤ ‖u‖W,(4.4)

which implies that R(L) is closed in (L2(Ω))2. For the last result, note for u ∈ W
that

〈
1√
a
∇ ·

√
au, 0

〉
+

〈√
a∇× 1√

a
u,

1√
a

〉
=

∫ ∫
Ω

∇× 1√
a
u =

∮
τ · 1√

a
u = 0.

The last equality follows from the boundary conditions imposed on u. Thus,
(0, 1√

a
)t ∈ R(L)⊥ = N (L∗).

To show that this function spans N (L∗), suppose that q ∈ D(L∗) satisfies

−L∗q =
√
a∇ 1√

a
q1 +

1√
a
∇⊥√aq2 = 0.(4.5)

Let p1 = q1/
√
a, p2 =

√
aq2. From the boundary conditions on q and (4.5), we see

that

n ·
√
a∇p1 = n ·

(√
a∇p1 +

1√
a
∇⊥p2

)
= 0 on ΓN .(4.6)

Since 1√
a
∇⊥p2 ∈ H(div a; Ω), then

√
a∇p1 ∈ H(div a; Ω). Thus, p1 satisfies (2.1) with

homogeneous data, which implies that p1 = 0. This leaves ∇⊥p2 = 0, which implies
p2 = C and finally q2 = C√

a
for some arbitrary constant C. Since this is the only

solution of (4.5), the result is proved.

Next, we define the restriction of L to W1
S :

L̂ := L|W1
S
.(4.7)

Since L̂ ⊆ L, we know that L∗ ⊆ L̂∗; that is,

D(L̂∗) =
{
q ∈ (L2(Ω))2 : L∗q ∈ (L2(Ω))2, q1 = 0 on ΓD, q2 = Ci on ΓNi

}
.(4.8)

This larger definition of D(L̂∗) will be important in proving the decomposition in the
next section. Finally, we have the following result.

Lemma 4.2. Subspace W1
S is closed in W and R(L̂) ⊆ R(L) are both closed in

(L2(Ω))2.

Proof. The result is an immediate consequence of Theorem 2.3, Corollary 2.4,
and Lemma 4.1.

5. Solution decomposition. Here, we introduce a splitting of the flux space
W into a finite-dimensional space spanned by singular functions and locally smooth
functions, that is, functions that are H1

S(Ω). As a result, the flux u can be discretized
as the sum of singular basis functions and standard basis functions that satisfy the
interface conditions. This splitting provides the foundation for the finite element
method that we present in [3]. For a detailed description of the finite element spaces,
see also [2].
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Fig. 5.1. Cross point (on the left, K = 4), and boundary cross point (on the right, K = 3).

In this context, a singular function is any function u ∈ W such that u �∈ W1
S(Ω).

This leads to a decomposition of any u ∈ W as

u = u0 +

M∑
m=1

Nm∑
n=1

bm,nsm,n,(5.1)

where u0 ∈ W1
S , and sm,n, n = 1, . . . , Nm, are singular functions associated with

singular points xm, m = 1, . . . ,M .
This decomposition will be established, following the development in Kellogg [24]

and Grisvard [19], by demonstrating a linearly independent set of functions sm,n ∈
W\W1

S and then using a counting argument to show that they span all of W\W1
S . In

fact, we will demonstrate two sets of functions, one associated with singular solutions
of (2.1) and the other associated with singular solutions of (3.20), and show that they
span the same space. The fact that they span the same space will be essential to the
counting argument.

We first examine singular functions of the original equation (2.1). A singular
function of (2.1) is a function p ∈ H1(Ω) \H2

S(Ω) for which ∇ · a∇p ∈ L2(Ω). As de-
scribed in the introduction, singular points are associated with cross points, boundary
cross points, reentrant corners, and irregular boundary points.

We begin with interior singular points. Boundary singular points are handled
in a similar manner. First, we restrict our attention to the ball of radius R, call it
Bm(R), centered at the singular point xm that contains no other singular points, and
we establish a polar coordinate system (r, θ) centered at xm. For example, consider
Figure 5.1. Denote the angle of the boundaries between segments to the positive
x1-axis by θi for i = 1, . . . ,K. In the following, we use the convention that θ−1 = θK
and θK+1 = θ1.

We seek solutions of the homogeneous equation

∇ · a∇p = ∂ra∂rp +
1

r
a∂rp +

1

r2
∂θa∂θp = 0(5.2)

in Bm(R). Substituting p = rαT (θ) and dividing by rα−2 yields the problem

−(aTθ(θ))θ = (aα2 + rarα)T (θ).(5.3)
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Here, we make the additional assumption on a that, within each segment, limr→0 aθ =
0. Since it was assumed above that a ∈ C1,1(Ωi) for each subdomain Ωi, we also know
that limr→0 rar = 0. Thus, we may substitute the value

ãi = lim
r→0

a(r, θ) in Ωi.(5.4)

With this replacement, (5.3) now becomes the the Sturm–Liouville eigenvalue problem

−(ãT ′)′ = ãα2T on [0, 2π).(5.5)

Solutions of this equation are of the form

Tn(θ) = An,i cos(αn(θ − θi)) + Bn,i sin(αn(θ − θi)),(5.6)

for θ ∈ (θi, θi+1), with corresponding eigenvalue

λn = α2
n.(5.7)

The singular functions we seek are constructed by choosing only those αn ∈ (0, 1)
for, say, n = 1, . . . , Nm. Note that for any solution with α = αn ∈ (0, 1), there is a
solution with α = −αn ∈ (−1, 0). These solutions will be important in the counting
argument.

Now, let δ̃m(r) ∈ H2(0, R) be a smooth cut-off function that is equal to 1 for
r ∈ (0, R/2) and drops to 0 for r ∈ (R/2, R). It is easy to see that

sm,n := δ̃m(r)rαnTn(θ)(5.8)

is in the domain of boundary value problem (2.1). Moreover, for any cut-off function
δm ∈ H1(0, R), we see that

sm,n := δm(r)
√
a∇rαnTn(θ) ∈ W \ W1

S .(5.9)

The exponent α and the coefficients (Ai, Bi) can be determined by enforcing
continuity of both T (θ) and aT ′(θ) across interfaces. (We have dropped the first
subscript for convenience.) This may be expressed as

[
1 0
0 −ãi

](
Ai

Bi

)
=

[
cos(α(θi − θi−1)) sin(α(θi − θi−1))

ãi−1 sin(α(θi − θi−1)) −ãi−1 cos(α(θi − θi−1))

](
Ai−1

Bi−1

)
,

(5.10)

for i = 1, . . . ,K. Divide the second equation by ãi−1, define δi := ãi/ãi−1 and

Di :=

[
1 0
0 −δi

]
, Ci :=

[
cos(α(θi − θi−1)) sin(α(θi − θi−1))
sin(α(θi − θi−1)) − cos(α(θi − θi−1))

]
,(5.11)

and finally define β
i

:= (Ai, Bi)
t. Then, the above constraints may be expressed by

the homogeneous system

Mb =

⎡
⎢⎢⎢⎣

D1 0 · · · CK

−C1 D2 · · · 0
...

. . .
...

0 · · · −CK−1 DK

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

β
1

β
2
...

β
K

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ .(5.12)
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A nontrivial solution exists only when the determinant of M is zero. The correspond-
ing null vector yields the coefficients.

We now turn our attention to singular solutions of the boundary value problem
(3.20). In Bm(R) we seek solutions to the homogeneous problem

∇ · 1

a
∇p = 0.(5.13)

Following the same arguments, we are led to the Sturm–Liouville eigenvalue problem

−
(

1

ã
T̂ ′
)′

=
1

ã
α2T̂ on [0, 2π)(5.14)

and solutions of the form

T̂n(θ) = Ân,i cos(αn(θ − θi)) + B̂n,i sin(αn(θ − θi)),(5.15)

for θ ∈ (θi, θi + 1).

Again, we choose only those αn ∈ (0, 1). With δ̃(r) ∈ H2(0, R), solutions of this
Sturm–Liouville problem yield

ŝm,n = δ̃m(r)rαn T̂n(θ)(5.16)

in the domain of boundary value problem (3.20) and, with δm ∈ H1(0, R),

ŝm,n = δm(r)
1√
a
∇⊥rαn T̂n(θ) ∈ W \ W1

S .(5.17)

It would appear that there are at least two families of singular function in W\W1
S .

We now show that they are in fact the same family. To see this, first notice that
the only change to the continuity constraints (5.10) is that ãi, ãi−1 are replaced by
1/ãi and 1/ãi−1 respectively, which results in replacing Di by D−1

i . Thus, with the

definition β̂
i
:= (Âi, B̂i) and similar notation for the other variables, the homogeneous

system (5.12) becomes

M̂ b̂ :=

⎡
⎢⎢⎢⎣

D−1
1 0 · · · CK

−C1 D−1
2 · · · 0

...
. . .

...
0 · · · −CK−1 D−1

K

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

β̂
1

β̂
2
...

β̂
K

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ .(5.18)

We now show that detM = det(M̂). Define the 2 × 2 rotation

Q2 =

[
0 1

−1 0

]
(5.19)

and notice that Qt
2Q2 = I2, Q2CiQ2 = Ci, and

Q2DiQ2 =

[
δi 0
0 −1

]
= δiD

−1
i .(5.20)
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Note that det(Q2) = −1 and define the 2K × 2K block diagonal matrix Q =
diag(Q2, Q2, . . . , Q2). This yields

QMQ =

⎡
⎢⎢⎢⎣

δ1D
−1
1 0 · · · CK

−C1 δ2D
−1
2 · · · 0

...
. . .

...
0 · · · −CK−1 δKD−1

K

⎤
⎥⎥⎥⎦ .(5.21)

Next, define the 2K × 2K block matrices

Δ1 := diag(ã1I2, ã2I2, . . . , ãKI2),

Δ2 := diag(ãKI2, ã1I2, . . . , ãK−1I2).

We can now establish

Δ2QMQΔ−1
1 = M̂,(5.22)

which yields

det(M̂) = det(Δ1) det(Δ−1
2 ) det(Q)2 det(M) = det(M).(5.23)

Let αn ∈ (0, 1) be a root of det(M) = 0, and consider the associated null vector
Mbn = 0. Using the above relationships, we have

0 = (Δ2QM)bn = (Δ2QMQΔ−1
1 )(Δ1Q

tbn) = M̂(Δ1Q
tbn).(5.24)

Thus, b̂n = (Δ1Q
tbn) is the corresponding null vector of M̂ , which yields

(
Ân,i

B̂n,i

)
= ãi

(
−Bn,i

An,i

)
.(5.25)

For convenience, define

φn(r, θ) = rαn (An,i cos(αn(θ − θi)) + Bn,i sin(αn(θ − θi))) ,(5.26)

ψn(r, θ) = rαn(Ân,i cos(αn(θ − θi)) + B̂n,i sin(αn(θ − θi))),(5.27)

for θ ∈ (θi, θi+1). Recall that

∇ =

(
∂1

∂2

)
=

⎡
⎣ cos(θ) − 1

r sin(θ)

sin(θ) 1
r cos(θ)

⎤
⎦
(

∂r
∂θ

)
(5.28)

and that ∇⊥ = Qt
2∇. Using (5.25), (5.26), and (5.28), it is a simple matter to confirm

that

√
a∇φn =

1√
a
∇⊥ψn.(5.29)

Boundary singular points are handled in a similar fashion. Now, instead of peri-
odic boundary conditions, the Sturm–Liouville problem (5.5) would require T (θ) = 0
for θ corresponding to a boundary segment in ΓD, and T ′(θ) = 0 for θ corresponding
to ΓN , while problem (5.14) would reverse the roles. It is straightforward to verify
that the relationship (5.29) holds for these singular functions as well.
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We summarize the above discussion and complete the proof of the decomposition
(5.1) in the following theorem.

Theorem 5.1. Every u ∈ W has a unique decomposition

u = u0 +

M∑
m=1

Nm∑
n=1

bm,nsm,n,

where u0 ∈ W1
S and sm,n, n = 1, . . . , Nm, are singular functions associated with

singular points xm, m = 1, . . . ,M .
Proof. From Lemma 4.1, we know that W1

S is closed in W, that R(L̂) ⊆ R(L) are

both closed in (L2(Ω))2, and that both L and L̂ are injective. Thus, the codimension

of W1
S in W is the same as the codimension of R(L̂) in R(L). By Lemma 4.1, we know

that the dimension of R(L)⊥ is one. We now seek R(L̂)⊥ = N (L̂∗). At each singular

point xm, let δ̂ ∈ H2(0, R) be a smooth cut-off function and, for each αm,n ∈ (0, 1),
construct functions similar to (5.8) and (5.16) as follows:

s−m,n := δm(r)r−αm,nTm,n(θ),

ŝ−m,n := δm(r)r−αm,n T̂m,n(θ),

and define

s−m,n := (s−m,n, −ŝ−m,n)t.(5.30)

From (5.29) we see that s−m,n ∈ D(L̂∗) \ D(L∗) and L̂s−m,n ∈ (L2(Ω))2. Since L∗ is
surjective, we can find qm,n ∈ D(L∗) such that

L∗qm,n = −L̂∗s−m,n(5.31)

and set

fm,n = qm,n + s−m,n.(5.32)

Clearly, fm,n ∈ N (L̂∗).

It is straightforward to show that every element of N (L̂∗) must be of this form,
that is, must involve singular functions of both (2.1) and (3.20). Thus, the dimension

of N (L̂∗) is exactly equal to the number of such functions plus the one function in

N (L∗). We complete the proof by noting that the codimension of N (L∗) in N (L̂∗)

is equal to the codimension of R(L̂) in R(L).
This decomposition is the basis for the finite element discretization that is devel-

oped in the companion paper [3]. We only summarize the basic ideas here. Exponents
and coefficients of singular basis functions sm,n can be computed from the geometry
of interfaces adjoining a singular point and the jumps in the coefficient a across these
interfaces. Although our theoretical development employed cut-off functions indepen-
dent of θ, any H1 cut-off function may be used. We choose cut-off functions that
equal one in a fixed region around the singular point and fall off to zero linearly in a
small fringe region of width one grid cell.

The singular basis functions are included in the finite element space, together
with standard elements, such as linear elements on triangles, that satisfy the interface
conditions. Using functional G0 to solve for the flux, inner products of standard
elements with singular basis functions need only be calculated in the fringe region,
thus saving a significant amount of work.
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6. Conclusions. In this paper we have developed a FOSLS L2 formulation for
diffusion equations with discontinuous coefficients, irregular boundaries, and mixed
boundary conditions. In Theorem 3.2, we showed the functional Gα in (3.1) to be
coercive and continuous in W × V with constants that are P -uniform. We then
explored the flux-only functional, G0 in (3.17), and in Lemma 3.3 and Lemma 4.1
showed that it is coercive and continuous in W with constants that are also P -uniform.
Properties of the scaled div-curl operator (4.1) helped us to prove in Theorem 5.1 that
W can be split into functions that are H1 in each subdomain plus a finite number of
singular basis functions with support in the neighborhood of the singular points.

These results form the theoretical basis for the finite element discretization of
W, a rigorous discretization error analysis, and a multilevel method, all of which
are presented in the companion paper [3]. Our approach is different from others
(see, for example, [9]) in that a rigorous discretization error analysis in the presence
of approximate singular basis functions is possible, and a multilevel method can be
devised that incorporates singular basis functions on all levels.
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Abstract. First-order system least squares (FOSLS) is a methodology that offers an alternative
to standard methods for solving partial differential equations. This paper studies the first-order
system least-squares approach for scalar second-order elliptic boundary value problems with dis-
continuous coefficients. In a companion paper [M. Berndt, T. A. Manteuffel, S. F. McCormick,
and G. Starke, Analysis of first-order system least squares (FOSLS) for elliptic problems with dis-
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discussed, and a basis of singular functions with local support around singular points is established.
This paper describes a method for including discrete versions of the singular basis functions together
with standard finite element spaces in a least-squares format at little additional computational cost.
The singular basis functions are constructed to match the jump conditions that arise at interfaces
between regions of continuity of the diffusion coefficient. Because these basis functions must be
approximated in practice, the resulting discretization is by nature nonconforming. This necessitates
the establishment here of a general error estimate for FOSLS L2 minimization problems discretized
by nonconforming finite elements. An advantage of the FOSLS formulation is that this estimate does
not involve the consistency error term usually present in bounds for other methods. Based on this
general estimate, error bounds are derived for the finite element space that includes singular basis
functions. Numerical tests are included that confirm these discretization error bounds. Finally, a
multilevel method is developed for solving the discrete system that uses singular basis functions on
all levels, and its efficiency is demonstrated by the numerical results.
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1. Introduction. In this paper we consider the application of first-order sys-
tem least squares (FOSLS [11, 12]) to diffusion equations in the plane with jump-
discontinuous coefficients:

−∇ · (a∇p) = f in Ω,
p = g

D
on ΓD,

n · (a∇p) = g
N

on ΓN .
(1.1)
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Here, a > 0 is a piecewise smooth function corresponding to some partition of domain
Ω ⊂ �2, with boundary ∂Ω = ΓD ∪ ΓN and outward unit normal n, and the data
f, g

D
, and g

N
are appropriately smooth functions. Our focus is on a two-stage FOSLS

scheme whose primary aim is to approximate the flux a∇p.

Studies of the problem of accurate approximation of p by inclusion of special basis
functions (cf. [30, 23]) and adaptive refinement (cf. [28]) has been extensive, but the
development of efficient multilevel algorithms for the calculation of stress intensity
factors is lagging. The only example we are aware of is the full multigrid algorithm
for interface problems stemming from cracks, introduced in [7, 9].

The least-squares methodology for systems of first order is by now several decades
old and had its first applications in continuum mechanics (see, for example, [20, 32,
21, 25, 15, 22]). Only fairly recently has it produced H1-equivalent forms to which
optimal multigrid solvers have been applied (see, for example, [12]). For a thorough
review of the least-squares methodology, see [4] and the references therein.

In the FOSLS formulations developed in [11, 12], the aim was to rewrite the
original scalar equation as a first-order system in such a way that its associated least-
squares functional has an H1-equivalent homogeneous part. This equivalence enables
simpler finite element discretization methods and ensures that the resulting discrete
problem can be solved efficiently by a standard multigrid method. However, because
we allow discontinuities in a here, the flux is discontinuous across interfaces and may
be singular at some points in the domain. We are therefore led to the development of
a special FOSLS L2 approach for solving (1.1).

In this paper we develop a flux-only FOSLS functional that is continuous and
coercive in a scaled space, H(div a,Ω) ∩ H(curl a,Ω), which we denote as W (see
section 2). We denote the space of piecewise H1 vector valued functions as H1

S(Ω)
(see section 4). In [2] it was shown that H1

S(Ω) ∩ W has finite codimension in W.
The singular basis functions, together with H1

S(Ω)W, span W (cf. [2]).

The basic idea behind our special FOSLS scheme is to include singular basis
functions in the finite element space and thus accurately model the singular behavior
of the flux. These basis functions are constructed so that their action in the weak form
involves integration only inside a small fringe region around the singularity. Thus,
the additional cost is minimal, yet optimal accuracy is retained.

Alternatives to the approach we develop here are described in detail in [2] and
include adding H1 singular basis functions in standard Galerkin methods to enhance
the rate of convergence (cf. [30, 17, 7, 10]) and the use of H(div) conforming finite
element spaces with mixed formulations (see [8]) or with FOSLS functionals that are
based on H(div) (see [11, 26, 27]). Standard finite element spaces can be used with
FOSLS functionals that are weighted to eliminate the overall impact on accuracy of
the singular behavior of the flux [18, 17, 24]. Unfortunately, this weighting approach
does not provide accurate resolution of the solution close to singularities of the flux,
which is the main objective of the approach developed here.

Other alternatives use FOSLS based on inverse norms [6, 5, 13, 3] and FOSLS∗

[14]. The FOSLS L2 approach developed here achieves accuracy in the stronger H1-
like norm, which may be preferred in many practical cases.

To estimate discretization accuracy for our special FOSLS scheme, we derive a
general error bound for L2-type FOSLS discretized by nonconforming finite elements.
Similar nonconforming estimates for other methods typically involve consistency error
terms (cf. [1]), but they are not needed in the FOSLS context. This special property
of FOSLS is important because it means that error estimates for nonconforming finite
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elements may be derived solely from relatively simple interpolation error bounds.

The FOSLS reformulation of (1.1) is derived in section 2. In section 3, the cal-
culation of exponents of singular basis functions is described, and, in section 4, we
describe the finite element discretization scheme, complete with singular basis func-
tions. In section 5, the general nonconforming error bound is derived and applied
to estimating the accuracy of our augmented basis approach. These estimates are
confirmed by the numerical results at the end of section 5. We introduce a multilevel
solver in section 6 that is based on coarsening with singular basis functions on all
levels. The W -cycle form of this algorithm exhibits typical multigrid convergence
behavior, as the numerical results of section 7 also confirm.

2. Problem statement and FOSLS formulation. Assume that Ω ⊂ �2 is a
simply connected polygonal region and that

Ω =

J⋃
j=1

Ωj ,(2.1)

where Ωj are mutually disjoint open simply connected polygonal regions. Assume
also that ∂Ω = ΓD ∪ ΓN , ΓD has positive measure, and ΓD and ΓN both consist of a
finite number of connected pieces. The case in which ΓD = ∅ is a simple extension.

Consider the following div-curl first-order system for the scaled flux u :=
√
a∇p:

−∇ · (
√
au) = f in Ω,

∇× (u/
√
a) = 0 in Ω,

n · (
√
au) = 0 on ΓN ,

n × (u/
√
a) = 0 on ΓD.

(2.2)

(We treat the homogeneous boundary condition case for simplicity. The general case
of nonzero gN and gD := n×∇p could be treated by standard lifting or superposition
techniques.)

Under the additional smoothness assumptions a ∈ C1,1(Ω), f ∈ L2(Ω), and in
the absence of reentrant corners and boundary points in which ΓD and ΓN meet with
interior angle greater than π/2, we can assert the following [12]: scalar equation (1.1)
has a unique solution p ∈ H2(Ω); system (2.2) has a unique solution u ∈ H1(Ω)2; and
the two problems are equivalent in the sense that their solutions correspond according
to the relation u :=

√
a∇p.

We are interested here in the discontinuous coefficient case, where a is assumed
only to be piecewise continuous. Theoretical properties of the first-order system and
the corresponding FOSLS functional for this case are studied in the companion paper
[2]. In the present paper, we focus on the discretization and multilevel solver for the
discrete problem. Problems with reentrant corners and irregular boundary points can
be handled in an analogous manner and are omitted for simplicity of presentation.

System (2.2) gives rise to the scaled least-squares functional

G(u; f) =
∥∥(1/√a)∇ · (

√
au + f)

∥∥2

0
+
∥∥√a∇× (u/

√
a)
∥∥2

0
(2.3)

and the associated FOSLS L2 minimization problem

u = arg min
v∈W

G(v; f),(2.4)
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which is well posed on the space

(2.5) W = {v ∈ H(div a,Ω) ∩H(curl a,Ω) :

n · (
√
av) = 0 on ΓN ,n × (v/

√
a) = 0 on ΓD

}
,

where

H(div a,Ω) =
{
v ∈ L2(Ω)2 : ∇ · (

√
av) ∈ L2(Ω)

}
,

H(curl a,Ω) =
{
v ∈ L2(Ω)2 : ∇× (v/

√
a) ∈ L2(Ω)

}
.

We equip W with the seminorm

|u|W =
∥∥(1/√a)∇ · (

√
au)

∥∥2

0
+
∥∥√a∇× (u/

√
a)
∥∥2

0
.

Note that this is actually a norm because of the assumption that ΓD has positive
measure (see [2, Lemma 3.3]). Note also that G is trivially W elliptic in the sense
that

G(u; 0) = |u|2W .(2.6)

Minimization problem (2.4) leads to the following variational problem: find u ∈
W such that

F(u,v) =
〈
f/a,∇ · (

√
av)

〉
0,Ω

(2.7)

for all v ∈ W, with

F(u,v) =
〈
(1/a)∇ · (

√
au),∇ · (

√
av)

〉
0,Ω

+
〈
a∇× (u/

√
a),∇× (v/

√
a)
〉
0,Ω

.

Suppose that a is piecewise continuous with respect to the partitioning (2.1) of
Ω in the maximal sense; that is, a is continuous on Ωj and no open set Oj ⊃ Ωj

exists for which a|Oj is continuous, 1 ≤ j ≤ J . Under these assumptions, variational
problem (2.7) has a unique solution in W that is also the unique solution of FOSLS
minimization problem (2.4) (see [2]).

An edge that lies in the intersection of the closure of two subdomains is called
an interface. Points where two interfaces meet are called cross-points. Cross-points,
reentrant corners, and irregular boundary points are all potential singular points.
Now, the solution u ∈ W of problem (2.2) satisfies certain conditions across the
interfaces. Denote by nI a unit vector normal to interface I. Then

nI · (
√
au) and τI · (u/

√
a) are continuous a.e. across interfaces.(2.8)

These interface conditions must be true in order for the first two equations in (2.2) to
make sense. For the first condition in (2.8) see, for example, [33, Chapter 6.2]. The
second condition can be derived analogously.

3. Approximation of singularities. In [2, section 5], a splitting of W into a
finite-dimensional space spanned by singular functions and locally smooth functions
is introduced. This leads to a decomposition of any u ∈ W as

u = u0 +

M∑
m=1

Nm∑
n=1

ωmδmsm,n,(3.1)
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Fig. 3.1. Cross-point, I = 5.

where u0|Ωi
∈ H1(Ωi), δm is a cut-off function at a singular point (see Figure 4.2

for an example), and sm,n, n = 1, . . . , Nm, are the singular functions associated with
singular point xm, m = 1, . . . ,M . In this paper, our focus is on singular points that
are cross-points (see Figure 3.1 for an example). The other types of singular points,
described in [2, section 5], can be treated in an analogous fashion.

The exact nature of a singularity at a cross-point can be calculated using a and
the geometry of interfaces in the neighborhood of the cross-point. To obtain a simple
representation of such singularities (see [23] and [30]), additional constraints on the
behavior of a within Ωi are necessary. We first summarize the results of [2, section 5]
and then proceed to describe the numerical method that is used to calculate singular
basis functions.

Given a polar coordinate system (r, θ), centered at a cross-point, we recall that
a ∈ C1,1(Ωi), for each subdomain Ωi, and assume that a satisfies

lim
r→0

aθ = 0, lim
r→0

rar = 0.(3.2)

The task of finding a representation for the singularity at a cross-point reduces to
finding solutions of the Sturm–Liouville eigenvalue problem (see [2, section 5] for a
detailed derivation)

−(ãT ′)′ = ãα2T on [0, 2π),(3.3)

where ãi = limr→0 a(r, θ) in Ωi.

Each interface that adjoins the cross-point is characterized by the angle of its
tangent at the cross-point with the x1-axis. Denote by I the number of interfaces
adjoining at a given cross-point, and by θi, i = 1, . . . , I, the angles their tangents
make with the x1-axis (see Figure 3.1 for an example with I = 5). Assume that these
interface angles are ordered such that θi < θi+1, i = 1, . . . , I − 1. Let θI+1 = θ1.

Eigenfunctions of (3.3) have the form

Tn(θ) = λn,i cos(αnθ) + μn,i sin(αnθ),(3.4)

for θ ∈ (θi, θi+1), where α2
n is the associated eigenvalue. According to [2, Theorem 5.1],

we must calculate all eigenvalues 0 < α2
n < 1 and associated eigenfunctions of (3.3),
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to obtain all singular functions

sm,n =
√
a∇rαnTn(θ) =

√
aαnr

αn−1

(
λni sin((αn − 1)θ) + μni cos((αn − 1)θ)
λni cos((αn − 1)θ) − μni sin((αn − 1)θ)

)
,

(3.5)

for θ ∈ (θi, θi+1), where λni and μni are constant inside each Ωi. Note also that
sm,n =

√
a∇σn with

σn(r, θ) = rαn(λni sinαnθ + μni cosαnθ) for θ ∈ (θi, θi+1).(3.6)

Remark 1. In [2], a representation of the singular functions is used that differs
slightly from (3.5). It is easy to show that the two representations are equivalent.

For convenience we will now drop the subscript n where the meaning is apparent.
The exponent α and the coefficients (λi, μi) can be determined by enforcing continuity
of both T (θ) and ãT ′(θ) across interfaces. To obtain first approximations to the
eigenvalues α2, we discretize eigenvalue problem (3.3) and solve the resulting algebraic
generalized eigenvalue problem. Note that we are primarily interested in the smallest
values of α2, that is, 0 ≤ α2 ≤ 1. The eigenvectors associated with these small
eigenvalues are well approximated using a fairly coarse discretization. Values of α
that are obtained in this way are used as starting values of a secant iteration that is
based on the following idea.

Interface conditions (2.8) give rise to a 2I × 2I nonlinear system of equations for
α, λi, and μi, i = 1, . . . , I, which can be written in the compact form

M(α)(λ1, μ1, . . . , λI , μI)
t = 0.(3.7)

A nontrivial solution exists only when M(α) is singular, that is, when detM(α) = 0.
To find roots of detM(α), we use a secant iteration with starting values obtained
from the solution of the discretized Sturm–Liouville eigenvalue discussed in above.

Suppose we compute an approximation α̃ = α+ η. To estimate η, we find x that
has norm one and minimizes ‖M(α̃)x‖. Thus, x is a right singular vector of M(α̃)
and ‖M(α̃)x‖ = σn, the smallest singular value of M(α̃), which is easily computed
because M(α̃) is of small dimension. Moreover,

M(α̃)x = σnr,(3.8)

where r is the left singular vector of M(α̃) and ‖r‖ = 1.
Let α be the exact value, and let the inexact α̃ = α+η. Then we have the matrix

expansion

M(α + η) = M(α) + ηM ′(α + η̂)  M(α) + ηM ′(α + η),

where η̂ ∈ (0, η). We can easily compute M ′(α+ η). Since M(α) is singular, we know
that the distance from M(α + η) to M(α) in the Frobenius norm is larger than the
smallest singular value of M(α + η); that is,

σn ≤ ‖M(α + η) −M(α)||F  η‖M ′(α + η)‖F .

Thus, we get a lower bound on η. Conversely, we see that as η → 0, we can get a
bound on σn → 0.

In conclusion, the coefficients become accurate at the same rate as alpha becomes
accurate. Also, we can determine an approximate lower bound on the accuracy of
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alpha by computing the singular values of M(α̃). If the error in alpha is too big, we
do more computational work. (In [2, (5.12)], M(α) is scaled such that the dependence
on a is lumped into 2× 2 block diagonal terms Di that have no dependence on α but
depend on the ratio ai/ai−1. In this paper, we use a slightly different scaling, where
Di = diag(ai−1,−ai).)

The calculations that are described in this section are not very costly, since typi-
cally, the number of interfaces adjoining a cross-point is very small, and the number
of eigenvalues of the Sturm–Liouville problem (3.3) in which we are interested is of
order O(1) (see [23]).

4. Finite element discretization. For simplicity, we have assumed that do-
main Ω and its subdomains Ωj are polygonal, which allows the geometry of the discon-
tinuities of a to be resolved exactly using a triangular mesh. Let Th be a quasiuniform
triangulation (see, for example, [8, Definition 4.4.13]) constructed so that no element
cuts across any interface (i.e., each element is contained in just one subdomain). Our
discretization method is based on the decomposition introduced in [2] that isolates the
singular functions from the piecewise H1 functions. To this end, let δm ∈ H1(Ω) de-
note any given“cut-off” function that has value one in a small area about cross-point
m and values that taper to 0 in a small outer “fringe,” 1 ≤ m ≤ M . (See Figure 4.2.)
Let sm,n be the nth singular basis function at cross-point m, 1 ≤ n ≤ Nm, 1 ≤ m ≤ M .
Then δmsm,n ∈ W , provided that δm has support inside Ω and all interfaces inside
the fringe and platform of δm are straight lines. We will be more specific about sm,n

below. Defining the “split” space of piecewise H1 functions by

H1
S(Ω) :=

{
u ∈ (L2(Ω))2 : u|Ωj ∈ (H1(Ωj))

2, j = 1, . . . , J
}

(4.1)

and letting W1
S := W ∩H1

S(Ω), then our decomposition is given by

W = W1
S ⊕ span {δmsm,n : 1 ≤ m ≤ M, 1 ≤ n ≤ Nm} ,(4.2)

(cf. [2], Theorem 5.1). At interior nodes of the subdomains Ωj , we use standard
piecewise linear nodal basis functions, whose coefficients at the nodal values are the
unknowns. (We will add certain quadratic basis functions shortly.) For vertices that
lie on interfaces, we use piecewise linear basis functions that satisfy interface conditions
(2.8) exactly and are scaled to have a maximum of one (see also Figure 4.1).

Singular components δmsm,n are discretized by choosing a discrete cut-off func-
tion δm = δhm and replacing sm,n by a discrete approximation s̃m,n, as described in
section 3. Each cross-point m is surrounded by the support of its cut-off function,

1

(a) (b)

interface

Fig. 4.1. A discontinuous linear basis function in 3D view (a) and in side view (b).
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Fig. 4.2. The cut-off function δhm centered at a cross-point (Pm = platform, Fh
m = fringe,

dotted lines are interfaces).

which consists of a platform Pm and outer fringe Fh
m consisting of one outer ring

of level h triangles. The platform also consists of level h triangles, but it is other-
wise fixed in size. The supports Pm ∪ Fh

m are constructed at each cross-point to be
large enough to obtain a reasonable approximation to the singular functions but small
enough to ensure that they do not intersect with each other. Cut-off function δhm is
then defined so that δhm|τ is linear for all τ ⊂ Fh

m and has value 1 inside its platform.
See Figure 4.2.

Denoting by Fτ (·, ·) the F inner product evaluated on the element τ , we have

Fτ (δ
h
msm,n,v) = 0 for all τ ∈ Pm,

since δhm = 1 inside Pm. This implies that, for elements inside the platforms, entries
in element stiffness matrices that involve singular basis functions are zero. Only
elements in the fringes have element stiffness matrices that have contributions from
integration of singular basis functions. To evaluate these fringe integral terms, we use
two-dimensional Gaussian quadrature of order high enough to ensure that it does not
corrupt the discretization error estimates we obtain in the following sections. (Recall
that the singular functions are smooth in the fringe.) Outside platforms and fringes,
there are no contributions from singular basis functions. In conclusion, each singular
basis function need only be numerically integrated on the small number of elements
that comprise the fringe of its cut-off function.

To control the computational work of integrating the singular basis functions, we
have limited the fringes to width h, which reduces discretization accuracy. To avoid
this loss, we introduce quadratic “bubble-like” basis functions in the fringes, with
supports consisting of two triangles that share an edge within the fringe. Within each
triangle, the quadratic function is defined to be the product of a linear function that
is zero on one of the nonshared edges and another that is zero on the other nonshared
edge. When the triangle pair is in a single Ωj , the basis function is scaled to be 1 at
the midpoint of the shared edge (see Figure 4.3(c)). If, instead, the edge coincides
with an interface, the discontinuous basis function is such that it satisfies the interface



FOSLS FOR ELLIPTIC DISCONTINUOUS COEFFICIENT: II 417

1

(a)

(c)

(b)

interface

Fig. 4.3. A discontinuous quadratic basis function in 3D view (a) and in side view (b); a
continuous quadratic basis function (c).

conditions (2.8) exactly and has a maximum of one. See Figure 4.3(a) and (b) for a
schematic.

In the next section, we derive an error estimate that illustrates the necessity for
such an increase in discretization order inside the fringes (see the proof of Theo-
rem 5.1).

Our discretization is, thus, defined by the space Wh of elements of the form

uh = uh
L + uh

Q +

M∑
m=1

Nm∑
n=1

ωm,nδ
h
ms̃m,n,(4.3)

where is uh
L is piecewise linear (with respect to T h) and continuous in Ωj , uh

Q is
piecewise quadratic and continuous in Ωj but with support contained in the fringe,
and s̃m,n is an approximation to sm,n. The discrete problem corresponding to (2.7)
is then as follows: Find vh ∈ Wh such that

F(uh,vh) =
〈
f/a,∇ · (

√
avh)

〉
0,Ω

(4.4)

for all vh ∈ Wh.
Both uh

L and uh
Q satisfy the interface conditions exactly, but the singular function

approximations s̃m,n do not, because α̃ is not exact. This means that the discrete
space is generally nonconforming: Wh �⊂ W. Thus, standard theory for discretization
accuracy does not apply, and we are left to develop our own estimates.

5. Error estimates. We begin by establishing an error estimate for the case of
a conforming subspace, where the singular basis functions are assumed to be known
exactly. To cover the practical case, where approximate singular basis functions are
used, we then derive a general error estimate for FOSLS L2 formulations with non-
conforming finite elements and apply it to the case of nonconforming singular basis
functions.
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Pm Fm

δHm

1
z

x,yFH
m

δm

Fig. 5.1. Side view of cut-off functions δhm and δHm.

5.1. The conforming case: Wh ⊂ W. Let 2Hm be less than the shortest
distance from Pm to the nearest other platform or boundary. Let FH

m be a fringe of
width Hm, and let δHm be the associated cut-off function (see Figure 5.1). Using the
decomposition of W given in (4.2), write the solution of variational problem (4.4) as

u = u0 +

M∑
m=1

N∑
n=1

ωm,nδ
H
msm,n,(5.1)

where u0 ∈ W1
S . Now we state the error estimate for the conforming case.

Theorem 5.1 (estimate for conforming Wh
). Assume that Wh ⊂ W. Let

u ∈ W denote the solution of variational problem (2.7) and uh ∈ Wh the solution
of discrete variational problem (4.4). Let 2Hm be less than the distance between Pm

and the closest other platform or boundary, and assume that 0 < h < Hm, for m =
1, . . . ,M . Then

∣∣u − uh
∣∣
W

≤ C1h
σ−1 |u0|σ,S + C2h sup

m,n
|ωm,n| ,(5.2)

where σ ∈ (1, 2] depends on the smoothness of u0, ωm,n are the coefficients in (5.1),
and the constants C1, C2 > 0 are independent of h.

Proof. Since Wh ⊂ W, then by (4.4), uh satisfies

∣∣u − uh
∣∣
W

= inf
vh∈Wh

∣∣u − vh
∣∣
W

≤
∣∣u − wh

∣∣
W

,(5.3)

for any particular wh ∈ Wh. As in (5.1), denote by δHm the cut-off function that is
one in Pm∪Fm and drops to zero linearly in the extended fringe FH

m around Pm∪Fh
m

of width Hm. See Figure 5.1 for a side view of this function. Note that all FH
m ,

m = 1, . . . ,M , are mutually disjoint. Let Ih : C(Ω) → W denote a linear nodal

interpolant operator outside
⋃M

m=1 F
h
m and a quadratic nodal interpolant operator

in
⋃M

m=1 F
h
m. Coefficients of linear basis functions are obtained by function evalua-

tion at their vertex, whereas coefficients of quadratic basis functions are obtained by
evaluating the difference of the function itself and the linear interpolant. We now
write

u = u0 +

M∑
m=1

Nm∑
n=1

ωm,n(δHm − δhm)sm,n +

M∑
m=1

Nm∑
n=1

ωm,nδ
h
msm,n,(5.4)
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where u0 ∈ W1
S does not depend on h. Define

wh := Ih

(
u0 +

M∑
m=1

Nm∑
n=1

ωm,nψmsm,n

)
+

M∑
m=1

Nm∑
n=1

ωm,nδ
h
msm,n,(5.5)

where ψm := δHm − δhm. Substituting (5.4) and (5.5) into (5.3) and using the triangle
inequality, we obtain

∣∣u − wh
∣∣
W

≤
∣∣u0 − Ihu0

∣∣
W

+

M∑
m=1

Nm∑
n=1

|ωm,n|
∣∣ψmsm,n − Ihψmsm,n

∣∣
W

.(5.6)

Since u0 ∈ W1
S does not depend on h, we can use [19, Theorem 4.4.20] to estimate

the first term in (5.6):∣∣u0 − Ihu0

∣∣
W

=
∣∣u0 − Ihu0

∣∣
1,S

≤ C̃1h
σ−1 |u0|σ,S .(5.7)

Here, 1 < σ ≤ 2 depends on the smoothness of u0.
Since ψmsm,n ∈ W1

S , we have

∣∣(I − Ih)ψmsm,n

∣∣2
W

≤
∑

τ∈Fh
m

∣∣(I − Ih)ψmsm,n

∣∣2
1,τ

+
∑

τ∈FH
m \Fh

m

∣∣(I − Ih)ψmsm,n

∣∣2
1,τ

.

Since the finite element space includes quadratics on Fh
m, the two terms on the right-

hand side satisfy

∣∣(I − Ih)ψmsm,n

∣∣
1,τ

≤
{

ch2‖ψmsm,n‖3,τ for τ ∈ Fh
m,

ch‖ψmsm,n‖2,τ for τ ∈ FH
m \Fh

m.

Using the inverse inequality and noting that ψ is linear, we have

‖ψmsm,n‖3,τ ≤ c

h
‖sm,n‖3,τ for τ ∈ Fh

m

and

‖ψmsm,n‖2,τ ≤ c

Hm
‖sm,n‖2,τ for τ ∈ FH

m \Fh
m.

Putting this all together, we have
∣∣(I − Ih)ψmsm,n

∣∣2
W

≤ ch2 ‖sm,n‖2
3,Fh

m
+

c

Hm
h2 ‖sm,n‖2

2,FH
m
.(5.8)

Now, using (5.8) and (5.7) in (5.6), we obtain the estimate

∣∣u − wh
∣∣
W

≤ C̃1h
σ−1 |u0|σ,S + h

M∑
m=1

Cm

Nm∑
n=1

|ωm,n| ‖sm,n‖3,S,FH
m

(5.9)

≤ C1h
σ−1 |u0|σ,S + C2h sup

m,n
|ωm,n| .(5.10)

This completes the proof.
Remark 2. If the right-hand side of (2.2) is sufficiently smooth, then adding all

singular functions of the form (3.5) to the finite element space for which αn ∈ (0, 2]
yields a bound of O(h) in (5.2) (see [7]).

In practice, subspace Wh contains only approximate singular basis functions,
which implies Wh �⊂ W. In the next section, we derive an error estimate for a
general nonconforming finite element space that is used in section 5.3.
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5.2. A general error estimate for FOSLS L2 formulations with noncon-
forming finite elements. In this section, we depart from the framework and nota-
tion that were introduced in the previous section. We introduce a general methodology
for derivation of error estimates for FOSLS L2 formulations that use nonconforming
finite element spaces. First consider a general FOSLS L2 functional

G(u; f) := ‖Lu − f‖2
0,Ω ,(5.11)

where Ω is a bounded open domain, u an element of a Hilbert space W , f ∈ (L2(Ω))k,
and L a first-order differential operator. This gives rise to the FOSLS L2 minimization
problem

u = arg min
v∈W

G(v; f)(5.12)

and its variational form: Find u ∈ W such that

F(u,v) = (v),(5.13)

for all v ∈ W , with

F(u,v) = 〈Lu,Lv〉0,Ω ,

(v) = 〈f ,Lv〉0,Ω .

We assume that bilinear functional F is W-elliptic with respect to a norm ‖ · ‖W in
the sense that respective continuity and coercivity constants Ccont and Ccoer exist,
for which

F(u,v) ≤ Ccont ‖u‖W ‖v‖W ,

Ccoer ‖u‖2
W ≤ F(u,u),

for all u,v ∈ W .
Let {Ωj}j=1,...,J be an open partitioning of Ω such that all Ωj are mutually disjoint

and
⋃J

j=1 Ωj = Ω. Let Wh be a finite element space for which the restriction of the
operator L to the subdomain Ωj is well defined. Define approximate bilinear form
Fnc by

Fnc(uh,vh) :=

J∑
j=1

〈
Luh,Lvh

〉
0,Ωj

(5.14)

and approximate linear functional nc by

nc(vh) :=

J∑
j=1

〈
f ,Lvh

〉
0,Ωj

,(5.15)

for uh,vh ∈ Wh. Assume that Fnc is uniformly Wh-elliptic with respect to a norm
‖ · ‖Wh , with respective continuity and coercivity constants C̃cont and C̃coer. This
ensures that the following approximate variational problem has a unique solution:
Find uh ∈ Wh such that

Fnc(uh,vh) = nc(vh)(5.16)
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for all vh ∈ Wh.
Theorem 5.2. Consider a family of discrete problems that stem from a FOSLS

L2 minimization problem, whose associated approximate bilinear forms are uniformly
Wh-elliptic. Then there exists a constant C, independent of the subspace Wh, such
that

∥∥u − uh
∥∥

Wh ≤ C inf
vh∈Wh

∥∥u − vh
∥∥

Wh .(5.17)

Proof. Let vh ∈ Wh be arbitrary. Using Wh-ellipticity of Fnc and the definition
of the approximate variational problem (5.16), we have

C̃coer

∥∥uh − vh
∥∥2

Wh ≤ Fnc(uh − vh,uh − vh)

= Fnc(u − vh,uh − vh) + Fnc(uh − u,uh − vh)

= Fnc(u − vh,uh − vh) + nc(uh − vh) −Fnc(u,uh − vh).

(5.18)

Using (5.14), (5.15), and the Cauchy–Schwarz inequality for any wh ∈ Wh, we have

∣∣nc(wh) −Fnc(u,wh)
∣∣ ≤

J∑
j=1

∣∣∣〈f − Lu,Lwh
〉
0,Ωj

∣∣∣ ≤
J∑

j=1

‖f − Lu‖0,Ωj

∥∥Lwh
∥∥

0,Ωj
.

Since u ∈ W is the solution of minimization problem (5.12), we deduce

‖Lu − f‖2
0,Ωj

≤ G(u; f) = 0

for all j = 1, . . . , J , which implies

nc(wh) −Fnc(u,wh) = 0.(5.19)

Choosing wh = uh − vh in (5.18) and appealing to the continuity of Fnc, we thus
have

C̃coer

∥∥uh − vh
∥∥

Wh ≤ C̃cont

∥∥u − vh
∥∥

Wh .(5.20)

The triangle inequality and (5.20) imply

∥∥u − uh
∥∥

Wh ≤
(
Ccont

Ccoer
+ 1

)∥∥u − vh
∥∥

Wh ,

which completes the proof.
Remark 3. Uniform Wh coercivity must be established before Theorem 5.2 can

be applied.
Theorem 5.2 implies that, for a FOSLS L2 formulation that is discretized using

a nonconforming finite element space, an estimate analogous to Cea’s lemma (cf. [16,
Theorem 13.1]) holds. Inequality (5.17) does not involve a consistency error term,
as in the fundamental estimate for nonconforming finite elements (see [1], commonly
referred to as Strang’s second lemma). In common use is a patch test (cf. [16, p. 221]),
which determines whether this consistency error term approaches zero as h → 0. The
corollary shows that, in the FOSLS L2 context, elements that do not satisfy such
conditions can be used, provided that uniform Wh-ellipticity can be established for
Fnc and an error estimate based solely on interpolation theory can be derived.
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5.3. An error estimate in the nonconforming space Wh
��� W. The finite

element space Wh contains singular functions that would ideally model the singular
behavior of the solution at cross-points exactly. However, the exponents and coeffi-
cients of these singular functions can be calculated only approximately, which means
generally that Wh

� W.
We will use Theorem 5.2 to derive an error estimate for the nonconforming case.

However, as noted in Remark 3, we first must establish uniform coercivity of the
approximate bilinear form. Define the nonconforming functional by

Gnc(u; f) =

J∑
i=1

∥∥∥∥ 1√
a
(∇ ·

√
au + f)

∥∥∥∥
2

0,Ωi

+

∥∥∥∥ 1√
a
∇×

(
u√
a

)∥∥∥∥
2

0,Ωi

,(5.21)

the associated bilinear form

(5.22)

Fnc(u,v) =

K∑
i=1

〈
1√
a
∇ ·

√
au,

1√
a
∇ ·

√
av

〉2

Ωi

+

〈√
a∇× 1√

au
,
√
a∇× 1√

a
v

〉2

Ωi

,

and the seminorm

Fnc(u,u) := |u|2Wh .(5.23)

We show in Appendix A.2 that Fnc is uniformly coercive in the norm ‖u‖2
Wh :=

‖u‖2
0 + |u|2Wh . Thus, in what follows we use the seminorm. Now Theorem 5.2 implies

that

Fnc(u − uh,u − uh)1/2 =
∣∣u − uh

∣∣
Wh ≤ C inf

vh∈Wh

∣∣u − vh
∣∣
Wh .(5.24)

Denote by δhms̃m,n an approximation of the singular basis function δhmsm,n such that
s̃m,n can be written in the general form (3.5) with approximate exponent α̃m,n and

approximate coefficient vectors λ̃m,n and μ̃m,n. The exact solution u ∈ W of the
FOSLS minimization problem (2.4) has the form

u = u0 +

M∑
m=1

Nm∑
n=1

ωm,nδ
h
msm,n +

M∑
m=1

Nm∑
n=1

ωm,n

(
δHm − δhm

)
sm,n,(5.25)

with u0 ∈ W1
S independent of h. We choose

vh := Ihu0 +

M∑
m=1

Nm∑
n=1

ωm,nδ
h
ms̃m,n +

M∑
m=1

Nm∑
n=1

ωm,n

(
δHM − δhm

)
s̃m,n,

where Ih is the interpolant operator that was introduced in (5.5). Using (5.24) and
the triangle inequality, we have

∣∣u − uh
∣∣
Wh,Ωj

≤ C
∣∣u0 − vh

∣∣
Wh,Ωj

+

M∑
m=1

Nm∑
n=1

|ωm,n|
∣∣δhm (sm,n − s̃m,n)

∣∣
Wh,Ωj

+

M∑
m=1

Nm∑
n=1

|ωm,n|
∣∣(δHm − δhm

)
(sm,n − s̃m,n)

∣∣
Wh,Ωj

,

(5.26)
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Ω10

Ω5

Ω2

Ω9

Ω4

fringe

Fig. 5.2. Geometry of interfaces meeting at a cross-point. Here, Im = 5, {ji} = {2, 9, 5, 10, 4}.

for j = 1, . . . , J . Standard interpolation error estimates can be used to estimate |u0−
Ihu0|Wh,Ωj

, analogously to the proof of Theorem 5.1. We now derive estimates for the
remaining terms, which involve the singular basis functions and their approximations.

Let Ωji ⊂ Ω, i = 1, . . . , Im, be the set of subdomains that meet at cross-point
m, ordered so that they appear consecutively with increasing i. (See Figure 5.2.)
Let {ϑji}i=1,...,Im be the set of angles at cross-point m. If the difference of two
subsequent angles is greater than π/2, then we introduce artificial interfaces, equally
spaced in the interval (ϑji , ϑji+1), such that the angles between subsequent interfaces
are now smaller than π/2. (See the dashed interface line in Figure 5.2.) The platform
and fringe are such that, for subdomains that do not require an artificial interface,
Ωji∩(Pm∪Fm) is an isosceles triangle. In the presence of artificial interfaces, platform
and fringe are such that their intersection with Ωji is the union of isosceles triangles
whose sides are aligned with the artificial interfaces.

In the following calculations, we denote by Ĩm the total number of actual and
artificial interfaces, and by {θm,i}i=1,...,Ĩm

the angles of these interfaces, ordered such

that θm,i < θm,i+1, i = 1, . . . , Ĩm (define θm,Ĩm+1 = 2π + θm,1). Pm,i and Fm,i are
the parts of platform and fringe, respectively, that are enclosed by angles θm,i and

θm,i+1, i = 1, . . . , Ĩm. Denote by Rm,i the distance from Fm,i to the cross-point, and
by hm,i the radial width of Fm,i. We omit the subscript m,n for singular functions,
when it is obvious to which singular functions we refer.

The cut-off function on Fm,i, for θ ∈ (θm,i, θm,i+1), is

δh(r, θ) =
cos (θm,i+1/2 − θ)

h

(
Rm,i + hm,i

cos (θm,i+1/2 − θ)
− r

)
,(5.27)

where θm,i+1/2 = (θm,i+1 − θm,i)/2, with partial derivatives

δhx(r, θ) = −
cos θm,i+1/2

h
, δhy (r, θ) = −

sin θm,i+1/2

h
.(5.28)

In what follows, we assume the approximate singular basis functions, s̃m,n, are

of the form (3.5), with known but inexact coefficients α̃m,n = αm,n + ηm, λ̃m,n =
λm,n+O(ηm), and μ̃m,n = μm,n+O(ηm). We will drop subscripts where the meaning
is clear.

Lemma 5.3. Let ηm,n = |αm,n − α̃m,n|. The estimate

∣∣δhmsm,n − δhms̃m,n

∣∣2
Wh ≤

C(a)η2
m,n

h
(5.29)
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holds for all cross-points and singular basis functions and some constant C(a) inde-
pendent of h and η.

Proof. Omitting the subscripts m,n for convenience, note that

Fnc
Pm

(δhms, δhms) = Fnc
Pm

(δhms̃, δhms) = Fnc
Pm

(δhms̃, δhms̃) = 0,

where Pm is the platform associated with singular function s. Letting s = (s1, s2)
t

and s̃ = (s̃1, s̃2)
t, (5.28) and some vector calculus implies

∣∣δhs − δhs̃
∣∣
Wh,Fm,i

=
∥∥∇ ·

(
δhs − δhs̃

)∥∥2

0,Fm,i
+
∥∥∇×

(
δhs − δhs̃

)∥∥2

0,Fm,i

=
∥∥∇δh · (s − s̃)

∥∥2

0,Fm,i
+
∥∥∇⊥δh · (s − s̃)

∥∥2

0,Fm,i

=
1

h2
m,i

(
‖s1 − s̃1‖2

0,Fm,i
+ ‖s2 − s̃2‖2

0,Fm,i

)
.(5.30)

We now estimate only the last term in (5.30), since a similar estimate can be derived
analogously for the other term. Let ηλ = λ− λ̃ and ημ = μ− μ̃, and note that ηλ and
ημ are of order O(η). Then we get

‖s2 − s̃2‖2
0,Fm,i

= ai
∥∥αrα−1 (λ cos(α− 1)θ − μ sin(α− 1)θ)

−α̃rα̃−1(λ̃ cos(αh − 1)θ − μ̃ sin(α̃− 1)θ)
∥∥∥2

0,Fm,i

= ai
∥∥(αrα−1 − α̃rα̃−1)(λ cos(α− 1)θ − μ sin(α− 1)θ)

−α̃rα̃−1(ηλ cos(α̃− 1)θ − ημ sin(α̃− 1)θ)
∥∥2

0,Fm,i
(5.31)

≤ 2ai
∥∥(αrα−1 − α̃rα̃−1)(λ cos(α− 1)θ − μ sin(α− 1)θ)

∥∥2

0,Fm,i

+ 2ai
∥∥α̃rα̃−1(ηλ cos(α̃− 1)θ − ημ sin(α̃− 1)θ)

∥∥2

Fm,i

≤ 4ai(λ
2 + μ2)

∥∥αrα−1 − α̃rα̃−1
∥∥2

Fm,i
+ 4ai(η

2
λ + η2

μ)
∥∥α̃rα̃−1

∥∥2

Fm,i
.

Let 0 < r < R + h, 0 < h < 1, and 0 < η < 1. Then we have

|1 − rη| ≤ C1η,
∥∥α̃rα̃−1

∥∥2

0,Fm,i
≤ C2hm,i,(5.32)

which, with 0 < α, α̃ ≤ 1, implies that

∥∥αrα−1 − α̃rα̃−1
∥∥2

0,Fm,i
≤
∥∥α(rα−1 − rα̃−1) − ηrα̃−1

∥∥2

0,Fm,i

≤ 2
∥∥rα−1 − rα̃−1

∥∥2

0,Fm,i
+ 2η2

∥∥rα̃−1
∥∥2

0,Fm,i

≤ 2
∥∥rα−1(1 − rη)

∥∥2

0,Fm,i
+ 2η2C2hm,i(5.33)

≤ 2C2
1η

2C2hm,i + 2η2C2hm,i

= Cη2hm,i.

Combining estimates (5.31)–(5.33) with (5.30), we get

∣∣δhs − δhs̃
∣∣
Wh,Fm,i

≤ C(ai)η
2

hm,i
.(5.34)
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Table 5.1

Diameter of the fringe is fixed = 1/6 on all levels, Ω = (0, 1)2.

With quadratics Without quadratics

h G(uh; f) ratio G(uh; f) ratio
1/24 4.29(-2)

1.81
9.66(-2)

1.11
1/48 2.37(-2)

2.49
8.68(-2)

1.20
1/96 9.51(-3)

3.14
7.22(-2)

1.34
1/192 3.02(-3)

3.56
5.36(-2)

1.52
1/384 8.48(-4)

3.78
3.52(-2)

1.69
1/768 2.24(-4) 2.08(-2)

Summing over interfaces and artificial interfaces, and noting that hm,i = O(h), com-
pletes the proof.

Using estimates (5.7) and (5.29) in (5.26) implies the main result of this section.
Theorem 5.4. Denote by u ∈ W the solution of minimization problem (2.4) and

by uh ∈ Wh the solution of the discretized variational problem (2.7). Also, let η > 0
be the maximum error in the exponent of the approximate singular basis function, h
be the mesh size of triangulation T h and the fringe width, and

κ := min
s

{α : α is the exponent of s, α > 1,∇ · (
√
as) = 0, and ∇× (s/

√
a) = 0}.

(5.35)

Then ∣∣u − uh
∣∣
Wh ≤ C(a)

(
hκ−1 + η/

√
h
)
,(5.36)

where the constant C(a) does not depend on η, κ, and h.
To achieve a discretization error of order O(h) in the nonconforming finite element

space Wh, we must ensure that κ ≥ 2 and that the approximation error in the
exponent η is of order O(h3/2). The constraint on κ can be met by adding basis
functions of the general form (3.5) that have exponents 1 < α < 2 and satisfy the
first two equations in (2.2) with f = 0.

5.4. An example. Here, we present a numerical example to illustrate the theo-
retical results of the previous sections. We consider problem (2.2) on the unit square,
with f = 0 and the Dirichlet boundary condition

τ · u = τ · s on ∂(0, 1)2,(5.37)

where s is the singular function associated with the coefficient

a(x, y) =

{
1 for 0 < x, y < 1/2 and 1/2 < x, y < 1,
100 elsewhere in (0, 1)2.

(5.38)

For this checkerboard pattern, the exponent is approximately α ≈ 0.126902069.
Table 5.1 shows the value of the FOSLS functional at the solution for various

values of h. The left two columns show results for the finite element space Wh

consisting of linear, quadratic, and singular elements as described in section 4. The
right two columns show results for a finite element space that contains only the linear
and singular elements. The ratio refers to the quotient of two subsequent functional
values: ratio = G(uh; f)/G(uh/2; f). For the space Wh, this ratio approaches 4 as h
is decreased. In the space that does not contain quadratic elements in the fringe, the
ratio approaches 2 for decreasing h. These results signal a lower approximation order
when quadratic elements are not included in the finite element space.
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6. A multilevel solver. We now describe a multilevel solver for the linear sys-
tem that arises from the finite element discretization using Wh. Our goal is to use
standard coarsening for linear elements and to include singular basis functions on ev-

ery level. This results in a hierarchy of spaces W2Kh
� W2K−1h

� · · · � W2h
� Wh.

The spaces are nested except for the singular basis functions, which are nonnested,
since the fringes on different levels have different widths.

We coarsen such that the platform associated with a given cross-point has equal
size on all levels. The choice of interpolation and restriction for linear and quadratic
elements in fringes is driven by the interpolation for singular basis functions.

Consider interpolation of δ2h
m s̃m,n ∈ W2h to Wh. The coefficient ω2h

m,n of δ2h
m s̃m,n

is transferred by injection: ωh
m,n ← ω2h

m,n. What is left is the difference (δ2h
m −δhm)s̃m,n

that is interpolated using standard linear and quadratic interpolation. Denote by Nh
L

and Nh
Q the respective numbers of linear and quadratic basis functions in Wh , and

by ψl, l = 1, . . . , Nh
L, and φk, k = 1, . . . , Nh

Q, the respective linear and quadratic basis

functions in Wh, such that

(6.1) Wh = span
{
ψl : l = 1, . . . , Nh

L

}
∪ span

{
φk : k = 1, . . . , Nh

Q

}
∪ span

{
δhms̃m,n : m = 1, . . . ,M ; n = 1, . . . , Nm

}
.

Define the vectors βh
m,n = {βh,l

m,n}l=1,...,Nh
L

and γh
m,n = {γh,k

m,n}k=1,...,Nh
Q

so that their

elements are the respective coefficients of linear and quadratic basis functions of the
pointwise linear and quadratic interpolant of (δ2h

m − δhm)s̃m,n. We now have

Ih(δ2h
m − δhm)s̃m,n :=

Nh
L∑

l=1

βh
l ψh,l

m,n +

Nh
Q∑

k=1

γh
kφh,k

m,n.(6.2)

Note that most of the βh,l
m,n and γh,k

m,n are zero, since δ2h
m − δhm is nonzero only in the

fringe of level 2h associated with cross-point m.
Assume that the basis functions are ordered so that the first Nh

L are linear, the

next Nh
Q are quadratic, and the last NS :=

∑M
m=1 Nm are singular basis functions.

Then the column in interpolation matrix Ih
2h corresponding to the singular basis

function with index (m,n) is (βh,1
m,n, . . . , β

h,Nh
L

m,n , γh,1
m,n, . . . , γ

h,Nh
Q

m,n , 0, . . . , 0, 1, 0, . . . , 0).
Fine-level linear basis functions centered at vertices inside the coarse-level fringe are
interpolated using standard linear interpolation.

Figure 6.1 shows a section of the fringe in a triangular mesh of mesh size h (thick
and thin lines), and a section of the fringe in the coarsened triangular mesh of mesh
size 2h (thick lines). It illustrates the location of the quadratic nodes on both levels.

level h fringe

level 2h fringe

Fig. 6.1. Location of quadratic points (level h: stars; level 2h: circles).
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q1 q2 q3 q4

p1 p2

T2

T3

T4

T1

Fig. 6.2. Coarse fringe triangle subdivided into four subtriangles.

Note that quadratic nodes on level 2h coincide with vertices of triangles on level h.
We now describe the interpolation formulas that are used for quadratic nodes on level
h and linear nodes on level h that coincide with quadratic nodes on level 2h. For the
latter, we use linear interpolation from the two neighboring coarse points and add to
that the value of the quadratic at that point.

Figure 6.2 shows a coarse fringe unit triangle in general (ξ, η) coordinates that
is subdivided into four subtriangles T1, . . . , T4. Triangles T2, T3, T4 are in the fine
fringe. Coarse-level quadratic basis functions are centered at points qc1 and qc2, and

fine-level quadratic basis functions are centered at points qf1 , . . . , q
f
4 . (We denote by

qc1, q
c
2, q

f
1 , . . . , q

f
4 the respective points, as well as the coefficients of quadratic basis

functions at these points.) Assume that the linear part of the coarse-level function is
zero. The quadratic part is

Q(ξ, η) = qc1Q
c
1(ξ, η) + qc2Q

c
2(ξ, η),

with

Qc
1(ξ, η) = 4η(1 − ξ − η),

Qc
2(ξ, η) = 4ξη.

First we interpolate the linear fine-level points that coincide with quadratic coarse-
level points. We obtain the following linear functions:

L2(ξ, η) = 2ηqc1 in T2,

L3(ξ, η) = 2η(2(qc1 − qc2)ξ − qc1) in T3,

L4(ξ, η) = 2ηqc2 in T4.

We want the interpolant to be pointwise exact at fine-level quadratic points, so inter-
polation of fine-level quadratic points is determined by

qf1 = Q(0, 1/4) − L2(0, 1/4) = 1/4 qc1,

qf2 = Q(1/4, 1/4) − L2(1/4, 1/4) = 1/4 qc2,

qf3 = Q(1/2, 1/4) − L4(1/2, 1/4) = 1/4 qc1,

qf4 = Q(3/4, 1/4) − L4(3/4, 1/4) = 1/4 qc2.

(6.3)

Interpolation weights in (6.3) do not depend on ξ or η, so they are the same in (x, y)
coordinates.
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Denote by Îh2h ∈ �(NL+NQ)×(NL+NQ) the matrix that interpolates linear and
quadratic basis functions on level h from level 2h, as defined above. Let Bh :=
{βh

m,n}n=1,...,Nm;m=1,...,M and Γh := {γh
m,n}n=1,...,Nm;m=1,...,M . Then we can write

the interpolant operator Ih
2h : W2h → Wh in matrix form as

Ih
2h =

⎛
⎝ Îh2h

Bh

Γh

0 0 I

⎞
⎠ ,(6.4)

where I is the identity matrix in �NS×NS .

We extend this idea to all levels to obtain interpolation matrices I2K−1h
2Kh , . . . , Ih

2h.

The restriction operators are defined as the transpose of interpolation I2k+1h
2kh =

(I2kh
2k+1h)t for k = 0, . . . ,K − 1. The coarse-grid stiffness matrix is determined from

the Galerkin principle by fine-grid stiffness matrix Sh and interpolation matrix Ih
2h:

S2h = (Ih
2h)t Sh Ih

2h.(6.5)

This definition is extended recursively to all levels.

We use Gauss–Seidel relaxation for pre- and postrelaxation in the multigrid it-
eration and solve the coarse grid problem approximately using algebraic multigrid
(AMG) (see [29]). Numerical tests have shown that the standard AMG algorithm is
not well suited to solving the resulting linear system. Therefore, we instead use a
Schur complement approach that exploits the structure of the coarse-grid problem,
with the subproblems treated by AMG.

To explain this Schur-AMG approach, note that the coarse-grid linear system has
the general form

(
A V
V t D

)(
u
w

)
=

(
f
g

)
,(6.6)

where submatrix A represents connections between linear and quadratic basis func-
tions and D represents connections between singular basis functions. A is sparse and
D is block diagonal. The off-diagonal submatrix V represents connections between the
linear and quadratic basis functions and the singular basis functions. Linear system
(6.6) can be reduced to

u = A−1f −A−1V w,(6.7)

w = (D − V tA−1V )−1(g − V tA−1f).(6.8)

We calculate A−1f and A−1V approximately using AMG. The inverse of D−V tA−1V
is then calculated directly, using Gaussian elimination, since the number of singular
basis functions is assumed to be small.

Denote by NC the number of coarse-grid linear and quadratic basis functions and
by NS the number of singular basis functions. Thus, A ∈ �NC×NC , V ∈ �NC×NS , and
D ∈ �NS×NS . AMG has complexity of order O(NC), and the inverse of D−V tA−1V
can be calculated in O(N3

S) operations. Hence, the complexity of the coarse-grid
solver is of order O(N3

S + NSNC). Since NS is assumed to be small in comparison
to NC , we can deduce that standard multilevel complexity analysis applies (see, for
example, [31]).
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Table 7.1

Influence of the coefficient a(x, y) (W (2, 2) cycle).

a(x, y) ∈ {1, 100} a(x, y) ∈ {1, 10000}
Levels = 3 4 5 6 3 4 5 6

1 × 1 .20 .15 .13 .13 .27 .23 .13 .13
2 × 2 .28 .23 .13 .13 .37 .35 .24 .13
3 × 3 .33 .29 .18 .13 .40 .42 .32 .17
4 × 4 .38 .36 .25 .13 .45 .48 .39 .23

Table 7.2

Effective convergence factors: influence of the number of relaxations (a(x, y) ∈ [1, 100]).

W (1, 1) W (2, 2) W (4, 4)
Levels = 3 4 5 6 3 4 5 6 3 4 5 6

1 × 1 .30 .24 .27 .27 .45 .39 .36 .36 .64 .59 .49 .49
2 × 2 .39 .34 .26 .26 .53 .48 .36 .36 .71 .68 .58 .49
3 × 3 .44 .36 .30 .26 .57 .54 .42 .36 .74 .72 .63 .49
4 × 4 .48 .47 .37 .26 .62 .60 .50 .36 .75 .72 .63 .49

7. Numerical results. To study the convergence properties of the multigrid
algorithm described above let the domain Ω be a square partitioned in a checkerboard
fashion into square subdomains of equal size, where the coefficient a is constant. In
our examples, a takes on two values that are distributed over the square subdomains
in a checkerboard fashion. We report asymptotic convergence factors of the functional
value (G(uh; f))1/2 that were obtained by setting f = 0 and imposing homogeneous
Dirichlet boundary conditions n ×

√
auh = 0 on ∂Ω. Thus, the exact solution of the

problem is uh = 0, which allows us to perform many iterations without encountering
serious machine representation effects. To properly test convergence, we initialize all
variables randomly.

Table 7.1 shows asymptotic convergence factors for the W (2, 2) cycle for two
examples of a. Four checkerboard patterns are investigated, ranging from one singular
basis function to 16. Each column shows asymptotic convergence factors for fixed
mesh-size h. Hence, the domain Ω changes for varying numbers of singular basis
functions. However, the width of fringes does not change.

We observe that, for a larger number of levels, typical multigrid convergence
factors that are h-independent are attained. For a smaller number of levels, the con-
vergence factors appear to grow with the number of singular basis functions. However,
this dependency appears to weaken as more levels are added; it appears to be stronger
for larger jumps in the coefficient a.

In Table 7.2, the influence of the number of pre- and postrelaxation steps in the
W -cycle is shown. We display effective convergence factors relative to the W (1, 1)
cycle. Since for integer k > 1 one W (k, k) cycle is k times more costly than one

W (1, 1) cycle, we have ρW (k,k),effective = ρ
1/k
W (k,k). Increasing the number of pre- and

postrelaxation steps increases effective convergence factors. It is, hence, most efficient
to use W (1, 1) cycles.

Table 7.3 shows results for two convergence tolerances for the AMG iteration that
is used to invert A approximately. For the larger tolerance of 1e − 1 convergence of
the multilevel iteration is somewhat slower than for the smaller tolerance of 1e − 9.
This difference is less pronounced when more levels are added.
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Table 7.3

Influence of the coarse grid solver on the overall convergence (W (2, 2) cycles, a(x, y) ∈ {1, 100}).

AMG tolerance = 1e− 9 1e− 1
Geometry\levels = 3 4 5 6 3 4 5 6

1 × 1 .20 .15 .13 .13 .22 .15 .13 .13
2 × 2 .28 .23 .13 .13 .42 .31 .17 .13
3 × 3 .33 .29 .18 .13 .51 .40 .24 .13
4 × 4 .38 .36 .25 .13 .59 .51 .35 .17

8. Conclusions. We introduced a finite element method for FOSLS L2 formu-
lation of the diffusion equation with discontinuous coefficients. Our approach uses
singular basis functions to yield accurate approximation of the flux variable close to
singular points in the domain at minimal additional computational cost. Stress inten-
sity factors are also calculated. We developed a special discretization error analysis,
since standard theory is not applicable. This led to a general error estimate for FOSLS
L2 discretizations with nonconforming finite elements. We also proposed a multilevel
algorithm for the solution of the resulting linear system that uses nonstandard coarse
spaces including coarse representations of singular basis functions. The performance
of the algorithm is illustrated by numerical examples.

Appendix A. Uniform coercivity of Fnc. The purpose of this appendix is
to establish the uniform coercivity of Fnc. In [2] such a bound was established for the
conforming functional. Here, we show that the coercivity constant will be independent
of h and η, the error in the exponents of the singular basis function, only if η goes to
zero at least as fast as the cosine of the angle between the mesh-dependent singular
function δhmsηm,n and the subspace, W1

S , of piecewise H1 functions. Unfortunately, a
proof that the angle between the singular basis functions and W1

S is O(h) has not
been found. In this next section we provide numerical proof.

A.1. Angle between δh
msm,n and W 1

S . In the example we present in Fig-
ure A.1, the domain Ω is divided into subdomains in a 2 × 2 checkerboard fashion,
with a = 1 in the upper left and lower right subdomains, and a = 100 in the upper
right and lower left subdomains. This configuration results in a singularity in the
center of the domain with exponent α ≈ 0.126902. Figure A.1 depicts 1 − cos θ as a
function of h, where θ is the angle between the singular basis function and the rest of

1 − cos θ

1.2e-016.2e-023.1e-021.6e-027.8e-033.9e-032.0e-03

1.6e-02

3.9e-03

9.8e-04

2.4e-04

6.1e-05

1.5e-05

3.8e-06

Fig. A.1. A log2-log2 plot of 1 − cos θ (see (A.1)), where h is on the x-axis. θ is the angle
between a singular basis function and the rest of the space.
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the space,

cos θ =
Fnc(δhsh, Ih(δhsh))

Fnc(δhsh, δhsh)1/2Fnc(Ih(δhsh), Ih(δhsh))1/2
,(A.1)

and Ih is the standard pointwise linear interpolation operator.
Both axes in the figure are on a log2 scale. All data points lie on a straight line,

so we conjecture 1 − cos θ = O(h2), and hence θ = O(h).

A.2. Uniform coercivity. We assume that the discrete space consists of the
conforming linears and quadratics, with proper jumps across the interfaces, plus a
finite number of singular basis functions. Here, as in section 5, we make the assump-
tion that the approximate singular basis functions s̃m,n are of the form (3.5), with

known but inexact coefficients α̃m,n = αm,n + ηm,n, λ̃m,n = λm,n + O(ηm,n), and
μ̃m,n = μm,n + O(ηm,n). We will drop subscripts where the meaning is clear.

We further assume that ηm,n is sufficiently small to resolve the differences between
exponents at a given singular point xm. That is, we assume that ηm,n ≤ ηm,0 for
n = 1, . . . , Nm.

To emphasize the dependence on η, we denote the discrete subspace as

Wh,η := W1,h
S + span

{
δhms̃m,n

}Nm,M

n=1,m=1
.(A.2)

Next we define a bound on the angle between the subspace spanned by the ap-
proximate singular basis functions at a given singular point xm and the subspace W1

S .
Let

Sm(η, h) := span{δhms̃m,n}Nm
n=1,(A.3)

and let

γm(h) := sup
η≤ηm,0

sup
s∈Sm,u∈W1

S

Fnc 〈s, u〉
|s|Wh |u|Wh

.(A.4)

This yields the following result.
Lemma A.1 (strengthened Cauchy–Schwarz inequality). For every singular point

xm there is a constant γm(h) < 1.0 such that

Fnc(s, w) ≤ γm|s|Wh |w|Wh(A.5)

for every s ∈ Sm and w ∈ W1
S.

Proof. For any fixed h > 0, η > 0, there is a positive angle between Sm and W1
S .

Thus, γm < 1.0
This leads to the following bound.
Lemma A.2. Let w ∈ Wh,η have the form

w =

M∑
m=1

Nm∑
n=1

βm,nδ
ms̃m,n + wh

0 ,(A.6)

where wh
0 ∈ W1,h

S . Then

M∑
m=1

Nm∑
n=1

β2
m,n|δhms̃m,n|2Wh ≤ C

1 − γ2
|w|2Wh ,(A.7)
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where γ = maxm γm.
Proof. The result follows from the fact that the singular basis functions associated

with different singular points are mutually orthogonal and from the strengthened
Cauchy–Schwarz inequality. For this proof only, let Pm represent the platform and
fringe around singular point m.

|w|2Wh ≥
∣∣∣∣∣
M∑
i=1

N−m∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
2

Wh

− 2F
〈

M∑
i=1

Nm∑
n=1

βm,nδ
h
ms̃m,n, w0

〉
+ |w0|2Wh

≥
M∑
i=1

∣∣∣∣∣
Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
2

Wh

− 2

M∑
i=1

γm

∣∣∣∣∣
Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
Wh

|w0|Wh,Pm
+ |w0|2Wh

≥ (1 − γ2)

M∑
i=1

∣∣∣∣∣
Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
2

Wh

+ |w0|2Wh −
M∑

m=1

|w0|2Wh,Pm

≥ (1 − γ2)

M∑
i=1

∣∣∣∣∣
Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
2

Wh

.

Since the singular functions associated with any give singular point are linearly inde-
pendent, there exists a constant Cm independent of h such that

∣∣∣∣∣
Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
Wh

≥ Cm

Nm∑
n=1

|βm,n|2
∥∥δhms̃m,n

∥∥2

Wh.(A.8)

This completes the proof.
We now show a Poincaré–Friedrichs inequality for the bilinear form. The noncon-

formity is rooted in the fact that the singular basis functions, δhms̃m,n, do not satisfy
the jump conditions exactly. Suppose that Γij is the interface between ΩI and ΩJ .
Let [g]Γij

denote the jump in g across Γij . Let w ∈ Wh,η be defined as in (A.6). We
have

[
n ·

√
aw

]
Γij

=

[
n ·

√
a

M∑
m=1

Nm∑
n=1

βm,nδ
h
ms̃m,n

]

Γij

=
∑

m : Γij∩Pk 
=∅

Nm∑
n=1

βm,n

[
n ·

√
aδhms̃m,n

]
Γij

,

[
τ · 1√

a
w

]
Γij

=

[
τ · 1√

a

M∑
m=1

Nm∑
n=1

βm,nδ
h
ms̃m,n

]

Γij

=
∑

m : Γij∩Pk 
=∅

Nm∑
n=1

βm,n

[
τ · 1√

a
δhms̃m,n

]
Γij

.

Theorem A.3. Let γ be defined as in Lemma A.2. Let η bound the maximum
error in α̃m,n, λ̃m,n, and μ̃m,n. Then, there exist constants C1 and C2 independent
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of h, η such that

‖u‖0,Ω ≤ C
η2

1 − γ2
|u|Wh(A.9)

for all w ∈ Wh,η.
Proof. Consider a Helmholtz decomposition on Wh: for u ∈ Wh, there exist

p, ψ ∈ H1(Ω) such that

u =
√
a∇p +

1√
a
∇⊥ψ(A.10)

where p is the unique solution of the weak equation

〈a∇p, ∇q〉 = 〈
√
au, ∇q〉 ,

p = q = 0 on ΓD,
n · a∇p = 0 on ΓN ,

(A.11)

and ψ is the unique (up to a constant) solution of〈
1

a
∇⊥ψ, ∇⊥φ

〉
=

〈
1√
a
u, ∇⊥φ

〉
,

ψ = Ci, φ = 0 on ΓNi ,

n · 1

a
∇ψ = 0 on ΓD,

(A.12)

where Ci are arbitrary constants, one of which may be set to zero.
Note that the decomposition is orthogonal in the L2 sense:〈√

a∇p,
1√
a
∇⊥ψ

〉
0,Ω

= 0.(A.13)

We thus have

‖u‖2
0,Ω =

∥∥√a∇p
∥∥2

0,Ω
+

∥∥∥∥ 1√
a
∇⊥ψ

∥∥∥∥
2

0,Ω

.(A.14)

This next step uses the fact that the jump conditions across boundaries are satisfied
exactly except for the singular basis functions, which have support only on Pm for
m = 1, . . . ,M .

We assume that a is a constant on Pm ∩ Ωi and that Γij ∩ Pk is a straight line
starting from the singular point, xm. We have

∥∥√a∇p
∥∥2

0,Ω
=
〈√

a∇p,
√
a∇p

〉
0,Ω

=

J∑
i=1

〈a∇p, ∇p〉0,Ωi

=

J∑
i=1

〈
−∇ ·

√
au, p

〉
0,Ωi

+

∮
∂Ωi

(
n ·

√
au

)
p

=

J∑
i=1

〈
− 1√

a
∇ ·

√
au,

√
ap

〉
0,Ωi

+
∑
ij

∫
Γij

[
n ·

√
au

]
p

≤
J∑

i=1

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
0,Ωi

∥∥√ap
∥∥

0,Ωi

+

∣∣∣∣∣∣
∑
ij

∑
m:Γij∩Pm 
=∅

∫
Γij∩Pm

Nm∑
n=1

βm,n

[
n ·

√
aδhms̃m,n

]
p

∣∣∣∣∣∣ .
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With our assumptions, we have

∫
Γij∩Pm

Nm∑
n=1

βm,n

[
n ·

√
aδhms̃m,n

]
p

≤ Cmη

Nm∑
n=1

|βm,n|
∣∣∣∣∣
∫ Rm

0

δhm(r)r(α̃n−1)p(r)dr

∣∣∣∣∣
≤ Cmη

Nm∑
n=1

|βm,n|
(∥∥√aip

∥∥
1/2,Γij∩Pk

+
∥∥√ajp

∥∥
1/2,Γij∩Pm

)
,

where Rm is the radius of Pm. Here Cm involves minΩ |a|.
Plugging this into the expression above, after first using the ε-inequality twice,

and using a trace inequality ‖
√
ap‖1/2,∂(Ωi∩Pk) ≤ C‖

√
a∇p‖0,Ωi∩Pk

, the fact that

‖ 1√
a
∇ ·

√
aδhk s̃

η
k‖0,Pk

≤ C, where C is independent of h and η, and the Poincaré–

Friedrichs inequality on p in [2, Lemma 3.1], we get

∥∥√a∇p
∥∥2

0,Ω

≤
J∑

i=1

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
0,Ωi

∥∥√ap
∥∥

0,Ωi

+
∑
ij

∑
m:Γij∩Pm 
=∅

Cmη

Nm∑
n=1

|βM,n|
(∥∥√aip

∥∥
1/2,Γij∩Pm

+
∥∥√ajp

∥∥
1/2,Γij∩Pm

)

≤ 1

ε1

J∑
i=1

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
2

0,Ωi

+ ε1
∥∥√ap

∥∥2

0,Ωi
+

1

ε2

∑
m

C2
mη2

Nm∑
n=1

|βm,n|2

+ 2ε2
∑
ij

∑
m:Γij∩Pm 
=∅

(∥∥√aip
∥∥2

1/2,Γij∩Pm
+
∥∥√ajp

∥∥2

1/2,Γij∩Pm

)

≤ 1

ε1

J∑
i=1

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
2

0,Ωi

+ ε1c4
∥∥√a∇p

∥∥2

0,Ωi

+
Cη2

ε2

J∑
i=1

∑
k:Ωi∩Pk 
=∅

Nm∑
n=1

|βm,n|2
∥∥∥∥ 1√

a
∇ ·

√
aδhms̃m,n

∥∥∥∥
2

0,Ωi∩Pm

+ 2C1ε2
∥∥√a∇p

∥∥2

0,Ωi
.

Choosing appropriate ε1 and ε2 yields

(A.15)
∥∥√a∇p

∥∥2

0,Ω
≤ C

(
J∑

i=1

∥∥∥∥ 1√
a
∇ ·

√
au

∥∥∥∥
2

0,Ωi

+ η2
∑
i

∑
m:Ωi∩Pm 
=∅

Nm∑
n=1

|βm,n|2
∥∥∥∥ 1√

a
∇ ·

√
aδhms̃m,n

∥∥∥∥
2

0,Ωi∩Pm

⎞
⎠ .
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A similar result follows for the other term in the decomposition,

(A.16)

∥∥∥∥ 1√
a
∇⊥ψ

∥∥∥∥
2

0,Ω

≤ C

(
J∑

i=1

∥∥∥∥√a∇× 1√
a
u

∥∥∥∥
2

0,Ωi

+ η2
∑
i

∑
m:Ωi∩Pm 
=∅

Nm∑
n=1

|βm,n|2
∥∥∥∥√a∇× 1√

a
δhms̃m,n

∥∥∥∥
2

0,Ωi∩Pm

⎞
⎠ .

Putting (A.15) and (A.16) together and applying Lemma A.2 yields

‖u‖2
0,Ω =

∥∥√a∇p
∥∥2

0,Ω
+

∥∥∥∥ 1√
a
∇⊥ψ

∥∥∥∥
2

0,Ω

(A.17)

≤ C|u|2Wh + Cη2
∑
m

Nm∑
n=1

|βm,n|2|δhms̃m,n|2Wh

≤
(
C1 +

C2η
2

(1 − γ2)

)
|u|2Wh .

This completes the proof.
Corollary A.4. Under the assumption γ = 1 − O(h2), there are constant C1

and C2, independent of h, such that

‖u‖2
0,Ω ≤

(
C1 + C2

η2

h2

)
|u|Wh .(A.18)

Proof. The proof follows immediately from Theorem A.3.
To eliminate h-dependence, we must ensure that η = O(h). Recall that η is the

error in the exponent of the singular basis function. In our numerical scheme for the
calculation of the exponents, we have full control over their accuracy.
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Abstract. We present some rational approximations of the sign function and analyze their
convergence. The rate of convergence is shown to increase with the degree of the denominator of the
rational approximation. Several numerical tests are presented.
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1. Introduction. The motivation of this work comes primarily from the spectral
discretization of partial differential equations (consult the monographs [1] and [12]).
For regular solutions, the numerical spectral approximation is highly accurate. On
the opposite, for discontinuous solutions the Gibbs phenomenon prevents the high
convergence of the numerical approximations. However, the numerical solution uN is
close to the projection of the solution u on PN , the space of algebraic polynomials of
degree ≤ N . In other terms, the coefficients of uN are close to those of the solution
u. The way to design an accurate solution from the knowledge of the Fourier (or
general orthogonal expansions) coefficients of the solution is called filtering in the
numerical analysis literature. We refer to [11] for the state-of-the-art on the spectral
approximation of discontinuous solutions and the filtering problem.

What we present here is a filtering procedure (or acceleration of convergence)
based on rational approximation. The problem can be stated as follows: given the
first K Chebyshev coefficients ûk of a function u, design a polynomial P of degree
N and a polynomial Q of degree M in such a way that the rational function P/Q
is a better approximation of u (in a sense to be made more precise) than the best

approximation of u by K-degree polynomials, namely, the finite expansion
∑K

k=0 ûkTk.
The idea of approximating by rational functions comes from the theory of Padé

approximants [18], [2]. There exist linear and nonlinear Padé approximants of a
function u with power series

u(x) =
∑
k≥0

ukx
k.

• The linear Padé approximant of u of order (n,m) is a rational function r =
p/q, with polynomials p (of degree n) and q (of degree m) defined by

q(x)u(x) − p(x) = O(xn+m+1)(1.1)

as x → 0. Plugging p =
∑n

i=1 pix
i and q =

∑m
j=1 qjx

j into (1.1) and equating

the coefficients of the powers xk, we get the linear system to be solved (with
unknowns pi and qj) in order to compute q and p.
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• The nonlinear Padé approximants of u of order (n,m) are solutions r = p/q
of the following nonlinear problem:

p(x)

q(x)
− u(x) = O(xn+m+1).(1.2)

Problem (1.1) always has a nontrivial solution, while problem (1.2) may have
no solution. If a solution q of the linear Padé problem satisfies q(0) �= 0, then
r = p/q is a solution of the nonlinear Padé problem.

Padé approximations can be generalized to polynomial expansions other than the
powers xk, namely, expansions in terms of orthogonal polynomials. For Fourier and
Chebyshev expansions, consult [3], [13], [20] and the more recent reference [4].

In order to improve (by reducing the Gibbs phenomenon) the Fourier spectral
method, some Padé–Fourier approximants were used in [10]. One can use the trans-
formation x = cos θ (then Tk(x) = cos(kθ)) to refer to the framework of [10]. The
present work does not exploit this specific transformation and thus could be gener-
alized to other orthogonal polynomial expansions. Let us specify that instead of the
analyticity of the function u (required in the Padé approximations), we require here
only that u belong to an L2 space. General Padé–Jacobi expansions are presented
in [6], where the case of quadratic denominators is analyzed. Numerical tests for
the Legendre case are also presented in this reference. Recursive algorithms to com-
pute some Padé–Legendre approximants are given in [14]. The first references on the
Padé–Legendre approximants we are aware of are [8] and [9]. Several properties of
the Padé–Legendre approximants can be found in [5], as well as various numerical
tests showing that the rate of convergence of these approximations increases with
the degree of their denominators. This is precisely what we prove in this work for
Padé–Chebyshev approximants.

The paper is organized as follows: The remainder of this section is devoted to some
notation and properties of some special functions. In section 2, we recall the limits
of the polynomial approximation of discontinuous functions. Section 3 introduces the
rational approximations, which are analyzed in section 4. Some numerical tests that
confirm the analysis are also given. The paper ends with a list of some directions of
work.

Notation.
• Pn is the set of algebraic polynomials of degree ≤ n.
• Rn,m is the set of rational functions r = p/q, with p ∈ Pn and q ∈ Pm.
• Γ denotes Euler’s gamma function

Γ(z) =

∫ ∞

0

tz−1e−tdt.

Note that Γ(z + 1) = zΓ(z) = z!. We will make use of the formula (see [7,
p. 3, eq. (6)])1

Γ(1 + z)Γ(1 − z) =
πz

sinπz
,

with z = n + 1/2, n ∈ N:

Γ

(
3

2
+ n

)
Γ

(
1

2
− n

)
= (−1)n

(
n +

1

2

)
π ∀n ∈ N.(1.3)

1We refer to [7] for all the properties of the special functions used in this work.
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• For z ∈ C and n ∈ N, (z)n is the Pochhammer symbol defined by

(z)n =
Γ(z + n)

Γ(z)
=

{
1 if n = 0,
z(z + 1) . . . (z + n− 1) if n ≥ 1.

(1.4)

Note that (1)n = n! and for all z ∈ N

(−z)n = 0 ∀n ≥ z + 1.

• pFq(x1, . . . , xp; y1, . . . , yq; .) is the hypergeometric function defined for z ∈ C

by

pFq(x1, . . . , xp; y1, . . . , yq; z) =
∑
k≥0

(x1)k . . . (xp)k
(y1)k . . . (yq)k

zk

k!
.(1.5)

The sum in (1.5) is finite if one of the argument xi ∈ −N. In that case pFq is
an element of P−xi . The particular case (n ∈ N)

3F2(a, b,−n; d, e; z) =

n∑
k=0

(a)k(b)k(−n)k
(d)k(e)k

zk

k!
(∈ Pn)

with e + d + n = 1 + a + b leads to the Saalchütz formula (see [7, p. 66,
eq. (30)]),

3F2(a, b,−n; d, e; 1) =
(d− a)n(d− b)n
(d)n(d− a− b)n

.(1.6)

2. Polynomial approximation of a discontinuous function. Let ω(x) =
1/
√

1 − x2 be the standard Chebyshev weight. On the space L2
ω of the functions

u : I = ]−1, 1[ → R such that
∫
I
u2(x)ω(x)dx is finite, we define the scalar product

〈u, v〉ω =

∫
I

u(x)v(x)ω(x)dx ∀(u, v) ∈ L2
ω × L2

ω(2.1)

and the norm

‖u‖ω =
√
〈u, u〉ω =

(∫
I

u(x)2ω(x)

)1/2

∀u ∈ L2
ω.

The Chebyshev expansion of a function u ∈ L2
ω is

u =

∞∑
k=0

ûkTk, ûk =
1

‖Tk‖2
ω

〈u, Tk〉ω,

with Tk the Chebyshev polynomial of degree k and

‖Tk‖ω =

{ √
π if k = 0,√
π/2 if k ≥ 1.

The truncated series πn
ω(u) =

∑n
k=0 ûkTk is the best approximation of u in Pn in the

sense that

‖πn
ω(u) − u‖ω ≤ ‖q − u‖ω ∀q ∈ Pn.



440 SIDI MAHMOUD KABER AND YVON MADAY

It is also the projection of u onto Pn:

〈πn
ω(u), ϕ〉ω = 〈u, ϕ〉ω ∀ϕ ∈ Pn.(2.2)

The approximation error is

eω,n(u) = ‖πn
ω(u) − u‖ω =

(
2

π

∑
k>n

|ûk|2
)1/2

.

If not only u belongs to L2
ω but also all the derivatives of u up to s, then the following

decrease of the error holds:

eω,n(u) ≤ Const(s)n−s

(
s∑

k=0

‖u(k)‖2
ω

)1/2

.

This shows the rapid decay of the error if the function u is regular enough. On the
contrary, let us consider the sign function

S(x) =

{
−1 for x ∈ [−1, 0[,

1 for x ∈ ]0, 1],

with Chebyshev expansion S =
∑∞

k=0 ŝkTk. Straightforward computations give

ŝ2k = 0, ŝ2k+1 =
4

π

(−1)k

2k + 1
.(2.3)

Hence

S =
∞∑
k=0

ŝ2k+1T2k+1,(2.4)

and the approximation error is

eω,2n+1(S) =

√
8

π

(∑
k>n

1

(2k + 1)2

)1/2

,

which gives rise to the Gibbs phenomenon.
Gibbs phenomenon. There exists a constant C such that the equivalence

eω,2n+1(S) � C√
n

as n → +∞(2.5)

holds. This shows the slow convergence of πn
ω(S) toward S. On Figure 2.1 several

approximations πn
ω(S) are displayed. In particular, one can notice oscillations of order

O(1) near the singularity x = 0. This is the Gibbs phenomenon. More precisely there
exists a sequence (xn)n → 0+ such that [12]

πn
ω(S)(xn) → γ > S(0) = 0.

Filtering. The filtering procedures try to cancel the oscillations. Such oscillations
(inherent to the Gibbs phenomenon) appear when discontinuous functions are approx-
imated by polynomials (or other globally defined smooth functions, e.g., wavelets).
This is the typical situation when using spectral methods to compute solutions of
hyperbolic equations. We refer again to [11] for this problem.
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Fig. 2.1. The sign function S and πn
ω(S) for n = 50, 100, 250.

Rational versus polynomial approximation. Let us recall the following result proved
by Newman in [16]: there exists a rational approximation r ∈ Pn,n such that

max
−1≤x≤1

| r(x) − |x| | ≤ 3e−
√
n.

What is remarkable in this result is that polynomial approximation of |x| is only of
first order. Namely there exists p ∈ Pn such that

∀q ∈ Pn, max
−1≤x≤1

| q(x) − |x| | ≥ max
−1≤x≤1

| p(x) − |x| | � Const

n
.

Newman’s result motivates the use of rational approximations, especially when poly-
nomial approximation fails to provide highly accurate approximation.

The main problem is related to the fact that Rn,m is not a linear space, unlike
Pn.

3. A rational approximation. We explain how to define a suitable rational
approximation RN,M (u) of a function u having in mind the special case of the sign
function.

RN,M (u) =
PN,M

QN,M
∈ RN,M .

Since PN = RN,0, rational approximation obviously contains polynomial approxima-
tion. The goal here is to improve the convergence rate, i.e.,

‖RN,M (u) − u‖ω � ‖πN+M
ω (u) − u‖ω.(3.1)

For the sake of simplicity and when this does not cause any confusion, we will drop
the subscripts N,M . Just like in the classical Padé setting, there are two ways to define
the rational approximation P/Q.
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3.1. Definition of the Padé–Chebyshev approximants.
Nonlinear Padé–Chebyshev approximation. The rational approximation R(u) =

P/Q is defined by the orthogonality conditions〈
P
Q − u, ϕ

〉
ω

= 0 ∀ϕ ∈ PK ,(3.2)

with K as large as possible. That is to say, R(u) − u is orthogonal to PK with
respect to the scalar product (2.1). Equations (3.2) form a nonlinear system of K +1
nonlinear equations and N + M + 2 unknowns. This system could have no solution,
but if it admits a solution and if Q never vanishes on I, then this solution is unique
[19]. The nonlinear system is hard to handle, especially for general orthogonal series
(Legendre, for instance). Actually, this problem was solved in [10] for trigonometric
polynomials. Using the transformation x = cos θ a Chebyshev expansion becomes a
trigonometric expansion, and the tools in [10] can be used. But such a transformation
does not exist for other orthogonal polynomials. The present work does not exploit
this specific transformation in order to be generalized to other orthogonal polynomial
expansions.

Note that, for the sign function, explicit expression for the coefficients of the
Padé–Chebyshev is given in [17], but the method cannot be generalized to other
functions.

Note that from (3.2), the first Chebyshev coefficients of R(u) and that of the
function u coincide. Note also that only a finite portion of the spectrum of u is
required to define R(u). The complete knowledge of u (i.e., of ûk for all k ∈ Z) is not
necessary.

Linear Padé–Chebyshev approximation. Here one imposes the orthogonality rela-
tions

〈Qu− P, ϕ〉ω = 0 ∀ϕ ∈ PK .(3.3)

This means that Qu−P is orthogonal to PK , or, in other terms, the function Qu−P
has only high frequencies,

Qu− P =
∑
k>K

γ′
kTk.(3.4)

Writing (3.3) for k = N + 1, . . . ,K gives the linear system to be solved by Q:

(̂Qu)k = 0 ∀k = N + 1, . . . ,K.(3.5)

This homogeneous linear system has M + 1 unknowns and K − N equations. For
K ≤ N+M the system admits a nonpotentially trivial solution. Note that the highest
mode of u involved in system (3.5) is ûK+M . Here also the complete knowledge of u
is not required.

From now on, we consider only linear Padé approximation. Some properties of
this rational approximation follow. A basic one is the reproduction of polynomials
and rational functions if K is large enough.

3.2. Some general properties. The problem of existence and uniqueness of the
rational approximation R is that of the existence and uniqueness of the denominator
Q. In the general case, uniqueness is not guaranteed. Let us consider the example
n ≥ 1, K = N = n + 1, and M = 1 in (3.3). From the recurrence formula

Tn+1(x) = 2xTn(x) − Tn−1(x),
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we deduce that 2xTn(x) − Tn−1(x) is orthogonal to Pn with respect to the weight ω.

Hence Tn−1

2x ∈ Pn,1 is a linear Padé approximant of Tn which is of course its own Padé
approximant in Pn,1.

One can insure uniqueness using the appropriate parameters N,M , and K.
Proposition 3.1 (uniqueness). If (Q1,P1) and (Q2,P2) are two solutions of

(3.3), then for K large enough (K ≥ M + 2N), they determine the same Padé–
Chebyshev solution:

P1

Q1
=

P2

Q2
.

Proof. We first suppose u > 0 and prove that the polynomial P1Q2 − P2Q1 ∈
PM+N is orthogonal to PK−N with respect to the weight function u(x)ω(x). Hence,
for K −N ≥ N + M , P1Q2 − P2Q1 is the null polynomial. Indeed

〈(P1Q2 − P2Q1)u, ϕ〉ω = 〈uQ2,P1ϕ〉ω − 〈uQ1,P2ϕ〉ω,
= 〈P2,P1ϕ〉ω − 〈P1,P2ϕ〉ω = 0 ∀ϕ ∈ PK−N .

In the general case, consider the strictly positive function v = u + M with M >
‖u‖∞.

Proposition 3.2. If u ∈ PN or u ∈ RN,M with nonvanishing denominator, then
RN,M (u) = u, provided K ≥ M + N in (3.3).

Proof. If u ∈ PN , then the function Qu belongs to PK and relations (3.4) imply
P = Qu, that is, RN,M (u) = u. Now let u = p/q with p ∈ PN , q ∈ PM , q(x) �= 0,
hence assumed Q > 0 on I. The orthogonality relations (3.3) read, for all ϕ ∈ PK ,

0 =

〈
P −Qp

q
, ϕ

〉
ω

=

∫
I

(qP − pQ)
ϕ

q
ω(x)dx.

In other terms, the polynomial qP −pQ is orthogonal to PK with respect to the inner
product defined by the function ω/q. But this polynomial has degree less than K,
and hence it is the null polynomial and RN,M (u) = u.

Proposition 3.3 (parity). For K ≥ M + 2N , and assuming Q(0) �= 0,

{
u is odd =⇒ Q is even and P is odd,
u is even =⇒ Q is even and P is even.

Proof. Consider an odd function u. For all ϕ ∈ PK the orthogonality relations
give

∫ 1

−1

[Q(−x)u(−x) − P(−x)]ϕ(−x)ω(−x)dx = 0,

or, equivalently, for all ψ ∈ PK ,

∫ 1

−1

[Q(−x)u(x) + P(−x)]ψ(x)ω(x)dx.

Hence (−P(−x),Q(−x)) is a couple of Padé approximants of u of order (N,M). As-
suming K ≥ M+2N , we know from Proposition 3.1 that P(x)Q(−x) = −Q(x)P(−x).
Hence the polynomial P(x) is a divisor of the polynomial P(−x)Q(x). If P(x)/Q(x)
is irreducible, then P(x) is a divisor of P(−x), which means that P is an odd or
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an even polynomial, in which case Q is an even or an odd polynomial, respectively.
Assuming that Q(0) �= 0, then P is even. The conclusion holds true if P(x)/Q(x) is
not irreducible by considering a common polynomial factor S such that P = SP1 and
Q = SQ1 with P1/Q1 irreducible.

Proposition 3.4. Let Q be a solution of the system (3.5) with K ≥ N + M .
Then the numerator of the (linear) Padé approximation is

P = πN
ω (Qu) = πK

ω (Qu) = πN
ω

(
QπK

ω (u)
)
.(3.6)

Proof. The orthogonality relations (3.3) directly imply the first two equalities.
For the last one, write, for all k ≤ N ,

〈πN
ω

(
QπK

ω (u)
)
, Tk〉ω = 〈QπK

ω (u), Tk〉ω = 〈πK
ω (u),QTk〉ω

= 〈u,QTk〉ω = 〈Qu, Tk〉ω
= 〈πN

ω (Q(u)) , Tk〉ω = 〈P, Tk〉ω,

which yields the statement.
Before concentrating on the special case of the sign function, we list the different

steps of our goal.
• First of all, compute the denominator Q. This is the main problem.
• Define the numerator P by relations (3.6):

P = πN
ω

(
QπK

ω u
)
.(3.7)

• Define the rational approximation R by

R(u) =
P
Q .(3.8)

Once the rational approximation is defined, we have to
• prove the convergence

lim
N→+∞

R(u) = u,(3.9)

in a sense to be specified later;
• evaluate the error ‖R(u) − u‖ω and show that R behaves like a Chebyshev

series whose coefficients decrease faster than the coefficients ûk of u.
From now on we consider only the sign function.

4. The special case of the sign function. Taking into account the parity of
the sign function (see Proposition 3.3), we search for even Q and odd P. We expand
P in the Chebyshev basis,

P =

N∑
n=0

p̂2n+1T2n+1,

and Q in either the Chebyshev basis or the usual canonical basis:

Q =

M∑
m=0

q2mT2m or Q(x) =

M∑
m=0

q2mx2m.
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4.1. How to compute the denominator. Let us develop the denominator Q
in a basis (ϕ

2m
)Mm=0 of even polynomials of P2M:

Q =

M∑
m=0

q2mϕ
2m

.

The expansion of ϕ
2m

S in the Chebyshev basis is

ϕ
2m

S =
∑
k≥0

cm2k+1T2k+1,

with

cm2k+1 =
4

π

∫ 1

0

ϕ
2m

(x)T2k+1(x)ω(x)dx.(4.1)

Hence the expansion of QS in the Chebyshev basis is

QS =
∑
k≥0

Λ
(M)
2k+1T2k+1,

with

Λ
(M)
2k+1 =

M∑
m=0

cm2k+1q2m.(4.2)

In order to satisfy (3.3), the idea is to split QS into three terms,

QS =

N∑
k=0

Λ
(M)
2k+1T2k+1 +

K∑
k=N+1

Λ
(M)
2k+1T2k+1 +

∑
k>K

Λ
(M)
2k+1T2k+1.(4.3)

The first term in the right-hand side will be the numerator of the rational approxi-
mation, the second term must vanish, and the last one is the remainder.

Determining the denominator is equivalent to finding (q2m)Mm=0 such that

Λ
(M)
2k+1 = 0 ∀k = N + 1, . . . ,K.(4.4)

Remark 4.1. Problem (4.4) is a linear system of K − N equations and M + 1
unknowns. For K ≤ N + M, the system always has a nontrivial solution. In what
follows we fix

K = N + M(4.5)

in order to ensure the existence of a nonzero solution. But we don’t know if such a
solution is unique since uniqueness is guaranteed only for K ≥ M + 2N (see Propo-
sition 3.1).

4.1.1. First method. Let us first expand Q in the Chebyshev basis:

Q =
M∑

m=0

q2mT2m.(4.6)
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In this case

cm2k+1 =
4

π

∫ 1

0

T2m(x)T2k+1(x)ω(x)dx

=
4

π

∫ π/2

0

cos(2mθ) cos[(2k + 1)θ]dθ

= (−1)m+k+1 4

π

2k + 1

(2m + 2k + 1)(2m− 2k − 1)

and

Λ
(M)
2k+1 = (−1)k+1 4

π
(2k+1)

M∑
m=0

(−1)m

(2m+2k+1)(2m−2k−1)
q2m.(4.7)

The next Proposition gives a solution of (4.4) expressed in the Chebyshev basis.

Proposition 4.2. The coefficients q2m defined by

q2m =
(−1)m

m!

(N + M + 3/2)m(−M)m
(N + 1/2)m

(4.8)

are solutions of the linear system (4.4)–(4.2)–(4.5).

Proof. We want to prove that for k = N + 1, . . . ,N + M,

M∑
m=0

(−1)m
1

(2m + 2k + 1)(2m− 2k − 1)
q2m = 0,(4.9)

or, equivalently,

M∑
m=0

(−1)m
(k − 1/2)m
(k + 3/2)m

q2m = 0,

by using the identities

2m + 2k + 1 = 2

(
k +

1

2

)
(k + 3/2)m
(k + 1/2)m

, 2m− 2k − 1 = 2

(
k − 1

2

)
(k + 1/2)m
(k − 1/2)m

.

With the given values of q2m, we have

M∑
m=0

(−1)m
(k−1/2)m
(k+3/2)m

q2m =

M∑
m=0

1

m!

(k−1/2)m(N+M+3/2)m(−M)m
(k + 3/2)m(N + 1/2)m

= 3F2

(
k− 1

2
,N+M+

3

2
,−M; k+

3

2
,N+

1

2
; 1

)

=
(2)M(k−N−M)M

(k + 3/2)M(1/2 −N −M)M
.

The last equality uses the Saalchütz formula (1.6). The factor (k−N−M)M vanishes
for k = N + 1, . . . ,N + M, and hence (4.9) holds.
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Let us prove that asymptotically (i.e., when N → ∞) the denominators with
degrees M = 2(2M′ + 1) vanish at x = ±1/

√
2. For fixed M and x, we define

Q∞,M(x) = lim
N→+∞

QN ,M(x) =

M∑
m=0

[
lim

N→+∞
q2m

]
T2m(x)

=

M∑
m=0

M!

m!(M−m)!
T2m(x) =

M∑
m=0

(
M
m

)
T2m(x).

Hence

Q∞,M(±1/
√

2) =

M∑
m=0

(
M
m

)
T2m(1/

√
2) =

M∑
m=0

(
M
m

)
cos

(
m
π

2

)

= Real

[ M∑
m=0

(
M
m

)
eim

π
2

]
= Real

[
(1 + ei

π
2 )M

]

= Real
[
(1 + i)M

]
= Real

[(
(1 + i)2

)2M′+1
]

= 0.

Remark 4.3. The denominator computed by the first method may have zeros
inside I. On the other hand Q(x) is the sum of term with different signs. These two
properties are unsafe for numerical purposes.

4.1.2. Second method. We now expand Q in the canonical basis:

Q(x) =
M∑

m=0

q2mx2m.(4.10)

In that case, using equation (30) of [7, p. 12], we get

cm2k+1 =
4

π

∫ 1

0

x2mT2k+1(x)ω(x)dx

=
4

π

∫ π/2

0

(cos θ)2m cos[(2k + 1)θ]dθ

=
Γ(2m + 1)

22m−1

1

Γ(m + k + 3/2)Γ(m− k + 1/2)
.

Straightforward computations give

(
1

2

)
m

=

m∏
j=1

2j − 1

2
=

(2m)!

m! 22m
=

Γ(2m + 1)

m! 22m
.

From this, we deduce

cm2k+1 = 2
m!

(
1
2

)
m

Γ(m + k + 3/2)Γ(m− k + 1/2)

and

Λ
(M)
2k+1 = 2

M∑
m=0

m!
(

1
2

)
m

Γ(m + k + 3/2)Γ(m− k + 1/2)
q2m.(4.11)
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Remark 4.4. Using (1.3), we get

Γ(m + k + 3/2)Γ(m− k + 1/2) = (3/2 + k)m(1/2 − k)m(−1)k(k + 1/2)π

and an expression of Λ
(M)
2k+1 in terms of the coefficients of the sign function given in

(2.3),

Λ
(M)
2k+1 = ŝ2k+1

M∑
m=0

m!
(

1
2

)
m

(3/2 + k)m(1/2 − k)m
q2m

︸ ︷︷ ︸
=σ

(M)

k

.(4.12)

The next proposition (taken from [15]) gives a solution of (4.4) expressed in the
canonical basis.

Proposition 4.5. The coefficients q2m defined by

q2m =
(−M)m(−N−1/2)m(N+M+3/2)m

(m!)2(1/2)m
, m = 0, . . . ,M,(4.13)

are solutions of the linear system (4.4)–(4.2)–(4.5).

Proof. Using (4.12) it is sufficient to compute σ
(M)
k for k = N + 1, . . . ,N + M:

σ
(M)
k =

M∑
m=0

m!
(

1
2

)
m

(3/2 + k)m(1/2 − k)m
q2m

=

M∑
m=0

(−M)m(−N − 1/2)m(N + M + 3/2)m
(3/2 + k)m(1/2 − k)m

1

m!

= 3F2(−M,−N − 1/2,N + M + 3/2; 3/2 + k, 1/2 − k; 1).

Using the Saalchütz formula (1.6), we obtain

σ
(M)
k =

(k + N + 2)M(k −N −M)M
(3/2 + k)M(k −M + 1/2)M

.(4.14)

For k = N + 1, . . . ,N + M, the three factors (k + N + 2)M, (3/2 + k)M, and
(k −M + 1/2)M never vanish while (k −N −M)M = 0.

We get an explicit representation of Q:

Q(x) =

M∑
m=0

(−M)m(−N − 1/2)m(N + M + 3/2)m
(m!)2(1/2)m

x2m.

Let us now give some properties of Q.
Remark 4.6 (sign of the denominator). For N ≥ M − 1 and m ∈ [0,M],

(−M)m(−N − 1/2)m > 0. Hence Q(x) is the sum of positive terms, which is nice for
the stability of the numerical computations. This was not the case in the previous
method to compute the denominator, as mentioned in Remark 4.3. For x > 0, Q is
a monotone increasing function, as it is a positive linear combination of monotone
functions. Hence

Q(x) > Q(0) = 1.
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For M = 1, the roots of QN ,1(x) = 1 + (2N + 1)(N + 5/2)x2 are imaginary
� ± i√

2N and approach zero as N → +∞. In the general case M > 1, the zeros of

QN ,M are closer and closer to 0 as N → +∞. In order to prove this we first establish
a bound of the form

q2m
q2(m+1)

≤ s2 ∀m = 0, . . . ,M− 1,(4.15)

with s positive real number depending only on M and N . It is easy to see that

s =

(
M3

N 2 −M2

)1/2

(4.16)

satisfy (4.15).

Proposition 4.7. Let z ∈ C be a root of QN ,M defined by Proposition 4.5 with
N > M; then

|z|2 ≤ M3

N 2 −M2
.(4.17)

Proof. For s given by (4.16), we define the scalars s2m = s2mq2m and the poly-
nomial Qs:

Qs(x) = (1 − x2)x2MQ(s/x) = s2M − s0x
2(M+1) +

M−1∑
m=0

(s2m − s2(m+1))x
2(M−m).

Using the fact that (4.16) implies 0 < s0 ≤ s2 ≤ · · · ≤ s2M, we lower bound Qs(z)
for all z ∈ C,

|Qs(z)| ≥ |s2M| −
∣∣∣s0z

2(M+1)
∣∣∣ −

M−1∑
m=0

∣∣∣(s2m − s2(m+1))z
2(M−m)

∣∣∣ .

For a z such that |z| < 1, we get

|Qs(z)| > |s2M| − |s0| −
M−1∑
m=0

∣∣∣s2m − s2(m+1)

∣∣∣ = 0.

Hence all the roots of Qs have modulus larger than 1. Noticing that Q(z) = 0 =⇒
Qs(s/z) = 0, we get (4.17).

Proposition 4.7 gives a rate of convergence of the poles of the rational approxi-
mation RN ,M(S) toward the singularity of S:

∀z ∈ C, QN ,M(z) = 0 =⇒ ∀ε > 0, lim
N→+∞

|N 1−εz| = 0.

From now on we consider only the second method to compute the denominator,
namely, the one given by Proposition 4.5. Note that the expansion of the denominator
in terms of xk instead of the orthogonal polynomials Tk was already suggested in [5] for
other purposes, not related to the locations of the poles of the rational approximation.
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Fig. 4.1. Typical shapes of Q and P, N = 50, M = 2.
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Fig. 4.2. Rational approximation (+) of the sign function (solid line), N = 50, M = 2.

4.2. Determination of the numerator. With the q2M defined by Proposi-

tion 4.5 and the Λ
(M)
2k+1 given by (4.12)–(4.13), the expansion (4.3) leads to defining

the numerator P by

P =

N∑
n=0

p̂2n+1T2n+1, p̂2n+1 = Λ
(M)
2n+1 ∀n = 0, . . . ,N .(4.18)

The typical shape of P is displayed on Figure 4.1.

4.3. Analysis of the rational approximation. We consider here the rational
approximation defined by the second method. The approximation R = P/Q (N = 50,
M = 2) plotted in Figure 4.2 is very accurate: the Gibbs phenomenon has almost
been eliminated. The reader should consult [15] for a comparison of several methods
aimed at eliminating this Gibbs phenomenon, in terms of reducing the Gibbs constant
(the overshoot near the discontinuity) and increasing the steepness (the value of the
derivative of the approximation at the discontinuity). In Figure 4.3 we displayed
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Fig. 4.3. Rational approximation: log (decimal) of the error |R(S)(x) − Sign(x)|, N = 50,
M = 1, 2, 3.

the pointwise error, |R(S)(x) − S(x)| for M = 1, 2, and 3. This representation
shows the efficiency of the method used as a filter for the spectral approximations of
discontinuous solutions.

In this section, we analyze these spectacular results. Let the parameter M be
fixed and the parameter N = K −M go to infinity. We know from Proposition 4.5

that σ
(M,N )
k = 0 for k = N + 1, . . . ,K = N +M. The next lemma makes precise the

behavior of σ
(M,N )
k for large values of k.

Lemma 4.8. The factors σ
(M)
k introduced in (4.12) with q2m defined by Proposi-

tion 4.5 satisfy, for fixed M,

σ
(M)
k �

(
1 − N 2

k2

)M
as k → +∞.(4.19)

Proof. We fix M, and let the q2m’s be as defined by Proposition 4.5. Using (1.4)
in (4.14), we get

σ
(M)
k =

Γ(k + N + M + 2)Γ(k −N )Γ(3/2 + k)Γ(k + 1/2 −M)

Γ(k + N + 2)Γ(k −N −M)Γ(3/2 + k + M)Γ(k + 1/2)

= γ1γ2γ3γ4,

with

γ1 =
Γ(k + N + 2 + M)

Γ(k + N + 2)
� (k + N )M for large values of k,

γ2 =
Γ(k −N )

Γ(k −N −M)
� (k −N )M,

γ3 =
Γ(k + 1/2 −M)

Γ(k + 3/2 + M)
=

1

(k + 1/2 −M) · · · (k + 1/2 + M)
� 1

k2M+1
,

γ4 =
Γ(3/2 + k)

Γ(k + 1/2)
= k + 1/2.
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For k → +∞, we get (4.19).
Theorem 4.9 (convergence). The rational approximation R(S) with denomina-

tor’s coefficients given by Proposition 4.5 and fixed M converges to S as N → +∞:

lim
N→+∞

R(S) = S in L2
ω.(4.20)

Proof. The denominator Q never vanishes on I and is always ≥ 1; it follows that

‖R(S) − S‖2
ω =

∫
I

(QS − P)2

Q2
ω(x)dx

≤
∫
I

(QS − P)2ω(x)dx (Q(x) ≥ 1)

≤ 2

π

∑
k>K

∣∣∣ ̂(QS − P)2k+1

∣∣∣2

≤ 2

π

∑
k>K

|Λ(M)
2k+1|2 (see (4.3))

≤ 2

π

∑
k>K

|ŝ2k+1|2|σ
(M)
k |2 (see (4.12)).

The boundedness of σ
(M)
k and S ∈ L2

ω end the proof.
The next theorem makes precise the rate of convergence of the rational approxima-

tion. If we consider the norm of the error R(S)−S in a region excluding a small vicinity
of the singularity, we get an acceleration of the convergence. For ε > 0, let us define
η = 1/N ε, Iη = ]−1,−η[ ∪ ]η, 1[ and ‖R(S) − S‖L2

ω(Iη) := (
∫
Iη

|PQ − S|2ω(x)dx)1/2.

Theorem 4.10 (acceleration). There exists a constant CM ∈ R depending solely
on M such that

‖R(S) − S‖L2
ω(Iη) ≤ CM

N (1−ε)2M ‖π2K+1
ω (S) − S‖L2

ω(I).(4.21)

Proof. We derive from the monotonicity of Q and the asymptotic formula q2M �
ConstM N 2M a lower bound of Q(x):

|x| > η =⇒ Q(x) > Q(η) > q2Mη2M > ConstM (ηN )2M.

Using this bound, we write

‖R(S) − S‖2
L2

ω(Iη) =

∫
Iη

(QS − P)2

Q2
ω(x)dx

≤ Const

(ηN )4M

∫
Iη

(QS − P)2ω(x)dx

≤ Const

(ηN )4M

∫
I

(QS − P)2ω(x)dx

≤ Const′

(ηN )4M

∑
k>K

|ŝ2k+1σ
(M)
k |2.

The boundedness of σ
(M)
k stated in Lemma 4.8 ends the proof.



PADÉ–CHEBYSHEV APPROXIMANTS 453

For all x ∈ I, we have

R(S)(x) =

N∑
n=0

p̂2n+1

Q(x)
T2n+1(x) =

N∑
n=0

ŝ2n+1σ
(M)
n

Q(x)
T2n+1(x).

Hence the rational approximation is like a Chebyshev series with variable coefficients

r̂2n+1(x) =
ŝ2n+1σ

(M)
n

Q(x)

decreasing faster than the coefficients of the original function. Taking η = 1
N ε (ε > 0),

we get

|x| > 1

N ε
=⇒ |r̂2n+1(x)| < Const

N 2M−2εM |ŝ2n+1|.

This indicates a local acceleration factor of up to 1/N 2M.

5. Conclusions. The analysis of some rational approximations of the sign func-
tion have been performed. These approximations are built from a finite Chebyshev
expansion of the solution. The rate of convergence of these approximations increases
with the degree of the denominators. Numerical tests support the theoretical results.
Several generalizations of this work should be done.

• Analysis of the Padé–Chebyshev approximations for general discontinuous
functions

• Analysis of the Padé–Legendre approximations of the sign function. As far
as we know, this has never been done. Quadratic denominators (M = 1) are
considered in [6], but the remarkable numerical results of [5] (obtained with
M ≥ 1) have not yet been fully analyzed.

These two problems are currently under investigation.

Acknowledgment. The authors would like to thank the anonymous referees for
valuable suggestions about the bibliography.
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Phys. B, 37 (1972), pp. 59–76; erratum: Nucl. Phys. B, 44 (1972), p. 641.
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FOURTH-ORDER NONOSCILLATORY UPWIND AND CENTRAL
SCHEMES FOR HYPERBOLIC CONSERVATION LAWS∗

ÁNGEL BALAGUER† AND CARLOS CONDE‡

Abstract. The aim of this work is to solve hyperbolic conservation laws by means of a finite
volume method for both spatial and time discretization. We extend the ideas developed in [X.-D. Liu
and S. Osher, SIAM J. Numer. Anal., 33 (1996), pp. 760–779; X.-D. Liu and E. Tadmor, Numer.
Math., 79 (1998), pp. 397–425] to fourth-order upwind and central schemes. In order to do this,
once we know the cell-averages of the solution, un

j , in cells Ij at time T = tn, we define a new
three-degree reconstruction polynomial that in each cell, Ij , presents the same shape as the cell-
averages {un

j−1, u
n
j , u

n
j+1}. By combining this reconstruction with the nonoscillatory property and

the maximum principle requirement described in [X.-D. Liu and S. Osher, SIAM J. Numer. Anal.,
33 (1996), pp. 760–779] we obtain a fourth-order scheme that satisfies the total variation bounded
(TVB) property. Extension to systems is carried out by componentwise application of the scalar
framework. Numerical experiments confirm the order of the schemes presented in this paper and
their nonoscillatory behavior in different test problems.

Key words. central schemes, upwind schemes, high order, nonoscillatory, hyperbolic conserva-
tion laws

AMS subject classification. 65M06

DOI. 10.1137/S0036142903437106

1. Introduction. In this paper we present three fourth-order numerical schemes
in order to solve one-dimensional hyperbolic conservation laws

∂u

∂t
+

∂f(u)

∂x
= 0, u(x, 0) = u0(x),(1.1)

where u0(x) is a known bounded function.
Many of the high-order methods used to solve this problem employ an interpo-

lating polynomial that reconstructs the pointvalues of the solution in terms of the
cell-averages. There are two main types of schemes: upwind schemes and central
schemes. Godunov-type schemes [7] are the forerunner for upwind schemes, which
compute the cell-averages of the solution in the same spatial cells at all time steps.
Similarly, Van Leer [25] presented a scheme with second-order accuracy in space and
time. Later, Colella and Woodward [5] used two-degree polynomials, although their
scheme satisfies the total variation diminishing (TVD) property, and, hence, it is lim-
ited to second order of accuracy in the L1 norm. Harten et al. [8] introduced the
essentially nonoscillatory (ENO) schemes, with an order of accuracy higher than two
and able to capture sharp shocks without introducing oscillations. Similarly, differ-
ent high-order numerical schemes have been developed, such as the weighted ENO
(WENO) schemes (see Liu, Osher, and Chan [18], Jiang and Shu [10], or Balsara
and Shu [2]). Extensions to multidimensional systems can also be found in Casper
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and Atkins [4] or Balaguer et al. [1]. The schemes found in the latter references
use the high-order Runge–Kutta schemes developed in Shu and Osher [23] for time
integration, which maintain the spatial operator stability properties.

Although the first-order Lax–Friedrich scheme (see [6]) is probably the forerunner
for central schemes, the central scheme of Nessyahu and Tadmor [21] has generated a
significant number of works on high-resolution schemes that maintain the simplicity
of the Riemann solver-free approach. The scheme developed in Nessyahu and Tadmor
[21] has been extended to accuracy orders higher than 2 (see Liu and Tadmor [20],
Jiang et al. [11], or Qiu and Shu [22]) and to several spatial dimensions (see Levy
and Tadmor [15] and Jiang and Tadmor [12]). High-order central WENO schemes are
described in Levy, Puppo, and Russo [16], [17].

We have focused our attention on the upwind scheme developed in Liu and Osher
[19] and the central scheme described in Liu and Tadmor [20], which are third-order
schemes, in the sense of local truncation error in regions without discontinuities. The
algorithm developed in Liu and Osher [19] leads to a conservative scheme that satis-
fies the local maximum principle and guarantees that the number of extrema in the
solution does not exceed the number of extrema of the initial condition u0(x). These
properties allow achieving the total variation bounded (TVB) property. The approach
used in that reference uses a simple centered stencil with quadratic reconstruction.

Liu and Tadmor [20] apply the procedure described in Liu and Osher [19] to cen-
tral schemes and show the results obtained when solving differential equation systems.
The resulting scheme is third-order accurate in space and time. In both references
([19] and [20]), time integration is performed using a finite volume method, approxi-
mating the resulting integrals with respect to time by a Gauss [19] or a Simpson [20]
quadrature rule. The values of the solution at half time steps are approximated using
a Taylor expansion. Jiang et al. [11] present a procedure to convert schemes which
are based on staggered spatial grids into nonstaggered schemes, which are simpler to
implement in frameworks which involve complex geometries and boundary conditions.
However, it has been in some cases superseded by the semidiscrete central schemes
(see Kurganov and Tadmor [13]) and their high-order extensions.

This paper presents an extension of the schemes developed in Liu and Osher
[19] and Liu and Tadmor [20]. In contrast to them, our scheme is a fourth-order
scheme in the sense of local truncation error. To this end, we will use a finite volume
method with a conservative degree-three polynomial reconstruction that calculates
the pointvalues of the solution from the cell-averages, by avoiding the increase in the
number of solution extrema at the interior of each cell. This condition, together with
the nonoscillatory property and the maximum principle requirement described in Liu
and Osher [19], avoids spurious numerical oscillations in the computed solution.

The integrals respecting the two variables, space and time, are evaluated by means
of a two-point Gauss quadrature. The values of the solution at half-time steps are
calculated using a Taylor expansion with a fourth-order error, using the local Cauchy–
Kowalewski procedure (see [8]) to approximate the time derivatives of the solution
as a function of the derivatives with respect to x. We also present an extension to
systems of equations, where the computed solution at quadrature nodes is obtained
by the so called natural continuous extension of Runge–Kutta schemes (see Zennaro
[26], Bianco, Puppo, and Russo [3], or Levy, Puppo, and Russo [16]).

In this paper, first, we present the equations that define the upwind and central
schemes for solving the problem (1.1). Next, the fourth-order nonoscillatory recon-
struction procedure is described. It guarantees that the resulting numerical scheme
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satisfies the properties that generate its nonoscillatory behavior. Finally, some prob-
lems with known analytical solution are solved to verify the order of the schemes
presented here and to compare their behavior with the schemes developed in Liu and
Osher [19] and Liu and Tadmor [20].

2. Upwind and central schemes. Let us suppose that the time interval is
discretized uniformly into the values tn = n · Δt, n = 0, 1, 2, . . . , NT . We assume
that the grid points {xj} are distributed uniformly at the spatial domain at which
(1.1) will be defined, verifying that xj = xj−1 + Δx∀j = 1, . . . , NX, where Δx is a
known constant. Given a point (xj , t

n), we consider the control volume defined by
[xj− 1

2
, xj+ 1

2
] ×
[
tn, tn+1

]
, where xj± 1

2
= xj ± Δx/2. By integrating (1.1) over this

control volume, we obtain

un+1
j = un

j − 1

Δx

[∫ tn+1

tn
f
(
u
(
xj+ 1

2
, τ
))

dτ −
∫ tn+1

tn
f
(
u
(
xj− 1

2
, τ
))

dτ

]
,(2.1)

where the cell average un
j is defined as

un
j =

1

Δx

∫
Ij

u (ϕ, tn) dϕ, Ij =

{
ϕ, |ϕ− x| ≤ Δx

2

}
.(2.2)

In (2.1) there is a relationship between the average values of the solution at the limit of
the time interval, un

j , u
n+1
j , and its pointvalues at the boundary of the space interval,

u(xj± 1
2
, τ). The steps to follow in the implementation of numerical schemes can be

described as follows.

(1) For each time value tn, n ∈ {0, 1, . . . , NT − 1}, we have an approximation of
the cell-averages of the solution wn

j
∼= un

j ∀j ∈ {0, 1, . . . , NX}, at the nodes xj . The
approximation will be of order O((Δx)4).

(2) The pointvalues of w(x, tn)∀x ∈ {x0 − Δx/2, . . . , xNX + Δx/2} are recon-
structed using a piecewise polynomial interpolation,

w(x, tn) ≡
NX∑
j=0

Rj(x;wn)χj(x), χj(x) =

{
1 if x ∈ Ij ,
0 if x /∈ Ij ,

(2.3)

where Rj(x;wn) is a polynomial that reconstructs the pointvalues of the solution
using the discrete values wn

i , i ∈ {0, 1, . . . , NX}, verifying

1

Δx

∫ x
j+ 1

2

x
j− 1

2

Rj(x;wn) = wn
j , Rj(x;wn) = w(x, tn) + O((Δx)4) ∀x ∈ Ij .(2.4)

(3) In the case of the central schemes, the average values wn
j+ 1

2
are calculated

using the approximation given in (2.3):

wn
j+ 1

2
≡ 1

Δx

[∫ xj+Δx/2

xj

Rj(x;wn) dx +

∫ xj+1

xj+Δx/2

Rj+1(x;wn) dx

]
.(2.5)

The integrals in (2.1) are evaluated in an exact way taking into account that Rj(x;wn)
and Rj+1(x;wn) are degree-three polynomials.
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(4) The integrals with respect to the time variable are approximated using a
two-point Gauss quadrature. Thus,

∫ tn+1

tn
f(w(xj± 1

2
, τ))dτ ≈ Δt

2

(
f(w(xj± 1

2
, tn + β0)) + f(w(xj± 1

2
, tn + β1))

)
(2.6)

β0 = Δt

(
1 − 1/

√
3

2

)
, β1 = Δt

(
1 + 1/

√
3

2

)
.(2.7)

In order to approximate the pointvalues of w at the time steps that appear in (2.6),
we may use a Taylor expansion with an error O((Δx4)). This technique is used, for
example, in Liu and Osher [19] and Liu and Tadmor [20]. Another efficient method
would be the natural continuous extension of Runge–Kutta methods advocated by
Bianco, Puppo, and Russo [3] and Levy, Puppo, and Russo [16]. We will use this
method in the resolution of systems of equations which achieve the same accuracy
with much lower computational effort.

(5) In order to calculate the cell-averages of w at tn+1, we distinguish two cases.
(5a) Upwind schemes. The cells are intervals centered at each xj (equation (2.1),

after replacing the function u—in that equation—for the function w). In order to
calculate the value of f(w(xj± 1

2
, tn + βk)) in expression (2.6), we will use the Roe

flux with entropy fix, although other fluxes can also be used, as those described in
Liu and Osher [19].

(5b) Central schemes. The cells are intervals centered at each xj+ 1
2
.

wn+1
j+ 1

2

= wn
j+ 1

2
− 1

Δx

[∫ tn+1

tn
f (w (xj+1, τ)) dτ −

∫ tn+1

tn
f (w (xj , τ)) dτ

]
.(2.8)

The terms on the right-hand side in (2.1) and (2.8) are calculated using the approxi-
mations (2.5)–(2.7).

(6) We go back to step (1) and restart the procedure until calculating wNT
i

∼=
u(xi, t

NT ), i ∈ {0, 1, . . . , NX}. Then, we use formula (2.3) to obtain the pointvalues
with O((Δx)4).

3. Fourth-order nonoscillatory reconstruction. This section presents the
reconstruction procedure used to obtain each Rj(x;wn) from the cell averages wn

k , k ∈
{j − 2, j − 1, j, j + 1, j + 2}.

3.1. Fourth order and conservation. Initially, we will consider the degree-
three polynomial that verifies these conditions:

pj(xj ;w
n) = wn

j , pj(xj−1;w
n) = wn

j−1, pj(xj+1;w
n) = wn

j+1,(3.1)

Δx
dpj
dx

(xj ;w
n) = Δx

∂w

∂x
(xj , t

n) ≡ dnj , where w(x, tn) =
1

Δx

∫ x+Δx/2

x−Δx/2

w(ϕ, tn) dϕ.

This polynomial can be expressed as

pj (x;wn) = wn
j + dnj ·

(
x− xj

Δx

)
+

(
wn

j−1 − 2wn
j + wn

j+1

2

)
·
(
x− xj

Δx

)2

+

(−wn
j−1 + wn

j+1 − 2dnj
2

)
·
(
x− xj

Δx

)3

.(3.2)
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Since

w(x, tn) = w(x, tn) − 1

24
(Δx)

2 ∂2w(x, tn)

∂x2
+ O (Δx)

4
,(3.3)

the conservative polynomial, qj(x;wn) that verifies the conditions in (2.4) can be
defined as

qj(x;wn) = pj(x;wn) − 1

24
(Δx)

2 d2pj(x;wn)

dx2
.(3.4)

Therefore,

qj(x;wn) = wn
j − 1

24

(
wn

j−1 − 2wn
j + wn

j+1

)
+

(
wn

j−1 − wn
j+1 + 10dnj
8

)(
x− xj

Δx

)

(3.5) +

(
wn

j−1 − 2wn
j + wn

j+1

2

)(
x− xj

Δx

)2

+

(−wn
j−1 + wn

j+1 − 2dnj
2

)(
x− xj

Δx

)3

.

In case that

dnj = dsnj ≡ 2

3
wn

j+1 −
2

3
wn

j−1 −
1

12
wn

j+2 +
1

12
wn

j−2,(3.6)

qj(x;wn) coincides with the centered polynomial, defined as the average value be-
tween two conservative piecewise polynomials: the conservative polynomial which
uses

{
wn

j−1, w
n
j , w

n
j+1, w

n
j+2

}
and the polynomial based on

{
wn

j−2, w
n
j−1, w

n
j , w

n
j+1

}
.

Then, by replacing the value of dnj given in (3.6) in expression (3.5), we obtain the
following conservative polynomial that verifies conditions (2.4):

q∗j (x;wn) = Cn
o,j + Cn

1,j

(
x− xj

Δx

)
+ Cn

2,j

(
x− xj

Δx

)2

+ Cn
3,j

(
x− xj

Δx

)3

,(3.7)

Cn
o,j = wn

j − 1

24

(
wn

j+1 − 2wn
j + wn

j−1

)
, Cn

1,j =
−5wn

j+2 + 34wn
j+1 − 34wn

j−1 + 5wn
j−2

48
,

Cn
2,j =

1

2

(
wn

j+1 − 2wn
j + wn

j−1

)
, Cn

3,j =
1

12

(
wn

j+2 − 2wn
j+1 + 2wn

j−1 − wn
j−2

)
.

3.2. Shape-preserving when the cell-averages form a monotone se-
quence. We will define dnj in (3.5) so that if the cell-averages {wn

j−1, w
n
j , w

n
j+1}

form a monotone sequence, then qj(x;wn) is monotone on Ij . We will denote as
shape-preserving properties the following:

(I) qj(x;wn) is monotonically increasing in Ij if wn
j−1 ≤ wn

j ≤ wn
j+1.

(II) qj(x;wn) is monotonically decreasing in Ij if wn
j−1 ≥ wn

j ≥ wn
j+1.

To simplify the notation, first we define

WCn
j = wn

j+1 − wn
j−1, WRn

j = wn
j+1 − wn

j , WC2nj = wn
j+2 − wn

j−2.(3.8)

Observation 1. If dnj =
WCn

j

2 , then according to (3.5) qj(x;wn) coincides with a

quadratic polynomial. In this case,
dqj(xj±Δx/2;wn)

dx = ±wn
j±1−wn

j

Δx , and therefore the
shape-preserving properties are verified.

Observation 2. In the case at which dnj = dsnj (defined in (3.6)), the following
hold.

1. If
(
2 ·WCn

j = WC2nj
)
, then dnj =

WCn
j

2 (see Observation 1).
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2. If
(
2 ·WCn

j > WC2nj
)

and wn
j−1 ≤ wn

j ≤ wn
j+1, then, according to (3.7),

d3q∗j (x;wn)

dx3
=

1

(Δx)3
(
6 · Cn

3,j

)
=

1

2 · (Δx)3
(
WC2nj − 2 ·WCn

j

)
< 0,

and thus
d(q∗j (x;wn))

dx achieves the minimum value at the endpoints of the interval under
consideration. Since

dq∗j (xj + Δx/2;wn)

dx
=

1

24Δx

(
−WC2nj + 2 ·WCn

j + 24 ·WRn
j

)
> 0,

dq∗j (xj − Δx/2;wn)

dx
=

1

24Δx

(
−WC2nj + 26 ·WCn

j − 24 ·WRn
j

)
> 0,(3.9)

Min{d(q∗j (x;wn))

dx ∀x ∈ Ij} > 0 and q∗j (x;wn) is monotonically increasing in Ij.

3. If
(
2 ·WCn

j < WC2nj
)

and wn
j−1 ≤ wn

j ≤ wn
j+1, then the derivative of

q∗j (x;wn), defined in (3.7), has a minimum at point

xMI = xj +
Δx

3

(
2 ·WRn

j −WCn
j

(1/6)
(
2 ·WCn

j −WC2nj
)
)

= xj −4 ·Δx

(
WRn

j − (1/2)WCn
j(

WC2nj − 2 ·WCn
j

)
)
.

In this way, if
∣∣WRn

j − 1
2WCn

j

∣∣ ≥ 1
8

∣∣WC2nj − 2 ·WCn
j

∣∣, then

(
WRn

j >
1

2
WCn

j ⇒ xMI ≤ xj −
Δx

2

)
and

(
WRn

j <
1

2
WCn

j ⇒ xMI ≥ xj +
Δx

2

)
.

Thus, the minimum Min{d(q∗j (x;wn))

dx ∀x ∈ Ij} is achieved at one of these boundary

points, x = xj ± Δx
2 . However, in this case we cannot ensure that the inequalities

given in (3.9) are always verified.
4. If

(
2 ·WCn

j < WC2nj
)

and wn
j−1 ≥ wn

j ≥ wn
j+1, then we can prove that

q∗j (x;wn) is monotonically decreasing in Ij.

5. If
(
2 ·WCn

j > WC2nj
)

and wn
j−1 ≥ wn

j ≥ wn
j+1, then we can prove that

|xMI − xj | ≥ Δx/2 when
∣∣WRn

j − 1
2WCn

j

∣∣ ≥ 1
8

∣∣WC2nj − 2 ·WCn
j

∣∣, but we cannot
ensure that q∗j (x;wn) is always monotonically decreasing in Ij.

Observation 3. Supposing that 2 · dnj < WCn
j , then the derivative of qj(x;wn),

defined in (3.5), has a minimum at point

xMI = xj +
Δx

3

(
2 ·WRn

j −WCn
j

2 · dnj −WCn
j

)
.

In addition,

dqj(xMI ;w
n)

dx
= qnxj(d

n
j ) ≡ 1

8Δx

(
10 · dnj −WCn

j

)
+

1

6Δx

((
2 ·WRn

j −WCn
j

)2
(
2 · dnj −WCn

j

)
)
.

This is a function that depends on dnj and coincides with a hyperbola. In it, the value

of dnj =
WCn

j

2 −Sn
j

√
15

15

∣∣ 2 ·WRn
j −WCn

j

∣∣ is a local maximum of qnxj(d
n
j ) when Sn

j > 0

and a local minimum of qnxj(d
n
j ) when Sn

j < 0 being Sn
j = Sign(WCn

j ).
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3.2.1. Definition of dn
j . The polynomial q∗j (x;wn) defined in (3.7) does not

fulfill the shape-preserving properties defined in this subsection for any sequence of
values

{
wn

j−2, w
n
j−1, w

n
j , w

n
j+1, w

n
j+2

}
. Therefore, we have to define a procedure that

adequately defines the slopes dnj .

We will consider the value of dnj = dsnj (given in (3.6)) except when this shape-
preserving property is not fulfilled. For this, we use the notation

ds1nj =
WCn

j

10
, ds2nj =

1

2

(
WCn

j − 4 ·WRn
j

)
, ds3nj =

1

2

(
4 ·WRn

j − 3 ·WCn
j

)
,

Sn
j = Sign(WCn

j ), C1 =

√
15

15
, C2 =

15 −
√

15

28
(3.10)

and define dnj in the following way:

(A1) If Sn
j = 0, then dnj = 0.

(A2) If Sn
j �= 0 and

(
2 · Sn

j ·WCn
j ≥ Sn

j ·WC2nj
)
, then dnj = dsnj .

(A3) If Sn
j �= 0 and

(
2 · Sn

j ·WCn
j < Sn

j ·WC2nj
)
, then the following hold:

(A3.1) If wn
j =

wn
j+1+wn

j−1

2 , we define

dnj =

{
Max

{
ds1nj , ds

n
j

}
if Sn

j > 0,

Min
{
ds1nj , ds

n
j

}
if Sn

j < 0.

(A3.2) If wn
j �= wn

j+1+wn
j−1

2 , then the following hold:

(A3.2.1) If
∣∣WRn

j − 1
2WCn

j

∣∣ ≥ 1
8

∣∣WC2nj − 2 ·WCn
j

∣∣, then

dnj =

{
Max

{
ds2nj , ds3nj , dsnj

}
if Sn

j > 0,

Min
{
ds2nj , ds3nj , dsnj

}
if Sn

j < 0.

(A3.2.2) If
∣∣WRn

j − 1
2WCn

j

∣∣ < 1
8

∣∣WC2nj − 2 ·WCn
j

∣∣, then

dnj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

WCn
j

2 − Sn
j · C1 ·

∣∣2 ·WRn
j −WCn

j

∣∣ if

∣∣∣∣WRn
j

WCn
j

− 1
2

∣∣∣∣ ≤ C2,

WCn
j

2 if

∣∣∣∣WRn
j

WCn
j

− 1
2

∣∣∣∣ > C2.

Theorem 3.1. With this definition of dnj the polynomial qj(x;wn) defined by
means of (3.5) verifies the following shape-preserving properties:

(I) qj(x;wn) is monotonically increasing in Ij if wn
j−1 ≤ wn

j ≤ wn
j+1.

(II) qj(x;wn) is monotonically decreasing in Ij if wn
j−1 ≥ wn

j ≥ wn
j+1.

Proof. Let us suppose that wn
j−1 ≤ wn

j ≤ wn
j+1. We have to prove that qj(x;wn)

is monotonically increasing in Ij =
[
xj − Δx

2 , xj + Δx
2

]
. A similar argument allows us

to prove that qj(x;wn) is monotonically decreasing in Ij when wn
j−1 ≥ wn

j ≥ wn
j+1.

We will consider all the possible cases.

Case (A1). Sn
j = 0, that is, wn

j−1 = wn
j = wn

j+1. Then dnj = 0 and qj(x;wn) =
wn

j . This polynomial has the same degree of monotonicity as the cell averages{
wn

j−1, w
n
j , w

n
j+1

}
.

Case (A2). Sn
j = 1 and

(
2 ·WCn

j ≥ WC2nj
)
. In this case, dnj = dsnj and, after

observation 2, qj(x;wn) is monotonically increasing in Ij .
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Case (A3.1). Sn
j = 1,

(
2 ·WCn

j < WC2nj
)
, and wn

j =
wn

j+1+wn
j−1

2 . Then (2 ·
WRn

j = WCn
j ) and according to Observation 3,

xMI = xj ,
dqj(xMI ;w

n)

dx
=

1

8Δx

(
10 · dnj −WCn

j

)
.

Since in this case dnj = Max{WCn
j

10 , dsnj }, then
dqj(xMI ;wn)

dx ≥ 0 and qj(x;wn) is mono-
tonically increasing in Ij .

Case (A3.2.1). Sn
j = 1,

(
2 ·WCn

j < WC2nj
)
, wn

j �= wn
j+1+wn

j−1

2 , and
∣∣WRn

j − 1
2WCn

j

∣∣
≥ 1

8

∣∣WC2nj − 2 ·WCn
j

∣∣. In this case, dnj = Max{ 1
2 (WCn

j − 4 ·WRn
j ), 1

2 (4 · WRn
j −

3 ·WCn
j ), dsnj }. Since

(
2 ·WCn

j < WC2nj
)
, then 2 · dsnj < WCn

j . In addition,

WRn
j = 0 ⇒ dnj =

WCn
j

2
, WRn

j = WCn
j ⇒ dnj =

WCn
j

2
.

If dnj =
WCn

j

2 , it follows that qj(x;wn) coincides with a quadratic polynomial, which
is monotonically increasing in Ij , as we have seen in Observation 1. Therefore, we
can suppose that 0 < WRn

j < WCn
j . Hence(

WCn
j − 4 ·WRn

j

)
< WCn

j , WCn
j −
(
4 ·WRn

j − 3 ·WCn
j

)
= 4 ·

(
WCn

j −WRn
j

)
> 0

so that it follows that (2 · dnj < WCn
j ). On the other hand, applying Observations 2

and 3,

dnj ≥ dsnj
WRn

j > 1
2WCn

j

}
⇒ xMI = xj + Δx

3

(
2·WRn

j −WCn
j

2·dn
j
−WCn

j

)
≤ xj + Δx

3

(
2·WRn

j −WCn
j

2·dsn
j
−WCn

j

)

≤ xj − Δx
2 ,

dnj ≥ dsnj
WRn

j < 1
2WCn

j

}
⇒ xMI = xj − Δx

3

(
WCn

j −2·WRn
j

2·dn
j
−WCn

j

)
≥ xj − Δx

3

(
WCn

j −2·WRn
j

2·dsn
j
−WCn

j

)

≥ xj + Δx
2 .

In this way, because of dnj ≥ dsnj we deduce the following:

xMI /∈
]
xj −

Δx

2
, xj +

Δx

2

[
.

Thus, the minimum, Min{d(qj(x;wn))
dx ∀x ∈ Ij}, is achieved at one of the boundary

points x = xj ± Δx
2 . By derivating in formula (3.5), we get that

dqj(xj + Δx/2;wn)

dx
≥ 0 ⇐⇒ dnj ≥ 1

2

(
WCn

j − 4 ·WRn
j

)
,

dqj(xj − Δx/2;wn)

dx
≥ 0 ⇐⇒ dnj ≥ 1

2

(
4 ·WRn

j − 3 ·WCn
j

)
.

The definition of dnj allows us to state that Min{d(qj(x;wn))
dx ∀x ∈ Ij} ≥ 0, and thus we

conclude that qj(x;wn) is monotonically increasing in Ij .

Case (A3.2.2). Sn
j = 1,

(
2 ·WCn

j < WC2nj
)
, wn

j �= wn
j+1+wn

j−1

2 , and
∣∣WRn

j − 1
2WCn

j

∣∣
< 1

8

∣∣WC2nj − 2 ·WCn
j

∣∣. In this case,

dnj =

⎧⎪⎪⎨
⎪⎪⎩

WCn
j

2 −
√

15
15

∣∣ 2 ·WRn
j −WCn

j

∣∣ if

∣∣∣∣WRn
j

WCn
j

− 1
2

∣∣∣∣ ≤ 15−
√

15
28 ,

WCn
j

2 if

∣∣∣∣WRn
j

WCn
j

− 1
2

∣∣∣∣ > 15−
√

15
28
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so that it follows that 2 ·dnj ≤ WCn
j . In the case in which 2 ·dnj = WCn

j it follows that
qj(x;wn) coincides with a two-degree polynomial, which is monotonically increasing
in Ij , as we have seen in Observation 1. Therefore, we can suppose that 2 ·dnj < WCn

j

and |WRn
j

WCn
j

− 1
2 | ≤

15−
√

15
28 . In this situation,

dqj(x;wn)
dx reaches a minimum at point

xMI = xj + Δx
3 (

2·WRn
j −WCn

j

2·dn
j
−WCn

j

) (see Observation 3). Given that

WRn
j >

1

2
WCn

j ⇒
{(

5

6
WCn

j − 2

3
WRn

j

)
<

WCn
j

2
−

√
15

15

(
2 ·WRn

j −WCn
j

)
= dnj

}
,

WRn
j <

1

2
WCn

j ⇒
{(

1

6
WCn

j +
2

3
WRn

j

)
<

WCn
j

2
−

√
15

15

(
WCn

j − 2 ·WRn
j

)
= dnj

}
,

then

WRn
j > 1

2WCn
j ⇒

{
xMI = xj + Δx

3

(
2·WRn

j −WCn
j

2·dn
j
−WCn

j

)
< xj − Δx

2

}
,

WRn
j < 1

2WCn
j ⇒

{
xMI = xj + Δx

3

(
2·WRn

j −WCn
j

2·dn
j
−WCn

j

)
> xj + Δx

2

}
.

On the other hand,

WRn
j > 1

2WCn
j ⇒

{
dqj(xj±Δx/2;wn)

dx ≥ 0 ⇐⇒ dnj ≥ 1
2

(
4 ·WRn

j − 3 ·WCn
j

)}
,

WRn
j < 1

2WCn
j ⇒

{
dqj(xj±Δx/2;wn)

dx ≥ 0 ⇐⇒ dnj ≥ 1
2

(
WCn

j − 4 ·WRn
j

)}
.

Given that we have supposed that |WRn
j

WCn
j

− 1
2 | ≤

15−
√

15
28 , then dnj verifies the latter

inequalities, and thus qj(x;wn) is monotonically increasing in Ij .

3.3. Conditions in cells with extrema points. In order to guarantee that
qj(x;wn) has the same shape as the cell-averages wn

j in the domain Ij , we add these
requirements to those used in the previous section:

1. qj(x;wn) has a maximum in Ij if and only if wn
j−1 < wn

j > wn
j+1.

2. qj(x;wn) has a minimum in Ij if and only if wn
j−1 > wn

j < wn
j+1.

On the other hand, the definition of θnj that we will use later in (3.13) requires that
the following properties are satisfied:

1. If wn
j−1 < wn

j > wn
j+1, then qj

(
xj − Δx

2 ;wn
)
≥ 1

2

(
wn

j−1 + wn
j

)
and qj(xj +

Δx
2 ; wn) ≥ 1

2

(
wn

j + wn
j+1

)
.

2. If wn
j−1 > wn

j < wn
j+1, then qj

(
xj − Δx

2 ;wn
)
≤ 1

2

(
wn

j−1 + wn
j

)
and qj(xj +

Δx
2 ; wn) ≤ 1

2

(
wn

j + wn
j+1

)
.

According to the notation given in (3.8) and (3.10), supposing that

ds4nj =
1

6

(
5 ·WCn

j − 4 ·WRn
j

)
, ds5nj =

1

6

(
4 ·WRn

j + WCn
j

)
,(3.11)

we define dnj in cells with extrema points in the following way:
(B) If wn

j−1 < wn
j > wn

j+1 (the cell averages have a maximum), then the following
hold:

(B1) If WC2nj = 2 ·WCn
j , then dnj = dsnj ≡ 2

3WCn
j − 1

12WC2nj = 1
2WCn

j .
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(B2) If WC2nj < 2 ·WCn
j , then dnj = Min

{
ds2nj , ds4nj , dsnj

}
.

(B3) If WC2nj > 2 ·WCn
j , then dnj = Max

{
ds3nj , ds5nj , dsnj

}
.

(C) If wn
j−1 > wn

j < wn
j+1 (the cell averages have a minimum), then the following

hold:
(C1) If WC2nj = 2 ·WCn

j , then dnj = dsnj = 2
3WCn

j − 1
12WC2nj = 1

2WCn
j .

(C2) If WC2nj < 2 ·WCn
j , then dnj = Min

{
ds3nj , ds5nj , dsnj

}
.

(C3) If WC2nj > 2 ·WCn
j , then dnj = Max

{
ds2nj , ds4nj , dsnj

}
.

Observation 4. Similar reasoning to that used in the proof of Theorem 3.1 allows
us to prove that with this definition of dnj , if wn

j−1 < wn
j > wn

j+1, then qj(x;wn)

has a maximum at
[
xj − Δx

2 , xj + Δx
2

]
, verifying these two relations:

qj

(
xj −

Δx

2
;wn

)
≥ 1

2

(
wn

j−1 + wn
j

)
, qj

(
xj +

Δx

2
;wn

)
≥ 1

2

(
wn

j + wn
j+1

)
.

Similarly, if we suppose that wn
j−1 > wn

j < wn
j+1, then we can verify that qj(x;wn)

has a minimum at
[
xj − Δx

2 , xj + Δx
2

]
, verifying the following conditions:

qj

(
xj −

Δx

2
;wn

)
≤ 1

2

(
wn

j−1 + wn
j

)
, qj

(
xj +

Δx

2
;wn

)
≤ 1

2

(
wn

j + wn
j+1

)
.

3.4. Removing the spurious extrema of w(x, tn) at points xj + Δx/2.
To obtain a nonoscillatory reconstruction we will add some additional requirements
for the calculation of Rj(x,w

n):

(a)w(xj , t
n) > w(xj+1, t

n) ⇒ (Rj(xj + Δx/2;wn) ≥ Rj+1(xj + Δx/2;wn)) ,

(b)w(xj , t
n) < w(xj+1, t

n) ⇒ (Rj(xj + Δx/2;wn) ≤ Rj+1(xj + Δx/2;wn)) ,

(c)w(xj , t
n) = w(xj+1, t

n) ⇒ (Rj(xj + Δx/2;wn) = Rj+1(xj + Δx/2;wn)) .(3.12)

These properties together to those viewed in sections 3.2 and 3.3 have been defined
so that the resulting reconstruction polynomial w(x, tn), defined in (2.3), presents a
nonoscillatory nature in the sense that the number of extrema of w(x, tn) does not

exceed the number shown in the function
∑NX

j=1 w
n
j χj(x). The nonincreasing number

of extrema implies convergence along the lines of Liu and Tadmor [20].
To verify (3.12), Liu and Osher [19] consider the modification of the form

Rj(x;wn) ≡ θnj qj(x;wn) + (1 − θnj )wn
j ,(3.13)

where θnj ∈ [0, 1]. The algorithm that allows us to obtain θnj is described in detail
in Liu and Osher [19], although in that reference it is only used when qj(x;wn) is
a conservative parabola. Notice that the value of θnj that appears in formula (3.13)
takes a value equal to 1 in all the cells with extrema points (see Liu and Osher
[19]). Conditions given in section 3.3 avoid the development of spurious extrema of
Rj(x;wn) in the endpoints of an interval with a local maximum or a local minimum.

Remark 1. Parameter θnj used in (3.13) is defined in Liu and Osher [19] so that

(1− θnj ) is proportional to the interface jump qj+1

(
xj + Δx

2 ;wn
)
− qj

(
xj + Δx

2 ;wn
)
.

If dnj = dsnj (given by (3.6)), then the reconstruction is fourth-order accurate. As a
consequence of the fourth-order accuracy in polynomials qj(x;wn) and qj+1(x;wn),
the size of the interface jump, and consequently of (1 − θnj ), is of order O((Δx)4).
In this way, the definition of Rj(x;wn) given in (3.13) still verifies the properties in
(2.4).
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However, the definition of dnj introduced in cases (A3.1), (A3.2.1), (A3.2.2), (B2),

(B3), (C2), and (C3) may cause the value of (1 − θnj ) to not be of order O((Δx)4)
in a small number of cells, especially near a local maximum, a local minimum, or
a discontinuity. For example, if WRn

j ≈ WCn
j or WRn

j ≈ 0 and Sn
j > 0, then dnj

can be closer to WCn
j /2 (which is the slope of the parabola) than to dsnj . Moreover,

in case (A3.2.2) dnj can be equal to WCn
j /2. In order to achieve the experimental

fourth-order of accuracy in some experiments with smooth solutions we will give a
special treatment of the cells that are near extrema (see conditions (4.2)). In fact,
one should require that dnj /ds

n
j = 1 + O((Δx)3) on smooth solutions.

Remark 2. Rj(x;wn) defined in (3.13), with qj(x : wn) described in subsections
3.1, 3.2, and 3.3, has the same shape as the cell-averages {wn

j−1, w
n
j , w

n
j+1}.

3.5. Definition of slopes dn
j in (3.2) so that pj(x; fn) fulfills condi-

tions given in sections 3.2 and 3.3. A few modifications are needed to compute
the nonoscillatory reconstruction from pointvalues for the flux fn

j = f(wn
j ) which is

needed in the Runge–Kutta method with natural continuous extension described in
Levy, Puppo, and Russo [16]. According to (3.2) the degree-three polynomial from
the pointvalues fn

k , k ∈ {j − 2, j − 1, j, j + 1, j + 2}, is given by

pj (x; fn) = fn
j + dnj ·

(
x− xj

Δx

)
+

(
fn
j−1 − 2fn

j + fn
j+1

2

)
·
(
x− xj

Δx

)2

+

(−fn
j−1 + fn

j+1 − 2dnj
2

)
·
(
x− xj

Δx

)3

.(3.14)

To ensure that pj(x; fn) fulfills the requirements of sections 3.2 and 3.3, we define dnj
in the same way as in those sections with the exceptions that

ds1nj = 0, ds2nj =
1

2

(
WCn

j − 8 ·WRn
j

)
, ds3nj =

1

2

(
8 ·WRn

j − 7 ·WCn
j

)
,(3.15)

C1 =

√
3

6
, C2 =

6

12 +
√

3
, WCn

j = fn
j+1 − fn

j−1, WRn
j = fn

j+1 − fn
j ,(3.16)

and cell-averages wn
j are substituted by pointvalues fn

j . The evaluation of ∂f/∂x in

the Runge–Kutta step is performed by θnj
dpj(x;fn)

dx , where θnj is defined as in Liu and
Osher [19]. Thus, we maintain high accuracy and control over oscillations.

4. Numerical experiments. In order to verify the behavior and accuracy of
the numerical schemes that are presented in this paper, several test-type problems
with known analytical solution are solved next. Time integrals are performed by a
Taylor expansion (Taylor-upwind and Taylor-central schemes) or by the fourth-order
Runge–Kutta method with natural continuous extensions developed in Levy, Puppo,
and Russo [16] (RK-NCE-central scheme). In this last case the reconstruction defined
in section 3.5 will also be used.

Problem 1. We solve the linear transport equation

∂u(x, t)

∂t
+

∂u(x, t)

∂x
= 0, −1 ≤ x ≤ 1,(4.1)

subject to 2-periodic initial data, u(x, 0) = u0(x). To verify the accuracy of the
numerical schemes, different u0(x) functions have been used.



466 ÁNGEL BALAGUER AND CARLOS CONDE

Table 4.1

Linear transport equation (4.1) with u0(x) = sin(π x). Errors at T = 10.

(a) Taylor-upwind scheme, with Δt = 0.8Δx.

NX L1 error L1 order L∞ error L∞ order
40 3.071427 10−5 4.14 2.498590 10−5 4.16
80 1.746260 10−6 4.05 1.396909 10−6 4.06
160 1.056129 10−7 4.02 8.374969 10−8 4.02
320 6.529029 10−9 5.152456 10−9

(b) Taylor-central scheme, with Δt = 0.4Δx.

NX L1 error L1 order L∞ error L∞ order
40 5.558861 10−5 4.10 7.473019 10−5 4.02
80 3.231451 10−6 4.14 4.594014 10−6 3.86
160 1.836719 10−7 4.09 3.153211 10−7 3.87
320 1.076991 10−8 2.155580 10−8

(c) RK-NCE-central scheme, with Δt = 0.25Δx.

NX L1 error L1 order L∞ error L∞ order
40 1.531422 10−4 4.18 1.689413 10−4 4.35
80 8.423959 10−6 4.06 8.305782 10−6 4.02
160 5.053152 10−7 4.06 5.130312 10−7 3.97
320 3.034160 10−8 3.280898 10−8

The first function is u0(x) = sin(π x). Table 4.1 shows the errors and the exper-
imental order of accuracy in L1 and L∞ norms at time T = 10. NX indicates the
total number of cells so that the step size Δx = 2/NX. Using a Taylor expansion for
the time evolution, we have selected a time step so that Δt = 0.8Δx in the upwind
scheme, whereas in the central scheme Δt = 0.4Δx. When we use a RK-NCE-central
scheme, Δt = 0.25Δx as in Levy, Puppo, and Russo [16]. Table 4.1 shows that nu-
merical schemes described in this paper are about fourth-order accuracy in L1 and
L∞ norms, which is an improvement over the schemes described in Liu and Osher
[19] and Liu and Tadmor [20], which are third-order schemes.

The second initial condition chosen is u0(x) = sin4(π x). Table 4.2 shows the
errors in L1 and L∞ norms at time T = 10. The schemes presented here maintain
the fourth-order accuracy, even with finer grids, without the need of satisfying the
local maximum principle described in Liu and Osher [19]. The nonconsideration of
that local maximum principle implies that the θj that appear in formula (3.13) take
a value equal to 1 in all the cells with extrema points (see Liu and Osher [19]). To
improve the accuracy of the numerical schemes presented in this paper, in the results
shown in Table 4.2 we have added two additional requirements (see Remark 1):

If wn
j−1 < wn

j > wn
j+1 ⇒ dnj−1 = dsnj−1, dnj+1 = dsnj+1.

If wn
j−1 > wn

j < wn
j+1 ⇒ dnj−1 = dsnj−1, dnj+1 = dsnj+1.(4.2)

Thus, we avoid the slope dnj taking a value close to WCn
j /2 in the neighboring cells

to those containing the extrema points of the solution. Remember that with such a
slope, qj(x;wn) coincides with a conservative quadratic polynomial. As mentioned in
Remark 1, parameter θnj is defined in such a way that (1− θnj ) is proportional to the
interface jump of the cell centered in xj . Conditions (4.2) cause the interface jump to
be lower at the boundary of cells with extrema points.

The third initial condition is a discontinuous 2-periodic function that was used
in Balsara and Shu [2]. This is a severe problem since it consists of a combination of
functions that are not smooth, with other ones, which are smooth, but with a high
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Table 4.2

Linear transport equation (4.1) with u0(x) = sin4(π x). Errors at T = 10.

(a) Taylor-upwind scheme, with Δt = 0.8Δx.

NX L1 error L1 order L∞ error L∞ order
80 2.430672 10−4 4.16 2.937589 10−4 4.17
160 1.362647 10−5 4.04 1.636374 10−5 3.93
320 8.262462 10−7 4.01 1.075533 10−6 4.06
640 5.110279 10−8 6.461631 10−8

(b) Taylor-central scheme, with Δt = 0.4Δx.

NX L1 error L1 order L∞ error L∞ order
80 3.499147 10−4 4.14 5.062172 10−4 4.49
160 1.977973 10−5 4.06 2.258267 10−5 3.96
320 1.189089 10−6 3.99 1.454815 10−6 4.06
640 7.460379 10−8 8.713768 10−8

(c) RK-NCE-central scheme, with Δt = 0.25Δx.

NX L1 error L1 order L∞ error L∞ order
80 1.052742 10−3 4.15 1.637417 10−3 4.60
160 5.930366 10−5 4.07 6.747230 10−5 4.02
320 3.535521 10−6 3.98 4.154436 10−6 4.03
640 2.237979 10−7 2.539025 10−7

gradient in zones close to the peaks. The initial condition is given by

u0(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
6 (G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)), −0.8 ≤ x ≤ −0.6,

1, −0.4 ≤ x ≤ −0.2,
1 − |10 (x− 0.1)|, 0 ≤ x ≤ 0.2,

1
6 (F (x, α, a− δ) + F (x, α, a + δ) + 4F (x, α, a)), 0.4 ≤ x ≤ 0.6,

0 otherwise

(4.3)

defined as

G(x, β, z) = e−β(x−z)2 , F (x, α, a) =
√

Max (1 − α2(x− a)2, 0).(4.4)

The constants that appear in (4.3) and (4.4) are given by

a = 0.5; z = −0.7; δ = 0.005; α = 10; β =
log(2)

36δ2
.(4.5)

Figure 4.1 shows the numerical results obtained at time T = 20, with the Taylor-
central scheme developed in this paper, comparing the numerical solution with the
analytical solution which is represented by a continuous line. Unlike the solutions pre-
sented in Balsara and Shu [2], here we have considered a coarser grid with NX = 500.
This shows the greater accuracy of our scheme, in comparison with the conservative
quadratic polynomial developed in Liu and Osher [19], in particular at the peaks of
the Gaussian curve and in the triangle. In addition, the profiles are more symmetrical
than those computed in Levy, Puppo, and Russo [16], and the values of the numerical
solution are bounded by the maximum and minimum of the initial condition despite
not using the maximum principle property given in Liu and Osher [19]. This is a con-
dition that is not fulfilled when qj(x;wn) is replaced by the two-degree polynomial
used in this reference. Previous remarks for the Taylor-central scheme are also valid
for the Taylor-upwind and RK-NCE-central schemes.

The last initial condition is given by

u0(x + 0.5) =

⎧⎨
⎩

−x sin
(

3
2π x2

)
if − 1 < x < − 1

3 ,
|sin(2π x)| if |x| ≤ 1

3 ,
2x− 1 − sin(3π x )/6, if 1

3 < x ≤ 1,
(4.6)
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Fig. 4.1. Numerical and analytical solutions of problem 1 at T = 20 with u0(x) defined by
(4.3)–(4.5), considering a grid with NX = 500. We have used the Taylor-central scheme, with
Δt = 0.45Δx.
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Fig. 4.2. Numerical and analytical solutions of Problem 1 at T = 2 with u0(x) defined by
(4.6), considering NX = 120 and Δt = 0.4Δx. The solution marked with has been computed by
our Taylor-central scheme. The solution marked with × is the solution obtained considering that
qj(x;wn) coincides with the quadratic polynomial of Liu and Osher [19] and Liu and Tadmor [20].

supposing that it extends to the entire 2-period domain.

Condition (4.6) consists of a function highly discontinuous, used in the numerical
experiments developed in Harten [9]. Figure 4.2 shows the results obtained at T = 2,
with NX = 120, comparing the results obtained with our Taylor-central scheme and
those in which qj(x;wn) is the conservative two-degree polynomial used in Liu and
Osher [19] and Liu and Tadmor [20]. It can be observed that the greater accuracy of
our schemes is especially noted around the discontinuities. On the other hand, the



FOURTH-ORDER NONOSCILLATORY CENTRAL SCHEMES 469

Table 4.3

Errors in the resolution of Burgers’s equation with conditions (4.7) at T = 0.3.

(a) Taylor-upwind scheme, with Δt = 0.6Δx.

NX L1 error L1 order L∞ error L∞ order
80 2.551210 10−6 4.02 1.018463 10−5 4.06
160 1.567119 10−7 4.01 6.108933 10−7 3.94
320 9.734252 10−9 4.00 3.988465 10−8 4.07
640 6.090892 10−10 3.95 2.370593 10−9 3.37
1280 3.947035 10−11 2.291545 10−10

(b) Taylor-central scheme, with Δt = 0.33Δx.

NX L1 error L1 order L∞ error L∞ order
80 1.536227 10−6 4.18 8.083824 10−6 4.22
160 8.454566 10−8 4.10 4.340597 10−7 4.18
320 4.916180 10−9 4.07 2.392437 10−8 4.10
640 2.935978 10−10 3.99 1.393063 10−9 4.13
1280 1.846273 10−11 7.967693 10−11

(c) RK-NCE-central scheme, with Δt = 0.18Δx.

NX L1 error L1 order L∞ error L∞ order
80 2.703482 10−6 4.18 1.875872 10−5 4.22
160 1.496377 10−7 4.21 1.006314 10−6 4.24
320 8.089214 10−9 4.17 5.322066 10−8 4.33
640 4.495486 10−10 4.12 2.641527 10−9 4.13
1280 2.589858 10−11 1.506755 10−10

numerical solution is delimited by the maximum and minimum of the initial condition
without the need of satisfying the local maximum principle of Liu and Osher [19].

Problem 2. Burgers’ equation is solved with 2-periodic initial data:

∂u(x, t)

∂t
+

∂
(

1
2u

2(x, t)
)

∂x
= 0, −1 ≤ x ≤ 1, u (x, 0) = 1 +

1

2
sin(πx).(4.7)

Recall that the analytical solution of this problem is smooth up to the critical time
T = 2/π. Liu and Osher [19] and Liu and Tadmor [20] show the results obtained
using a parabolic reconstruction at T = 0.3. Table 4.3 presents the numerical errors
obtained with our schemes, together with the experimental order of accuracy at T =
0.3. Our schemes (upwind and central) have an order of accuracy which is about 4
in both L1 and L∞ norms. However, the maximum order obtained with the schemes
described by Liu and Osher [19] (Taylor-upwind scheme, Δt = 0.6Δx) and Liu and
Tadmor [20] (Taylor-central scheme, Δt = 0.33Δx) is lower than 2.3 in the L∞ norm
and lower than 2.87 in the L1 norm. In the RK-NCE-central scheme we have chosen
Δt = 0.18Δx as in Levy, Puppo, and Russo [16].

At T = 1.1 the analytical solution of problem (4.7) develops a discontinuity. Our
numerical scheme maintains an order of accuracy of about 4 when the errors are
calculated at a distance equal to 0.1 away from the discontinuity. Figure 4.3(a) shows
the result obtained with our Taylor-central scheme. Like in the scheme developed in
Liu and Tadmor [20], the numerical solution is not bounded by the maximum and
minimum of the analytical solution. In order to obtain this property it is necessary
to add the maximum principle requirement described in Liu and Osher [19], as we
can see in Figure 4.3(b). However, without the condition of maximum principle,
the numerical solution retains results of the same quality as the analytical solution.
Previous remarks are also valid for the Taylor-upwind and RK-NCE-central schemes.

Problem 3. Here we apply the schemes developed in this paper to Buckley–
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Fig. 4.3. Numerical and analytical solutions of Problem 2 at T = 1.1, with our Taylor-central
scheme, considering a grid with NX = 80 and Δt = 0.33Δx. (a) Not using the local maximum
principle. (b) Using the local maximum principle.

Leverett’s problem, whose flux is nonconvex:

∂u

∂t
+

∂f(u)

∂x
= 0, −1 ≤ x ≤ 1, f(u) =

4u2

4u2 + (1 − u)2
(4.8)

subject to the initial condition

u0(x) =

{
1 x ∈ [−0.5, 0],
0 otherwise.

(4.9)

Similarly to Liu and Osher [19] and Jiang et al. [11], we have computed the solution
at T = 0.4 with our Taylor-upwind and central schemes. Figure 4.4 shows the results
obtained with NX = 80. In contrast to the scheme described in Liu and Osher [19],
our Taylor-upwind scheme presents instabilities in the solution of the problem (4.8)–
(4.9) for Δt = 0.3Δx. However, it presents very accurate solutions when Δt = 0.25Δx.
Moreover, the condition of the local maximum principle described in Liu and Osher
[19] has not been necessary, as shown in Figure 4.4(a). The central schemes described
in this paper provide smoother solutions than the upwind scheme for the resolution of
the problem under study (Figures 4.4(a)–4.4(b)), although the three schemes present
a similar behavior.

Euler equations of gas dynamics. We test our schemes on the system of
Euler equations of gas dynamics for a gas with γ = 1.4. We consider a problem with
smooth analytical solution and the two Riemann problems studied in Liu and Tadmor
[20]. The variables ρ,m,E denote the density, momentum, and total energy per unit
volume, respectively. Moreover, p denotes the pressure and v denotes the velocity.

Problem 4. The initial condition is set to be ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) =
1, p(x, 0) = 1, with 2-periodic boundary conditions, −1 ≤ x ≤ 1. The exact solution
is ρ(x, t) = 1 + 0.2 sin(π(x− t)), v = 1, p = 1. We compute the solution at T = 2 as
in Qiu and Shu [22], using our RK-NCE-central scheme with the componentwise re-
construction described in this paper. Table 4.4 shows the results obtained considering
Δt = 0.1Δx. We can see that our scheme achieves its designed order of accuracy.
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Fig. 4.4. Numerical and analytical solutions of Problem 3 at T = 0.4, using a grid with NX =
80. (a) Taylor-upwind scheme with Δt = 0.25Δx. (b) Taylor-central scheme with Δt = 0.1Δx.

Table 4.4

Errors of density in the resolution of Problem 4 at T = 2.

RK-NCE-central scheme, with Δt = 0.1Δx.
NX L1 error L1 order L∞ error L∞ order
40 9.910941 10−6 4.53 7.147074 10−6 4.53
80 3.870207 10−7 4.26 3.083984 10−7 4.27
160 2.020669 10−8 4.10 1.601040 10−8 4.11
320 1.178203 10−9 4.04 9.296230 10−10 4.04
640 7.181752 10−11 5.656586 10−11

Problem 5. Shock tube problem with Sod’s initial data [24]:{
(ρl,ml, El) = (1, 0, 2.5), x < 0.5,
(ρr,mr, Er) = (0.125, 0, 0.25), x > 0.5.

Problem 6. Shock tube problem with the Lax’s initial data [14]:{
(ρl,ml, El) = (0.445, 0.311, 8.928), x < 0.5,
(ρr,mr, Er) = (0.5, 0, 1.4275), x > 0.5.

In Problems 5 and 6 the computational domain is [0, 1]. We integrate the equa-
tions to T = 0.16, i.e., before the perturbations reach the boundary of the compu-
tational region (free flow boundary conditions). We compute the numerical solution
with our RK-NCE-central scheme, using the componentwise reconstruction described
in this paper. In Figure 4.5 we plot the computed solution with NX = 200 grid
points as in Liu and Tadmor [20]. We observe the improved resolution in comparison
to the corresponding third-order central results of that reference. However, our so-
lutions present more oscillations, which is in agreement with what is commented on
in [22]. Qiu and Shu [22] conclude that the componentwise central WENO scheme
will become more oscillatory when the order of accuracy increases. Qiu and Shu [22]
also observe that the oscillations disappear when the reconstruction is performed on
characteristic variables. It is conceivable to expect that the same thing will happen
with the new reconstruction proposed in this paper. This will be explored in some
future work.
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Fig. 4.5. Numerical and analytical solutions of Euler equations for Problems 5 and 6 at time
T = 0.16, with our RK-NCE-central scheme, considering a grid with NX = 200. We have considered
that Δt = 0.1Δx in the Sod problem and Δt = 0.09Δx in the Lax problem.

5. Conclusions. This paper presents a new fourth-order nonoscillatory recon-
struction procedure for upwind and central schemes that solves hyperbolic conserva-
tion laws in one spatial dimension, improving the accuracy of the schemes developed
in Liu and Osher [19] and Liu and Tadmor [20]. We have proved that our schemes are
number of extrema decreasing and this implies convergence along the lines of Liu and
Tadmor [20]. Numerical experiments have shown that our schemes are fourth-order
accurate, conservative, and nonoscillatory, presenting good behavior without the need
of satisfying the local maximum principle described in Liu and Osher [19]. Future re-
search will extend these schemes to several spatial variables. We also may study the
linear stability of these schemes by a procedure similar to that developed in Bianco,
Puppo, and Russo [3].

Acknowledgments. We express our gratitude to the four anonymous reviewers
for their helpful comments. We thank Dr. Arturo Hidalgo López for his suggestions.
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CONVERGENCE OF A NUMERICAL SCHEME
FOR STRATIGRAPHIC MODELING∗

R. EYMARD† , T. GALLOUËT‡ , V. GERVAIS§ , AND R. MASSON§

Abstract. In this paper, we consider a multilithology diffusion model used in the field of
stratigraphic basin simulations to simulate large scale depositional transport processes of sediments
described as a mixture of L lithologies. This model is a simplified one for which the surficial fluxes
are proportional to the slope of the topography and to a lithology fraction with unitary diffusion
coefficients.

The main variables of the system are the sediment thickness h, the L surface concentrations csi
in lithology i of the sediments at the top of the basin, and the L concentrations ci in lithology i of
the sediments inside the basin. For this simplified model, the sediment thickness decouples from the
other unknowns and satisfies a linear parabolic equation. The remaining equations account for the
mass conservation of the lithologies, and couple, for each lithology, a first order linear equation for
csi with a linear advection equation for ci for which csi appears as an input boundary condition. For
this coupled system, a weak formulation is introduced.

The system is discretized by an implicit time integration and a cell centered finite volume method.
This numerical scheme is shown to satisfy stability estimates and to converge, up to a subsequence,
to a weak solution of the problem.

Key words. finite volume method, stratigraphic modeling, linear first order equations, conver-
gence analysis, weak formulation

AMS subject classifications. 35M10, 35Q99, 65M12

DOI. 10.1137/S0036142903426208

1. Introduction. Recent progress in geosciences, and more especially in seismic-
and sequence-stratigraphy, have improved the understanding of sedimentary basins
infill. Indeed, the sediment’s architecture is the response to complex interactions
between the available space created in the basin by sea level variations, tectonic,
compaction, the sediment supply (boundary fluxes, sediment production), and the
transport of the sediments at the surface of the basin. In order to have a quantified
view of this response and to determine the relative influence of each involved process,
stratigraphic models have been developed.

Among basin infill models considering the dynamics of sediment transport, au-
thors usually distinguish between fluid-flow and dynamic-slope models (see [14], [15]).
The first ones use fluid-flow equations and empirical algorithms to simulate the trans-
port of sediments in the hydrodynamic flow field (see, e.g., [16]). They provide an
accurate description of depositional processes for small scales in time and space, but,
at larger scale’s such as basin scales, they are computationally too expensive.

Dynamic-slope models use mass conservation equations of sediments combined
with diffusive transport laws. These laws do not describe each geological process
in detail but average over these processes (river transport, creep, slumps, and small
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slides). One can refer to [1], [7], [8], [10], [14], and [17] for a detailed description of
these models. The dynamic-slope models have been shown to offer a good description
of sedimentation and erosion processes for large time scales (greater than 104 y) and
basin space scales (greater than 1 km).

We consider here a dynamic-slope model simulating the evolution of a sedimentary
basin in which sediments are modeled as a mixture of several lithologies i = 1, . . . , L
characterized by different grain size populations. The surficial transport process is a
multilithology diffusive model introduced in [14], for which the fluxes are proportional
to the slope of the topography and to a lithology fraction csi of the sediments at
the surface of the basin (see also [9] and [5]). In what follows, a simplified model
is considered for which the diffusion coefficients are taken equal to one. It results
that the sediment thickness variable h is decoupled from the other unknowns of the
system (i.e., for each lithology, the surface concentration csi and the concentration ci
in lithology i of the sediments in the basin) and satisfies a linear parabolic equation.

The remaining equations accounting for the mass conservation of the lithologies
couple, for all i = 1, . . . , L, a first order linear equation for the surface concentration
variable csi and a linear advection equation for the basin concentration variable ci for
which csi appears as an input boundary condition at the top of the basin. In order to
cope with the difficulty of defining the trace of the basin concentration ci at the top
of the basin, an original weak formulation is introduced for this coupled problem.

The system is discretized by an implicit integration in time and a cell centered
finite volume scheme in space. The objective of this article is to prove, under Hy-
pothesis 1, the convergence of the approximate solutions for the sediment thickness
variable h and for the concentration variables csi , ci, i = 1, . . . , L, up to a subsequence,
to a weak solution of problem (2.7) in the sense of Definition 2.1 as the mesh size and
time step tend to 0. We state this result in Theorem 3.3 in section 3, after presenting
the mathematical model, the weak formulation, and the finite volume scheme.

Regarding the coupling between the parabolic equation for h and the first order
linear equations for the variables csi , i = 1, . . . , L, our model shares some common
features with two phase Darcy flows for which such coupling between an elliptic or
parabolic equation and a hyperbolic equation also comes in. The convergence of var-
ious numerical schemes for such models have been the subject of several studies. For
example, one can refer to [12] for finite differences, to [2] and [3] for mixed and hybrid
finite element methods, to [4] for the control volume finite element discretization, and
to [19], [18], and [6] for the cell centered finite volume scheme.

The main originality of this work is rather concerned with the coupling between
the surface and the basin concentration variables.

The remaining of the paper outlines as follows. The mathematical model and
its weak formulation are defined in section 2, and the fully implicit finite volume
discretization is derived in section 3. In section 4, stability and error estimates on
the discrete solution for the sediment thickness and its time derivative are obtained.
Finally, the convergence of the approximate solutions to a weak solution of the problem
is proved in section 5.

2. Mathematical model and weak formulation. A basin model specifies the
geometry defined by the basin horizontal extension, the position of its base due to
vertical tectonics displacements, and the sea level variations. It provides a description
of the sediments considered as a mixture of different lithologies such as sand or shale.
Finally, it specifies the sediment transport laws and their coupling, as well as the
sediment fluxes at the boundary of the basin (boundary conditions).
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In this paper, the multilithology diffusion model described in [14], [9], and [5] is
studied in a simplified case for which the diffusion coefficients of the lithologies are
equal (to one to fix ideas). Also, for the sake of simplicity, the tectonics displacements
as well as the sea level variations are not considered in what follows.

The projection of the basin on a reference horizontal plane is considered as a fixed
domain Ω ⊂ R

d, defining the horizontal extension of the basin, with d = 1 for two
dimensional basin models and d = 2 for three dimensional models.

We denote by h the sediment thickness variable defined on the domain D = Ω×R
∗
+

and by B the domain {(x, z, t) such that (x, t) ∈ D, z < h(x, t)}.
The sediments are modeled as a mixture of L lithologies characterized by their

grain size population. Each lithology, i = 1, . . . , L, is considered as an uncompressible
material of constant grain density and null porosity. On each point of the basin, the
mixture is described by its composition given by the concentrations ci, defined on B,
and such that ci ≥ 0 for i = 1, . . . , L, and

∑L
i=1ci = 1.

The model assumes that the sediment fluxes are nonzero only at the surface of
the basin (i.e., for z = h). The sediments transported by these surficial fluxes, i.e.,
which are deposited at the surface of the basin in case of sedimentation, or which
pass through the surface in case of erosion, are characterized by their concentrations
denoted by csi , defined on D, and such that csi ≥ 0 for i = 1, . . . , L, and

∑L
i=1c

s
i = 1.

Since the compaction is not considered, no change in time of the concentration ci
can occur inside the basin. It results that ∂tci = 0 on B. The evolution of ci is governed
by the boundary condition at the top of the basin stating that ci|z=h = csi in the case
of sedimentation ∂th > 0. Let D+ denote the domain {(x, t) ∈ D such that ∂th(x, t) >
0}; then ci satisfies the conservation equation;{

∂tci = 0 on B,
ci|z=h = csi on D+.

(2.1)

The conservation of the thickness fraction in lithology i

Mi(x, t) =

∫ h(x,t)

0

ci(x, z, t)dz, (x, t) ∈ D,(2.2)

with
∑L

i=1 Mi = h, states that for all i = 1, . . . , L

{
∂tMi + div fi = 0 on D,∑L

i=1 c
s
i = 1 on D.

(2.3)

In the multilithology diffusive model described in [14], the flux fi is proportional to the
gradient of the topography h and to the concentration csi , with a diffusion coefficient
ki. In what follows, we shall restrict ourselves to the simplified case ki = 1 for all
i = 1, . . . , L, i.e., fi := −csi∇h, so that the sediment thickness variable h decouples
from the concentrations and satisfies a linear parabolic equation (see (2.6)).

Neumann boundary conditions are imposed to h on ∂Ω × R
∗
+,

∇h · �n = g on ∂Ω × R
∗
+,

with �n the unit normal vector to ∂Ω, outward to Ω, and Dirichlet boundary conditions
are prescribed to the surface concentrations

csi = c̃i on Σ+,

with Σ+ = {(x, t) ∈ ∂Ω×R
∗
+, g(x, t) > 0}, c̃i ≥ 0 for all i = 1, . . . , L, and

∑L
i=1 c̃i = 1.
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Initial conditions are prescribed to the sediment thickness such that h|t=0 = h0

on Ω, and to the basin concentrations such that ci|t=0 = c0i on the domain {(x, z), x ∈
Ω, z < h0(x)}, with c0i ≥ 0 for all i = 1, . . . , L, and

∑L
i=1 c

0
i = 1.

In the following, we shall consider the new coordinate system for which the vertical
position of a point in the basin is measured downward from the top of the basin,
i.e., given by the change of variable (x, ξ, t) = (x′, h(x′, t′) − z, t′). In this coordinate
system, let ui(x, ξ, t) = ci(x, h(x, t)−ξ, t) on Ω×R

∗
+×R

∗
+ and u0

i (x, ξ) = c0i (x, h
0(x)−

ξ, t) on Ω × R
∗
+. Gathering all the equations, we obtain the following multilithology

diffusive model:

surface conservations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui|ξ=0 ∂th + div(−csi∇h) = 0 on D,∑L
i=1c

s
i = 1 on D,

∇h · �n|∂Ω×R∗
+

= g on ∂Ω × R
∗
+,

csi |Σ+ = c̃i on Σ+,
h|t=0 = h0 on Ω,

(2.4)

column conservations:

⎧⎨
⎩

∂tui + ∂th ∂ξui = 0 on Ω × R
∗
+ × R

∗
+,

ui|ξ=0 = csi on D+,
u0
i |t=0 = u0

i on Ω × R
∗
+,

(2.5)

where we have taken into account the equality ∂tMi = ui|ξ=0 ∂th on D which derives
formally from the definition (2.2) and the equation ∂tci = 0 on B.

For this simplified model, summing (2.4) over i = 1, . . . , L, it appears that the
variable h satisfies the parabolic equation

⎧⎨
⎩

∂th− Δh = 0 on Ω × R
∗
+,

∇h · �n|∂Ω×R∗
+

= g on ∂Ω × R
∗
+,

h|t=0 = h0 on Ω,

(2.6)

while the remaining concentration variables (csi , ui) verify, for each i = 1, . . . , L, the
system of equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui|ξ=0 ∂th + div(−csi∇h) = 0 on D,
csi |Σ+

= c̃i on Σ+,
∂tui + ∂th ∂ξui = 0 on Ω × R

∗
+ × R

∗
+,

ui|ξ=0 = csi on D+,
ui|t=0 = u0

i on Ω × R
∗
+.

(2.7)

The sediment thickness variable is decoupled from the concentrations variables and
satisfies the linear system (2.6). The solution of this system is then used in problem
(2.7), which is linear with respect to the variables csi and ui.

In what follows, the following assumptions are made on the data.

Hypothesis 1.

(i) Ω is an open bounded subset of R
d, of class C∞,

(ii) h0 ∈ C2(Ω̄),
(iii) g ∈ C1(∂Ω × R+) ∩ L2(∂Ω × R+),
(iv) g and h0 are chosen according to the assumptions of Theorem 5.3 of [11, p.

320] so that the unique solution h of (2.6) is in C2(Ω̄ × [0, T ]) for all T > 0,

(v) c̃i ∈ L∞(Σ+) with c̃i ≥ 0 for i = 1, . . . , L, and
∑L

i=1 c̃i = 1,

(vi) u0
i ∈ L∞(Ω × R

∗
+), u0

i ≥ 0 for i = 1, . . . , L, and
∑L

i=1 u
0
i = 1.
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In the following, we shall denote by C∞
c (Rn) the space of real valued functions

{ϕ ∈ C∞(Rn) | supp(ϕ) bounded in R
n}.

To obtain a rigorous mathematical formulation of (2.7), we are looking for weak
solutions defined as follows for all i = 1, . . . , L.

Definition 2.1. Let us assume that Hypothesis 1 holds and let h denote the
solution of problem (2.6). Then (csi , ui) ∈ L∞(Ω×R

∗
+)×L∞(Ω×R

∗
+ ×R

∗
+) is said to

be a weak solution of (2.7) if it satisfies (i) for all ϕ ∈ A = {v ∈ C∞
c (Rd+2) | v(., 0, .) =

0 on D \ S+}
∫

Ω

∫
R+

∫
R+

[
∂tϕ(x, ξ, t) + ∂th(x, t) ∂ξϕ(x, ξ, t)

]
ui(x, ξ, t) dt dξ dx

+

∫
Ω

∫
R+

u0
i (x, ξ)ϕ(x, ξ, 0) dξ dx +

∫
Ω

∫
R+

∂th(x, t)csi (x, t)ϕ(x, 0, t) dt dx = 0,
(2.8)

(ii) for all ψ ∈ A0 = {v ∈ C∞
c (Rd+2) | v(., 0, .) = 0 on ∂Ω × R

∗
+ \ Σ+}

−
∫

Ω

∫
R+

∫
R+

[
∂tψ(x, ξ, t) + ∂th(x, t) ∂ξψ(x, ξ, t)

]
ui(x, ξ, t) dt dξ dx

−
∫

Ω

∫
R+

u0
i (x, ξ)ψ(x, ξ, 0) dξ dx +

∫
R+

(∫
Ω

csi (x, t)∇h(x, t) · ∇ψ(x, 0, t) dx

−
∫
∂Ω

c̃i(x, t)g(x, t)ψ(x, 0, t)dγ(x)

)
dt = 0.

(2.9)

3. Finite volume scheme. The system (2.4)–(2.5) is discretized by a fully
implicit time integration and a finite volume method with cell centered variables. We
shall consider in what follows admissible meshes according to the following definition.

Definition 3.1 (admissible meshes). Let Ω be a bounded domain of R
d, d = 1 or

2. In the following, m(.) will be used to denote a measure on Rd equal to the Lebesgue
measure if d ≥ 1, and, if d = 0, the measure of a point is set to one and the measure
of the empty set to zero. An admissible finite volume mesh of Ω for the discretization
of problem (2.4)–(2.5) is given by a family of “control volumes,” denoted by K, which
are open disjoint subsets of Ω, and a family of points of Ω, denoted by P, satisfying
the following properties:

(i) The closure of the union of all the control volumes of K is Ω̄.

(ii) For any κ, κ′ ∈ K with κ �= κ′, either the (d − 1)-dimensional measure
m(κ̄ ∩ κ̄′) is null, or it is strictly positive and κ̄ ∩ κ̄′ is included in a hyperplane of
R

d. In the following, we will denote by Σint the family of subsets σ of Ω contained in
hyperplanes of R

d with strictly positive measures, and such that there exist κ, κ′ ∈ K
with m(κ̄ ∩ κ̄′) > 0 and σ̄ = κ̄ ∩ κ̄′. We shall also denote by κ|κ′ ∈ Σint the edge
between the cells κ and κ′.

(iii) The family P = (xκ)κ∈K is such that xκ ∈ κ̄ (for any κ ∈ K), and, if
σ = κ|κ′, it is assumed that xκ �= xκ′ and that the straight line going through xκ and
xκ′ is orthogonal to the edge κ|κ′.

(iv) For any κ ∈ K, there exists a subset Σκ of Σint such that ∂κ \ ∂Ω = κ̄ \ (κ ∪
∂Ω) = ∪σ∈Σκ

σ̄.

We shall denote by (K,Σint,P) this admissible mesh.
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Let (K,Σint,P) be an admissible mesh of Ω in the sense of Definition 3.1. In
what follows, δK = sup {diam(κ), κ ∈ K} will denote the mesh size of (K,Σint,P),
|κ| (resp., |σ|, |∂κ ∩ ∂Ω|) is the d-dimensional measure of the cell m(κ) (resp., the
(d − 1)-dimensional measure m(σ), m(∂κ ∩ ∂Ω)), Kκ the set of neighboring cells of
κ (excluding κ), Tκκ′ = Tσ the transmissibility of the edge σ = κ|κ′, defined by

Tκκ′ := |σ|
d(κ,κ′) with d(κ, κ′) the distance between the points xκ and xκ′ , reg(K) the

geometrical factor defined by reg(K) = maxσ∈ Σint
σ=κ|κ′

δK
d(κ,κ′) , and �nκκ′ the unit normal

vector to σ = κ|κ′ outward to κ.
We shall also denote by X(K) the set of real valued functions on Ω which are

constant over each control volume of the mesh and, for any subset O of R
d, by χO

the function on R
d equal to one on O and null elsewhere. Finally, for any function f ,

let us define f+ = max(f, 0) ≥ 0, f− = −min(f, 0) ≥ 0, such that f = f+ − f−, and
|f | = f+ + f−.

Following [6], we shall use the discrete seminorm defined as follows.
Definition 3.2 (discrete H1 seminorm). Let Ω be an open bounded subset of R

d,
d = 1 or 2, and (K,Σint,P) be an admissible finite volume mesh of Ω in the sense of
Definition 3.1. For u ∈ X(K), the discrete H1 seminorm of u is defined by

|u|1,K =

( ∑
σ∈Σint

Tσ(Dσu)2

) 1
2

,

where uκ is the value of u in the control volume κ and Dσu = |uκ−uκ′ | with σ = κ|κ′.
Remark 1. Let (K,Σint,P) be an admissible mesh of Ω in the sense of Definition

3.1 and |Ω| denote the d-dimensional measure of the domain Ω. Considering the d-
dimensional measure of the set of cones of vertex xκ and base σ ∈ Σint ∩ ∂κ for all
κ ∈ K and σ ∈ Σint, one can prove that

∑
σ∈Σint
σ=κ|κ′

|σ| d(κ, κ′) ≤ d |Ω|.(3.1)

The time discretization is denoted by tn, n ∈ N, such that t0 = 0 and Δtn+1 =
tn+1 − tn > 0. In the following, the superscript n, n ∈ N, will be used to denote
that the variables are considered at time tn. Assuming that the set {Δtn |n ∈ N}
is bounded, let Δt denote sup{Δtn |n ∈ N}, and, for a given T > 0, let NΔt be the
integer such that tNΔt < T ≤ tNΔt+1.

Let us now recall the discretization of (2.4)–(2.5) already introduced in [5]. For
all control volumes κ ∈ K, the following initial values are defined:

1. h0
κ is the initial approximation of h in κ defined by h0

κ = h0(xκ).
2. u0

i,κ, for all species i, is the approximation of u0
i on the cell κ, defined by

u0
i,κ(ξ) = 1

|κ|
∫
κ
u0
i (x, ξ) dx for ξ ∈ R

∗
+, and let c0i,κ be defined on (−∞, h0

κ) by c0i,κ(z) =

u0
i,κ(h0

κ − z).
We now give a discretization of (2.4)–(2.5) within a given control volume κ ∈ K

between times tn and tn+1.
Conservation of surface sediments:

ΔMn+1
i,κ

Δtn+1
|κ| +

∑
κ′∈Kκ

cs,n+1
i,κκ′ Tκκ′(hn+1

κ − hn+1
κ′ )

(3.2)
−|∂κ ∩ ∂Ω| c̃n+1

i,κ g(+),n+1
κ + |∂κ ∩ ∂Ω| cs,n+1

i,κ g(−),n+1
κ = 0,



480 R. EYMARD, T. GALLOUËT, V. GERVAIS, AND R. MASSON

L∑
i=1

cs,n+1
i,κ = 1.(3.3)

Conservation of column sediments:

if hn+1
κ ≥ hn

κ

⎧⎨
⎩

ΔMn+1
i,κ = cs,n+1

i,κ (hn+1
κ − hn

κ),

cn+1
i,κ (z) = cni,κ(z), z < hn

κ,

cn+1
i,κ (z) = cs,n+1

i,κ , z ∈ (hn
κ, h

n+1
κ ),

(3.4)

else

{
ΔMn+1

i,κ =
∫ hn+1

κ

hn
κ

cni,κ(z)dz,

cn+1
i,κ (z) = cni,κ(z), z < hn+1

κ .
(3.5)

In (3.2)–(3.5), the following notation is used.
1. hn

κ is the approximation of the sediment thickness h at time tn in κ.
2. cs,n+1

i,κ is the approximation of the surface sediment concentration i at time

tn+1 in κ.
3. The function cni,κ, defined on the column (−∞, hn

κ). is the approximation of
the sediment concentration in lithology i in the column {(x, z), x ∈ κ, z < h(x, tn)}
at time tn.

4. cs,n+1
i,κκ′ is the upstream weighted evaluation of the surface sediment concen-

tration in lithology i at the edge σ between the cells κ and κ′ with respect to the sign
of hn+1

κ − hn+1
κ′ :

cs,n+1
i,κκ′ =

{
cs,n+1
i,κ if hn+1

κ > hn+1
κ′ ,

cs,n+1
i,κ′ otherwise.

5. g
(+),n+1
κ and g

(−),n+1
κ are the following approximations of the boundary fluxes

g+ and g−:

g
(+),n+1
κ =

{
1

Δtn+1
1

|∂κ∩∂Ω|
∫ tn+1

tn

∫
∂κ∩∂Ω

g+(x, t) dγ(x)dt if |∂κ ∩ ∂Ω| �= 0,

0 else,

g
(−),n+1
κ =

{
1

Δtn+1
1

|∂κ∩∂Ω|
∫ tn+1

tn

∫
∂κ∩∂Ω

g−(x, t) dγ(x)dt if |∂κ ∩ ∂Ω| �= 0,

0 else,

and consequently for all κ ∈ K,

gn+1
κ =

1

Δtn+1

1

|∂κ ∩ ∂Ω|

∫ tn+1

tn

∫
∂κ∩∂Ω

g(x, t) dγ(x)dt = g(+),n+1
κ − g(−),n+1

κ .

6. c̃n+1
i,κ is the approximation of c̃i extended by 0 on (∂Ω × R

∗
+) \ Σ+:

c̃n+1
i,κ =

{
1

Δtn+1
1

|∂κ∩∂Ω|
∫ tn+1

tn

∫
∂κ∩∂Ω

c̃i(x, t)dγ(x)dt if |∂κ ∩ ∂Ω| �= 0,

0 else,

and it results that c̃n+1
i,κ ∈ [0, 1].

Considering the coordinate system ξ = hn
κ − z, the function un

i,κ is defined for all
κ ∈ K, n ≥ 0, and i = 1, . . . , L by

un
i,κ(ξ) = cni,κ(hn

κ − ξ) for all ξ ∈ R
∗
+.(3.6)
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Let us note that, to obtain a fully discrete scheme, the initial condition u0
i,κ(ξ)

is projected for each κ on a piecewise constant finite element subspace of L∞(R∗
+).

Then, the scheme (3.4)–(3.5) generates a piecewise constant approximation of un
i,κ(ξ)

on each cell κ for all i = 1, . . . , L, with time-dependent mesh sizes in the direction ξ.

For the sake of simplicity, it is assumed in the remainder of this article that
Δt = Δtn for all n ≥ 1, although all the results presented in what follows readily
extend to variable time steps.

In sections 4 and 5, we shall prove, for all n ≥ 0, the existence of solutions (hn
κ)κ∈K,

(cs,n+1
i,κ )κ∈K, (cni,κ)κ∈K, and (un

i,κ)κ∈K, i = 1, . . . , L, to problem (3.2)–(3.6). These

solutions are unique except for the surface concentration cs,n+1
i,κ which is arbitrary

(such that
∑L

j=1 c
s,n+1
j,κ = 1) at some degenerate points (κ, n + 1) for which it is

chosen according to Lemma 5.1.

For any admissible mesh (K,Σint,P) of Ω in the sense of Definition 3.1, any time
step Δt > 0, and i = 1, . . . , L, let hK,Δt, c

s
i,K,Δt defined on Ω×R

∗
+ and ui,K,Δt defined

on Ω × R
∗
+ × R

∗
+ denote the functions such that

⎧⎨
⎩

hK,Δt(x, t) = hn+1
κ ,

ui,K,Δt(x, ξ, t) = un+1
i,κ (ξ),

csi,K,Δt(x, t) = cs,n+1
i,κ

(3.7)

for all x ∈ κ, κ ∈ K, t ∈ (tn, tn+1], ξ ∈ R
∗
+, n ≥ 0, where hn

κ, cs,n+1
i,κ , cni,κ are any

given solution of (3.2)–(3.6) chosen according to Lemma 5.1. From Lemma 5.1, the
functions hK,Δt and ui,K,Δt do not depend on the choice of the solution of (3.2)–(3.6).

The aim of this article is then to prove the following theorem.

Theorem 3.3. Hypothesis 1 is assumed to hold. For all m ∈ N, let (Km,Σm
int,Pm)

be an admissible mesh of Ω in the sense of Definition 3.1 and Δtm > 0. Let us assume
that there exists α > 0 such that reg(Km) ≤ α for all m ∈ N, and that Δtm → 0,
δKm√
Δtm

→ 0 as m → ∞.

For all m ∈ N and i = 1, . . . , L, let hKm,Δtm , ui,Km,Δtm denote the unique func-
tions defined by (3.7) and csi,Km,Δtm

be a function defined by (3.7), from any solution
of (3.2)–(3.6) chosen according to Lemma 5.1 with K = Km, Δt = Δtm.

Then, the sequence (hKm,Δtm)m∈N converges to the solution h of problem (2.6)
in L∞(0, T ;L2(Ω)) for all T > 0, and there exists a subsequence of (Km,Δtm)m∈N,
still denoted by (Km,Δtm)m∈N, such that, for all i ∈ {1, . . . , L}, the subsequence
(csi,Km,Δtm

)m∈N (resp., (ui,Km,Δtm)m∈N) converges to a function csi in L∞(Ω × R
∗
+)

(resp., ui in L∞(Ω × R
∗
+ × R

∗
+)) for the weak- topology. Furthermore, for all

i ∈ {1, . . . , L}, the limit (csi , ui) is a weak solution of problem (2.7) in the sense
of Definition 2.1.

This convergence result will be obtained in section 4 for the approximate solution
for the sediment thickness and in section 5 for the approximate concentrations.

4. Stability and convergence for the approximate sediment thickness
and its time derivative. Summing (3.2) over i = 1, . . . , L yields that for all n ∈ N,
the solution (hn+1

κ )κ∈K satisfies the following implicit finite volume discretization of
(2.6):

|κ|h
n+1
κ − hn

κ

Δt
+

∑
κ′∈Kκ

Tκκ′(hn+1
κ − hn+1

κ′ ) − |∂κ ∩ ∂Ω| gn+1
κ = 0,(4.1)
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with h0
κ = h0(xκ). The proof of existence and uniqueness of the solution (hn

κ)κ∈K for
all n ≥ 0 is classical and can be found, e.g., in [6] for any admissible mesh (K,Σint,P)
of Ω.

The following proposition provides estimates of the error on h and its time deriva-
tive. The error estimates on h have already been proved in [6].

Proposition 4.1. Let us assume that Hypothesis 1 holds and let h denote the
solution of problem (2.6). Let (K,Σint,P) be an admissible mesh of Ω in the sense of
Definition 3.1, T > 0, and Δt ∈ (0, T ). For all n ∈ {0, . . . , NΔt + 1}, let (hn

κ)κ∈K
be the solution of (4.1) and enK ∈ X(K) be defined by enK(x) = enκ = h(xκ, t

n) − hn
κ

for all x ∈ κ, κ ∈ K. Then, there exist D1, D2, D3, and D4 > 0 depending only on
‖∇∂th‖L∞(Ω×(0,2T )), ‖h‖L∞(0,2T ;W 2,∞(Ω)), T , and Ω such that

‖enK‖2
L2(Ω) ≤ D1(Δt + δK)2 for all n ∈ {1, . . . , NΔt + 1},(4.2)

NΔt∑
n=0

Δt |en+1
K |21,K ≤ D2 (Δt + δK)2,(4.3)

NΔt∑
n=0

Δt

∥∥∥∥∥
en+1
K − enK

Δt

∥∥∥∥∥
2

L2(Ω)

≤ D3
(δK + Δt)2

Δt
,(4.4)

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

|σ| d(κ, κ′)

(
hn+1
κ′ − hn+1

κ

d(κ, κ′)

− 1

Δt

1

|σ|

∫ tn+1

tn

∫
σ

∇h(x, t) · �nκκ′dγ(x) dt

)2

≤ D4(Δt + δK)2.

(4.5)

Proof. Integrating (2.6) over the control volume κ ∈ K and time interval (tn, tn+1)
for all n ∈ {0, . . . , NΔt}, one obtains

∫ tn+1

tn

∫
κ

∂th(x, t)dxdt−
∫ tn+1

tn

∫
∂κ

∇h(x, t) · �nκdγ(x)dt = 0,(4.6)

where �nκ is the normal unit vector to ∂κ outward to κ. Subtracting (4.1) from
(4.6)/Δt and using the definition of gn+1

κ yield the following equation for the error
en+1
k

:

|κ|e
n+1
κ − enκ

Δt
+

∑
κ′∈Kκ

Tκκ′(en+1
κ − en+1

κ′ ) = −|κ|Pn
κ −

∑
σ∈Σκ

|σ|Rn
κ,σ(4.7)

with the consistency residuals

Rn
κ,σ =

1

Δt

1

|σ|

∫ tn+1

tn

∫
σ

[
h(xκ′ , tn+1) − h(xκ, t

n+1)

d(κ, κ′)
−∇h(x, t) · �nκκ′

]
dγ(x)dt

for all κ ∈ K and σ ∈ Σκ ∩ Σκ′ , and

Pn
κ =

1

Δt

1

|κ|

∫ tn+1

tn

∫
κ

(∂th(x, t) − ∂th(xκ, t)) dxdt for all κ ∈ K.

Thanks to the regularity of h, there exists C1 > 0 depending on ‖∇∂th‖L∞(Ω×(0,2T ))

only such that

|Pn
κ | ≤ C1 δK,(4.8)
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and C2 > 0 depending only on ‖∂t∇h‖L∞(Ω×(0,2T )), and ‖h‖L∞(0,2T ;W 2,∞(Ω)) such
that

|Rn
κ,σ| ≤ C2 (δK + Δt).(4.9)

Then, multiplying (4.7) by en+1
κ and summing over the cells κ ∈ K yield the estimate

∑
κ∈K

|κ|(en+1
κ − enκ)en+1

κ + Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′(en+1
κ − en+1

κ′ )2

= −Δt
∑
κ∈K

|κ|Pn
κ en+1

κ − Δt
∑
κ∈K

∑
σ∈Σκ

|σ|Rn
κ,σ e

n+1
κ .

(4.10)

Let us note that Rκ,σ = −Rκ′,σ for all σ = κ|κ′ ∈ Σint so that Rσ = |Rκ,σ| for σ ∈ Σκ

can be defined for all σ ∈ Σint. Then, using in (4.10) the equality (en+1
κ − enκ) en+1

κ =
1
2

[
(en+1

κ )2−(enκ)2+(en+1
κ −enκ)2

]
, Young’s inequality, (3.1), (4.8), and (4.9), we obtain

‖en+1
K ‖2

L2(Ω) + Δt |en+1
K |21,K ≤ ‖enK‖2

L2(Ω)

+Δt C3 (Δt + δK) ‖en+1
K ‖2

L2(Ω) + Δt C4 (δK + Δt)2,
(4.11)

with C3 and C4 depending only on ‖∇∂th‖L∞(Ω×(0,2T )), ‖h‖L∞(0,2T ;W 2,∞(Ω)), and Ω.
Using the same arguments as in [6], the estimate (4.2) derives from (4.11). Summing
(4.11) over n ∈ {0, . . . , NΔt} and using inequality (4.2) and the property e0

κ = 0 for
all κ ∈ K, we obtain inequality (4.3).

Then, (4.3) is equivalent to

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

|σ| d(κ, κ′)

(
hn+1
κ′ − hn+1

κ

d(κ, κ′)
− h(xκ′ , tn+1) − h(xκ, t

n+1)

d(κ, κ′)

)2

≤ D2 (Δt + δK)2.

(4.12)

Furthermore,

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

|σ| d(κ, κ′)

(
h(xκ′ , tn+1) − h(xκ, t

n+1)

d(κ, κ′)

− 1

Δt

1

|σ|

∫ tn+1

tn

∫
σ

∇h(x, t) · �nκκ′dγ(x)dt

)2

=

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

|σ| d(κ, κ′)(Rn
σ)2 ≤ C5 (δK + Δt)2,

(4.13)

with C5 depending on ‖∇∂th‖L∞(Ω×(0,2T )), ‖h‖L∞(0,2T ;W 2,∞(Ω)), T , and Ω. The esti-
mate (4.5) derives from (4.12) and (4.13).

To prove (4.4), let us multiply (4.7) by (en+1
κ − enκ)/Δt and sum over κ ∈ K:

Δt
∑
κ∈K

|κ|
(
en+1
κ − enκ

Δt

)2

+
∑

σ∈Σint
σ=κ|κ′

Tκκ′(en+1
κ − en+1

κ′ )(en+1
κ − en+1

κ′ − enκ + enκ′)

= −Δt
∑
κ∈K

|κ|Pn
κ

en+1
κ − enκ

Δt
−

∑
σ∈Σint
σ=κ|κ′

|σ|Rn
κ,σ(en+1

κ − en+1
κ′ − enκ + enκ′).
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From (en+1
κ −en+1

κ′ )(en+1
κ −en+1

κ′ −enκ +enκ′) = 1
2

[
(en+1

κ −en+1
κ′ )2−(enκ−enκ′)2 +(en+1

κ −
en+1
κ′ − enκ + enκ′)2

]
and Young’s inequality, it results that

2Δt
∑
κ∈K

|κ|
(
en+1
κ − enκ

Δt

)2

+
∑

σ∈Σint
σ=κ|κ′

Tκκ′(en+1
κ − en+1

κ′ − enκ + enκ′)2

+
∑

σ∈Σint
σ=κ|κ′

Tκκ′(en+1
κ − en+1

κ′ )2 ≤
∑

σ∈Σint
σ=κ|κ′

Tκκ′(enκ − enκ′)2

+Δt
∑
κ∈K

|κ| (Pn
κ )2 + Δt

∑
κ∈K

|κ|
(
en+1
κ − enκ

Δt

)2

+
∑

σ∈Σint
σ=κ|κ′

d(κ, κ′) |σ| (Rn
σ)2 +

∑
σ∈Σint
σ=κ|κ′

Tκκ′(en+1
κ − en+1

κ′ − enκ + enκ′)2.

(4.14)

Summing (4.14) for all n ∈ {0, . . . , NΔt} and using (4.8), (4.9), (3.1), and the property
e0
κ = 0 for all κ ∈ K, we get

NΔt∑
n=0

Δt
∑
κ∈K

|κ|
(
en+1
κ − enκ

Δt

)2

≤ C6 (δK)2 + C7
(Δt + δK)2

Δt

with C6 and C7 > 0 depending only on ‖∇∂th‖L∞(Ω×(0,2T )), ‖h‖L∞(0,2T ;W 2,∞(Ω)), Ω,
and T , which proves (4.4).

Remark 2. According to (4.4) given in Proposition 4.1, the discrete time derivative
of the error tends to zero with the mesh size and time step under an inverse CFL
condition. This condition is due to the fact that the finite volume scheme is implicit
in time and that few assumptions have been made on the regularity of h. However, it
is possible to get rid of this inverse CFL condition by assuming h much more regular.
Such a result can be found in [13].

Corollary 1. Let us assume that Hypothesis 1 holds, and let h denote the
solution of problem (2.6). Let (K,Σint,P) be an admissible mesh of Ω in the sense
of Definition 3.1, T > 0, Δt ∈ (0, T ), and let β > 0 be such that δK ≤ β

√
Δt.

For all n ∈ {0, . . . , NΔt + 1}, let (hn
κ)κ∈K be the solution of (4.1), and let us define

hn
K ∈ X(K) (resp., δth

n
K ∈ X(K)) by hn

K(x) = hn
κ (resp., δth

n
K(x) =

hn+1
κ −hn

κ

Δt ) for
x ∈ κ, κ ∈ K. Then, there exist D5 > 0 depending only on ‖h‖L∞(0,2T ;W 2,∞(Ω)),
‖∇∂th‖L∞(Ω×(0,2T )), Ω, and T and D6, D

′
6, D

′′
6 > 0 depending on ‖∂th‖L∞(Ω×(0,2T )),

‖h‖L∞(0,2T ;W 2,∞(Ω)), ‖∇∂th‖L∞(Ω×(0,2T )), Ω, and T , with D6 also depending on β,
such that

NΔt∑
n=0

Δt |hn+1
K |21,K ≤ D5,(4.15)

and

NΔt∑
n=0

Δt ‖δthn
K‖2

L2(Ω) ≤ D′
6 + D′′

6

(δK + Δt)2

Δt
≤ D6.(4.16)

Proof. The proof is straightforward, using the error estimates (4.3) and (4.4), the
regularity of h, and the estimate (3.1).
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For any admissible mesh (K,Σint,P) of Ω in the sense of Definition 3.1 and any
time step Δt > 0, let (hn

κ)κ∈K for all n ≥ 0 be the solution of (4.1), and let δthK,Δt

denote the function defined on Ω × R
∗
+, such that for all x ∈ κ, κ ∈ K, t ∈ (tn, tn+1],

n ≥ 0,

δthK,Δt(x, t) =
hn+1
κ − hn

κ

Δt
.(4.17)

Proposition 4.2. Let us assume that Hypothesis 1 holds, and let h denote
the solution of problem (2.6). Let us consider a family of admissible discretizations
(K,Σint,P,Δt) of Ω × R

∗
+, with (K,Σint,P) an admissible mesh of Ω in the sense

of Definition 3.1 and Δt > 0 a time step. For a given discretization (K,Σint,P,Δt)
of this family, let hK,Δt (resp., δthK,Δt) be the function defined by (3.7) (resp., by
(4.17)) from the solution of (4.1). Then, for all T > 0, hK,Δt converges to h in
L∞(0, T ;L2(Ω)) as Δt and δK tend to 0, and δthK,Δt converges to ∂th in L2(Ω ×
(0, T )) as Δt, δK and δK√

Δt
tend to 0.

Proof. Let T > 0, and let (K,Σint,P,Δt) be an admissible discretization of
Ω × R

∗
+ with Δt < T . For all x ∈ κ, κ ∈ K, and t ∈ (tn, tn+1], n ∈ {0, . . . , NΔt}, one

has

h(x, t) − hK,Δt(x, t) = (h(x, t) − h(xκ, t
n+1)) + (h(xκ, t

n+1) − hn+1
κ )

= (h(x, t) − h(xκ, t
n+1)) + en+1

κ .

Thus, for all t ∈ (tn, tn+1], n ∈ {0, . . . , NΔt},∫
Ω

|h(x, t) − hK,Δt(x, t)|2dx

≤ 2
∑
κ∈K

[∫
κ

|h(x, t) − h(xκ, t
n+1)|2dx + |κ|(en+1

κ )2
]
.(4.18)

Thanks to Proposition 4.1, there exists C1 > 0 depending only on ‖∇∂th‖L∞(Ω×(0,2T )),
‖h‖L∞(0,2T ;W 2,∞(Ω)), and Ω such that

∑
κ∈K

|κ|(en+1
κ )2 ≤ C1

(
Δt + δK

)2
for all n ∈ {0, . . . , NΔt}.(4.19)

Furthermore, thanks to the regularity of h, there exists C2 > 0 depending only on
‖∂th‖L∞(Ω×(0,2T )) and ‖∇h‖L∞(Ω×(0,2T )) such that, for all x ∈ κ and t ∈ (tn, tn+1],

|h(x, t) − h(xκ, t
n+1)| ≤ C2

(
δK + Δt

)
.(4.20)

Then, using (4.19) and (4.20) in (4.18) yields, for all t ∈ (0, T ),

‖h(., t) − hK,Δt(., t)‖2
L2(Ω) ≤ C3

(
δK + Δt

)2
,

and consequently, ‖h − hK,Δt‖L∞(0,T ;L2(Ω)) ≤ C ′
3

(
δK + Δt

)
, where C3, C ′

3 depend
on ‖∇∂th‖L∞(Ω×(0,2T )), ‖∂th‖L∞(Ω×(0,2T )), ‖h‖L∞(0,2T ;W 2,∞(Ω)), and Ω, so that the
convergence holds.

Furthermore, for all x ∈ κ, κ ∈ K, and t ∈ (tn, tn+1], n ∈ {0, . . . , NΔt}, one has

∂th(x, t) − δthK,Δt(x, t) =

(
∂th(x, t) − h(xκ, t

n+1) − h(xκ, t
n)

Δt

)
+

en+1
κ − enκ

Δt
.
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Thanks to the regularity of h, there exists a constant C4 > 0 depending only on
‖∂2

t h‖L∞(Ω×(0,2T )) and ‖∇∂th‖L∞(Ω×(0,2T )), such that

∣∣∣∣h(xκ, t
n+1) − h(xκ, t

n)

Δt
− ∂th(x, t)

∣∣∣∣ ≤ C4

(
δK + Δt

)
,

from which, together with (4.4), results

‖∂th− δthK,Δt‖2
L2(Ω×(0,T )) ≤ C5

(
δK + Δt

)2
+ C6

(
δK + Δt

)2

Δt
,

with C5 and C6 depending only on Ω, T , ‖h‖W 2,∞(Ω×(0,2T )). Thus, the convergence

of δthK,Δt to ∂th in L2(Ω × (0, T )) as Δt, δK, and δK√
Δt

→ 0 is proved.

5. Convergence of sequences of approximate concentrations toward a
weak solution. We shall first prove the existence of a solution for the concentrations
satisfying stability estimates from which the weak- convergence, up to a subsequence,
of the concentrations in L∞ is deduced.

Existence, stability, and weak-� convergence.
Lemma 5.1. Let (K,Σint,P) be an admissible mesh of Ω in the sense of Definition

3.1, Δt > 0, and, for all n ∈ N, let (hn
κ)κ∈K be the solution of (4.1). For i ∈ {1, . . . , L}

and n ∈ N, there exists a unique solution (cni,κ)κ∈K, and there exists at least one

solution (cs,n+1
i,κ )κ∈K to the set of equations (3.2)–(3.5) such that

cs,n+1
i,κ ∈ [0, 1] for all κ ∈ K and n ∈ N.(5.1)

Furthermore, one has

cni,κ(z) ∈ [0, 1] for all κ ∈ K, z < hn
κ, and n ∈ N.

Proof. The complete proof can be found in [5]. It is done by induction over
n ∈ N

∗ and over the cells κ ∈ K sorted by decreasing topographical order. For the
highest topographical point(s) κ, the fluxes at the edges of the cell κ are either input
boundary fluxes or ouput fluxes. Let us consider a control volume κ ∈ K and a time
n ∈ N

∗, and let us assume that the proposition holds for all the previous times tl+1,
0 ≤ l < n, and all the lower cells at time tn+1. It results from the induction hypothesis
and the upwinding of csi that cs,n+1

i,κ can be computed explicitly from the lower cell
concentrations csi using (3.2), and that the inequality

∑
κ′∈Kκ, h

n+1
κ <hn+1

κ′

Tκκ′ cs,n+1
i,κκ′ (hn+1

κ − hn+1
κ′ ) ≤ 0(5.2)

holds for all i = 1, . . . , L. Let us first assume that hn+1
κ − hn

κ ≤ 0 (erosion). It results
from the induction hypothesis that

cs,n+1
i,κ

⎛
⎜⎝ ∑

κ′∈Kκ, h
n+1
κ ≥hn+1

κ′

Tκκ′ (hn+1
κ − hn+1

κ′ ) + |∂κ ∩ ∂Ω| g(−),n+1
κ

⎞
⎟⎠ ≥ 0

for all i. In this equation, either the term into brackets is strictly positive for all
i = 1, . . . , L and then cs,n+1

i,κ ≥ 0, or it vanishes for all i and the point (κ, n + 1) is
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a degenerate point in the sense that all the fluxes at the edges of the control volume
κ vanish and hn+1

κ = hn
κ. The concentrations can in that case be chosen arbitrarily

such that
∑L

i=1 c
s,n+1
i,κ = 1. Let us now consider the sedimentation case for which

hn+1
κ − hn

κ > 0. It results from (3.2) and the induction hypothesis that

cs,n+1
i,κ

(
hn+1
κ − hn

κ

Δtn+1
|κ|+

∑
κ′∈Kκ,h

n+1
κ ≥hn+1

κ′

Tκκ′ (hn+1
κ −hn+1

κ′ )+ |∂κ∩∂Ω| g(−),n+1
κ

)
≥ 0,

and hence cs,n+1
i,κ ≥ 0 for all i = 1, . . . , L. Since hn+1

κ = hn
κ for any degenerate point

(κ, n + 1), there exists a unique column concentration cn+1
i,κ solution of the set of

equations (3.2)–(3.5) for each lithology.
Let us define for all κ ∈ K, n ∈ N, and t ∈ (tn, tn+1] the following interpolation

of the discrete sediment thickness:

hκ(t) = hn
κ + (t− tn)

hn+1
κ − hn

κ

Δt
.(5.3)

Then, the discrete solutions (cni,κ)n∈N, (un
i,κ)n∈N, and (cs,n+1

i,κ )n∈N, given by Lemma
5.1, are extended to t ∈ R+ for all κ ∈ K as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci,κ(z, t) =

{
cni,κ(z)χ(−∞,hn

κ ] + cs,n+1
i,κ χ(hn

κ ,hκ(t)) if hn+1
κ ≥ hn

κ,

cni,κ(z)χ(−∞,hκ(t)) otherwise

for all t ∈ (tn, tn+1] and z < hκ(t),

ci,κ(z, 0) = c0i,κ(z) for all z < h0
κ,

(5.4)

ui,κ(ξ, t) = ci,κ(hκ(t) − ξ, t) for all t ≥ 0 and ξ ∈ R
∗
+,(5.5)

csi,κ(t) = cs,n+1
i,κ for all t ∈ (tn, tn+1].(5.6)

For any admissible mesh (K,Σint,P) of Ω in the sense of Definition 3.1 and any
time step Δt > 0, let ūi,K,Δt be defined on Ω × R

∗
+ × R+, and let ci,K,Δt be defined

on {(z, t), t ≥ 0, z < hκ(t)}, such that

{
ūi,K,Δt(x, ξ, t) = ui,κ(ξ, t),
ci,K,Δt(x, z, t) = ci,κ(z, t)

(5.7)

for all x ∈ κ, κ ∈ K, t ≥ 0, ξ ∈ R
∗
+, z < hκ(t).

From Lemma 5.1, the unique functions ci,K,Δt, ūi,K,Δt, ui,K,Δt defined by (5.7)
and (3.7) and any function csi,K,Δt defined by (3.7) from any solution of (3.2)–(3.6)
chosen according to Lemma 5.1 take their values into the interval [0, 1]. We deduce
the following result.

Proposition 5.2. For all m ∈ N, let (Km,Σm
int,Pm) be an admissible mesh of

Ω in the sense of Definition 3.1, and let Δtm > 0. Let us assume that Δtm → 0 and
δKm → 0 as m → ∞.

For all m ∈ N and i = 1, . . . , L, let ui,Km,Δtm (resp., ūi,Km,Δtm) denote the
unique function defined by (3.7) (resp., by (5.7)) and csi,Km,Δtm

be a function defined by
(3.7), from any solution of (3.2)–(3.6) chosen according to Lemma 5.1 with K = Km,
Δt = Δtm.

Then, under Hypothesis 1, there exists a subsequence of (Km,Δtm)m∈N, still de-
noted by (Km,Δtm)m∈N, such that for all i ∈ {1, . . . , L}
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(i) the subsequence (csi,Km,Δtm
)m∈N converges to a function csi in L∞(Ω×R

∗
+) for

the weak- topology, and
(ii) the subsequences (ui,Km,Δtm)m∈N and (ūi,Km,Δtm)m∈N converge to a function

ui in L∞(Ω × R
∗
+ × R

∗
+) for the weak- topology.

Proof. For the sake of simplicity, the subscript i is dropped. Thanks to Lemma
5.1, the sequence (csKm,Δtm

)m∈N (resp., (uKm,Δtm)m∈N and (ūKm,Δtm)m∈N) is bounded
in L∞(Ω × R

∗
+) (resp., in L∞(Ω × R

∗
+ × R

∗
+)). Then, there exists a subsequence

of (Km,Δtm)m∈N, still denoted by (Km,Δtm)m∈N, such that (csKm,Δtm
)m∈N (resp.,

(uKm,Δtm)m∈N and (ūKm,Δtm)m∈N) converges to cs (resp., u and u′) in L∞(Ω × R
∗
+)

(resp., in L∞(Ω×R
∗
+×R

∗
+)) for the weak- topology. It remains to prove that u = u′

in L∞(Ω × R
∗
+ × R

∗
+).

Using definitions (3.6) and (5.5), for x ∈ κ, κ ∈ Km, and t ∈ (tn, tn+1], the
functions ūKm,Δtm and uKm,Δtm are related as follows:

un+1
κ (ξ) =

{
uκ(ξ − (hκ(t) − hn

κ), t) for all ξ ≥ hκ(t) − hn
κ if hn+1

κ ≥ hn
κ,

uκ(ξ + (hκ(t) − hn+1
κ ), t) for all ξ ≥ 0 if hn+1

κ < hn
κ.

Let ϕ ∈ C∞
c (Ω × R

∗
+ × R

∗
+) and T > 0 be such that ϕ(., ., t) = 0 for all t ≥ T . Since

the concentrations are bounded in [0, 1], it can be shown that∣∣∣∣∣
∫

Ω

∫
R∗

+

∫
R∗

+

(ūKm,Δtm − uKm,Δtm)ϕ(x, ξ, t) dx dξ dt

∣∣∣∣∣
≤ C1

NΔtm∑
n=0

Δtm
∑

κ∈Km

|κ||hn+1
κ − hn

κ|,

with C1 depending only on ϕ, Ω, and T . From the estimate (4.16) it results that∣∣∣∣∣
∫

Ω

∫
R∗

+

∫
R∗

+

(ūKm,Δtm − uKm,Δtm)ϕ(x, ξ, t) dx dξ dt

∣∣∣∣∣ → 0 as m → ∞,

and u = u′ in the space of distributions on Ω × R
∗
+ × R

∗
+, and hence in L∞(Ω × R

∗
+

× R
∗
+).

Flux term. The following proposition provides a result of convergence for the
flux term appearing in the discretization of the surface conservation equation. It will
be used to show that (csi , ui) satisfies the second equation (2.9) of the weak formula-
tion. The proof of this proposition is an adaptation to the coupling of a parabolic and
a hyperbolic equation of the result proved in [6] for the coupling of an elliptic and a
hyperbolic equation in the case of a two phase Darcy flow.

Proposition 5.3. Let us assume that Hypothesis 1 holds and let h denote
the solution of problem (2.6). Let us consider a family of admissible discretizations
(K,Σint,P,Δt) of Ω × R

∗
+, with (K,Σint,P) an admissible mesh of Ω in the sense

of Definition 3.1 and Δt > 0 a time step. Let us also assume that there exist α and
β > 0 such that, for all discretizations (K,Σint,P,Δt) of this family, δK ≤ β

√
Δt

and reg(K) ≤ α. For any admissible discretization (K,Σint,P,Δt), let hK,Δt denote

the function defined by (3.7) from the solution of (4.1), and let (cs,n+1
i,κ )κ∈Km,n≥0 be

any solution of (3.2)–(3.5) chosen according to Lemma 5.1. Let T > 0, then, for all
ϕ ∈ As

0 = {v ∈ C∞
c (Rd+1) | v(x, t) = 0 on ∂Ω × R

∗
+ \ Σ+}, and for all i = 1, . . . , L,

Ti,K,Δt →
∫ T

0

(∫
Ω

csi (x, t)∇h(x, t) · ∇ϕ(x, t) dx−
∫
∂Ω

c̃i(x, t) g(x, t)ϕ(x, t) dγ(x)

)
dt
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as Δt → 0, with

Ti,K,Δt =

NΔt∑
n=0

Δt
∑
κ∈K

∑
κ′∈Kκ

Tκκ′cs,n+1
i,κκ′ (hn+1

κ − hn+1
κ′ )ϕ(xκ, t

n+1)

−
NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω|
(
g(+),n+1
κ c̃n+1

i,κ − g(−),n+1
κ cs,n+1

i,κ

)
ϕ(xκ, t

n+1).

Columns property. The following proposition states that the column concen-
trations interpolated in time ūi,K,Δt, i = 1, . . . , L, satisfy in the weak sense a linear
advection equation. This property is used in the proof of Theorem 3.3 to show the
convergence, up to a subsequence, of the approximate solutions to a solution of the
weak formulation (2.7).

Proposition 5.4. Let us assume that Hypothesis 1 holds and let h denote the
solution of problem (2.6). Let (K,Σint,P) be an admissible mesh of Ω in the sense of
Definition 3.1, T > 0, and Δt ∈ (0, T ).

Let hK,Δt, ui,K,Δt, i = 1, . . . , L (resp., δthK,Δt and ūi,K,Δt, i = 1, . . . , L), de-
note the unique functions defined by (3.7) (resp., by (4.17) and (5.7)) and csi,K,Δt,
i = 1, . . . , L, be a function defined by (3.7), from any solution of (3.2)–(3.6) chosen
according to Lemma 5.1.

Then, for any κ ∈ K and i ∈ {1, . . . , L}, the following hold.
(i) For all ϕ ∈ WT = {v ∈ C∞

c (R2) | v(., T ) = 0 on R},
∫ T

0

∫
R+

[
∂tϕ(ξ, t) + ∂thκ(t) ∂ξϕ(ξ, t)

]
ui,κ(ξ, t) dξ dt

+

∫
R+

u0
i,κ(ξ)ϕ(ξ, 0) dξ +

∫ T

0

∂thκ(t)ui,κ(0, t)ϕ(0, t) dt = 0.

(5.8)

(ii) For all ϕ ∈ As
T,κ = {v ∈ C∞

c (R2) | v(., T ) = 0 on R and v(0, t) = 0 for all t ≥
0 such that ∂thκ(t) ≤ 0},

∫ T

0

∫
R+

[
∂tϕ(ξ, t) + ∂thκ(t) ∂ξϕ(ξ, t)

]
ui,κ(ξ, t) dξ dt

+

∫
R+

u0
i,κ(ξ)ϕ(ξ, 0) dξ +

∫ T

0

∂thκ(t)csi,κ(t)ϕ(0, t) dt = 0.

(5.9)

Proof. Thanks to definition (5.4), ∂tci,κ(z, t) = 0 for all z ∈ (−∞, hκ(t)) and
t ∈ (0, T ). It results that for all ψ ∈ W 1,∞(R × R+), compactly supported, one has

0 =

∫ T

0

∫ hκ(t)

−∞
∂tci,κ(z, t)ψ(z, t)dz dt =

∫ T

0

∂t

(∫ hκ(t)

−∞
ci,κ(z, t)ψ(z, t)dz

)
dt

−
∫ T

0

∫ hκ(t)

−∞
ci,κ(z, t)∂tψ(z, t)dz dt−

∫ T

0

∂thκ(t)ci,κ(hκ(t), t)ψ(hκ(t), t) dt,

and consequently
∫ T

0

∫ hκ(t)

−∞
ci,κ(z, t)∂tψ(z, t)dz dt +

∫ T

0

∂thκ(t)ci,κ(hκ(t), t)ψ(hκ(t), t) dt

−
∫ hκ(T )

−∞
ci,κ(z, T )ψ(z, T ) dz +

∫ hκ(0)

−∞
c0i,κ(z)ψ(z, 0) dz = 0.

(5.10)
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Let ϕ be in WT , and let ψ ∈ W 1,∞(R × R+) be such that

ψ(z, t) = ϕ(hκ(t) − z, t) ∀ (z, t) ∈ R × R+.

Considering (5.10) in the new coordinate system ξ = hκ(t)−z and using the property
ϕ(., T ) = 0, (5.8) is derived. Finally, thanks to the definition of As

T,κ and since
ui,κ(0, t) = csi,κ(t) if ∂thκ(t) > 0, we obtain (5.9).

Convergence. We will now prove that the limits (csi , ui)i=1,...,L are solutions of
the weak formulation given in Definition 2.1.

Lemma 5.5. Let O be an open bounded subset of R
d, and let (fn)n∈N be a

sequence of L1(O) which converges to f in L1(O). Let us define, for any g ∈ L1(O),
S+
g = {x ∈ O | g(x) > 0} and S−

g = {x ∈ O | g(x) ≤ 0}; then

In =

∫
O
fnχS+

fn
∩S−

f
→ 0 as n → ∞, and Jn =

∫
O
fnχS−

fn
∩S+

f
→ 0 as n → ∞.

Proof. Note that if f ∈ L1(O), then f+ and f− belong to L1(O); thus

In =

∫
O
fnχS+

fn

χS−
f

=

∫
O
f+
n χS−

f
=

∫
O

(f+
n − f+)χS−

f
+

∫
O
f+χS−

f
.

Since
∫
O f+χS−

f
= 0 and |f+

n −f+| ≤ |fn−f | on O, we deduce that In → 0 as n → ∞.

The proof is similar for Jn.
Let us now prove the convergence result given by Theorem 3.3.
Proof of Theorem 3.3. The convergence of the approximate solutions for the

sediment thickness toward the solution of problem (2.6) has already been proved in
Proposition 4.2. Let us now show that the limits (csi , ui)i=1,...,L given by Proposition
5.2 satisfy the weak formulation of problem (2.7) in the sense of Definition 2.1.

Let i belong to {1, . . . , L} and ϕ ∈ A. Since ϕ ∈ C∞
c (Rd+2), there exists T > 0

such that, for all t ≥ T , ϕ(., ., t) = 0. Let m0 ∈ N be such that Δtm0
< T . For the

sake of simplicity, we shall drop the subscript i.
For all κ ∈ Km, m ∈ N, note that ϕ(xκ, ., .) ∈ WT . Applying (5.8) to the test

function ϕ(xκ, ., .) and summing this equation over κ ∈ Km, we get, for any m ≥ m0,

∑
κ∈Km

|κ|
∫

R+

∫ T

0

[
∂tϕ(xκ, ξ, t) + ∂thκ(t) ∂ξϕ(xκ, ξ, t)

]
uκ(ξ, t) dt dξ

︸ ︷︷ ︸
(Am)

+
∑

κ∈Km

|κ|
∫

R+

u0
κ(ξ)ϕ(xκ, ξ, 0) dξ

︸ ︷︷ ︸
(Bm)

+
∑

κ∈Km

|κ|
∫ T

0

∂thκ(t)uκ(0, t)ϕ(xκ, 0, t) dt

︸ ︷︷ ︸
= 0.

(Cm)

(5.11)

In this equation, (Am) is equal to

∫
Ω

∫
R+

∫ T

0

[
∂tϕKm(x, ξ, t) + δthKm,Δtm(x, t) ∂ξϕKm(x, ξ, t)

]
ūKm,Δtm(x, ξ, t) dt dξ dx,
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where ϕKm
(x, ξ, t) = ϕ(xκ, ξ, t) for all x ∈ κ. Thanks to Proposition 4.2, the sequence

of functions (δthKm,Δtm) converges strongly to ∂th in L2(Ω×(0, T )) as m → ∞. Since
ϕ ∈ A, we deduce that the sequence (∂ξϕKm · δthKm,Δtm) converges to ∂ξϕ · ∂th in
L1(Ω×R

∗
+ ×R

∗
+). Since the sequence (ūKm,Δtm) converges to u in L∞(Ω×R

∗
+ ×R

∗
+)

for the weak- topology, we conclude that

(Am) →
∫

Ω

∫
R+

∫
R+

[
∂tϕ(x, ξ, t) + ∂th(x, t) ∂ξϕ(x, ξ, t)

]
u(x, ξ, t) dt dξ dx(5.12)

as m → ∞.

Let us define u0
Km

by u0
Km

(x, ξ) = u0
κ(ξ) for all x ∈ κ, κ ∈ Km, and ξ ∈ R

∗
+. From

Hypothesis 1 on u0, it results that u0
Km

converges to u0 in L1(Ω×(0, T )) for all T > 0,
and consequently

(Bm) →
∫

Ω

∫
R+

u0(x, ξ)ϕ(x, ξ, 0) dξ dx as m → ∞.(5.13)

In (5.11), (Cm) is equal to

(Cm) =

∫
Ω

∫ T

0

δthKm,Δtm(x, t)ūKm,Δtm(x, 0, t)ϕKm(x, 0, t) dt dx.

Let us introduce the following notation:

P+
Km

= {(x, t) ∈ Ω × (0, T ) | δthKm,Δtm(x, t) > 0},
P−
Km

= {(x, t) ∈ Ω × (0, T ) | δthKm,Δtm(x, t) ≤ 0},
P+ = {(x, t) ∈ Ω × (0, T ) | ∂th(x, t) > 0},
P− = {(x, t) ∈ Ω × (0, T ) | ∂th(x, t) ≤ 0}.

Noticing that P+
Km

= (P+ \ (P+ ∩ P−
Km

)) ∪ (P+
Km

∩ P−) and P−
Km

= (P− \ (P− ∩
P+
Km

)) ∪ (P−
Km

∩ P+), one has

(Cm) =

∫
Ω

∫ T

0

δthKm,Δtm(x, t) csKm,Δtm(x, t)ϕKm
(x, 0, t)

· [χP+ − χP+∩P−
Km

+ χP+
Km

∩P− ] dt dx

+

∫
Ω

∫ T

0

δthKm,Δtm(x, t) ūKm,Δtm(x, 0, t)ϕKm(x, 0, t)

· [χP− − χP−∩P+
Km

+ χP−
Km

∩P+ ] dt dx.

Since the functions csKm,Δtm
(x, t), ūKm,Δtm(x, 0, t), and ϕKm(x, 0, t) are bounded on

Ω× (0, T ) and (δthKm,Δtm) converges to ∂th in L2(Ω× (0, T )), Lemma 5.5 applied to
the sequence (δthKm,Δtm)m∈N yields

∫
Ω

∫ T

0

δthKm,Δtm(x, t) csKm,Δtm(x, t)ϕKm(x, 0, t)[−χP+∩P−
Km

+ χP+
Km

∩P− ] dt dx → 0,

∫
Ω

∫ T

0

δthKm,Δtm(x, t) ūKm,Δtm(x, 0, t)ϕKm(x, 0, t)[−χP−∩P+
Km

+χP−
Km

∩P+ ] dt dx → 0

as m → ∞. Furthermore, ϕ ∈ A, so that the sequence (ϕKm(., 0, .) δthKm,Δtm)
converges to ϕ(., 0, .) ∂th in L1(Ω × (0, T )). As the sequence (csKm,Δtm

) converges to
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cs in L∞(Ω × R
∗
+) for the weak- topology, we conclude that

∫
Ω

∫ T

0

δthKm,Δtm(x, t)csKm,Δtm(x, t)ϕKm(x, 0, t)χP+ dt dx →∫
Ω

∫ T

0

∂th(x, t)cs(x, t)ϕ(x, 0, t)χP+
dt dx as m → ∞.

On χP− , by definition, one has ϕ(x, 0, t) = 0. Since ūKm,Δtm(x, 0, t) is bounded and
the sequence (ϕKm

(., 0, .) δthKm,Δtm) converges to ϕ(., 0, .) ∂th in L1(Ω × (0, T )), we
obtain

∫
Ω

∫ T

0

δthKm,Δtm(x, t) ūKm,Δtm(x, 0, t)ϕKm(x, 0, t)χP− dt dx → 0 as m → ∞,

and finally

(Cm) →
∫

Ω

∫ T

0

∂th(x, t)cs(x, t)ϕ(x, 0, t)dt dx =

∫
Ω

∫
R+

∂th(x, t)cs(x, t)ϕ(x, 0, t) dt dx

as m → ∞. Then (csi , ui) satisfy the first part (2.8) of the weak formulation.
Let ϕ ∈ A0. Since ϕ ∈ C∞

c (Rd+2), there exists T > 0 such that ϕ(., ., t) = 0 for
all t ≥ T . Let m0 ∈ N be such that Δtm0

< T .
Multiplying the scheme (3.2) by ϕ(xκ, 0, t

n+1) and summing over κ ∈ Km and
n ∈ {0, . . . , NΔtm}, one obtains, for any m ≥ m0,

NΔtm∑
n=0

∑
κ∈Km

|κ|ΔMn+1
κ ϕ(xκ, 0, t

n+1)

︸ ︷︷ ︸
(1m)

+

NΔtm∑
n=0

Δtm
∑

κ∈Km

∑
κ′∈Kκ

cs,n+1
κκ′ Tκκ′(hn+1

κ − hn+1
κ′ )ϕ(xκ, 0, t

n+1)

︸ ︷︷ ︸
(2m)

−
NΔtm∑
n=0

Δtm
∑

κ∈Km

|∂κ ∩ ∂Ω|
(
c̃n+1
κ g(+),n+1

κ − cs,n+1
κ g(−),n+1

κ

)
ϕ(xκ, 0, t

n+1)

︸ ︷︷ ︸
= 0.

(3m)

Since ϕ(., 0, .) ∈ As
0, Proposition 5.3 with K = Km and Δt = Δtm states that

(2m)+(3m) converges to

A=

∫ T

0

(∫
Ω

cs(x, t)∇h(x, t) · ∇ϕ(x, 0, t) dx−
∫
∂Ω

c̃(x, t)g(x, t)ϕ(x, 0, t)dγ(x)

)
dt

=

∫
R+

(∫
Ω

cs(x, t)∇h(x, t) · ∇ϕ(x, 0, t) dx−
∫
∂Ω

c̃(x, t)g(x, t)ϕ(x, 0, t)dγ(x)

)
dt,

as m → ∞. Let us now prove the convergence of

A′
m = −(1m) = −

NΔtm∑
n=0

∑
κ∈Km

|κ|ΔMn+1
κ ϕ(xκ, 0, t

n+1)
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toward

B =

∫
Ω

∫
R+

∫
R+

[
∂tϕ(x, ξ, t) + ∂th(x, t) ∂ξϕ(x, ξ, t)

]
u(x, ξ, t) dt dξ dx

+

∫
Ω

∫
R+

u0(x, ξ)ϕ(x, ξ, 0) dξ dx

as m → ∞. From (5.12) and (5.13), we have, for any ϕ ∈ C∞
c (Rd+2) ⊃ A0,

B′
m =

∑
κ∈Km

|κ|
∫

R+

∫ T

0

[
∂tϕ(xκ, ξ, t) + ∂thκ(t) ∂ξϕ(xκ, ξ, t)

]
uκ(ξ, t) dt dξ

+
∑

κ∈Km

|κ|
∫

R+

u0
κ(ξ)ϕ(xκ, ξ, 0) dξ → B as m → ∞,

and, from (5.11), B′
m = −

∑
κ∈Km

|κ|
∫ T

0
∂thκ(t)uκ(0, t)ϕ(xκ, 0, t) dt. Hence, it will

suffice to show that |A′
m −B′

m| → 0 as m → ∞.
For given κ ∈ Km and n ∈ {0, . . . , NΔtm}, let us recall that

ΔMn+1
κ =

⎧⎨
⎩

∫ hn+1
κ

hn
κ

cn+1
κ (z)dz if hn+1

κ ≥ hn
κ,∫ hn+1

κ

hn
κ

cnκ(z) dz if hn+1
κ < hn

κ.

Considering the change of coordinates z = hκ(t) in these integrals, one can show that,
in both the sedimentation (hn+1

κ ≥ hn
κ) and erosion (hn+1

κ < hn
κ) cases, one has

ΔMn+1
κ =

∫ tn+1

tn
cκ(hκ(t), t)∂thκ(t) dt =

∫ tn+1

tn
uκ(0, t)∂thκ(t) dt.

Substituting this equality in the definition of A′
m leads to

B′
m −A′

m =
∑

κ∈Km

|κ|
∫ tNΔtm

+1

T

ūKm,Δtm(x, 0, t) δthKm,Δtm(x, t)ϕ(xκ, 0, t)dt

−
∑

κ∈Km

|κ|
NΔtm∑
n=0

∫ tn+1

tn
ūKm,Δtm(x, 0, t)δthKm,Δtm(x, t)[ϕ(xκ, 0, t

n+1) − ϕ(xκ, 0, t)] dt.

Thanks to the regularity of ϕ, there exists C1 > 0, depending only on ϕ, such
that |ϕ(xκ, 0, t

n+1) − ϕ(xκ, 0, t)| ≤ C1 Δtm for all t ∈ [tn, tn+1]. Since the func-
tion δthKm,Δtm is uniformly bounded in L2(Ω × (0, tNΔtm+1)), and ūKm,Δtm ∈ [0, 1],
and |tNΔtm+1 −T | < Δtm, the convergence of |A′

m −B′
m| to 0 as m → ∞ is obtained,

which ends the proof of the theorem.

6. Conclusion. In this article, a fully implicit finite volume discretization of the
multilithology stratigraphic model is considered in the simplified case for which the
diffusion coefficients of all the lithologies are equal.

In such a case, the sediment thickness variable decouples from the other variables
and satisfies a parabolic equation. A weak formulation has been defined for the re-
maining surface and basin concentration variables in order to cope with the difficulty
to define the trace of the basin concentrations at the top of the basin. Then, the main
result of this article is the convergence, up to a subsequence, of the discrete sediment
thickness in L∞(0, T ;L2(Ω)) and of the discrete concentrations in the L∞ weak-
topology to a weak solution.
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In particular, this proves the existence of at least one solution to the weak for-
mulation for the coupled problem. The uniqueness of such a solution, and hence the
full convergence of the discrete solutions, will be obtained in a forthcoming paper.

Appendix. Proof of Proposition 5.3.
To prove Proposition 5.3, the following weak-BV estimate will be used. It is an

extension to the coupling of a parabolic and a hyperbolic equation of the result proved
in [6] for the coupling of an elliptic and a hyperbolic equation in the case of a two
phase Darcy flow.

Lemma A.1. Let us assume that Hypothesis 1 holds, and let h denote the solution
of problem (2.6). Let i∈{1, . . . , L} (K,Σint,P) be an admissible mesh of Ω in the
sense of Definition 3.1, T > 0, and Δt∈ (0, T ). Let α> 0 be such that reg(K)≤α and
β > 0 be such that δK ≤ β

√
Δt. Then, there exists H > 0, depending only on T , Ω,

‖h‖W 2,∞(Ω×(0,2T )), ‖g‖L2(∂Ω×R+), β, and α, such that the following inequality holds:

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′ |hn+1
κ − hn+1

κ′ | |cs,n+1
i,κ − cs,n+1

i,κ′ |

+

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| |cs,n+1
i,κ − c̃n+1

i,κ | g(+),n+1
κ ≤ H√

δK
.

(A.1)

Proof. Let i belong to the set {1, . . . , L}. Again, the subscript i will be dropped
in the proof, and csi will be denoted by c. Multiplying (3.2) by cn+1

κ and summing
over κ ∈ K and n ∈ {0, . . . , NΔt} yield that

NΔt∑
n=0

∑
κ∈K

|κ|c∗,n+1
κ cn+1

κ (hn+1
κ − hn

κ)

+

NΔt∑
n=0

Δt
∑
κ∈K

∑
κ′∈Kκ

Tκκ′cn+1
κκ′ cn+1

κ (hn+1
κ − hn+1

κ′ )

−
NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(+),n+1
κ c̃n+1

κ cn+1
κ

+

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(−),n+1
κ (cn+1

κ )2 = 0,

(A.2)

where c∗,n+1
κ is defined by c∗,n+1

κ (hn+1
κ − hn

κ) = ΔMn+1
κ , such that c∗,n+1

κ ∈ [0, 1].
The upstream evaluation of the surface concentrations at the edges of the control

volumes implies that, for all κ ∈ K,∑
κ′∈Kκ

Tκκ′cn+1
κκ′ cn+1

κ (hn+1
κ − hn+1

κ′ ) =
∑

κ′∈Kκ

Tκκ′(cn+1
κ )2(hn+1

κ − hn+1
κ′ )+

−
∑

κ′∈Kκ

Tκκ′cn+1
κ′ cn+1

κ (hn+1
κ − hn+1

κ′ )−.

Therefore, since (hκ − hκ′)+ = (hκ′ − hκ)−, one has∑
κ∈K

∑
κ′∈Kκ

Tκκ′cn+1
κκ′ cn+1

κ (hn+1
κ − hn+1

κ′ )

=
∑
κ∈K

∑
κ′∈Kκ

Tκκ′((cn+1
κ )2 − cn+1

κ′ cn+1
κ )(hn+1

κ − hn+1
κ′ )+.
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Then, using the equalities (cκ)2−cκ cκ′ = 1
2 (cκ−cκ′)2+ 1

2

(
(cκ)2−(cκ′)2

)
, (hκ−hκ′)+ =

(hκ′−hκ)−, and (hκ−hκ′) = (hκ−hκ′)+−(hκ−hκ′)− leads to the following successive
equalities:

∑
κ∈K

∑
κ′∈Kκ

Tκκ′cn+1
κκ′ cn+1

κ (hn+1
κ − hn+1

κ′ )

=
1

2

∑
κ∈K

∑
κ′∈Kκ

Tκκ′(cn+1
κ − cn+1

κ′ )2(hn+1
κ − hn+1

κ′ )+

+
1

2

∑
κ∈K

∑
κ′∈Kκ

Tκκ′(cn+1
κ )2(hn+1

κ − hn+1
κ′ )+

−1

2

∑
κ∈K

∑
κ′∈Kκ

Tκκ′(cn+1
κ′ )2(hn+1

κ − hn+1
κ′ )+

=
1

2

∑
κ∈K

∑
κ′∈Kκ

Tκκ′(cn+1
κ − cn+1

κ′ )2(hn+1
κ − hn+1

κ′ )+

+
1

2

∑
κ∈K

∑
κ′∈Kκ

Tκκ′(cn+1
κ )2(hn+1

κ − hn+1
κ′ ).

(A.3)

Furthermore, summing (3.2) over i ∈ {1, . . . , L}, we obtain, for all κ ∈ K and n ∈
{0, . . . , NΔt},

|κ|(hn+1
κ − hn

κ) + Δt
∑

κ′∈Kκ

Tκκ′(hn+1
κ − hn+1

κ′ ) − Δt |∂κ ∩ ∂Ω| gn+1
κ = 0.(A.4)

Multiplying (A.4) by (cn+1
κ )2 and summing over κ ∈ K gives in (A.3)

∑
κ∈K

∑
κ′∈Kκ

Tκκ′cn+1
κκ′ cn+1

κ (hn+1
κ − hn+1

κ′ ) = −1

2

∑
κ∈K

|κ|(cn+1
κ )2

hn+1
κ − hn

κ

Δt

+
1

2

∑
κ∈K

|∂κ ∩ ∂Ω| (cn+1
κ )2gn+1

κ +
1

2

∑
κ∈K

∑
κ′∈Kκ

Tκκ′(cn+1
κ − cn+1

κ′ )2(hn+1
κ − hn+1

κ′ )+,

which finally results in the equality

NΔt∑
n=0

Δt
∑
κ∈K

∑
κ′∈Kκ

Tκκ′cn+1
κκ′ cn+1

κ (hn+1
κ − hn+1

κ′ )

−
NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(+),n+1
κ c̃n+1

κ cn+1
κ

+

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(−),n+1
κ (cn+1

κ )2

=
1

2

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′(cn+1
κ − cn+1

κ′ )2|hn+1
κ − hn+1

κ′ |

+
1

2

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(+),n+1
κ (cn+1

κ − c̃n+1
κ )2 − 1

2

NΔt∑
n=0

∑
κ∈K

|κ|(cn+1
κ )2(hn+1

κ −hn
κ)

+
1

2

NΔt∑
n=0

Δt
∑
κ∈K

(|∂κ ∩ ∂Ω| g(−),n+1
κ (cn+1

κ )2 − |∂κ ∩ ∂Ω| g(+),n+1
κ (c̃n+1

κ )2).
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Using this last result in (A.2), together with g
(−),n+1
κ ≥ 0 for all κ ∈ K and n ∈

{0, . . . , NΔt}, one obtains the estimate

1

2

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′(cn+1
κ − cn+1

κ′ )2|hn+1
κ − hn+1

κ′ |

+
1

2

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(+),n+1
κ (cn+1

κ − c̃n+1
κ )2

≤ 1

2

NΔt∑
n=0

Δt
∑
κ∈K

|κ|
[
(cn+1

κ )2 − 2 c∗,n+1
κ cn+1

κ

]hn+1
κ − hn

κ

Δt

+
1

2

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω|g(+),n+1
κ (c̃n+1

κ )2.

(A.5)

Noticing that, according to Corollary 1,

NΔt∑
n=0

Δt
∑
κ∈K

|κ|
[
(cn+1

κ )2 − 2 c∗,n+1
κ cn+1

κ

]hn+1
κ − hn

κ

Δt

≤ C1(T,Ω)

(
NΔt∑
n=0

Δt‖δthn
K‖2

L2(Ω)

) 1
2

≤ C1(T,Ω)D6

(A.6)

and
NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(+),n+1
κ (c̃n+1

κ )2 ≤ C2(Ω, T ) ‖g+‖L2(∂Ω×R+),(A.7)

we deduce from (A.5), (A.6), and (A.7) the estimate

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′(cn+1
κ − cn+1

κ′ )2|hn+1
κ − hn+1

κ′ |

+

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(+),n+1
κ (cn+1

κ − c̃n+1
κ )2 ≤ C1

√
D6 + C2 ‖g+‖L2(∂Ω×R+).

Finally, the Cauchy–Schwarz inequality yields

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′ |cn+1
κ − cn+1

κ′ ||hn+1
κ − hn+1

κ′ |

+

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω‖cn+1
κ − c̃n+1

κ | g(+),n+1
κ

≤
(

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′(cn+1
κ − cn+1

κ′ )2|hn+1
κ − hn+1

κ′ |

+

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω|(cn+1
κ − c̃n+1

κ )2g(+),n+1
κ

) 1
2

(
NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′ |hn+1
κ − hn+1

κ′ | +
NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(+),n+1
κ

) 1
2

.
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The term

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′ |hn+1
κ − hn+1

κ′ | ≤
(

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′

) 1
2
(

NΔt∑
n=0

Δt|hn+1
K |21,K

) 1
2

is estimated by Corollary 1 and the following bound from (3.1):

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′ ≤
( ∑

σ∈Σint
σ=κ|κ′

|σ| d(κ, κ′)

)
2T α2

δK2
≤ 2Tdα2 |Ω|

δK2
.(A.8)

We conclude from estimates similar to (A.7) that the inequality (A.1) holds.

Proof of Proposition 5.3. Let i belong to the set {1, . . . , L}, and let (K,Σint,P,Δt)
be an admissible discretization of Ω × R

∗
+ with Δt < T . For all κ ∈ K, x ∈ ∂κ ∩ ∂Ω,

t ∈ (tn, tn+1], n ≥ 0, let us define

c̃i,K,Δt(x, t) = c̃n+1
i,κ .

Throughout this proof we shall now drop the subscript i and use the simplified nota-
tion csi = c.

Let us define the auxiliary expression E3 by

E3 =

NΔt∑
n=0

∫ tn+1

tn

(∫
Ω

cK,Δt(x, t)∇h(x, t) · ∇ϕ(x, tn+1) dx

−
∫
∂Ω

c̃K,Δt(x, t) g(x, t)ϕ(x, tn+1) dγ(x)

)
dt.

From the L∞ weak- convergence of cK,Δt to c and c̃K,Δt to c̃ as Δt and δK → 0, and
their boundedness, it results that

E3 →
∫ T

0

(∫
Ω

c(x, t)∇h(x, t) · ∇ϕ(x, t)dx−
∫
∂Ω

c̃(x, t)g(x, t)ϕ(x, t)dγ(x)

)
dt

as Δt → 0.

Multiplying (2.6) by ϕ(x, tn+1) and integrating it over the time interval (tn, tn+1)
and cell κ yield

∫ tn+1

tn

∫
κ

∂th(x, t)ϕ(x, tn+1) dx dt−
∫ tn+1

tn

∫
κ

Δh(x, t)ϕ(x, tn+1) dx dt = 0.

Since ϕ ∈ C∞
c (Rd+1), one obtains

∫ tn+1

tn

∫
κ

∇h(x, t) · ∇ϕ(x, tn+1) dx dt = −
∫ tn+1

tn

∫
κ

∂th(x, t)ϕ(x, tn+1) dx dt

+

∫ tn+1

tn

∫
∂κ

∇h(x, t) · �nκ ϕ(x, tn+1)dγ(x) dt,
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where �nκ is the normal unit vector to ∂κ outward to κ. Thus, one has

E3 =

NΔt∑
n=0

∑
σ∈Σint
σ=κ|κ′

(cn+1
κ − cn+1

κ′ )

∫ tn+1

tn

∫
σ

∇h(x, t) · �nκκ′ ϕ(x, tn+1) dγ(x) dt

+

NΔt∑
n=0

∑
κ∈K

∫ tn+1

tn

∫
∂κ∩∂Ω

(cn+1
κ − c̃n+1

κ ) g(x, t)ϕ(x, tn+1) dγ(x) dt

−
NΔt∑
n=0

∑
κ∈K

∫ tn+1

tn

∫
κ

cn+1
κ ∂th(x, t)ϕ(x, tn+1) dx dt.

Defining the second auxiliary expression E2 by

E2 = −
NΔt∑
n=0

∑
κ∈K

|κ|cn+1
κ (hn+1

κ − hn
κ)ϕ(xκ, t

n+1)

+

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

(cn+1
κ − cn+1

κ′ )Tκκ′(hn+1
κ′ − hn+1

κ )
1

|σ|

∫
σ

ϕ(x, tn+1) dγ(x)

+

NΔt∑
n=0

∑
κ∈K

∫ tn+1

tn

∫
∂κ∩∂Ω

(cn+1
κ − c̃n+1

κ ) g(x, t)ϕ(x, tn+1) dγ(x) dt,

we have

E3 − E2 = −
NΔt∑
n=0

∑
κ∈K

cn+1
κ

∫ tn+1

tn

∫
κ

[
∂th(x, t)ϕ(x, tn+1)

− (hn+1
κ − hn

κ)

Δt
ϕ(xκ, t

n+1)

]
dx dt +

NΔt∑
n=0

∑
σ∈Σint
σ=κ|κ′

(cn+1
κ − cn+1

κ′ )

·
∫ tn+1

tn

∫
σ

[
∇h(x, t) · �nκκ′ − hn+1

κ′ − hn+1
κ

d(κ, κ′)

]
ϕ(x, tn+1)dγ(x) dt.

Multiplying (2.6) by ϕ(xκ, t
n+1) and cn+1

κ and integrating it over the time interval
(tn, tn+1) and cell κ yield

NΔt∑
n=0

∑
κ∈K

∫ tn+1

tn

∫
κ

cn+1
κ ∂th(x, t)ϕ(xκ, t

n+1) dx dt

−
NΔt∑
n=0

∑
κ∈K

∫ tn+1

tn

∫
∂κ

cn+1
κ ∇h(x, t) · �nκ ϕ(xκ, t

n+1) dγ(x) dt = 0.

(A.9)

Similarly, multiplying (4.1) by cn+1
κ and ϕ(xκ, t

n+1) and summing the result over
κ ∈ K and n ∈ {0, . . . , NΔt}, we obtain

NΔt∑
n=0

∑
κ∈K

|κ|cn+1
κ (hn+1

κ − hn
κ)ϕ(xκ, t

n+1)

+

NΔt∑
n=0

Δt
∑
κ∈K

∑
κ′∈Kκ

Tκκ′cn+1
κ (hn+1

κ − hn+1
κ′ )ϕ(xκ, t

n+1)

−
NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| gn+1
κ cn+1

κ ϕ(xκ, t
n+1) = 0.

(A.10)



STRATIGRAPHIC MODELING 499

Then, E3 − E2 + (A.9) − (A.10) yields the equality

E3 − E2=

NΔt∑
n=0

∑
κ∈K

cn+1
κ

∫ tn+1

tn

∫
κ

∂th(x, t)
[
ϕ(xκ, t

n+1) − ϕ(x, tn+1)
]
dx dt

+

NΔt∑
n=0

Δt
∑
κ∈K

cn+1
κ

∑
σ∈Σκ∩Σκ′

∫
σ

[
1

Δt

∫ tn+1

tn
∇h(x, t) · �nκκ′ dt− hn+1

κ′ − hn+1
κ

d(κ, κ′)

]

·
[
ϕ(x, tn+1) − ϕ(xκ, t

n+1)

]
dγ(x).

Since ϕ is regular, there exists C1 > 0 depending only on ϕ such that, for all
κ ∈ K and x ∈ κ,

|ϕ(x, tn+1) − ϕ(xκ, t
n+1)| ≤ C1 δK.(A.11)

Thanks to the regularity of h, there exists C2 > 0 depending only on ‖h‖L∞(0,2T ;W 2,∞(Ω)),
such that, for all κ ∈ K, σ ∈ Σκ, x ∈ σ, and t ∈ (0, 2T ),

∣∣∣∣∣
1

|σ|

∫
σ

∇h(u, t) · �nκ dγ(u) −∇h(x, t) · �nκ

∣∣∣∣∣ ≤ C2 δK.

Thus, the following estimate is derived:

|E3 − E2| ≤ C3 δK‖∂th‖L∞(Ω×[0,2T ]) + 2C1 δK
NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

(
|σ|C2δK

+

∣∣∣∣∣Tκκ′(hn+1
κ′ − hn+1

κ ) − 1

Δt

∫ tn+1

tn

∫
σ

∇h(u, t) · �nκκ′ dγ(u) dt

∣∣∣∣∣
)
.

The last term in this estimate is bounded using Cauchy–Schwarz inequality as follows:

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

∣∣∣∣∣Tκκ′(hn+1
κ′ − hn+1

κ ) − 1

Δt

∫ tn+1

tn

∫
σ

∇h(u, t) · �nκκ′ dγ(u) dt

∣∣∣∣∣

≤
[

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′

] 1
2
[

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

d(κ, κ′) |σ|

(
hn+1
κ′ − hn+1

κ

d(κ, κ′)
− 1

Δt

1

|σ|

∫ tn+1

tn

∫
σ

∇h(u, t) · �nκκ′ dγ(u) dt

)2] 1
2

.

Finally, using (A.8), (4.5), and the bound
∑

σ∈Σint
|σ| ≤ dα |Ω|

δK , we obtain that

E3 − E2 → 0 as Δt → 0.
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It remains only to prove that E2 − E → 0 as Δt → 0. Removing (A.10) from E
yields

E =

NΔt∑
n=0

Δt
∑
κ∈K

∑
κ′∈Kκ

Tκκ′(cn+1
κκ′ − cn+1

κ ) (hn+1
κ − hn+1

κ′ )ϕ(xκ, t
n+1)︸ ︷︷ ︸

(F )

+

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(+),n+1
κ (cn+1

κ − c̃n+1
κ )ϕ(xκ, t

n+1)

−
NΔt∑
n=0

∑
κ∈K

|κ|cn+1
κ (hn+1

κ − hn
κ)ϕ(xκ, t

n+1).

Thanks to the upstream evaluation of the concentrations at the edges, (F ) vanishes
if hn+1

κ ≥ hn+1
κ′ . In the opposite case, it is equal to Tκκ′(cn+1

k′ − cn+1
κ ) (hn+1

κ −
hn+1
κ′ )ϕ(xκ, t

n+1), and thus

E =

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′(cn+1
κ′ − cn+1

κ ) (hn+1
κ − hn+1

κ′ )ϕ(xκκ′ , tn+1)

+

NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω| g(+),n+1
κ (cn+1

κ − c̃n+1
κ )ϕ(xκ, t

n+1)

−
NΔt∑
n=0

∑
κ∈K

|κ|cn+1
κ (hn+1

κ − hn
κ)ϕ(xκ, t

n+1),

with

xκκ′ =

{
xκ if hκ ≤ hκ′ ,
xκ′ otherwise.

Therefore, E2 − E writes

E2 − E =

NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′(cn+1
κ′ − cn+1

κ ) (hn+1
κ − hn+1

κ′ )

[
1

|σ|

∫
σ

ϕ(x, tn+1) dγ(x) − ϕ(xκκ′ , tn+1)

]
+

NΔt∑
n=0

∑
κ∈K

(cn+1
κ − c̃n+1

κ )

∫ tn+1

tn

∫
∂κ∩∂Ω

[
g(x, t)ϕ(x, tn+1) − g(+),n+1

κ ϕ(xκ, t
n+1)

]
dγ(x) dt.

Thanks to the regularity of ϕ, there exists C3 > 0 depending only on ϕ such that

∣∣∣∣∣
1

|σ|

∫
σ

ϕ(x, tn+1) dγ(x) − ϕ(xκκ′ , tn+1)

∣∣∣∣∣ ≤ C3 δK.(A.12)

Furthermore, since ϕ ∈ As
0, one has

∫
∂κ∩∂Ω

g(x, tn+1)ϕ(x, tn+1)dγ(x) =

∫
∂κ∩∂Ω

g+(x, tn+1)ϕ(x, tn+1)dγ(x).
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Finally, inequalities (A.11) and (A.12) and the definition of g
(+),n+1
κ give the estimate

|E2 − E| ≤ C3 δK
NΔt∑
n=0

Δt
∑

σ∈Σint
σ=κ|κ′

Tκκ′ |cn+1
κ′ − cn+1

κ | |hn+1
κ − hn+1

κ′ |

+C1 δK
NΔt∑
n=0

Δt
∑
κ∈K

|∂κ ∩ ∂Ω||cn+1
κ − c̃n+1

κ |g(+),n+1
κ .

It results from Lemma A.1 that |E2 − E| ≤ C4 δK H√
δK , which ends the proof.
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et de Traitement d’Image, Ph.D. thesis, Université de Paris-Sud, Paris, France, 1999.
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DOMAIN DECOMPOSITION SPECTRAL APPROXIMATIONS
FOR AN EIGENVALUE PROBLEM WITH A

PIECEWISE CONSTANT COEFFICIENT∗

M. S. MIN† AND D. GOTTLIEB†

Abstract. Consider a model eigenvalue problem with a piecewise constant coefficient. We split
the domain at the discontinuity of the coefficient function and define the multidomain variational
formulation for the eigenproblem. The discrete multidomain variational formulations are defined
for Legendre–Galerkin and Legendre-collocation methods. The spectral rate of convergence of the
approximate eigensolutions is proven for the Legendre–Galerkin method. The minmax principle is
used for the convergence analysis.

The Legendre-collocation, Chebyshev-collocation, Legendre-collocation penalty, and Chebyshev-
collocation penalty methods are also defined by using the multidomain approach, and their numerical
results applied to the eigenproblem are demonstrated. The spectral convergence for the eigenvalues
and eigenfunctions is confirmed for all the multidomain spectral techniques presented here.

Key words. discontinuous problems, multidomain variational formulation, minmax princi-
ple, domain decomposition, Legendre–Galerkin method, Legendre-collocation method, Legendre-
collocation penalty method, Chebyshev-collocation method, Chebyshev-collocation penalty method

AMS subject classifications. 41A10, 41A25

DOI. 10.1137/S0036142903423836

1. Introduction. We consider Maxwell’s equations governing the electromag-
netic wave propagation in periodically structured dielectric arrays cast as an eigen-
value problem. The dielectric function corresponding to the periodic arrays is repre-
sented by a periodically piecewise constant function.

The electromagnetic wave propagation in a periodic dielectric medium was first
studied by Rayleigh in 1887, identifying the fact that there exists a narrow frequency
gap prohibiting light propagation through one-dimensional periodic twinning planes.
A hundred years later, the concepts of omnidirectional forbidden frequency gaps in
two and three dimensions were introduced, leading to many subsequent developments
in the fabrication, theory, and application of electromagnetic wave propagation to
optical fibers [14], [3], [15], [23]. Computation has become a primary tool for carrying
out frequency gap calculation for various periodic dielectric structures.

Numerous numerical studies have focused on predicting the forbidden eigenfre-
quencies accurately by solving Maxwell’s equations in the frequency domain [1], [6],
[17], [16]. However, numerical analysis has been lacking, and high-order methods have
not been applied to such problems yet.

In [18], Fourier–Galerkin and Fourier-collocation methods are applied to a single
domain, and their theoretical and numerical convergence studies for the eigensolutions
are demonstrated. As a result of the presence of the discontinuity in the coefficient
function in a single domain, the solution is only in H2

p , and the rates of convergence
of the eigensolutions by Fourier methods are between second order and third order.
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In this paper, we apply domain decomposition techniques for spectral methods.
We obtain spectrally accurate eigensolutions by using multidomain Legendre and
Chebyshev approximations. Implementations in two dimensions are extended in [19].

In the multidomain approach, we split the domain into subdomains in order for
the discontinuous coefficient function to be smooth in each subdomain, so that the
solutions are infinitely smooth in each subdomain. Then we reformulate the problem
in multidomain variational form. The finite-dimensional space for each subdomain
is defined by the Legendre polynomials of finite degrees, and boundary and interface
conditions are imposed strongly for the Legendre–Galerkin, Legendre-collocation, and
Chebyshev-collocation methods and weakly for the Legendre-collocation penalty and
Chebyshev-collocation penalty methods.

We restrict the penalty parameter to a specific one in this paper and leave the
study for the proper range of the parameters to future work. Convergence analy-
sis for the eigenvalues and eigenfunctions is carried out for the Legendre–Galerkin
method. For the collocation cases, two different methods are introduced by choosing
two different test spaces for the same trial space.

The numerical results for Legendre–Galerkin, Legendre-collocation, Legendre-
collocation penalty, Chebyshev-collocation, and Chebyshev-collocation penalty meth-
ods presented here show a spectral rate of convergence for the eigensolutions. In
terms of accuracy, the results of the Legendre–Galerkin and the Legendre-collocation
methods, which use the same space for the test and trial spaces, are comparable and
more accurate than the results of the Legendre-collocation penalty and the Legendre-
collocation methods, which use different spaces for the trial and test space. The
penalty method is favorable because of the simplicity in implementation for the same
magnitude of accuracy.

We organize this paper as follows. In section 2 we reformulate the eigenproblem
into a multidomain variational formulation. We recall the minmax principle to char-
acterize the lth eigenvalue by minimizing the maximum of the Rayleigh quotient over
l-dimensional subspaces. In section 3 we present the finite-dimensional space used for
the approximate solution. The procedure to find the basis for the finite approximant
space is shown. In section 4 we define the multidomain variational formulation for
the Legendre–Galerkin method. We provide a convergence analysis for the eigenval-
ues and eigenfunctions. The theory is confirmed by numerical results. In section 5
two different Legendre-collocation methods are defined, based on the test space cho-
sen. The numerical results for eigensolutions by those methods show a spectral rate
of convergence. In section 6, we discuss the Legendre-collocation penalty method
by defining a multidomain variational formulation with the penalty approach [7] for
the boundary and interface constraints. Chebyshev-collocation approximations are
also tested and their numerical results presented. Section 7 discusses the asymptotic
behavior of the largest approximate eigenvalues. Section 8 gives a brief conclusion.

2. The multidomain variational formulation. The source-free Maxwell equa-
tions describing the transverse-magnetic mode in one-dimensional periodic media can
be cast as the following generalized eigenvalue problem: find λ and u in H2

p (−π, π)
(where p stands for periodic), such that

−u′′ = λε(x)u,(2.1)

where ε(x) = 1 in (−π, 0) and ε(x) = ω2 in [0, π), ω �= 1. The function u represents
the electric field pattern, and the dielectric function ε(x) describes a unit cell from a
multilayer structure with 2π-periodicity. This problem was considered in [18].
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Recall the variational formulation of (2.1) from [18]: Find λ and u ∈ H1
p (−π, π)

such that

a(u, v) = λ(u, v) for v ∈ H1
p (−π, π),(2.2)

where

a(u, v) =

∫ π

−π

u′v′dx and (u, v) =

∫ π

−π

uv εdx.(2.3)

Since a(u, v) is Hermitian, the eigenvalue can be characterized by the following two
statements from [9], [18], [20], [21].

Theorem 2.1. Let λl denote the eigenvalues of (2.1), and let Sl be any l-
dimensional subspace of H1

p (Ω). Then, for λ1 ≤ λ2 ≤ · · · ≤ λl · · · ,

λl = min
Sl⊂H1

p(Ω)
max
v∈Sl

a(v, v)

(v, v)
.(2.4)

We also recall the following lemma from [9] and [18].
Lemma 2.2. Let λi be arranged in ascending order, and define

Ei,j = span{ui, . . . , uj},(2.5)

where ui is the eigenfunction corresponding to the eigenvalue λi. Then

λl = max
v∈Ek,l

a(v, v)

(v, v)
, k ≤ l,(2.6)

λl = min
v∈El,m

a(v, v)

(v, v)
, l ≤ m.(2.7)

It is natural here to consider splitting the domain. Denote the domain by Ω =
(−π, π) and divide it into two subdomains, say, Ω− = (−π, 0) and Ω+ = (0, π), so
that ε(x) is smooth in each subdomain. Denote the restrictions by u− = u

∣∣
Ω−

and

u+ = u
∣∣
Ω+

, which are distributional solutions to the given equation (2.1). Integrate
by parts in Ω1 and Ω2, respectively, and define the following bilinear forms:

a(u, v)− =

∫ 0

−π

u′
−v

′
−dx + u′

−v−

∣∣∣−π

0
, (u, v)− =

∫ 0

−π

u−v−ε−dx,(2.8)

a(u, v)+ =

∫ π

0

u′
+v

′
+dx + u′

+v+

∣∣∣0
π

, (u, v)+ =

∫ π

0

u+v+ε+dx.(2.9)

Remark 1. It is clear to see that, for u, v ∈ H1
p (Ω),

a(u, v) = a(u, v)− + a(u, v)+,(2.10)

(u, v) = (u, v)− + (u, v)+.(2.11)

3. Finite-dimensional subspace. In this section we present the finite-dimen-
sional space used in our approximation. Denote by PN = span{Lk(ξ), ξ ∈ [−1, 1]}
the space of Legendre polynomials of degree at most N . We define the local variables
x− and x+ by

x−(ξ) =
π

2
(ξ − 1) and x+(ξ) =

π

2
(ξ + 1).(3.1)
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The approximation space V2N−2 is the (2N − 2)-dimensional space defined by

V2N−2 = {φ ∈ H2
p (Ω) : φ−(x−(ξ)) ∈ PN and φ+(x+(ξ)) ∈ PN}.(3.2)

To apply the Galerkin approximation, we need to find a basis of V2N−2. This is done
as follows.

Let φ in V2N−2 be expressed by

φ− = φ
∣∣
x−(ξ)

=

N∑
k=0

ckLk(ξ),(3.3)

φ+ = φ
∣∣
x+(ξ)

=

N∑
k=0

dkLk(ξ).(3.4)

Since φ and φ′ are continuous at x = 0 and 2π-periodic, we apply the following
conditions:

φ−(0) = φ+(0), φ−(−π) = φ+(π),(3.5)

φ′
−(0) = φ′

+(0), φ′
−(−π) = φ′

+(π).(3.6)

Letting αk = L′
k(1) = k(k+1)

2 , and applying the boundary and the interface conditions
(3.5) and (3.6), we obtain the following relations for the coefficients:

cN =

N−2
2∑

k=1

[
− (αN + α2k)

2αN
c2k +

(αN − α2k)

2αN
d2k

]
,(3.7)

dN =

N−2
2∑

k=1

[
(αN − α2k)

2αN
c2k − (αN + α2k)

2αN
d2k

]
,(3.8)

cN−1 =

N−4
2∑

k=0

[
− (αN−1 + α2k+1)

2αN−1
c2k+1 −

(αN−1 − α2k+1)

2αN−1
d2k+1

]
,(3.9)

dN−1 =

N−4
2∑

k=0

[
− (αN−1 − α2k+1)

2αN−1
c2k+1 −

(αN−1 + α2k+1)

2αN−1
d2k+1

]
.(3.10)

For simplicity, here we use the following notation:

βk =
αNk

+ αk

2αNk

and γk = (−1)k
αNk

− αk

2αNk

,(3.11)

Nk =

{
N for even k,

N − 1 for odd k.
(3.12)

Then, substituting (3.7)–(3.10) into (3.3)–(3.4), we get

φ− = φ
∣∣
x−(ξ)

=

N−2∑
k=0

ck{Lk(ξ) − βkLNk
(ξ)} +

N−2∑
k=0

dkγkLNk
(ξ),(3.13)

φ+ = φ
∣∣
x+(ξ)

=

N−2∑
k=0

ckγkLNk
(ξ) +

N−2∑
k=0

dk{Lk(ξ) − βkLNk
(ξ)}.(3.14)
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Thus, one can easily see the basis for V2N−2 given by

{φk, ψk} for 0 ≤ k ≤ N − 2,(3.15)

where the basis functions are defined by

(φk)− = Lk(ξ) − βkLNk
(ξ), (φk)+ = γkLNk

(ξ),(3.16)

(ψk)− = γkLNk
(ξ), (ψk)+ = Lk(ξ) − βkLNk

(ξ).(3.17)

Now, we are ready to construct the multidomain Legendre–Galerkin scheme in the
following section.

4. Legendre–Galerkin method. Find λN , uN ∈ V2N−2 such that

a(uN , vN ) = λN (uN , vN ) for all vN ∈ V2N−2.(4.1)

From the relations (2.10) and (2.11), the two inner products can be expressed by

a(uN , vN ) =

∫ 0

−π

(uN
− )′(vN− )′dx +

∫ π

0

(uN
+ )′(vN+ )′dx =

∫ π

−π

(uN )′(vN )′dx,(4.2)

(uN , vN ) =

∫ 0

−π

(uN
− )(vN− )(ε−)dx +

∫ π

0

(uN
+ )(vN+ )(ε+)dx =

∫ π

−π

uNvN ε dx.(4.3)

4.1. Numerical scheme and its results. The approximate eigenfunction uN ∈
V2N−2 can be expanded by the basis found in section 3 with an unknown set of (2N−2)
coefficients:

uN =

N−2∑
k=0

[(ûN
φ )kφk + (ûN

ψ )kψk].(4.4)

Take vN = φn for 0 ≤ n ≤ N−2, and substitute uN in the form (4.4) to the variational
formulation (4.2)–(4.3). We obtain the Legendre–Galerkin scheme as follows:

KûN = λNM ûN .(4.5)

The following are defined for the notation in scheme (4.5):

K =

[
K−

− K−
+

K+
− K+

+

]
, M =

[
M−

− M−
+

M+
− M+

+

]
, and ûN =

[
ûN
φ

ûN
ψ

]
,(4.6)

where

(K−
− )k,n =

∫ π

−π

(φk)
′(φn)′dx, (K−

+ )k,n =

∫ π

−π

(φk)
′(ψn)′dx,

(K+
−)k,n =

∫ π

−π

(ψk)
′(φn)′dx, (K+

+ )k,n =

∫ π

−π

(ψk)
′(ψn)′dx,

(M−
− )k,n =

∫ π

−π

φkφnε(x)dx, (M−
+ )k,n =

∫ π

−π

φkψnε(x)dx,

(M+
− )k,n =

∫ π

−π

ψkφnε(x)dx, (M+
+ )k,n =

∫ π

−π

ψkψnε(x)dx,
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Table 1

Relative errors of eigenvalues for ω = 2 and the discrete l2-errors of ui−uN
i for the multidomain

Legendre–Galerkin method.

λi N (λN
i − λi)/λi ‖ui − uN

i ‖
4 2.94(-03) 2.61(-03)

8 7.04(-10) 4.38(-07)

0.369875 16 6.15(-15) 1.03(-15)

32 7.38(-14) 3.49(-15)

64 6.40(-13) 2.55(-14)

4 4.39(-04) 8.77(-03)

8 1.63(-10) 2.38(-06)

0.536233 16 2.89(-14) 2.45(-14)

32 3.43(-14) 3.60(-14)

64 9.31(-14) 1.42(-13)

4 3.55(-02) 1.71(-01)

8 1.75(-06) 4.16(-04)

1.607115 16 2.76(-16) 5.43(-11)

32 5.94(-15) 4.82(-14)

64 3.96(-14) 2.85(-13)

4 3.28(-01) 1.05(-01)

8 1.45(-04) 4.71(-04)

1.937181 16 6.07(-15) 2.31(-10)

32 2.64(-14) 8.45(-15)

64 2.84(-13) 8.09(-14)

and

ûN
φ = [(ûN

φ )0, (û
N
φ )1, . . . , (û

N
φ )N−2]

T and ûN
ψ = [(ûN

ψ )0, (û
N
ψ )1, . . . , (û

N
ψ )N−2]

T .

Now, we solve the generalized matrix eigenproblem (4.5) numerically and obtain
the approximate l(≤ 2N−2)th eigenvalues, λN

l , and the set of orthogonal vectors ûN ,
which approximates the lth eigenfunction ul as the coefficients in the expansion of the
basis of V2N−2. In Table 1, the relative errors for λN

l − λl and the discrete l2-errors
of ul − uN

l as N increases are provided for the first few eigenvalues in an ascending
order and the associated eigenfunctions. The numerical results demonstrate that the
errors decay exponentially as N increases.

4.2. Error estimates for eigenvalues and eigenfunctions. We show the er-
ror estimates for the approximate eigenvalues and eigenfunctions for the multidomain
Legendre–Galerkin method.

We first treat the approximate eigenvalues. Let PNu be defined by

PNu =

N−2∑
k=0

[(ûφ)kφk + (ûψ)kψk],(4.7)

where the expansion coefficients (ûφ)k and (ûψ)k will be defined later in this section.
From the minmax principle [9], [21], we can characterize the eigenvalue for the

multidomain Legendre–Galerkin procedure by

λN
l = min

Sl⊂V2N−2

max
v∈Sl

a(v, v)

(v, v)
.(4.8)
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Lemma 4.1. Let λN
l be the approximation to λl as obtained by the Legendre–

Galerkin procedure (4.5), and let PNu be defined as in (4.7). Then

λl ≤ λN
l ≤ λl max

v∈E1,l

a(PNv, PNv)

a(v, v)
max
v∈E1,l

(v, v)

(PNv, PNv)
.(4.9)

Proof. Since V2N−2 is a subspace of H1
p (Ω), it is true that λl ≤ λN

l . Now, let
PE1,l be spanned by PNu1, . . . , PNul. For simplicity, we denote Pu = PNu. Clearly
PE1,l is the l-dimensional subspace of V2N−2. Using the minmax principle, we have

λN
l ≤ max

v∈PE1,l

a(v, v)

(v, v)

= max
v∈E1,l

a(Pv, Pv)

(Pv, Pv)

= max
v∈E1,l

a(v, v)

(v, v)

a(Pv, Pv)

a(v, v)

(v, v)

(Pv, Pv)
.

From Lemma 2.2, the proof follows.
Lemma 4.2. For ui=1,...,l ∈ H1

p (Ω), where (ui)− ∈ Hm(Ω−) and (ui)+ ∈
Hm(Ω+),

max
v∈E1,l

(v, v)

(Pv, Pv)
≤ 1 + C(l)N−m,(4.10)

where the constant C(l) is independent of N .

Proof. We follow the procedure in [18]. For v =
∑l

i=1 μiui in E1,l, we have

(v, v) − (Pv, Pv)

(v, v)
≤ 2|(v, v − Pv)|

(v, v)

≤
2
∑l

i,j=1 |μi||μj ||(ui − Pui, uj)|∑l
i=1 |μi|2

= 2l max
i,j=1,...,l

|(ui − Pui, uj)|.

For the last term above, we have

|(ui − Pui, uj)| ≤ |(ui − Pui, uj)−| + |(ui − Pui, uj)+|.(4.11)

Now consider an eigenfunction u = ui and its projection Pu onto the space V2N−2.
Since

Pu− =

N−2∑
k=0

[
(ûφ)k(φk)− + (ûψ)k(ψk)−

]
,(4.12)

Pu+ =

N−2∑
k=0

[
(ûφ)k(φk)+ + (ûψ)k(ψk)+

]
,(4.13)

we can rewrite them in terms of Legendre polynomials as follows:

Pu− =

N−2∑
k=0

(ûφ)kLk + cN−1LN−1 + cNLN ,(4.14)

Pu+ =

N−2∑
k=0

(ûψ)kLk + dN−1LN−1 + dNLN ,(4.15)
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where

cN−1 =

N−4
2∑

k=0

[−β2k+1(ûφ)2k+1 + γ2k+1(ûψ)2k+1] ,

cN =

N−2
2∑

k=1

[−β2k(ûφ)2k + γ2k(ûψ)2k] ,

dN−1 =

N−4
2∑

k=0

[γ2k+1(ûφ)2k+1 − β2k+1(ûψ)2k+1] ,

dN =

N−2
2∑

k=1

[γ2k(ûφ)2k − β2k(ûψ)2k] .

Now we identify

(ûφ)k =
2k + 1

2

∫ 1

−1

u−(x−(ξ))Lk(ξ)dξ,(4.16)

(ûψ)k =
2k + 1

2

∫ 1

−1

u+(x+(ξ))Lk(ξ)dξ,(4.17)

which are exactly the Legendre coefficients for u− and u+, respectively. For clarity, we
replace the notation (ûφ)k by (û−)k, and similarly (ûψ)k by (û+)k. Then, considering
an eigenfunction ui, the expansion coefficients of Pui are denoted by (ûi−)k and
(ûi+)

k
. Then we have

|(ui − Pui, uj)−|

=

∣∣∣∣∣∣
⎛
⎝ ∞∑

k≥N−1

(ûi−)kLk − cN−1LN−1 − cNLN ,

∞∑
n=0

(ûj−)nLn

⎞
⎠

−

∣∣∣∣∣∣
≤ π

2

∞∑
k≥N−1

|(ûi−)k||(ûj−)k|
∫ 1

−1

L2
kdξ

+
π

2
|cN−1||(ûj−)N−1|

∫ 1

−1

L2
N−1dξ +

π

2
|cN ||(ûj−)N |

∫ 1

−1

L2
Ndξ = RHS(1).

We examine the two terms |cN−1| and |cN |. From the Cauchy–Schwarz inequality, we
have

|cN−1| ≤

⎧⎨
⎩

N−4
2∑

k=0

(|β2k+1|2 + |γ2k+1|2)

⎫⎬
⎭

1/2 ⎧⎨
⎩

N−4
2∑

k=0

(|(ûi−)2k+1|2 + |(ûi+)2k+1|2)

⎫⎬
⎭

1/2

,

|cN | ≤

⎧⎨
⎩

N−2
2∑

k=1

(|β2k|2 + |γ2k|2)

⎫⎬
⎭

1/2 ⎧⎨
⎩

N−2
2∑

k=1

(|(ûi−)2k|2 + |(ûi+)2k|2)

⎫⎬
⎭

1/2

.

Since |βk|, |γk| < 1, and |(ûj−)k|, |(ûj+)k| decay like O(k−m) in [4] and [5], it is clear

that |cN−1| and |cN | are bounded by O(N). Since
∫ 1

−1
L2
k(ξ)dξ = 2

2k+1 , the second
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term of RHS(1) which is the leading term decays like O(N−m). Therefore we have

|(ui − Pui, uj)−| ≤ CN−m.(4.18)

Similarly, we get

|(ui − Pui, uj)+| ≤ CN−m.(4.19)

This completes the proof.
Lemma 4.3. For ui=1,...,l ∈ H1

p (Ω), where (ui)− ∈ Hm(Ω−) and (ui)+ ∈
Hm(Ω+),

max
v∈E1,l

a(Pv, Pv)

a(v, v)
≤ 1 + C(l)N−m,(4.20)

where the constant C(l) is independent of N .
Proof. Since

a(Pv, Pv)

a(v, v)
= 1 − a(v, v) − a(Pv, Pv)

a(v, v)
,(4.21)

we examine the convergency of the last term of (4.21). Following the similar procedure
as in Lemma 4.2, we obtain

|a(ui − Pui, uj)−| =

∣∣∣∣∣∣a
⎛
⎝ ∞∑

k≥N−1

(ûi−)kLk − cN−1LN−1 − cNLN ,

∞∑
n=0

(ûj−)nLn

⎞
⎠

−

∣∣∣∣∣∣
≤ π

2

∞∑
k≥N−1

∞∑
n=0

|(ûi−)k||(ûj−)k|
∫ 1

−1

L′
kL

′
ndξ

+
π

2
|cN−1||(ûj−)N−1|

∞∑
n=0

∫ 1

−1

L′
N−1L

′
ndξ

+
π

2
|cN ||(ûj−)N |

∞∑
n=0

∫ 1

−1

L′
NL′

ndξ = RHS(2).

Since the leading term of RHS(2) decays like O(N−m), we have

|a(ui − Pui, uj)−| ≤ CN−m.(4.22)

Similarly, we get

|a(ui − Pui, uj)+| ≤ CN−m.(4.23)

This completes the proof.
As consequences of Lemmas 4.2 and 4.3, we have the following theorems.
Theorem 4.4. For ui=1,...,l ∈ H1

p (Ω), where (ui)− ∈ Hm(Ω−) and (ui)+ ∈
Hm(Ω+), let λN

l be the lth eigenvalue obtained by the multidomain Legendre–Galerkin
approximation from (4.1) to the eigenvalue λl. Then

|λN
l − λl| ≤ C(l)N−m,(4.24)

where C(l) is independent of N .
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For the approximate eigenvectors, we can state the following.
Theorem 4.5. For ui=1,...,l ∈ H1

p (Ω), where (ui)− ∈ Hm(Ω−) and (ui)+ ∈
Hm(Ω+), let uN

l be the lth eigenfunction of the multidomain Legendre–Galerkin ap-
proximation (4.1) to the eigenfunction ul. Then

||ul − uN
l || ≤ C(l)N−m,(4.25)

where C(l) is independent of N .
The proof follows the same way as in [21].

5. Legendre-collocation methods. The Legendre–Gauss–Lobatto points ξi
are defined by

ξ0 = −1, ξN = 1, ξi(i = 1, . . . , N − 1) zeros of L′
N ,(5.1)

and the Legendre–Gauss–Lobatto weights are

wi =
2

N(N + 1)

1

[LN (ξi)]2
.(5.2)

Denoting

(u−)i = u
∣∣
(x−)i

for (x−)i =
π

2
(ξi − 1),(5.3)

(u+)i = u
∣∣
(x+)i

for (x+)i =
π

2
(ξi + 1),(5.4)

we define two discrete bilinear forms that approximate a(u, v)− and a(u, v)+:

a(u, v)h− =

N∑
i=0

(u−)′i(v−)′iwi + (u−)′0(v−)0 − (u−)′N (v−)N ,(5.5)

a(u, v)h+ =

N∑
i=0

(u+)′i(v+)′iwi + (u+)′0(v+)0 − (u+)′N (v+)N .(5.6)

To approximate (u, v)− and (u, v)+, define

(u, v)h− =

N∑
i=0

(u−)i(v−)i(ε−)iwi,(5.7)

(u, v)h+ =

N∑
i=0

(u+)i(v+)i(ε+)iwi.(5.8)

It is natural to define the following discrete bilinear forms approximating the contin-
uous bilinear forms a(u, v) and (u, v):

a(u, v)h = a(u, v)h− + a(u, v)h+,(5.9)

(u, v)h = (u, v)h− + (u, v)h+.(5.10)

Now, we state the multidomain discrete variational formulation of (2.2): Find λc

and uc in V2N−2 such that

a(uc, v)h = λc(uc, v)h for v ∈ V,(5.11)

where V is a suitable space that will be specified later. In the following subsections,
we introduce two different Legendre-collocation methods by taking the space V dif-
ferently.
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5.1. Legendre-collocation method 1. Our first Legendre-collocation method
takes the space V2N−2 as a test space. Find λc and uc in V2N−2 such that

a(uc, vc)h = λc(uc, vc)h for vc ∈ V2N−2.(5.12)

To construct the scheme, we expand

(uc
−)i =

N∑
j=0

(uc
−)j lj(ξi),(5.13)

(uc
+)i =

N∑
j=0

(uc
+)j lj(ξi),(5.14)

where the Lagrange interpolation polynomials of degree N based on the Legendre–
Gauss–Lobatto points [8], [10] are

lj(ξ) = − 1

N(N + 1)

(1 − ξ2)L′
N (ξ)

(ξ − ξj)LN (ξj)
.(5.15)

Take vc = φn(x)(0 ≤ n ≤ N − 2), which is the basis for V2N−2, and substitute uc
−,

uc
+, and vc in (5.5) and (5.6). Applying the continuity and the periodicity for uc, that

is, (uc
−)0 = (uc

+)N and (uc
−)N = (uc

+)0, we get

a(uc, vc)h = (uc
−)0

(
N∑
i=0

[Di0(φn−)′iw0 + DiN (φn−)′iwN ]

)

+ (uc
+)0

(
N∑
i=0

[Di0(φn+)′iw0 + DiN (φn+)′iwN ]

)

+

N−1∑
j=1

(uc
−)j

N∑
i=0

Dij(φn−)′iwi +

N−1∑
j=1

(uc
+)j

N∑
i=0

Dij(φn+
)′iwi,

where Dij = l′j(ξi) is the differentiation matrix of Lagrange polynomials based on
Legendre–Gauss–Lobatto points [10], [13]. Similarly, we have

(uc, vc)h = (uc
−)0[(φ0−)0(ε−)0w0 + (φ0+)N (ε+)NwN ]

+ (uc
+)0[(φ0+)0(ε+)0w0 + (φ0−)N (ε−)NwN ]

+

N−1∑
j=1

(uc
−)j(φn−)j(ε−)jwj +

N−1∑
j=1

(uc
+)j(φn+

)j(ε+)jwj .

Applying the same procedure for vc = ψn(x)(0 ≤ n ≤ N − 2), we have a system of
2N − 2 equations with the unknown vector

uc = [(uc
−)0, (u

c
−)1, . . . , (u

c
−)N−1, (u

c
+)0, (u

c
+)1, . . . , (u

c
+)N−1]

T .

From the remaining boundary and the interface conditions, that is, (uc
−)′0 = (uc

+)′N
and (uc

−)′N = (uc
+)′0, we get two more equations:

(uc
−)0[D0N −DN0] +

N−1∑
j=1

(uc
−)jDjN + (uc

+)0[DNN −D00] −
N−1∑
j=1

(uc
+)jDj0 = 0,

(uc
−)0[D0N −DN0] +

N−1∑
j=1

(uc
−)jDj0 + (uc

+)0[DNN −D00] −
N−1∑
j=1

(uc
+)jDjN = 0.
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Table 2

Domain decomposition Legendre-collocation methods (LC1 = method 1, LC2 = method 2) for
the relative errors of eigenvalues for ω = 2 and the l2-discrete errors of eigenfunctions.

Methods LC1 LC2

λi N (λc
i − λi)/λi ‖ui − uc

i‖ (λcc
i − λi)/λi ‖ui − ucc

i ‖
4 2.94(-03) 2.91(-03) 3.81(-01) 1.97(-01)

8 7.04(-10) 4.65(-07) -5.74(-05) 2.95(-06)

0.369875 16 -1.75(-14) 2.33(-15) -2.61(-13) 1.35(-14)

32 -2.23(-13) 3.19(-14) 2.30(-12) 1.40(-13)

64 -6.66(-13) 3.32(-13) 9.42(-12) 4.81(-13)

4 -6.14(-03) 2.17(-02) 1.39(+00) 1.06(+00)

8 -8.61(-09) 4.22(-06) -3.38(-05) 2.99(-05)

0.536233 16 -2.48(-15) 3.10(-14) -1.49(-13) 3.10(-13)

32 0.00(+00) 1.59(-13) 5.81(-14) 4.88(-13)

64 -2.05(-13) 2.46(-13) -5.60(-13) 2.18(-12)

4 -7.80(-02) 1.29(-01) 8.07(-01) 8.79(-01)

8 -2.89(-05) 6.33(-04) -2.10(-03) 5.43(-03)

1.607115 16 6.90(-16) 7.33(-11) -8.33(-10) 1.59(-09)

32 1.28(-14) 2.26(-13) 2.99(-14) 4.62(-13)

64 -4.42(-15) 6.55(-13) -1.85(-13) 1.35(-12)

4 3.28(-01) 1.17(-01) 1.62(+00) 2.49(-01)

8 1.45(-04) 4.99(-04) 1.13(-02) 1.89(-03)

1.937181 16 1.83(-15) 2.38(-10) 2.20(-08) 3.83(-09)

32 -6.49(-14) 3.86(-14) 4.56(-13) 8.42(-14)

64 -2.68(-13) 1.24(-13) 1.85(-12) 3.32(-13)

Finally, we can represent the Legendre-collocation (method 1) scheme (5.11) in matrix
form:

Kuc = λcMuc,(5.16)

where the dimension of the matrices K and M is 2N × 2N .
The numerical results are presented in Table 2 for the first few eigenvalues in

ascending order and the corresponding eigenfunctions, showing that the relative errors
for eigenvalues and l2-errors of the eigenfunctions decay exponentially as N increases.

5.2. Legendre-collocation method 2. Let us first define the (N−1)-dimensional
space

L̄N−1 = span{lj(ξ)|1 ≤ j ≤ N − 1, ξ ∈ [−1, 1]},(5.17)

where the Lagrange interpolation polynomials of degree N based on the Legendre–
Gauss–Lobatto points are

lj(ξ) = − 1

N(N + 1)

(1 − ξ2)L′
N (ξ)

(ξ − ξj)LN (ξj)
.(5.18)

Then we define

W2N−2 = {ϕ ∈ C0
p(Ω)|ϕ−(x−(ξ)) ∈ L̄N−1 and ϕ+(x+(ξ)) ∈ L̄N−1},(5.19)

the basis of which is given by {ϕn, ζn}N−1
n=1 , where

ϕn =

{
ln(ξ) in [−π, 0],

0 otherwise
and ζn =

{
0 in [−π, 0],

ln(ξ) otherwise.
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The multidomain discrete variational formulation of (2.2) for this method is to find
λcc and ucc in V2N−2 such that

a(ucc, wc)h = λcc(ucc, wc)h for wc ∈ W2N−2.(5.20)

Setting

(ucc
− )i =

N∑
j=0

(ucc
− )j lj(ξi),

(ucc
+ )i =

N∑
j=0

(ucc
+ )j lj(ξi)

and plugging them into (5.20) with wc = ϕn(x), ζn(x) (1 ≤ n ≤ N − 1), we get

Kucc = λccMucc,(5.21)

where, denoting the second derivative matrix of Lagrange interpolation polynomials
of degree N based on Legendre–Gauss–Lobatto points by D2, the entries of (2N×2N)
matrices K and M are expressed by

Knj =

⎧⎨
⎩

D2
nj

{
1 ≤ n ≤ N − 1, 0 ≤ j ≤ N,

N + 1 ≤ n ≤ 2N, N ≤ j ≤ 2N,
0 otherwise,

(5.22)

and

Mnj = diag{(ε−)1, . . . , (ε−)N−1, (ε+)1, . . . , (ε+)N−1}.

Additionally, two more equations are incorporated into the first and Nth rows of the
matrices K and M , which are from the boundary and interface constraints:

(ucc
− )0[D0N −DN0] +

N−1∑
j=1

(ucc
− )jDjN + (ucc

+ )0[DNN −D00] −
N−1∑
j=1

(ucc
+ )jDj0 = 0,

(ucc
− )0[D0N −DN0] +

N−1∑
j=1

(ucc
− )jDj0 + (ucc

+ )0[DNN −D00] −
N−1∑
j=1

(ucc
+ )jDjN = 0,

where D is defined as in section 5.1.

Solving (5.21) numerically, one obtains the eigenvalues λcc
l (l ≤ 2N) and the

associated eigenvector

ucc = [(ucc
− )0, (u

cc
− )1, . . . , (u

cc
− )N−1, (u

cc
+ )0, (u

cc
+ )1, . . . , (u

cc
+ )N−1]

T .

The numerical results are presented in Table 2 for the first few eigenvalues in as-
cending order and the corresponding eigenfunctions, showing the exponential rate of
convergence. Simply replacing the set of points and weights by the Chebyshev–Gauss–
Lobatto points and weights, one can construct the multidomain Chebyshev-collocation
method, the results of which are provided in Table 3.
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Table 3

Relative errors of eigenvalues ω = 2 and the l2-discrete errors of eigenfunctions for multidomain
Chebyshev-collocation method 2.

λi N (λcc
i − λi)/λi ‖ui − ucc

i ‖
4 -2.75(-02) 2.81(-03)

8 -2.20(-05) 1.22(-06)

0.369875 16 8.55(-15) 1.99(-15)

32 -1.76(-13) 2.80(-14)

64 -4.58(-12) 1.15(-12)

4 4.21(-02) 2.51(-02)

8 -1.39(-05) 1.18(-05)

0.536233 16 -5.77(-14) 5.06(-14)

32 -5.38(-14) 1.72(-13)

64 -3.55(-13) 9.13(-13)

4 1.55(-01) 4.70(-01)

8 -8.48(-04) 1.82(-03)

1.607115 16 -2.28(-10) 4.31(-10)

32 4.98(-14) 8.25(-14)

64 -1.41(-13) 9.66(-13)

4 6.97(-01) 4.74(-02)

8 4.52(-03) 6.72(-04)

1.937181 16 6.13(-09) 1.05(-09)

32 -2.88(-14) 1.56(-14)

64 -8.99(-13) 4.72(-13)

6. Legendre-collocation penalty method. In this section, the notation used
in section 4 represents the same definition. Let LN+1 be the (N + 1)-dimensional
space of Legendre–Lagrange interpolation polynomials of degree N defined by

LN+1 = span{lj(ξ)|0 ≤ j ≤ N, ξ ∈ [−1, 1]},(6.1)

where

lj(ξ) = − 1

N(N + 1)

(1 − ξ2)L′
N (ξ)

(ξ − ξj)LN (ξj)
.(6.2)

Let Y2N+2 be the (2N + 2)-dimensional space of piecewise continuous interpolation
polynomials defined as

Y2N+2 = {η ∈ L2(Ω)|η−(x−(ξ)) ∈ LN+1 and η+(x+(ξ)) ∈ LN+1},

the basis of which is given by

{ηn, ςn} for 0 ≤ n ≤ N,(6.3)

where

ηn =

{
ln(ξ) in [−π, 0],

0 otherwise
and ςn =

{
0 in (−π, 0),

ln(ξ) otherwise.
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Now, we define the discrete bilinear form approximating a(u, v) with penalty boundary
constraints:

a(u, v)τ = a(u, v)h− + a(u, v)h+

+τ1{(u+)N − (u−)0}
+τ2{(u+)0 − (u−)N}
+τ3{(u+)′N − (u−)′0}
+τ4{(u−)′N − (u+)′0},

where τi (1 ≤ i ≤ 4) are suitable constants depending on N , to be chosen later.

Now, we state the multidomain discrete variational formulation of (2.2) by penalty
approach. Find λτ and uτ in Y2N+2 such that

a(uτ , vτ )τ = λτ (uτ , vτ )h for vτ ∈ Y2N+2.(6.4)

To construct the scheme, we expand

(uτ
−)i =

N∑
j=0

(uτ
−)j lj(ξi),(6.5)

(uτ
+)i =

N∑
j=0

(uτ
+)j lj(ξi).(6.6)

Take vτ = ηn(x) and vτ = ςn(x), and choose τ1 = τ2 = στ
1 and τ3 = τ4 = στ

2 . Then
we define the following matrix K, whose dimensions are 2N + 2:

K =

[
D2 O
O D2

]
,(6.7)

where the (N + 1) × (N + 1) matrix D2 is the second derivative matrix of Lagrange
interpolation polynomials based on Legendre–Gauss–Lobatto points. Also, defining
the matrices

M = diag{(ε−)0, . . . , (ε−)N , (ε+)0, . . . , (ε+)N},

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 . . . 0 0 . . . 1
0 . . . 0 0 . . . 0
... . . . 0 0 . . .

...
0 . . . −1 1 . . . 0
0 . . . −1 1 . . . 0
... . . . 0 0 . . .

...
0 . . . 0 0 . . . 0
−1 . . . 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.8)
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Table 4

Relative errors of eigenvalues for ω = 2 and the L2-discrete errors of eigenfunctions for the
Legendre-collocation penalty (LCP) method and the Chebyshev-collocation penalty (CCP) method.

Methods LCP CCP

λi N (λτ
i − λi)/λi ‖ui − uτ

i ‖ (λτ
i − λi)/λi ‖ui − uτ

i ‖
4 -6.35(-02) 2.91(-03) -2.76(-02) 2.64(-03)

8 -5.73(-05) 5.09(-06) -2.21(-05) 1.18(-06)

16 -2.18(-13) 2.53(-14) -1.79(-12) 4.17(-13)

0.369875 32 5.10(-12) 4.75(-13) -5.86(-12) 1.37(-12)

64 -8.03(-12) 3.88(-12) -1.28(-10) 2.83(-11)

4 -4.81(-02) 4.12(-02) -4.30(-02) 2.43(-02)

8 -3.40(-05) 4.01(-05) -1.41(-05) 1.13(-05)

0.536233 16 -6.40(-13) 3.75(-12) 4.47(-13) 3.07(-12)

32 2.05(-13) 1.72(-12) 2.44(-12) 1.73(-11)

64 3.90(-11) 3.47(-10) 4.10(-11) 2.93(-10)

4 -1.96(-01) 4.42(-01) -1.52(-01) 4.53(-01)

8 -2.10(-03) 4.06(-03) -8.34(-04) 1.70(-03)

1.607115 16 -8.32(-10) 1.50(-09) -2.26(-10) 4.18(-10)

32 1.70(-12) 4.20(-11) 6.39(-13) 6.93(-12)

64 -2.21(-12) 8.62(-11) 1.20(-11) 1.36(-10)

4 5.11(-01) 5.28(-02) 7.13(-01) 5.81(-02)

8 1.13(-02) 1.82(-03) 4.57(-03) 6.38(-04)

1.937181 16 2.20(-08) 3.71(-09) 6.15(-09) 1.02(-09)

32 4.61(-13) 6.62(-13) -1.34(-12) 7.64(-13)

64 1.01(-11) 4.35(-12) -2.51(-11) 1.61(-11)

and

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−D01 . . . −D0N DN1 . . . DNN

0 . . . 0 0 . . . 0
... . . .

...
... . . .

...
0 . . . 0 0 . . . 0

DN1 . . . DNN −D01 . . . −D0N

−D01 . . . −D0N DN1 . . . DNN

0 . . . 0 0 . . . 0
... . . .

...
... . . .

...
0 . . . 0 0 . . . 0

DN1 . . . DNN −D01 . . . −D0N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(6.9)

and letting

Kτ = K + στ
1B1 + στ

2B2,(6.10)

we can represent the Legendre-collocation penalty scheme for (6.4):

Kτu
τ = λτMuτ ,(6.11)

where uτ = [(uτ
−)0, . . . , (u

τ
−)N , (uτ

+)0, . . . , (u
τ
+)N ]T .

The numerical computations are carried out for the case στ
1 = στ

2 =
{

2
πN(N + 1)

}2

[11], [12], which is chosen for the matrix Kτ to be symmetric positive definite [9],
[20]. The results, shown in Table 4, demonstrate the exponential rate of convergence.
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Fig. 1. Legendre–Galerkin method (left) and Legendre-collocation method 1 (right): the relative
errors of all the eigenvalues for N = 4, 8, 16, 32, 64.
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Fig. 2. Legendre-collocation method 2 (left) and Legendre-collocation penalty method (right):
the relative errors of all the eigenvalues for N = 4, 8, 16, 32, 64.

Simply replacing the set of points and the weights by the Chebyshev–Gauss–Lobatto
points and weights, one can construct the multidomain Chebyshev-collocation penalty
method, whose results also are provided in Table 4.

The theoretical analysis of the convergence for the multidomain spectral penalty
method is left for future study, as is the analysis for optimizing the parameter τi for
this eigenvalue problem.

7. Discussion. In this section we discuss the asymptotic behavior of the largest
approximate eigenvalues obtained by the multidomain spectral techniques for the
eigenproblem with a discontinuous coefficient. Figures 1–2 demonstrate the relative
errors of the eigenvalues with fixed N = 4, 8, 16, 32, 64 for each different method.
The figures show that for the approximations with degree N , the fraction 2

π of the
approximate eigenvalues converges to the analytic eigenvalues exponentially. Bernardi
and Maday [2] and Vandeven [22] give rigorous proofs for finding the fraction of the
approximate eigenvalues that approximate the eigenvalues of the second-order spectral
differentiation operator.

We present the relative errors for the first 29 eigenvalues for a fixed N = 16 in
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Table 5

Relative errors of eigenvalues for ω = 2 for the domain decomposition Legendre–Galerkin (LG),
Legendre-collocation method 1 (LC1), Legendre-collocation method 2 (LC2), Chebyshev-collocation
method 2 (CC2), Legendre-collocation penalty method (LCP), Chebyshev-collocation penalty method
(CCP): λ∗

l is the lth approximate eigenvalue and N = 16.

(λ∗
l − λl)/λl

l LG LC1 LC2 CC2 LCP CCP

1 -6.15(-15) -1.68(-14) -9.67(-14) 8.55(-15) -1.05(-12) -1.79(-12)

2 -2.89(-14) -8.28(-16) -1.49(-13) -5.77(-14) -2.58(-14) 4.47(-13)

3 -2.76(-16) 4.69(-15) -8.33(-10) -2.28(-10) -8.31(-10) -2.26(-10)

4 -6.07(-15) 1.14(-16) 2.20(-08) 6.13(-09) 2.20(-08) 6.15(-09)

5 5.52(-13) -1.42(-11) 8.41(-12) -1.69(-08) -1.31(-08) -2.37(-08)

6 9.48(-12) 9.48(-12) 1.74(-06) 4.80(-07) 1.74(-06) 4.81(-07)

7 2.83(-08) 2.83(-08) -1.19(-04) -3.16(-05) -1.19(-04) -3.16(-05)

8 5.94(-09) -7.70(-08) -7.80(-05) -2.20(-05) -7.87(-05) -2.24(-05)

9 9.59(-07) -8.19(-06) -8.51(-04) -2.36(-04) -8.44(-04) -2.33(-04)

10 2.62(-05) 2.62(-05) 2.70(-03) 7.56(-04) 2.71(-03) 7.61(-04)

11 2.15(-04) -1.11(-03) 6.59(-04) 1.20(-03) 5.59(-04) 1.16(-03)

12 6.74(-04) 6.74(-04) 2.11(-02) 2.61(-03) 2.11(-02) 2.62(-03)

13 1.25(-02) 1.25(-02) -2.07(-02) 1.12(-02) -2.06(-02) 1.12(-02)

14 4.88(-03) -1.50(-02) -6.98(-02) -3.63(-02) -7.02(-02) -3.65(-02)

15 2.53(-02) -2.96(-02) -6.49(-02) -4.14(-02) -6.42(-02) -4.10(-02)

16 8.25(-02) 8.25(-02) 1.29(-01) 1.17(-01) 1.30(-01) 1.18(-01)

17 1.40(-01) 2.55(-02) 2.22(-01) 9.57(-02) 2.25(-01) 9.61(-02)

18 1.44(-01) 1.40(-01) 2.76(-01) 2.05(-01) 2.76(-01) 2.04(-01)

19 2.23(-01) 1.53(-01) 2.76(-01) 1.92(-01) 2.74(-01) 1.91(-01)

20 3.57(-01) 3.57(-01) 2.30(-01) 3.88(-01) 2.27(-01) 3.87(-01)

21 4.77(-01) 3.89(-01) 6.88(-02) 4.15(-01) 6.65(-02) 4.15(-01)

22 5.89(-01) 5.89(-01) 3.17(-01) 6.21(-01) 3.18(-01) 6.20(-01)

23 6.97(-01) 5.20(-01) 2.76(-01) 4.69(-01) 2.77(-01) 4.69(-01)

24 8.38(-01) 8.38(-01) 7.77(-01) 1.00(+00) 7.78(-01) 1.00(+00)

25 9.78(-01) 6.44(-01) 6.49(-01) 8.09(-01) 6.49(-01) 8.09(-01)

26 1.89(+00) 1.89(+00) 1.74(+00) 2.19(+00) 1.75(+00) 2.21(+00)

27 2.22(+00) 1.67(+00) 1.46(+00) 1.86(+00) 1.48(+00) 1.88(+00)

28 4.59(+00) 4.58(+00) 4.96(+00) 8.90(+00) 4.99(+00) 9.00(+00)

29 5.22(+00) 3.93(+00) 4.31(+00) 7.82(+00) 4.33(+00) 7.91(+00)

Table 5. One can see that 1
π of the eigenvalues approximate the analytic eigenvalues

of the problem very accurately. One also can see that the Legendre–Galerkin method
and the Legendre-collocation method 1 are more accurate than the other colloca-
tion methods. However, the Legendre-collocation method 2 and Legendre-collocation
penalty method are relatively easier to implement because of their simplicity in dealing
with the basis of the space used in the approximation.

8. Conclusion. In this paper, we have mainly discussed the Legendre–Galerkin,
Legendre-collocation, and Legendre-collocation penalty methods with a domain de-
composition approach in order to get exponentially accurate eigensolutions for a model
eigenvalue problem with a piecewise continuous coefficient.

Acknowledgments. Special thanks to Wai-Sun Don, Jan Hesthaven, and Yvon
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Abstract. In this paper, we analyze convergence rates of wavelet schemes for time-dependent
convection-reaction equations within the framework of the Eulerian–Lagrangian localized adjoint
method (ELLAM). Under certain minimal assumptions that guarantee H1-regularity of exact solu-

tions, we show that a generic ELLAM scheme has a convergence rate O(h/
√

Δt + Δt) in L2-norm.
Then, applying the theory of operator interpolation, we obtain error estimates for initial data with
even lower regularity. Namely, it is shown that the error of such a scheme is O((h/

√
Δt)θ + (Δt)θ)

for initial data in a Besov space Bθ
2,q(0 < θ < 1, 0 < q ≤ ∞). The error estimates are a priori and

optimal in some cases. Numerical experiments using orthogonal wavelets are presented to illustrate
the theoretical estimates.
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Lagrangian method, wavelet method
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1. Introduction. This paper is concerned with convergence rates of the wavelet
schemes established in [24] for an initial value problem (IVP) to the following multi-
dimensional linear convection-reaction equation{

ut + ∇ · (Vu) + Ru = f(x, t), (x, t) ∈ R
d × (0, T ],

u(x, 0) = u0(x), x ∈ R
d,

(1.1)

where u(x, t) is the unknown concentration function, V(x, t) is a fluid velocity field,
R(x, t) is a first order reaction coefficient, f(x, t) is a source/sink term, and u0(x)
is a prescribed initial condition. It is assumed that u0(x) and f(x, t) are compactly
supported, and hence so is the exact solution u(x, t) for any finite time.

Convection-dominated reactive transport equations arise from remediation of sub-
surface contamination, nuclear waste disposal, biodegradation, numerical simulation
of petroleum reservoir, and many other applications. The solutions to these types of
problems usually are not smooth and raise serious challenges to numerical methods.
Standard finite difference or finite element methods (FEMs) produce either exces-
sively oscillatory or smeared solutions. Therefore, many special schemes have been
developed to overcome these difficulties.

Characteristics-based methods were developed in the late 1970s and the early
1980s to solve convection-dominated problems. Systematic study including error es-
timates for the FEM in the case of nondegenerate diffusion was given in [17]. Im-
proved estimates for such problems were given in [12] with a special discussion for
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degenerate diffusion. In the case of pure advection, [11] gives optimal rates of conver-
gence for the piecewise linear FEM but with the restrictions of very small time steps
(Δt = O(h2)) and sufficiently smooth exact solutions. There are many other results
for convection-dominated diffusion problems, but in most cases the derived estimates
adversely depend on the size of the diffusion parameter. In a recent paper [2], Bause
and Knabner derived error estimates for Lagrangian–Galerkin methods, which are
uniform with respect to the diffusion parameter, and therefore they remark that their
results can carry over to the limit case of pure convection.

Among the existing characteristic methods, the Eulerian–Lagrangian localized
adjoint method (ELLAM) [5] holds some advantages. It symmetrizes the governing
equation, naturally incorporates boundary conditions, and conserves mass. However,
ELLAM introduces further difficulties to the already fairly complicated analyses of
characteristic methods. It was shown in [19, 25] that within the ELLAM framework,
the piecewise linear FEM with uniform spatial partition has an optimal error estimate;
in other words, it has a convergence rate O(h2 + Δt), under the assumptions that
u ∈ L∞(0, T ;H3(Ω)) and ut ∈ L2(0, T ;H2(Ω)). Many other papers also assume the
exact solution is at least in H2 in space. However, it is clear that the requirement
u ∈ L∞(0, T ;Hs(Ω)) for any initial condition u0 ∈ Hs(Ω) will imply that the fluid
velocity is, roughly speaking, s times differentiable.

In this paper, requirements on regularity of the solution and the velocity field
will be significantly reduced. We shall prove that under certain minimal assumptions
that guarantee H1-smoothness of the exact solution, ELLAM schemes including the
orthogonal wavelet schemes satisfy

max
0≤n≤N

‖u(x, tn) − Un
h (x)‖L2(Rd) ≤ C(h/

√
Δt + Δt),(1.2)

where u(x, tn) is the exact solution at time tn, and Un
h (x) is the corresponding nu-

merical solution with spatial step size h and temporal step size Δt. The constant C
depends only on the norms of the velocity, reaction, source, and initial data, but not
on the norm of the exact solution u(x, t) itself.

Applying the theory of operator interpolation, we could obtain the error estimates

max
0≤n≤N

‖u(x, tn) − Un
h (x)‖L2(Rd) ≤ C

[
(h/

√
Δt)θ + (Δt)θ

]
(1.3)

for initial data u0 in a Besov space Bθ
2,q(0 < θ < 1, 0 < q ≤ ∞), where C could be

additionally dependent on θ. This extends our results to a wide class of data, including
discontinuous initial conditions, moving sharp fronts, or shocks. Generally speaking,
Besov spaces provide subtler characterization on regularity of functions than Sobolev
spaces do. Sometimes the exact order of approximation accuracy can be described
only when Besov spaces are used, as illustrated by our Example 2 in section 8. Efforts
in applying Besov spaces to other problems in numerical analysis can also be observed
in literature, e.g., a recent work by Bacuta, Bramble, and Xu [1].

Errors in the wavelet schemes come from truncation, characteristic tracking,
quadrature, and round-off. In this paper, we disregard quadrature rule error in the
computations of wavelet coefficients. That is, we assume numerical integration is ex-
act, following the common practices of most researchers [12, 17, 25]. The classic book
[6] (see sections 4.1 and 4.4 of that work) has a full discussion on quadrature errors in
the finite element method for elliptic problems. For time-dependent problems, some
discussions can be found in [21].
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The rest of this paper is organized as follows: Section 2 outlines the main ideas
in the ELLAM weak formulation and establishes our numerical schemes, including
the orthogonal wavelet schemes, within the ELLAM framework. Section 3 presents
error estimates for the numerical schemes under some minimal regularity assumptions
on the given data that guarantee H1-stability of the exact solutions (Theorem 1).
The proof of Theorem 1 is presented in section 4. In section 5, we state and prove
the stability lemmas about the exact solutions used in section 4. Section 6 extends the
results on convergence rates of the numerical schemes to initial data in Besov spaces.
In section 7, we discuss optimality of our error estimates. Numerical experiments are
presented in section 8 to illustrate the theoretical results. Finally, section 9 concludes
the paper with some remarks.

2. ELLAM schemes. In this section, we establish the ELLAM weak formula-
tion for problem (1.1). Based on this weak formulation, we derive a generic (abstract)
ELLAM scheme. Then we present the wavelet-ELLAM schemes using orthogonal
wavelets.

2.1. ELLAM formulation. Let [0, T ] be the time period, N a positive integer,
Δt := T/N , and tn = nΔt (n = 0, . . . , N) be a uniform partition of [0, T ]. To establish
a weak formulation for (1.1), we choose test function w(x, t) in such a way that it
vanishes outside the space-time strip R

d × (tn−1, tn] and is discontinuous in time at
time tn−1. Then integration by parts gives us

∫
Rd

u(x, tn)w(x, tn)dx −
∫ tn

tn−1

∫
Rd

(u(wt + V · ∇w −Rw))(x, t)dxdt

=

∫
Rd

u(x, tn−1)w(x, t+n−1)dx +

∫ tn

tn−1

∫
Rd

f(x, t)w(x, t)dxdt,

(2.1)

where w(x, t+n−1) := limt→t+
n−1

w(x, t) takes into account the fact that w(x, t) is dis-

continuous in time at time tn−1.
To cancel the second term on the left side of (2.1), we require the test function

to satisfy the adjoint equation

wt + V · ∇w −Rw = 0.(2.2)

Solving the above problem yields an explicit expression for the test function:

w(y(s;x, tn), s) = w(x, tn) e

∫ s

tn
R(y(r;x,tn),r)dr

, s ∈ (tn−1, tn],(2.3)

where the characteristic y(s;x, tn) passing through (x, tn) is determined by

⎧⎨
⎩

dy

ds
= V(y, s),

y(s;x, tn)|s=tn = x.
(2.4)

Then we are led to the reference equation

∫
Rd

u(x, tn)w(x, tn)dx =

∫
Rd

u(x, tn−1)w(x, t+n−1)dx

+

∫ tn

tn−1

∫
Rd

f(x, t)w(x, t)dxdt.
(2.5)
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Let x∗ = y(tn−1;x, tn). Applying (2.3), we can rewrite the first term on the right
side of (2.5) as∫

Rd

u(x, tn−1)w(x, t+n−1)dx

=

∫
Rd

u(x∗, tn−1)w(x, tn)e

∫ tn−1

tn
R(y(s;x,tn),s)ds

J(x∗,x)dx,

(2.6)

where J(x∗,x) is the Jacobian of x∗ with respect to x.

2.2. A generic ELLAM scheme. Based on (2.3), we first approximate the
test function w(y(s;x, tn), s) in the space-time strip R

d × (tn−1, tn] by

w(x, tn) e

∫ s

tn
R(x,tn)dr ≡ w(x, tn) eR(x,tn)(s−tn),

and then use it to approximate the second (source) term on the right side of (2.5),∫ tn

tn−1

∫
Rd

f(y, s)w(y, s)dyds

=

∫
Rd

∫ tn

tn−1

f(y, s)w(y, s)J(y,x)dsdx

=

∫
Rd

∫ tn

tn−1

f(x, tn)w(x, tn)eR(x,tn)(s−tn)dsdx + E(f, w)

=

∫
Rd

f(x, tn)w(x, tn)Gn(x)dx + E(f, w),

(2.7)

where J(y,x) is the Jacobian of y with respect to x,

Gn(x) :=

∫ tn

tn−1

eR(x,tn)(s−tn)ds =

⎧⎪⎨
⎪⎩

1 − e−R(x,tn)Δt

R(x, tn)
if R(x, tn) 	= 0,

Δt otherwise,

(2.8)

and E(f, w) is the error term

E(f, w) :=

∫ tn

tn−1

∫
Rd

f(y, s)w(y, s)dyds−
∫

Rd

f(x, tn)w(x, tn)Gn(x)dx.(2.9)

In practice, exact tracking of characteristics is usually unavailable, and we have
to resort to numerical means. All commonly used numerical methods, e.g., Euler
and Runge–Kutta methods, can be employed to solve (2.4). Let (x∗∗, tn−1) be the
numerical back-tracking image of (x, tn); then w(x∗∗, t+n−1) can be approximated by

w(x, tn)e−R(x,tn)Δt.
Now a generic ELLAM scheme can be established as follows: Let Vh ⊂ L2(Rd)

be an approximation subspace. Find Un
h (x) ∈ Vh such that for any test function w

with w(x, tn) ∈ Vh,∫
Rd

Un
h (x)w(x, tn)dx =

∫
Rd

Un−1
h (x∗∗)w(x, tn)e−R(x,tn)ΔtJ(x∗∗,x)dx

+

∫
Rd

f(x, tn)w(x, tn)Gn(x)dx,
(2.10)

where U0
h(x) is an approximation to u0(x) from Vh obtained by some means. For

example, it can be taken as the L2-orthogonal projection of u0 into Vh.
There are many choices for the approximation subspace Vh. It could be con-

structed through finite elements or wavelets.
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2.3. Wavelet schemes. Let

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R)

be a multiresolution analysis in L2(R) generated by an orthogonal scaling func-
tion φ(x) and let ψ(x) be the associated orthogonal wavelet [10]. We construct d-
dimensional scaling function and wavelets through tensor products. Let x = (x1, . . . ,
xd) ∈ R

d,k = (k1, . . . , kd) ∈ Z
d, e = (e1, . . . , ed) ∈ {0, 1}d =: Ê, and E := Ê \ {0}.

Then we define scaling function Φj,k(x) :=
∏d

i=1 φj,ki(xi) and the wavelets

Ψe
j,k(x) :=

d∏
i=1

(
φj,ki(xi)

)1−ei(
ψj,ki(xi)

)ei
, e ∈ E.

Furthermore, we define Vj :=
⊗d

i=1 Vj as the closed linear span in L2(Rd) of all
functions of the form f1(x1) · · · fd(xd), where fi ∈ Vj for i = 1, . . . , d. Then 〈Vj〉j∈Z

forms a multiresolution analysis in L2(Rd).

Clearly, we can use any subspace Vj in the above multiresolution analysis as an
approximation subspace Vh in the ELLAM scheme (2.10). This gives us an orthogonal
wavelet-ELLAM scheme.

For numerical implementations, we assume Ω ⊂ R
d to be a rectangular domain

such that the support of the solution u(x, t) to problem (1.1) is contained in Ω for all
t ∈ [0, T ]. Let Jc < Jf be the chosen coarsest and finest resolution levels. For all j
with Jc ≤ j ≤ Jf , we define

Λj := {k : suppΦj,k ∩ Ω 	= ∅},(2.11)

Λj,e := {k : suppΨe
j,k ∩ Ω 	= ∅},(2.12)

Sj(Ω) := Span{Φj,k(x) | k ∈ Λj}.(2.13)

Then we set Vh = SJf
(Ω) with h = 1/2Jf . There are two equivalent choices for the

basis functions of Vh:

• only the scaling functions at the finest level Jf ;
• the scaling functions at the coarsest level Jc plus all wavelets from level Jc to

level Jf − 1.

When only the scaling functions at the finest level are used as the basis functions,
we are seeking Un

h (x) ∈ Vh with

Un
h (x) =

∑
k∈ΛJf

cnJf ,k
ΦJf ,k(x).(2.14)

The orthogonality of scaling functions implies that we have an explicit scheme and
the coefficients are given by

cnJf ,k
=

∫
Ω

Un−1
h (x∗∗)ΦJf ,k(x)e−R(x,tn)ΔtJ(x∗∗,x)dx

+

∫
Ω

f(x, tn)ΦJf ,k(x)Gn(x)dx, k ∈ ΛJf
.

(2.15)

This is the Scheme I discussed in [24].
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When both the scaling functions at the coarsest level and the wavelets at fine
levels are used as the basis functions, we get Scheme II with

Un
h (x) =

∑
k∈ΛJc

cnJc,kΦJc,k(x) +

Jf−1∑
j=Jc

∑
k∈Λj,e

dn,ej,kΨe
j,k(x).(2.16)

Scheme II is also an explicit scheme. By choosing w(x, tn) = ΦJc,k(x) or Ψe
j,k(x),

respectively, we obtain, again through the orthogonality,

cnJc,k =

∫
Ω

Un−1
h (x∗∗)ΦJc,k(x)e−R(x,tn)ΔtJ(x∗∗,x)dx

+

∫
Ω

f(x, tn)ΦJc,k(x)Gn(x)dx, k ∈ ΛJc ,

dn,ej,k =

∫
Ω

Un−1
h (x∗∗)Ψe

j,k(x)e−R(x,tn)ΔtJ(x∗∗,x)dx

+

∫
Ω

f(x, tn)Ψe
j,k(x)Gn(x)dx, k ∈ Λj,e, Jc ≤ j ≤ Jf − 1.

(2.17)

In Scheme II, the first part on the right side of (2.16) provides a basic approxima-
tion. As more fine terms in the second part come in, we obtain better approximations.

As we know, solutions to convection-dominated transport equations often admit
steep fronts and even jump discontinuities within very small regions but are smooth
outside these regions. On the other hand, one prominent feature of wavelets is their
localization capability. The terms in the wavelet expansion with noticeable coefficients
correspond to the rough regions of the solution around those local singularities. We
can drop the terms with small coefficients that correspond to the smooth regions of
the solution. Therefore, the number of unknowns to be solved will be reduced. In
other words, an adaptive multilevel scheme with mass-conservative compression can
be constructed. This is the Scheme III presented in [24], which is, in some sense,
equivalent to the traditional FEM with local refinement.

Due to compression, the wavelet basis functions (or elements) used in Scheme III
vary at different time steps but are adapted to the solution we are looking for. This
is a typical case of nonlinear approximation [14]. Of course, Schemes I and II are
still in the category of linear approximation and are the main target of this paper.
Theoretical analysis on convergence rates of Scheme III is much harder and will be
addressed in our future work.

As proven in [24], all three wavelet schemes are explicit and unconditionally sta-
ble. In other words, they are not subject to the severe restriction of the Courant–
Friedrichs–Lewy (CFL) condition. This allows us to use relatively large time steps.

3. Error estimate for solutions with H1-regularity. In this section, we
derive an error estimate for the generic ELLAM scheme for exact solutions with only
H1-regularity.

Throughout this paper, we use Lp (1 ≤ p ≤ ∞) to denote the standard Lebesgue
spaces. Accordingly, W k

p are the standard Sobolev spaces. When p = 2, we use Hk

for W k
2 . For 1 ≤ q ≤ ∞, we define

Lq(a, b;W k
p ) := {u(x, t)|u(·, t) : (a, b) �→ W k

p , ‖u(·, t)‖Wk
p
∈ Lq(a, b)}.

In addition, (W 1
∞(Rd × [0, T ]))d is the space of vector-valued functions whose compo-

nents are in the space W 1
∞(Rd × [0, T ]).
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Assumption A. The approximation subspace Vh used in the generic ELLAM
scheme (2.10) has the following approximation property:

‖u− Phu‖L2 ≤ C0h‖u‖H1 ∀u ∈ H1(Rd),(3.1)

where C0 is a constant independent of h and u. The above inequality is also called a
Jackson-type inequality in literature.

Remark A. The above Jackson-type inequality is satisfied by commonly used
wavelets, e.g., Daubechies’ wavelets; see [14].

Assumption B.
(i) V ∈ (W 1

∞(Rd × [0, T ]))d.
(ii) divV ∈ W 1

∞(Rd × [0, T ]).
(iii) R ∈ W 1

∞(Rd × [0, T ]).
Now we state our first theorem on the error estimate for exact solutions with only

H1-regularity.
Theorem 1. Let u(x, t) be the exact solution of problem (1.1) and let Un

h (x) be
the numerical solution generated by the generic ELLAM scheme (2.10). Then under
Assumptions A and B, the following error estimate in L2-norm holds:

max
0≤n≤N

‖u(x, tn) − Un
h (x)‖L2(Rd)

≤ C

[
h√
Δt

(
‖u0‖H1(Rd) + ‖f‖L2(0,T ;H1(Rd))

)
(3.2)

+Δt
(
‖u0‖L2(Rd) + ‖f‖L2(0,T ;L2(Rd)) + ‖fτ‖L2(0,T ;L2(Rd))

) ]
,

where Δt and h are the temporal and spatial step sizes, respectively, and fτ is the
total derivative, i.e., the derivative along the characteristic direction. The constant C
depends only on the final time T and the norms of V,divV, R in the corresponding
spaces in Assumption B. When orthogonal wavelet schemes are used, h = 1/2J with
J being the finest spatial resolution used in the wavelet schemes.

4. Proof of Theorem 1. In this section, we first estimate the error En(w)
defined in (4.5). Then we estimate the error involving the source term defined in
(2.9). Applying a discrete Gronwall inequality, we derive the final error estimate
stated in Theorem 1.

Let un(x) := u(x, tn) and let Phun be the L2-orthogonal projection of un into the
subspace Vh, that is,

(Phun, vh) = (un, vh) ∀ vh ∈ Vh.(4.1)

Now with Phun, U
n
h ∈ Vh, we have the orthogonality

un − Un
h = (un − Phun) ⊕ (Phun − Un

h ),(4.2)

‖un − Un
h ‖2

L2(Rd) = ‖un − Phun‖2
L2(Rd) + ‖Phun − Un

h ‖2
L2(Rd).(4.3)

Here un−Phun is the approximation error, which is completely determined by un

and the chosen approximation subspace Vh. It is independent of the numerical scheme
being used: a wavelet method or a traditional finite element method. Therefore we
only need to bound the second term on the right side of (4.3).
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Let w be a test function such that w(x, tn) ∈ Vh. Subtracting (2.10) from (2.5)
and then applying (2.6) and (2.9), we obtain

(Phun − Un
h , w(x, tn)) = En(w) + E(f, w),(4.4)

where

En(w) :=

∫
Rd

u(x∗, tn−1)w(x, tn)e

∫ tn−1

tn
R(y,s)ds

J(x∗,x)dx

−
∫

Rd

Un−1
h (x∗∗)w(x, tn)e−R(x,tn)ΔtJ(x∗∗,x)dx.

(4.5)

From now on, we shall use C to denote a constant that is independent of the
spatial and temporal mesh sizes but may depend on the final time T and the norms
of the velocity field and the reaction in the corresponding spaces in Assumption B,
whereas C0 will be used for an absolute constant that does not depend on any of
the aforementioned terms. All these constants may take different values in different
occurrences.

The following basic estimates are easy to verify and shall be repeatedly used in
this section. When Δt is small enough, we have

(i) J(x∗,x) ≤ 1 + CΔt,

(ii) J(x∗∗,x) ≤ 1 + CΔt,

(iii) e

∫ tn−1

tn
R(y,s)ds ≤ 1 + CΔt,

(iv) e−R(x,tn)Δt ≤ 1 + CΔt.
Recall that Assumption B, part (i), implies that the velocity field is Lipschitz in

both space and time. When the Euler method is used for tracking characteristics, we
have

x∗∗ = x + V(x, tn)(tn−1 − tn),(4.6)

and hence

|x∗ − x∗∗| ≤ C(Δt)2,(4.7)

where C = C0‖V‖(W 1
∞(Rd×[0,T ]))d . Furthermore, the following estimate holds under

Assumption B, parts (i) and (ii):

|J(x∗,x) − J(x∗∗,x)| ≤ C(Δt)2.(4.8)

4.1. Estimate on error En(w). For the error En(w), we split it into 4 terms:

En(w) = I(1)
n + I(2)

n + I(3)
n + I(4)

n ,(4.9)

where

I(1)
n :=

∫
Rd

[
u(x∗, tn−1) − u(x∗∗, tn−1)

]
w(x, tn)e

∫ tn−1

tn
R(y,s)ds

J(x∗,x)dx,

I(2)
n :=

∫
Rd

u(x∗∗, tn−1)w(x, tn)e

∫ tn−1

tn
R(y,s)ds

[
J(x∗,x) − J(x∗∗,x)

]
dx,

I(3)
n :=

∫
Rd

u(x∗∗, tn−1)w(x, tn)
[
e

∫ tn−1

tn
R(y,s)ds − e−R(x,tn)Δt

]
J(x∗∗,x)dx,

I(4)
n :=

∫
Rd

[
u(x∗∗, tn−1) − Un−1

h (x∗∗)
]
w(x, tn)e−R(x,tn)ΔtJ(x∗∗,x)dx.

(4.10)
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Note that I(1)
n and I(2)

n in (4.10) reflect the error from inexact tracking of char-
acteristics. These two terms will vanish when exact tracking of characteristics is
available.

Estimate on I(1)
n in (4.10). The H1-stability of the exact solution (Lemma 4

in section 5) and estimate (4.7) yield
(∫

Rd

|u(x∗, tn) − u(x∗∗, tn)|2dx
)1/2

≤ C‖un‖H1(Rd)(Δt)2.

Therefore,

|I(1)
n | ≤ C(Δt)2‖un‖H1(Rd)‖w(x, tn)‖L2(Rd).(4.11)

Estimate on I(2)
n in (4.10). Based on estimate (4.8), we have

|I(2)
n | ≤ C(Δt)2‖un−1‖L2(Rd)‖w(x, tn)‖L2(Rd).(4.12)

Estimate on I(3)
n in (4.10). Let Rτ be the total derivative of R (along char-

acteristic) and z = y(r;x, tn) for r ∈ [s, tn]; then∣∣∣∣e
∫ tn−1

tn
R(y,s)ds − e−R(x,tn)Δt

∣∣∣∣ ≤ 2

∫ tn

tn−1

∫ tn

s

|Rτ (z, r)|drds ≤ ‖Rτ‖∞(Δt)2.

But Rτ = ∇R · V + Rt, so we have

|I(3)
n | ≤ C(Δt)2‖un−1‖L2(Rd)‖w(x, tn)‖L2(Rd).(4.13)

Estimate on I(4)
n in (4.10). It is easy to derive the following estimate:

|I(4)
n | ≤ (1 + CΔt)‖un−1 − Un−1

h ‖L2(Rd)‖w(x, tn)‖L2(Rd).(4.14)

Substitution of estimates (4.11), (4.12), (4.13), and (4.14) into (4.9) gives us an
estimate on the error En(w) defined in (4.5):

|En(w)| ≤
(

1

2
+ CΔt

)(
‖un−1 − Un−1

h ‖2
L2(Rd) + ‖w(x, tn)‖2

L2(Rd)

)

+C(Δt)3‖un−1‖2
L2(Rd) + CΔt‖w(x, tn)‖2

L2(Rd),

(4.15)

where C depends on the final time T and the norms of V,divV, R in the corresponding
spaces in Assumption B.

4.2. Estimate on source term. Now we estimate the error in the approxima-
tion to the source term. Let y = y(s;x, tn), s ∈ [tn−1, tn], and z = y(r;x, tn), r ∈
[s, tn]. According to (2.3), (2.7), and (2.9), we have

E(f, w) = I
(1)
f + I

(2)
f + I

(3)
f ,(4.16)

where

I
(1)
f :=

∫ tn

tn−1

∫
Rd

f(y, s)e

∫ s

tn
R(z,r)dr

w(x, tn)[J(y,x) − 1]dxds,

I
(2)
f :=

∫ tn

tn−1

∫
Rd

f(y, s)

[
e

∫ s

tn
R(z,r)dr − eR(x,tn)(s−tn)

]
w(x, tn)dxds,

I
(3)
f :=

∫ tn

tn−1

∫
Rd

[f(y, s) − f(x, tn)] eR(x,tn)(s−tn)w(x, tn)dxds.

(4.17)

For convenience, let Jn := [tn−1, tn].
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Estimate on I
(1)
f in (4.17). Applying the Cauchy–Schwarz inequality first in

space and then in time gives

∣∣∣∣∣
∫ tn

tn−1

∫
Rd

f(y, s)e

∫ s

tn
R(z,r)dr

w(x, tn)[J(y,x) − 1]dxds

∣∣∣∣∣
≤

∫ tn

tn−1

4
√

2‖divV‖∞(tn − s)‖f(·, s)‖L2(Rd)‖w(x, tn)‖L2(Rd)ds

≤ 4
√

2√
3
‖divV‖∞(Δt)

3
2 ‖f‖L2(Jn;L2(Rd))‖w(x, tn)‖L2(Rd).

Therefore, we have

|I(1)
f | ≤ 2

√
2√
3
‖divV‖∞

[
(Δt)2‖f‖2

L2(Jn,L2(Rd)) + Δt‖w(x, tn)‖2
L2(Rd)

]
.(4.18)

Estimate on I
(2)
f in (4.17). Similar to the above, we have

|I(2)
f | ≤ 2

√
2√
3
‖R‖∞

[
(Δt)2‖f‖2

L2(Jn;L2(Rd)) + Δt‖w(x, tn)‖2
L2(Rd)

]
.(4.19)

Estimate on I
(3)
f in (4.17). Let fτ be the total derivative of f ; then

∣∣∣∣
∫

Rd

[f(y, s) − f(x, tn)]eR(x,tn)(s−tn)w(x, tn)dx

∣∣∣∣
≤ 2

∫ tn

s

∫
Rd

|fτ (z, r)| |w(x, tn)|dxdr

≤ 2
√

2(tn − s)1/2‖fτ‖L2([s,tn];L2(Rd))‖w(x, tn)‖L2(Rd).

Therefore,

|I(3)
f | ≤ 2

√
2

3

[
(Δt)2‖fτ‖2

L2(Jn;L2(Rd)) + Δt‖w(x, tn)‖2
L2(Rd)

]
.(4.20)

Now we piece together the above estimates (4.18), (4.19), and (4.20) to obtain an
estimate on the source term

|E(f, w)| ≤ CΔt‖w(x, tn)‖2
L2(Rd)

+C(Δt)2
[
‖f‖2

L2(Jn;L2(Rd)) + ‖fτ‖2
L2(Jn;L2(Rd))

]
,

(4.21)

where the constant C can be taken as C = 2
√

2√
3

[‖divV‖∞ + ‖R‖∞ + 1].

4.3. Final estimate. Combining estimates (4.15) and (4.21) with (4.4) and
taking w(x, tn) as Phun − Un

h , we get

‖Phun − Un
h ‖2

L2(Rd) ≤
(1

2
+ CΔt

)(
‖Phun − Un

h ‖2
L2(Rd) + ‖un−1 − Un−1

h ‖2
L2(Rd)

)
+C(Δt)3‖un−1‖2

L2(Rd) + C(Δt)2
[
‖f‖2

L2(Jn;L2(Rd)) + ‖fτ‖2
L2(Jn;L2(Rd))

]
.
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Note that ‖un−1 − Un−1
h ‖2 = ‖un−1 − Phun−1‖2 + ‖Phun−1 − Un−1

h ‖2. Taking Δt
small enough such that CΔt ≤ 1/2, we obtain

‖Phun − Un
h ‖2 ≤

(
1

2
+ CΔt

)(
‖Phun − Un

h ‖2 + ‖Phun−1 − Un−1
h ‖2

)
+‖un−1 − Phun−1‖2 + C(Δt)3‖un−1‖2

+C(Δt)2
[
‖f‖2

L2(Jn;L2(Rd)) + ‖fτ‖2
L2(Jn;L2(Rd))

]
.

Summing both sides for n = 1, 2, . . . ,m (m ≤ N) and canceling identical terms (also
U0
h = Phu0), we get

‖Phum − Um
h ‖2 ≤

(
1

2
+ CΔt

)
‖Phum − Um

h ‖2 + CΔt

m−1∑
n=1

‖Phun − Un
h ‖2

+

m−1∑
n=0

‖un − Phun‖2 + C(Δt)3
m−1∑
n=0

‖un‖2

+C(Δt)2
[
‖f‖2

L2(0,T ;L2(Rd)) + ‖fτ‖2
L2(0,T ;L2(Rd))

]
.

Taking Δt small enough such that CΔt ≤ 1/4, we have

‖Phum − Um
h ‖2 ≤ CΔt

m−1∑
n=1

‖Phun − Un
h ‖2

+C0

m−1∑
n=0

‖un − Phun‖2 + C(Δt)3
m−1∑
n=0

‖un‖2

+C(Δt)2
[
‖f‖2

L2(0,T ;L2(Rd)) + ‖fτ‖2
L2(0,T ;L2(Rd))

]
.

Applying the discrete Gronwall inequality, we obtain

‖Phum − Um
h ‖2

L2(Rd) ≤ C

m−1∑
n=0

‖un − Phun‖2
L2(Rd) + C(Δt)3

m−1∑
n=0

‖un‖2
L2(Rd)

+C(Δt)2
[
‖f‖2

L2(0,T ;L2(Rd)) + ‖fτ‖2
L2(0,T ;L2(Rd))

]
.

(4.22)

The first two terms on the right side of the above estimate reflect the error buildup
during the iterative process in numerical scheme (2.10). However, this can be con-
trolled through the stability of the exact solution.

For the IVP to the linear convection-reaction equation in conservative form (1.1),
Lemmas 3 and 4 in section 5 hold under the conditions in Assumption B and yield

max
0≤n≤N

‖un‖L2(Rd) ≤ C
(
‖u0‖L2(Rd) + ‖f‖L2(0,T ;L2(Rd))

)
,(4.23)

max
0≤n≤N

‖un‖H1(Rd) ≤ C
(
‖u0‖H1(Rd) + ‖f‖L2(0,T ;H1(Rd))

)
,(4.24)

where C depends only on the final time T and the norms of V,divV, R in the corre-
sponding spaces in Assumption B.

Applying (4.23), we get

m−1∑
n=0

‖un‖2
L2(Rd) ≤

C

Δt

(
‖u0‖2

L2(Rd) + ‖f‖2
L2(0,T ;L2(Rd))

)
.(4.25)
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Combining Assumption A with (4.24), we obtain

m−1∑
n=0

‖un − Phun‖2
L2(Rd) ≤ C

h2

Δt

(
‖u0‖2

H1(Rd) + ‖f‖2
L2(0,T ;H1(Rd))

)
.(4.26)

Combining (3.1), (4.3), (4.22), and the above two estimates, we finish the proof
of Theorem 1.

5. Stability of exact solutions. In this section, we prove the stability lemmas
used in the last section about the exact solution to a linear convection-reaction equa-
tion. All results are first established for the solution to an IVP to the linear transport
equation in nonconservative form:

{
ut + V · ∇u = cu + f, (x, t) ∈ R

d × (0, T ],
u(x, 0) = u0(x), x ∈ R

d,
(5.1)

where u0 ∈ L2(Rd). However, the results can be easily passed to the linear convection-
reaction equation in the conservative form (1.1) by simply setting c = −(divV + R).

In this section, Assumption B, part (i), can be relaxed to V∈L1(0, T ; (W 1
∞(Rd))d);

that is, V is Lipschitz with respect to only spatial variables. Although it is possible
to prove the existence, uniqueness, and regularity results below under even weaker
assumptions, we restrict our attention to the case V ∈ L1(0, T ; (W 1

∞(Rd))d) to keep
the assumptions simple.

Lemma 2 (existence and uniqueness). Suppose V ∈ L1(0, T ; (W 1
∞(Rd))d), c ∈

L1(0, T ;L∞(Rd)), and f ∈ L1(0, T ;L2(Rd)). If u0 ∈ L2(Rd), then there exists a
unique solution to (5.1) in L∞(0, T ;L2(Rd)) and the solution can be explicitly ex-
pressed as

u(x, t) = u0(y(0;x, t))e

∫ t

0
c(y(s;x,t),s)ds

+

∫ t

0

f(y(s;x, t), s)e

∫ t

s
c(y(r;x,t),r)dr

ds.(5.2)

The uniqueness of the solution u in Lemma 2 is a corollary of the results in [16].
The solution formula (5.2) can be derived using the results in [16], the techniques in
[22], and standard density arguments.

Lemma 3 (L2-stability). Assume that V, c, and f satisfy the conditions of Lemma
2. If u0 ∈ L2(Rd), then the unique solution satisfies

‖u(·, t)‖L2(Rd) ≤ C
[
‖u0‖L2(Rd) + ‖f‖L1(0,t;L2(Rd))

]
∀t ∈ [0, T ],(5.3)

where C can be taken as C = e

∫ t

0
[‖c(·,r)‖∞+ 1

2‖divV(·,r)‖∞]dr
.

Proof. Applying the triangle and Minkowski inequalities to the representation
formula (5.2), we obtain

‖u(·, t)‖2 ≤ e

∫ t

0
‖c(·,s)‖∞ds

[(∫
Rd

|u0(y(0;x, t))|2dx
) 1

2

+

∫ t

0

(∫
Rd

|f(y(s;x, t), s)|2dx
) 1

2

ds

]
.

(5.4)

Let J(y,x) be the Jacobian of mapping x �→ y := y(s;x, t). It is known [13] that

J(y,x) = e

∫ s

t
divV(y(r;x,t),r)dr

.(5.5)



CONVERGENCE ANALYSIS OF WAVELET SCHEMES 533

Hence, for any s ≤ t ∈ [0, T ], we have

e
−
∫ t

s
‖divV(·,r)‖∞dr ≤ J(y,x) ≤ e

∫ t

s
‖divV(·,r)‖∞dr

.(5.6)

Of course, we can take y := y(s;x, t) as the starting point. Then the reversibility of
flow ensures that the Jacobian J(x,y) of the inverse mapping y(s;x, t) �→ x satisfies
the same estimate. A change of variables in (5.4) and then an application of the above
estimates on Jacobians conclude the proof.

Next we shall impose some additional conditions on c and f so that the solution
u ∈ L∞(0, T ;H1(Rd)), provided u0 ∈ H1(Rd). In other words, under these sufficient
conditions on V, c, and f , the solution operator Et : u0 �→ u(·, t) is a bounded
operator from H1(Rd) to H1(Rd).

Lemma 4 (H1-stability). Assume that V ∈ L1(0, T ; (W 1
∞(Rd))d), c ∈ L1(0, T ;

W 1
∞(Rd)), and f ∈ L1(0, T ;H1(Rd)). If u0 ∈ H1(Rd), then the unique weak solution

satisfies

‖u(·, t)‖H1(Rd) ≤ C
(
‖u0‖H1(Rd) + ‖f‖L1(0,t;H1(Rd))

)
∀t ∈ [0, T ],(5.7)

where the constant C depends only on ‖V‖L1(0,T ;(W 1
∞(Rd))d) and ‖c‖L1(0,T ;W 1

∞(Rd)).
Proof. Using the chain rule to the solution formula (5.2), we can derive expressions

for all partial derivatives ∂u
∂xi

, 1 ≤ i ≤ d, which involve spatial partial derivatives of
the flow y(s;x, t), c, and f . Let z(s;x, t) be any partial derivative of y := y(s;x, t)
with respect to one of the variables x1, . . . , xd. We shall derive a uniform bound for
z(s; ·, t). Let |z(s;x, t)| be the usual Euclidean norm for a vector in R

d. The following
assertion was proven in [8, 22]: Let V satisfy

|(V(x, t) − V(y, t)) · (x − y)| ≤ K(t)|x − y|2;

then

|z(s;x, t)| ≤ |z(t;x, t)|e
∫ T

0
K(r)dr

= e

∫ T

0
K(r)dr

.

Here we have used the fact y(t;x, t) = x to get |z(t;x, t)| = 1. It is not difficult
to verify that if V ∈ L1(0, T ; (W 1

∞(Rd))d), then the above inequality holds with
K(t) = ‖V(·, t)‖W 1

∞(Rd). Therefore,

‖z(s, ·, t)‖∞ := ess supx∈Rd |z(s,x, t)| ≤ e
‖V‖

L1(0,T ;(W1
∞(Rd))d) .(5.8)

This is the standard estimate for a Lipschitz flow; see (1.4) in [7]. Based on the
uniform bound (5.8), we can estimate all partial derivatives as follows:

∥∥∥ ∂u

∂xi
(·, t)

∥∥∥
L2(Rd)

≤ C
(
‖u0‖H1(Rd) + ‖f‖L1(0,T ;H1(Rd))

)
,

where the constant C depends only on the norms of V in L1(0, T ; (W 1
∞(Rd))d) and c

in L1(0, T ;W 1
∞(Rd)). We finish the proof by combining the above estimate and the

result of Lemma 3.

6. Extension to Besov spaces. Besov spaces provide subtle characterization
of regularity of functions. Interpolation of spaces and operators is a classical topic in
harmonic analysis and has many interesting applications. In this section, we cite only
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the minimal requisite for our discussion. Readers are referred to [3, 15] for complete
accounts of these two topics.

Besov spaces involve moduli of smoothness rather than the distributional deriva-
tives used for Sobolev spaces. Let 1 ≤ p ≤ ∞, f ∈ Lp(Rd), h ∈ R

d, and let Δh be
the usual difference operator: Δhf(x) := f(x + h)−f(x). Let k be a positive integer
and t > 0. The kth modulus of smoothness of function f is defined as

ωk(f, t)p := sup
|h|≤t

‖Δk
h(f,x)‖Lp(Rd).(6.1)

Suppose α > 0 and 0 < q ≤ ∞. Let k be a positive integer such that k > α.
The Besov space Bα

p,q(R
d) consists of functions f ∈ Lp(Rd) (if p < ∞) or C(Rd) (if

p = ∞) such that

‖f‖Bα
p,q

:=

⎧⎪⎪⎨
⎪⎪⎩

‖f‖Lp +
{∫ ∞

0

[
t−αωk(f, t)p

]q dt

t

}1/q

, 0 < q < ∞,

‖f‖Lp + sup
t>0

t−αωk(f, t)p, q = ∞,
(6.2)

is finite.
It is known that Bα

p,q1 ⊂ Bα
p,q2 if q1 < q2. When p = 2, one has Bα

2,2 = Hα with
equivalent norms.

Interpolation of spaces can be defined by K-functionals. Let X1 ⊂ X0 be Banach
spaces. For any f ∈ X0 and t > 0,

K(f, t) := K(f, t;X0, X1) := inf
g∈X1

{‖f − g‖X0
+ t‖g‖X1

}.(6.3)

Here t is viewed as a penalty factor. The intermediate space [X0, X1]θ,q consists of
all f ∈ X0 for which

‖f‖θ,q :=

⎧⎪⎪⎨
⎪⎪⎩

{∫ ∞

0

[
t−θK(f, t)

]q dt

t

}1/q

, 0 < q < ∞,

sup
t>0

t−θK(f, t), q = ∞,
(6.4)

is finite. Obviously, X1 ⊂ [X0, X1]θ,q ⊂ X0.
Amazingly, the K-functional for the pair (Lp,W k

p ) is equivalent to the modulus
of smoothness, and hence we have the following (see [3, 15]).

Lemma 5 (interpolation of spaces). Let k > 0 be an integer and let 1 ≤ p ≤ ∞.
For any 0 < θ < 1, 0 < q ≤ ∞, we have

[
Lp(Rd),W k

p (Rd)
]
θ,q

= Bθk
p,q(R

d).(6.5)

Especially,

[
L2(Rd), H1(Rd)

]
θ,q

= Bθ
2,q(R

d).(6.6)

Lemma 6 (interpolation of operators). Suppose that X1 ⊂ X0 and Y are Banach
spaces. If T is a linear operator from Xi to Y with norm Mi (i = 0, 1), then T is
also a linear operator from [X0, X1]θ,q to Y with norm not exceeding M1−θ

0 Mθ
1 for

any 0 < θ < 1, 0 < q ≤ ∞.
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Theorem 7. Suppose that Assumptions A and B are satisfied. Then for any
0 < θ < 1, 0 < q ≤ ∞, the following error estimate holds:

max
0≤n≤N

‖u(x, tn) − Un
h (x)‖L2(Rd)

≤ C
{[

(h/
√

Δt)θ + (Δt)θ
]
‖u0‖Bθ

2,q(R
d)(6.7)

+(h/
√

Δt + Δt)
[
‖f‖L2(0,T ;H1(Rd)) + ‖fτ‖L2(0,T ;L2(Rd))

] }
,

where Δt and h bear the same meaning as that in Theorem 1, but C may additionally
depend on θ.

Proof. We split the error as

un − Un
h = [u(1)

n − U
(1),n
h ] + [u(2)

n − U
(2),n
h ],

where u
(1)
n and U

(1),n
h are the exact and numerical solutions for problem (1.1) without

source term (i.e., f ≡ 0), whereas u
(2)
n and U

(2),n
h are the exact and numerical solutions

for the problem with no initial data (u0 ≡ 0).
Recall that in [24] we proved the numerical solution is L2-stable. Here (4.23) is

the L2-stability of the exact solution. Combined, they imply

‖u(1)
n − U

(1),n
h ‖L2(Rd) ≤ C‖u0‖L2(Rd)

for u0 ∈ L2(Rd). If u0 ∈ H1(Rd), then by Theorem 1 we have

‖u(1)
n − U

(1),n
h ‖L2(Rd) ≤ C(h/

√
Δt + Δt)‖u0‖H1(Rd).

Applying Lemmas 5 and 6 to the linear operator En : u0 �→ u(1)
n − U

(1),n
h , we obtain

‖u(1)
n − U

(1),n
h ‖L2(Rd) ≤ C(h/

√
Δt + Δt)θ‖u0‖Bθ

2,q(R
d)

≤ C
[
(h/

√
Δt)θ + (Δt)θ

]
‖u0‖Bθ

2,q(R
d).

By Theorem 1 again, we have

‖u(2)
n − U

(2),n
h ‖L2(Rd) ≤ C(h/

√
Δt + Δt)

(
‖f‖L2(0,T ;H1(Rd)) + ‖fτ‖L2(0,T ;L2(Rd))

)
.

Then the conclusion of Theorem 7 follows from a triangle inequality.

7. Optimality of our error estimates. For solutions with H1- or even lower
regularity, we can use Haar wavelets to carry out our numerical approximations. Haar
wavelets are the simplest wavelets and have only one vanishing moment. We know
that the order of approximation accuracy is usually the minimum of the order of
smoothness of the function being approximated and the order of the method, which
is the number of vanishing moments for orthogonal wavelets. For a solution u ∈ H1,
Assumption A in section 3 is satisfied for the approximation subspace Vh generated
by Haar wavelets.

However, in the original formulation of ELLAM discussed in subsection 2.1, the
test function w(x, t) is assumed to be in H1(Rd) for any t ∈ (tn−1, tn] and required
to satisfy the adjoint equation (2.2). But Haar scaling functions and wavelets are not
in H1(R). However, mollifications with any cut-off function can be applied to Haar
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scaling functions or wavelets [18], so that (2.2) is satisfied for the mollifications. Then,
based on the L2-stability of the exact solution and density arguments, we can still get
the reference equation (2.5) when the test function w(x, t) is such that w(x, tn) is taken
as a Haar scaling function or wavelet. Numerical scheme (2.10) can be established for
Haar scaling functions and wavelets without difficulty. Moreover, when Haar scaling
functions are used in the ELLAM formulation, the coefficients are exactly the cell
averages of the unknown function on dyadic cells, thus we have local conservation of
mass.

Let us consider a simple convection equation: ut − ux = 0, with a time step
Δt = αh (0 < α < 1). For this case, the ELLAM scheme with Haar scaling functions
becomes a monotone scheme, which is widely used for hyperbolic conservation laws.
Monotone schemes are a special case of linear formal first order schemes; see [4] for
details. According to Theorem 4.4 in [4], there exists a constant C1 such that

sup
‖u0‖H1(R)≤1

‖u(x, T ) − UN
h (x)‖L2(R) ≥ C1h

1/2.(7.1)

An explicit value for C1 can be derived using a modification of the argument in [23].
On the other hand, for this equation with any initial condition u0 ∈ H1(R) and

Δt = αh (0 < α < 1), our Theorem 1 implies an upper bound for the error in the
numerical solution at the final time T :

‖u(x, T ) − UN
h (x)‖L2(R) ≤ C2h

1/2.(7.2)

The above lower and upper bounds imply that our error estimate is optimal for
this case for the class of initial conditions u0 ∈ H1. We also want to point out that it
is possible to give more examples with an optimal rate 1/2: for a different equation
or a different subspace generated by smooth basis functions.

Regarding the term h/
√

Δt in the error estimates, our understanding is that it
reflects the behavior of numerical schemes when only H1-smoothness is assumed for
exact solutions. From approximation theory, we know that only first order O(h)
approximation accuracy can be achieved at each fixed time step. For time-marching
schemes, error will accumulate. However, the buildup of error can be controlled by
the stability of solutions. In our theoretical estimates, we derive an upper bound for
the error in the form h/

√
Δt. A similar error estimate with adverse dependence on

Δt in the form

‖u− uh‖L∞(0,T ;L1(R)) ≤ ‖u0‖TV

(
h +

2
√
T√
3

h√
Δt

)

can also be found in [20] for one-dimensional nonlinear conservation law. Here uh is
the numerical solution and ‖ · ‖TV denotes the total variation.

To balance the two parts in our error estimates, the optimal choice for Δt is
Δt = Ch2/3. No lower bound for the error for the case Δt = Chβ (β 	= 1) is
covered in [4, 23]. It is also almost impossible to derive a general error estimate
that is optimal for all schemes and all 0 < β < ∞. But the rates observed in our
numerical experiments in the next section are close to our theoretical rates for the
case Δt = Ch2/3.

It might not be exciting if small time steps Δt have to be used, e.g., for the
traditional finite difference methods that are subject to the CFL condition. However,
our ELLAM schemes are CFL-free [24]. So we are allowed to use relatively large
time steps. This saves computations while retaining accuracy since information from
characteristics are exploited.
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8. Numerical experiments. In this section, we present one-dimensional nu-
merical experiments to illustrate the theoretical results proven in previous sections.

We consider two examples with V (x, t) = 1, R(x, t) = 0.2 sin t, f(x, t) = 0,
Ω = [0, 2], and T = 1. The exact solution is then given by u(x, t) = u0(ξ)e

0.2(cos t−1),
where ξ is obtained by back-tracking the characteristic from (x, t) to (ξ, 0).

Example 1. The initial condition is specified as a cusp function:

u0(x) =

⎧⎨
⎩A

(
1 −

∣∣∣x− α

β

∣∣∣
1
2+γ)

if |x− α| ≤ β,

0 otherwise,
(8.1)

where α ∈ R, β > 0, and 0 < γ ≤ 1/2. It can be verified that u0 ∈ H1+δ(R) for any
0 < δ < γ.

In the numerical experiment, we take A = 1, α = 0.5, β = 0.25, γ = 0.01. So the
initial data is barely in H1(R), or, precisely, u0 ∈ H1+δ for 0 < δ < 0.01. The second
order Daubechies scaling function and wavelet are used in the wavelet schemes.

We can attain only first order approximation in space for the initial data since it
is barely in H1(R). The adverse dependence of the error estimate on Δt in section
3 indicates that time discretization has to be done carefully. More time steps do
not necessarily mean better approximations. The best result can be attained when
Δt = h/

√
Δt, that is, Δt = h2/3, if the constants in the estimate are ignored. In other

words, the wavelet schemes have convergence rate h2/3. In Table 8.1, the numerical
solution at the final time step has a convergence rate 0.74 in h, which is just about
10% better than the theoretical estimate 2/3.

Table 8.1

Convergence rates in h for Example 1.

h Δt = Ch2/3 ‖u0 − U0‖L2 ‖uT − UT ‖L2

1/26 1/16 7.502E-3 5.134E-3
1/29 1/64 9.181E-4 1.114E-4
1/212 1/256 1.124E-4 2.457E-4
1/215 1/1024 1.376E-5 4.880E-5
Convergence rates 1.01 0.74

Example 2. The initial condition is the indicator function χ[α,β] of the interval
[α, β]:

u0(x) = χ[α,β] =

{
1 x ∈ [α, β],
0 otherwise.

(8.2)

It is known that, for any interval I containing [α, β] in its interior, we have χ[α,β] ∈
H

1
2−δ(I) for any 0 < δ ≤ 1

2 but /∈ H
1
2 (I). Direct calculations indicate that

‖χ[α,β]‖H 1
2
−δ(I)

= O(δ−
1
2 ) → ∞ as δ → 0.(8.3)

Hence, the approximation order could not be characterized well using norms in Sobolev
spaces. This is one place where we should use Besov spaces. It can be verified that

χ[α,β] ∈ B
1
2
2,∞(I) but /∈ B

1
2
2,q(I) for q < ∞.

The numerical results for [α, β] = [0.25, 0.75] are shown in Table 8.2. The order

of approximation to the initial data (u0) is exactly 1/2 because u0 ∈ B
1
2
2,∞. After the
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Table 8.2

Convergence rates in h for Example 2.

h Δt = Ch2/3 ‖u0 − U0‖L2 ‖uT − UT ‖L2

1/27 1/20 3.232E-2 5.375E-2
1/210 1/80 1.142E-2 2.248E-2
1/213 1/320 4.040E-3 1.151E-2
1/216 1/1280 1.428E-3 5.053E-3
Convergence rates 0.50 0.38

time-marching procedure, the approximation error at the final time step is of order
0.38, close to the theoretical estimate 1/3.

In these two numerical examples, convergence rates are a little better than the
theoretically proven rates because the velocity field is nice (but we can easily compute
the exact solutions in these cases). If the velocity field is exactly Lipschitz, i.e., it has
minimal regularity, we expect numerical results to be even closer to the theoretical
estimates.

9. Concluding remarks. Some similar results concerning convergence rates of
Lagrangian–Galerkin methods for convection-dominated diffusion problems are pre-
sented in [2]. Their estimates are uniform in the small diffusion parameter and can
be carried over to the hyperbolic limit case—linear convection equations without a
reaction term. Their results are consistent with ours but require a smoother velocity
field (V ∈ C(0, T ;C2(Ω))).

The assumption R ∈ W 1
∞(Rd × [0, T ]) in our paper means some smoothness

in the reaction term is required. Note that the test functions in ELLAM rely on
the properties of the reaction along characteristics. Generally speaking, this type of
smoothness is needed for time-marching schemes; otherwise we could not use well the
information of the solutions at previous time steps.

In section 6, we did not discuss interpolations on the source term. The limitation
is due to the way the source term is truncated in numerical scheme (2.10). Recall that
in (2.7) we approximate the double integral for the source term by a single integral.
This assumes some smoothness of the source term along the temporal direction or
the characteristic direction. In return, the computational cost for the source term
is reduced. Of course, the numerical scheme can be modified to allow even lower
regularity for the source term, but accordingly the computational cost will increase.

For the wavelet scheme with adaptive compression, i.e., Scheme III in [24], com-
putational cost will be significantly reduced through thresholding wavelet coefficients
in the smooth regions. But the approximation will deteriorate as the threshold pa-
rameter is increased. A good choice of the threshold, in other words, a quantitative
description of the trade-off between computational cost and approximation accuracy,
is a delicate issue of nonlinear approximation and is already under our investigation.

REFERENCES

[1] C. Bacuta, J. H. Bramble, and J. Xu, Regularity estimates for elliptic boundary value
problems in Besov spaces, Math. Comp., 72 (2003), pp. 1577–1595.

[2] M. Bause and P. Knabner, Uniform error analysis for Lagrangian–Galerkin approximations
of convection-dominated problems, SIAM J. Numer. Anal., 39 (2002), pp. 1954–1984.

[3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, San Diego, CA,
1988.



CONVERGENCE ANALYSIS OF WAVELET SCHEMES 539

[4] P. Brenner, V. Thomée, and, L. B. Wahlbin, Besov Spaces and Applications to Difference
Methods for Initial Value Problems, Lecture Notes in Math. 434, Springer-Verlag, Berlin,
1975.

[5] M. A. Celia, T. F. Russell, I. Herrera, and R. E. Ewing, An Eulerian-Lagrangian localized
adjoint method for the advection-diffusion equation, Adv. Water Resour., 13 (1990), pp.
187–206.

[6] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math. 40,
SIAM, Philadelphia, 2002.

[7] F. Colombini and N. Lerner, Uniqueness of continuous solutions for BV vector fields, Duke
Math. J., 111 (2002), pp. 357–384.

[8] E. Conway, Generalized solutions of linear differential equations with discontinuous coeffi-
cients and the uniqueness question for multidimensional quasilinear conservation laws, J.
Math. Anal. Appl., 18 (1967), pp. 238–251.

[9] W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer., 6 (1997),
pp. 55–228.

[10] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61,
SIAM, Philadelphia, 1992.

[11] C. N. Dawson, T. F. Dupont, and M. F. Wheeler, The rate of convergence of the modified
method of characteristics for linear advection equation in one dimension, in Mathematics
for Large Scale Computing, J. C. Diaz, ed., Marcel Dekker, New York, 1989, pp. 115–126.

[12] C. N. Dawson, T. F. Russell, and M. F. Wheeler, Some improved error estimates for the
modified method of characteristics, SIAM J. Numer. Anal., 26 (1989), pp. 1487–1512.

[13] B. Desjardins, A few remarks on ordinary differential equations, Comm. Partial Differential
Equations, 21 (1996), pp. 1667–1703.

[14] R. A. DeVore, Nonlinear approximation, Acta Numer., 7 (1998), pp. 51–150.
[15] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin,

1993.
[16] R. DiPerna and P. Lions, Ordinary differential equations, transport theory, and Sobolev

spaces, Invent. Math., 98 (1989), pp. 511–547.
[17] J. Douglas, Jr., and T. F. Russell, Numerical methods for convection-dominated diffusion

problem based on combining the method of characteristics with finite element or finite
difference procedures, SIAM J. Numer. Anal., 19 (1982), pp. 871–885.

[18] L. C. Evans, Partial Differential Equations, AMS, Providence, RI, 1998.
[19] R. E. Ewing and H. Wang, An optimal-order estimate for Eulerian–Lagrangian localized ad-

joint methods for variable-coefficient advection-reaction problems, SIAM J. Numer. Anal.,
33 (1996), pp. 318–348.

[20] B. J. Lucier, Error bounds for the methods of Glimm, Godunov, and LeVeque, SIAM J. Numer.
Anal., 22 (1985), pp. 1074–1081.
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Abstract. We obtain error bounds for monotone approximation schemes of Hamilton–Jacobi–
Bellman equations. These bounds improve previous results of Krylov and the authors. The key
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1. Introduction. This paper is a continuation of a work started in [2] (see
also Jakobsen [21]), whose aim is to prove results on the rate of convergence of mono-
tone approximation schemes for possibly degenerate Hamilton–Jacobi–Bellman (HJB)
equations by purely analytical methods. Krylov [26, 27] obtained such results in a
rather general framework but by using a combination of PDE arguments and rather
deep probabilistic estimates, which we want to avoid.

The strategy we used in [2] is based on the idea that the HJB equation and
the approximation scheme should play symmetrical roles. Unfortunately, this leads
to unnatural restrictions on the data when the scheme in consideration is a finite
difference method. These restrictions do not appear in [27]. In the present paper, we
use a more classical strategy, in which the HJB equation plays the central role. Our
approach yields results in the full generality, improving those of [26, 27] and [2].

In order to be more specific, we introduce the HJB equation, which is written in
the form

F (x, u,Du,D2u) = 0 in R
N ,(1.1)

with

F (x, t, p,X) = sup
α∈A

Lα(x, t, p,X),

Lα(x, t, p,X) = −tr[aα(x)X] − bα(x)p + cα(x)t− fα(x),

where tr denotes the trace. The coefficients a, b, c, f are, at least, continuous functions
defined on R

N × A with values, respectively, in the space S(N) of symmetric N ×
N matrices, R

N and R. The space of controls, A, is assumed to be a compact
metric space. Precise assumptions on the data will be given later on. Under classical
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assumptions, it is well known that this equation is associated to a stochastic optimal
control problem, and that the value function of this problem is the unique viscosity
solution of the equation. Moreover, the value function is typically bounded and Hölder
continuous, and the regularity depends on the properties of a, b, c, and f .

The monotone approximation schemes we consider are of the type

S(h, x, uh(x), [uh]x) = 0 in R
N ,(1.2)

where S is, loosely speaking, a consistent, monotone, and uniformly continuous ap-
proximation of F in (1.1). The approximate solution is uh, [uh]x is a function defined
from uh, and the approximation parameter is h. This abstract notation was intro-
duced by Barles and Souganidis [3] to display clearly the monotonicity of the scheme:
S is nondecreasing in uh and nonincreasing in [uh]x with the classical ordering for
functions. Typical approximation schemes which we have in mind are finite difference
methods (FDMs) and control schemes based on the dynamic programming principle.
We refer to Dupuis and Kushner [11] and Camilli and Falcone [5] for more information
about such schemes.

In the viscosity solutions setting the first results on convergence rates for mono-
tone schemes were obtained by Crandall and Lions [10]. Later, the first-order case
was studied by many authors considering different schemes and assumptions [7, 36,
37, 13, 1, 25, 29, 35, 28, 24]. Only recently did Krylov [26, 27] obtain the first results
for second-order equations (for HJB equations), and these results were then partially
extended by Barles and Jakobsen [2] and Jakobsen [21]. These results concern only
HJB equations, or, equivalently, equations with convex/concave Lipschitz continuous
nonlinearity F . In the nonconvex (or nonconcave) case, to the best of our knowl-
edge, there are no general results. There exist results only in particular cases like, for
example, in one space dimension [20] and for obstacle problems [19].

From a technical point of view, the upper estimate on u − uh is much easier to
obtain than the lower estimate. Roughly speaking, a regularization of the solution u
by convolution provides approximate smooth subsolutions of the equation because of
the convexity of the equation. By inserting this smooth subsolution in the scheme and
using consistency, one is led to the upper bound after choosing an optimal parameter
of regularization. It is worth pointing out that a nontrivial difficulty in performing
this argument is the x-dependence in the equation. This difficulty was solved by a
very clever argument of Krylov [27] which is used extensively in [2] and in the present
paper.

Unfortunately, this is clearly a one-sided argument working only for convex equa-
tions. In general, there is no simple way to build approximate smooth supersolutions
which would lead to the lower estimate on u − uh. It is precisely this difficulty that
we overcome here. In fact, we do not really build a sequence of approximate smooth
supersolutions, but rather a sequence of supersolutions which behave as if they were
smooth. The key step here is to introduce switching system approximations of the
HJB equation and study their rates of convergence. This admittedly strange idea
leads us roughly speaking to consider equations that are linear (convex and concave)
and from there to the solution of the above problem. Krylov [27] uses piecewise con-
stant control approximations, which is more or less the interpretation of switching
systems. Despite this similarity, the connection between his arguments and ours is
not so clear. Our approach is inspired by Evans and Friedman [12] (see also [6]),
and the rates of convergence are obtained by combining the above-mentioned clever
argument of Krylov and an approach suggested by Lions [33]. Even if we do not
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make a point of proving general results in this direction, this part has an independent
interest. It seems to be the first time that the rate of convergence is obtained for such
switching system approximations in the case of second-order equations.

In order to give a flavor of our results, for HJB equation satisfying natural assump-
tions and with bounded Lipschitz continuous solutions, we prove a lower estimate of
the form h1/5 for a standard finite difference method. The corresponding result in
Krylov [27] was h1/27.

For control schemes, the results of this paper do not give the best error bounds
available. They can be found in [2], where the richer structure of such schemes is fully
exploited.

The paper is organized as follows: In section 2 we introduce the switching system
and prove the rate of convergence. This result is then used in section 3 for obtaining
the rate of convergence of the approximation scheme (1.2). In section 4, we apply the
result of section 3 to a typical finite difference method for the HJB equation taken from
Dupuis and Kushner [11]. In order to simplify the exposure, the proofs in the paper are
presented in a context where all the solutions are Lipschitz continuous. In section 5,
we provide without proofs extensions to the case of C0,δ(RN )-solutions. We also
discuss the fact that our approach is rather close to provide results for the nonconvex
(nonconcave) case. Finally, the appendix collects several results for switching systems
(well-posedness, regularity, and continuous dependence) which are used throughout
the paper.

We conclude this introduction by explaining the notation we will use throughout
this paper. By | · | we mean the standard Euclidian norm in any R

p-type space
(including the space of N × P matrices). In particular, if X ∈ S(N), then |X|2 =
tr(XXT ), where XT denotes the transpose of X. Now if w is a bounded function
from R

N into either R, R
M , or the space of N × P matrices, we set

|w|0 = sup
y∈RN

|w(y)|.

If w is also Lipschitz continuous, we set

[w]1 = sup
x�=y

|w(x) − w(y)|
|x− y| and |w|1 = |w|0 + [w]1.

We denote by ≤ the component-by-component ordering in R
M and the ordering in

the sense of positive semidefinite matrices in S(N). For the rest of this paper we let ρ
denote the same, fixed, positive smooth function with support in {|x| < 1} and mass
1. From this function ρ, we define the sequence of mollifiers {ρε}ε>0 as follows:

ρε(x) =
1

εN
ρ
(x
ε

)
in R

N .

We also use the following spaces: Cb(R
N ) and C0,δ(RN ), δ ∈ (0, 1], denoting, respec-

tively, the space of bounded continuous functions on R
N and the space of bounded

δ-Hölder continuous functions on R
N .

2. Convergence rate for a switching system. In this section, we obtain the
rate of convergence for certain switching system approximations to the HJB equation
(1.1). Such approximations have been studied in [12, 6], and a viscosity solutions
theory of switching systems can be found in [38, 18, 17]. We consider the following
type of switching systems:

Fi(x, v,Dvi, D
2vi) = 0 in R

N , i ∈ I := {1, . . . ,M},(2.1)
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where the solution v = (v1, . . . , vM ) is in R
M , and for i ∈ I, x ∈ R

N , r = (r1, . . . , rM ) ∈
R

M , p ∈ R
N , and X ∈ SN , Fi is given by

Fi(x, r, p,X) = max

{
sup
α∈Ai

Lα(x, ri, p,X); ri −Mir

}
,

where Ai ⊂ A, Lα is defined below (1.1), and for k > 0,

Mir = min
j �=i

{rj + k}.

Under suitable assumptions on the data, we have the existence and uniqueness of
a solution v of this system. Moreover, it is not difficult to see that, as k → 0, every
component of v converges locally uniformly to the solution of the HJB equation

sup
α∈A

Lα(x, u,Du,D2u) = 0 in R
N ,(2.2)

where A = ∪i Ai.
The objective of this section is to obtain an error bound for this convergence.

For the sake of simplicity, we restrict ourselves to the situation where the solutions
are Lipschitz continuous. However, it is not difficult to adapt our approach to more
general situations, and we give results in this direction in section 5.

We will use the following assumptions:
(A1) For any α ∈ A, aα = 1

2σ
ασαT for some N×P matrix σα. Furthermore, there

are constants λ,K independent of α such that

c ≥ λ > 0 and |σα|1 + |bα|1 + |cα|1 + |fα|1 ≤ K.

(A2) The constant λ in (A1) satisfies λ > supα

{
[σα]21 + [bα]1

}
.

As the reader will see below and in the following sections, assumption (A1) ensures
the well-posedness of all the equations and systems of equations we consider in this
paper. If we assume in addition (A2), all solutions will belong to C0,1(RN ). We refer
to the appendix for a precise justification of these claims. In the present situation,
we have the following well-posedness and regularity result.

Proposition 2.1. (i) Assume (A1). If w1 and w2 are sub- and supersolutions
of (2.1) or (2.2), then w1 ≤ w2.

(ii) Assume (A1) and (A2). Then there exist unique solutions v and u of (2.1)
and (2.2), respectively, satisfying

|v|1 + |u|1 ≤ C,

where the constant C depends only on K,λ from (A1).
In order to obtain the rate of convergence for the switching approximation, we

use the before-mentioned regularization procedure of Krylov [27, 2]. This procedure
requires the introduction of the following auxiliary system:

F ε
i (x, vε, Dvεi , D

2vεi ) = 0 in R
N , i ∈ I,(2.3)

where vε = (vε1, . . . , v
ε
M ),

F ε
i (x, r, p,M) = max

{
sup

α∈Ai,|e|≤ε

Lα(x + e, ri, p,X); ri −Mir

}
,
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and L and M are defined below (1.1) and (2.1), respectively. By Theorems A.1 and
A.3 in the appendix, we have the following result.

Proposition 2.2. (i) Assume (A1). If w1 and w2 are sub- and supersolutions
of (2.3), then w1 ≤ w2.

(ii) Assume (A1) and (A2). Then there exists a unique solution vε of (2.3)
satisfying

|vε|1 +
1

ε
|vε − v|0 ≤ C,

where v solves (2.1) and the constant C depends only on K,λ from (A1).
We are now in position to state and prove the main result of this section.
Theorem 2.3. Assume (A1) and (A2). If u and v are the solutions of (2.2) and

(2.1), respectively, then for k small enough,

0 ≤ vi − u ≤ Ck1/3 in R
N , i ∈ I,

where C depends only on λ,K from (A1).
Remark 2.1. This seems to be the first time the rate of convergence is obtained

for switching system approximations of second-order equations.
Proof of Theorem 2.3. Since w = (u, . . . , u) is a subsolution of (2.1), comparison

for (2.1) (Proposition 2.1(i)) yields u ≤ vi for i ∈ I.
To get the other bound, we use an argument suggested by Lions [33] together with

the regularization procedure of Krylov [27]. Consider first system (2.3). It follows
that, for every |e| ≤ ε,

sup
α∈Ai

Lα(x + e, vεi (x), Dvεi , D
2vεi ) ≤ 0 in R

N , i ∈ I.

After a change of variables, we see that for every |e| ≤ ε, vε(x− e) is a subsolution of
the following system of uncoupled equations:

sup
α∈Ai

Lα(x,wi, Dwi, D
2wi) = 0 in R

N , i ∈ I.(2.4)

Define vε := vε ∗ ρε, where {ρε}ε is the sequence of mollifiers defined at the end of
the introduction. A Riemann-sum approximation shows that vε(x) can be viewed
as the limit of convex combinations of vε(x − e)’s for |e| < ε. Since the vε(x − e)’s
are subsolutions of the convex(!) equation (2.4), so are the convex combinations. By
the stability result for viscosity subsolutions we can now conclude that vε is itself a
subsolution of (2.4). We refer to the appendix in [2] for more details.

On the other hand, since vε is a continuous subsolution of (2.3), we have

vεi ≤ min
j �=i

vεj + k in R
N , i ∈ I.

It follows that maxi v
ε
i (x) − mini v

ε
i (x) ≤ k, and hence

|vεi − vεj |0 ≤ k, i, j ∈ I.

Then, by the definition and properties of vε, we have

|Dnvεi −Dnvεj |0 ≤ C
k

εn
, n ∈ N, i, j ∈ I,
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where C depends only on ρ. Furthermore, from these bounds, we see that for ε < 1,

∣∣∣∣ sup
α∈Ai

Lα[vεj ] − sup
α∈Ai

Lα[vεi]

∣∣∣∣ ≤ C
k

ε2
in R

N , i, j ∈ I.

Here C depends only on |σ|0, |b|0, |c|0, and ρ. Since vε is a subsolution of (2.4), this
means that

sup
α∈A

Lα(x, vεi, Dvεi, D
2vεi) ≤ C

k

ε2
in R

N , i ∈ I.

So by (A1) and the definition of L, we see that vεi − 1
λC

k
ε2 is a subsolution of (2.2).

Comparison for (2.2) (Proposition 2.1(i)) yields

vεi − u ≤ 1

λ
C

k

ε2
in R

N , i ∈ I.

Hence, by Proposition 2.2(ii) and properties of mollifiers, we have

vi − u ≤ vi − vεi + vεi − u ≤ Cε +
1

λ
C

k

ε2
in R

N , i ∈ I.

Minimizing with respect to ε yields the result.

3. Convergence rate for the HJB equation. In this section we derive an
error bound for the convergence of the solution of the scheme (1.2) to the solution of
the HJB equation (1.1). This result is general and derived using only PDE methods,
and it extends and improves earlier results by Krylov [26, 27], Barles and Jakobsen
[2], and Jakobsen [21].

We assume that assumptions (A1) and (A2) of section 2 hold. As a special case of
Proposition 2.1, we have the following well-posedness and regularity result for (1.1).

Proposition 3.1. (i) Assume (A1). If w1 and w2 are sub- and supersolutions
of (1.1), then w1 ≤ w2.

(ii) Assume (A1) and (A2). Then there exists a unique solution u of (1.1) satis-
fying

|u|1 ≤ C,

where the constant C depends only on K,λ from (A1).
For the scheme (1.2) we assume the following:

(S1) (Monotonicity.) For every h > 0, x ∈ R
N , r ∈ R, m ≥ 0, and bounded

continuous functions u, v such that u ≤ v in R
N , the following holds:

S(h, x, r + m, [u + m]x) ≥ λm + S(h, x, r, [v]x).

(S2) (Regularity.) For every h > 0 and φ ∈ Cb(R
N ), x 	→ S(h, x, φ(x), [φ]x)

is bounded and continuous in R
N and the function r 	→ S(h, x, r, [φ]x) is

uniformly continuous for bounded r, uniformly in x ∈ R
N .

(S3) (Consistency.) There exist integers n, ki ≥ 0, i = 1, 2, . . . , n, and a constant
Kc such that for every h ≥ 0, x ∈ R

N , and smooth function φ,

∣∣F (x, φ(x), Dφ(x), D2φ(x)) − S(h, x, φ(x), [φ]x)
∣∣ ≤ Kc

∑
ki �=0

|Diφ|0hki .
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Remark 3.1. Conditions (S1) and (S2) imply a comparison result for bounded
continuous solutions of (1.2); see [2].

Before we continue, we mention that the upper bound on the error u − uh is
known from [2]; see also [27, 21]. Let us state the result here.

Proposition 3.2. Assume (A1), (A2), (S1)–(S3), and that (1.2) has a unique
solution uh ∈ Cb(R

N ). If u is the solution of (1.1), then, for sufficiently small h > 0,
we have

u− uh ≤ Chγ in R
N ,

where γ := minki �=0

{
ki

i

}
and C depends only on λ,K,Kc from (A1), (S3).

Remark 3.2. Existence of uh ∈ Cb(R
N ) must be proved for each particular scheme

S. We refer to [26, 27, 2, 21] for examples of such arguments.
As mentioned in the introduction, the proof of this proposition relies on the regu-

larization procedure of Krylov, which was also used in section 2. The idea is to obtain
a smooth subsolution of (1.1) which is close to the solution of this equation. This
then yields the upper bound after classical computations. This approach, however,
does not yield the lower bound unless you require much stronger assumptions on the
scheme (1.2); see [2, 21, 26].

To avoid such restrictive assumptions, we use a different technique here. The key
point is to obtain approximate “almost smooth” supersolutions by considering the
following switching system approximation of (1.1):

F ε
i (x, vε, Dvεi , D

2vεi ) = 0 in R
N , i ∈ I := {1, . . . ,M},(3.1)

where vε = (vε1, . . . , v
ε
M ),

F ε
i (x, r, p,X) = max

{
min
|e|≤ε

Lαi(x + e, ri, p,X); ri −Mir

}
,

and L and M are defined below (1.1) and (2.1), respectively. The solution of this
system is expected to be close to the solution of (1.1) if k and ε are small and
{αi}i∈I ⊂ A is a sufficiently refined grid for A. In fact, for this to be true we need
to assume that the coefficients σα, bα, cα, fα can be approximated uniformly in x by
σαi , bαi , cαi , fαi . The precise assumption is as follows:

(A3) For every δ > 0, there are M ∈ N and {αi}Mi=1 ⊂ A, such that for any α ∈ A,

inf
1≤i≤M

(|σα − σαi |0 + |bα − bαi |0 + |cα − cαi |0 + |fα − fαi |0) < δ.

Remark 3.3. The typical cases where (A3) is satisfied are (i) when A is a finite
set and (ii) when all coefficients are uniformly continuous in α, uniformly in x.

For (3.1), we have the following result.
Lemma 3.3. Assume (A1) and (A2).
(a) There exists a unique solution vε of (3.1) satisfying |vε|1 ≤ C, where C

depends only on λ,K from (A1).
(b) Assume in addition (A3), and let u denote the solution of (1.1). Then for

any δ > 0 there are M ∈ N and {αi}Mi=1 ⊂ A such that the solution vε of (3.1) satisfy

maxi |u− vεi |0 ≤ C(ε + k1/3 + δ),

where C depends only on λ,K from (A1).
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The (almost) smooth supersolutions of (1.1) we are looking for are built out of
the vεi ’s by mollification. Before giving the next lemma, we remind the reader that
the sequence of mollifiers {ρε}ε is defined at the end of the introduction.

Lemma 3.4. Assume (A1), (A2), and define vεi := ρε ∗ vεi for i ∈ I.
(a) There is a constant C depending only on λ, K from (A1), such that

|vεj − vεi |0 ≤ C(k + ε) for i, j ∈ I.

(b) Assume in addition that ε ≤ (4 supi[v
ε
i ]1)

−1k. For every x ∈ R
N , if j :=

argmini∈Ivεi(x), then

Lαj (x, vεj(x), Dvεj(x), D2vεj(x)) ≥ 0 .

Lemma 3.4(b) implies that w := mini∈I vεi is a viscosity supersolution of (1.1) in
all of R

N (at least this follows from the proof). This function is an “almost smooth”
supersolution in the sense that, at any point x, it is only the smooth function vεj of
Lemma 3.4(b) (which is a supersolution at this point) which is really playing a role.
This can be seen from the proof of the rate of convergence below.

We will prove these two lemmas after having stated and proved the main result
of this paper—the result giving the lower bound on the error u − uh for the scheme
(1.2).

Theorem 3.5. Assume (A1)–(A3), (S1), (S3) and that (1.2) has a unique solu-
tion uh ∈ Cb(R

N ). If u is the solution of (1.1), then, for sufficiently small h > 0, we
have

−Chγ̄ ≤ u− uh in R
N ,

where γ̄ := minki �=0{ ki

3i−2} and C depends only on λ, K, Kc from (A1), (S3).
Proof. We fix a δ > 0 and pick the corresponding {αi}I according to (A3). Then

we consider the solution vε of (3.1) corresponding to this choice of {αi}I . Lemma 3.3
yields existence and properties of vε. Furthermore, we mollify this function to obtain
vε as in Lemma 3.4.

We proceed to obtain an estimate for

m := sup
y∈RN

{uh(y) − w(y)},

where w := mini∈I vεi. In order to have a “max” instead of a “sup,” we approximate
m by

mκ := sup
y∈RN

{uh(y) − w(y) − κφ(y)},(3.2)

where κ > 0 is a small constant and φ(y) = (1 + |y|2)1/2. Since uh and w are
continuous, it is clear that the supremum (3.2) is attained at some point x ∈ R

N .
Because of the definition of w, it is easy to see that x is also a maximum point of

sup
y∈RN

{uh(y) − vεi(y) − κφ(y)}(3.3)

when i = argminj∈Ivεj(x). Notice that this supremum is still mκ.
Now take ε = (4 supi[v

ε
i ]1)

−1k. From Lemma 3.4(b), the properties of φ, and
(A1), we see that

sup
α∈A

Lα(x, (vεi + κφ)(x), D(vεi + κφ)(x), D2(vεi + κφ)(x)) ≥ −Cκ,(3.4)

where C depends only on K from (A1) (C = supα,x{|σα|20 + |bα|0}).
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Let us estimate mκ. By (3.4) and (S3) we have

−Cκ ≤ S(h, x, (vεi + κφ)(x), [vεi + κφ]x) + Kc

∑
ki �=0

|Di(vεi + κφ)|0hki .

By the definitions of vεi and φ, we can conclude that

−C
∑
ki �=0

ε1−ihki + O(κ) ≤ S(h, x, (vεi + κφ)(x), [vεi + κφ]x),(3.5)

where C depends only on the mollifier ρ and λ,K from (A1). On the other hand,
using (S1), (3.3), and the definition of mκ, we see that

S(h, x, (vεi + κφ)(x), [vεi + κφ]x) ≤ S(h, x, uh(x) −mκ, [uh −mκ]x)

≤ −λmκ + S(h, x, uh(x), [uh]x) = −λmκ,

where the last equality follows since uh is the solution of (1.2). From this inequality
and (3.5), we have

λmκ ≤ C
∑
ki �=0

ε1−ihki + O(κ).

From this estimate, we obtain the estimate for m by sending κ → 0 and noting that
mκ → m.

Using the estimate for m, we now derive the lower bound on the error. Fix an
arbitrary y ∈ R

N . From the definition of m, we see that

uh(y) − u(y) ≤ uh(y) − vεi(y) + vεi(y) − u(y)

≤ m + vεi(y) − u(y).

Using the bound on m, and Lemmas 3.4(a) and 3.3(b), we obtain

uh(y) − u(y) ≤ C

⎛
⎝∑

ki �=0

ε1−ihki + ε + k + k1/3 + δ

⎞
⎠ .

The constant C does not depend on y, and therefore the right-hand side is a uniform
in y upper bound for uh − u.

The conclusion follows by choosing

ε = max
ki �=0

h
3ki
3i−2 and k = 4 sup

i
[vεi ]1ε

and sending δ → 0 (since all constants are independent of the size of I).
Now we give the proofs of Lemmas 3.3 and 3.4.
Proof of Lemma 3.3.
1. First we approximate (1.1) by the following equation:

sup
i∈I

Lαi(x, v,Dv,D2v) = 0 in R
N .

From assumption (A3) and Theorems A.1 and A.3 in the appendix, we have the
following result: There exist a unique solution v of the above equation satisfying

|v − u|0 ≤ Cδ,

where C depends only on λ,K from (A1).



ERROR BOUNDS 549

2. We continue by approximating the above equation by the following switching
system:

max
{
Lαi(x, vi, Dvi, D

2vi); vi −Miv
}

= 0 in R
N , i ∈ I,

where M is defined below (2.1). From Proposition 2.1 and Theorem 2.3, we have
existence and uniqueness of a solution v̄ of the above system satisfying

|v̄i − v|0 ≤ Ck1/3, i ∈ I,

where C depends only on the mollifier ρ and λ,K from (A1).
3. The switching system defined in the previous step is nothing but (3.1) with

ε = 0 or (2.3) with the Ai’s being singletons. Proposition 2.2 yields the existence and
uniqueness of a solution vε of (3.1) satisfying

|vε|1 +
1

ε
|vε − v̄|0 ≤ C,

where C depends only on λ,K from (A1).
4. The proof is complete by combining the estimates in steps 1–3 and noting that

(A3) is only needed in step 1.
Proof of Lemma 3.4. We start with (a). From the properties of mollifiers and the

Lipschitz continuity of vε, it is immediate that

|vεi − vεi |0 ≤ Cε, i ∈ I,(3.6)

where C = maxi[v
ε
i ]1 depends only on K,λ from (A1). Furthermore we saw in the

proof of Theorem 2.3 that

0 ≤ max
i

vεi − min
i

vεi ≤ k in R
N .

From these two estimates, (a) follows.
Now consider (b). We consider an arbitrary point x ∈ R

N and set

j = argmini∈Ivεi(x).

Then, by definition of M and j, we have

vεj(x) −Mjvε(x) = max
i �=j

{
vεj(x) − vεi(x) − k

}
≤ −k.

The bound (3.6) then leads to

vεj (x) −Mjv
ε(x) ≤ −k + 2 max

i
[vεi ]1ε,

and by using the Lipschitz continuity of vε (Lemma 3.3),

vεj (y) −Mjv
ε(y) ≤ −k + 2 max

i
[vεi ]1(ε + |x− y|).

From this we conclude that if |x− y| < ε and ε ≤ (4 maxi[v
ε
i ]1)

−1k, then

vεj (y) −Mjv
ε(y) < 0.
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Equation (3.1) then implies

inf
|e|≤ε

Lαj (y + e, vεj (y), Dvεj (y), D
2vεj (y)) = 0.

After a change of variables we see that for every |e| ≤ ε,

Lαj (x, vεj (x− e), Dvεj (x− e), D2vεj (x− e)) ≥ 0.(3.7)

In other words, for every |e| ≤ ε, vεj (x− e) is a supersolution at x of

Lαj (x,w,Dw,D2w) = 0.(3.8)

By mollifying (3.7) we see formally that vεj is also a supersolution of (3.8) at x
and hence a (viscosity) supersolution of the HJB equation (1.1) at x. This is correct
since vεj can be viewed as the limit of convex combinations of supersolutions vεj (x−e)
of the linear and hence concave equation (3.8); we refer to the proof of Theorem 2.3
and to the appendix in [2] for the details. We conclude the proof by noting that since
vεj is smooth, it is in fact a classical supersolution of (1.1) at x.

4. Monotone finite difference methods. As an application of the results
in the previous section we derive here the rate of convergence for a finite difference
scheme proposed by Kushner [11, 14] for the N -dimensional HJB equation (1.1). The
notation for these schemes is taken from [11, 14]. We start by naming the difference
operators we need. Let {ei}Ni=1 denote the standard basis in R

N and define

Δ±
xi
w(x) = ± 1

h
{w(x± eih) − w(x)},

Δ2
xi
w(x) =

1

h2
{w(x + eih) − 2w(x) + w(x− eih)},

Δ+
xixj

w(x) =
1

2h2
{2w(x) + w(x + eih + ejh) + w(x− eih− ejh)}

− 1

2h2
{w(x + eih) + w(x− eih) + w(x + ejh) + w(x− ejh)},

Δ−
xixj

w(x) =
1

2h2
{w(x + eih) + w(x− eih) + w(x + ejh) + w(x− ejh)}

− 1

2h2
{2w(x) + w(x + eih− ejh) + w(x− eih + ejh)}.

Now we define the schemes as follows:

F̃ (x, uh(x),Δ±
xi
uh(x),Δ2

xi
uh(x),Δ±

xixj
uh(x)) = 0,(4.1)

where

F̃ (x, t, p±i , Aii, A
±
ij) = sup

α∈A

{
N∑
i=1

[
− aαii

2
Aii +

∑
j �=i

(
−

aα+
ij

2
A+

ij +
aα−ij
2

A−
ij

)

− bα+
i (x)p+

i + bα−i (x)p−i

]
+ cα(x)t− fα(x)

}
,

and b+ = max{b, 0} and b− = (−b)+ (b = b+ − b−).
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Assume that (A1) holds. In order to obtain the required monotonicity of these
schemes, we need to assume in addition that the matrix a is diagonally dominant:

aαii(x) −
∑
j �=i

|aαij(x)| ≥ 0 in R
N , i = 1, . . . , N.(4.2)

We also assume that the coefficients are normalized so that

N∑
i=1

{
aαii(x) −

∑
j �=i

|aαij(x)| + |bαi (x)|
}

≤ 1 in R
N .(4.3)

Assumption (4.2) is standard in numerical analysis; see [11, 14]. We also refer to Lions
and Mercier [34] and to Bonnans and Zidani [4] for a discussion of this condition.
Assumption (4.3) is always satisfied after a multiplication in (1.1) by an appropriate
positive constant.

From the results in section 3, we have the following bound on u− uh.

Theorem 4.1. Assume (A1)–(A3), (4.2), and (4.3) hold. If u and uh ∈ Cb(R
N )

are solutions of (1.1) and (4.1), respectively, then for h > 0 sufficiently small,

|u− uh|0 ≤ Ch1/5.

Remark 4.1. Krylov [27] obtains the rate 1/27 using probabilistic methods. One
contribution of this paper is to improve this rate to 1/5.

By Proposition 3.2 and Theorem 3.5 the above result holds if we can define S
in (1.2), check that assumptions (S1)–(S3) hold with k2 = 1, k4 = 2, and ki = 0
otherwise, and prove existence of uh ∈ Cb(R

N ). Let us proceed to write down S. In
order to better see the monotonicity of the scheme and to fix some more notation, we
are going to rewrite (4.1) as a discrete dynamical programming principle. We refer
to [11] for the probabilistic interpretation. Define the following one-step transition
probabilities:

pα(x, x) = 1 −
N∑
i=1

{
aαii(x) −

∑
j �=i

|aαij(x)| + h|bαi (x)|
}
,

pα(x, x± eih) =
aαii(x)

2
−
∑
j �=i

|aαij(x)|
2

+ hbα±i (x),

pα(x, x + eih± ejh) =
aα±ij (x)

2
,

pα(x, x− eih± ejh) =
aα∓ij (x)

2
,

and pα(x, y) = 0 for all other y. Note that by (4.2) and (4.3), 0 ≤ pα(x, y) ≤ 1 for
all α, x, y if h ≤ 1. Furthermore

∑
z∈hZN pα(x, x + z) = 1 for all α, x. Tedious but

straightforward computations show that the following equation is equivalent to (4.1):

uh(x) = inf
α∈A

{
1

1 + h2cα(x)

( ∑
z∈hZN

pα(x, x + z)uh(x + z) + h2fα(x)

)}
.
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This is the discrete dynamical programming principle. From this equation we define
S. For φ ∈ Cb(R

N ), set [φ]hx(·) := φ(x + ·) and

S(h, y, t, [φ]hx) := sup
α∈A

{
− 1

h2

[ ∑
z∈hZN

pα(y, y + z)[φ]hx(z) − t

]
+ cα(x)t− fα(y)

}
.

Using this definition of S, it is easy to check (S1)–(S3); see the lemma below
(see also [2]). Existence of solutions uh ∈ Cb(R

N ) of (4.1) can be proved using the
contraction mapping theorem; we refer to [26, 27, 2, 21] for such arguments. Thus,
we may conclude that Theorem 4.1 holds.

Lemma 4.2. Assume (A1), (A2), (4.2), (4.3), and 0 < h < 1. Then the scheme
(4.1) satisfies conditions (S1)–(S3), where (S3) takes the form

|F (x, v,Dv,D2v) − S(h, x, v(x), [v]x)| ≤ sup
α

|bα|0|D2v|0h + sup
α

|σα|20|D4v|0h2.

5. Extensions and remarks. Let us first consider the case when (A2) is not
satisfied. Then the solutions of the different equations are only Hölder continuous;
e.g., for the HJB equation (1.1) we have the following result.

Lemma 5.1. Assume (A1) and define λ0 := supA{[σ]21 + [b]1}. If λ < λ0, then
there exists a unique solution u ∈ C0,δ(RN ) of (1.1), where δ = λ/λ0.

This result was proved in [30]. We claim that under (A1), we have the same
regularity (the same δ) for all equations considered in this paper. We skip the tedious
proof of this claim. In the rest of this section, the solutions of the different equations
are assumed to belong to C0,δ(RN ) with the same fixed δ ∈ (0, 1].

Lower than Lipschitz regularity of solutions implies lower convergence rates than
obtained in sections 2–4. We will now state the Hölder versions of these results without
proofs. The proofs are not much different from the proofs given above, and, moreover,
the Hölder case was extensively studied in [2]. We start with the convergence rate for
the switching system approximation of section 2.

Proposition 5.2. Assume (A1). If ū and v are the solutions of (2.2) and (2.1)
belonging to C0,δ(RN ), then for k small enough,

0 ≤ vi − ū ≤ Ck
δ

2+δ in R
N , i ∈ I,

where C depends only on λ,K from (A1).
The upper bound on the error for monotone approximation schemes (1.2) for the

HJB equation (1.1) is given by the following result.
Proposition 5.3. Assume (A1), (S1)–(S3) and that (1.2) has a unique solution

uh ∈ Cb(R
N ). If u ∈ C0,δ(RN ) is the solution of (1.1), then for sufficiently small

h > 0, we have

u− uh ≤ Chδγ in R
N ,

where γ and C are defined in Proposition 3.2.
This proposition was essentially proved in [2]; see [21] for this form of the result.

Finally, we have come to the Hölder version of the main result of this paper.
Proposition 5.4. Assume (A1), (A3), (S1), (S3) and that (1.2) has a unique

solution uh ∈ Cb(R
N ). If u ∈ C0,δ(RN ) is the solution of (1.1), then for sufficiently

small h > 0, we have

−Chγ̄ ≤ u− uh in R
N ,

where γ̄ := minki �=0{ δ2ki

(2+δ)i−2δ} and C depends only on λ,K,Kc from (A1), (S3).
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Remark 5.1. Above we removed assumption (A2). It is also possible to weaken
assumption (A1) by assuming that c, f are only Hölder continuous. This would then
lead to Hölder continuous solutions with lower Hölder exponents than above. The
above results would continue to hold, however, but now with a different δ. We refer
to [2] for results in this direction.

Next, we comment on a possible extension to the nonconvex/nonconcave case.
We are interested in the Isaacs equations coming from stochastic differential games,

F (x, u,Du,D2u) = 0 in R
N ,(5.1)

where

F (x, t, p,X) = sup
α∈A

inf
β∈B

Lα,β(x, t, p,X),

Lα,β(x, t, p,X) = −tr[aα,β(x)X] − bα,β(x)p + cα,β(x)t− fα,β(x),

and A,B are compact metric spaces. Assume that assumptions like (A1)–(A3) are
satisfied for this problem. In this case we have well-posedness and Lipschitz regularity
results for (5.1) (see the appendix).

Let {αi}Mi=1 ⊂ A be a suitable refined grid for A, and consider the question of
finding the rate of convergence for the following switching system approximation of
(5.1):

Fi(x, v,Dvi, D
2vi) = 0 in R

N , i ∈ I := {1, . . . ,M},(5.2)

where v = (v1, . . . , vM ),

Fi(x, r, p,M) = max
{

inf
β∈B

Lαi,β(x, ri, p,X); ri −Mir
}
,

and M is defined just below (2.1) in section 2. To the best of our knowledge, this
question is still an open problem, and clearly the method used in section 2 cannot be
extended to this case.

However, if we assume that this question has been resolved, then the proof of The-
orem 3.5 can be extended to give a lower bound for the error of approximation schemes
for (5.1). The only problem we face here is to extend the proof of Lemma 3.4(b). But
this is trivial because of the concavity of the function infβ∈B Lαi,β(x, t, p,X).

To get the upper bound on the error, we only need to assume that the Isaacs
condition is satisfied, i.e.,

sup
α∈A

inf
β∈B

Lα,β(x, t, p,X) = inf
β∈B

sup
α∈A

Lα,β(x, t, p,X)

for any x ∈ R
N , t ∈ R, p ∈ R

N , and X ∈ SN . The upper bound can then be obtained
by a symmetric argument, changing “sup” to “inf,” “max” to “min,” and conversely.

Thus, the rate of convergence of approximation schemes for Isaacs equations would
follow from our method if the rate of convergence of the corresponding switching
system can be obtained.

Appendix. Well-posedness, regularity, and continuous dependence for
switching systems. In this section we give well-posedness, regularity, and contin-
uous dependence results for solutions of a very general switching system that has as
special cases the scalar HJB and Isaacs equations (1.1) and (5.1), and the switching
systems (2.1), (2.3), (3.1), (5.2).
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We consider the following system:

Fi(x, u,Dui, D
2ui) = 0 in R

N , i ∈ I := {1, . . . ,M},(A.1)

with

Fi(x, r, p,X) = max
{

sup
α∈A

inf
β∈B

Lα,β
i (x, ri, p,X); ri −Mir

}
,

Lα,β
i (x, t, p,X) = −tr[aα,βi (x)X] − bα,βi (x)p + cα,βi (x)t− fα,β

i (x),

where M is defined below (2.1), A,B are compact metric spaces, r is a vector r =
(r1, . . . , rM ), and k > 0 is a constant (the switching cost). See [12, 6, 38, 18, 17] for
more information about such systems.

We make the following assumptions:

(A1) For any α, β, i, aα,βi = 1
2σ

α,β
i σα,β

i

T
for some N×P matrix σα,β

i . Furthermore,
there are constants λ,C independent of i, α, β, such that

c ≥ λ > 0 and [σα,β
i ]1 + [bα,βi ]1 + [cα,βi ]1 + |fα,β

i |1 ≤ C.

(A2) The constant λ in (A1) satisfies λ > supi,α,β{[σ
α,β
i ]21 + [bα,βi ]1}.

We start with comparison, existence, uniqueness, and L∞ bounds on the solu-
tion and its gradient. Before stating the results, we first define USC(RN ; RM ) and
LSC(RN ; RM ) to be the spaces of upper and lower semicontinuous functions from
R

N into R
M, respectively.

Theorem A.1. Assume (A1) holds.
(i) If u ∈ USC(RN ; RM ) is a subsolution of (A.1) bounded above and v ∈

LSC(RN ; RM ) is a supersolution of (A.1) bounded below, then u ≤ v in R
N .

(ii) There exists a unique bounded continuous solution u of (A.1) satisfying

max
i

|ui|0 ≤ sup
i,α,β

|fα,β
i |0
λ

.

(iii) If in addition (A2) holds, then u is Lipschitz continuous and

max
i

[ui]1 ≤ sup
i,α,β

|ui|0[cα,βi ]1 + [fα,β
i ]1

λ− [σα,β
i ]21 − [bα,βi ]1

.

Remark A.1. These bounds have the same form as those for linear equations [15]
and HJB equations [30].

Before giving the proof, we state and prove a key technical lemma.
Lemma A.2. Let u ∈ USC(RN ; RM ) be a bounded-above subsolution of (A.1) and

ū ∈ LSC(RN ; RM ) be a bounded-below supersolution of another equation (A.1) where

the functions Lα,β
i are replaced by functions L̄α,β

i satisfying the same assumptions.
Let φ ∈ C2(R2N ) be a function bounded from below. We denote

ψi(x, y) = ui(x) − ūi(y) − φ(x, y)

and M = supi,x,y ψi(x, y). If there exists a maximum point for M , i.e., a point
(i′, x0, y0) such that ψi′(x0, y0) = M , then there exists i0 ∈ I such that (i0, x0, y0) is
also a maximum point for M , and, in addition, ūi0(y0) < Mi0 ū(y0).
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Loosely speaking this lemma means that whenever we do doubling of variables
for systems of type (A.1), we can ignore the ui −Miu part of the equations. So we

are more or less back in the scalar case with equations supα infβ Lα,β
i0

[ui0 ] ≤ 0 and

supα infβ L̄α,β
i0

[ūi0 ] ≥ 0.
Proof of Lemma A.2. The proof is a “no-loop” argument taken from Ishii and

Koike [18]. We assume by contradiction that ūj(y0) ≥ Mj ū(y0) for every j ∈ A,
where A is the set of j’s such that (j, x0, y0) is a maximum point for ψ.

We pick a j ∈ A. By the definition of Mj , there is l ∈ I such that

Mj ū(y0) = ūl(y0) + k.

By assumption, we have ūj(y0) ≥ ūl(y0) + k. On the other hand, since u is a subso-
lution of (A.1), it follows that

uj(x0) ≤ Mju(x0) ≤ ul(x0) + k.

Combining these inequalities yields

uj(x0) − ul(x0) ≤ k ≤ ūj(y0) − ūl(y0).

These inequalities first imply that l ∈ A, and therefore the last inequality is an
equality. This, again, implies ūj(y0) = ūl(y0) + k.

Since A is finite we may find j1, . . . , jK ∈ A such that ūji(y0) = ūji+1(y0) + k for
i = 1, . . . ,K − 1 and (importantly!) j1 = jK . But now

0 =

K−1∑
i=1

(
ūji(y0) − ūji+1(y0)

)
= (K − 1)k > 0,

which is a contradiction. The proof is complete.
Proof of Theorem A.1. Comparison, uniqueness, and existence is proved in [18]

for the Dirichlet problem for (1.1) on a bounded domain under assumptions that are
satisfied for our problem. The key point here is the comparison principle. To extend
this result to an unbounded domain, we only need to modify the test function used
in [18] in the standard way. The proof remains practically unchanged.

Let

M := sup
i,α,β

|fα,β
i |0
λ

.

Then the bound on |u|0 follows from the comparison principle after checking that M
(−M) is a supersolution (subsolution) of (A.1). To get the bound on the gradient of
u, consider

m := sup
i,x,y∈RN

{ui(x) − ui(y) − L|x− y|} .

If, by setting

L := sup
i,α,β

|ui|0[cα,βi ]1 + [fα,β
i ]1

λ− [σα,β
i ]21 − [bα,βi ]1

,

we can conclude that m ≤ 0, then we are done. Assume for simplicity that the
maximum is attained in x̄, ȳ. If x̄ = ȳ, then m = 0 and we are done. If not, then
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L|x− y| is smooth at x̄, ȳ and a doubling of variables argument leads to m ≤ 0. This
argument is standard after an application of Lemma A.2 which reduces the problem
to a scalar problem (see also the proof of Theorem A.3). We refer to the appendix of
[15] for details in the (linear) scalar case. Since the maximum need not be attained,
we must modify the test function in the standard way. We skip the details.

Now we proceed to obtain continuous dependence on the coefficients.
Theorem A.3. Let u and ū be solutions of (A.1) with coefficients σ, b, c, f and

σ̄, b̄, c̄, f̄ , respectively. If both sets of coefficients satisfy (A1) with the same λ, and
|u|1 + |ū|1 ≤ M < ∞, then

λmax
i

|ui − ūi|0 ≤ K sup
i,α,β

|σ − σ̄|0 + sup
i,α,β

{
2M |b− b̄|0 + M |c− c̄|0 + |f − f̄ |0

}
,

where

K2 ≤ 8M sup
i,α,β

{
2M [σ]21 ∧ [σ̄]21 + 2M [b]1 ∧ [b̄]1 + M [c]1 ∨ [c̄]1 + [f ]1 ∧ [f̄ ]1

}
.

Outline of proof. Define

m := sup
i,x,y

ψi(x, y) := sup
i,x,y

{
ui(x) − ūi(y) −

1

δ
|x− y|2 − ε(|x|2 + |y|2)

}
.

By the assumptions the supremum is attained at some point (i0, x0, y0). By Lemma
A.2, the index i0 may be chosen so that ūi0(y0) < Mi0 ū(y0). With this in mind, the
maximum principle for semicontinuous functions [8, 9] and the definition of viscosity
solutions imply the following inequality:

sup
α

inf
β

Lα,β
i0

(x0, ui0 , px, X) − sup
α

inf
β

L̄α,β
i0

(y0, ūi0 , py, Y ) ≤ 0,

where (px, X) ∈ D
2,+

ui0(x0) and (py, Y ) ∈ D
2,−

ūi0(y0) (see [8, 9] for the notation).
Furthermore px = 2

δ (x0 − y0) + 2εx0, py = 2
δ (x0 − y0) − 2εy0, and

(
X 0
0 Y

)
≤ 2

δ

(
I −I
−I I

)
+ 2ε

(
I 0
0 I

)
+ O(κ)

for some κ > 0. In the end we will fix δ and ε and send κ → 0, so we simply ignore
the O(κ)-term in the following. The first inequality implies

0 ≤ sup
i,α,β

{
− tr[ā(y0)Y ] + tr[a(x0)X] + b̄(y0)px − b(x0)py

+ c̄(y0)ū(y0) − c(x)u(x0) + f̄(y0) + f(x0)
}
.

Note that Lipschitz regularity of the solutions and a standard argument yields

|x0 − y0| ≤ δM.

So using Ishii’s trick on the second-order terms [16, pp. 33, 34], and a few other
manipulations, we get

0 ≤ sup
i,α,β

{
2

δ
|σ(x0) − σ̄(y0)|2 + 2M |b(x0) − b̄(y0)| + Cε(1 + |x0|2 + |y0|2)

+ M |c(x0) − c̄(y0)| − λm + |f(x0) − f̄(y0)|
}
.
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Some more work leads to an estimate for m depending on δ and ε, and using the
definition of m, we obtain an upper bound for u− ū. We finish the proof of the upper
bound on u − ū by minimizing this expression with respect to δ and sending ε → 0.
The lower bound follows in a similar fashion.

Remark A.2. For more details on such manipulations, we refer to [22, 23].
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CONVERGENCE OF UPWIND FINITE DIFFERENCE SCHEMES
FOR A SCALAR CONSERVATION LAW WITH INDEFINITE

DISCONTINUITIES IN THE FLUX FUNCTION∗

SIDDHARTHA MISHRA†

Abstract. We consider the scalar conservation law with flux function discontinuous in the space
variable, i.e.,

ut + (H(x)f(u) + (1 −H(x))g(u))x = 0 in R × R+,

u(0, x) = u0(x) in R,(0.1)

where H is the Heaviside function and f and g are smooth with the assumptions that either f is
convex and g is concave or f is concave and g is convex. The existence of a weak solution of (0.1)
is proved by showing that upwind finite difference schemes of Godunov and Enquist–Osher type
converge to a weak solution. Uniqueness follows from a Kruzkhov-type entropy condition. We also
provide explicit solutions to the Riemann problem for (0.1). At the level of numerics, we give easy-
to-implement numerical schemes of Godunov and Enquist–Osher type. The central feature of this
paper is the modification of the singular mapping technique (the main analytical tool for these types
of equations) which allows us to show that the numerical schemes converge. Equations of type (0.1)
with the above hypothesis on the flux may occur when considering the following scalar conservation
law with discontinuous flux:

ut + (k(x)f(u))x = 0,
u(0, x) = u0(x),

(0.2)

with f convex and k of indefinite sign.

Key words. conservation laws, discontinuous fluxes, finite differences, singular mapping
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1. Introduction. We are interested in the following scalar conservation law:

ut + (f(k(x), u))x = 0 in R × R+,

u(0, x) = u0(x) in R.(1.1)

Here, the flux f is smooth in k and u but may depend discontinuously on the space
variable through a coefficient k. Note that (0.2) and (0.1) are special cases of (1.1)
and are referred to as the multiplicative case and the 2-flux case, respectively.

Equations of type (1.1) are of great practical interest in several areas of physics and
engineering, e.g., in the water flooding model in the petroleum industry, in modeling
continuous sedimentation in the ideal clarifier thickener units used in waste water
treatment plants, in traffic flows on highways with changing road conditions, and
in ion etching in the semiconductor industry. For more details on some of these
applications, see [26].

As in the continuous case, i.e., when k is Lipschitz, weak solutions are sought for
(1.1). For definitions, see section 2. As in the continuous case, we need to impose
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additional admissibility criteria or entropy conditions in order to obtain stability and
uniqueness for the weak solutions. We note that at present, there is no complete
theory for the entropy solutions of (1.1).

Equation (0.1) with both f and g convex was investigated by Adimurthi and
Gowda in [1] by considering the corresponding Hamilton–Jacobi equation. They ob-
tained an explicit Hopf–Lax-type formula for the solution and used it to prescribe a
proper characteristic entropy condition at the interface (x = 0) which entailed the
omission of undercompressive waves (f ′ > 0, g′ < 0) at the interface. Coupled with
a Kruzkhov-type entropy condition in the interior, the authors were able to show
stability and uniqueness of weak solutions for (0.1). In [3], the authors developed a
Godunov-type algorithm for approximating solutions of (0.1). They worked under the
hypothesis that f and g have one minima (maxima) and no maxima (minima) in the
phase space. It must be noted that the interface entropy condition of [3] is different in
some cases from other prevailing entropy theories. In view of this, we are motivated to
investigate (1.1) in detail by using [1], [3] as a starting point; the following questions
have to be considered:

1. Can we extend the algorithm of [3] and the entropy theory of [1] to the more
general equations of the form (1.1)?

2. Can we extend the algorithm of [3] and the entropy theory of [1] to a larger
class of fluxes, including nonconvex and sign changing fluxes?

3. Can we develop numerical schemes for (1.1) based on fluxes other than Go-
dunov, such as the Enquist–Osher and Lax–Friedrichs schemes and other
higher order versions which are consistent with interface entropy conditions
like that of [1]?

4. How does the entropy theory of [1], [3] compare with other entropy theories,
and what is the correct notion of the entropy solution of (1.1)?

These questions are being investigated in a series of papers by Adimurthi, Gowda,
and the author. This is the first paper in the series and looks at some aspects of
questions 2 and 3. Other papers in this series are [4], [5], and [6].

In this paper, we consider the case when one of the fluxes is convex and the
other is concave (see section 2 for precise hypotheses on the fluxes). We propose a
notion of entropy solutions for (0.1) based on a Kruzkhov-type condition away from
the interface. A special feature of the flux geometry considered in this paper is that
no extra condition (except the usual Rankine–Hugoniot condition) is required at the
interface. We report explicit solutions for the associated Riemann problem and use
them to build up an easy-to-implement Godunov scheme. An Enquist–Osher scheme
is also proposed and both schemes are shown to converge to the entropy solution of
(0.1). It should be noted that a particular case of (0.2) is the case when f = k1h and
g = k2h with h convex and k1, k2 of different signs. Thus, this case will serve as a
building block for developing numerical methods for (1.1) when k is of indefinite sign.
This will be done in a forthcoming paper [6].

Equations of type (1.1) have been dealt with extensively in the literature both
from a theoretical as well as a numerical point of view. In [14], [15], Gimse and Risebro
obtained solutions for the Riemann problem under the assumptions of convexity and
used the solutions to develop a front tracking algorithm to show existence of a weak
solution. Uniqueness was obtained by minimizing |u+−u−|, the jump at the interface.
Diehl investigated equations of type (0.1) with applications in the clarifier thickener
unit in [11], [12]. He obtained solutions of the Riemann problem under extremely
general hypotheses on the fluxes and showed uniqueness for the Riemann problem
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by using a variation condition which he termed the Γ condition. Results for the
front tracking algorithm were obtained in [23], [24], [22], and [10] (including a time
dependent discontinuous coefficient).

The first results for explicit finite difference schemes for (0.2) were obtained by
Towers in [28], [29]. In [28], Towers developed a staggered grid scheme for (0.2)
which just used the solution of a scalar Riemann problem for continuous flux. In that
paper, he developed staggered versions of both the Godunov and the Enquist–Osher
schemes for (0.2) when f is convex and k is assumed to be strictly positive. In [29], the
author considered (0.2) with nonconvex fluxes and proved convergence for a staggered
version of the Enquist–Osher scheme. These works are a motivation for this and other
forthcoming papers where we develop and analyze numerical schemes for (1.1) based
on exact or approximate Riemann solvers. In this paper, we tackle the question of
the indefinite sign of the coefficient, which was left open in [28].

More recently, there has been a series of papers on (1.1). In [19], Karlsen, Rise-
bro, and Towers studied (0.1) with an added degenerate parabolic term by using an
Enquist–Osher-type scheme. In [20], the authors considered the vanishing viscosity
limit of (0.2) and showed that it exists by using compensated compactness. They
also included a degenerate parabolic term. A general entropy theory for (1.1) with
degenerate parabolic terms was developed in [21], where well-posedness was shown for
fluxes satisfying a certain “crossing condition” and a modified Kruzkhov-type entropy
condition which agrees with that of [3] for (0.1) except in the undercompressive inter-
sections case. Among other works are those of Burger et al. on the clarifier thickener
model in [9] and of Karlsen, Klingenberg, and Risebro in [18], where a relaxation
scheme for (0.2) was proposed and shown to converge.

A very recent paper of Karlsen and Towers [17] deals with (1.1) (including a time
dependent discontinuity in the flux) by proposing a Lax–Friedrichs scheme and show-
ing that the approximations converge the entropy solution. They were able to handle
very general fluxes and sign-changing coefficients using compensated compactness.
Another very recent work that has come to the notice of the author after this paper
was completed is that of Audusse and Perthame in [7], in which they proposed an
alternative concept of entropy solution for (1.1) by using adapted Kruzkhov entropies
and showing uniqueness.

The concept of entropy solution proposed in this paper does not require extra
assumptions at the interface on account of the special concave-convex flux geometry.
Concepts of entropy solutions that do not require interface entropy conditions were
noticed by Bagnerini and Rascle in [8] (with monotone fluxes) and more recently by
Audusse and Perthame in [7]. The author wishes to clarify that the hypotheses on
the fluxes considered in [7] are very different from the one in this paper. For example,
in the special case of (0.1), the authors of [7] required that either both fluxes are
monotone or both are convex (with same minimum value), which is different from
the concave-convex flux geometry considered here. Similarly the results of [21] do not
apply, as the “crossing condition” is not satisfied by the fluxes of this paper.

It is well known in the literature that it is difficult to handle the case of sign-
changing coefficients. For instance, we quote the authors in [18]: “Also, sign changes
in k are usually ruled out with the singular mapping due to the additional analytical
difficulties.” One way to overcome this difficulty is the use of compensated compact-
ness such as with the vanishing viscosity and relaxation schemes for (0.2) in [20] and
[18], respectively, and for the Lax–Friedrichs scheme in [17]. In this paper, we obtain
the first convergence for Godunov and Enquist–Osher-type schemes (for sign-changing
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coefficients), which have their own place in the hierarchy of numerical methods. It
should be emphasized that although the compensated compactness approach makes
it easier to handle nonconvex fluxes and sign-changing coefficients, it is the singular
mapping approach (with its derivative-type estimates) that gives more regular so-
lutions. In particular, the singular mapping leads to solutions with traces that are
required for the entropy theory, such as the BVt solutions of [21], [9]. Hence, it is the
belief of the author that each approach has its own utility and the singular mapping
may be more useful keeping in mind the existing entropy theories.

We have organized this paper in the following way. In section 2, we will describe
the continuous problem in detail, i.e., a precise description of the hypothesis on fluxes
f and g and the initial data. We also define the entropy conditions and show that
the entropy solutions of (0.1), if they exist, are unique. In section 3, we give explicit
solutions of the Riemann problem for (0.1), in this case satisfying the entropy con-
dition. In section 4, we describe our finite difference schemes of both Godunov and
Enquist–Osher type and investigate some of their properties. Section 5 deals with the
convergence of the schemes and is the core of this paper. Section 6 describes various
numerical experiments comparing our schemes with those of Towers in [28]. In section
7, we derive certain conclusions from this paper.

2. The continuous problem. As noted earlier, in this section we will describe
the continuous problem for (0.1) in some detail. We begin with a precise description
of the various hypotheses in this paper. First we give the hypotheses on the fluxes f
and g. Let s < S ∈ R, such that [s, S] is the domain of definition of the fluxes (the
phase space). The fluxes satisfy the following hypotheses:

(H1) f, g : [s, S] → R are Lipschitz continuous.
(H2) f(s) = g(s), f(S) = g(S).
(H3) Either f is convex and g is concave on [s, S] or f is concave and g is convex

on [s, S]
As in [3], we can easily extend the convexity hypothesis to the following:

(H3) Either f has one minima and no maxima and g has one maxima and no
minima on [s, S] or f has one maxima and no minima and g has one minima
and no minima on [s, S].

We remark that the hypothesis (H2) is mostly to ensure that the solutions are
bounded in L∞, but this is a sufficient condition and is by no means necessary for
boundedness and can be relaxed. The key hypotheses on the fluxes are (H3) or (H3),
which make the flux geometry of concave-convex or mixed type. We also need the
following constant:

M = max{Lip(f), Lip(g)}.(2.1)

For any fixed s < S, we can have four possible cases of the fluxes, which we enumerate
as follows.

Case A1. f is convex and g is concave with g(s) ≤ g(S).
Case A2. f is convex and g is concave with g(s) > g(S).
Case B1. f is concave and g is convex with g(s) ≤ g(S).
Case B2. f is concave and g is convex with g(s) > g(S).
Note that the hypothesis on the fluxes implies that the fluxes f and g only intersect

at the endpoints of the domain of definition, i.e., s and S. Figure 2.1 depicts the
various cases as given above.

Now we state our assumptions on the initial data. As in [3], we will need an
estimator of the variation of the initial data, which we denote as N(f, g, u0) and
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Fig. 2.1. Various cases of fluxes f and g satisfying the hypotheses of this paper, with the thick
line representing f and the dashed line g.

which we define in section 4. The hypotheses on the initial data are as follows:

(IN1) s ≤ u0(x) ≤ S ∀x ∈ R.
(IN2) N(f, g, u0) ≤ C < +∞.

We now come to the definition of the entropy solution of (0.1). We start by
defining a weak solution of (0.1) as a function u ∈ L∞

loc(R × R+) such that ∀ϕ ∈
C∞

0 (R × R+), the following holds:

∫
R

∫
R+

uϕt + (H(x)f(u) + (1 −H(x))g(u))ϕxdxdt +

∫
R

u0(x)ϕ(0, x)dx = 0 .(2.2)

It is easy to check that u is a weak solution of (0.1) iff it satisfies in the weak sense

ut + (g(u))x = 0, x < 0, t > 0,

ut + (f(u))x = 0, x > 0, t > 0,

u(0, x) = u0(x)(2.3)

and the following interface Rankine–Hugoniot condition:

f(u+(t)) = g(u−(t)) for a.e. t,(2.4)

u+(t) = lim
x→0+

u(x, t), u−(t) = lim
x→0−

u(x, t).

We also need to specify a Kruzkhov-type interior entropy condition; for that we define
the following:

Entropy pairs. → {ϕi, ψi}i=1,2 is said to be a entropy pair for (0.1) if ϕi is convex
in [s, S] and ψ′

1(θ) = φ′
1(θ)f

′(θ), ψ′
2(θ) = φ′

2(θ)g
′(θ).

Let u0 ∈ L∞(R) be the initial data with s ≤ u0(x) ≤ S ∀x ∈ R; then u is said to
satisfy the interior entropy condition if, for any entropy pairs (ϕi, ψi)i=1,2, u satisfies
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in the sense of distributions the following inequalities:

∂ϕ1(u)

∂t
+

∂ψ1(u)

∂x
≤ 0 ∀x > 0, t > 0,(2.5)

∂ϕ2(u)

∂t
+

∂ψ2(u)

∂x
≤ 0 ∀x < 0, t > 0.

Now we define the entropy solution of (0.1) as follows: u ∈ L∞(R × R+) is said
to be an entropy solution for (0.1) if the following hold:

1. u is a weak solution of (0.1).
2. For all t > 0, u+(x, t) and u−(x, t) exist for a.e. x.
3. u satisfies the interior entropy condition (2.5).

Equipped with the above notation, we state the main existence and uniqueness theo-
rem of this paper.

Theorem 2.1. Let u0 satisfy (IN1), (IN2) and let the fluxes f and g satisfy
H1, H2 and H3, respectively; then there exists a function u ∈ L∞(R × R+) such that
u is a weak solution of (0.1) and the following hold:

1. For almost all t and x ∈ R, u(x−, t) and u(x+, t) exist.
2. u satisfies the interior entropy condition (2.5) and is hence unique.

Remark. Note that unlike in [1], [3], we do not require any interface entropy
condition at x = 0 for the entropy solutions. This is an interesting outcome of the
flux geometry that we are considering, which leads to the fact that any solution that
satisfies the interior entropy condition and the Rankine–Hugoniot condition at the
interface is unique.

We will show the existence of a weak solution by showing that upwind finite
difference schemes of Godunov and Enquist–Osher type converge to it. Currently, we
show the uniqueness of the entropy solutions for (0.1). For that as in [1], [3], we need
to define the interface entropy functional as

I(u, v, t) = sgn(u−(t) − v−(t))(g(u−(t)) − g(v−(t)))

− sgn(u+(t) − v+(t))(f(u+(t)) − f(v+(t))).

We have the following lemma regarding the sign of I.
Lemma 2.2. Let u and v be two entropy solutions of (0.1); then for almost all

t > 0, we have that I(u, v, t) ≡ 0.
Proof. The proof follows easily from the Rankine–Hugoniot condition (2.4) and

from the flux geometry. We leave the proof as an exercise.
Now we are in a position to prove the following uniqueness theorem.
Theorem 2.3. Let u, v ∈ L∞(R × R+) with s ≤ u, v ≤ S be two solutions of

(0.1) with initial data u0, v0, respectively. Assume that
(i) for a.e. t, u(x+, t), v(x+, t), u(x−, t), and v(x−, t) exist, and
(ii) u, v satisfy the interior entropy condition (2.5).

Then for any M ≥ M, a < 0, b > 0, b− a ≥ 2Mt, the function

t 	→
∫ b−Mt

a+Mt

|u(x, t) − v(x, t)|dx

is nonincreasing, and if u0 = v0 a.e., then it follows that u = v a.e.
Proof. The proof of the above theorem follows exactly as in [1] and is also outlined

in [3]. The proof is based on a doubling-of-variables argument (see [25]) coupled with
a nonnegative sign of the interface entropy functional obtained in Lemma 2.2.
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So, in this section we have established the uniqueness part of the proof of Theorem
2.3 without any extra assumptions on the behavior of the solution at the interface.
In the rest of the paper, we will show the existence part of Theorem 2.3.

3. Solutions to the Riemann problem. In this section, we give explicit so-
lutions for the Riemann problem for (0.1) which satisfy both the interior entropy
condition and the Rankine–Hugoniot condition (2.4) at the interface. For the sake of
simplicity, we will deal only with fluxes satisfying (H3) and f, g ∈ C2[s, S]. For fluxes
satisfying (H3,) the solutions to the Riemann problem can be similarly worked out.
We remark that procedures for constructing the solutions of the Riemann problem
have been described in [14] and [11]. We carry them out in this case. We are dealing
with (0.1) with the following Riemann data:

u(x, 0) = u0(x) =

{
ur if x > 0,
ul if x < 0.

(3.1)

We start with the following case.
Case A1. We have to distinguish the following subcases.
Case 1. g(ul) < g(S). From the shape of the fluxes, it is easy to see that

there exists a unique θ ∈ (θf , S] such that f(θ) = g(ul). Let s0 = f(θ)−f(ur)
θ−ur

, s1 =
g(ul)−g(S)

ul−S , s2 = f(S)−f(ur)
S−ur

.

The solution in different subcases is given by the following:

Case 1.1. θ ≤ ur. Case 1.2. θ > ur.

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ul if x ≤ 0,
θ if 0 ≤ x ≤ tf ′(θ),
(f ′)−1(xt ) if tf ′(θ) ≤ x ≤ tf ′(ur),
ur if x ≥ tf ′(ur).

⎧⎨
⎩

ul if x ≤ s1t,
S if s1t ≤ x ≤ s2t,
ur if x ≥ s2t.

Case 2. g(ul) ≥ g(S). The solution in this case is given by the following:

u(x, t) =

⎧⎨
⎩

ul if x ≤ s1t,
S if s1t ≤ x ≤ s2t,
ur if x ≥ s2t.

Case A2. Again, we have to consider the following subcases.
Case 1. f(ur) > f(S). From the shape of the fluxes, it is easy to check that there

exists a unique η ∈ [θg, S] such that g(η) = f(ur). Let s0 = g(η)−g(ul)
η−ul

, s1 = g(ul)−g(S)
ul−S ,

s2 = f(S)−f(ur)
S−ur

.
The solution in different subcases is given by the following:

Case 1.1. ul > η. Case 1.2. ul ≤ η.

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ul if x ≤ g′(ul)t,
(g′)−1(xt ) if g′(ul)t ≤ x ≤ g′(η)t,
η if g′(η)t ≤ x ≤ 0,
ur if x ≥ 0.

⎧⎨
⎩

ul if x ≤ s0t,
η if s0t ≤ x ≤ 0,
ur if x ≥ 0.

Case 2. f(ur) ≤ f(S). The solution in this case is given by the following:

u(x, t) =

⎧⎨
⎩

ul if x ≤ s0t,
η if s0t ≤ x ≤ 0,
ur if x ≥ 0.
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Case B1. Again, we have to consider the following cases.

Case 1. g(ul) ≥ g(s). In this case, it is easy to see that there exists a unique

θ ∈ [s, θf ] such that f(θ) = g(ul). Let s0 = f(θ)−f(ur)
θ−ur

, s1 = g(s)−g(ul)
s−ul

, and s2 =
f(s)−f(ur)

s−ur
.

The solution in different subcases is given by the following:

Case 1.1. ur < θ. Case 1.2. ur ≥ θ.

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ul if x ≤ 0,
θ if 0 ≤ x ≤ tf ′(θ),
(f ′)−1(xt ) if tf ′(θ) ≤ x ≤ tf ′(ur),
ur if x ≥ tf ′(ur).

⎧⎨
⎩

ul if x ≤ 0,
θ if 0 ≤ x ≤ s0t,
ur if x ≥ s0t.

Case 2. g(ul) < g(s). The solution is given by the following:

u(x, t) =

⎧⎨
⎩

ul if x ≤ s1t,
s if s1t ≤ x ≤ s2t,
ur if x ≥ s2t.

Case B2. We have to consider the following cases.

Case 1. f(ur) ≤ f(s). In this case it is easy to see that there exists a unique

η ∈ [s, θg] such that f(ur) = g(η). Let s0 = g(η)−g(ul)
η−ul

, s1 = g(s)−g(ul)
s−ul

, and s2 =
f(s)−f(ur)

s−ur
.

The solution in different cases is given by the following:

Case 1.1. ul < η. Case 1.2. ul ≥ η.

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ul if x ≤ g′(ul)t,
(g′)−1(xt ) if g′(ul)t ≤ x ≤ g′(η)t,
η if g′(η)t ≤ x ≤ 0,
ur if x ≥ 0.

⎧⎨
⎩

ul if x ≤ s0t,
η if s0t ≤ x ≤ 0,
ur if x ≥ 0.

Case 2. f(ur) > f(s).

u(x, t) =

⎧⎨
⎩

ul if x ≤ s1t,
s if s1t ≤ x ≤ s2t,
ur if x ≥ s2t.

So we have given explicit solutions of the Riemann problem for (0.1) in all cases.
The crucial fact about the solutions is that the solutions in some cases are the end-
points s and S, which are undercompressive in the sense that at s or S, we have
f ′ > 0, g′ < 0. A strange result of the flux geometry considered here is that we can-
not avoid undercompressive waves at the interface, which is quite striking given that
the interface entropy condition of [1], [3] essentially implies omitting undercompressive
waves at the interface.

4. Description of the finite difference schemes. In this section, we seek to
develop finite difference schemes for (0.1) which are of Godunov as well as Enquist–
Osher type. As in [3], the key is to define the interface numerical fluxes; we start with
the Godunov flux.
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4.1. Godunov flux. Let h be a Lipschitz continuous function defined on [s, S].
We use the standard Godunov flux H defined by

H(a, b) = min
θ∈[a,b]

h(θ) if a ≤ b

= max
θ∈[b,a]

h(θ) if a ≥ b.

We recall that H as defined above is Lipschitz in both its variables, nondecreasing in
the first variable, and nonincreasing in the second variable. We use a similar method
to define the interface Godunov flux. We use the explicit solutions of the Riemann
problem in section 3 to define the interface Godunov flux. Let F and G be the
standard Godunov flux corresponding to the fluxes f and g, respectively. We define
the interface flux F in each case as follows.

Case A1. F (a, b) = min{G(a, S), F (S, b)}.
Case A2. F (a, b) = max{G(a, S), F (S, b)}.
Case B1. F (a, b) = max{G(a, s), F (s, b)}.
Case B2. F (a, b) = min{G(a, s), F (s, b)}.
Another way of writing down the above formulas is by defining the following

function, which we define only in Case A1 as follows: Let f : [s, S] 	→ R, such that

f(θ) = g(θ) ∀s ≤ θ ≤ S

= g(S) otherwise.(4.1)

We call the above-defined function f the interface function and claim that the
interface Godunov flux F is the standard Godunov flux corresponding to f . This fact
is easy to check. The interface function corresponding to other cases can be easily
constructed.

4.2. Enquist–Osher flux. One of the common approximate Riemann solvers
that can be used in place of the Godunov flux is the Enquist–Osher flux developed in
[13]. Let h be a lipschitz function; then the Enquist–Osher flux H̃ is given by

H̃(a, b) =
1

2

(
h(a) + h(b) −

∫ b

a

|h′(ξ)|dξ
)
.(4.2)

For a convex-type fluxes (fluxes with one minima and no maxima), we have a simple
explicit formula given by

H̃(a, b) = h(max(a, θ)) + h(min(θ, b)) − h(θ),(4.3)

where θ is the unique minimum of the function h. The Enquist–Osher flux is similar
to the Godunov flux except in the overcompressive case. Next, we have to define
a suitable interface Enquist–Osher flux. As the Enquist–Osher fluxes are not based
on exact solutions of the Riemann problem, we will employ the interface function f
to construct the interface Enquist–Osher flux. Let F̃ and G̃ be the Enquist–Osher
fluxes corresponding to f and g, respectively. We construct the interface Enquist–
Osher flux only for Case A1; other cases can be similarly treated. We define the

interface Enquist–Osher flux (F̃ ) in this case to be the standard Enquist–Osher flux
corresponding to the interface function f . We recall that the interface Godunov flux
(F ) can be identified as the standard Godunov flux corresponding to the interface
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function (f̃), and we are following the same identification for defining the interface
Enquist–Osher flux, but the concave-convex flux geometry in this case forces us to
have the following proposition, which is easy to check.

Proposition 4.1. Let F and F̃ be as defined above; then F (a, b) = F̃ (a, b) ∀a, b ∈
[s, S].

Henceforth, we will also refer to the interface Enquist–Osher flux as F . We collect
some easy-to-verify facts regarding the interface flux in the following proposition.

Proposition 4.2. Let F be as given above and a, b ∈ [s, S]. Then the following
holds:

(a) F is Lipschitz in each variable.
(b) F is nondecreasing in a and nonincreasing in b.
(c) F (s, s) = f(s) = g(s), F (S, S) = f(s) = g(S).
(d) F is not consistent, i.e., there exists a ∈ [s, S] such that F (a, a) 
= f(a) 
=

g(a).

Proof. (c) and (d) are easy to check from the definition of F . (a) and (b) follow
from the fact that F is the standard Godunov (Enquist–Osher) flux corresponding to
the Lipschitz continuous function f .

We remark that, in general, the interface Godunov and Enquist–Osher fluxes may
not agree (for example, when both fluxes are convex), but in this case, on account of
the flux geometry, they are exactly the same.

We are now in a position to describe the scheme. First, we describe the discretiza-
tion in space and time as follows.

Let h > 0 and define the space grid points xj as follows:

xj =

(
2j − 1

2

)
h for j ≥ 1, xj =

(
2j + 1

2

)
h for j ≤ −1.

For time discretization, the time step Δt > 0, and let tn = nΔt. We also introduce
λ = Δt

h .

For a function u0 ∈ L∞(R) we define

u0
j+1 =

1

h

∫ xj+3/2

xj+1/2

u0(x)dx if j ≥ 0, u0
j−1 =

1

h

∫ xj−1/2

xj−3/2

u0(x)dx if j ≤ 0,

Nh(f, g, u0) =
∑
i<−1

|G(u0
i , u

0
i+1) −G(u0

i−1, u
0
i )| +

∑
i>1

|F (u0
i , u

0
i+1) − F (u0

i−1, u
0
i )|

+ |F (u0
−1, u

0
1) −G(u0

−2, u
0
−1)| + |F (u0

1, u
0
2) − F (u0

−1, u
0
1)|,

Ñh(f, g, u0) =
∑
i<−1

|G̃(u0
i , u

0
i+1) − G̃(u0

i−1, u
0
i )| +

∑
i>1

|F̃ (u0
i , u

0
i+1) − F̃ (u0

i−1, u
0
i )|

+ |F (u0
−1, u

0
1) − G̃(u0

−2, u
0
−1)| + |F̃ (u0

1, u
0
2) − F (u0

−1, u
0
1)|,

N(f, g, u0) = sup
h>0

max{Nh(f, g, u0), Ñh(f, g, u0)}.

It is easy to see that if u0 ∈ BV (R), then N(f, g, u0) ≤ C||u0||BV , where C is a
constant depending only on the Lipschitz constants of f and g.

Now, we are in a position to describe our Godunov-type scheme. For every time
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level (n + 1), we calculate the discrete un+1
j as

un+1
j = un

j − λ(F (un
j , u

n
j+1) − F (un

j−1, u
n
j )) ∀j ≥ 2,

un+1
1 = un

1 − λ(F (un
1 , u

n
2 ) − F (un

−1, u
n
1 )),

un+1
−1 = un

−1 − λ(F (un
−1, u

n
1 ) −G(un

−2, u
n
−1)),

un+1
j = un

j − λ(G(un
i , u

n
j+1) −G(un

j−1, u
n
j )) ∀j ≤ −2.(4.4)

Similarly, we define the Enquist–Osher-type scheme for (0.1) as

un+1
j = un

j − λ(G̃(un
j , u

n
j+1) − G̃(un

j−1, u
n
j )) ∀j ≤ −2,

un+1
−1 = un

−1 − λ(F (un
−1, u

n
1 ) − G̃(un

−2, u
n
−1)),

un+1
1 = un

1 − λ(F̃ (un
1 , u

n
2 ) − F (un

−1, u
n
1 )),

un+1
j = un

j − λ(F̃ (un
j , u

n
j+1) − F̃ (un

j−1, u
n
j )) ∀j ≥ 2.(4.5)

We now define the approximations in terms of the following piecewise constant func-
tions:

uh(x, t) = un
j if ũh(x, t) = ũn

j , if (x, t) ∈ [xj− 1
2
, xj+ 1

2
) × [tn, tn+1).(4.6)

In the next section, we shall show that these approximations uh and ũh are
compact in the appropriate topology and converge to a weak solution of (0.1). In
addition, the limit satisfies the interior entropy condition and is hence unique.

5. Convergence analysis. In this section, we carry out the convergence anal-
ysis for our schemes (4.4) and (4.5). We begin by showing that the solutions are
bounded on account of the monotonicity of the scheme and the consistency of the
fluxes at the endpoints. This gives compactness in the weak star topology which is
not enough to pass to the limit in the nonlinear flux terms. In order to do so, we
have to obtain derivative-type estimates, which for equations of type (1.1) is gener-
ally measured via the singular mapping introduced by Temple. This tool has been
adopted in several papers on these equations. See [23], [28], [29]. To start with, we
give some preliminary lemmas for convergence. We define the following functions to
write our schemes in conservation form:

H1(X,Y, Z) = Y − λ(F (Y,Z) − F (X,Y )),

H−1(X,Y, Z) = Y − λ(G(Y,Z) −G(X,Y )),

H2(X,Y, Z) = Y − λ(F (Y,Z) − F (X,Y )),

H−2(X,Y, Z) = Y − λ(F (Y,Z) −G(X,Y )).

Similarly we can define the corresponding Hi’s for the Enquist–Osher scheme (4.5)
by replacing the Godunov fluxes by the Enquist–Osher fluxes described in section 4.
We have the following lemma.

Lemma 5.1. Let 2λM ≤ 1 and a ∈ [s, S]; we have the following:

1. H±1(a, a, a) = H̃±1(a, a, a) = a,H±2(s, s, s) = H̃±2(s, s, s) = s, H±2(S, S, S)
= H̃±2(S, S, S) = S.

2. Hi, H̃i are nondecreasing in each of their variables, and hence the schemes
(4.4), (4.5) are monotone.
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Proof. Statement 1 follows directly from the definition of the fluxes and from
Proposition 4.2. For statement 2, check that H±1, H̃±1 are monotone due to standard
arguments. We check monotonicity only for (H2); the other cases follow similarly. As
(H2) is Lipschitz, we differentiate it with respect to the variables and use Proposition
4.2 coupled with the CFL condition to get that

∂H2

∂X
= λ

∂(F )(X,Y )

∂a
≥ 0,

∂H2

∂Z
= −λ

∂F (Y,Z)

∂b
≥ 0,

∂H2

∂Y
= 1 − λ

∂F (Y,Z)

∂a
+

∂F (X,Y )

∂b
≥ 1 − 2λM ≥ 0;

hence we have shown that (H2) is monotone in each variable and have proved the
lemma.

Now, we prove that the approximate solutions are uniformly bounded in L∞ by
the following invariant region principle.

Lemma 5.2. Let u0 ∈ L∞(R, [s, S]) be the initial data and let un
j , ũ

n
j be the

corresponding solutions calculated by the Godunov scheme (4.4) and the Enquist–Osher
scheme (4.5), respectively. Then

s ≤ un
j , ũn

j ≤ S ∀j, n.(5.1)

Proof. We will prove for un
j only; the other case follows similarly. Since s ≤ u0 ≤

S, and hence ∀j, s ≤ u0
j ≤ S. By induction, assume that (5.1) holds for n. Then from

Lemma 5.1, we have

s = H−1(s, s, s) ≤ H−1(u
n
j−1, u

n
j , u

n
j+1) = un+1

j ≤ H−1(S, S, S) = S if j ≤ −2,

s = H1(s, s, s) ≤ H1(u
n
j−1, u

n
j , u

n
j+1) = un+1

j ≤ H1(S, S, S) = S if j ≥ 2,

s = H−2(s, s, s) ≤ H−2(u
n
−2, u

n
−1, u

n
1 ) = un+1

−1 ≤ H−2(S, S, S) = S,

s = H2(s, s, s) ≤ H2(u
n
−1, u

n
1 , u

n
2 ) = un+1

1 ≤ H2(S, S, S) = S.

This proves (5.1).
Next we obtain the discrete L1 contractivity estimate in the following.
Lemma 5.3. Let u0, v0 ∈ L∞(R, [s, S]) be the initial data and let {un

j } and {vnj }
be the corresponding solutions calculated by the Godunov-type scheme (4.4); let ũn

j

and ṽnj be the corresponding solutions calculated by the Enquist–Osher scheme (4.5).
Then the following hold:

∑
j �=0

|un+1
j − un

j | ≤
∑
j �=0

|un
j − un−1

j |,(5.2)

∑
j �=0

|ũn+1
j − ũn

j | ≤
∑
j �=0

|ũn
j − ũn−1

j |.(5.3)

Proof. The proof follows from monotonicity of the schemes and from the Crandall–
Tartar lemma (see [16]).

Next we define the singular mappings. To start with, we use the standard nota-
tion a ∈ R; then a+ = max{a, 0}, a− = min{a, 0}, a = a+ + a−, |a| = a+ − a−.
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The singular mappings are given by

ψ1(θ) =

∫ θ

α

|g′(ξ)|dξ, ψ2(θ) =

∫ θ

α

|f ′(ξ)|dξ,(5.4)

where α ∈ [s, S] is some number. Now we are in a position to define the transformed
schemes for the discrete values of the solution as follows:

znj =

{
ψ1(u

n
j ) if j ≤ −1,

ψ1(u
n
−1) if j ≥ −1,

wn
j =

{
ψ2(u

n
1 ) if j ≤ 1,

ψ2(u
n
j ) if j ≥ 1.

(5.5)

We remark that unlike in [3], we define two sets of transformed variables in order
to obtain the normalized variation bounds. This is a key difference in the analysis
which enables us to show the convergence for finite difference approximations for the
concave-convex case. This feature of using a set of singular mappings instead of the
one considered so far in the literature appears to be novel and will be employed by
us in the more general nonconvex case. We will show that the total variation of the
approximate solutions under the above transformations is bounded in terms of the
variation of the numerical fluxes. This is done in the following lemma, which gives a
bound on the normalized variation in each cell.

Lemma 5.4. For all j ∈ Z, ∀n ∈ N, we have the following inequalities:

∀j ≤ −3

(znj − znj+1)+ ≤ |G(un
j , u

n
j+1) −G(un

j−1, u
n
j )| + |G(un

j+1, u
n
j+2) −G(un

j , u
n
j+1)|,(5.6)

∀j ≥ 2

−(wn
j − wn

j+1)− ≤ |F (un
j , u

n
j+1) − F (un

j−1, u
n
j )| + |F (un

j+1, u
n
j+2 − F (un

j , u
n
j+1)|,(5.7)

(zn−2 − zn−1)+ ≤ |G(un
−2, u

n
−1) − F (un

−1, u
n
1 )| + |G(un

−3, u
n
−2) −G(un

−2, u
n
−1)|,(5.8)

−(wn
1 − wn

2 )− ≤ |F (un
1 , u

n
2 ) − F (un

−1, u
n
1 )| + |F (un

2 , u
n
3 ) − F (un

1 , u
n
2 )|.(5.9)

The above estimates also hold for the Enquist–Osher approximations by replacing
un
j , z

n
j , w

n
j by ũn

j , z̃
n
j , w̃

n
j , respectively. We call these analogous estimates (5.6(a)),

(5.7(a)), (5.8(a)), and (5.9(a)), respectively.
Proof. We provide proofs for (5.6), (5.8), and (5.7(a)). The other inequalities can

be similarly proved.
Proof of (5.6). We fix t in the subsequent calculations and drop the superscript

n in the notation. We have to consider three separate cases. First check that (zj −
zj+1)+ > 0 iff uj+1 < uj .

Case 1. s ≤ uj+1 < uj < θg. In this case, it is easy to check that we have the
following:

(zj − zj+1)+ = g(uj) − g(uj+1), G(uj , uj+1) = g(uj).(5.10)

For any uj+2 ∈ [s, S], we have the following. If uj+2 < uj+1, then we can check
from the definition of G that G(uj+1, uj+2) = g(uj+1), and if uj+2 ≥ uj+1, then
by the fact that G is nonincreasing in the second variable and by its consistency,
we get that G(uj+1, uj+2) ≤ G(uj+1, uj+1) = g(uj+1). In either case, we have that
G(uj+1, uj+2) ≤ g(uj+1). By combining the above inequality with (5.10), we get the
desired inequality:

(znj − znj+1)+ ≤ |G(un
j+1, u

n
j+2) −G(un

j , u
n
j+1)|.(5.11)
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Case 2. s ≤ uj+1 < θg ≤ uj . In this case, we get directly from the definition that

(zj − zj+1)+ = g(θg) − g(uj) + g(θg) − g(uj+1), G(uj , uj+1) = g(θg).(5.12)

For any uj−1 ∈ [s, S], we have the following. If uj−1 > uj , then we can check that
G(uj−1, uj) = g(uj), and if uj−1 ≤ uj , then by the fact that G is nondecreasing in the
first variable and by its consistency, we get that G(uj−1, uj) ≤ G(uj , uj) = g(uj). In
either case, we have that G(uj−1, uj) ≤ g(uj). Now by combining the above estimate
with (5.12) and the previous case, we get (5.6).

Case 3. θg ≤ uj+1 < uj ≤ S. In this case, from direct calculations we have that

(zj − zj+1)+ = g(uj+1) − g(uj), G(uj , uj+1) = g(uj+1).(5.13)

Just by using (5.12) and (5.13), we get the desired inequality (5.8) and thus show it
in all the three possible cases.

Proof of (5.8). As in the previous case, we have that (z−2 − z−1)+ > 0 iff
u−2 > u−1, and we have to consider the following cases.

Case 1. θg ≤ u−1 < u−2 ≤ S. The estimate (5.8) follows exactly as in Case 3 of
the previous proof and we get

(z−2 − z−1)+ ≤ |G(un
−2, u

n
−1) −G(un

−3, u
n
−2)|.(5.14)

Case 2. u−1 < u−2 ≤ θg. In this case, from direct calculations we get that

(z−2 − z−1)+ = g(u−2) − g(u−1), G(u−2, u−1) = g(u−2).(5.15)

Now for any u1 ∈ [s, S], we have from the definition of the interface Godunov flux
and its monotonicity properties that if u−1 ≤ S, F (u−1, u1) ≤ F (u−1, s) = g(u−1);
similarly, in the case u−1 > S, we have F (u−1, u1) ≤ g(S). In either case, we get that
F (u−1, u1) ≤ g(u−1). It is easy to check that (5.8) follows by combining the above
inequality with (5.15).

Case 3. u−1 ≤ θg < u−2. In this case, we verify that

(z−2 − z−1)+ = g(θg) − g(u−2) + g(θg) − g(u−1), G(u−2, u−1) = g(θg).(5.16)

By combining (5.16) with the estimates on the interface flux obtained in Case 2, we
prove (5.8).

Proof of (5.7(a)). First check that (w̃j − w̃j+1)− < 0 iff ũj < ũj+1. We have to
distinguish between three separate cases.

Case 1. s ≤ ũj < ũj+1 ≤ θf . In this case, we verify from direct calculations and

the definition of the numerical flux F̃ that the following holds:

−(w̃j − w̃j+1)− = f(ũj) − f(ũj+1), F̃ (ũj , ũj+1) = f(ũj+1).(5.17)

For any ũj−1 ∈ [s, S], we have the following three cases, i.e., if ũj−1 < ũj , then from

the definition of the Enquist–Osher flux it follows that F̃ (ũj−1, ũj) = f(ũj), and if
ũj−1 > ũj , then by the fact that the Enquist–Osher flux is nonincreasing in the first

variable, it follows that F̃ (ũj−1, ũj) ≥ F̃ (ũj , ũj) = f(ũj). In either case we have

F̃ (ũj−1, ũj) ≥ f(ũj). So by combining this estimate with (5.17), we prove (5.7(a)) in
this case.

Case 2. θf ≤ ũj ≤ ũj+1 ≤ S. In this case, we verify from direct calculations and

the definition of the numerical flux F̃ that the following holds:

−(w̃j − w̃j+1)− = f(ũj+1) − f(ũj), F̃ (ũj , ũj+1) = f(ũj).(5.18)
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For any ũj+2 ∈ [s, S], we have the following two cases, i.e., if ũj+1 < ũj+2, then from

the definition of the Enquist–Osher flux it follows that F̃ (ũj+1, ũj+2) = f(ũj+1), and
if ũj+2 ≤ ũj+1), then by the fact that the Enquist–Osher flux is nondecreasing in the

first variable, it follows that F̃ (ũj+1, ũj+2) ≥ F̃ (ũj+1, ũj+1) = f(ũj+1). In either case

we have F̃ (ũj+1, ũj+2) ≥ f(ũj+1). So by combining the above with (5.18) we show
(5.7(a)) in this case.

Case 3. ũj ≤ θf ≤ ũj+1. In this case, we have that

−(w̃j − w̃j+1)− = f(ũj) − f(θf ) + f(ũj+1) − fθf ), F̃ (ũj , ũj+1) = f(θf ).(5.19)

Now by combining (5.19) with the estimates obtained in the two previous cases,
we prove (5.7(a)) in every case. Thus, we have shown the required estimates in all
cases. Other estimates can be proved similarly, and we can complete the proof of
Lemma 5.4.

We use the above cell normalized variation inequalities in order to get the bounds
on the total variation of the transformed schemes. More precisely, we have the fol-
lowing lemma.

Lemma 5.5. Let znj , w
n
j , z̃

n
j , w̃

n
j be as defined above. Then the following holds:

max{TV (znj ), TV (z̃nj )} ≤ 4

λ
max

{∑
j �=0

|u1
j − u0

j |,
∑
j �=0

|ũ1
j − ũ0

j |
}
,(5.20)

max{TV (w̃n
j ), TV (wn

j )} ≤ 4

λ
max

{∑
j �=0

|u1
j − u0

j |,
∑
j �=0

|ũ1
j − ũ0

j |
}
.

Proof. We prove the above estimate for the sequence znj . The other sequences are
shown to satisfy the above inequality in the same way. First observe that ∀j ≥ −1, we
have (znj −znj+1)+ ≡ 0. So we have that TV (znj ) =

∑
|(znj −znj+1| = 2

∑
(znj −znj+1)+.

Therefore by adding (5.6), (5.7), and the above inequality over all j, we get that

∑
(znj − znj+1)+ = 2

⎛
⎝ ∑

j≤−2

|G(un
j , u

n
j+1) −G(un

j−1, u
n
j )| + |G(un

−2, u
n
−1) − F (un

−1, u
j
1)|

+ |F (un
−1, u

n
1 ) − F (un

1 , u
n
2 )| +

∑
j≥2

|F (un
j , u

n
j+1) − F (un

j−1, u
n
j )|

⎞
⎠

=
2

λ

∑
j �=0

|un+1
j − un

j |.(5.21)

From (5.2), we can get the required estimate on the right-hand side of (5.21), and the
inequality follows. In a similar way, we can get the bounds for the other transformed
sequences.

Now we define piecewise constant functions based on the transformed sequences
and write some estimates on these functions, which follow in a straightforward way
from Lemma 5.5. Define the piecewise constant functions zh, wh, z̃h, w̃h by zh(x, t) =
znj , w

h(x, t) = wn
j , z̃

h(x, t) = z̃nj , w̃
h(x, t) = w̃n

j ∀(x, t) ∈ Inj . Then the following
estimates hold.

Lemma 5.6. With the functions defined as above and ∀t ∈ R+, we have

max{TV (zh), TV (wh), TV (z̃h), TV (w̃h)} ≤ 4

λ
N(f, g, u0).(5.22)
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Proof. The proof follows directly from Lemma 5.5.
We need time continuity estimates in L1 for the approximations uh, which is given

in the following lemma.
Lemma 5.7. Let u0, v0 ∈ L∞(R, [s, S]) such that N(f, g, u0) < ∞, N(f, g, v0) <

∞ are the initial data, let uh and vh be the corresponding solutions obtained by the
Godunov scheme (4.4), and let ũh and ṽh be the corresponding solutions given by the
Enquist–Osher-type scheme (4.5). Then

s ≤ uh(x, t), ũh(x, t) ≤ S ∀(x, t) ∈ R × R+,(5.23)

max

{∫
R

|uh(x, t) − uh(x, τ)|dx,
∫

R

|ũh(x, t) − ũh(x, τ)|dx
}

≤ N(f, g, u0)(2Δt + |t− τ |).

Proof. The first inequality follows directly from (5.1). We prove the second
inequality for the Godunov approximations; the Enquist–Osher approximations follow
similarly.

Let tn ≤ t < tn+1 and tm ≤ τ < tm+1, so

|n−m|Δt = |tn − tm| ≤ |tn − t| + |t− τ | + |τ − tm| ≤ 2Δt + |t− τ |.

Hence from Lemma 5.3, we obtain
∫

R

|uh(x, t) − uh(x, τ)|dx = h
∑
j �=0

|un
j − um

j |

≤ h
∑
j �=0

n−m+1∑
i=0

|un−i
j − un−i−1

j |

≤ h|n−m|
∑
j �=0

|u1
j − u0

j |

≤ Δt|n−m|
λ

∑
j �=0

|u1
j − u0

j |

≤ (2Δt + |t− τ |)N(f, g, u0).

We complete the proof of the lemma.
Now equipped with the above lemmas, we proceed to state and prove our main

convergence theorem.
Theorem 5.8. Assume that λ,M satisfy the CFL condition 2λM ≤ 1 and u0 sat-

isfy the hypotheses (IN1), (IN2). Let uh, ũh be approximate solutions as defined above.
Then there exists a subsequence (still denoted by h) such that uh converge almost ev-
erywhere to a weak solution u of (0.1). In fact, uh → u in L∞

loc(R+, L
1
loc(R)) as h goes

to 0. Similarly, along a further subsequence still denoted by h, ũh converge almost
everywhere to a weak solution ũ of (0.1) and, similarly, ũh → ũ in L∞

loc(R+, L
1
loc(R))

as h goes to 0. Furthermore, both u and ũ satisfy the Kruzkhov entropy condition and
hence are identical to the entropy solution of (0.1).

Proof. This is the main convergence theorem for our Godunov and Enquist–
Osher-type schemes (4.4), (4.5). The proof follows easily from the BV bounds for
the singular mappings and invertibility of ψ1 in x < 0 and ψ2 in x > 0. Entropy
consistency follows from the Crandall–Majda entropy fluxes. We refer the reader to
[28], [29] for details.
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We reiterate that the key step of the proof of convergence is Lemma 5.4, which
used the set of singular mappings in order to get the normalized variation bounds.

Remark 5.1. The existence and uniqueness result presented in this paper and
the Godunov and Enquist–Osher schemes can be extended to cover more general
equations of the form (1.1) under the assumptions that

1. k ∈ BV (R) with finitely many points of discontinuities and k being C1 outside
the set of discontinuities;

2. f(k(x1), s) = f(k(x2), s), f(k(x1), S) = f(k(x2), S) ∀x1, x2 ∈ R;
3. u 	→ f(k, u) is Lipschitz and has at most one extrema in [s, S] ∀k ∈ R.

The proof of this general result is presented in a more general setting (by allowing
finitely many extrema for the fluxes) in a forthcoming paper [6].

6. Numerical experience. We have tested the Godunov scheme (4.4) and the
Enquist–Osher scheme (4.5) extensively and have compared the results with staggered
mesh algorithms of Enquist–Osher type developed in [28], [29], and [19]. Due to the
special nature of the fluxes considered in this paper, all entropy theories for (0.1)
agree and the schemes give the same result.

In most of the test cases, we have observed that (4.4) and 4.5 resolve the interface
discontinuity better than the staggered mesh algorithms. Regarding waves in the in-
terior, both schemes of this paper as well as the staggered mesh algorithms seem to do
equally well. Only when there is a rarefaction wave in the interior do the schemes (4.4)
and (4.5) perform slightly better. This can be illustrated by the following example.

Consider the flux functions f(u) = 2u2−u and g(u) = 3u−3u2 with the Riemann
initial data of 0.25 when x < 0 and 1 when x > 0. From the exact solutions of the
Riemann problem presented in section 3, the exact solution is given by a discontinuity
at the interface and a rarefaction wave traveling to the right. The numerical results
obtained by (4.4), which we have denoted the exact Riemann solver (ERS), and a
staggered Godunov scheme developed in [28], which we denote as TS, are shown in
Figure 6.1.

As seen in the figure, ERS resolves the solution very well even at low mesh sizes.
TS also does well at approximating the solution, except that there is nonphysical
nonmonotone traveling wave at the tip of the rarefaction. From the right side of
Figure 6.1, we can observe that the wave decreases in amplitude as h → 0, but its
presence is puzzling. A way out of this nonphysical wave is suggested in [19] by moving

–4 –3 –2 –1 0 1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ERS:       
TS   :     

–4 –3 –2 –1 0 1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ERS:        
TS   :     

Fig. 6.1. Computed solutions using ERS and TS at time t = 0.6, with h = 0.1 and h = 0.025,
respectively.
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the interface discontinuity in the direction of the wave.
The main advantage of the staggered mesh algorithms as opposed to the 2 × 2

Riemann solvers is their simplicity. Although the scheme (4.4) is also based on exact
solutions of the Riemann problem, it is as easy to implement as the staggered mesh
schemes on account of the explicit formulae of the numerical fluxes. It also resolves
the interface discontinuities better and avoids nonphysical waves and can be used as
a substitute to the staggered mesh algorithms.

7. Conclusion. Scalar conservation laws with discontinuous flux occur very fre-
quently in physical and engineering applications, and hence we need to develop a
well-posedness theory and stable numerical methods to approximate their solutions.
An interesting case of such equations is when one of the fluxes is convex and the
other concave, which can arise when the discontinuous coefficient is of indefinite sign.
This case has received less attention in the literature on account of the difficulties in
adapting the principal convergence tool of singular mapping.

In this paper, we have studied a scalar conservation law with discontinuous flux
having the concave-convex flux geometry. The uniqueness of entropy solutions is
shown by using a Kruzkhov-type argument. One strange feature of the flux geometry
considered in this case is that we do not need to impose any additional entropy
conditions at the interface. We give explicit solutions to the Riemann problem and
use it to construct upwind finite difference schemes of Godunov and Enquist–Osher
type. These schemes are shown to converge to the entropy solution by using a singular
mapping technique. The novel feature of this paper is the use of a combination of
singular mappings in order to show the convergence of our schemes to the entropy
solutions. Numerical results are presented which show that our schemes resolve the
solutions quite well. Comparison with the staggered mesh schemes indicate better
performance of our schemes in some situations.
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Abstract. This paper deals with the upwind finite volume method applied to the linear advec-
tion equation on a bounded domain and with natural boundary conditions. We introduce what we
call the geometric corrector, which is a sequence associated with every finite volume mesh in Rnd and
every nonvanishing vector a of Rnd. First we show that if the continuous solution is regular enough
and if the norm of this corrector is bounded by the mesh size, then an order one error estimate for the
finite volume scheme occurs. Afterwards we prove that this norm is indeed bounded by the mesh size
in several cases, including the one where an arbitrary coarse conformal triangular mesh is uniformly
refined in two dimensions. Computing numerically exactly this corrector allows us to state that this
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refined meshes.
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1. Introduction. Finite volume methods (FVMs) were first used in the con-
text of computational mechanics in situations in which solutions present discontinu-
ities (see the monograph of Kröner [16], Godlewski and Raviart [13], and Eymard,
Gallouët, and Herbin [10]). One reason for this is that they fundamentally rely on
an integral version of the equations. This contrasts with finite difference methods
(FDMs), for which smoothness of solutions is used in order to approximate deriva-
tives by differential quotients. For finite element methods (FEMs), the situation is
somewhat similar since trace theorems on hypersurfaces in H1-type spaces exclude
also the approximation of discontinuous solutions. It is the main reason why FVMs
are widely used for the approximation of hyperbolic systems of conservation laws.
Indeed, even when initial and boundary data are smooth, solutions of such equations
produce in finite time discontinuous solutions. Let us also mention that other advan-
tages of FVMs, like compact numerical stencil, effectiveness on unstructured grids,
and simplicity in coding or data structures, are reasons for which these methods are
used more and more often for elliptic and parabolic equations, albeit smoothness of
the solution is guaranteed.

Concerning FVMs for hyperbolic equations, there are a lot of methods, and es-
pecially in computational fluid dynamics; historically these methods were natural
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extensions of the famous Godunov method for the Euler equations of gas dynamics to
multidimensional problems. The Godunov method was known to be too diffusive, and
this was attributed to the fact that it is a first order method. In the beginning of the
eighties, Bram Van Leer proposed MUSCL methods, which can be seen as corrections
that lead to second order schemes.

However, it is an open problem to determine the optimal rate of convergence of
FVMs. This contrasts strongly with FDMs and FEMs, where such rates are known.
Hence there is an apparent paradox between the fact that some methods are termed
“first order” or even “second order” and the fact that corresponding error estimates
are not proved. Indeed, there is some confusion in the literature: what is usually
called a “first order” method, for example, corresponds to methods with a first order
truncation error on uniform Cartesian grids. In practice—and this is the main interest
of FVMs—these methods are used on unstructured meshes, and therefore it is not
known whether “first order” methods lead to first order error estimates. In fact the
situation is even more puzzling since “first order” methods on unstructured grids do
not lead in general to a truncation error that goes to zero as the mesh size goes to
zero (see section 3.3).

Even for the scalar linear advection equation, obtaining a priori optimal error
estimates is still a challenging task. One of the main difficulties, as said already,
lies in the fact that the nonuniformity of the mesh brings up an apparent loss of
consistency, as has been observed by Hoffman [14], Turkel [27], and Pike [24]. In
fact this loss of consistency is an artifact of standard convergence proof: for instance,
the Lax theorem states that stability and consistency are sufficient conditions for a
scheme to be convergent at the same rate that the truncation error converges to zero.
Actually, consistency is not necessary; the scheme maintains the accuracy and the
global error behaves better than the local error would indicate. This property of
enhancement of the truncation error is called supraconvergence, and for second and
higher order boundary value problems, this phenomenon, discovered by Tikhonov and
Samarskij [26], was widely analyzed in various cases by Manteuffel and his coauthors
in [19], [20], [15], [21] and in Garcia-Archilla and Sanz-Serna [11].

In these papers, the analysis relies on the fact that the truncation error (defined
by applying the discrete operator to the exact solution) can be rewritten in the special
form Lhτ1 + τ2, where τ1 and τ2 are of the optimal order O(hp), Lh is the discrete
operator, and Lhτ1 is only O(hp−1). Then an optimal discrete energy estimate for
the global error can be derived. This idea is extended to finite difference schemes for
hyperbolic systems with nonuniform one-dimensional grids and with irregular Carte-
sian multidimensional grids in Levermore, Manteuffel, and White [18] and in Monk
and Süli [22].

This way to rewrite the truncation error can be seen as a correction of the error
in order to cancel the leading part of the local error due to the nonuniformity of the
mesh. Actually, in Wendroff and White [31], [30] and Wendroff [29], a grid function is
introduced for suitably smooth solutions of hyperbolic systems in order to prove the
optimal order of convergence of upwind finite difference and Lax–Wendroff schemes
in one space dimension, and in two dimensions when an alternate direction method is
used. Berger et al. [3], [2] successfully used the idea to get the optimal rate of conver-
gence of the “h-box” scheme defined on a nonuniform Cartesian grid with embedded
irregular small cells.

Recently Després [9], [7], [8], by using energy estimates, gave an elegant proof
of an order h1/2 error estimate with respect to the L2 norm for the linear advection
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equation on regular finite element meshes in the particular case of periodic boundary
conditions.

Finally, let us mention that when no regularity conditions are imposed on the
exact solution, by suitable application of Kuznetsov [17] approximation theory, for
instance, it is possible to establish rate of convergence of h1/2 in the L1 norm for
nonregular Cartesian grids: see Eymard, Gallouët, and Herbin [10], Cockburn and
Gremaud [4], [5], Cockburn, Gremaud, and Yang [6], Vila and Villedieu [28], and
Teng and Zhang [25]. All these results deal with data (and solutions) which belong
to the set of functions with bounded variations. As shown in the aforementioned
references, the h1/2 is optimal for these solutions. However, these papers raise the
question of whether such a rate is due to the irregularity of the mesh. Our present
work answers this open question by showing that this is not the case: on irregular
meshes, provided the solution is smooth, the error estimate behaves like h. Hence the
poor convergence behavior is due to the lack of smoothness of solutions.

In this paper we study the initial and boundary value problem for the linear
advection equation posed on a polygonal domain of Rnd (nd is the space dimension
of the problem under consideration). We construct first what we call “geometric
correctors.” They form a family of vectors in Rnd, Γ = (Γj)j=1,...,N , where N is
the number of control volumes. This set of geometric correctors depends only on the
mesh and on the advection vector but not on the solutions to the advection equation.
Our first result in section 3 shows that if the solution is regular and if this family of
vectors is uniformly bounded by the mesh size, i.e., ||Γ|| ≤ Ch, then under a Courant–
Friedrichs–Lewy (CFL) condition, the classical explicit first order upwind scheme for
the advection equation is indeed first order: ||uh − u|| ≤ C ′h, where u is the exact
solution and uh the FVM approximation. Since we are able to compute exactly Γ,
numerical simulations allow us to study in which cases the hypothesis ||Γ|| ≤ Ch is
satisfied. We prove in section 4 this estimation in several cases, including the one
where an arbitrary coarse conformal triangular mesh is refined. Finally in section 5,
we present numerical experiments that lead us to conjecture that this result holds true
in the case of independent refined meshes if the advection vector is not parallel to a
side of the polygonal domain. On the other hand, on the basis of numerical evidence,
we conjecture that if the advection vector is parallel to a side of the polygonal domain,
then the best estimate should be in h1/2.

2. The continuous problem. We consider Ω a polygonal domain in Rnd with
nd ≥ 1, and we denote by n the unitary external normal vector on ∂Ω. Let a be a
nonzero vector and let us denote ∂Ω− = {x ∈ ∂Ω,a · n(x) < 0}. Given a function ϕ
defined on Ω and a function ψ defined on ∂Ω− × [0,+∞[, the initial and boundary
value problem for the advection equation on Ω̄ × [0,+∞[ reads

∂u

∂t
+ (a · ∇)u = 0 , (x, t) ∈ Ω × ]0,+∞[ ,(2.1)

u(x, 0) = ϕ(x) , x ∈ Ω ,(2.2)

u(x, t) = ψ(x, t) , (x, t) ∈ ∂Ω− × [0,+∞[ .(2.3)

As is well known and understood, this problem has a unique smooth solution,
provided the data ϕ and ψ are smooth and satisfy the so-called compatibility con-
ditions (for example, the first compatibility condition is given below in (2.6)). In
fact there are several methods for obtaining this solution. The first one, which uses
functional analysis, is due to Bardos [1]. It consists of considering smooth solutions
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to the parabolic equation (ν > 0)

∂uν

∂t
+ (a · ∇)uν = νΔuν , (x, t) ∈ Ω × ]0,+∞[ ,(2.4)

with the complete Dirichlet boundary conditions

uν(x, t) = ψν(x, t) , (x, t) ∈ ∂Ω × [0,+∞[,(2.5)

where ψν is a smooth extension of ψ to Ω× [0,+∞[. Then the solution to (2.1)–(2.3)
is obtained at the limit ν = 0. This produces a weak solution, whose regularity is
obtained using the compatibility conditions. This method has the great advantage of
applying to general (i.e., with variable nonnecessarily smooth coefficients) first order
linear hyperbolic equations. However, it is not constructive in contrast with the so-
called method of characteristics. In the case of the linear advection equation (2.1), this
last method consists of considering the backward characteristics, a straight line here,
defined by (x− sa, t− s)s≥0 and starting from an arbitrary point (x, t) ∈ Ω× [0,+∞[,
and then in looking for its intersection with the boundary of this cylinder. One sees
easily that this point belongs either to the set Ω × {0} or to the set ∂Ω− × [0,+∞[,
and since (2.1) simply means that u is constant along these characteristics, one finds
u(x, t) by using either (2.2) or (2.3). Let us be more precise. Given x ∈ Ω, we denote
by s(x) the first positive real number τ such that x − τa meets the boundary of Ω
(one sees easily that necessarily x− s(x)a ∈ ∂Ω−). Then there are three cases:

(i) if 0 < s(x) < t, then u(x, t) = ψ(x− s(x)a, t− s(x));
(ii) if s(x) > t, then u(x, t) = ϕ(x− ta);
(iii) if s(x) = t, then u(x, t) = ψ(x− ta, 0) = ϕ(x− ta).

The last case sheds light on the first compatibility condition between ψ and ϕ:

ψ(x, 0) = ϕ(x) ∀x ∈ ∂Ω− .(2.6)

3. A cell-centered finite volume discretization and associated error es-
timates.

3.1. Notation and geometric properties of meshes. Let T = {Kj : j =
1, . . . , N} be a partition of the domain Ω in polyhedral volumes Kj (the control
volumes) that forms a structured or unstructured triangulation of Ω and such that
the hyperface between two adjacent volumes is included in a hyperplane. For a given
j between 1 and N , there are two cases:

• In the first one, the volume Kj has no hyperface on the boundary ∂Ω. Then
we denote by N (j) the set of indices k �= j between 1 and N such that Kk∩Kj

has (nd− 1) positive measure.
• In the second one, the boundary of the volume Kj meets the boundary ∂Ω in

a set of (nd−1) positive measure. Then we denote by N0(j) the set of indices
k �= j between 1 and N such that Kk ∩Kj has (nd−1) positive measure, and
we complete this set into N (j) by negative integers numbering the hyperfaces
of Kj which are on the boundary ∂Ω. We denote the set of these negative
integers by Nb(j).

In both cases we have N (j) = N0(j) ∪ Nb(j), since Nb(j) is empty when Kj has no
hyperface on the boundary ∂Ω.

Let k ∈ N (j). If k ∈ N0(j), we denote by nj,k the unit normal on Kj ∩Kk, which
points out from Kj and by Nj,k the product Nj,k = |Kj ∩Kk|nj,k, where |Kj ∩Kk|
denotes the (nd− 1) positive measure of Kj ∩Kk. If k ∈ Nb(j), we denote by Kk the
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symmetric of Kj with respect to the hyperface Kj ∩ ∂Ω and keep the same notation
as above. We shall use in what follows the partition of N (j):

N (j) = N+(j) ∪N−(j) ∪N 0(j) ,(3.1)

where N+(j) = {k ∈ N (j),a · nj,k > 0}, N−(j) = {k ∈ N (j),a · nj,k < 0}, and
N 0(j) = {k ∈ N (j),a · nj,k = 0}. Similar definitions are extended to N ε

0 (j) and
N ε

b (j), ε ∈ {0,+,−}. Last, the centroid of Kj will be denoted by gj , while the one of
Kj ∩Kk will be denoted by gj,k.

Since we are interested in convergence results, we are going to consider families
of triangulation T h indexed by the real number h = maxKj∈T h hj , where hj is the

diameter of the volume Kj . By definition of the parameter h, we have |Kj | ≤ hnd

and |Kj ∩Kk| ≤ hnd−1 for all Kj ,Kk ∈ T h, and we assume that there exist h0 > 0
and positive constants κ1 and κ2 such that for every h < h0 we have

hnd
j

|Kj |
≤ κ1 and 	N (j) ≤ κ2 ∀Kj ∈ T h .(3.2)

Remark 1. The first assumption is equivalent to the shape-regularity assumption,
and the second one means that the number of neighbors of each volume remains
bounded when h tends to zero.

Let us recall the following properties, applications of the divergence theorem.
Proposition 3.1. With the previous notation, we have the two vector identities

∑
k∈N (j)

Nj,k = 0 and
∑

k∈N (j)

X · Nj,k gj,k = X |Kj | ∀X ∈ Rnd .(3.3)

A straightforward application of the previous proposition leads to the following.
Proposition 3.2. For every nonvanishing vector a �= 0, we have

N+(j) �= ∅ and
∑

k∈N+(j)

a · Nj,k �= 0 .(3.4)

Concerning the time discretization of (2.1), we use a finite difference approach,
and therefore we consider an increasing sequence 0 = t0 < t1 < · · · < tn < tn+1 −→ ∞
and set Δtn = tn+1 − tn.

We shall consider sequences ξ = (ξj)j=1,...,N of scalars and of vectors in Rnd, and
we will estimate the �p norm for p ∈ [1,+∞] with

||ξ||∞ = max
1≤j≤N

|ξj | and ||ξ||p =

⎛
⎝ N∑

j=1

|Kj ||ξj |p
⎞
⎠

1/p

for p ≥ 1,

where |ξj | is the �p norm in Rnd in the case of vectors.

3.2. The first order explicit upwind finite volume scheme. This scheme
reads as follows:

un+1
j − un

j

Δtn
+

1

|Kj |

⎛
⎝ ∑

k∈N+(j)

a · Nj,ku
n
j +

∑
k∈N−(j)

a · Nj,ku
n
k

⎞
⎠ = 0 .(3.5)



ERROR ESTIMATE AND GEOMETRIC CORRECTOR FOR AN FVM 583

Indeed the underlying philosophy of the finite volume scheme is to approximate on
each control volume Kj for j ∈ 1, . . . , N the mean value of the exact solution to the
continuous equation (2.1)

Un
j =

1

|Kj |

∫
Kj

u(x, tn)dx(3.6)

by taking into account the direction from which the information comes. System (3.5)
allows us to compute an approximation of Un

j once the initial values, u0
j for j ≥ 1,

and the boundary ones, un
k for k ∈ ∪jN−

b (j) and for n ≥ 0, have been provided.
The classical way to check if the goal is achieved is to evaluate the truncation

error, which consists of replacing un
j by Un

j in (3.5). Here we are going to use a
truncation error based on the value u(gj , tn) of the exact solution at the centroid of
the control volumes. More precisely one computes

En
j =

u(gj , tn+1) − u(gj , tn)

Δtn
+

1

|Kj |

⎛
⎝ ∑

k∈N+(j)

a · Nj,ku(gj , tn)

+
∑

k∈N−
0 (j)

a · Nj,ku(gk, tn) +
∑

k∈N−
b (j)

a · Nj,ku
n
k

⎞
⎠ .(3.7)

Then from (3.5) and (3.7), the error denoted by αn
j = un

j − u(gj , tn) satisfies

αn+1
j − αn

j

Δtn
+

1

|Kj |

⎛
⎝ ∑

k∈N+(j)

a · Nj,kα
n
j +

∑
k∈N−

0 (j)

a · Nj,kα
n
k

⎞
⎠ = −En

j ,(3.8)

which can also be written as

αn+1
j = (Lnαn)j − ΔtnE

n
j ,(3.9)

where we denote by Ln the following operator that acts on sequences ξ = (ξj)j=1,...,N :

(Lnξ)j = ξj −
Δtn
|Kj |

⎛
⎝ ∑

k∈N+(j)

a · Nj,kξj +
∑

k∈N−
0 (j)

a · Nj,kξk

⎞
⎠ .(3.10)

In classical finite difference theory, one transfers information on the smallness of
the truncation error En

j to the error αn
j via a stability property of the scheme, which

amounts here to showing that the norm of the operator Ln is not greater than 1.
Courant, Friedrichs, and Lewy, in their early study of the discretization of the one-
dimensional advection equation by finite differences, introduced the CFL number as a
limitation on the time step Δtn in order to achieve stability. In the case of the scheme
(3.5), their construction can be mimicked as follows. First we take on each volume the
local time given by (observe that, thanks to Proposition 3.2,

∑
k∈N+(j) a · Nj,k �= 0)

τj =
|Kj |∑

k∈N+(j) a · Nj,k
.(3.11)

Then we set Δt∗ = minj τj and assign to the CFL number the ratio

λ =
Δtn
Δt∗

.(3.12)
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When λ ≤ 1, the operator Ln has a norm not greater than 1. More precisely, we have
the following result, whose proof is standard.

Theorem 3.3. Under the CFL condition λ ≤ 1, for every p ∈ [1,+∞] the
operator Ln satisfies

||Lnξ||p ≤ ||ξ||p .(3.13)

This result, when combined with (3.9), has the following straightforward corollary.
Corollary 3.4. Under the CFL condition λ ≤ 1 and for every p ∈ [1,+∞] we

have the estimate

||αn||p ≤ ||α0||p +

n−1∑
i=0

Δti||Ei||p .(3.14)

This inequality shows that estimations on Ei transfer to ones on the error αn.

3.3. On the truncation error. Let us consider the volume of control Kj . We
see that the error En

j can be divided into three sums:

En
j = Gn

j + Inj +
1

|Kj |
∑

k∈N−
b (j)

a · Nj,k(u
n
k − u(gj,k, tn)),(3.15)

where

Gn
j =

u(gj , tn+1) − u(gj , tn)

Δtn
+

1

|Kj |
∑

k∈N (j)

a · Nj,ku(gj,k, tn)(3.16)

and

|Kj |Inj =
∑

k∈N+(j)

a · Nj,k(u(gj , tn) − u(gj,k, tn))(3.17)

+
∑

k∈N−
0 (j)

a · Nj,k(u(gk, tn) − u(gj,k, tn)).

Recalling the estimates (3.2) on the volumes, the third term in (3.15) that concerns
the boundary conditions treatment behaves like O(h) if we assume, for instance, that

un
k =

1

Δtn|Kj ∩Kk|

∫ tn+1

tn

∫
Kj∩Kk

ψ(σ, t)dσdt , k ∈ N−
b (j) , n ≥ 0,(3.18)

i.e., that the discrete numerical boundary treatment satisfies

|un
k − u(gj,k, tn)| = O(h2) , k ∈ N−

b (j) , n ≥ 0 .(3.19)

Using the relationship (3.3) on the normals, the assumptions (3.2) on the mesh, and,
intensively, Taylor’s expansions, we see that the second term in Gn

j can be written as∑
k∈N (j)

a · Nj,ku(gj,k, tn) =
∑

k∈N (j)

a · Nj,k(u(gj,k, tn) − u(gj , tn)) ,

=
∑

k∈N (j)

a · Nj,k(gj,k − gj) · ∇u(gj , tn) + O(hnd+1) ,

=

⎛
⎝ ∑

k∈N (j)

a · Nj,kgj,k

⎞
⎠ · ∇u(gj , tn) + O(hnd+1) ,

= |Kj |a · ∇u(gj , tn) + O(hnd+1) .(3.20)
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Finally, since

u(gj , tn+1) − u(gj , tn)

Δtn
=

∂u

∂t
(gj , tn) + O(Δtn)(3.21)

and since u is the solution of (2.1), we deduce that if Δtn ≤ ch,

Gn
j = O(h) .(3.22)

But concerning Inj , a similar computation leads this time to Inj = O(1), and we find
that En

j = O(1). Hence En
j does not even converge to zero as h goes to zero, so in

a sense the scheme is inconsistent. One might think that the estimate above is not
optimal, but in fact this is not the case since in the one-dimensional case the previous
computations are much simpler and show that indeed En

j does not converge to zero as
h goes to zero. This fact (the scheme is not pointwise-consistent) was already observed
in two dimensions by Kröner [16, Lemma 3.2.8]. On the other hand, Lemma 4.1 of
Chapter IV in Godlewski and Raviart [13] cannot be applied to the upwind scheme
on a uniform triangulation by equilateral triangles, as they wrongly claim. In their
proof, they use the identity ∂Φ

∂u (u, u,n) + ∂Φ
∂u (u, u,−n) = 0, where Φ(u, v,n) denotes

the numerical flux; that is, Φ(u, v,n) = (a · n)u for a · n > 0, Φ(u, v,n) = (a · n)v for
a ·n < 0 and Φ(u, v,n) = 0 for a ·n = 0. And one can readily see that this identity is
wrong. However, the result (that on such a triangulation the upwind scheme is first
order accurate) is true, as it will follow from the proof of Theorem 4.2 in this paper.

3.4. A geometric corrector. Our goal is to construct a sequence of scalars
(γn

j )j=1,...,N that satisfies the N equations

∑
k∈N+(j)

a · Nj,kγ
n
j +

∑
k∈N−

0 (j)

a · Nj,kγ
n
k = |Kj |Inj(3.23)

in order to correct the errors (αn
j )j=1,...,N introduced in section 3.2 and to prove that

under smoothness assumptions the finite volume scheme is first order accurate in spite
of the fact that the truncation error is inconsistent. We first slightly modify the linear
system (3.23) to be able to estimate in terms of h the norm of the sequence. Thus,
we will consider the construction of a sequence of vectors in Rnd, (Γj)j=1,...,N that
satisfies the N following vector equations (we recall that gj and gj,k belong to Rnd):

∑
k∈N+(j)

a · Nj,kΓj +
∑

k∈N−
0 (j)

a · Nj,kΓk

=
∑

k∈N+(j)

a · Nj,k(gj,k − gj) +
∑

k∈N−
0 (j)

a · Nj,k(gj,k − gk) .
(3.24)

We are going to prove, thanks to Theorem 3.8, that this system has one and only one
solution, but let us first give the following definitions.

Definition 3.5. Given a nonzero vector a ∈ Rnd and a triangulation (Kj)j=1,...,N

of a polygonal domain Ω in Rnd defined as in section 3.1, the geometric corrector for
the advection equation (2.1) is the sequence of vectors in Rnd, (Γj)j=1,...,N , defined
by the N ×N system of equations (3.24).

Definition 3.6. For every control volume J ∈ T , we denote by C(J) the cone of
dependence of J :

C(J) = {K ∈ T /∃J1, . . . , Jp ∈ T , a · NJ1,K < 0, a · NJ2,J1 < 0, . . . , a · NJ,Jp < 0} .
(3.25)
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Let us remark that

∀K ∈ C(J) ,
(
j ∈ N−

0 (K) ⇒ Kj ∈ C(J)
)
.(3.26)

Proposition 3.7. For every control volume J ∈ T , there is at least one volume
Kk ∈ C(J) that shares a face with ∂Ω−, i.e., such that

N−
b (k) �= ∅ .(3.27)

Proof. Indeed let us assume that there is no such volume in C(J). Since C(J)
is composed of polyhedron, it is also a polyhedron, and there is at least one face
(on the boundary of C(J)) for which the external normal forms an obtuse angle with
a. Then for each volume K ∈ C(J) that meets this face, since from the assumption
that K does not intersect ∂Ω−, there is an adjacent volume L ∈ T \ C(J) such that
a · NK,L < 0. From the definition of C(J), this last relation yields that L is in C(J),
which is a contradiction.

According to Proposition 3.2,
∑

k∈N+(j) a ·Nj,k does not vanish. We then define

the N ×N matrix B such that for an arbitrary sequence X = (Xj)j=1,...,N in CN we
have

(BX)j =

∑
k∈N−

0 (j)(−a · Nj,k)Xk∑
k∈N+(j) a · Nj,k

.(3.28)

We denote by (Δj)j=1,...,N the sequence of vectors in Rnd defined by

Δj =

∑
k∈N+(j) a · Nj,k(gj,k − gj) +

∑
k∈N−

0 (j) a · Nj,k(gj,k − gk)∑
k∈N+(j) a · Nj,k

.(3.29)

It is clear that (3.24) can be written as

(Id−B)Γ = Δ .(3.30)

We are now able to prove that Id−B is a nonsingular M -matrix.
Theorem 3.8. The spectrum σ(B) of B satisfies

σ(B) ⊂ {z ∈ C , |z| < 1} ,(3.31)

i.e.,

(Id−B)−1 =

∞∑
l=0

Bl .(3.32)

Proof. (i) Let X �= 0, X ∈ CN such that BX = λX. From definition (3.28), by
observing that −a·Nj,k ≥ 0 for k ∈ N−

0 (j) and by using the relation
∑

k∈N (j) a·Nj,k =

0 rewritten as
∑

k∈N−
0 (j) a ·Nj,k +

∑
k∈N−

b (j) a ·Nj,k +
∑

k∈N+(j) a ·Nj,k = 0, we have

|(BX)j | ≤
∑

k∈N−
0 (j) −a · Nj,k∑

k∈N+(j) a · Nj,k
||X||∞ =

(
1 +

∑
k∈N−

b (j) a · Nj,k∑
k∈N+(j) a · Nj,k

)
||X||∞.(3.33)

Then ||BX||∞ ≤ ||X||∞ and |λ| ≤ 1.
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(ii) Now let us assume that λ ∈ C with |λ| = 1 is an eigenvalue of B, i.e., that
there is X �= 0 such that BX = λX and X ∈ CN . Let us denote by Kj ∈ T a volume
such that

|Xj | = max
1≤k≤N

|Xk| .(3.34)

From the jth component of BX = λX, and since
∑

k∈N (j) Nj,k = 0, we get

∑
k∈N−

0 (j)

(−a · Nj,k)

(
|Xj | −

Xk

λ

)
+

∑
k∈N−

b (j)

(−a · Nj,k)|Xj | = 0.(3.35)

Thus

∑
k∈N−

0 (j)

(−a · Nj,k)Re

(
|Xj | −

Xk

λ

)
+

∑
k∈N−

b (j)

(−a · Nj,k)|Xj | = 0 ,(3.36)

∑
k∈N−

0 (j)

(−a · Nj,k) Im
(
|Xj | −

Xk

λ

)
= 0 .(3.37)

Since Re(|Xj | − Xk/λ) ≥ 0 and Im(|Xj | − Xk/λ) ≥ 0, all the terms above
are positive and thus equal to zero, so that N−

b (j) = ∅ and for all k ∈ N−
0 (j),

|Xj | = Xk/λ, i.e., |Xj | = |Xk|. By induction, we find that for all k such that Kk

belongs to C(Kj), |Xk| = |Xj | and N−
b (k) = ∅, i.e., Kk does not meet ∂Ω−, which is

in contradiction with Proposition 3.7.
Remark 2. Let us denote

δj =
∑

k∈N+(j)

a · Nj,k =
∑

k∈N−(j)

|a · Nj,k| > 0 ,(3.38)

so that (3.28) also reads as

(BX)j =

∑
k∈N−

0 (j) |a · Nj,k|Xk

δj
.(3.39)

We then observe that (BX)j is a barycenter of the Xk for k ∈ N−(j) when Kj

does not meet the boundary ∂Ω−, and of the Xk for k ∈ N−
0 (j) and 0 for k ∈ N−

b (j)
when Kj meets the boundary ∂Ω−. Now, given m ≥ 2, we have

(BmX)j =

∑
j1∈N−

0 (j) . . .
∑

jm∈N−
0 (jm−1)

|a · Nj,j1 | . . . |a · Njm−1,jm |Xjm

δjδj1 . . . δjm−1

.(3.40)

Remark 3. The great advantage of the geometric corrector Γk defined by (3.24)
on the corrector γn

j defined by (3.23) is that the former depends only on the advection
vector a and on the geometry of the problem Ω and the elements Kj of the mesh and
not on the initial and boundary data. On the other hand it might be that the intro-
duction of this geometric corrector leads to a weaker estimate. We are going to show
that this is not the case by considering the case where the data are affine functions.
More precisely, we take for initial conditions (2.2) and boundary conditions (2.3)

ϕ(x) = δ1 · x + δ2 and ψ(x, t) = δ1 · x + δ2 − δ1 · at , t ≥ 0,(3.41)
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where δ1 is an arbitrary vector in Rnd and δ2 is an arbitrary real number. Then the
solution u to (2.1) is

u(x, t) = δ1 · x + δ2 − δ1 · at(3.42)

with ∇u = δ1. In this case a straightforward computation yields that the exact
solution of (3.23) has the form

γn
j = −Γj · δ1 ≡ −Γj · ∇u(3.43)

and indicates the optimality of the geometric corrector approach.

3.5. The error estimate. The previous remark suggests using the vector geo-
metrical corrector (Γj)j=1,...,N defined by (3.24) to construct the scalar corrector γn

j

by taking the formula

γn
j = −Γj · ∇u(gj , tn) .(3.44)

Main result: we are now in a position to prove the following general result, where the
required smoothness is due to the use of second order Taylor expansions.

Theorem 3.9. Let u be the smooth solution to (2.1)–(2.3), where ϕ and ψ are
arbitrary smooth functions satisfying the compatibility conditions (see Bardos [1]).

Assume the local quasi uniformity of the family of meshes, i.e., that there is a
positive constant κ3 such that

1

κ3
|Kk| ≤ |Kj | ≤ κ3|Kk| ∀h < h0, ∀Kj ∈ T h, ∀k ∈ N (j).(3.45)

Let us make the following hypotheses on the discretization of the initial and bound-
ary data: we assume that there exist two constants κ4 and κ5 such that for all h < h0,

||(u0
j − ϕ(gj))j=1,...,N ||p ≤ κ4h ,(3.46)

|un
k − ψ(gj,k, tn)| ≤ κ5h

2 ∀j , ∀k ∈ N−
b (j) and tn ≤ T .(3.47)

Under the CFL condition λ ≤ 1, for every p ∈ [1,+∞], if there exists Cp such that
the geometric corrector Γ satisfies the estimate

||Γ||p ≤ Cph ,(3.48)

then the error for the explicit upwind finite volume scheme satisfies the first order
estimate

||(un
j − Un

j )j=1,...,N ||p ≤ C ′
ph, tn ≤ T .(3.49)

Remark 4. If we have instead of (3.48) the weaker estimate

||Γ||p ≤ Cph
α ,(3.50)

for some α ∈ ]0, 1], and provided we keep the same hypotheses, then the proof of
Theorem 3.9 leads to the estimate

||(un
j − Un

j )j=1,...,N ||p ≤ C ′
ph

α, tn ≤ T .(3.51)
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Proof. Let us recall (3.9) about the error: αn+1
j = (Lnαn)j−ΔtnE

n
j . We propose

to correct the error α with the corrector γ given by (3.44) as follows:

αn
j = αn

j + γn
j(3.52)

so that

αn+1
j = (Lnαn)j − ΔtnE

n
j ,(3.53)

where the corrected truncation error has the form

En
j = En

j − 1

|Kj |

⎛
⎝ ∑

k∈N+(j)

a · Nj,kγ
n
j +

∑
k∈N−

0 (j)

a · Nj,kγ
n
k

⎞
⎠−

γn+1
j − γn

j

Δtn

= Gn
j + Inj +

1

|Kj |
∑

k∈N−
b (j)

a · Nj,k(u
n
k − u(gj,k, tn)) −

γn+1
j − γn

j

Δtn
.(3.54)

Now the previous bad behavior part in the error is changed to

Inj =
1

|Kj |

⎛
⎝ ∑

k∈N+(j)

a · Nj,k

(
u(gj , tn) − u(gj,k, tn) − γn

j

)

+
∑

k∈N−
0 (j)

a · Nj,k (u(gk, tn) − u(gj,k, tn) − γn
k )

⎞
⎠ .(3.55)

Using the assumptions (3.2) and (3.45) on the mesh and the Taylor expansions

u(gj , tn) − u(gj,k, tn) = (gj − gj,k) · ∇u(gj , tn) + O(h2) ,(3.56)

u(gk, tn) − u(gj,k, tn) = (gk − gj,k) · ∇u(gj , tn) + O(h2) ,(3.57)

we have

Inj =
1

|Kj |

⎛
⎝ ∑

k∈N+(j)

a · Nj,k

(
(gj − gj,k) · ∇u(gj , tn) − γn

j

)

+
∑

k∈N−
0 (j)

a · Nj,k ((gk − gj,k) · ∇u(gj , tn) − γn
k )

⎞
⎠ + O(h) .(3.58)

The definitions (3.24) and (3.44) of the geometric corrector Γ and of γn
j yield that

Inj =
1

|Kj |
∑

k∈N−
0 (j)

a · Nj,k Γk · (∇u(gk, tn) −∇u(gj , tn)) + O(h) .(3.59)

Since Γ satisfies the estimate (3.48), we obtain

Inj = O(h).(3.60)

On the other hand

γn+1
j − γn

j

Δtn
= Γj ·

(
∇∂u

∂t
(gj , tn) + O(Δtn)

)
.(3.61)
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Then, again from the estimate (3.48) on Γ, we have

γn+1
j − γn

j

Δtn
= O(h).(3.62)

Thus using the assumption on the boundary conditions (3.47) and gathering re-
sults (3.22), (3.60), (3.62), we conclude that

En
j = O(h) .(3.63)

According to the estimate (3.14) applied to (3.53) we deduce that

||(un
j − u(gj , tn) + γn

j )j=1,...,N ||p ≤ ||(u0
j − u(gj , 0) + γ0

j )j=1,...,N ||p + O(h) .(3.64)

Now, the assumption on the initial values (3.46) shows that for tn ≤ T ,

||(un
j − u(gj , tn))j=1,...,N ||p = O(h) .(3.65)

Finally the required results (3.49) follows from the Taylor expansion

Un
j = u(gj , tn) + O(h2) .(3.66)

Remark 5. All the results in this section extend to the implicit first order upwind
scheme and to more general meshes where the intersection of two adjacent volumes are
no longer included in a hyperplan but are composed of several (nd − 1)-dimensional
polygons. All these polygons have to be numbered and are distributed according to
the angle they form with vector a as in (3.1). These extensions will be the subject of
a forthcoming article.

Remark 6. In the definition (3.24) of the geometric corrector, the centroid gj of
the volume Kj can be replaced by any point g̃j such that ||gj − g̃j || ≤ C h. Indeed,
this will simply change Γj into Γj + gj − g̃j .

4. On the geometric corrector. We are now going to study from a theoretical
point of view several cases where we have the following estimate on the geometric
corrector: there exists Cp such that the sequence Γ ≡ (Γj)j=1,...,N satisfies

||Γ||p ≤ Cph .(4.1)

4.1. The one-dimensional case. We consider the case nd = 1. Here the
advection vector is a scalar and we assume that a > 0. The finite volume scheme
reads here as

un+1
j − un

j

Δtn
+ a

un
j − un

j−1

Δxj
= 0 .(4.2)

We have Ω = ]A,B[ and the “triangulation” of Ω is done by the control volumes
Kj = ]xj− 1

2
, xj+ 1

2
[ for j = 1, . . . , N . The centroid of Kj is given by gj = xj =

(xj+ 1
2

+ xj− 1
2
)/2 and |Kj | = Δxj = xj+ 1

2
− xj− 1

2
. Equations (3.24) read in this case

as

{
aΓ1 = a (x 3

2
− x1) , j = 1 ,

a (Γj − Γj−1) = a (xj+ 1
2
− xj) − a (xj− 1

2
− xj−1) , j ≥ 2 ,

(4.3)
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whose solution is simply Γj = xj+ 1
2
− xj =

Δxj

2 , j ≥ 1. In this case, the estima-

tion (4.1) is straightforward for all p and therefore Theorem 3.9 applies: the upwind
FVM for the advection equation in one dimension leads to a first order approximation.

Theorem 4.1. We denote h = maxj=1,...,N Δxj and assume that there is a
constant κ3 such that

1

κ3
≤ Δxj

Δxj−1
≤ κ3 ∀j ≥ 2, ∀h < h0 .(4.4)

If there exist two constants κ4 and κ5 such that the discretization of the initial and
boundary data satisfies

||
(
u0
j − ϕ(xj)

)
j=1,...,N

||p ≤ κ4h and |un
0 − ψ(x 1

2
, tn)| ≤ κ5h

2 , tn ≤ T ,(4.5)

then under the CFL condition λ ≡ aΔtn/minj=1,...,N Δxj ≤ 1, for every p ∈ [1,+∞],
the error un

j − Un
j satisfies the first order estimate

||un − Un||p ≤ C ′
ph, tn ≤ T .(4.6)

Let us observe that the corrected error has the form

αn
j = un

j −
(
u(xj , tn) + (xj+ 1

2
− xj) · ∇u(xj , tn)

)
,(4.7)

and this has a clear interpretation: un
j provided by the scheme should be compared

to u(xj+ 1
2
, tn) rather than to u(xj , tn). The upwinding introduces a bias which leads

us to compare un
j with u(xj+ 1

2
, tn). In the case where a < 0 we would have found

that un
j should be compared with u(xj− 1

2
, tn). This has already been observed in Ey-

mard, Gallouët, and Herbin [10] in their study of the one-dimensional linear advection
equation.

Let us now make explicit the operator B in the one-dimensional case. For a > 0
one sees easily that for all X ∈ CN ,

(BX)1 = 0 and (BX)j = Xj−1 for j ≥ 2 ,(4.8)

so that BN = 0 while BN−1 �= 0.

4.2. Back to the nd-dimensional case. In this section, we show by straight-
forward computations that the geometric corrector is of order h for some two-dimen-
sional structured meshes. We first consider the case of meshes composed of parallel-
ograms.

4.2.1. Nonuniform nonorthogonal quadrilateral grid. We consider a qua-
drilateral domain bounded from below by two half-lines, which we use as coordinate
axes and that are uniquely defined such that the advection vector a is oriented from
the exterior to the interior on these lines. Now we assume that the mesh is generated
by half-lines parallel to these axes, as shown in Figure 4.1.

An element of the mesh is described by two indices (m,n), m ≥ 1, along the
x axis, n ≥ 1 along the y axis, and h(m) (respectively, k(n)) denotes the length of
the element (m,n) along x (respectively, y). Here, for instance, sufficient conditions
on the mesh to satisfy (3.2) and (3.45) read as

c1h ≤ h(m) ≤ c2h ∀m ≥ 1 , c3h ≤ k(n) ≤ c4h ∀n ≥ 1 .(4.9)
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’

(m,n)

θ
θ

k(n)

h(m)

i

j

a

Fig. 4.1. Nonuniform nonorthogonal quadrilateral grid.

The corrector for the element (m,n) is therefore denoted by Γm,n, and the for-
mula (3.24) for the geometric corrector suggests using

Gm,n = Γm,n − h(m)

2
�i− k(n)

2
�j,(4.10)

where �i (respectively, �j) denotes the unit vector along the x (respectively, y) axis. If
we denote θ (respectively, θ′) to be the angle of the advection vector a with the x
axis (respectively, the y axis), it is straightforward to obtain that Gm,n satisfy the
following recursive formula:

Gm,n = λm,nGm,n−1 + (1 − λm,n)Gm−1,n ∀m ≥ 1 , ∀n ≥ 1,(4.11)

where

λm,n =
h(m) sin(θ)

h(m)sin(θ) + k(n) sin(θ′)
∀m ≥ 1, ∀n ≥ 1(4.12)

and where by convention we set

Gm,0 = −h(m)

2
�i and G0,n = −h(n)

2
�j .(4.13)

Thus, Gm,n is the barycenter of Gm,n−1 and Gm−1,n, with respective weights
λm,n and 1 − λm,n. Then a recursive computation leads Gm,n to be a barycenter of
Gp,0 with 1 ≤ p ≤ m and of G0,q with 1 ≤ q ≤ n. From this property, we deduce
that the absolute value of both components of Γm,n is smaller than h/2 up to a
multiplicative constant depending on ci, i = 1, . . . , 4, and that the estimate (4.1) is
true for a nonuniform nonorthogonal quadrilateral mesh.

Remark 7. The above result can also be proved for quadrilateral meshes that
satisfy only analogous conditions to (4.4) in each direction.

Remark 8. The above result is easily extended to a mesh composed of paral-
lelepipeds in three dimensions.

4.2.2. Nonuniform nonorthogonal triangular grid. Let us divide each par-
allelogram of the previous mesh into two triangles according to Figure 4.2.
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θ’

(m,n)

(m,n)

+

a

θ

k(n)

h(m)

i

j

–

Fig. 4.2. Nonuniform nonorthogonal triangular grid.

Fig. 4.3. T0: a coarse tri-
angular conformal mesh.

Fig. 4.4. T1: 1-refinement
of T0.

Fig. 4.5. T2: 2-refinement
of T0.

The corrector for the downwind triangle of parallelogram (m,n) is denoted by
Γ+
m,n and the corrector for the upwind one is denoted by Γ−

m,n. Writing the equations
that satisfy the geometric corrector in both triangles and eliminating Γ−

m,n, we get an
equation on Γ+

m,n of the same form as for the mesh composed of parallelogram. We
now introduce

G+
m,n = Γ+

m,n − h(m)

3
�i− k(n)

3
�j(4.14)

and obtain that G+
m,n satisfy the recursive formula (4.11). As for the previous study,

we conclude that Γ+
m,n is of order h. Using the expression of Γ−

m,n, which is the sum
of terms of order h, we prove estimate (4.1) for this type of meshes.

4.3. Asymptotically structured triangular meshes in two dimensions.
The purpose of this section is to prove the estimate (4.1) in the case where a global
refinement technique is applied to a given arbitrary and unstructured triangular con-
formal (in the finite element sense) mesh T0 as the one plotted in Figure 4.3. Given
� ∈ N a positive integer, we denote by T� the mesh obtained from T0 by dividing each
triangle into (�+1)2 congruent triangles, i.e., by introducing � regularly spaced points
on each edge, as can be seen in Figures 4.4 and 4.5.

Theorem 4.2. For every triangular conformal mesh T0 and for every nonvan-
ishing vector a in R2 there exists a constant C(a, T0) such that for every � ∈ N we
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Fig. 4.6. The case of �N+(T ) = 1.
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θ
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1
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Fig. 4.7. The case of �N+(T ) = 2.

have the estimate

||Γ(�)||∞ ≤ C(a, T0)

� + 1
,(4.15)

where Γ(�) denotes the geometric corrector sequence on T�.
Denoting by h(�) = maxKj∈T�

hj > 0, we have by construction h(�) = h(0)

�+1 , and

since h(0) depends only on T0, we deduce from (4.15) the proof of the estimate (4.1)
in this case.

Corollary 4.3. For every triangular conformal mesh T0 of a polygonal domain
Ω and for every nonvanishing vector a in R2, there exists a constant C(a, T0) such
that for every � ∈ N and for every real number p ∈ [1,∞] we have the estimate

||Γ(�)||p ≤ C(a, T0)|Ω|1/p max
Kj∈T�

hj .(4.16)

Actually we are going to show a stronger result than Theorem 4.2. To state this
result, we introduce the notation N−(Ω) = {j such that Kj meets ∂Ω− according a
set of nd− 1 positive measure} and consider instead of (3.24)

∑
k∈N+(j)

a · Nj,kΓj +
∑

k∈N−
0 (j)

a · Nj,kΓk

=
∑

k∈N+(j)

a · Nj,k(gj,k − gj) +
∑

k∈N−
0 (j)

a · Nj,k(gj,k − gk) + εj ,

(4.17)

where εj vanishes for j not in N−(Ω).
Theorem 4.4. For every triangular conformal mesh T0 and for every nonvan-

ishing vector a in R2, we consider on T� a sequence εj =
δj

(�+1)2 , where the sequence

δj of vectors in R2 is uniformly bounded by a constant C0(a, T0) and vanishes for j
not in N−(Ω). Then there exists a constant C(a, T0) such that for every � ∈ N we
have the estimate (4.15), where Γ(�) denotes the solution to (4.17) on T�.

The proof of Theorem 4.4 proceeds by induction on M , the number of elements
of T0.

4.3.1. The case where T0 has one element. In this case Ω is composed of a
single triangle T and T0 = T . Besides the simpler case where the vector a is tangent
to one of the edges of T , there are two cases that are presented in Figures 4.6 and 4.7,
where θ1 �= 0 and θ2 �= 0: either 	N+(T ) = 1 or 	N+(T ) = 2. We index, as shown in
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Figures 4.8 and 4.9, the (�+1)2 triangles in T�, for � ≥ 1, by a triplet (n,m, ε), where
n and m are natural numbers satisfying 1 ≤ n ≤ �+ 1, 1 ≤ m ≤ �+ 1, n+m ≤ �+ 2,
and ε = ±. When ε = −, we have 	N+(T ε

m,n) = 1, while when ε = +, we have
	N+(T ε

m,n) = 2. We say that the triangle T ε
m,n is interior when it has no edge on the

boundary of T .
The case where 	N+(T ) = 1.
• All the subtriangles T+

m,n (with 1 ≤ m ≤ �, 1 ≤ n ≤ �, and m+n ≤ �+1) are
interior ones. Hence if we adopt the notation explained in Figure 4.10, then
we can write (4.17) in T+

m,n as follows:

a · N1Γ
+
m,n + a · N2Γ

+
m,n + a · N3Γ

−
m,n(4.18)

= a · N1

(
B + C

2
− g+

m,n

)
+ a · N2

(
C + A

2
− g+

m,n

)

+ a · N3

(
A + B

2
− g−m,n

)
.

If c1, c2, θ1 and θ2 are defined as in Figure 4.6, since a·N1+a·N2 = −a·N3 =
c1 sin θ1+c2 sin θ2

l+1 and since the right-hand side of (4.18) is equal to ζ1

(l+1)2 , where

ζ1 is a vector which depends only on T and a, we deduce that

Γ+
m,n − Γ−

m,n =
1

� + 1

ζ1

c1 sin θ1 + c2 sin θ2
for 1 ≤ m,n ≤ � , m + n ≤ � + 1 .

(4.19)
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• Now let us consider the interior triangles T+
m,n for which we have 2 ≤ m ≤ �,

2 ≤ n ≤ �. Then the four triangles T+
m,n, T−

m,n, T+
m−1,n, T+

m,n−1 are also
interior triangles and we can write (4.17) in the triangle T−

m,n as

a · N4Γ
+
m−1,n + a · N5Γ

+
m,n−1 − a · N3Γ

−
m,n(4.20)

= a · N4

(
O + B

2
− g+

m−1,n

)
+ a · N5

(
A + O

2
− g+

m,n−1

)

− a · N3

(
A + B

2
− g−m,n

)
.

By summing up (4.18) and (4.20), since their right-hand sides are opposite,
we obtain

Γ+
m,n =

c1 sin θ1Γ
+
m−1,n + c2 sin θ2Γ

+
m,n−1

c1 sin θ1 + c2 sin θ2
.(4.21)

• Let us now discuss the case where T−
m,n has at least one edge on the boundary

of T . In this case the only change in (4.18) and (4.20) is that corresponding
terms in the right- and left-hand sides are not present anymore when a triangle
T ε
p,q does not exist. Let us give these cases in full detail.

– The case T−
1,1. The analogue of (4.20) reads as

−a · N3Γ
−
1,1 = −a · N3

(
A + B

2
− g−1,1

)
+

δ−1,1
(� + 1)2

.(4.22)

Hence from (4.22) and (4.19)

Γ+
1,1 =

ζ2

� + 1
,(4.23)

where ζ2 is a vector which depends only on T and a.
– The case T−

m,1 , 2 ≤ m ≤ �. Equations (4.18), (4.20), and (4.21) are

still valid in this case if we set Γ+
m,0 ≡ B+C

2 − g+
m,1 +

δ−m,1

(�+1)c2 sin θ2
. Let

us observe that this terms behaves like

Γ+
m,0 =

ζ3

� + 1
,(4.24)

where ζ3 is a vector which depends only on T and a.
– The case T−

1,n , 2 ≤ n ≤ �. Here again (4.18), (4.20), and (4.21) are still

valid in this case if we set Γ+
0,n ≡ A+C

2 − g+
1,n +

δ−1,n
(�+1)c1 sin θ1

and observe
that

Γ+
0,n =

ζ4

� + 1
,(4.25)

where ζ4 is a vector which depends only on T and a.
– The case T−

m,n with m + n = � + 2. Here we can only write (4.20), and
we obtain

Γ−
m,n =

c1 sin θ1Γ
+
m−1,n + c2 sin θ2Γ

+
m,n−1

c1 sin θ1 + c2 sin θ2
+

ζ5

� + 1
,(4.26)

where ζ5 is a vector which depends only on T and a and where we set

Γ+
�+1,0 ≡ δ−�+1,1

(�+1)c2 sin θ2
and Γ+

0,�+1 ≡ δ−1,�+1

(�+1)c1 sin θ1
.
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The barycenter structure of formula (4.21) is the key point and permits us to conclude.
We find by induction on (m,n) the estimation on Γ+

m,n and then, by relation (4.19),
the estimation on Γ−

m,n where the constant C(a, T ) depends only on T and a:

|Γε
m,n| ≤

C(a, T )

� + 1
.(4.27)

The case where 	N+(T ) = 2. This case is slightly simpler because all the sub-
triangles T−

m,n are interior ones. Hence if we adopt the notation explained in Fig-
ure 4.11, for every (m,n) with 1 ≤ n ≤ �, 1 ≤ m ≤ �, n + m ≤ � + 1, equation (4.17)
in T−

m,n reads as

(4.28)

a · N4Γ
+
m+1,n + a · N5Γ

+
m,n+1 − a · N3Γ

−
m,n

= a ·N4

(
O + B

2
− g+

m+1,n

)
+ a ·N5

(
A + O

2
− g+

m,n+1

)
− a ·N3

(
A + B

2
− g−m,n

)
.

Concerning the subtriangles T+
m,n, we have two cases.

• In the first one, 1 ≤ n ≤ �, 1 ≤ m ≤ �, m + n ≤ � + 1. Then (4.17) in T+
m,n

reads again as (4.18), and (4.19) is still valid. Combining (4.18) with (4.28),
formula (4.21) is now replaced by

Γ+
m,n =

c1 sin θ1Γ
+
m+1,n + c2 sin θ2Γ

+
m,n+1

c1 sin θ1 + c2 sin θ2
.(4.29)

• In the second one, m + n = � + 2, and then (4.17) in T+
m,n reads as

(4.30)

a · N1Γ
+
m,n + a · N2Γ

+
m,n

= a · N1

(
B + C

2
− g+

m,n

)
+ a · N2

(
C + A

2
− g+

m,n

)
+

δ+
m,n

(� + 1)2
.

Hence we can say that

Γ+
m,n =

ζ

� + 1
for m + n = � + 2 ,(4.31)

where ζ is a vector which depends only on T and a.
In conclusion, we are able to show first by induction on p = � + 3 −m− n that

|Γ+
m,n| ≤

|ζ|
� + 1

.(4.32)

Indeed, for p = 1 this assertion follows from (4.31). Assuming that (4.32) holds true
for p, we take (m,n) with m+ n = �+ 2− p = �+ 3− (p+ 1) and write (4.29). Since
m + n + 1 = � + 3 − p we can apply (4.32):

|Γ+
m+1,n| ≤

|ζ|
� + 1

, |Γ+
m,n+1| ≤

|ζ|
� + 1

.(4.33)

So that thanks to (4.29), (4.32) holds true for p+ 1. Now that (4.32) is shown, using
(4.19) we conclude that (4.27) holds true in the case 	N+(T ) = 2.

This ends the proof of Theorem 4.4 in the case where T0 has only one element.
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4.3.2. The case where T0 has two elements. In this case, the domain Ω is
the union of two triangles which share an edge. If a is tangent to this edge, then
sequences of geometric correctors on one triangle are independent from sequences
defined on the other one. Hence Theorem 4.4 follows in this case. Now when a is not
tangent to this edge we denote these two triangles by T1 and T2 in order that a points
from T1 into T2. We denote by (Γ(�)) the solution to (4.17) on T� the �-refinement of
T0 = T1 ∪ T2. We also denote by T�,1 and T�,2 the �-refinements of T0,1 = T1 and of
T0,2 = T2. We are going to analyze subsequences of (Γ(�)) associated to the triangle
T1 and the triangle T2.

The first key observation is that since on T1 ∩ T2 all the outer normals in sub-
triangles which are in T1 form an acute angle with a, the subsequence of (Γ(�)) whose
indices correspond to triangles which are in T1 satisfies exactly (4.17) when it is
written only for the refinement T�,1. But according to Theorem 3.8 we know that
this solution is unique, and therefore this subsequence is equal to the sequence of
geometric correctors defined on T�,1. We already proved that Theorem 4.4 applies to
T1 and deduce that

||Γ(�)
j || ≤ C1(a, T0)

� + 1
∀j corresponding to a subtriangle in T1 .(4.34)

The next step is to estimate the remaining geometric correctors that correspond
to subtriangles in T2. By inspection of (4.17) when it is written for T�,2, one notices
two facts:

1. If one considers a subtriangle which is in T2 but which has no edge on T1∩T2,
then the corrector of this subtriangle satisfies the same equation in both T�,2
and T�.

2. However, for a subtriangle j which is in T2 and which has an edge on T1 ∩T2,
we do not have the same equation since one term on each side of the equation
is missing. But the difference is equal to

a · Nj,j1

(
Γ

(�),1
j1

+ gj,j1 − gj1

)
,(4.35)

where we denote by j1 the subtriangle in T1 which shares an edge with the
subtriangle j.

From (4.34), we observe that these differences slightly modify the right-hand side of
equations associated to subtriangles of T2 that share a boundary with ∂T−

2 by adding

a term of the form δ(a,T0)
(�+1)2 . Applying Theorem 4.4 to T2, we deduce that

||Γ(�)
j || ≤ C2(a, T0)

� + 1
∀j corresponding to a subtriangle in T2 .(4.36)

Then (4.34) and (4.36) allow us to conclude the proof of Theorem 4.4 in this case.

4.3.3. Proof of Theorem 4.4. Let M ≥ 1 be given. We assume that this result
is true for all triangulation T0 with a number of elements less than or equal to M .
Let T0 be a triangulation with M + 1 elements. First we are going to decompose this
triangulation into two parts separated by a broken line made with consecutive edges
having the same orientation with respect to a (see Figure 4.12). Then we will finish
the proof by simply observing that it follows by extending the argument given in the
case M = 2 in the previous section.

We prove the decomposition in two parts for a more general triangulation.
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Fig. 4.12. Broken line made with consecutive oriented edges (ni ≡ Ni/||Ni||).

Lemma 4.5. Let T0 be a conformal mesh made with strictly convex polygons; i.e.,
the interior angle at vertices are strictly less than π. We assume that there is at least
one interior edge not parallel to the vector a. There exists a broken line made with
consecutive oriented edges A1 = (SI , S2), . . . , Ai = (Si, Si+1), . . . , AK = (SK , SF )
which links two distinct vertices on the boundary SI and SF and such that Ni · a < 0
for all i = 1, . . . ,K, where the angle (Ai,Ni) is equal to π

2 .
Proof. First let us choose an arbitrary vertex on the boundary that is a vertex of

an interior edge A1 = (SI , S2). We assume that the normal N1 to A1 such that the
angle (A1,N1) is equal to π

2 satisfies N1 · a < 0. If not, we take a = −a and switch
the role of SI and SF .

If S2 is a vertex on the boundary, then we conclude with SF = S2. If not, let
us denote by P2 the half-plane defined by the straight line (S2,a) (dashed line in
Figure 4.12) and that does not contain the edge A1. Since S2 is an interior vertex
and since interior angles of volumes sharing this vertex are strictly less than π, there
is necessarily an edge A2 = (S2, S3) strictly in the half-plane P2. From the definition
of P2, we have N2 ·a < 0, where N2 is the normal to A2 such that the angle (A2,N2)
is equal to π

2 .
Now, by induction we can determine a broken line of oriented edges A1, . . . , Ai

such that N1 · a < 0, . . . ,Ni · a < 0 with the same convention for the orientation of
Ni. Since the distance of SI to the line (Si+1,a) is strictly superior to the distance
of SI to the line (Si,a), there exists K such SK+1 ≡ SF is on the boundary.

Thus we can realize Ω as the union of two adjacent polygonal sets Ω1 and Ω2 where
a points from Ω1 into Ω2. Here again, the subsequence of geometric correctors on Ω
whose indices correspond to triangles in Ω1 is identical to the sequence of geometric
correctors only defined in Ω1. Since the coarse triangulation of Ω1 has less than M
elements, we can apply Theorem 4.4. For each subtriangle j of Ω2 that shares an edge
with the broken line defined in Lemma 4.5, the equation that satisfies the corrector
in Ω and the equation that satisfies the corrector in Ω2 differ from a combination of
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terms like (4.35), which are of the form
δj

(�+1)2 , and the δj are uniformly bounded

by a constant which depends only on a and T0. Then, since Ω2 has less than M
elements, we can again apply Theorem 4.4 and therefore show this result for M + 1.
This concludes the proof of order h convergence of the upwind scheme for a uniform
refinement of an arbitrary coarse conformal triangular mesh.

5. Numerical estimates for independent refinements. Since our analysis
developed in section 3 is valid for arbitrary types of meshes, in order to validate from
a numerical point of view the estimate (4.1), we perform some tests with a sequence
of independent unstructured meshes where the mesh size decreases. In the present
simulation, if we take two consecutive grids, one is not the refinement of the other
one (by dividing, for instance, each triangle into four congruent subtriangles), but the
mesh size is reduced. We consider a dodecagon with several meshes composed from
274 triangles to 286,514 triangles computed with the software Gmsh [12], developed
by Jean-François Remacle and Christophe Geuzaine. In Figure 5.1, the pictures cor-
respond to the three independent meshes of the sequence. We compute the corrector
as solution of (3.24) for two advection vectors defined by the angle θ with the x axis:
θ = 0 and θ = π/4.

In Figures 5.2, 5.3, and 5.4 the L1 and L∞ estimates of the geometric corrector and
the L1 norm of Δ defined by (3.29) are plotted versus the mesh size. The straight
lines are the least-squares fits to the point and the slopes are 0.994 (θ = 0) and
0.988 (θ = π/4) for the L1 norm of the corrector. We find 0.831 (θ = 0) and 0.564
(θ = π/4) for the L∞ norm of the corrector and 0.969 (θ = 0) and 0.954 (θ = π/4) for
‖Δ‖1. The L1 norm of the geometric corrector and the norm of Δ behaves like O(h).
Concerning the L∞ norm of Γ, we have an unexpected behavior when the angle θ that
defines the advection vector a is equal to π/4 (as shown in Figure 5.2), i.e., when the
advection vector is parallel to two sides of the domain. Here, asymptotically we have
‖Γ‖∞ = O(h1/2), and although the right-hand side of (3.30) tends to zero with h in
all cases, we observe that the estimation of the norm of the solution of this equation
depends on the relative position of the advection vector with the boundary.

This behavior is similar to the loss of accuracy proved in Peterson [23]. More
precisely, for the mesh and the subtle alignment with the direction of transport pro-
posed by Peterson, we are able to prove that the L∞ norm of the geometric corrector
behaves like O(h1/2) and the L1 norm is of order one. The technical proof is quite
long and out of the scope of this paper and will be published elsewhere.

Fig. 5.1. Some terms of the sequence of independent meshes of the dodecagon domain.
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6. Conclusion. For linear advection on bounded domain, we introduce the ge-
ometric corrector that depends only on the mesh and the velocity a. We first prove
a general result that links the convergence of the finite volume scheme and the geo-
metric corrector estimates. Then an analytical study of these correctors in the case
of uniformly refined triangular meshes in two dimensions leads to the proof of the one
order of convergence for the finite volume scheme applied to the linear advection with
smooth solution and constant velocity. We plan to address the variable velocity case
in a future work.
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(2001), pp. 347–365] we proposed algorithm REGINN, an inexact Newton iteration for the stable solu-
tion of nonlinear ill-posed problems. REGINN consists of two components: the outer iteration, which
is a Newton iteration stopped by the discrepancy principle, and an inner iteration, which computes
the Newton correction by solving the linearized system. The convergence analysis presented in both
papers covers virtually any linear regularization method as inner iteration, especially Landweber iter-
ation, ν-methods, and Tikhonov–Phillips regularization. In the present paper we prove convergence
rates for REGINN when the conjugate gradient method, which is nonlinear, serves as inner iteration.
Thereby we add to a convergence analysis of Hanke, who had previously investigated REGINN furnished
with the conjugate gradient method [Numer. Funct. Anal. Optim., 18 (1997), pp. 971–993]. By nu-
merical experiments we illustrate that the conjugate gradient method outperforms the ν-method as
inner iteration.
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1. Introduction. Our goal is to find a stable approximate solution of the non-
linear ill-posed problem

F (x) = yδ,(1.1)

where F : D(F ) ⊂ X → Y operates between the Hilbert spaces X and Y . Here,
D(F ) denotes the domain of definition of F , and yδ is a noisy version of the exact but
unknown data y = F (x+) satisfying

‖y − yδ‖Y ≤ δ.(1.2)

The nonnegative noise level δ is assumed to be known.

In [10, 11] we proposed algorithm REGINN for solving (1.1). As a Newton-type al-
gorithm, REGINN updates the actual iterate xn by adding a correction step sδn obtained
from solving a linearization of (1.1):

xn+1 = xn + sδn, n ∈ N0,

with an initial guess x0. For obvious reasons we like to have sδn as close as possible
to the exact Newton step

se
n = x+ − xn.
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Assuming F to be Fréchet differentiable with derivative F ′ : D(F ) → L(X,Y ), the
exact Newton step satisfies the linear equation

F ′(xn)se
n = y − F (xn) − E(x+, xn) =: bn,(1.3)

where E(v, w) := F (v) − F (w) − F ′(w)(v − w) is the linearization error.
Unfortunately, the above right-hand side bn is not available; however, we know a

perturbed version

bεn := yδ − F (xn) with ‖bn − bεn‖Y ≤ δ + ‖E(x+, xn)‖Y .

Therefore, we determine the correction step sδn as a solution of

F ′(xn)s = bεn.(1.4)

Here, we have to take into account that the ill-posedness of (1.1) is passed on to (1.4).
For instance, if F is completely continuous, then F ′(xn) is a compact operator (see,
e.g., Zeidler [13, Proposition 7.33]); hence, (1.4) is ill-posed.

Depending on how sδn is stably obtained from (1.4), different methods arise, for
instance, the nonlinear Landweber method (Hanke, Neubauer, and Scherzer [6]), the
Gauß–Newton method (see, e.g., Bakushinskii [1] and Kaltenbacher [7]), and the
Levenberg–Marquardt scheme (Hanke [4]).

In the next few lines we recall briefly how REGINN works. First, a regularization
scheme is applied to the linear system (1.4), obtaining

sn,r := gr(A
∗
nAn)A∗

nb
ε
n,

where An = F ′(xn) and gr : [0, ‖An‖2] → R is the piecewise continuous filter function
of the chosen regularization method. The parameter r ∈ N is called the regularization
parameter. For instance, the filter functions belonging to the Tikhonov–Phillips regu-
larization, the Landweber iteration, and the ν-methods are explicitly known; see, e.g.,
[2, 12], where more examples can be found. The filter functions gr of both latter ex-
amples are polynomials of degree r−1. The conjugate gradients method (cg-method)
can also be described by filter polynomials gr of degree r − 1, which, however, do
depend on the right-hand side bεn: gr(·) = gr(·, bεn). Therefore, the cg-method is a
nonlinear scheme in contrast to the other mentioned examples.

Now we have to select a regularization parameter rn. In REGINN rn is picked as
the smallest number at which the relative (linear) residual is smaller than a given
tolerance μn ∈ ]0, 1], that is,

‖Ansn,rn − bεn‖Y < μn ‖bεn‖Y ≤ ‖Ansn,i − bεn‖Y , i = 1, . . . , rn − 1.(1.5)

The tolerances should not be too small to guarantee existence of rn; see Lemma 2.1
below. A meaningful strategy to adapt the μn’s dynamically was proposed in [10].
Setting sδn := sn,rn we end up with the Newton iteration

xn+1 = xn + grn(A∗
nAn)A∗

nb
ε
n, n ∈ N0,

which has to be stopped in time to avoid noise amplification. A well-established
stopping rule is the discrepancy principle: Choose R > 0 and accept iterate xN as an
approximate solution of (1.1) that fulfills

‖yδ − F (xN )‖Y ≤ Rδ < ‖yδ − F (xk)‖Y , k = 0, . . . , N − 1.(1.6)
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REGINN(x,R, {μn})
n := 0; x0 := x;

while ‖F (xn) − yδ‖Y > Rδ do

{ i := 0;

repeat

i := i + 1;

sn,i := gi
(
F ′(xn)∗F ′(xn)

)
F ′(xn)∗

(
yδ − F (xn)

)
;

until ‖F ′(xn) sn,i + F (xn) − yδ‖Y < μn ‖F (xn) − yδ‖Y
xn+1 := xn + sn,i;

n := n + 1;

}
x := xn;

Fig. 1.1. Algorithmic realization of REGINN ( REGularization based on INexact Newton iterations).

For an algorithmic realization of REGINN, see Figure 1.1. The inner repeat-loop
provides the Newton update sn,rn and the outer while-loop implements the Newton
iteration stopped by the discrepancy principle.

In [11] we were able to verify (under reasonable assumptions) that REGINN with a
linear regularization scheme {gr}r∈N is well defined and indeed terminates. Moreover,
we proved the existence of a positive κmin < 1 such that the source condition1

x+ − x0 ∈ R
(∣∣F ′(x+)

∣∣κ) for a κ ∈ ]κmin, 1](1.7)

implies the suboptimal convergence rate2

‖x+ − xN(δ)‖X = O
(
δ (κ−κmin)/(1+κ)

)
as δ → 0.(1.8)

In the present paper we will improve upon the convergence results for REGINN: We will
verify that (1.7) implies (1.8) even when the cg-method serves as inner iteration of
REGINN. Thus we supplement a convergence analysis of Hanke [5], who had previously
investigated REGINN with the cg-method as inner iteration: Under a slightly weaker
version of our general assumption on the nonlinearity (see (2.1) below), Hanke proved
convergence of {xN(δ)}δ>0 to a set of solutions of F (x) = y as δ → 0.

This paper is structured as follows. In the next two sections we compile facts
about REGINN and the cg-method which we will need later on in our analysis. In
section 4 we show that REGINN is well defined under (1.7) and terminates with an ap-
proximation to x+. Then the regularization property (1.8) will be verified (section 5).
Finally, we present numerical experiments for a parameter identification model prob-
lem and end with concluding remarks in section 7. Some lengthy and technical proofs
from sections 3 and 4 are shifted to Appendices A and B, respectively.

1By R(B) we denote the range of the operator B, and |B| is the square root of B∗B.
2For linear inverse problems Ax = yδ the regularization error cannot decrease faster than

O(δκ/(1+κ)) as δ → 0 under the source condition x+ − x0 ∈ R(|A|κ) in general; see, e.g., [2,
section 3.2] or [12, Kapitel 3.2.3]. Regularization schemes attaining the maximal order are therefore
called order-optimal.
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2. General assumptions and termination of the repeat-loop. Throughout
the paper we assume F : D(F ) ⊂ X → Y to be continuously Fréchet differentiable
with derivative F ′ : D(F ) → L(X,Y ). Moreover, let x+ ∈ D(F ), y = F (x+), yδ ∈ Y
with ‖y − yδ‖Y ≤ δ, A = F ′(x+), and An = F (xn).

Our analysis relies heavily on the local factorization (2.1) of F ′: Let Q : X×X →
L(X,Y ) be a mapping such that

F ′(v) = Q(v, w)F ′(w) with ‖I −Q(v, w)‖ ≤ CQ ‖v − w‖X(2.1)

for all v, w ∈ Bρ(x
+) ⊂ D(F ), the open ball of radius ρ about x+. Here, CQ is a pos-

itive constant. For a discussion of the nontrivial factorization (2.1) and for examples
of meaningful operators satisfying (2.1), we refer to [6, 10, 11], [12, Kapitel 7.3], and
the literature cited therein.

Let CQ ρ < 1. Then (2.1) gives

‖F (v) − F (w)‖Y ≥ (1 − CQ ρ) ‖F ′(w) (v − w)‖Y(2.2)

as well as

‖E(v, w)‖Y ≤ ω ‖F (v) − F (w)‖Y for all v, w ∈ Bρ(x
+),(2.3)

where ω := CQ ρ/(1 − CQ ρ); see [10, section 3] or [12, Lemma 7.3.9]. Observe that
ω < 1 for CQ ρ < 1/2.

In our subsequent analysis we will frequently use the following estimate: For
x, y ∈ Bρ(x

+) and CQρ < 1/2 we have

‖|F ′(x)|−κ |F ′(y)|κ‖ ≤ (1 − 2CQρ)
−κ =: CK,κ for all κ ∈ [0, 1],(2.4)

which is due to Kaltenbacher [7, Lemma 2.2]; see also [12, Lemma 7.5.16].
Using (2.3) we will bound the data error ‖bεn − bn‖Y in terms of δ, ω, and the

nonlinear defect

dn := ‖yδ − F (xn)‖Y = ‖bεn‖Y .

For xn ∈ Bρ(x
+) we find

‖bεn − bn‖Y ≤ (1 + ω) δ + ω dn := ε = ε(xn, δ).

We recall a result from [10] which gives conditions on μn to stop the repeat-loop.
Lemma 2.1. Let {gr}r∈N be the filter function of a linear or nonlinear regu-

larization scheme for which the discrepancy principle returns a well-defined stopping
index; that is, for τ > 1 there exists a smallest index rS with ‖Ansn,rS − bεn‖Y ≤ τ ε.
Further let (2.1) hold true with CQ ρ < 1/2 and assume xn ∈ Bρ(x

+), where n < N .
If R ≥ (1 +ω)/(1−ω), then the repeat-loop of algorithm REGINN terminates for any

μn ∈
]
ω +

(1 + ω) δ

dn
, 1

]
.

The lower bound on R in Lemma 2.1 guarantees that the interval for μn is non-
empty. Since bn ∈ R(An) (see (1.3)), all regularization methods mentioned in sec-
tion 1 (Tikhonov–Phillips, Landweber, ν-method, cg-method) satisfy the requirement
of Lemma 2.1; see, e.g., Engl, Hanke, and Neubauer [2, Chapter 4.3] or [12, Kapi-
tel 3.4].
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3. The method of conjugate gradients: Preliminaries. Here we recall some
basic facts of the cg-method which we will need later in the paper. More details as
well as all proofs can be found in, e.g., Engl, Hanke, and Neubauer [2, Chapter 7] or
[12, Kapitel 5.3].

Let T ∈ L(X,Y ) and η ∈ Y . The cg-method is an iteration for solving the normal
equation T ∗T ζ = T ∗η. Starting with ξ0 ∈ X the cg-method produces a sequence
{ξm}m∈N0

with the minimization property

‖η − Tξm‖Y = min
{
‖η − Tξ‖Y

∣∣ ξ ∈ X, ξ − ξ0 ∈ Um

}
, m ≥ 1,

where Um is the mth Krylov space,

Um := span
{
T ∗r0, (T ∗T )T ∗r0, (T ∗T )2T ∗r0, . . . , (T ∗T )m−1T ∗r0

}
with r0 := η − Tξ0. Therefore, ξm, m ≥ 1, can be expressed by

ξm = ξ0 + qm−1(T
∗T )T ∗(η − Tξ0)

with a polynomial qm−1 of degree m − 1. Closely related to qm−1 is the residual
polynomial pm(λ) = 1 − λ qm−1(λ) of degree m satisfying

η − Tξm = pm(TT ∗)(η − Tξ0).

Both polynomials depend on η: qm−1(·) = qm−1(·,η) and pm(·) = pm(·,η). As soon
as T ∗(η − Tξk) = 0 holds true, the cg-sequence is finite, that is, ξm = ξk for all
m ≥ k. Accordingly,

mT := sup{m ∈ N |T ∗(η − Tξm−1) �= 0}

is called the ultimate termination index of the cg-method (mT = ∞ is allowed and
the supremum of the empty set is understood as zero).

The residual polynomials are orthogonal with respect to the inner product 〈ϕ,ψ〉Π
:= 〈ϕ(T ∗T )T ∗η, ψ(T ∗T )T ∗η〉X , which is defined on the space of all polynomials:

〈pi, pj〉Π = 0 for all 1 ≤ i, j ≤ mT with i �= j.

The orthogonality of {pm}1≤m≤mT
has several consequences. The residual polyno-

mials satisfy a three-term recursion which can be used to compute ξm iteratively
from ξm−1 in a rather cheap way; see Figure 3.1. Moreover, pm has m simple roots
λm,j ∈ ]0, ‖T‖2[ , j = 1, . . . ,m, which we order by

0 < λm,1 < λm,2 < · · · < λm,m < ‖A‖2.

Because of its normalization pm(0) = 1, pm decomposes into the following linear
factors:

pm(λ) =

m∏
j=1

(1 − λ/λm,j) =

m∏
j=1

λm,j − λ

λm,j
.(3.1)

Although we know neither qm−1 nor pm explicitly, some useful information about
both polynomials is available.

Lemma 3.1. For 0 < Λ ≤ λm,1 and 1 ≤ m ≤ mT, we have that

sup
0≤λ≤Λ

|qm−1(λ,η)| = qm−1(0,η) = −p′m(0,η) =

m∑
j=1

λ−1
m,j .
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cg-algorithm for T ∈ L(X,Y ), η ∈ Y and starting guess ξ0 ∈ X.

r0 := η − Tξ0; p1 = a0 := T ∗r0;

m := 1;

while (am−1 �= 0)
{ qm := Tpm;

αm := ‖am−1‖2
X/‖qm‖2

Y ;

ξm := ξm−1 + αm pm;

rm := rm−1 − αm qm;

am := T ∗rm;

βm := ‖am‖2
X/‖am−1‖2

X ;

pm+1 := am + βm pm;

m := m + 1; }

Fig. 3.1. Conjugate gradients algorithm.

The next result is proved in Appendix A and will be used twice in our convergence
analysis of REGINN with the cg-method as inner iteration.

Lemma 3.2. Let {ξm}0≤m≤mT , ξ0 = 0, be the cg-sequence with respect to T ∈
L(X,Y ) and η ∈ Y . Further, let ξ be in D(|T |−μ) for a μ ∈ [0, 1]. Then, for any
ν ∈ [0, μ], we have that

‖|T |−ν(ξm − ξ)‖X ≤ qm−1(0,η)(ν+1)/2
(
‖T (ξm − ξ)‖Y + ‖η − Tξ‖Y

)
+ qm−1(0,η)(ν−μ)/2 ‖|T |−μξ‖X .

(3.2)

4. Termination of REGINN with conjugate gradients. The convergence of
REGINN will be established by bounding the Newton corrections sn,rn sharply enough.
Indeed, we will show that the Newton corrections decrease geometrically in n. Thus,
the Newton iterates stay in a ball about x0.

Recall the assumptions and notation from section 2 and let the cg-method be the
inner iteration of REGINN exclusively throughout this section.

Lemma 4.1. Suppose sn,rn is well defined. Then

‖sn,rn‖X < 3 qrn−1(0, b
ε
n)1/2 dn.(4.1)

Proof. We apply Lemma 3.2 with T = An, μ = ν = 0, ξ = 0, η = bεn, ξm =
sn,rn = qrn−1(A

∗
nA, bεn)A∗

nb
ε
n, that is, m = rn. Thus,

‖sn,rn‖X ≤ qrn−1(0, b
ε
n)1/2

(
‖Ansn,rn‖Y + ‖bεn‖Y

)
.

We are done by ‖Ansn,rn‖Y ≤ ‖Ansn,rn − bεn‖Y + ‖bεn‖Y ≤ (μn + 1) ‖bεn‖Y .
In the following we bound each of the factors on the right-hand side of (4.1).

From [10, Lemma 4.1] (see also [12, Lemma 7.5.9]) we already know that the nonlinear
residuals dn decrease linearly.

Lemma 4.2. Suppose that the nth iterate xn of REGINN is well defined and lies in
Bρ(x

+). Further, let (2.3) hold true with

ω < η/(2 + η) for one η < 1.3

3This restriction is satisfied, for instance, if (2.1) holds true and ρ is small enough.
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If, moreover,

R ≥ 1 + ω

η − (2 + η)ω
and μn ∈

]
ω +

(1 + ω) δ

dn
, η − (1 + η)ω

]

as well as xn+1 ∈ Bρ(x
+), then

dn+1

dn
=

‖yδ − F (xn+1)‖Y
‖yδ − F (xn)‖Y

<
μn + ω

1 − ω
≤ η.

4.1. Bounding qrn−1(0, bε
n). We assume the existence of w ∈ X and κ ∈ [0, 1]

such that

se
0 = x+ − x0 = |A|κw,(4.2)

where A = F ′(x+). To formulate the bound for qrk−1(0, b
ε
k) we introduce the ratio

τk := μk dk/ε(xk, δ),(4.3)

which is greater than 1 under the hypotheses of Lemma 2.1.

Lemma 4.3. Let (2.1) hold true with CQρ < 1/2 (thus, ω < 1 in (2.3)) and
assume that the first n < N iterates {x1, . . . , xn} of REGINN exist and stay in Bρ(x

+).
Further, let x0 ∈ Bρ(x

+) satisfy the source condition (4.2).

Then se
k = x+ − xk ∈ D(|Ak|−κ), 0 ≤ k ≤ n. Moreover, if R ≥ (1 + ω)/(1 − ω)

and if μk ∈ ]ω + (1 + ω)δ/dk, 1], 0 ≤ k ≤ n, then for any Θ ∈ ]0, 1[ such that
Θ min{τ0, . . . , τn} > 1 we have

qrk−1(0, b
ε
k)

(κ+1)/2 ≤ aΘ

Θ τk − 1
ε(xk, δ)

−1 ‖|Ak|−κse
k‖X , 0 ≤ k ≤ n,

where aΘ is a positive constant depending only on Θ and κ.

Proof. See Appendix B for the proof.

Let us summarize what we found so far. Starting from (4.1) we are able to bound
the Newton steps under the assumptions of Lemma 4.3 by

‖sk,rk‖X < 3
( aΘ

Θ τk − 1

)1/(κ+1)

ε(xk, δ)
−1/(κ+1) ‖|Ak|−κse

k‖
1/(κ+1)
X dk.(4.4)

4.2. Bounding ‖|Ak|−κse
k‖X . Before we are able to establish termination of

REGINN by (4.4), we have to know how ‖|Ak|−κse
k‖X behaves in k. Since se

k = x+ −
xk = x+ − xk−1 − sk−1,rk−1

= se
k−1 − sk−1,rk−1

we conclude that

‖|Ak|−κse
k‖X = ‖|Ak|−κ(se

k−1 − sk−1,rk−1
)‖X

(2.4)

≤ CK,κ ‖|Ak−1|−κ(se
k−1 − sk−1,rk−1

)‖X .
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We estimate the norm on the right by applying Lemma 3.2 with T = Ak−1, μ = ν = κ,
ξ = se

k−1 η = bεk−1, and ξm = sk−1,rk−1
. Hence,

‖|Ak|−κse
k‖X ≤ CK,κ qrk−1−1(0, b

ε
k−1)

(κ+1)/2
(
‖Ak−1sk−1,rk−1

− bk−1‖Y
+‖bεk−1 − bk−1‖Y

)
+ ‖|Ak−1|−κse

k−1‖X

≤ CK,κ qrk−1−1(0, b
ε
k−1)

(κ+1)/2
(

μk−1 dk−1︸ ︷︷ ︸
(4.3)
= τk−1 ε(xk−1,δ)

+2 ε(xk−1, δ)
)

+‖|Ak−1|−κse
k−1‖X

≤ 3CK,κ qrk−1−1(0, b
ε
k−1)

(κ+1)/2 τk−1 ε(xk−1, δ)

+‖|Ak−1|−κse
k−1‖X

≤
(
3CK,κ aΘ

τk−1

Θ τk−1 − 1
+ 1

)
‖|Ak−1|−κse

k−1‖X ,

where we used Lemma 4.3 in the last step. Inductively, we end up with the following
lemma.

Lemma 4.4. Let (2.1) hold true with CQρ < 1/2 (thus, ω < 1 in (2.3)) and
assume that the first n < N iterates {x1, . . . , xn} of REGINN exist and stay in Bρ(x

+).
Further, choose R ≥ (1 + ω)/(1 − ω) and let x0 ∈ Bρ(x

+) satisfy the source condi-
tion (4.2).

If μk ∈ ]ω + (1 + ω)δ/dk, 1], 0 ≤ k ≤ n, and if Θ ∈ ]0, 1[ is such that Θ τk > 1,
0 ≤ k ≤ n, then

‖|Ak|−κse
k‖X ≤ CK,κ Λk

n ‖w‖X for k = 0, . . . , n(4.5a)

with

Λn = 1 + 3CK,κ aΘ
tn

Θ tn − 1
and tn = min{τ0, . . . , τn}.(4.5b)

4.3. Termination. We are now able to verify termination of REGINN with conju-
gate gradients as inner iteration: under reasonable technical assumptions all iterates
remain in Bρ(x0) and REGINN delivers an approximation xN(δ) to x+. The following
theorem is the counterpart of Theorem 3.3 from [11] (see also [12, Satz 7.5.14]) and
will be proved along the same lines.

Theorem 4.5. Let (2.1) hold true with CQρ < 1/2 (thus, ω < 1 in (2.3)). Let
τ > 1 and let Θ ∈ ]0, 1[ be such that Θ τ > 1. Set

Λ = 1 + 3CK,κ aΘ
τ

Θ τ − 1
,

where CK,κ = (1−CQρ)
−κ (see (2.4)), and aΘ comes from the estimate in Lemma 4.3.

Suppose that (2.3) is satisfied with

ω <
η

η + τ + 1
, where ηΛ < 1.4

Assume that the starting guess x0 ∈ Bρ/2(x
+) is chosen such that the source con-

dition (4.2) applies for κ restricted to ] log1/η Λ, 1] and that the product ‖w‖X ‖y −

4This restriction is satisfied, for instance, if (2.1) holds true and ρ is small enough.
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F (x0)‖κY is sufficiently small. If

R ≥ τ (1 + ω)

η − ω
(
η + τ + 1

) and μk ∈
[
τ

(
ω +

(1 + ω) δ

dk

)
, η − (1 + η)ω

]

for k ≥ 0, then there is an N(δ) ∈ N and a δ > 0 such that all iterates {x1, . . . , xN(δ)}
are well defined and stay in Bρ(x

+) for all noise levels δ ∈ ]0, δ]. Moreover, the final
iterate xN(δ) satisfies the discrepancy principle (1.6) and, for d0 > Rδ,

N(δ) ≤ �logη(Rδ/d0) + 1.5(4.6)

Proof. We will prove Theorem 4.5 by induction. Therefore, assume that the first
n iterates {x0, . . . , xn} are well defined under the hypotheses of Theorem 4.5 and stay
in Bρ(x

+).
If dn ≤ Rδ, the iteration will be stopped by (1.6) with N(δ) = n. Otherwise,

dn > Rδ, and we show that the interval determining μn is not empty. The bound on
ω implies that the denominator of the lower bound of R is positive. The lower bound
on R guarantees that τ(ω + (1 + ω)δ/dn) < τ(ω + (1 + ω)/R) < η − (1 + η)ω.

According to Lemma 2.1, rn and thus the Newton step sn,rn are well defined. By
(4.4) and (4.5),

‖sn,rn‖X ≤ 3

(
CK,κ aΘ ‖w‖X

Θ τn − 1

)1/(κ+1)

Λn/(κ+1)
n ε(xn, δ)

−1/(κ+1) dn.

The lower bound on the μk’s yields τk ≥ τ > 1, k = 0, . . . , n (cf. (4.3)), that is,
Λn ≤ Λ. Moreover, dn/ε(xn, δ) ≤ 1/ω. Taking Lemma 4.2 into account, we obtain

‖sn,in‖X ≤ CS ‖w‖1/(κ+1)
X d

κ/(κ+1)
0 σ(κ)n,

where CS = 3
(
CK,κ aΘ/(Θ τ − 1)/ω

)1/(κ+1)
and

σ(κ) :=
(
Λ ηκ

)1/(κ+1)
< 1.6(4.7)

We define the quantity

α(δ) := CS ‖w‖1/(κ+1)
X ‖F (x0) − yδ‖κ/(κ+1)

X

/(
1 − σ(κ)

)
.(4.8)

In our formulation of Theorem 4.5 we assumed the product ‖w‖X‖F (x0)− y‖κX to be
sufficiently small. Now we can be more precise: assume that ‖w‖X‖F (x0)− y‖κX is so
small that α(0) < ρ/2. Then there exists a δ > 0 yielding α(δ) < ρ/2 for all δ ∈ ]0, δ]
and the new iterate xn+1 = xn + sn,rn = x0 +

∑n
k=0 sk,rk is in Bρ(x

+):

‖x+ − xn+1‖X ≤ ‖x+ − x0‖X +

n∑
k=0

‖sk,rk‖X ≤ ρ/2 + α(δ) ≤ ρ.

Further, dn+1 ≤ ηn+1d0 uniformly in δ ∈ ]0, δ] (Lemma 4.2). This completes the
inductive step, thereby finishing the proof of Theorem 4.5.

5Here, �t� ∈ Z for t ∈ R denotes the greatest integer: �t� ≤ t < �t� + 1.
6Note that σ(κ) is smaller than 1 since κ > log1/η Λ.
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5. Convergence with rates. Finally, we are able to verify the regularization
property of REGINN with conjugate gradients as inner iteration, that is, we will show
convergence of xN(δ) to x+ as the noise level δ decreases.

As an additional tool we will use the interpolation inequality (5.1): If T ∈ L(X,Y ),
then

∥∥(T ∗T )αx
∥∥
X

≤ ‖(T ∗T )βx‖α/βX ‖x‖1−α/β
X for 0 < α ≤ β;(5.1)

see, e.g., [2, 12].
Under the hypotheses of Theorem 4.5 we have to control the reconstruction error

se
k = x+ − xk of the kth iterate, 0 ≤ k ≤ N(δ):

‖se
k‖2

X = 〈|Ak|κse
k, |Ak|−κse

k〉X ≤ ‖|Ak|κse
k‖X ‖|Ak|−κse

k‖X
(5.1)

≤ ‖|Ak|se
k‖κX ‖se

k‖1−κ
X CK,κ Λk ‖w‖X ,

where we also applied (4.5) with Λk ≤ Λ to obtain the last inequality. Thus,

‖se
k‖X ≤ C

1/(κ+1)
K,κ Λk/(κ+1) ‖w‖1/(κ+1)

X ‖Aks
e
k‖

κ/(κ+1)
Y

(2.2)

≤ C
1/(κ+1)
K,κ Λk/(κ+1) ‖w‖1/(κ+1)

X

(
‖y − F (xk)‖Y

1 − CQ ρ

)κ/(κ+1)

.
(5.2)

Relying on the above estimate, we are now able to copy the proof of Theorem 4.1
from [11] (see also [12, Satz 7.5.17]) to yield the announced convergence result.

Theorem 5.1. Adopt the assumptions of Theorem 4.5; especially, let the source
condition (4.2) be satisfied with κ restricted to ] log1/η Λ, 1]. Additionally, assume that

α(0) < ρ/2 (see (4.8)), as well as F (x0) �= y = F (x+). Then

‖x+ − xN(δ)‖X ≤ Cκ ‖w‖1/(κ+1)
X δ(κ−log1/η Λ)/(κ+1) as δ → 0,(5.3)

where Cκ is a suitable constant.
In the noise-free situation, that is, δ = 0, we have that

‖x+ − xk‖X = O
(
σ(κ)k

)
as k → ∞

with σ(κ) from (4.7).
Proof. Plugging k = N(δ) into (5.2) and taking (1.6) into account give

‖se
N(δ)‖X ≤ C

1/(κ+1)
K,κ ‖w‖1/(κ+1)

X

(
R + 1

1 − CQ ρ

)κ/(κ+1)

ΛN(δ)/(κ+1) δκ/(κ+1).

Thus, (5.3) follows from (4.6). Convergence in the noise-free setting is obtained from
(5.2) in combination with Lemma 4.2.

6. Computational example. By computational experiments we will demon-
strate the increase in numerical efficiency of REGINN when replacing the ν-method by
the conjugate gradient iteration as inner iteration. We distinguish the two variants
by ν-REGINN and cg-REGINN. Throughout this section let ν = 1.7

7Any ν ≥ 1 is admissible [11, Example 2.1]. However, larger ν slow down ν-REGINN in the
numerical computations presented here.
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For our numerical experiments we select a model problem which satisfies our
main assumption (2.1). We like to identify the bivariate parameter c ≥ 0 in the
two-dimensional elliptic PDE

−Δu + c u = f in Ω,

u = g on ∂Ω
(6.1)

from the knowledge of u in the box Ω = ]0, 1[2. In (6.1), −Δ is the Laplacian.
Further, let f and g be continuous functions. If u has no zeros in Ω, then c can be
recovered explicitly by c = (f + Δu)/u. Thus, c is uniquely determined by u but
does not depend continuously on it. In the case of noise-corrupted data the inversion
formula is useless. Further details about our model problem can be found in Hanke,
Neubauer, and Scherzer [6, Example 4.2]. Since we already used our model problem
for numerical experiments in [10, 11, 12] we will be brief in what follows.

We discretize (6.1) by finite differences with respect to the grid points (xi, yj) =
(i h, j h), 1 ≤ i, j ≤ m, where m ∈ N and h = 1/(m+1) is the discretization step size.
Ordering the grid points lexicographically yields the m2 ×m2 linear system(

A + diag(c)
)
u = f ,

where A comes from the difference star of the Laplacian −Δ and where the com-
ponents of c = (c1, . . . , cm2)t are given by c�(i,j) = c(xi, yj) with � : {1, . . . ,m}2 →
{1, . . . ,m2} denoting lexicographical ordering. The boundary values g are incorpo-
rated into the right-hand side f . From the convergence theory for finite differences
(see, e.g., Hackbusch [3]), we know that the solution u of the above linear system
satisfies u�(i,j) = u(xi, yj) + O(h2) as h → 0 whenever u is sufficiently smooth.

In this discrete setting we like to reconstruct c from u. Thus, we have to solve
the nonlinear equation

F (c) = u(6.2)

with F : R
m2

≥0 → R
m2

, F (c) = (A+diag(c))−1 f . The function F is differentiable with

Jacobi-matrix F ′(c)w = −
(
A + diag(c)

)−1(
F (c) � w

)
, where � denotes component-

wise multiplication of vectors. Moreover, F ′ can be factorized according to (2.1) in a
neighborhood of any c > 0 (componentwise), where also F (c) > 0.8 In our numerical
experiments the parameter to be identified is

c+(x, y) = 1.5 sin(2π x) sin(3π y) + 3
(
(x− 0.5)2 + (y − 0.5)2

)
+ 2.

We have chosen f and g such that u(x, y) = 16x (x− 1) y (1− y)+ 1 solves (6.1) with
respect to c+. As perturbed right-hand side uδ for (6.2) we worked with uδ = ũ+δ v,
where ũ�(i,j) = u(xi, yj) and v = z/‖z‖h. The entries of the random vector z are

uniformly distributed in [−1, 1]. Therefore, ‖u − uδ‖h ≤ δ + O(h2) measured in the

weighted Euclidean norm ‖z‖h = h
(∑m2

i=0 z2
i

)1/2
, which approximates the L2-norm

over Ω.
In all computations below we started REGINN with initial guess c0, where (c0)�(i,j) =

c0(xi, xj) and

c0(x, y) = 3
(
(x− 0.5)2 + (y − 0.5)2

)
+ 2 + 128x (x− 1) y (1 − y).

8The implication c > 0 ⇒ F (c) > 0 holds true, for instance, if f > 0 since A + diag(c) is an
M-matrix whose inverse has only nonnegative entries.
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~h 

Fig. 6.1. Relative reconstruction error (6.4) of REGINN as a function of h (solid line with 
:
cg-method as inner iteration; dashed line with ◦: ν-method as inner iteration). The thin solid line
indicates decay O(h) as h → 0.

Further, we always used R = 1.5, and we adapted the tolerances {μk} in (1.5) dy-
namically according to scheme (6.3) below, which was proposed in [10, section 6]
(see also [12, Kapitel 7.5.3.4]): Initialize μstart = 0.1, γ = 0.9, μmax = 0.999, and
μ̃0 = μ̃1 := μstart. For k = 0, . . . , N(δ) − 1 set

μk := μmax max
{
Rδ/‖F (ck) − uδ‖h, μ̃k

}
,(6.3)

where ck is the kth iterate and

μ̃k :=

{
1 − rk−2

rk−1
(1 − μk−1) : rk−1 ≥ rk−2,

γ μk−1 : else.

Figure 6.1 shows relative reconstruction errors by ν-REGINN and cg-REGINN. More
precisely, we plotted

err(h) := ‖cN(δ(h)) − c+‖h/‖c+‖h with δ(h) = 10h2(6.4)

as a function of h ∈ {(10 k)−1 | k = 3, . . . , 12}, where c+
�(i,j) = c+(xi, yj) and where

cN(δ(h)) is the output of either ν-REGINN or cg-REGINN. The auxiliary line in Fig-
ure 6.1 represents exact decay O(h) as h → 0. Thus, our computations indicate that
err(h) = O(h) as h → 0. Since ‖u − uδ(h)‖h ≤ δ(h) + O(h2) := δ(h) = O(h2) the
regularization error achieves maximal order of convergence according to Theorem 5.1,
namely, err(δ) = O(δ1/2) as δ → 0, that is, κ = 1 and Λ = 1.

Both variants of REGINN deliver errors in comparable magnitude. In this respect
there is not much difference between cg-REGINN and ν-REGINN. However, looking at
the numerical efficiency we observe a significant difference. In Figure 6.2 we plotted
the ratio

q(h) :=
cpu-time of ν-REGINN to compute cN(δ(h))

cpu-time of cg-REGINN to compute cN(δ(h))
,(6.5)
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Fig. 6.2. Speedup q (6.5) of cg-REGINN over ν-REGINN.

Table 6.1

Convergence history of ν-REGINN for h = 0.01, δ(h) = 10h2, with respect to the tolerance
selection (6.3), where μstart = 0.1, μmax = 0.999, and γ = 0.9. Overall cpu-time: 240.72 seconds.

k μk−1 rk−1 dk/dk−1 dk/(Rδ) ek
1 0.0999 40 0.2464 43.68 0.4280

2 0.0999 75 0.1128 4.925 0.2204

3 0.5194 99 0.5153 2.538 0.1311

4 0.6353 105 0.6324 1.605 0.0836

5 0.6555 176 0.6550 1.051 0.0443

6 0.9504 242 0.9503 0.999 0.0290

Table 6.2

Convergence history of cg-REGINN for h = 0.01, δ(h) = 10h2, with respect to the tolerance
selection (6.3), where μstart = 0.1, μmax = 0.999, and γ = 0.9. Overall cpu-time: 8.00 seconds.

k μk−1 rk−1 dk/dk−1 dk/(Rδ) ek
1 0.0999 1 0.3997 70.86 0.5598

2 0.0999 1 0.1188 8.418 0.3090

3 0.1187 6 0.1223 1.030 0.0239

4 0.9704 1 0.9629 0.991 0.0238

where we did not count cpu-time for preprocessing steps performed by both vari-
ants.9 Figure 6.2 reveals that cg-REGINN is 10 to 30 times faster than ν-REGINN in
our example.

Tables 6.1 and 6.2 record the convergence history of ν-REGINN and cg-REGINN in
full detail for the discretization step size h = 0.01. In both tables

dk := ‖F (ck) − uδ(h)‖h and ek := ‖ck − c+‖h/‖c+‖h

denote the nonlinear defect and the relative L2-error of the kth iterate, respectively.
Among all Krylov-subspace methods the conjugate gradient iteration is the most

efficient one when the discrepancy principle is the used stopping rule; see, e.g., [2,

9The experiments were carried out under MATLAB 6.5 on a 2.6GHz Intel Pentium 4 processor.
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Chapter 7.1] or [12, Kapitel 5.3.6]. As expected, cg-REGINN outperforms ν-REGINN
since it takes much fewer inner iterations to yield the correction step which we can
observe clearly in the tables (one iteration step of the cg-methods is only slightly more
expensive than one iteration step of the ν-method).

7. Concluding remarks. In this paper we proved local convergence with rates
for a regularization scheme of inexact Newton type with the cg-method as inner iter-
ation. Theoretical aspects are emphasized; ideas and techniques have been presented
to cope with the nonlinearity of the conjugate gradient iteration.

As far as the author knows, the restrictive factorization assumption (2.1) has not
been verified for real applications such as, e.g., impedance tomography, ultrasound
tomography, and SPECT (single photon emission computed tomography). Therefore
the most pressing improvement of the presented analysis is to weaken or to get rid
of (2.1).

Nevertheless the practitioner may benefit from our theoretical results in at least
two ways: (1) The adaptive tolerance selection scheme (6.3) has a sound justification
for cg-REGINN and can be expected to perform well also for more general nonlinearities.
(2) A potential convergence analysis of cg-REGINN for a specific application, which does
not fall into the general category considered, can be based upon techniques developed
here.

Appendix A. Proof of Lemma 3.2. For the sake of simplicity we only prove
Lemma 3.2 for a compact operator T (the general result will follow by integration
over the spectral family of T ∗T ). Most of our arguments have been used before by
Plato [9, Lemma 5.4] (see also [12, Lemma 5.3.11]) to prove another error estimate
for the cg-method.

Let {(σj ; vj , uj)|j ∈ N} ⊂ ]0,∞[×X × Y be the singular system of T , that is,
Tx =

∑∞
j=1 σj 〈x, vj〉X uj with limj→∞ σj = 0 monotonically, and {vj} and {uj} are

orthonormal bases in N(T )⊥ and R(T ), respectively.10

We introduce the spectral family {EΛ}Λ>0 ⊂ L(X) of T ∗T by11

EΛx :=
∑

j∈J (Λ)

〈x, vj〉X vj + PN(T )x, J (Λ) := {j ∈ N |σ2
j ≤ Λ},(A.1)

and start with

‖|T |−ν(ξm − ξ)‖X ≤ ‖|T |−ν(I − EΛ)(ξm − ξ)‖X + ‖|T |−νEΛ(ξm − ξ)‖X .

We proceed by

‖|T |−ν(I − EΛ)(ξm − ξ)‖2
X =

∞∑
k=1

σ
−2(ν+1)
k

∣∣〈|T |(I − EΛ)(ξm − ξ), vk
〉
X

∣∣2

=
∑

k �∈J (Λ)

σ
−2(ν+1)
k

∣∣〈|T |(ξm − ξ), vk
〉
X

∣∣2

≤ Λ−(ν+1) ‖T (ξm − ξ)‖2
Y

10N(B) and R(B) denote the null space and the range of a linear operator, respectively.
11PM ∈ L(X) denotes the orthogonal projection onto the closed subspace M of X.
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and

‖|T |−νEΛ(ξm − ξ)‖X
≤ ‖|T |−νEΛpm(T ∗T,η)ξ‖X + ‖|T |−νEΛqm−1(T

∗T,η)T ∗(η − Tξ)‖X
≤ ‖EΛ|T |μ−νpm(T ∗T,η)‖X ‖|T |−μξ‖X

+ ‖|T |−νEΛqm−1(T
∗T,η)T ∗‖X ‖η − Tξ‖X

≤ ‖|T |−μξ‖X sup
0≤λ≤Λ

λ(μ−ν)/2 |pm(λ,η)|

+ ‖EΛqm−1(T
∗T,η)|T |−νT ∗‖X ‖η − Tξ‖X .

Further,

‖EΛqm−1(T
∗T,η)|T |−νT ∗‖2

= ‖EΛ qm−1(T
∗T,η)|T |2(1−ν)qm−1(T

∗T,η)EΛ‖

≤ ‖EΛ qm−1(T
∗T,η)‖ ‖|T |2(1−ν)qm−1(T

∗T,η)EΛ‖

≤ sup
0≤λ≤Λ

|qm−1(λ,η)| sup
0≤λ≤Λ

λ1−ν |qm−1(λ,η)|.

By Lemma 3.1 we have

sup
0≤λ≤Λ

|qm−1(λ,η)| ≤ qm−1(0,η) whenever 0 < Λ ≤ λm,1.

The representation (3.1) of pm shows that 0 ≤ pm(λ) ≤ 1 for λ ∈ [0, λm,1]. Since
pm(λ) = 1 − λ qm−1(λ) we derive that

sup
0≤λ≤Λ

λ1−ν |qm−1(λ,η)| ≤
(

sup
0≤λ≤Λ

λ |qm−1(λ,η)|
)1−ν (

sup
0≤λ≤Λ

|qm−1(λ,η)|
)ν

≤ qm−1(0,η)ν

whenever 0 < Λ ≤ λm,1. Finally, for 0 < Λ ≤ λm,1, we obtain that

‖|T |−ν(ξm − ξ)‖X ≤ Λ−(ν+1)/2 ‖T (ξm − ξ)‖Y + ‖|T |−μξ‖X Λ(μ−ν)/2

+ qm−1(0,η)(ν+1)/2 ‖η − Tξ‖X ,

which yields the stated inequality (3.2) by setting Λ = 1/qm−1(0,η). This choice for
Λ is admissible since 1/qm−1(0,η) < λm,1; see Lemma 3.1.

Appendix B. Proof of Lemma 4.3. Before we can prove Lemma 4.3, we
need some auxiliary results (Lemmas B.1 and B.2 and Corollary B.3 below). Here we
rely on arguments laid out by Plato [9, Kapitel 5] and Nemirovskii [8] (see also [12,
Kapitel 5.3]).

Suppose that the first n iterates {x1, . . . , xn} of REGINN exist and stay in Bρ(x
+).

Point of departure is the inequality

‖bεk −Aksk,m‖Y ≤ ‖Fλm,1ϕm(AkA
∗
k, b

ε
k)bk‖Y + ε, 1 ≤ m ≤ mT,(B.1)

where 0 ≤ k ≤ n, mT = mT(k), and FΛ ∈ L(Y ), Λ > 0, is the orthogonal projection

FΛy :=
∑

i∈J (Λ)

〈y, ui〉Y ui + PN(A∗
k)y(B.2)
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with index set J as in (A.1). In defining FΛ we used the singular system of Ak.
12

Further, the function ϕm(·, bεk) ∈ C(R) in (B.1) is

ϕm(λ, bεk) := pm(λ, bεk)
( λm,1

λm,1 − λ

)1/2
,

where λm,1 is the smallest zero of the mth residual polynomial pm(·, bεk) of the cg-
method with respect to Ak and bεk. A proof of (B.1) is presented, e.g., by Engl, Hanke,
and Neubauer [2, Proof of Theorem 7.10].

As se
k = x+ − xk = se

0 −
∑k−1

j=0 sj,rj we obtain

se
k

(4.2)
= |A|κw −

k−1∑
j=0

A∗
j qrj−1(AjA

∗
j , b

ε
j) b

ε
j .

Note that se
k ∈ D(|Ai|−κ), i = 0, . . . , n. Indeed, in using Aj = Qj,iAi with Qj,i =

Q(xj , xi) (see (2.1)), we obtain that

‖|Ai|−κse
k‖X ≤ ‖|Ai|−κ|A|κw‖X +

k−1∑
j=0

‖|Ai|−κA∗
j qrj−1(AjA

∗
j , b

ε
j) b

ε
j‖X

(2.4)

≤ CK,κ ‖w‖X + ‖|Ai|−κA∗
i ‖︸ ︷︷ ︸

=‖Ai‖1−κ

k−1∑
j=0

‖Q∗
j,iqrj−1(AjA

∗
j , b

ε
j) b

ε
j‖Y .

Thus, by Aks
e
k = bk,

‖Fλm,1ϕm(AkA
∗
k, b

ε
k)bk‖Y

= ‖Fλm,1ϕm(AkA
∗
k, b

ε
k)Ak|Ak|κ|Ak|−κse

k‖Y

≤ sup
0≤λ≤λm,1

λ(κ+1)/2 ϕm(λ, bεk) ‖|Ak|−κse
k‖X .

(B.3)

Techniques from elementary calculus, together with Lemma 3.1, yield

sup
0≤λ≤λm,1

λ(κ+1)/2 ϕm(λ, bεk) ≤ 2 qm−1(0, b
ε
k)

−(κ+1)/2

for κ ∈ [0, 1]; see, e.g., [2, (7.8)] or [12, (5.65)]. Hence,

‖Fλm,1ϕm(AkA
∗
k, b

ε
k)bk‖Y ≤ 2 qm−1(0, b

ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X .(B.4)

Finally, (B.1) and (B.4) yield the following lemma.
Lemma B.1. Let (2.1) hold true and assume that the first n iterates {x1, . . . , xn}

of REGINN exist and stay in Bρ(x
+). If x0 ∈ Bρ(x

+) satisfies (4.2), then, for 0 ≤ k ≤ n
and 1 ≤ m ≤ mT(k),

‖bεk −Aksk,m‖Y ≤ ε + 2 qm−1(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X .

We need a second auxiliary lemma.

12More precisely, {FΛ}Λ>0 is the spectral family of AkA
∗
k.
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Lemma B.2. Let (2.1) hold true and assume that the first n iterates {x1, . . . , xn}
of REGINN exist and stay in Bρ(x

+). Further, let x0 ∈ Bρ(x
+) satisfy (4.2). Choose

ϑ > 2 and 2 < r ≤ 2(ϑ− 1). Let 0 ≤ k ≤ n and 1 ≤ m ≤ mT(k).
If ϑ qm−2(0, b

ε
k) ≤ qm−1(0, b

ε
k), then

r − 2

r − 1
‖bεk −Aksk,m−1‖Y ≤ ε + α(κ+1)/2 qm−1(0, b

ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X ,

where α = r/(1 − ϑ−1).
Proof. Under our assumptions Plato [9, (5.16)] (see also [12, (5.67)]) established

the bound

r − 2

r − 1
‖bεk −Aksk,m−1‖Y ≤ ‖Frλm,1p(AkA

∗
k)b

ε
k‖Y

with the polynomial p(λ) = pm(λ, bεk)/(1 − λ/λm,1) of degree m − 1. The triangle
inequality leads to

‖Frλm,1p(AkA
∗
k)b

ε
k‖Y ≤ ε sup

0≤λ≤rλm,1

|p(λ)| + ‖Frλm,1p(AkA
∗
k)bk‖Y .

To bound ‖Frλm,1p(AkA
∗
k)bk‖Y we are able to apply exactly the same arguments as

were used in estimating ‖Fλm,1
ϕm(AkA

∗
k)bk‖Y ; cf. (B.3). Accordingly, if

sup
0≤λ≤rλm,1

|p(λ)| ≤ 1(B.5a)

as well as

sup
0≤λ≤rλm,1

λ(κ+1)/2 |p(λ)| ≤ α(κ+1)/2 qm−1(0, b
ε
k)

−(κ+1)/2,(B.5b)

then Lemma B.2 is true. Assume, for the moment, that

rλm,1 < 2λm,2 and λm,1 ≤ qm−1(0, b
ε
k)

−1/(1 − ϑ−1)(B.6)

hold true. The left inequality yields rλm,1/λm,j < 2, j = 2, . . . ,m, whence

|p(λ)| =
m∏
j=2

|1 − λ/λm,j | < 1 for 0 < λ ≤ rλm,1.

Therefore, (B.6) implies (B.5) and we are left with verifying (B.6).
First we look into the estimate on the right in (B.6). Since the residual polynomi-

als {pm(·, bεk)}1≤m≤mT
are orthogonal, their zeros interlace, that is, λm−1,j < λm,j+1,

j = 1, . . . ,m− 1. By Lemma 3.1 we therefore have

qm−1(0, b
ε
k) = λ−1

m,1 +

m−1∑
j=1

λ−1
m,j+1

< λ−1
m,1 +

m−1∑
j=1

λ−1
m−1,j = λ−1

m,1 + qm−2(0, b
ε
k).

(B.7)
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The hypothesis qm−2(0, b
ε
k) ≤ ϑ−1 qm−1(0, b

ε
k) implies qm−1(0, b

ε
k) ≤ λ−1

m,1+ϑ−1qm−1(0, b
ε
k)

and thus the right inequality in (B.6). Since

(ϑ− 1) λ−1
m−1,1 < (ϑ− 1)

m−1∑
j=1

λ−1
m−1,j = ϑ qm−2(0, b

ε
k) − qm−2(0, b

ε
k)

by
assumpt.

≤ qm−1(0, b
ε
k) − qm−2(0, b

ε
k)

(B.7)
< λ−1

m,1,

we obtain λm,1 < (ϑ−1)−1 λm−1,1 < (ϑ−1)−1 λm,2 (interlacing property). In view of
r/(ϑ− 1) ≤ 2 we conclude that the left inequality in (B.6) holds true as well, thereby
finishing the proof of Lemma B.2.

Both latter lemmas merge in the next corollary.
Corollary B.3. Let (2.1) hold true and assume the first n iterates {x1, . . . , xn}

of REGINN exist and stay in Bρ(x
+). Further, let x0 ∈ Bρ(x

+) satisfy (4.2). Then, to
any Θ ∈ ]0, 1[, there exists a number aΘ such that, for 0 ≤ k ≤ n,

Θ ‖bεk −Aksk,m−1‖Y ≤ ε + aΘ qm−1(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X ,

where 1 ≤ m ≤ mT(k). The number aΘ only depends on Θ and κ.
Proof. There is exactly one r = r(Θ) > 2 such that Θ = r−2

r−1 . Let this r be fixed
and define ϑ = r/2 + 1 > 2, that is, r = 2(ϑ − 1). Exactly one of the following two
cases holds true.

1. In the case of ϑ qm−2(0, b
ε
k) ≤ qm−1(0, b

ε
k) the assertion follows immediately

from Lemma B.2 when setting

aΘ,1 :=
( r

1 − ϑ−1

)(κ+1)/2

=
( r

1 − (r/2 + 1)−1

)(κ+1)/2

.

2. In the case of qm−1(0, b
ε
k) < ϑqm−2(0, b

ε
k) we argue with Lemma B.1. Since

Θ < 1 and qm−2(0, b
ε
k)

−1 < ϑqm−1(0, b
ε
k)

−1 we have

Θ ‖bεk −Ask,m−1‖Y ≤ ε + 2 qm−2(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X

< ε + aΘ,2 qm−1(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X

with

aΘ,2 := 2 ϑ(κ+1)/2 = 2 (r/2 + 1)(κ+1)/2.

So, the assertion of Corollary B.3 is verified with aΘ = max{aΘ,1, aΘ,2}.
Finally we are in a position to verify Lemma 4.3: The μk’s and R satisfy the

requirements of Lemma 2.1. Hence, τk > 1 (see (4.3)), and τk ε ≤ ‖bεk −Aksk,rk−1‖Y
(see (1.5)). Since 1 ≤ rk ≤ mT(k) we obtain

Θ τk ε ≤ Θ ‖bεk −Aksk,rk−1‖Y ≤ ε + aΘ qrk−1(0, b
ε
k)

−(κ+1)/2 ‖|Ak|−κse
k‖X

by Corollary B.3. A simple rearrangement of terms yields the assertion of Lemma 4.3.
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Abstract. A complete error analysis is performed for the spectral-Galerkin approximation of
a model Helmholtz equation with high wave numbers. The analysis presented in this paper does
not rely on the explicit knowledge of continuous/discrete Green’s functions and does not require
any mesh condition to be satisfied. Furthermore, new error estimates are also established for multi-
dimensional radial and spherical symmetric domains. Illustrative numerical results in agreement
with the theoretical analysis are presented.
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1. Introduction. Time harmonic wave propagations appear in many applica-
tions, e.g., wave scattering and transmission, noise reduction, fluid-solid interaction,
and sea and earthquake wave propagation. In many situations, time harmonic wave
propagations are governed by the following Helmholtz equation in an exterior domain
with the so-called Sommerfeld radiation boundary condition:

− Δu− k2u = f in Rn\D,

u|∂D = 0, ∂ru− iku = o
(
‖x‖

1−n
2

)
as ‖x‖ → ∞,

(1.1)

where D is a bounded domain in Rn (n = 1, 2, 3), ∂r is the radial derivative, and k
is the nondimensional wave number: k = ωL

c , where ω is a given frequency, L is the
measure of the domain, and c is the sound speed in the acoustic medium.

Problem (1.1) presents a great challenge to numerical analysts and computational
scientists because (i) the domain is unbounded, and (ii) the solution is highly oscil-
latory (when k is large) and decays slowly. There is abundant literature on different
numerical techniques that have been developed for this problem, such as bound-
ary element methods [5], infinite element methods [11], methods using nonreflecting
boundary conditions [14], perfectly matched layers (PML) [2], among others. In many
of these approaches, an essential step is to solve the following problem:

− Δu− k2u = f in Ω := B\D,

u|∂D = 0, (∂ru− iku)|∂B = g,
(1.2)

where ∂r is the outward normal derivative, f, g are given data, and B is a sufficiently
large ball containing D.

The analysis and implementation of numerical schemes for (1.2) are challenging
when the wave number k is large. The Galerkin finite element method (FEM) for (1.2)
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in the one-dimensional case was first carried out in [8], where the well-posedness and
error estimates of the Galerkin FEM were established under the condition k2h � 1
using the Green’s function and an argument due to Schatz [21]. A refined analysis
for (1.2) in the one-dimensional case was performed in [18] (resp., [19]) for the h
version (resp., hp version) of FEM, where the well-posedness and error estimates were
established under the condition kh � 1 using the discrete Green’s functions. The
proofs in these works rely heavily on the use of explicit forms of continuous and/or
discrete Green’s functions. Hence, it is extremely complicated, if not impossible, to
extend to more general cases and higher space dimensions.

On the other hand, the error estimates in the aforementioned papers concluded
that the mesh condition k2h � 1 has to be verified for the error estimates to be
independent of k. This so-called pollution effect associated with high wave numbers
was discussed in detail in [1]. It is well known [13] that spectral methods are suitable
for problems with highly oscillatory solutions since they require fewer grid points
per wavelength compared with finite difference methods and FEMs. Furthermore,
since the convergence rate of spectral methods increases with the smoothness of the
solution, the effect of pollution on the convergence rate of spectral methods is much
less significant for smooth (but highly oscillatory) solutions. Hence, it is advantageous
to use a spectral method for the Helmholtz equation (1.2) with high wave numbers.

In a recent work [7], Cummings and Feng obtained sharp regularity results for
(1.2) in general two- or three-dimensional domains by using Rellich identities instead
of using representations in terms of double-layer potentials (cf. [10]). Their analysis
not only leads to sharper regularity results but also greatly simplifies the usual process
for obtaining a priori estimates and is applicable to general and multidimensional star-
shaped domains. Unfortunately, the technique used in [7] cannot be directly applied
to Galerkin FEMs because the finite element subspaces do not contain the special
test functions used in [7]. However, the situation is different in a spectral-Galerkin
method, for which the procedure in [7] can be applied.

We consider in this paper the spectral-Galerkin method for the Helmholtz equa-
tion with high wave numbers. In the next section, we set up a prototypical one-
dimensional Helmholtz equation which is derived from a multidimensional Helmholtz
equation, and we establish its well-posedness; then we derive a priori estimates which
are essential for the error analysis. In section 3, we introduce the spectral-Galerkin
method and use the same arguments for the space continuous problem to establish the
well-posedness and a priori estimates for the discrete problem; then we employ some
new optimal Jacobi approximation results to carry out a complete error analysis. In
section 4, we consider an alternative formulation which leads to an efficient numerical
algorithm and present some illustrative numerical results. We extend our analysis to
multidimensional domains in section 5.

We now introduce some notation. Let ω(x) be a given real weight function in
I = (a, b), which is not necessary in L1(I). We denote by L2

ω(I) a Hilbert space of
real or complex functions with inner product and norm

(u, v)ω =

∫
I

u(r)v(r)ω(r)dr, ‖u‖ω = (u, u)
1
2
ω ,

where v̄ is the complex conjugate of v. Then the weighted Sobolev spaces Hs
ω(I) (s =

0, 1, 2, . . . ) can be defined as usual with inner products, norms, and seminorms denoted
by (·, ·)s,ω, ‖ · ‖s,ω, and | · |s,ω, respectively. For real s > 0, Hs

ω(I) is defined by space
interpolation. The subscript ω will be omitted from the notation in the case ω ≡ 1.

For simplicity, we denote ∂l
rv = dlv

drl
, l ≥ 1.
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2. Model equation and a priori estimates. Since a global spectral method
is most efficient on regular domains, we shall restrict our attention to the following
special cases (b > a ≥ 0):

• One-dimensional case (1-D): D = (0, a) and B = (0, b).
• Two-dimensional case (2-D): D = {(x, y) : x2 + y2 < a2} and B = {(x, y) :
x2 + y2 < b2}.

• Three-dimensional case (3-D): D = {(x, y, z) : x2 + y2 + z2 < a2} and B =
{(x, y, z) : x2 + y2 + z2 < b2}.

In the 2-D (resp., 3-D) case, we expand functions in polar (resp., spherical) co-
ordinates, i.e., u =

∑
um(r)eimθ (resp., u =

∑
ulm(r)Yl,m(θ, φ), where {Yl,m(θ, φ)}

are the usual spherical harmonic functions). Hence, the problem (1.2) reduces, after
a polar (when n = 2) or spherical (when n = 3) transform, to a sequence (for each m
in 2-D and (l,m) in 3-D) of 1-D equations (for brevity, we use u to denote um/ulm,
and likewise for f and g, below):

− 1

rn−1
∂r(r

n−1∂ru) + dm
u

r2
− k2u = f, r ∈ (a, b), n = 1, 2, 3, m ≥ 0(2.1)

(dm = 0,m2,m(m+1) for n = 1, 2, 3, respectively), with suitable boundary conditions
to be specified below.

If a > 0, the coefficients rn−1 and r−2 in (2.1) are uniformly bounded, so (2.1)
with a > 0 is easier to handle than the case a = 0. Hence, for brevity of presentation,
we shall be concerned mainly with the case a = 0, while some results for a > 0 will
be stated without proof in section 5. On the other hand, the character of (2.1) does
not change with the change of variable: r → rb. Consequently, it suffices to consider
the problem (2.1) in I := (0, 1). The appropriate boundary conditions for (2.1) are
the pole conditions at r = 0,

u(0) = 0 if n = 1 and if n = 2 with m > 0,(2.2)

and the Robin boundary condition (derived from the Sommerfeld radiation boundary
condition) at r = 1,

u′(1) − iku(1) = g.(2.3)

We note that error estimates for finite element approximations to the Helmholtz
equation (2.1) with high wave numbers were derived in [8, 18, 19] for the 1-D case,
and in [9, 6] for 2-D cases and in [12] for the 1-D Bessel equation reduced from a 3-D
spherical domain, respectively.

Let N be the set of all nonnegative integers and let PN be the space of all poly-
nomials of degree at most N . We shall use c to denote a generic positive constant
independent of any function, the wave frequency k, the radial/spherical frequency m,
and the number of modes N . We use the expression A � B to mean that there exists
a generic positive constant c such that A ≤ cB.

2.1. Variational formulation and weak solution. Let us denote ωα(r) = rα

and ω(r) = r. We define a Hilbert space,

X := X(m,n) := {u ∈ H1
ωn−1(I) : u ∈ L2

ωn−3(I) for n = 2, 3; u satisfies (2.2)},

and a sesquilinear form on X ×X,

B(u, v) := Bmn(u, v) := (∂ru, ∂rv)ωn−1 + dm(u, v)ωn−3 − k2(u, v)ωn−1

− iku(1)v(1).
(2.4)
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Note that to lighten the presentation, we will often omit m and n from the notation.
Then the weak formulation of (2.1)–(2.2) is to find u ∈ X such that

B(u, v) = (f, v)ωn−1 + gv(1) ∀v ∈ X, n = 1, 2, 3.(2.5)

Theorem 2.1. Given f ∈ X ′, the problem (2.5) admits a unique weak solution.
Proof. This result with n = 1 was established in [8, 18]. Hence, we shall prove

only the cases with n = 2 and 3.
We first consider the uniqueness. It suffices to show that u = 0 is the only solution

of the problem (2.5) with f ≡ 0 and g = 0.
Taking v = u in (2.5) with f ≡ 0 and g = 0, we find from (2.4) that

B(u, u) = ‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 − k2‖u‖2
ωn−1 − ik|u(1)|2 = 0,(2.6)

which implies immediately u(1) = 0.
Next, let Jμ(r) be the Bessel function of the first kind of order μ. We recall that

φm(r;h, n) :=

⎧⎨
⎩

Jm(hr), n = 2, r, h > 0,

1√
r
Jm+ 1

2
(hr), n = 3, r, h > 0,

(2.7)

is the solution of the modified Bessel equation (cf. [25]):

− 1

rn−1
∂r(r

n−1∂rφm) −
(
h2 − dm

r2

)
φm = 0, n = 2, 3, m ≥ 0.(2.8)

Let {ξj}∞j=1 be the set of all positive real zeros of the Bessel function Jm+n
2 −1(r).

Then {φm(r; ξj , n)}∞j=1 forms a complete orthogonal system in L2
ωn−1(I) (cf. [26]),

namely,

∫ 1

0

φm(r; ξj , n)φm(r; ξl, n)rn−1dr

=

∫ 1

0

Jm+n
2 −1(rξj)Jm+n

2 −1(rξl)rdr =
1

2
J2
m+n

2
(ξj)δj,l.

(2.9)

Since u ∈ L2
ωn−1(I), we can write

u(r) =

∞∑
j=1

ũ(j)
m φm(r; ξj , n),(2.10)

with

ũ(j)
m =

1

γ
(j)
m

∫ 1

0

u(r)φm(r; ξj , n)rn−1dr, γ(j)
m =

1

2
J2
m+n

2
(ξj).(2.11)

Thanks to u(1) = 0, we derive from (2.8) with h = ξj , (2.11), and integration by parts
that

0 = B(u, φm) =

∫ 1

0

u(r)
{
− 1

rn−1
∂r(r

n−1∂rφm) −
(
k2 − dm

r2

)
φm

}
rn−1dr

= (ξ2
j − k2)

∫ 1

0

u(r)φm(r; ξj , n)rn−1dr = (ξ2
j − k2)γ(j)

m ũ(j)
m .

(2.12)
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If Jm+n
2 −1(k) 
= 0 (i.e., k 
= ξj for all j ≥ 1), then (2.12) implies ũ

(j)
m = 0 for all

j. Accordingly, we have u ≡ 0 (cf. (2.10)).
On the other hand, if Jm+n

2 −1(k) = 0, then k = ξj0 for some j0 ≥ 1. We then

derive from (2.12) that ũ
(j)
m = 0 for all j 
= j0. Thus, by (2.10),

u(r) = ũ(j0)
m φm(r; ξj0 , n),(2.13)

and it remains to verify ũ
(j0)
m = 0. Due to u(1) = 0, integration by parts yields

∫ 1

0

∂ru(r)∂r(r
m)rn−1dr = −dm

∫ 1

0

u(r)rm+n−3dr, n = 2, 3, m ≥ 0.(2.14)

Taking v = rm(∈ X) in (2.5), we obtain from (2.13) that

0 = B(u, rm) = ũ(j0)
m B(φm(·; ξj0 , n), rm)

= −k2ũ(j0)
m

∫ 1

0

φm(r; ξj0 , n)rm+n−1dr = −k2ũ(j0)
m

∫ 1

0

Jm+n
2 −1(rξj0)r

m+n
2 dr.

(2.15)

We recall that rμ, μ ≥ 0, can be expanded as (see [26, p. 581])

rμ =

∞∑
j=1

2Jμ(rξj)

ξjJμ+1(ξj)
, 0 ≤ r < 1.(2.16)

Inserting (2.16) with μ = m+ n
2 −1 into (2.15) and using the orthogonality (2.9) lead

to

0 = −k2ũ(j0)
m

∫ 1

0

Jm+n
2 −1(rξj0)r

m+n
2 dr = −k2ũ(j0)

m

Jm+n
2
(ξj0)

ξj0
.

This implies ũ
(j0)
m = 0. Hence, we have u ≡ 0, which implies the uniqueness.

To prove the existence, we note from (2.6) that the following G̊arding-type in-
equality holds:

Re(B(u, u)) ≥ ‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 − k2‖u‖2
ωn−1 .(2.17)

Since all the arguments above apply also to the dual problem of (2.5), by the clas-
sical Fredholm alternative argument (see, for instance, [20, p. 194]); problem (2.5)
either has a nontrivial solution with f ≡ 0 and g = 0 or it has at least one solution
for every f ∈ X ′. Since the uniqueness is proved, existence follows from the above
argument.

2.2. A priori estimates.
Theorem 2.2. If f ∈ L2

ωn−1(I), we have

‖∂ru‖ωn−1 +
√
dm‖u‖ωn−3 + k‖u‖ωn−1 � |g| + ‖f‖ωn−1 , n = 1, 2, 3.(2.18)

Proof. The proof consists of taking two different test functions in (2.5). The first
test function is the usual one. As in [7], the key step is to choose a suitable second
test function which enables us to obtain a priori estimates without using the Green’s
functions as in [8, 18, 19]. In the following proof, εj > 0, 1 ≤ j ≤ 5, are adjustable
real numbers.
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Step 1. We take v = u in (2.5) whose imaginary and real parts are as follows:

−k|u(1)|2 = Im(gu(1)) + Im(f, u)ωn−1 ,

‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 − k2‖u‖2
ωn−1 = Re(gu(1)) + Re(f, u)ωn−1 .

(2.19)

Applying the Cauchy–Schwarz inequality to the imaginary part, we obtain

k|u(1)|2 ≤ |Im(gu(1))| + |Im(f, u)ωn−1 |,

≤ k

2
|u(1)|2 +

1

2k
|g|2 +

ε1k

2
‖u‖2

ωn−1 +
1

2ε1k
‖f‖2

ωn−1 ;
(2.20)

likewise, we obtain from the real part that

‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 ≤ k2‖u‖2
ωn−1 + |Re(gu(1))| + |Re(f, u)ωn−1 |

≤ k2‖u‖2
ωn−1 + ε2k

2|u(1)|2 +
1

4ε2k2
|g|2 +

ε3k
2

2
‖u‖2

ωn−1 +
1

2ε3k2
‖f‖2

ωn−1 .
(2.21)

Therefore, by (2.20),

|u(1)|2 ≤ ε1‖u‖2
ωn−1 +

1

k2
|g|2 +

1

ε1k2
‖f‖2

ωn−1 ,(2.22)

and by (2.21)–(2.22) with ε2 = ε3
2ε1

,

‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 ≤ (1 + ε3)k
2‖u‖2

ωn−1

+
( ε3

2ε1
+

ε1

2ε3k2

)
|g|2 +

( ε3

2ε2
1

+
1

2ε3k2

)
‖f‖2

ωn−1 .
(2.23)

It remains to bound k2‖u‖2
ωn−1 .

Step 2. Using a usual regularity argument, one can easily derive that, for f ∈
L2
ωn−1(I), the weak solution of (2.5) satisfies r∂ru ∈ X, and we now consider the real

part of (2.5) with v = 2r∂ru. After integrating by parts, the first three terms become

2Re(∂ru, ∂r(r∂ru))ωn−1 = |∂ru(1)|2 + (2 − n)‖∂ru‖2
ωn−1 ;(2.24a)

2Re(u, r∂ru)ωn−3 = |u(1)|2 + (2 − n)‖u‖2
ωn−3 ;(2.24b)

−2k2Re(u, r∂ru)ωn−1 = −k2|u(1)|2 + nk2‖u‖2
ωn−1 .(2.24c)

Consequently, the real part of (2.5) with v = 2r∂ru is

(2 − n)
(
‖∂ru‖2

ωn−1 + dm‖u‖2
ωn−3

)
+ nk2‖u‖2

ωn−1 + |∂ru(1)|2 + dm|u(1)|2

= k2|u(1)|2 + 2Re
(
(iku(1) + g)∂ru(1)

)
+ 2Re(f, r∂ru)ωn−1 .

(2.25)

We now proceed separately for the three different cases.
Case (i): n = 1. Thanks to dm = 0, we derive from (2.25) and the Cauchy–

Schwarz inequality that

‖∂ru‖2 + k2‖u‖2 + |∂ru(1)|2 ≤ k2|u(1)|2 +
1

2
|∂ru(1)|2

+ 2k2|u(1)|2 + 2|g|2 +
1

2
‖∂ru‖2 + 2‖f‖2.

(2.26)
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Hence, we obtain from (2.22) that

1

2
‖∂ru‖2 + k2‖u‖2 +

1

2
|∂ru(1)|2 ≤ 3ε1k

2‖u‖2 + c
(
|g|2 + (ε−1

1 + 2)‖f‖2
)

≤ k2

2
‖u‖2 + c(|g|2 + ‖f‖2),

(2.27)

where we have taken ε1 = 1
6 to derive the last inequality. This implies (2.18) with

n = 1.
Case (ii): n = 2. Similarly, we have from (2.22), (2.23), and (2.25) that

2k2‖u‖2
ω + |∂ru(1)|2 + dm|u(1)|2 ≤ 1

2
|∂ru(1)|2 + 3k2|u(1)|2

+ 2|g|2 + ε4‖∂ru‖2
ω + ε−1

4 ‖f‖2
ω

≤ 1

2
|∂ru(1)|2 +

(
3ε1 + ε4(1 + ε3)

)
k2‖u‖2

ω + C1|g|2 + C2‖f‖2
ω,

where C1 and C2 are two positive constants in terms of ε1, ε3, and ε4. We take
ε1 = 1/6, ε3 = 1, ε4 = 1/4 and obtain that

k2‖u‖2
ω + dm|u(1)|2 +

1

2
|∂ru(1)|2 � |g|2 + ‖f‖2

ω.(2.28)

A combination of (2.23) and (2.28) leads to (2.18) with n = 2.
Case (iii): n = 3. As in the derivation of Case (ii), using (2.22), (2.23), and (2.25)

yields

3k2‖u‖2
ω2 + |∂ru(1)|2 + dm|u(1)|2 ≤ ‖∂ru‖2

ω2 + dm‖u‖2 +
1

2
|∂ru(1)|2 + 3k2|u(1)|2

+ 2|g|2 + ε5‖∂ru‖2
ω2 + ε−1

5 ‖f‖2
ω2

≤ 1

2
|∂ru(1)|2 +

(
3ε1 + (1 + ε5)(1 + ε3)

)
k2‖u‖2

ω2 + C3|g|2 + C4‖f‖2
ω2 ,

where C3 and C4 are two positive constants depending only on ε1, ε3, and ε5. Taking
ε1 = 2/27 and ε3 = ε5 = 1/3 such that 3ε1 + (1 + ε5)(1 + ε3) = 2 gives

k2‖u‖2
ω2 + dm|u(1)|2 +

1

2
|∂ru(1)|2 � |g|2 + ‖f‖2

ω2 .(2.29)

This completes the proof.
Remark 2.1. We have also proved that

|∂ru(1)| +
√
dm|u(1)| + k|u(1)| � |g| + ‖f‖ωn−1 , n = 1, 2, 3.(2.30)

Remark 2.2. A combination of (2.1) and (2.18) leads to

|u|2 � k|g| + (1 + k)‖f‖ if n = 1,(2.31a)

‖D2u‖ � k|g| + (1 + k)‖f‖ωn−1 if n = 2, 3,(2.31b)

where D2u = −∂r(r
n−1∂ru) + dmrn−3u.

3. Spectral-Galerkin approximation. In this section, we shall present the
spectral-Galerkin scheme and analyze its errors in suitably weighted Sobolev spaces.
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3.1. Spectral-Galerkin solution. Let us denote XN := X ∩ PN , where PN is
the space of all polynomials of degree at most N . The spectral-Galerkin approximation
of (2.5) is to find uN ∈ XN such that

B(uN , vN ) = (f, vN )ωn−1 + gvN (1) ∀vN ∈ XN .(3.1)

We observe that the sesquilinear form B(·, ·) is not coercive in XN ×XN . To prove
the well-posedness of (3.1) with n = 1, Douglas et al. [8] used an argument due to
Schatz [21] for the (finite element) discrete system under the condition k2h � 1, while
Ihlenburg and Babuška [18] used an inf-sup argument due to Babuška and Brezzi
under the condition kh � 1. However, the spectral-Galerkin approximation space
XN , unlike in the Galerkin FEM, has the following property: For uN ∈ XN , we have
r∂ruN ∈ XN . Hence, the proof of Theorem 2.2 is also valid for the discrete system
(3.1); i.e., we have the following.

Theorem 3.1. Let uN be a solution of (3.1). Then Theorem 2.2 holds with uN

in place of u.
An immediate consequence is the following.
Corollary 3.1. The problem (3.1) admits a unique solution.
Proof. Since (3.1) is a finite-dimensional linear system, it suffices to prove the

uniqueness. Now, let uN be a solution of (3.1) with f ≡ 0 and g = 0. We derive from
Theorem 3.1 that uN ≡ 0, which implies the uniqueness.

Remark 3.1. It is interesting to note that while the existence of a solution for
finite element approximations to the Helmholtz equation is guaranteed only under a
mesh condition kh � 1 (see, for instance, [8, 18]), the spectral-Galerkin approximation
(3.1) always admits a unique solution, just as (2.1) itself.

3.2. Error estimates. Thanks to Theorems 2.2 and 3.1, we can analyze the
errors of the proposed scheme by comparing the numerical solution with some orthog-
onal projection of the exact solution as usual. For this purpose, let Π1,m

N,n : X → XN

be an orthogonal projection, defined by

(∂r(u− Π1,m
N,nu), ∂rvN )ωn−1 = 0 ∀vN ∈ XN , n = 1, 3 ∀m and n = 2 with m = 0.

(3.2)

In order to estimate the errors between u and uN , we have to analyze the ap-
proximation properties of the projector Π1,m

N,n for functions in the following suitably
weighted Sobolev spaces:

H̃s
ωn−1(I) := {u : u ∈ L2

ωn−1(I), (r − r2)
k−1
2 ∂k

r u ∈ L2
ωn−1(I), 1 ≤ k ≤ s},

with the norm and seminorm

‖u‖
H̃s

ωn−1

=
(
‖u‖2

ωn−1 +

s∑
k=1

‖(r − r2)
k−1
2 ∂k

r u‖2
ωn−1

) 1
2

,

|u|
H̃s

ωn−1

= ‖(r − r2)
s−1
2 ∂s

ru‖ωn−1 , s ≥ 1, s ∈ N.

Lemma 3.1. For any u ∈ X ∩ H̃s
ωn−1(I), with s ≥ 1 and s ∈ N,

‖Π1,m
N,nu− u‖μ,ωn−1 � Nμ−s‖(r − r2)

s−1
2 ∂s

ru‖ωn−1 ,(3.3)

μ = 0, 1, n = 1, 3 ∀m and n = 2 with m = 0.
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Proof. This result for n = 1 can be derived from [4] with an improvement of the

norm in terms of the weights (r − r2)
s−1
2 given in [16]. For n = 2 with m = 0 and

n = 3, one can refer to [15, 16] for the proofs.
Next, we shall estimate eN = uN − Π1,m

N,nu. We denote ẽN = u− Π1,m
N,nu.

Lemma 3.2. Let u and uN be, respectively, the solutions of (2.5) and (3.1). Then
we have, for n = 1, 3 for all m and n = 2 with m = 0,

‖∂reN‖ωn−1 +
√
dm‖eN‖ωn−3 + k‖eN‖ωn−1

�
√
dm

(
‖∂r ẽN‖ωn−1 + ‖ẽN‖ωn−3

)
+ k2‖ẽN‖ωn−1 + k(1 + dmk−2)|ẽN (1)|.

(3.4)

Proof. By (2.5) and (3.1), we have B(u − uN , vN ) = 0 for all vN ∈ XN . Hence,
we derive from (2.5) and (3.2) that, for any vN ∈ XN ,

B(eN , vN ) = B(u− Π1,m
N,nu, vN )

= dm(ẽN , vN )ωn−3 − k2(ẽN , vN )ωn−1 − ikẽN (1)vN (1).
(3.5)

We can view (3.5) in the form of (2.5) with u = eN , g = −ikẽN (1), f = −k2ẽN plus
an extra term dm(ẽN , vN )ωn−3 . Hence, as in the proof of Theorem 2.2, we take two
different test functions vN = eN , r∂reN ∈ XN and estimate the extra term by

dm|(ẽN , eN )ωn−3 | ≤ ε6dm‖eN‖2
ωn−3 +

dm
4ε6

‖ẽN‖2
ωn−3 ,

dm|(ẽN , r∂reN )ωn−3 | = dm|ẽN (1)eN (1) − (∂r ẽN , eN )ωn−2 − (n− 2)(ẽN , eN )ωn−3 |

≤ ε7k
2|eN (1)|2 +

d2
m

4k2ε7
|ẽN (1)|2 + ε8dm‖eN‖2

ωn−3

+
cdm
4ε8

(
‖∂r ẽN‖2

ωn−1 + ‖ẽN‖2
ωn−3

)
.

Thus, choosing suitable constants {εj}8
j=6 , and following a procedure similar to the

proof of Theorem 2.2, we can derive

‖∂reN‖2
ωn−1 + dm‖eN‖2

ωn−3 + k2‖eN‖2
ωn−1

� dm(‖∂r ẽN‖2
ωn−1 + ‖ẽN‖2

ωn−3) + k4‖ẽN‖2
ωn−1 + k2(1 + d2

mk−4)|ẽN (1)|2,
(3.6)

which leads to the desired result.
We now recall the following inequalities.
Lemma 3.3.

|u(1)| � ‖u‖
1
2

ωn−1‖u‖
1
2

1,ωn−1 ∀u ∈ H1
ωn−1(I), n = 1, 2, 3,(3.7a)

‖u‖ � ‖u‖1,ω2 ∀u ∈ H1
ω2(I).(3.7b)

Proof. By the Sobolev inequality (see the appendix in [4]),

|u(1)| � ‖u‖
1
2

L2(1/2,1)‖u‖
1
2

H1(1/2,1) � ‖u‖
1
2

L2

ωn−1
(1/2,1)

‖u‖
1
2

H1

ωn−1
(1/2,1)

� ‖u‖
1
2

ωn−1‖u‖
1
2

1,ωn−1 .

Here, we used the fact that the weight function rn−1 is uniformly bounded on [1/2, 1].
The inequality (3.7b) follows directly from formula (13.5) of [3].
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As a consequence of (3.7b) and Lemma 3.1, we derive that for n = 3,

‖Π1,m
N,nu− u‖ωn−3 � ‖Π1,m

N,nu− u‖1,ωn−1 � N1−s‖(r − r2)
s−1
2 ∂s

ru‖ωn−1 .(3.8)

With the above preparations, we can now prove our main results.
Theorem 3.2. Let u and uN be, respectively, the solutions of (2.5) and (3.1)

such that u ∈ X ∩ H̃s
ωn−1(I) with s ≥ 1, s ∈ N.

(i) For n = 1 or n = 2, 3,m = 0,

‖∂r(u− uN )‖ωn−1 + k‖u− uN‖ωn−1 � (1 + k2N−1)N1−s‖(r − r2)
s−1
2 ∂s

ru‖ωn−1 .

(3.9)

(ii) For n = 3 and m > 0,

‖∂r(u− uN )‖ω2 +
√
dm‖u− uN‖ + k‖u− uN‖ω2

�
(√

dm + d2
mk−4 + k2N−1

)
N1−s‖(r − r2)

s−1
2 ∂s

ru‖ω2 ,
(3.10)

where dm = m(m + 1).
Proof. We first prove (3.9). Since

‖∂r(u− uN )‖ωn−1 + k‖u− uN‖ωn−1 � ‖∂r(Π1,m
N,nu− u)‖ωn−1

+ k‖Π1,m
N,nu− u‖ωn−1 + ‖∂reN‖ωn−1 + k‖eN‖ωn−1 ,

formula (3.9) follows from Lemmas 3.1 and 3.2 and (3.7a).
Similarly, for n = 3 and m > 0, we derive from (3.7a) and Lemmas 3.1 and 3.2

that

‖∂r(u− uN )‖ωn−1 +
√
dm‖u− uN‖ωn−3 + k‖u− uN‖ωn−1

�
√
dm

(
‖∂r(Π1,m

N,nu− u)‖ωn−1 + ‖Π1,m
N,nu− u‖ωn−3

)

+ k2‖Π1,m
N,nu− u‖ωn−1 + k(1 + dmk−2)|(Π1,m

N,nu− u)(1)|

�
√
dm

(
‖∂r(Π1,m

N,nu− u)‖ωn−1 + ‖Π1,m
N,nu− u‖ωn−3

)

+ 2k2‖Π1,m
N,nu− u‖ωn−1 + (1 + dmk−2)2‖Π1,m

N,nu− u‖1,ωn−1

�
(√

dm + (1 + dmk−2)2 + k2N−1
)
N1−s‖(r − r2)

s−1
2 ∂s

ru‖ωn−1

+
√
dm‖Π1,m

N,nu− u‖ωn−3 .

(3.11)

Hence, we can obtain (3.10) by using (3.8) to estimate the last term in (3.11).
Remark 3.2. For n = 1, an error estimate of the same order as in (3.9) was

derived in [19] for the hp FEM under the condition kh � 1. Our estimate is valid
without any restriction on k and N and is bounded by a weaker weighted seminorm.

Although we believe that the estimate (3.10), modulo perhaps a logarithmic term,
is also valid for the case n = 2 with m > 0, the above proof cannot be directly extended
to this case due to a breakdown in the Hardy inequality (cf. [17]) as ε → 0,

∫ 1

0

u2

r2
r1−εdr ≤ 4

ε

∫ 1

0

(∂ru)2r1−εdr,(3.12)
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which indicates that ‖Π1,m
N,nu−u‖ω−1 in the last term of (3.11) cannot be bounded by

‖∂r(Π1,m
N,nu− u)‖ω.

Next, we perform the error estimate for the case n = 2 with m > 0 by using a
different approach.

Let am(u, v) := (∂ru, ∂rv)ω + dm(u, v)ω−1 and define the orthogonal projection
π1,m
N : X → XN by

am(π1,m
N u− u, vN ) = 0 ∀vN ∈ XN .(3.13)

To analyze the approximation properties of the above projector, we first consider an
auxiliary projection. Let ω̂ = r(1− r), let P 0

N := {u ∈ PN : u(0) = u(1) = 0}, and let
πN be the L2

ω̂−1-orthogonal projection onto P 0
N defined by

(πNu− u, vN )ω̂−1 = 0 ∀vN ∈ P 0
N .

The following result can be derived directly from the generalized Jacobi approximation
with parameters α = β = −1 (cf. Theorem 3.1 of [24]).

Lemma 3.4. For any u ∈ L2
ω̂−1(I) ∩ H̃s(I) with s ≥ 1, s ∈ N,

‖∂r(πNu− u)‖ + N‖(πNu− u)‖ω̂−1 � N1−s‖(r − r2)
s−1
2 ∂s

ru‖.(3.14)

Corollary 3.2. There exists an operator π1
N : H1(I) → PN such that (π1

Nu)(r) =

u(r) for r = 0, 1 and for any u ∈ H̃s(I), with s ≥ 1, s ∈ N,

‖∂r(π1
Nu− u)‖ + N‖π1

Nu− u‖ω̂−1 � N1−s‖(r − r2)
s−1
2 ∂s

ru‖.(3.15)

Proof. Let u∗(r) = (1 − r)u(0) + ru(1) ∈ P1 for all u ∈ H1(I). By construction,
we have (u − u∗)(r) = 0 for r = 0, 1. Next, we derive from the Hardy inequality
(cf. [17]) that

(∫ 1

0

(u− u∗)
2(r − r2)−1dr

) 1
2 �

(∫ 1

0

(∂r(u− u∗))
2dr

) 1
2

� ‖∂ru‖ + |u(1) − u(0)| � ‖∂ru‖ +

∫ 1

0

|∂ru|dr � ‖∂ru‖.
(3.16)

Hence, u− u∗ ∈ L2
ω̂−1(I) and we can define

π1
Nu = πN (u− u∗) + u∗ ∈ PN ∀u ∈ H1(I).

Clearly, (π1
Nu)(r) = u(r) for r = 0, 1, and by Lemma 3.4,

‖∂r(π1
Nu− u)‖ + N‖(π1

Nu− u)‖ω̂−1 � N1−s‖(r − r2)
s−1
2 ∂s

r(u− u∗)‖.(3.17)

Since ∂s
ru∗ ≡ 0 for s ≥ 2, and ∂ru∗ = u(1) − u(0), which implies that

‖∂ru∗‖ = |u(1) − u(0)| � ‖∂ru‖,

the desired result follows from (3.17).

Using the above corollary leads to the following lemma.
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Lemma 3.5. For any u ∈ X ∩ H̃s(I) with s ≥ 1, s ∈ N,

‖∂r(π1,m
N u− u)‖ω +

√
dm‖π1,m

N u− u‖ω−1

� (1 +
√
dmN−1)N1−s‖(r − r2)

s−1
2 ∂s

ru‖;
(3.18a)

‖π1,m
N u− u‖ω � (d

− 1
2

m + N−1)N1−s‖(r − r2)
s−1
2 ∂s

ru‖.(3.18b)

Proof. The definition (3.13) implies that for any φ ∈ XN ,

am(π1,m
N u− u, π1,m

N u− u) ≤ am(φ− u, φ− u).(3.19)

Taking φ = π1
Nu ∈ XN in (3.19), we obtain from Corollary 3.2 that

‖∂r(π1,m
N u− u)‖ω +

√
dm‖π1,m

N u− u‖ω−1 � ‖∂r(π1
Nu− u)‖ +

√
dm‖π1

Nu− u‖ω̂−1

� (1 +
√
dmN−1)N1−s‖(r − r2)

s−1
2 ∂s

ru‖.

Since ‖π1,m
N u− u‖ω ≤ ‖π1,m

N u− u‖ω−1 , (3.18b) follows from (3.18a).
We can now derive an error estimate for the case n = 2 with m > 0.
Theorem 3.3. If u ∈ X ∩ H̃s(I), with s ≥ 1 and s ∈ N, we have

‖∂r(u− uN )‖ω +
√
dm‖u− uN‖ω−1 + k‖u− uN‖ω

�
(
(1 +

√
dmN−1 + d2

mk−4) + k2(d
− 1

2
m + N−1)

)
N1−s‖(r − r2)

s−1
2 ∂s

ru‖.
(3.20)

Proof. Let us still denote eN = uN − π1,m
N u and ẽN = u− π1,m

N u. Due to (3.13),
the error equation (3.5) becomes

B(eN , vN ) = −k2(ẽN , vN )ω − ikẽN (1)vN (1).

Consequently, (3.6) is changed to

‖∂reN‖2
ω + dm‖eN‖2

ω−1 + k2‖eN‖2
ω � k4‖ẽN‖2

ω + k2(1 + d2
mk−4)|ẽN (1)|2.

Thus, following a procedure similar to that in the proof of Theorem 3.2, and thanks
to Lemma 3.5, we can obtain (3.20).

4. An alternate formulation and its numerical implementation. In this
section, we shall give an alternate formulation for problem (2.1)–(2.3), which is more
suitable for implementation and also leads to a convergence rate similar to that of
Theorem 3.2.

4.1. The formulation. We make the transform

u(r) = v(r)eikr, f(r) = h(r)eikr, r ∈ I,(4.1)

and we convert the problem (2.1)–(2.3) to

− 1

rn−1
∂r(r

n−1∂rv) + dm
v

r2
− ik

(
2∂rv + (n− 1)

v

r

)
= h,

r ∈ I := (0, 1), n = 1, 2, 3, m ≥ 0,
(4.2)

where v satisfies the Dirichlet boundary condition (2.2) and the Neumann boundary
condition:

v′(1) = g̃ := ge−ik.(4.3)
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Let the spaces X and XN be the same as before. The weak formulation of (4.2)
with (2.2) and (4.3) is to find v ∈ X such that

B̃(v, w) := (∂rv, ∂rw)ωn−1 + dm(v, w)ωn−3 − 2ik(∂rv, w)ωn−1

− (n− 1)ik(v, w)ωn−2 = (h,w)ωn−1 + g̃w(1) ∀w ∈ X.
(4.4)

The well-posedness of this formulation is guaranteed by (4.1) and Theorem 2.1.
The spectral-Galerkin approximation to (4.4) is to seek vN ∈ XN such that

B̃N (vN , wN ) = (h,wN )ωn−1 + g̃wN (1) ∀wN ∈ XN .(4.5)

Using a procedure similar to the one used before, we can derive corresponding a
priori estimates and error estimates. For simplicity, we consider the case g = 0.

Theorem 4.1. Let v and vN be the solutions of (4.4) and (4.5) with g̃ = 0 and
h ∈ L2

ωn−1(I). Then

‖∂rv‖ωn−1 +
√
dm‖v‖ωn−3 � ‖h‖ωn−1 ,(4.6)

‖∂rvN‖ωn−1 +
√
dm‖vN‖ωn−3 � ‖h‖ωn−1 .(4.7)

Proof. As in the proof of Theorem 2.2, we take two different test functions in
(4.4). We first take w = v in (4.4), whose real part is

‖∂rv‖2
ωn−1 + dm‖v‖2

ωn−3 + 2kIm(∂rv, v)ωn−1 = Re(h, v)ωn−1 ,(4.8)

and using integration by parts, its imaginary part becomes

−2kRe(∂rv, v)ωn−1 − (n− 1)k‖v‖2
ωn−2 = −k|v(1)|2 = Im(h, v)ωn−1 .(4.9)

Here, in the derivation of (4.8) (likewise for (4.10) below), we have used the fact
Re(i(u, v)) = −Im(u, v).

Next, we take w = 2r∂rv (∈ X) in (4.4), and thanks to (2.24a)–(2.24b), its real
part becomes

(2 − n)(‖∂rv‖2
ωn−1 + dm‖v‖2

ωn−3) + dm|v(1)|2

+ 2(n− 1)kIm(v, ∂rv)ωn−1 = 2Re(h, r∂rv)ωn−1 .
(4.10)

As a consequence of (4.10), we have that for n = 1 (we recall that dm = 0 in this
case),

‖∂rv‖2 ≤ 2‖h‖ω2‖∂rv‖ ≤ 2‖h‖‖∂rv‖,(4.11)

which implies (4.6) with n = 1.
It remains to prove (4.6) with n = 2, 3. Since ∂rv(1) = 0, it is easy to verify

Im(∂rv, v)ωn−1 = −Im(v, ∂rv)ωn−1 .(4.12)

Therefore, multiplying (4.8) by n− 1 and adding the resulting equation to (4.10), we
derive from the Cauchy–Schwarz inequality that

‖∂rv‖2
ωn−1 + dm‖v‖2

ωn−3 + dm|v(1)|2 = (n− 1)Re(h, v)ωn−1

+ 2Re(h, r∂rv)ωn−1 ≤ 2‖h‖ωn−1‖v‖ωn−1 +
1

4
‖∂rv‖2

ωn−1 + 4‖h‖2
ωn−1 .

(4.13)
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Clearly, we have

|v(1)|2 =

∫ 1

0

∂r(|v(r)|2rn)dr = n

∫ 1

0

|v(r)|2rn−1dr + 2

∫ 1

0

∂rv(r)v(r)r
ndr,

and by the Cauchy–Schwarz inequality,

n‖v‖2
ωn−1 ≤ |v(1)|2 + 2‖v‖ωn−1‖∂rv‖ωn+1 ≤ |v(1)|2 +

n

2
‖v‖2

ωn−1 +
2

n
‖∂rv‖2

ωn−1 ,

which together with (4.9) leads to

‖v‖2
ωn−1 ≤ 2

n
|v(1)|2 +

4

n2
‖∂rv‖2

ωn−1 ≤ 2

nk
|Im(h, v)ωn−1 | + 4

n2
‖∂rv‖2

ωn−1

≤ 1

2
‖v‖2

ωn−1 +
2

n2k2
‖h‖2

ωn−1 +
4

n2
‖∂rv‖2

ωn−1 .

(4.14)

As a result of (4.13) and (4.14), we obtain

‖∂rv‖2
ωn−1 + dm‖v‖2

ωn−3 ≤ 2‖h‖ωn−1

( 2

nk
‖h‖ωn−1 +

2
√

2

n
‖∂rv‖ωn−1

)

+
1

4
‖∂rv‖2

ωn−1 + 4‖h‖2
ωn−1 ≤ 1

2
‖∂rv‖2

ωn−1 +
( 4

nk
+

32

n2
+ 4

)
‖h‖2

ωn−1 .

This completes the proof of (4.6).
Since r∂rvN ∈ XN , we have the same results for the numerical solution vN .
Thanks to the above theorem, we can derive the following convergence result by

using an argument similar to the proof of Theorem 3.2.
Theorem 4.2. Let v and vN be, respectively, the solutions of (4.4) and (4.5) with

g̃ = 0, and we have
(i) for n = 1, 3 or n = 2,m = 0, and v ∈ X ∩ H̃s

ωn−1(I) with s ≥ 1 and s ∈ N,

‖∂r(v − vN )‖ωn−1 +
√
dm‖v − vN‖ωn−3 � (k +

√
dm)N1−s‖(r − r2)

s−1
2 ∂s

rv‖ωn−1 ;

(4.15)

(ii) for n = 2, m > 0, and v ∈ X ∩ H̃s(I), with s ≥ 1 and s ∈ N,

‖∂r(v − vN )‖ω +
√
dm‖v − vN‖ω−1

�
(
(1 +

√
dmN−1) + k2(d

− 1
2

m + N−1)
)
N1−s‖(r − r2)

s−1
2 ∂s

rv‖.
(4.16)

Proof. Let Π1,m
N,n be the orthogonal projection defined in (3.2), and denote eN =

vN − Π1,m
N,nv and êN = v − Π1,m

N,nv. Like (3.5), the error equation is

B̃(eN , wN ) = dm(êN , wN )ωn−3 − 2ik(∂r êN , wN )ωn−1 − (n− 1)ik(êN , wN )ωn−2 .

Therefore, taking the test function wN = eN , r∂reN , setting h = −2ik∂r êN − (n −
1)ikr−1êN in (4.5), and dealing with the term dm(êN , wN )ωn−3 the same as that in
the proof of Lemma 3.2, we obtain

‖∂reN‖2
ωn−1 + dm‖eN‖2

ωn−3 � (k2 + dm)(‖∂r êN‖2
ωn−1 + ‖êN‖2

ωn−3).

The rest of the proof of (4.15) is similar to that of Theorem 3.2.
The estimate (4.16) can be proved in the same fashion by using the results in

Lemma 3.5.
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4.2. Numerical implementations.

4.2.1. Choice of basis functions. Without loss of generality, we still assume
that g̃ = 0 in (4.2). For computational convenience, we transform I = (0, 1) to the
reference interval Î = (−1, 1) with x = 2r − 1, r = 1

2 (1 + x), r ∈ I, x ∈ Î . As
demonstrated in [22, 23], it is advantageous to construct basis function satisfying
the underlying homogeneous boundary conditions by using compact combinations of
orthogonal polynomials. Hence, we define

WN = W
(m,n)
N := {w ∈ PN : w′(1) = 0; w(−1) = 0 if n = 1 and if n = 2 with m > 0},

and we let Ll(x) denote the Legendre polynomial of degree l. Define

φj(x) := (Lj(x) + Lj+1(x)) −
(j + 1

j + 2

)2

(Lj+1(x) + Lj+2(x));

ψj(x) := Lj(x) − j

j + 2
Lj+1(x).

(4.17)

Since Ll(−1) = (−1)l and L′
l(1) = 1

2 l(l + 1), one can verify easily that

φj(−1) = φ′
j(1) = ψ′

j(1) = 0.(4.18)

Hence, for n = 1 or n = 2 with m > 0, W
(m,n)
N = span{φj : j = 0, 1, . . . , N − 2}; and

for n = 3 or n = 2 with m = 0, W
(m,n)
N = span{ψj : j = 0, 1, . . . , N − 1}.

Now, let us write

vN (r) := wR
N (x) + iwI

N (x), 2n−3rn−1h(r) := qR(x) + iqI(x),(4.19)

where wR
N , wI

N , qR, and qI are real functions in Î. Our spectral-Galerkin algorithm is
to seek wR

N , wI
N ∈ WN such that for any real polynomials φ, ψ ∈ WN ,

((1 + x)n−1∂xw
R
N , ∂xφ) + dm((1 + x)n−3wR

N , φ) + k((1 + x)n−1∂xw
I
N , φ)

+
n− 1

2
k((1 + x)n−2wI

N , φ) = (qR, φ);

((1 + x)n−1∂xw
I
N , ∂xψ) + dm((1 + x)n−3wI

N , ψ) − k((1 + x)n−1∂xw
R
N , ψ)

− n− 1

2
k((1 + x)n−2wR

N , φ) = (qI , ψ).

(4.20)

Thanks to the nice properties of the Legendre polynomials, one can find that the coef-
ficient matrix of the above system is sparse, and its nonzero entries can be determined
exactly.

4.2.2. Numerical results. We present some numerical results for the problem
(2.1)–(2.3) by using the schemes proposed above.

Example 1. We consider (2.1)–(2.3) with n = 2, dm = 100, and g = 0 and set
the exact solution to be

u(r) = v(r)eikr, r ∈ I,(4.21)

where v(r) = (cos 2k−cos(2k(1−r)))+i( 1
k (sin 2k−sin(2k(1−r)))−2r cos(2k(1−r)))

is the exact solution of the transformed problem (4.2).
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Fig. 4.1. Left: exact solution vs. numerical solution. Right: errors vs. N (k = 100).
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In Figure 4.1 (left), we plot the numerical solution at Legendre–Gauss–Lobatto
points with k = 80 and N = 96 (asterisk-markers for the real part (raised by 5 unit)
and plus-markers for the imaginary part) vs. the exact solution (solid line).

We now examine the convergence rate. According to Theorem 3.3, the predicted
order of convergence for the exact solution (4.21) is

‖u− uN‖ω ∼ k1+sN1−s, N � 1, k > 0, s ≥ 1.(4.22)

In Figure 4.1 (right), we fix the wave number k = 100 and plot the discrete L2-
errors and relative errors at r = 1 vs. different modes N. As expected, an exponential
convergence rate is observed once N is large enough to resolve the oscillation.

Next, we fix α = k
N and examine the error behavior with respect to α. In Figure

4.2, we plot the discrete L2-errors with 0.5 ≤ α ≤ 1, 50 ≤ k ≤ 150, and N = k
α . The

results indicate that the proposed scheme can provide very accurate approximations
to highly oscillatory solutions under the condition k

N = α < 1, which is necessary for
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convergence (cf. [13]).

Example 2. We consider the problem (2.1)–(2.3) with n = 2 and dm = 1. An
exact solution is

u(r) = J1(kr), with f ≡ 0 and g = k(J ′
1(k) − iJ1(k)),(4.23)

where J1(·) is the first degree Bessel function of the first kind. As pointed out in [26],
we have the following asymptotic property:

u(r) = J1(kr) =

√
2

πkr
cos

(
kr − 3

4
π

)
+ O((kr)−

3
2 ) if kr � 1.(4.24)

Hence, the solution is highly oscillating when the wave number k is large (see Figure

4.3 (left)). We derive from (4.24) that the expected convergence rate is k
1
2+sN1−s. In

Figure 4.3 (left), we plot the exact solution vs. the numerical solution with k = 200
and N = 256. In this case, the discrete L2-error is 2.45 × 10−15 and relative error at
r = 1 is 3.84 × 10−13. The error behaviors with several fixed α = k

N are plotted in
Figure 4.3 (right), which demonstrates that the spectral-Galerkin method is capable
of providing very accurate results even for α close to 1.

5. Extensions to multidimensional cases. The results we derived for the
prototypical 1-D problem (2.1)–(2.3) (with n = 2, 3) can be used to derive error
estimates for the spectral-Galerkin approximation to the multidimensional problem
(1.2). As an example, we consider the case n = 3:

−ΔU − k2U = F in Ω̂ := {(x, y, z) : a2 < x2 + y2 + z2 < b2},
∂rU − ikU = G on Sb := {(x, y, z) : x2 + y2 + z2 = b2},

U = 0 on Sa := {(x, y, z) : x2 + y2 + z2 = a2} if a > 0.

(5.1)

Applying the spherical transformation

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ(5.2)
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to (5.1) and setting u(r, θ, φ) = U(x, y, z), f(r, θ, φ) = F (x, y, z), g(θ, φ) = G(x, y, z),
and S := [0, 2π) × [0, π), we obtain

−
( ∂2

∂r2
+

2

r

∂

∂r
+

1

r2
ΔS

)
u− k2u = f in Ω := (a, b) × S,

∂ru− iku = g on Sb,

u = 0 on Sa if a > 0,

(5.3)

where ΔS is the Laplace–Beltrami operator (the Laplacian on the unit sphere S):

ΔS =
1

sin2 φ

∂2

∂θ2
+

cosφ

sinφ

∂

∂φ
+

∂2

∂2φ
.(5.4)

We recall that the spherical harmonic functions {Yl,m} are the eigenfunctions of the
Laplace–Beltrami operator (see [25])

−ΔSYl,m(θ, φ) = m(m + 1)Yl,m(θ, φ)(5.5)

and are defined by

Yl,m(θ, φ) =

√
(2m + 1)(m− l)!

4π(m + l)!
eilθP l

m(cosφ), m ≥ |l| ≥ 0,

where P l
m(x) is the associated Legendre functions given by

P l
m(x) =

(−1)l

2mm!
(1 − x2)

l
2
dm+l

dxm+1
{(x2 − 1)m}.

The set of harmonic functions forms a complete orthonormal system in L2(S), i.e.,

∫ 2π

0

∫ π

0

Yl,m(θ, φ)Yl′,m′(θ, φ) sinφdφdθ = δl,l′δm,m′ .(5.6)

Hence, for any function U(x, y, z) ∈ L2(Ω̂), the function u(r, θ, φ) = U(x, y, z) can be
expanded as

u =

∞∑
|l|=0

∞∑
m≥|l|

ulm(r)Yl,m(θ, φ), with ulm(r) =

∫
S

u(r, θ, φ)Y l,m(θ, φ)dS,(5.7)

and we have

‖u‖2
L2

ω2 (Ω) =

∞∑
|l|=0

∞∑
m≥|l|

‖ulm‖2
ω2 = ‖U‖2

L2(Ω̂)
(ω2 = r2).(5.8)

For a scalar function v on S, the gradient operator �∇S on the unit sphere is
defined by �∇Sv =

(
1

sinφ∂θv, ∂φv
)
. One can verify readily that

−(ΔSu, v)S = (�∇Su, �∇Sv)S ∀u, v ∈ D(ΔS),(5.9)

where D(ΔS) is the domain of the Laplace–Beltrami operator ΔS . In particular, as a
consequence of (5.5)–(5.9), we have

(�∇SYl,m, �∇SYl,m)S = m(m + 1), m ≥ |l| ≥ 0.(5.10)
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Accordingly, we can define the Sobolev space on S:

H1(S) := {u : u is measurable on S and ‖u‖2
H1(S) < ∞},

where ‖u‖H1(S) =
(
‖u‖2

L2(S) + ‖�∇Su‖2
L2(S)

) 1
2 .

The variational formulation of (5.3) is to find u ∈ V := H1
ω2(I;L2(S))∩L2(I;H1(S))

such that (ω2 = r2)

a(u, v) := (∂ru, ∂rv)ω2,Ω + (�∇Su, �∇Sv)Ω − k2(u, v)ω2,Ω

− ikb2(u(b, ·), v(b, ·))S = (f, v)ω2,Ω + b2(g, v(b, ·))S ∀v ∈ V.
(5.11)

The spectral-Galerkin approximation of (5.11) is to find uMN ∈ VMN such that

a(uMN , v) = (f, v)ω2,Ω + b2(g, v(b, ·))S ∀v ∈ VMN ,(5.12)

where VMN := WM ×XN , and

WM := span{Yl,m : 0 ≤ |l| ≤ m ≤ M}, XN := {u ∈ PN : u(a) = 0 if a > 0}.

Hence, we can write

(u(r, θ, φ), f(r, θ, φ), g(θ, φ)) =
∞∑

|l|=0

∞∑
m≥|l|

(ulm(r), flm(r), glm)Yl,m(θ, φ);(5.13a)

uMN (r, θ, φ) =

M∑
|l|=0

M∑
m≥|l|

uN
lm(r)Yl,m(θ, φ).(5.13b)

In order to describe the error bounds, we define a nonisotropic space H̃s
ω2(I;Ht(S))

as follows:

H̃s
ω2(I;Ht(S)) =

⎧⎨
⎩u ∈ L2

ω2(Ω) :

∞∑
|l|=0

∞∑
m≥|l|

mt(m + 1)t‖ulm‖2

H̃s

ω2 (I)
< +∞

⎫⎬
⎭ ,(5.14)

where {ulm} are the expansion coefficients of u in terms of Yl,m as in (5.7). Thanks

to (5.10), we can define the norm on H̃s
ω2(I;Ht(S)) by

‖u‖
H̃s

ω2 (I;Ht(S))
=

⎛
⎝ ∞∑

|l|=0

∞∑
m≥|l|

mt(m + 1)t‖ulm‖2

H̃s

ω2 (I)

⎞
⎠

1
2

(5.15)

and its seminorm by replacing ‖ulm‖
H̃s

ω2 (I)
with |ulm|

H̃s

ω2 (I)
. In particular, L2

ω2(I;Ht(S))

= H̃0
ω2(I;Ht(S)) and H̃s

ω2(I;L2(S)) = H̃s
ω2(I;H0(S)).

5.1. In a sphere (a = 0). Without loss of generality, we assume that b = 1. In
this case, we can show that {ulm} (resp., {uN

lm}) satisfy the 1-D problem (2.5) (resp.,
(3.1)) with n = 3 and f, g being replaced by flm and glm, respectively.

Theorem 5.1. Let u and uMN be, respectively, the solutions of (5.11) and (5.12),
and denote e = u− uMN . Then if

u ∈ L2(I;Ht(S)) ∩H1
ω2(I;Ht−1(S)) ∩ H̃s

ω2(I;L2(S)), s, t ≥ 1, s, t ∈ N,(5.16)
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we have

‖∂re‖L2

ω2 (Ω) + ‖�∇Se‖L2(Ω) + k‖e‖L2

ω2 (Ω)

� C∗

(
(M + M4k−4 + k2N−1)N1−s + M1−t(1 + kM−1)

)
,

(5.17)

where C∗ is a positive constant depending only on the seminorms of u in the spaces
mentioned in (5.16).

Proof. Let elm(r) = ulm(r) − uN
lm(r). We deduce from Theorem 3.2 that

‖∂relm‖L2

ω2 (I) +
√
dm‖elm‖L2(I) + k‖elm‖L2

ω2 (I)

�
(
1 +

√
dm + d2

mk−4 + k2N−1
)
N1−s|elm|

H̃s

ω2 (I)
,

(5.18)

where dm = m(m + 1). Therefore, by (5.6)–(5.10) and (5.13b)–(5.14),

‖∂re‖2
L2

ω2 (Ω) + ‖�∇Se‖2
L2(Ω) + k2‖e‖2

L2

ω2 (Ω)

=

M∑
|l|=0

M∑
m≥|l|

(
‖∂relm‖2

L2

ω2 (I) + dm‖elm‖2
L2(I) + k2‖elm‖2

L2

ω2 (I)

)

+

⎛
⎝ ∞∑

|l|=0

∞∑
m>M

+

∞∑
|l|>M

∞∑
m≥|l|

⎞
⎠(

‖∂rulm‖2
L2

ω2 (I) + dm‖ulm‖2
L2(I) + k2‖ulm‖2

L2

ω2 (I)

)

�
(
1 +

√
dM + d2

Mk−4 + k2N−1
)2

N2−2s
M∑

|l|=0

M∑
m≥|l|

|ulm|2
H̃s

ω2 (I)

+ d1−t
M

∞∑
|l|=0

∞∑
m≥|l|

(
dt−1
m (‖∂rulm‖2

L2

ω2 (I) + dm‖ulm‖2
L2(I) + k2‖ulm‖2

L2

ω2 (I))
)

� (M + M4k−4 + k2N−1)2N2−2s|u|2
H̃s

ω2 (I;L2(S))

+ d1−t
M

(
|u|2H1

ω2 (I;Ht−1(S)) + |u|2L2(I;Ht(S)) + k2d−1
m |u|2L2

ω2 (I;Ht(S))

)
,

which implies the desired result.

5.2. In a spherical shell (a > 0). In this case, {ulm} are the solutions of

B̂lm(ulm, v) = (flm, v)ω2 + b2glmv(b) ∀v ∈ X, 0 ≤ |l| ≤ m,(5.19)

where X := {u ∈ H1(I) : u(a) = 0}, and

B̂lm(u, v) := (∂ru, ∂rv)ω2 + dm(u, v) − k2(u, v)ω2 − ikb2u(b)v(b),(5.20)

with ω2 = r2, dm = m(m+1). The numerical approximations uN
lm (0 ≤ |l| ≤ m, m =

0, 1, . . . ,M) are defined by

B̂lm(uN
lm, vN ) = (flm, vN )ω2 + b2glmvN (b) ∀vN ∈ XN := X ∩ PN .(5.21)

Since ulm, (r−a)ulm ∈ X (resp., uN
lm, (r−a)uN

lm ∈ XN ), we can use them as test
functions in (5.19) (resp., (5.21)), and derive the following results using an argument
analogous to that in the proof of Theorem 2.2.
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Lemma 5.1. Let {ulm} and {uN
lm} be, respectively, the solution of (5.19) and

(5.21). Then there exists ξ ∈ (a, b) such that for Cξ := (2 − 2a
ξ )−1, we have

‖∂rulm‖2
L2

ω2 (I) + dm‖ulm‖2
L2(I) + k2‖ulm‖2

L2

ω2 (I) � Cξb
3(|glm|2 + b2‖flm‖2

L2

ω2 (I)),

‖∂ruN
lm‖2

L2

ω2 (I) + dm‖uN
lm‖2

L2(I) + k2‖uN
lm‖2

L2

ω2 (I) � Cξb
3(|glm|2 + b2‖flm‖2

L2

ω2 (I)).

The above a priori estimates allow us to perform the error analysis for the spherical
shell case. Similar to the case a = 0, we can prove the following.

Theorem 5.2. Let u and uMN be, respectively, the solutions of (5.11) and (5.12),
and denote e = u− uMN . Then if

u ∈ L2((a, b);Ht(S)) ∩H1
ω2((a, b);Ht−1(S)) ∩ H̃s

ω2((a, b);L2(S)), s, t ≥ 1, s, t ∈ N,

there exists ξ ∈ (a, b) such that for Cξ := (2 − 2a
ξ )−1, we have

‖∂re‖L2

ω2 (Ω) + ‖�∇Se‖L2(Ω) + k‖e‖L2

ω2 (Ω)

� C∗b
2(1 +

√
Cξ)

(
(M + M4k−4 + k2N−1)N1−s + M1−t(1 + kM−1)

)
,

where C∗ is a positive constant depending only on the seminorms of u in the spaces
mentioned in (5.16).

Remark 5.1. A similar procedure can be performed for the Helmholtz equation
(1.2) in a 2-D axisymmetric domain (n = 2) by using a Fourier expansion in the
θ-direction.

6. Concluding remarks. We presented in this paper a complete error analysis
and an efficient numerical algorithm for the spectral-Galerkin approximation of the
Helmholtz equation with high wave numbers in a 1-D domain as well as in multidi-
mensional radial and spherical symmetric domains.

Our analysis is made possible by using two new arguments: (i) we employed a new
procedure advocated in [7] which allowed us to obtain sharp (in terms of k) a priori
estimates for both the continuous and discrete problems; (ii) we used new Jacobi and
generalized Jacobi approximation results developed recently in [16, 24] which enabled
us to derive optimal estimates for the cases n = 2, 3 which involve degenerate/singular
coefficients.

Unlike in most of the previous studies on the approximation of the Helmholtz
equation with high wave numbers, our analysis does not rely on explicit knowledge
of continuous/discrete Green’s functions and is valid without any restriction on the
wave number k and the discretization parameter N . Hence, it is possible to extend our
results to more complex problems such as Helmholtz equations in an inhomogeneous
medium and to more complex domains through a suitable mapping or a domain
perturbation technique.

Acknowledgment. The authors would like to thank Dr. Xiaobing Feng for many
stimulating discussions and helpful suggestions.
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AN ADAPTIVE PERFECTLY MATCHED LAYER TECHNIQUE FOR
TIME-HARMONIC SCATTERING PROBLEMS∗
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Abstract. We develop an adaptive perfectly matched layer (PML) technique for solving the
time-harmonic scattering problems. The PML parameters such as the thickness of the layer and
the fictitious medium property are determined through sharp a posteriori error estimates. The
derived finite element a posteriori estimate for adapting meshes has the nice feature that it decays
exponentially away from the boundary of the fixed domain where the PML layer is placed. This
property makes the total computational costs insensitive to the thickness of the PML absorbing
layers. Numerical experiments are included to illustrate the competitive behavior of the proposed
adaptive method.
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1. Introduction. We propose and study an adaptive perfectly matched layer
(PML) technique for solving Helmholtz-type scattering problems with perfectly
conducting boundary:

Δu + k2u = 0 in R
2\D̄,(1.1a)

∂u

∂n
= −g on ΓD,(1.1b)

√
r

(
∂u

∂r
− iku

)
→ 0 as r = |x| → ∞.(1.1c)

Here D ⊂ R
2 is a bounded domain with Lipschitz boundary ΓD, g ∈ H−1/2(ΓD)

is determined by the incoming wave, and n is the unit outer normal to ΓD. We assume
the wave number k ∈ R is a constant. We remark that the results in this paper can
be easily extended to solve the scattering problems with other boundary conditions
such as Dirichlet or the impedance boundary condition on ΓD, or to solve the acoustic
wave propagation through inhomogeneous media with a variable wave number k2(x)
inside some bounded domain.

Since the work of Berenger [3] which proposed a PML technique for solving with
the time-dependent Maxwell equations, various constructions of PML absorbing layers
have been proposed and studied in the literature (cf., e.g., Turkel and Yefet [20], Teix-
eira and Chew [19] for the reviews). Under the assumption that the exterior solution
is composed of outgoing waves only, the basic idea of the PML technique is to sur-
round the computational domain by a layer of finite thickness with specially designed
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model medium that would either slow down or attenuate all the waves that propagate
from inside the computational domain. The PML equation for the time-harmonic
scattering problem (1.1a) is derived in Collino and Monk [10] by a complex extension
of the solution u in the exterior domain. It is proved in Lassas and Somersalo [13]
and Hohage, Schmidt, and Zschiedrich [12] that the resultant PML solution converges
exponentially to the solution of the original scattering problem as the thickness of the
PML layer tends to infinity. We remark that in practical applications involving PML
techniques, one cannot afford to use a very thick PML layer if uniform finite element
meshes are used because it requires excessive grid points and hence more computer
time and more storage. On the other hand, a thin PML layer requires a rapid vari-
ation of the artificial material property which deteriorates the accuracy if too coarse
mesh is used in the PML layer.

A posteriori error estimates are computable quantities in terms of the discrete
solution and data that measure the actual discrete errors without the knowledge of
exact solutions. They are essential in designing algorithms for mesh modification
which equidistribute the computational effort and optimize the computation. Ever
since the pioneering work of Babuška and Rheinboldt [2], the adaptive finite element
methods based on a posteriori error estimates have become a central theme in scientific
and engineering computations. The ability of error control and the asymptotically
optimal approximation property (see, e.g., Morin, Nochetto, and Siebert [17] and
Chen and Dai [5]) make the adaptive finite element method attractive for complicated
physical and industrial processes (cf., e.g., Chen and Dai [4] and Chen, Nochetto, and
Schmidt [7]). For the efforts to solve scattering problems using adaptive methods
based on a posterior error estimate, we refer to the recent work of Monk [15] and
Monk and Süli [16].

It is proposed in Chen and Wu [8] for scattering problem by periodic structures
(the grating problem) that one can use the a posteriori error estimate to determine
the PML parameters. Moreover, the derived a posteriori error estimate in [8] has the
nice feature of exponential decay in terms of the distance to the boundary of the fixed
domain where the PML layer is placed. This property leads to coarse mesh size away
from the fixed domain and thus makes the total computational costs insensitive to
the thickness of the PML absorbing layer.

In this paper we extend the idea of using a posteriori error estimates to determine
the PML parameters and propose an adaptive PML technique for solving the scat-
tering problem (1.1a)–(1.1c). The main difficulty of the analysis is that in contrast
to the grating problems in which there are only finite number of outgoing modes [8],
now there are infinite number of outgoing modes expressed in terms of Hankel func-
tions. We overcome this difficulty by exploiting the following uniform estimate for
the Hankel functions H1

ν , ν ∈ R:

|H (1)

ν (z)| ≤ e
−Im (z)

(
1− Θ2

|z|2

)1/2

|H (1)

ν (Θ)|(1.2)

for any z ∈ C++,Θ ∈ R such that 0 < Θ ≤ |z|, where C++ = {z ∈ C : Im (z) ≥
0,Re (z) ≥ 0}. To our knowledge this sharp estimate is new and allows us to prove
the exponentially decaying property of the PML solution without resorting to the
integral equation technique in [13] or the representation formula in [12]. We remark
that in [13], [12], it is required that the fictitious absorbing coefficient must be linear
after certain distance away from the boundary where the PML layer is placed. The
estimate (1.2) is proved in Lemma 2.2 which depends on the Macdonald formula for
the modified Bessel functions. We also remark that since (1.2) is valid for all real
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order ν, the results of this paper can be extended directly to study three-dimensional
Helmholtz-type scattering problems. We will report progress in this direction as well
as the study of the electromagnetic scattering problems elsewhere in future.

Let ΩPML = Bρ\B̄R, where 0 < R < ρ and Ba denotes the circle of radius a > 0.
Let α(r) = 1 + iσ(r) be the fictitious medium property. In practical applications, σ
is usually taken as power functions:

σ = σ(r) = σ0

(
r −R

ρ−R

)m

for some constant σ0 > 0 and integer m ≥ 1.

Under the assumption that the Dirichlet problem of the PML equation in the PML
layer is uniquely solvable, we prove the following key estimate between the
Dirichlet-to-Neumann mapping for the original scattering problem T : H1/2(ΓR) →
H−1/2(ΓR) and the PML problem T̂ (cf. Lemma 2.5), where ΓR = ∂BR,

‖T − T̂ ‖L(H1/2(ΓR),H−1/2(ΓR)) ≤ C(1 + kR)2|α0|2e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

,

where α0 = 1 + iσ0 and ρ̃ =
∫ ρ

0
α(t)dt is the complex radius corresponding to ρ. We

remark that the assumption of the unique solvability of the PML Dirichlet problem in
the PML layer is rather mild in practical applications because standard Fredholm al-
ternative theory implies that the PML Dirichlet problem in the PML layer is uniquely
solvable for all but a discrete number of real k. Moreover, in the appendix of this
paper, we show that for any given ρ,R, the Dirichlet PML problem in the PML layer
is uniquely solvable for sufficiently large σ0 > 0.

The layout of the paper is as follows. In section 2 we recall the PML formulation
for (1.1a)–(1.1c), derive the key estimates for Hankel functions, and study the proper-
ties of the PML equation in the PML layer. Existence, uniqueness, and convergence
of the PML formulation are considered. In section 3 we introduce the finite element
discretization. In section 4 we derive the sharp a posteriori error estimate which lays
down the basis of the combined adaptive PML and finite element methods. In section
5 we discuss the implementation of the adaptive method and present several numer-
ical examples to illustrate the competitive behavior of the method. Finally in the
appendix we show the unique solvability of the Dirichlet PML problem in the PML
layer for sufficiently large σ0.

2. The PML formulation. Let D be contained in the interior of the circle
BR = {x ∈ R

2 : |x| < R}. We start by introducing an equivalent variational formu-
lation of (1.1a)–(1.1c) in the bounded domain ΩR = BR\D̄. In the domain R

2\B̄R,
the solution u of (1.1a)–(1.1c) can be written under the polar coordinates as follows:

u(r, θ) =
∑
n∈Z

H (1)
n (kr)

H (1)
n (kR)

ûne
inθ, ûn =

1

2π

∫ 2π

0

u(R, θ)e−inθdθ,(2.1)

where H (1)
n is the Hankel function of the first kind and order n. The series in (2.1)

converges uniformly for r > R (cf., e.g., Colten and Kress [11]). Let T : H1/2(ΓR) →
H−1/2(ΓR), where ΓR = ∂BR, be the Dirichlet-to-Neumann operator defined as
follows: for any f ∈ H1/2(ΓR),

Tf =
∑
n∈Z

k
H (1)

n
′(kR)

H (1)
n (kR)

f̂ne
inθ, f̂n =

1

2π

∫ 2π

0

fe−inθdθ.(2.2)
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It is known that T is well-defined and the solution u written as in (2.1) satisfies

∂u

∂n

∣∣∣
ΓR

= Tu.

Let a : H1(ΩR) ×H1(ΩR) → C be the sesquilinear form:

a(ϕ,ψ) =

∫
ΩR

(
∇ϕ · ∇ψ̄ − k2ϕψ̄

)
dx− 〈Tϕ, ψ〉ΓR

,(2.3)

where 〈·, ·〉ΓR
stands for the inner product on L2(ΓR) or the duality pairing between

H−1/2(ΓR) and H1/2(ΓR). Similar notation applies for 〈·, ·〉ΓD
, 〈·, ·〉Γρ . The scattering

problem (1.1a)–(1.1c) is equivalent to the following weak formulation (cf., e.g., [11]):
given g ∈ H−1/2(ΓD), find u ∈ H1(ΩR) such that

a(u, ψ) = 〈g, ψ〉ΓD
∀ψ ∈ H1(ΩR).(2.4)

The existence of a unique solution of the variational problem (2.4) is known (cf., e.g.,
Colton and Kress [11] and McLean [14]). Then the general theory in Babuška and
Aziz [1, Chapter 5] implies that there exists a constant μ > 0 such that the following
inf-sup condition holds:

sup
0 �=ψ∈H1(ΩR)

|a(ϕ,ψ)|
‖ψ ‖H1(ΩR)

≥ μ‖ϕ ‖H1(ΩR) ∀ϕ ∈ H1(ΩR).(2.5)

Fig. 2.1. Setting of the scattering problem with the PML layer.

Now we turn to the introduction of the absorbing PML layer. We surround the
domain ΩR with a PML layer ΩPML = {x ∈ R

2 : R < |x| < ρ}. The specially designed
model medium in the PML layer should basically be so chosen that either the wave
never reaches its external boundary or the amplitude of the reflected wave is so small
that it does not essentially contaminate the solution in ΩR. Throughout the paper
we assume ρ ≤ CR for some generic fixed constant C > 0.

Let α(r) = 1 + iσ(r) be the model medium property which satisfies

σ ∈ C(R), σ ≥ 0, σ = 0 for r ≤ R.
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Denote by r̃ the complex radius defined by

r̃ = r̃(r) =

⎧⎨
⎩
r if r ≤ R,∫ r

0

α(t)dt = rβ(r) if r ≥ R.
(2.6)

Following [10], we introduce the PML equation

∇ · (A∇w) + αβk2w = 0 in ΩPML,(2.7)

where A = A(x) is a matrix which satisfies, in polar coordinates,

∇ · (A∇) =
1

r

∂

∂r

(
βr

α

∂

∂r

)
+

α

βr2

∂2

∂θ2
.(2.8)

The PML solution û in Ωρ = Bρ\D̄ is defined as the solution of the following system:

∇ · (A∇û) + αβk2û = 0 in Ωρ,(2.9a)

∂û

∂n
= −g on ΓD, û = 0 on Γρ.(2.9b)

This problem can be reformulated in the bounded domain ΩR by imposing the
boundary condition

∂û

∂n

∣∣∣
ΓR

= T̂ û,

where the operator T̂ : H1/2(ΓR) → H−1/2(ΓR) is defined as follows: given f ∈
H1/2(ΓR),

T̂ f =
∂ζ

∂n

∣∣∣
ΓR

,

where ζ ∈ H1(ΩPML) satisfies

∇ · (A∇ζ) + αβk2ζ = 0 in ΩPML,(2.10a)

ζ = f on ΓR, ζ = 0 on Γρ.(2.10b)

The existence and uniqueness of the solutions of the PML problems (2.10a)–
(2.10b) will be studied in the subsection 2.2 below.

On the basis of operator T̂ , we introduce the sesquilinear form â : H1(ΩR) ×
H1(ΩR) → C by

â(ϕ,ψ) =

∫
ΩR

(
A∇ϕ · ∇ψ̄ − k2αβϕψ̄

)
dx− 〈T̂ϕ, ψ〉ΓR

.(2.11)

Then the weak formulation for (2.9a)–(2.9b) is, given g ∈ H−1/2(ΓD), find û ∈
H1(ΩR) such that

â(û, ψ) = 〈g, ψ〉ΓD
∀ψ ∈ H1(ΩR).(2.12)

The well-posedness of the PML problem (2.12) and the convergence of its solution to
the solution of the original scattering problem (2.4) will be studied in the subsection
2.3. In the following we first derive some basic estimates for the Hankel function H (1)

n

which play a key role in the analysis in this paper.
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2.1. Hankel functions. For ν ∈ C, the two Hankel functions H (1)
ν (z), H(2)

ν (z),
where z ∈ C, are two fundamental solutions of the Bessel equation for functions of
order ν:

z2 d
2y

dz2
+ z

dy

dz
+ (z2 − ν2)y = 0,(2.13)

which satisfy the following asymptotic behaviors as |z| → ∞:

H (1)

ν (z) ∼
(

2

πz

) 1
2

ei(z−
1
2νπ−

1
4π), H (2)

ν (z) ∼
(

2

πz

) 1
2

e−i(z− 1
2νπ−

1
4π).(2.14)

We also need the Bessel functions of purely imaginary argument Kν(z), also called
the modified Bessel functions, which is the solution of the differential equation

z2 d
2y

dz2
+ z

dy

dz
− (z2 + ν2)y = 0.(2.15)

It is connected with H (1)
ν (z) through the relation

Kν(z) =
1

2
πie

1
2νπiH (1)

ν (iz).(2.16)

The importance of the function Kν(z) in mathematical physics lies in the fact that it
is a solution of (2.15) which tends to zero exponentially as z → ∞ through positive
values. We refer to the treatise by Watson [21] for extensive studies on the functions
H (1)

ν (z), H(2)
ν (z), and Kν(z).

The following lemma is proved in [21, p. 439].
Lemma 2.1 (Macdonald formula). For any ν ∈ C and z1, z2 ∈ C satisfying

| arg z1| < π, | arg z2| < π, | arg(z1 + z2)| <
1

4
π,

we have

Kν(z1)Kν(z2) =
1

2

∫ ∞

0

e−
v
2−

z2
1+z2

2
2v Kν

(z1z2

v

) dv

v
.

An important consequence of this lemma is that for real ν, Kν(z) has no zeros
if | arg z| ≤ 1

2π [21, p. 511], which, by (2.16), implies that H (1)
ν (z) has no zeros when

Im (z) ≤ 0 . In particular, we have H (1)
n (kR) �= 0 for any n ∈ Z, R > 0. This justifies

the writing of H (1)
n (kR) in the denominator in (2.1), (2.2).

Lemma 2.2. For any ν ∈ R, z ∈ C++ = {z ∈ C : Im (z) ≥ 0,Re (z) ≥ 0}, and
Θ ∈ R such that 0 < Θ ≤ |z|, we have

|H (1)

ν (z)| ≤ e
−Im (z)

(
1− Θ2

|z|2

)1/2

|H (1)

ν (Θ)|.(2.17)

This estimate, which to our knowledge is new, will play an important role in the
analysis of this paper. The importance of the estimate (2.17) lies in the fact that it is
uniform with respect to ν. We remark that the large argument asymptotic expansions
such as (2.14) in the literature usually depend on ν and thus are insufficient for our
purpose.



AN ADAPTIVE PML TECHNIQUE 651

Proof. By (2.16) we know that

|H (1)

ν (z)|2 = H (1)

ν (z)H (1)
ν (z) =

4

π2
Kν(−iz)Kν(−iz) =

4

π2
Kν(−iz)Kν(iz̄),

where we have used the formula Kν(z̄) = Kν(z) for real ν. Since z ∈ C++, we know
that | arg(−iz)| < π, | arg(iz̄)| < π, and | arg(−iz+ iz̄)| = 0 < π

4 . Thus by Lemma 2.1
we obtain

|H (1)

ν (z)|2 =
2

π2

∫ ∞

0

e−
v
2−

−z2−z̄2

2v Kν

(
|z|2
v

)
dv

v
.

After the change of variable w = |z|2/v, we get

|H (1)

ν (z)|2 =
2

π2

∫ ∞

0

e
− |z|2

2w + z2+z̄2

2|z|2 w
Kν(w)

dw

w
,

which, for any Θ > 0, we rewrite as

|H(1)

ν (z)|2 =
2

π2

∫ ∞

0

e
− |z|2−Θ2

2w − 2|z|2−z2−z̄2

2|z|2 w · e−Θ2

2w +wKν(w)
dw

w
.

Now for 0 < Θ ≤ |z|, by Cauchy–Schwarz inequality, we deduce that

e
− |z|2−Θ2

2w − 2|z|2−z2−z̄2

2|z|2 w
= e

− |z|2−Θ2

2w − 2Im (z)2

|z|2 w ≤ e
−2Im (z)

(
1− Θ2

|z|2

)1/2

.

Therefore,

|H (1)

ν (z)|2 ≤ e
−2Im (z)

(
1− Θ2

|z|2

)1/2 2

π2

∫ ∞

0

e−
Θ2

2w +wKν(w)
dw

w

= e
−2Im (z)

(
1− Θ2

|z|2

)1/2

|H (1)

ν (Θ)|2.

This completes the proof.
To proceed further, we recall the following Nicholson integral [21, p. 441]:

J2
ν (z) + Y 2

ν (z) =
8

π2

∫ ∞

0

K0(2z sinh t) cosh(2νt)dt for z ∈ C,Re (z) > 0.

Here K0(z) is the modified Bessel function of order zero in (2.16). Since cosh(t) =
(et + e−t)/2 is an increasing function in R

+, we have, for Θ > 0, n ≥ 1, that

J2
n−1(Θ) + Y 2

n−1(Θ) =
8

π2

∫ ∞

0

K0(2Θ sinh t) cosh(2(n− 1)t)dt

≤ 8

π2

∫ ∞

0

K0(2Θ sinh t) cosh(2nt)dt

= J2
n(Θ) + Y 2

n (Θ).

Thus,

|H (1)

n−1(Θ)| ≤ |H (1)

n (Θ)| for any Θ > 0, n ≥ 1.(2.18)
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Lemma 2.3. For any z ∈ C++ and Θ ∈ R such that 0 < Θ ≤ |z|, we have

|H (1)

n
′(z)| ≤ e

−Im (z)
(
1− Θ2

|z|2

)1/2
(

1 +
|n|
|z|

)
|H (1)

n (Θ)| for n ∈ Z, |n| ≥ 1,(2.19)

|H (1)

0
′(z)| ≤ e

−Im (z)
(
1− Θ2

|z|2

)1/2

|H (1)

0
′(Θ)|.(2.20)

Proof. Since H (1)

−n = einπH (1)
n (z), we only need to prove (2.19) for n ∈ Z, n ≥ 1.

By the formula

z
dH (1)

n (z)

dz
+ nH (1)

n (z) = zH (1)

n−1(z),

Lemma 2.2, and (2.18), we know that

|H (1)

n
′(z)| ≤ |H (1)

n−1(z)| +
n

|z| |H
(1)

n (z)|

≤ e
−Im (z)

(
1− Θ2

|z|2

)1/2
(
|H (1)

n−1(Θ)| + n

|z| |H
(1)

n (Θ)|
)

≤ e
−Im (z)

(
1− Θ2

|z|2

)1/2
(

1 +
n

|z|

)
|H (1)

n (Θ)|.

This proves (2.19). The estimate (2.20) can be proved similarly by using the formula
dH (1)

0 (z)/dz = −H (1)

1 (z). This completes the proof.

2.2. The PML equation in the layer. In this subsection we consider the
Dirichlet problem of the PML equation in the layer ΩPML:

∇ · (A∇w) + αβk2w = 0 in ΩPML,(2.21a)

w = 0 on ΓR, w = q on Γρ,(2.21b)

where q ∈ H1/2(Γρ). Let b̂ : H1(ΩPML) ×H1(ΩPML) → C be the sesquilinear form:

b̂(ϕ,ψ) =

∫ ρ

R

∫ 2π

0

(
βr

α

∂ϕ

∂r

∂ψ̄

∂r
+

α

βr

∂ϕ

∂θ

∂ψ̄

∂θ
− αβk2rϕψ̄

)
dr dθ.(2.22)

Then from (2.8) we know that the weak formulation for (2.21a)–(2.21b) is the
following: Given q ∈ H1/2(Γρ), find w ∈ H1(ΩPML) such that w = 0 on ΓR, w = q
on Γρ, and

b̂(w,ϕ) = 0 ∀ϕ ∈ H1
0 (ΩPML).(2.23)

We make the following assumption on the fictitious medium property σ, which is
rather mild in the practical application of the PML techniques:

(H1) σ = σ0

(
r −R

ρ−R

)m

for some constant σ0 > 0 and some integer m ≥ 1.

From (H1) we know that β(r) = 1 + iσ̂(r), where

σ̂(r) =
1

r

∫ r

R

σ(t)dt =
σ0

m + 1

r −R

r

(
r −R

ρ−R

)m

.
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Thus σ̂ ≤ σ for all r ≥ R. Notice that for α = 1 + iσ, β = 1 + iσ̂, we have

Re

(
β

α

)
=

1 + σσ̂

1 + σ2
, Re

(
α

β

)
=

1 + σσ̂

1 + σ̂2
, Re (αβ) = 1 − σσ̂

and, consequently,

Re [b̂(v, v)] =

∫ ρ

R

∫ 2π

0

[
1 + σσ̂

1 + σ2
r

∣∣∣∣∂v∂r
∣∣∣∣
2

+
1 + σσ̂

1 + σ̂2

1

r

∣∣∣∣∂v∂θ
∣∣∣∣
2

+ (σσ̂ − 1)k2r|v|2
]
dr dθ.

Since

1 + σσ̂

1 + σ2
≥ 1

1 + σ2
≥ |α0|−2,

1 + σσ̂

1 + σ̂2
≥ 1 ≥ |α0|−2,(2.24)

where α0 = 1 + iσ0, by using the analytic Fredholm alternative theorem we know
that the PML problem in the layer (2.23) exists a unique solution for every real k
except possibly for a discrete set of values of k (cf., e.g., the argument in [10, Theorem
2]). In this paper we will not elaborate on this issue and simply make the following
assumption:

(H2) There exists a unique solution to the Dirichlet PML problem (2.23) in the layer.

For any ϕ ∈ H1(ΩPML), define

‖ϕ ‖∗,ΩPML =

[∫ ρ

R

∫ 2π

0

(
1 + σσ̂

1 + σ2
r

∣∣∣∣∂ϕ∂r
∣∣∣∣
2

+
1 + σσ̂

1 + σ̂2

1

r

∣∣∣∣∂ϕ∂θ
∣∣∣∣
2

+ (1 + σσ̂)k2r|ϕ|2
)]1/2

.

It is easy to see that ‖ · ‖∗,ΩPML is an equivalent norm on H1(ΩPML). By using the

general theory in [1, Chapter 5], (H2) implies that there exists a constant Ĉ > 0 such
that

sup
0 �=ψ∈H1

0 (ΩPML)

|b̂(ϕ,ψ)|
‖ψ ‖∗,ΩPML

≥ Ĉ‖ϕ ‖∗,ΩPML ∀ϕ ∈ H1
0 (ΩPML).(2.25)

The constant Ĉ depends in general on the domain ΩPML and the wave number k. In
the appendix of the paper, however, we will show that for sufficiently large σ0, (H2)
can be proved and Ĉ can be chosen as independent of ΩPML and k. Without loss of
generality we assume Ĉ ≤ 1.

To proceed, we introduce the following notation. For any function ξ defined on a
circle Γa = {x ∈ R

2 : |x| = a} having the Fourier expansion:

ξ =
∑
n∈Z

ξ̂ne
inθ, ξ̂n =

1

2π

∫ 2π

0

ξe−inθdθ,

we define

‖ ξ ‖2
H1/2(Γa) = 2π

∑
n∈Z

(1 + n2)1/2|ξ̂n|2, ‖ ξ ‖2
H−1/2(Γa) = 2π

∑
n∈Z

(1 + n2)−1/2|ξ̂n|2.

The following theorem is the main objective of this subsection.
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Theorem 2.4. Let (H1)–(H2) be satisfied. There exists a constant C > 0 inde-
pendent of k, R, ρ, and σ0 such that the following estimates are satisfied:

‖ |α|−1∇w ‖L2(ΩPML) ≤ CĈ−1(1 + kR)|α0|‖ q ‖H1/2(Γρ),(2.26) ∥∥∥∥∂w∂n
∥∥∥∥
H−1/2(ΓR)

≤ CĈ−1(1 + kR)2|α0|2‖ q ‖H1/2(Γρ),(2.27)

where α0 = 1 + iσ0.
Proof. We first show that there exists a constant C independent of k, ρ,R, and

σ0 such that

|b̂(ϕ,ψ)| ≤ C(1 + kR)|α0|‖ψ ‖∗,ΩPML‖|ϕ‖|H1(ΩPML),(2.28)

where ‖|ϕ‖|H1(ΩPML) = (‖∇ϕ ‖2
L2(ΩPML) + R−2‖ϕ ‖2

L2(ΩPML))
1/2 is the weighted H1-

norm. In fact, since σ̂ ≤ σ ≤ σ0, we have
∣∣∣∣
∫ ρ

R

∫ 2π

0

(
β

α
r
∂ϕ

∂r

∂ψ̄

∂r
+

α

βr

∂ϕ

∂θ

∂ψ̄

∂θ
− αβk2rϕψ̄

)
dr dθ

∣∣∣∣

≤
(∫ ρ

R

∫ 2π

0

1 + σσ̂

1 + σ2
r

∣∣∣∣∂ψ∂r
∣∣∣∣
2
)1/2 (∫ ρ

R

∫ 2π

0

1 + σ̂2

1 + σσ̂
r

∣∣∣∣∂ϕ∂r
∣∣∣∣
2
)1/2

+

(∫ ρ

R

∫ 2π

0

1 + σσ̂

1 + σ̂2

1

r

∣∣∣∣∂ψ∂θ
∣∣∣∣
2
)1/2 (∫ ρ

R

∫ 2π

0

1 + σ2

1 + σσ̂

1

r

∣∣∣∣∂ϕ∂θ
∣∣∣∣
2
)1/2

+

(∫ ρ

R

∫ 2π

0

k2(1 + σσ̂)r|ψ|2
)1/2 (∫ ρ

R

∫ 2π

0

k2r
|αβ|2

1 + σσ̂
|ϕ|2

)1/2

≤ C(1 + kR)|α0|‖ψ ‖∗,ΩPML‖|ϕ‖|H1(ΩPML).

This implies the estimate (2.28).
Now we turn to the proof the estimate (2.26). Let ψ ∈ H1(ΩPML) such that

ψ = 0 on ΓR and ψ = q on Γρ. By taking ϕ = w−ψ ∈ H1
0 (ΩPML) in (2.23), we know

from (2.28) that

|b̂(ϕ,ϕ)| = |b̂(w − ψ,ϕ)| = |b̂(ψ,ϕ)| ≤ C(1 + kR)|α0|‖ϕ ‖∗,ΩPML‖|ψ‖|H1(ΩPML),

which implies by (2.25) that

‖ϕ ‖∗,ΩPML ≤ CĈ−1(1 + kR)|α0|‖|ψ‖|H1(ΩPML).

Notice that

‖ψ ‖∗,ΩPML ≤ C(1 + kR)|α0|‖|ψ‖|H1(ΩPML),

we get

‖w ‖∗,ΩPML = ‖ϕ + ψ ‖∗,ΩPML ≤ CĈ−1(1 + kR)|α0|‖|ψ‖|H1(ΩPML).

Since the above estimate is valid for any ψ ∈ H1(ΩPML) such that ψ = 0 on ΓR,
ψ = q on Γρ, we deduce by standard scaling argument using the assumption ρ ≤ CR
that

‖w ‖∗,ΩPML ≤ CĈ−1(1 + kR)|α0|‖ q ‖H1/2(Γρ).(2.29)

This shows the estimate (2.26) upon using (2.24).
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To show (2.27) we multiply the (2.21a) by any function ϕ ∈ H1(ΩPML) such that
ϕ = 0 on Γρ and integrate over ΩPML to obtain

−
∫

ΩPML

A∇w · ∇ϕdx−
∫

ΓR

∂w

∂r
ϕds +

∫
ΩPML

αβk2wϕdx = 0.

Thus ∣∣∣∣
∫

ΓR

∂w

∂r
ϕds

∣∣∣∣ = |b̂(w, ϕ̄)| ≤ C(1 + kR)|α0|‖w ‖∗,ΩPML‖|ϕ‖|H1(ΩPML)

for any ϕ ∈ H1(ΩPML) such that ϕ = 0 on Γρ. This implies by (2.29) that∣∣∣∣
∫

ΓR

∂w

∂r
ϕds

∣∣∣∣ ≤ CĈ−1(1 + kR)2|α0|2‖ q ‖H1/2(Γρ)‖ϕ‖H1/2(ΓR) ∀ϕ ∈ H1/2(ΓR).

This completes the proof of the theorem.

2.3. Convergence of the PML problem. In this subsection we consider the
convergence of the PML problem (2.12) to the original scattering problem (2.4). Fol-
lowing an idea in [13], for any function f ∈ H1/2(ΓR), we introduce the propagation
operator P : H1/2(ΓR) → H1/2(Γρ):

P (f) =
∑
n∈Z

H (1)
n (kρ̃)

H (1)
n (kR)

f̂ne
inθ, f̂n =

1

2π

∫ 2π

0

fe−inθdθ.(2.30)

By Lemma 2.2, it is easy to see that P : H1/2(ΓR) → H1/2(Γρ) is well-defined, and

‖P (f) ‖H1/2(Γρ) ≤ e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

‖ f ‖H1/2(ΓR) ∀r ≥ R.(2.31)

Moreover, by Theorem 2.4, under the assumptions (H1)–(H2), the operator T̂ :
H1/2(ΓR) → H−1/2(ΓR), which is defined through the Dirichlet problem of the PML
equation in the layer, is also well-defined. Furthermore, we have the following esti-
mate.

Lemma 2.5. Let (H1)–(H2) be satisfied. We have

‖Tf − T̂ f ‖H−1/2(ΓR) ≤ CĈ−1(1 + kR)2|α0|2e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

‖ f ‖H1/2(ΓR).

Proof. For any f ∈ H1/2(ΓR), we know that

Tf − T̂ f =
∂w

∂n

∣∣∣
ΓR

,

where w ∈ H1(ΩPML) satisfies

∇ · (A∇w) + αβk2w = 0 in ΩPML,

w = 0 on ΓR, w = P (f) on Γρ.

By (2.27) and (2.31) we then have∥∥∥∥∂w∂n
∥∥∥∥
H−1/2(ΓR)

≤ CĈ−1(1 + kR)2|α0|2‖P (f) ‖H1/2(Γρ)

≤ CĈ−1(1 + kR)2|α0|2e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

‖ f ‖H1/2(ΓR).

This completes the proof.
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The following theorem is the main result of this section.
Theorem 2.6. Let (H1)–(H2) be satisfied. Then for sufficiently large σ0 > 0,

the PML problem (2.12) has a unique solution û ∈ H1(Ωρ). Moreover, we have the
following estimate:

‖u− û ‖H1(ΩR) ≤ CĈ−1(1 + kR)2|α0|2e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

‖ û ‖H1/2(ΓR).(2.32)

Proof. The existence of a unique solution for (2.12) follows from Lemma 2.5 by
using the same argument as in [8, Theorem 2.4]. Next, by (2.4) and (2.12), we have

a(u− û, ϕ) = â(û, ϕ) − a(û, ϕ) = 〈T û− T̂ û, ϕ〉ΓR
∀ϕ ∈ H1(ΩPML).

This implies the desired estimate (2.32) upon using Lemma 2.5 and (2.5).

3. Finite element approximations. In this section we introduce the finite
element approximations of the PML problems (2.9a)–(2.9b). From now on we assume
g ∈ L2(ΓD). Let b : H1(Ωρ) ×H1(Ωρ) → C be the sesquilinear form given by

b(ϕ,ψ) =

∫
Ωρ

(
A∇ϕ · ∇ψ̄ − αβk2ϕψ̄

)
dx.(3.1)

Denote by H1
(0)(Ωρ) = {v ∈ H1(Ωρ) : v = 0 on Γρ}. Then the weak formulation of

(2.9a)–(2.9b) is, given g ∈ L2(ΓD), find û ∈ H1
(0)(Ωρ) such that

b(û, ψ) =

∫
ΓD

gψ̄ds ∀ψ ∈ H1
(0)(Ωρ).(3.2)

Let Γh
ρ , which consists of piecewise segments whose vertices lie on Γρ, be an

approximation of Γρ. Let Ωh
ρ be the subdomain of Ωρ bounded by ΓD and Γh

ρ . Let

Mh be a regular triangulation of the domain Ωh
ρ . We assume the elements K ∈ Mh

may have one curved edge align with ΓD so that Ωh
ρ = ∪K∈Mh

K.

Let Vh ⊂ H1(Ωh
ρ) be the conforming linear finite element space over Ωh

ρ , and◦
V h = {vh ∈ Vh : vh = 0 on Γh

ρ}. In the following we will always assume that the

functions in
◦
V h are extended to the domain Ωρ by zero so that any function vh ∈

◦
V h

is also a function in H1
(0)(Ωρ). The finite element approximation to the PML problems

(2.9a)–(2.9b) reads as follows: Find uh ∈
◦
V h such that

b(uh, ψh) =

∫
ΓD

gψ̄hds ∀ ψh ∈
◦
V h.(3.3)

Following the general theory in [1, Chapter 5], the existence of unique solution of
the discrete problem (3.3) and the finite element convergence analysis depend on the
following discrete inf-sup condition:

sup

0 �=ψh∈
◦
V h

|b(ϕh, ψh)|
‖ψh ‖H1(Ωρ)

≥ μ̂ ‖ϕh ‖H1(Ωρ) ∀ ϕh ∈
◦
V h,(3.4)

where the constant μ̂ > 0 is independent of the finite element mesh size. Since the
continuous problem (3.2) has a unique solution by Theorem 2.6, the sesquilinear form
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b : H1
(0)(Ωρ)×H1

(0)(Ωρ) → C satisfies the continuous inf-sup condition. Then a general

argument of Schatz [18] implies (3.4) is valid for sufficiently small mesh size h < h∗.
On the basis of (3.4), appropriate a priori error estimate can also be derived which
depends on the regularity of the PML solution û. In this paper, we are interested
in a posterior error estimates and the associated adaptive algorithm. Thus in the

following we simply assume the discrete problem (3.3) has a unique solution uh ∈
◦
V h.

For any K ∈ Mh, we denote by hK its diameter. Let Bh denote the set of all
sides that do not lie on ΓD and Γh

ρ . For any e ∈ Bh, he stands for its length. For any
K ∈ Mh, we introduce the residual:

Rh := ∇ · (A∇uh|K) + αβk2uh|K .(3.5)

For any interior side e ∈ Bh which is the common side of K1 and K2 ∈ Mh, we define
the jump residual across e:

Je := (A∇uh|K1 −A∇uh|K2) · νe,(3.6)

using the convention that the unit normal vector νe to e points from K2 to K1. If
e = ΓD ∩ ∂K for some element K ∈ Mh, then we define the jump residual:

Je := 2(∇uh|K · n + g).(3.7)

For any K ∈ Mh, denote by η
K

the local error estimator which is defined by

η
K

= max
x∈K̃

ω(x) ·
(
‖hKRh‖2

L2(K) +
1

2

∑
e⊂∂K

he‖ Je ‖2
L2(e)

)1/2

,(3.8)

where K̃ is the union of all elements having nonempty intersection with K, and

ω(x) =

{
1 if x ∈ ΩR,

|α0α|e
−kIm (r̃)

(
1− r2

|r̃|2

)1/2

if x ∈ ΩPML.

The following theorem is the main result of this paper.
Theorem 3.1. There exists a constant C depending only on the minimum angle

of the mesh Mh such that the following a posterior error estimate is valid:

‖u− uh ‖H1(ΩR) ≤ CĈ−1Λ(kR)1/2(1 + kR)

( ∑
K∈Mh

η2
K

)1/2

+CĈ−1(1 + kR)2|α0|2e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

‖uh ‖H1/2(ΓR).(3.9)

Here Λ(kR) is defined in Lemma 4.3 below.
The proof of this theorem will be given in section 4. The important exponentially

decaying factor e
−kIm (r̃)

(
1− r2

|r̃|2

)1/2

in the PML region ΩPML allows us to take thicker
PML layers without introducing unnecessary fine meshes away from the fixed domain
ΩR. Recall that thicker PML layers allow smaller PML medium property, which
enhances numerical stability.

4. A posteriori error estimates. In this section we prove the a posteriori error
estimates in Theorem 3.1.
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4.1. Error representation formula. For any ϕ ∈ H1(ΩR), let ϕ̃ be its exten-
sion in ΩPML such that

∇ · (Ā∇ϕ̃) + αβk2ϕ̃ = 0 in ΩPML,(4.1a)

ϕ̃ = ϕ on ΓR, ϕ̃ = 0 on Γρ.(4.1b)

Lemma 4.1. Let (H2) be satisfied. For any ϕ,ψ ∈ H1(ΩPML), we have

〈T̂ϕ, ψ〉ΓR
= 〈T̂ ψ̄, ϕ̄〉ΓR

.

Proof. By definition, T̂ϕ = ∂w/∂n on ΓR, where w satisfies

∇ · (A∇w) + αβk2w = 0 in ΩPML,

w = ϕ on ΓR, w = 0 on Γρ.

Thus

w(x) =
∑
n∈Z

(anH
(1)

n (kr̃) + bnH
(2)

n (kr̃)) einθ

with the coefficients an, bn being determined by the boundary conditions in (4.1b)

anH
(1)

n (kR) + bnH
(2)

n (kR) = ϕ̂n, anH
(1)

n (kρ̃) + bnH
(2)

n (kρ̃) = 0,

where ϕ̂n = 1
2π

∫ 2π

0
ϕ(R, θ)e−inθdθ is the nth Fourier coefficient of ϕ|ΓR

. Denote by

Hn(kr̃) = H (1)

n (kr̃)H (2)

n (kρ̃) −H (2)

n (kr̃)H (1)

n (kρ̃).

Then since by (H2) the Dirichlet PML problem in the layer has a unique solution, we
get Hn(kR) �= 0, and

an =
H (2)

n (kρ̃)

Hn(kR)
ϕ̂n, bn = − H (1)

n (kρ̃)

Hn(kR)
ϕ̂n.

Thus

w = w(r, θ) =
∑
n∈Z

Hn(kr̃)

Hn(kR)
ϕ̂ne

inθ,

which, since r̃′(R) = α(R) = 1 and R̃ = R, implies

T̂ϕ|ΓR
=

∑
n∈Z

k
H ′

n(kR)

Hn(kR)
ϕ̂ne

inθ.

Therefore,

〈T̂ϕ, ψ〉ΓR
=

∑
n∈Z

k
H ′

n(kR)

Hn(kR)
ϕ̂n

¯̂
ψn ∀ϕ,ψ ∈ H1(ΩPML).

This completes the proof.
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Whenever no confusion of the notation incurred, we shall write in the following
ϕ̃ as ϕ in ΩPML.

Lemma 4.2 (error representational formula). For any ϕ ∈ H1(ΩR), which is

extended to be a function in H1(Ωρ) according to (4.1a)–(4.1b), and ϕh ∈
◦
V h, we

have

a(u− uh, ϕ) =

∫
ΓD

g(ϕ− ϕh) − b(uh, ϕ− ϕh) + 〈Tuh − T̂ uh, ϕ〉ΓR
.(4.2)

Proof. By (2.4) and the definitions (2.3) and (3.1),

a(u− uh, ϕ)

=

∫
ΓD

gϕ̄−
∫

ΩR

(A∇uh · ∇ϕ̄− αβk2uhϕ̄) + 〈Tuh, ϕ〉ΓR

=

∫
ΓD

gϕ̄− b(uh, ϕ) +

∫
ΩPML

(A∇uh · ∇ ¯̃ϕ− αβk2uh
¯̃ϕ) + 〈Tuh, ϕ〉ΓR

.(4.3)

On the other hand, by multiplying (4.1a) by ūh, integrating by parts, and recalling
that n is the unit outer normal to ΓR which points outside ΩR, we deduce that

−
∫

ΩPML

(Ā∇ϕ̃ · ∇ūh − αβk2ϕ̃ūh) −
〈
∂ϕ̃

∂n
, uh

〉
ΓR

= 0,

which is equivalent to

∫
ΩPML

(A∇uh · ∇ ¯̃ϕ− αβk2uh
¯̃ϕ) = −

〈
∂ ¯̃ϕ

∂n
, ūh

〉
ΓR

.(4.4)

Since by the definition of T̂ : H1/2(ΓR) → H−1/2(ΓR),

∂ ¯̃ϕ

∂n

∣∣∣
ΓR

= T̂ ϕ̄,

we obtain by substituting (4.4) into (4.3) that

a(u− uh, ϕ) =

∫
ΓD

gϕ̄− b(uh, ϕ) + 〈Tuh, ϕ〉 − 〈T̂ ϕ̄, ūh〉.

This completes the proof upon using Lemma 4.1 and (3.3).

4.2. Estimates for the extension. For any ϕ ∈ H1(ΩR), we define, for r ≥ R,

φ = φ(r, θ) =
∑
n∈Z

H (1)
n (kr̃)

H (1)
n (kR)

¯̂ϕne
inθ, ϕ̂n =

1

2π

∫ 2π

0

ϕ(R, θ)e−inθdθ.(4.5)

The function φ satisfies

∇ · (A∇φ) + αβk2φ = 0 in R
2\B̄R,(4.6a)

φ = ϕ̄ on ΓR,(4.6b)

|φ| is uniformly bounded as r = |x| → ∞.(4.6c)
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By Lemma 2.2, it is easy to see that

‖φ ‖H1/2(Γρ) ≤ e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

‖ϕ ‖H1/2(ΓR).(4.7)

Set

γ(r) = e
kIm (r̃)

(
1− r2

|r̃|2

)1/2

.

Since r̃ = r(1 + iσ̂), we obatin by simple calculation that

γ′(r) = γ(r) · k
(

σσ̂

(1 + σ̂2)1/2
+

rσ̂σ̂′

(1 + σ̂2)3/2

)
,

which, together with rσ̂′ = σ − σ̂ ≤ σ, implies

0 ≤ γ′(r) ≤ 2σkγ(r) ∀r ≥ R.(4.8)

Lemma 4.3. Let Λ(kR) = max(1,
|H(1)

0
′(kR)|

|H(1)
0 (kR)|

). Then there exists a constant C > 0

independent of k, R, ρ, and σ0 such that

‖ |α|−1γ∇φ ‖L2(ΩPML) ≤ CΛ(kR)1/2(1 + kR)|α0|‖ϕ ‖H1/2(ΓR).

Proof. We multiply (4.6a) by γ2φ̄ and integrate over ΩPML to obtain

∫ ρ

R

∫ 2π

0

γ2

(
βr

α

∣∣∣∣∂φ∂r
∣∣∣∣
2

+
α

βr

∣∣∣∣∂φ∂θ
∣∣∣∣
2
)
dr dθ

= −
∫ ρ

R

∫ 2π

0

(
βr

α

∂φ

∂r
(γ2)′φ̄− αβk2rγ2|φ|2

)
dr dθ

+

∫ 2π

0

[
βr

α
γ2 ∂φ

∂r
φ̄

]
(ρ)dθ −

∫ 2π

0

[
βr

α
γ2 ∂φ

∂r
φ̄

]
(R)dθ.

Taking the real part of the equation we get

∫ ρ

R

∫ 2π

0

γ2

(
1 + σσ̂

1 + σ2
r

∣∣∣∣∂φ∂r
∣∣∣∣
2

+
1 + σσ̂

1 + σ̂2

1

r

∣∣∣∣∂φ∂θ
∣∣∣∣
2
)
dr dθ

≤
∫ ρ

R

∫ 2π

0

∣∣∣∣βrα
∂φ

∂r
2γγ′φ̄

∣∣∣∣ dr dθ +

∫ ρ

R

∫ 2π

0

|αβ|k2rγ2|φ|2dr dθ

+

∫ 2π

0

∣∣∣∣
[
βr

α
γ2 ∂φ

∂r
φ̄

]
(ρ)

∣∣∣∣ dθ +

∫ 2π

0

∣∣∣∣
[
βr

α
γ2 ∂φ

∂r
φ̄

]
(R)

∣∣∣∣ dθ
:= I1 + · · · + I4.(4.9)

Since γ′ ≤ 2kσγ by (4.8), we obtain by Cauchy–Schwarz inequality and the fact σ̂ ≤ σ
that

I1 ≤
(∫ ρ

R

∫ 2π

0

γ2 1 + σσ̂

1 + σ2
r

∣∣∣∣∂φ∂r
∣∣∣∣
2
)1/2 (∫ ρ

R

∫ 2π

0

16k2σ2γ2

∣∣∣∣βα
∣∣∣∣
2

1 + σ2

1 + σσ̂
r|φ|2

)1/2

≤ 4

(∫ ρ

R

∫ 2π

0

γ2 1 + σσ̂

1 + σ2
r

∣∣∣∣∂φ∂r
∣∣∣∣
2

dr dθ

)1/2 (∫ ρ

R

∫ 2π

0

k2σ2γ2r|φ|2dr dθ
)1/2

.
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On the other hand, by (4.5) and Lemma 2.2, we know that

∫ ρ

R

∫ 2π

0

k2σ2γ2r|φ|2dr dθ = 2π
∑
n∈Z

∫ ρ

R

k2σ2γ2r

∣∣∣∣ H
(1)
n (kr̃)

H (1)
n (kR)

∣∣∣∣
2

dr · |φ̂n|2

≤ 2π
∑
n∈Z

∫ ρ

R

k2σ2rdr · |φ̂n|2

≤ C(1 + kR)2|α0|2‖φ ‖2
L2(ΓR).(4.10)

Hence

I1 ≤ 1

2

∫ ρ

R

∫ 2π

0

γ2 1 + σσ̂

1 + σ2
r

∣∣∣∣∂φ∂r
∣∣∣∣
2

dr dθ + C(1 + kR)2|α0|2‖φ ‖2
L2(ΓR).

By (4.10) we also have

I2 ≤ C(1 + kR)2|α0|2‖φ ‖2
L2(ΓR).

Next, since r̃′(r) = α(r), by (4.5) and Lemma 2.3, we have

I3 ≤ 2π
∑
n∈Z

∣∣∣∣kρβ(ρ)γ(ρ)2
H (1)

n
′(kρ̃)

H (1)
n (kR)

H (1)
n (kρ̃)

H (1)
n (kR)

∣∣∣∣ · |φ̂n|2

≤ 2π|α0|
∑
n �=0

kρ

(
1 +

|n|
|kρ̃|

)
|φ̂n|2 + 2π|α0|kρ

∣∣∣∣H
(1)

0
′(kR)

H (1)

0 (kR)

∣∣∣∣ · |φ̂0|2

≤ 2π|α0|
∑
n �=0

(kρ + |n|)|φ̂n|2 + 2π|α0|kρΛ(kR)|φ̂0|2,

where in the last inequality we have used the relation ρ ≤ |ρ̃|. Since kρ + |n| ≤
(1 + kρ)(1 + n2)1/2, we deduce finally

I3 ≤ CΛ(kR)(1 + kρ)|α0|‖φ ‖2
H1/2(ΓR) ≤ CΛ(kR)(1 + kR)|α0|‖φ ‖2

H1/2(ΓR).

Similarly, we can prove

I4 ≤ CΛ(kR)(1 + kR)‖φ ‖2
H1/2(ΓR).

Substituting the estimates for I1, . . . , I4 into (4.9), we conclude that

∫ ρ

R

∫ 2π

0

γ2

(
1 + σσ̂

1 + σ2
r

∣∣∣∣∂φ∂r
∣∣∣∣
2

+
1 + σσ̂

1 + σ̂2

1

r

∣∣∣∣∂φ∂θ
∣∣∣∣
2
)
dr dθ

≤ CΛ(kR)(1 + kR)2|α0|2‖φ ‖2
H1/2(ΓR).

This completes the proof.
The following lemma is the main objective of this subsection.
Lemma 4.4. For any ϕ ∈ H1(ΩR), which is extended to be a function ϕ̃ ∈

H1(ΩPML) according to (4.1a)–(4.1b), we have the following estimate:

‖ |α|−1γ∇ϕ̃ ‖L2(ΩPML) ≤ CĈ−1Λ(kR)1/2(1 + kR)|α0|‖ϕ ‖H1/2(ΓR).
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Proof. Let w = ϕ̃− φ̄; then from (4.1a)–(4.1b) and (4.6a)–(4.6b) we know that w
satisfies

∇ · (A∇w) + αβk2w = 0 in ΩPML,

w = 0 on ΓR, w = −φ̄ on Γρ.

By Theorem 2.4 and (4.7) we have

‖ |α|−1∇w ‖L2(ΩPML) ≤ CĈ−1(1 + kR)|α0|‖w ‖H1/2(Γρ)

= CĈ−1(1 + kR)|α0|‖φ ‖H1/2(Γρ)

≤ CĈ−1(1 + kR)|α0|e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

‖ϕ ‖H1/2(ΓR).

By (4.8), γ is a increasing function, and we know that, for r ≤ ρ,

γ(r)e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

≤ γ(ρ)e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

≤ 1.

Hence

‖ |α|−1γ∇w ‖L2(ΩPML) ≤ CĈ−1(1 + kR)|α0|‖ϕ ‖H1/2(ΓR).

This completes the proof upon using Lemma 4.3.
To conclude this subsection we remark that a direct consequence of this lemma

is that

‖ω−1∇ϕ ‖L2(ΩPML) ≤ CĈ−1Λ(kR)1/2(1 + kR)‖ϕ ‖H1/2(ΓR).(4.11)

4.3. Proof of Theorem 3.1. Since we are going to interpolate nonsmooth func-

tions, we resort to an interpolation operator Πh : H1
(0)(Ωρ) →

◦
V h of Clement-type [9],

where H1
(0)(Ωρ) = {v ∈ H1(Ωρ) : v = 0 on Γρ}. Let Nh = {ai}Ni=1 be the set of the

nodes of Mh which is interior to Ωh
ρ or on the boundary ΓD, and let {φi}Ni=1 be the

corresponding nodal basis of Vh. Define Δi = suppφi ∩ Ωρ. Then the interpolation
operator Πh : H1

(0)(Ωρ) → Vh is defined by

Πhv(x) =

N∑
i=1

(
1

|Δi|

∫
Δi

v(x)dx

)
φi(x).

Since the nodes on Γh
ρ are not included in the definition of Πh, we know that Πhv ∈◦

V h. Moreover, by slightly modifying the argument in [6, Lemmas 3.1 and 3.2], one
can show that the operator Πh enjoys the following interpolation estimates, for any
v ∈ H1

(0)(Ωρ),

‖ v − Πhv ‖L2(K) ≤ ChK‖∇v ‖L2(K̃), ‖ v − Πhv ‖L2(e) ≤ Ch1/2
e ‖∇v ‖L2(ẽ),(4.12)

where K̃ and ẽ are the union of all elements in Mh having nonempty intersection
with K ∈ Mh and the side e, respectively.

Now we take ϕh = Πhϕ ∈
◦
V h in the error representation formula (4.2) to get

a(u− uh, ϕ) =

∫
ΓD

g(ϕ− Πhϕ) − b(uh, ϕ− Πhϕ) + 〈Tuh − T̂ uh, ϕ〉ΓR

:= II1 + II2 + II3.(4.13)



AN ADAPTIVE PML TECHNIQUE 663

We observe that, by integration by parts and using (3.5)–(3.7),

II1 + II2 =
∑

K∈Mh

(∫
K

Rh(ϕ− Πhϕ)dx +
∑

e⊂∂K

1

2

∫
e

Je(ϕ− Πhϕ)ds

)
.

Standard argument in the a posteriori error analysis using (4.12) and (4.11) implies

|II1 + II2| ≤ C
∑

K∈Mh

(
‖hKRh ‖2

L2(K) +
1

2

∑
e⊂∂K

‖h1/2
e Je ‖2

L2(e)

)1/2

‖∇ϕ ‖L2(K̃)

≤ C
∑

K∈Mh

η
K
‖ω−1∇ϕ ‖L2(K̃)

≤ CĈ−1Λ(kR)1/2(1 + kR)

( ∑
K∈Mh

η2
K

)1/2

‖ϕ ‖H1/2(ΓR).

By Lemma 2.5, we obtain

|II3| ≤ CĈ−1(1 + kR)2|α0|2e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

‖uh ‖H1/2(ΓR)‖ϕ ‖H1/2(ΓR).

Therefore, by the inf-sup condition (2.5), we finally get

‖u− uh ‖H1(ΩR) ≤ C sup
0 �=ϕ∈H1(ΩR)

|a(u− uh, ϕ)|
‖ϕ ‖H1(ΩR)

≤ CĈ−1Λ(kR)1/2(1 + kR)

( ∑
K∈Mh

η2
K

)1/2

+CĈ−1(1 + kR)2|α0|2e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

‖uh ‖H1/2(ΓR).

This completes the proof.

5. Implementation and numerical examples. The implementation of the
adaptive algorithm in this section is based on the PDE toolbox of MATLAB. We use
the a posteriori error estimate in Theorem 3.1 to determine the PML parameters.
According to the discussion in section 2, we choose the PML medium property as
the power function and thus we need only to specify the thickness ρ−R of the layer
and the medium parameter σ0. Recall from Theorem 3.1 that the a posteriori error
estimate consists of two parts: the PML error and the finite element discretization
error. In our implementation we first choose ρ and σ0 such that the exponentially
decaying factor:

ω̂ = e
−kIm (ρ̃)

(
1− R2

|ρ̃|2

)1/2

≤ 10−8,(5.1)

which makes the PML error negligible compared with the finite element discretization
errors. Once the PML region and the medium property are fixed, we use the standard
finite element adaptive strategy to modify the mesh according to the a posteriori error
estimate. Now we describe the adaptive algorithm we used in the paper.

Algorithm 5.1. Given tolerance TOL > 0. Let m = 2.
• Choose ρ and σ0 such that the exponentially decaying factor ω̂ ≤ 10−8.
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• Set the computational domain Ωρ = Bρ\Γ̄D and generate an initial mesh Mh over
Ωρ.

• While EFEM =
(∑

K∈Mh
η2
K

)1/2
> TOL do

– refine the mesh Mh according to the strategy:

if ηK > 1
2 maxK∈Mh

ηK , refine the element K ∈ Mh

– solve the discrete problem (3.3) on Mh

– compute error estimators on Mh

end while
In the following we report two numerical examples to demonstrate the competitive

behavior of the proposed algorithm. In the computations we first prescribe ρ and then
determine σ0 according to (5.1). We scale the error estimator for determining finite
element meshes by a factor 0.15 as in the PDE toolbox of MATLAB.

Example 1. Let the scatter D be unit circle. We consider the scattering problem

whose exact solution is known: u = H
(1)
0 (kr), where r = |x|. We take R = 2

and k = 1. Table 5.1 shows the different choices of the PML parameters ρ and σ0

determined by the relation (5.1).

Table 5.1

The PML parameters for Examples 1 and 2.

Example 1 Example 2
ρ σ0 ρ σ0

2R 30 2R 4
3R 15 3R 2
4R 10 4R 1
8R 5

Figure 5.1 shows the logNk-log ‖∇(u−uk) ‖L2(ΩR) curves, where Nk is the number
of nodes of the mesh Mk and uk is the finite element solution of (3.3) over the mesh
Mk. It indicates that the meshes and the associated numerical complexity are quasi-

optimal: ‖∇(u− uk) ‖L2(ΩR) = CN
−1/2
k is valid asymptotically.

One of the important quantities in the scattering problems is the far field pattern:

u∞(x̂) =
ei

π
4

√
8πk

∫
∂D

(
u(y)

∂e−ikx̂·y

∂υ(y)
− ∂u(y)

∂υ(y)
e−ikx̂·y

)
ds(y), x̂ =

x

|x| .

We compute the far field u∞(x̂), x̂ = (cos(θ), sin(θ))T in the observation direction
θ = π/4. Figure 5.2 shows the far fields for different choices of PML parameters ρ
and σ0. We observe that our adaptive algorithm is robust with respect to the choice
of the thickness of PML layer: the far fields of the scattering solutions are insensitive
to the choices of the PML parameters.

Example 2. This example is taken from [10] which concerns the scattering of the
plane wave uI = eikx1 from a perfectly conducting metal. The scatter D is contained
in the box {x ∈ R : −2 < x1 < 2.2,−0.7 < x2 < 0.7} as plotted in Figure 5.3. We
take R = 3 and k = 2π. The different choices of PML parameters ρ and σ0 determined
by the relation (5.1) are shown in Table 5.1.

Figure 5.4 shows the logNk–log Ek curves, where Nk is the number of nodes of
the mesh Mk and the Ek = (

∑
K∈Mk

η2
K)1/2 is the associated a posteriori error

estimate. It indicates that the meshes and the associated numerical complexity are

quasi-optimal: Ek = CN
−1/2
k is valid asymptotically.
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Fig. 5.1. Quasi-optimality of the adaptive mesh refinements of the error ‖∇(u − uh ‖L2(ΩR)
for Example 1.
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Fig. 5.2. The real part of the far fields when the observing angle θ = π/4 for Example 1.
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Fig. 5.3. The geometry of the scatter for Example 2.
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Fig. 5.4. Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimator
for Example 2.

Figures 5.5 and 5.6 show the far fields in the incident direction θ = 0 and the
reflective direction θ = π. Again we observe that the far fields are insensitive to the
choices of PML parameters.

In Figure 5.7 we show the mesh after 13 adaptive iterations when ρ = 3R. We
observe that the mesh near the boundary Γρ is rather coarse, as a consequence of the
exponentially decaying factor in our finite element a posteriori error estimator.
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Fig. 5.5. The real part of the far fields in the incident direction for Example 2.
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Fig. 5.6. The real part of the far fields in the reflective direction for Example 2.
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Fig. 5.7. The mesh of 7048 nodes after 13 adaptive iterations when ρ = 3R for Example 2.

Appendix. The PML equation in the layer for large σ0. The purpose of
the appendix is to show that for sufficiently large σ0, the PML problem in the layer
(2.23) has a unique solution w. Moreover, the constant Ĉ in (2.25) can be chosen
independent of ΩPML and k.

From (H1) we know that β(r) = 1 + iσ̂(r), where

σ̂(r) =
1

r

∫ r

R

σ(t)dt =
σ0

m + 1

r −R

r

(
r −R

ρ−R

)m

.

Define

ζ(r) :=
2σ2

0

σσ̂(r)
=

2(m + 1)r(ρ−R)2m

(r −R)2m+1
∀r > R.

It is clear that ζ : (R,∞) → R is strictly monotone decreasing and ζ(r) → ∞
as r → R, ζ(r) → 0 as r → ∞. Thus, for any σ0 > 0, there exists a unique
R̂ = R̂(σ0) > R such that

σ2
0 = ζ(R̂) =

2(m + 1)R̂(ρ−R)2m

(R̂−R)2m+1
.(5.1)

Hence, since σσ̂ : (R,∞) → R is increasing, we have

σσ̂(r) ≥ σσ̂(R̂) =
2σ2

0

ζ(R̂)
= 2 for r ≥ R̂.(5.2)

In this appendix we make the following assumption on the choice of σ0:

(H3) σ2
0 ≥ ζ(R̂max), where R̂max := max{r ∈ (R, ρ) : θ(r) ≤ 1} with

θ(r) = k2R2

[(
r2

R2
− 1

)
ln

r

R
+

2r2(r −R)

(2m + 1)R3

]
∀r ≥ R.
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Since the function θ : (R, ρ) → R is strictly monotone increasing and θ(R) = 0,
R̂max is well-defined.

Lemma 5.1. Let (H1) and (H3) be satisfied. Then

∫ R̂

R

k2r

(∫ r

R

1 + σ2(t)

t
dt

)
dr ≤ 1

2
.

Proof. First we have

∫ R̂

R

r

(∫ r

R

1

t
dt

)
dr =

∫ R̂

R

r ln
r

R
dr ≤1

2
(R̂2 −R2) ln

R̂

R
.

Next by (H1) and (5.1) we know that

∫ R̂

R

r

(∫ r

R

σ2

t
dt

)
dr ≤ R̂

R

∫ R̂

R

(∫ r

R

σ2(t)dt

)
dr

=
R̂

R

∫ R̂

R

σ2
0

2m + 1

(r −R)2m+1

(ρ−R)2m
dr

=
R̂

R

σ2
0

(2m + 1)(2m + 2)

(R̂−R)2m+2

(ρ−R)2m

=
R̂2(R̂−R)

(2m + 1)R
.

Thus ∫ R̂

R

k2r

(∫ r

R

1 + σ2(t)

t
dt

)
dr ≤ 1

2
k2R2

[(
R̂2

R2
− 1

)
ln

R̂

R
+

2R̂2(R̂−R)

(2m + 1)R3

]

=
1

2
θ(R̂).

Now if σ2
0 ≥ ζ(R̂max), we know from the monotonicity of ζ that R̂ = R̂(σ0) ≤ R̂max.

Thus θ(R̂) ≤ θ(R̂max) ≤ 1 by (H3). This completes the proof.
Now we are ready to prove the main result of this appendix.
Theorem 5.2. Under the assumptions (H1) and (H3) there exists a constant

C > 0 independent of k, R, ρ, and σ0 such that

Re [b̂(v, v)] ≥ C‖ v ‖2
∗,ΩPML ∀v ∈ H1

0 (ΩPML).

Proof. For any v ∈ H1
0 (ΩPML), we have

Re [b̂(v, v)] =

∫ ρ

R

∫ 2π

0

[
1 + σσ̂

1 + σ2
r

∣∣∣∣∂v∂r
∣∣∣∣
2

+
1 + σσ̂

1 + σ̂2

1

r

∣∣∣∣∂v∂θ
∣∣∣∣
2

+ (σσ̂ − 1)k2r|v|2
]
.

By (5.2) we know that∫ ρ

R

∫ 2π

0

(σσ̂ − 1)k2r|v|2dr dθ

=

∫ R̂

R

∫ 2π

0

(σσ̂ − 1)k2r|v|2dr dθ +

∫ ρ

R̂

∫ 2π

0

(σσ̂ − 1)k2r|v|2dr dθ

≥ −3

2

∫ R̂

R

∫ 2π

0

k2r|v|2dr dθ +
1

4

∫ ρ

R

∫ 2π

0

(1 + σσ̂)k2r|v|2dr dθ.
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Notice that since v = 0 on ΓR,

|v(r)| =

∣∣∣∣
∫ r

R

∂v

∂r
dr

∣∣∣∣ ≤
(∫ r

R

1 + σσ̂

1 + σ2
t

∣∣∣∣∂v∂r
∣∣∣∣
2

dt

)1/2 (∫ r

R

1

t

1 + σ2

1 + σσ̂
dt

)1/2

,

which, by Lemma 5.1, yields

∫ R̂

R

∫ 2π

0

k2r|v|2dr ≤
(∫ R̂

R

∫ 2π

0

1 + σσ̂

1 + σ2
r

∣∣∣∣∂v∂r
∣∣∣∣
2
)

·
∫ R̂

R

k2r

(∫ r

R

1

t

1 + σ2

1 + σσ̂
dt

)

≤ 1

2

∫ R̂

R

∫ 2π

0

1 + σσ̂

1 + σ2
r

∣∣∣∣∂v∂r
∣∣∣∣
2

.

Thus

Re [b̂(v, v)] ≥ 1

4

∫ ρ

R

∫ 2π

0

[
1 + σσ̂

1 + σ2
r

∣∣∣∣∂v∂r
∣∣∣∣
2

+
1 + σσ̂

1 + σ̂2

1

r

∣∣∣∣∂v∂θ
∣∣∣∣
2

+ (1 + σσ̂)k2r|v|2
]
.

This completes the proof.
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ANALYSIS OF FIRST ORDER ERRORS IN SHOCK
CALCULATIONS IN TWO SPACE DIMENSIONS∗
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Abstract. Numerical computations show that solutions of hyperbolic conservation laws obtained
by second or higher order shock capturing methods in many cases are only first order accurate
downstream of shocks (see, e.g., [M. H. Carpenter and J. H. Casper, AIAA J., 37 (1999), pp. 1072–
1079]). We use matched asymptotic expansions to analyze the degeneration in order of accuracy for
stationary solutions of hyperbolic conservation laws in two space dimensions.
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1. Introduction. Numerical results presented in this and other papers (see,
e.g., [2], [3], [4], [5], [7], and [16]) show that solutions of hyperbolic conservation
laws in one and two space dimensions obtained by formally second or higher order
accurate shock capturing schemes degenerate to first order downstream of shock layers.
A numerical study by Carpenter and Casper [3] shows that the error depends on
flow conditions and generally increases with increasing shock strength. They further
conclude that the first order error terms seem to be nearly independent of the design
order of accuracy of the method.

The first order term for reasonable mesh-sizes seems to be small in many cases.
However, in applications where the small scale behavior is of significance, such as
aeroacoustics, the degeneration to first order accuracy can be troublesome. It is also
important to understand the phenomenon more deeply in order, hopefully, to be able
to design new methods which do not suffer from this deficiency.

This paper is the fourth in a series of papers. In [5], an explanation of the de-
generacy in accuracy was given for the case of steady-state solutions of systems with
source terms in one space dimension, and, in [16], it was shown how to raise the accu-
racy and remove the first order error with a specific choice of a matrix valued artificial
viscosity. In [23], the same method of analysis was extended to time-dependent solu-
tions of hyperbolic systems in one space dimension. Also in that case, it was possible
to avoid the downstream error by using a specific matrix valued artificial viscosity. In
this paper we consider steady-state solutions of hyperbolic conservation laws in two
space dimensions. We present an analysis which reveals how the downstream error is
related to the dissipative terms in the numerical scheme.

Shock capturing methods for hyperbolic conservation laws consist of a discretiza-
tion of the conservation law, augmented by some mechanism for adding dissipation
in the vicinity of discontinuities in the solution without explicitly keeping track of
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the position of the discontinuities. The dissipative terms are either intrinsic in the
scheme or explicitly added (artificial viscosity). In order to avoid spurious oscillations
around shocks, the dissipative terms must be O(h) in the shock layer. Here, h is
the grid size. In smooth regions, the dissipative terms are of order O(hp) or smaller,
where p is the order of accuracy of the discretization of the conservation law. Many
shock capturing schemes for problems in several space dimensions are obtained as
a straightforward generalization of the corresponding one-dimensional scheme. This
means that the dissipative terms are turned on separately in the x- and y-directions.
Hence, at shocks aligned to one of the coordinate axes, dissipative terms only act
normally to the shock. For shocks that are oblique relative to the grid, dissipative
terms are switched on in both space directions.

A widely used technique to model the behavior of numerical schemes is to study
the solutions of the so-called modified equation; see [19]. The modified equation is
obtained by Taylor series expansions. The goal is to obtain a PDE which approxi-
mates the discrete numerical solution better than the original, continuous PDE. The
technique has mostly been used to investigate the dispersive and dissipative properties
of PDE schemes. It has, in particular, been widely used to investigate the behavior
of numerical schemes in the vicinity of shocks. In the shock region, the modified
equation can be proved to be valid only for weak shocks; see [9]. Due to the strong
gradients in the shock region, it is not obvious what terms in the Taylor expansion
will be dominant; see, e.g., [14]. Considering the wide use, there is surprisingly little
literature considering the validity and scope of the method of modified equations;
see [10], [24], and references therein.

Many shock capturing schemes that are in wide use, such as the scheme due to
Jameson, Schmidt, and Turkel [12], are based on a relatively simple finite difference/
finite volume discretization of the conservation law. Mechanisms for the extra dis-
sipation that is needed at discontinuities are then explicitly added. The dissipation
mechanisms usually consist of some kind of a switch function multiplying a finite dif-
ference/finite volume discretization of a second derivative term. It is straightforward
to obtain a modified equation, modeling the finite difference/finite volume discretiza-
tions of the conservation law and the second derivative term. The construction of the
switch functions is often rather complicated and it is not as easy to obtain a good
model. However, e.g., for the switch introduced by Jameson, Schmidt, and Turkel
in [12], it is reasonable to model the switch function by a smooth function, which is
one in the shock region and vanishes a fixed number of grid points away from the
shock; see computations in [6].

For more advanced schemes, where the dissipative mechanisms are more intrinsic
in the scheme, e.g., higher order WENO schemes, it is difficult to find an analytic for-
mulation of the modified equation and, hence, to construct a model for the numerical
scheme. Theoretical studies of “continuous discrete shock profiles” (see [13], [20], [22],
and references therein) and numerical investigations, such as the work by Arora and
Roe [1], indicate, however, that for many of these more advanced methods, the nu-
merical solution, also in the vicinity of shock waves, can be modeled by a continuous
PDE.

In section 2, we suggest a model for numerical solutions obtained by shock captur-
ing schemes. The model consists of the modified equation with boundary conditions.
We then analyze this modified problem by a matched asymptotic analysis. It is as-
sumed that an inner solution is valid in the shock layer and an outer solution is valid
elsewhere. The two solutions are matched in a region of overlap. From the analysis,
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we see that generally the outer solution contains a term of O(h) downstream of the
shock.

The phenomenon has also been studied by other methods in [7] and [4]. In [7],
analytic examples in one dimension are constructed where the numerical solution is
only first order accurate downstream of a shock, although the numerical scheme is
formally second order. It is also shown that a converging numerical method will yield
solutions having the formal order of accuracy in domains where no characteristics have
passed through a shock. In [4], the first order downstream error is numerically detected
in solutions of a one-dimensional (1D) shock–sound interaction problem solved by a
fourth order ENO method. A scalar, linear equation is used to model the problem. It
can be seen that the solution of the model problem computed with the fourth order
ENO method behaves qualitatively differently depending on if the discontinuity is
located on a cell interface or in the interior of a cell. In the first case, the solution
is fourth order in all of the domain, but in the second case the solution is only first
order downstream of the discontinuity. On the basis of this observation, the numerical
method is modified such that the shock position will always be on a cell interface,
and the fourth order accuracy of the solution of the shock–sound interaction problem
is obtained both upstream and downstream.

2. Analysis. In this section we will consider a hyperbolic system in two space
dimensions with a stationary solution containing a shock. We will model the numerical
solution and present an analysis that shows how the O(1) error in the shock region
causes an O(h) error downstream of the shock. From the analysis, we see that the
first order downstream error can only appear if there is a variation of the solution
tangentially to the shock, i.e., if the solution is truly two-dimensional (2D).

Many numerical schemes for problems in several space dimensions are obtained
as a straightforward generalization of the corresponding 1D scheme. This means that
the dissipative terms are turned on separately in the x- and y-directions. Hence, at
shocks aligned to one of the coordinate axes, dissipative terms only act normally to the
shock. At a shock which is oblique relative to the grid, however, there are dissipative
terms in both coordinate directions.

First, we consider a straight shock which is aligned with the y-axis. Then, we show
how the analysis can be extended to a more general shock. The essential conclusion
is the same in both cases; downstream the solution is only first order accurate.

2.1. The inviscid problem. We consider a system of conservation laws

ut + f(u)x + g(u)y = 0, (x, y) ∈ Ω, t > 0,(2.1)

where u(x, y, t) ∈ Rm and f ,g : Rm → Rm. We assume that the linearization
of (2.1) is strongly hyperbolic, i.e., there exists a smooth matrix function S(u, ω̄) such

that S f̆ ′S−1 is diagonal with real entries. The Jacobian f̆ ′ is defined by f̆ ′(u, ω̄) =
ωxf ′(u) + ωyg′(u), and ω̄ = (ωx, ωy) is an arbitrary unit vector. The eigenvalues of

f̆ ′ are denoted by λ̆k(u, ω̄), k = 1, 2, . . . ,m, and are in the increasing order.
Across discontinuities, u satisfies the Rankine–Hugoniot condition; see, e.g., [11].

If u has a discontinuity across a curve Σ in the (x, y)-plane, the Rankine–Hugoniot
condition can be formulated as

nx[f ] + ny[g] + s[u] = 0,(2.2)

where n̄ = (nx, ny) is the unit normal of Σ, and s = −v̄ · n̄ is the speed of the
discontinuity in the negative normal direction; see Figure 2.1. By the notation [u],
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v−
−n

Σ

Fig. 2.1. A discontinuity surface Σ moving with velocity v̄. Here, n̄ denotes the unit normal of Σ.

we denote the jump in u across the discontinuity. We will define this notation in a
precise way later.

We call the discontinuity a k-shock if it satisfies the Lax entropy condition, i.e.,
there is an integer k, 1 ≤ k ≤ m, such that

λ̆k(u
−, n̄) > s > λ̆k(u

+, n̄)

so that the k-characteristic impinges on the discontinuity from both sides, while the
other characteristics cross the discontinuity:

λ̆j(u
−, n̄) < s and λ̆j(u

+, n̄) < s for j = 1, 2, . . . , k − 1,

λ̆j(u
−, n̄) > s and λ̆j(u

+, n̄) > s for j = k + 1, k + 2, . . . ,m.

Here, u± denotes the value of u on each side of the shock, and this notation will be
made precise later. The Lax entropy condition is a necessary condition for linearized
stability of the shock front; see, e.g., [21]. It is also necessary for linearized stability of
the shock front that the diagonalization matrix S at the shock front satisfies a certain
determinant condition. For the general formulation of this determinant condition;
see, e.g., [25] or [21]. In Assumption 1, we will formulate the determinant condition
for the special case we consider.

We let the domain Ω be a strip along the positive y-axis, which has width 2a and
is infinitely long, i.e.,

Ω = {(x, y) : |x| ≤ a, y > 0}.

Assumption 1. We assume that there exists a steady-state solution of (2.1) which
satisfies the Rankine–Hugoniot condition (2.2) at discontinuities. We denote the
steady-state solution u = u(x, y). We further assume that the initial and bound-
ary conditions are chosen such that u contains a single 1-shock, which is straight
and aligned with the y-axis, where the y-dependence is introduced via the boundary
conditions. Also,

u(x, 0) =

{
U+(x) for x > 0,

U−(x) for x < 0,

where U±(x) ∈ Rm are smooth functions.
We will use the following notation:

[u(·, y)] = u+(y) − u−(y), where u±(y) = lim
ξ→0+

u(±ξ, y).

Corresponding notation for other quantities will be used frequently.
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Let the m×m matrix D be defined by

D = (S+
II [g]).(2.3)

Here the columns of S+
II are the eigenvectors of f ′(u+(y)) corresponding to the

eigenvalues λj(u
+), j = 2, 3, . . . ,m. We assume

detD �= 0.

We consider a boundary condition at x = ±a of the form

u = h(y) at x = −a,(2.4)

R(u) = r(y) at x = a,(2.5)

where h(y) ∈ Rn and r(y) ∈ R are given. Here, R(u) : Rn → R is a nonlinear
function. Hence, one boundary condition is given for each ingoing characteristic. On
both sides of the y-axis, u(x, y) is assumed to be smooth without discontinuities. We
assume that the eigenvalues of f ′(u) have constant sign on each side of the shock
interface.

Under the conditions in Assumption 1, the Rankine–Hugoniot conditions simplify
to

[f(·, y)] = 0,(2.6)

and the shock is a 1-shock if

λ1(u
−) > 0 > λ1(u

+),

λj(u
−) > 0, and λj(u

+) > 0 for j = 2, 3, . . . ,m,

where λj(u), j = 1, 2, . . . ,m, are the eigenvalues of the Jacobian f ′(u).
Remark. For 1-shocks and n-shocks there is just one downstream side. Hence,

the first order error appears only on one side of the shock. For other Lax shocks, both
sides of the shock are downstream sides, and the first order error appears on both
sides. The phenomenon can be analyzed by the same method in both cases, but the
analysis becomes less involved when only one side must be considered. For clarity
and without loss of generality, we analyze a 1-shock.

Remark. Instead of boundary conditions of the form (2.4) and (2.5), one could use
more general boundary conditions. This would not change the result of the analysis.

2.2. The modified problem. On the basis of the considerations in the intro-
duction, we use the equations given below to model a generic second order shock
capturing scheme for solving (2.1) in the case specified in Assumption 1.

Assumption 2. Let uε be the solution of

f(uε)x + g(uε)y = ε

(
φ

(
x− xε(y)

ε

)
uε
x

)
x

+ c2ε
2(uε

xx + uε
yy), (x, y) ∈ Ω,(2.7)

where ε = c1h and c1 and c2 are scalar constants. The function φ(z) is a smooth
one-variable function which models the switch mechanism, i.e.,

φ(z) =

{
1 for |z| ≤ K0,

0 for |z| ≥ K1,

where K0 < K1 are positive constants with K0 sufficiently large.
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The boundary conditions for uε are

uε = h(y) at x = −a,(2.8)

R(uε) = r(y) at x = a(2.9)

together with boundary conditions that model the numerical boundary conditions,
such as extrapolation of outgoing characteristic variables. We assume that the nu-
merical boundary conditions are chosen such that the possible boundary layer effects
are O(h2) or smaller. Also,

uε(x, 0) =

⎧⎪⎨
⎪⎩
U+(x) for x

ε > K1,

Û(x/ε, 0) for |xε | ≤ K1,

U−(x) for x
ε < K1,

where Û(x̃, y) is the solution of (2.27). We define the position of the viscous shock
layer as the smallest x-value such that uε(1)(x, y) = (u−(1)(y)+u+(1)(y))/2 and denote
this x-value by xε(y). That is, the viscous shock position is described by (xε(y), y).
Hence we have

xε(0) = 0.(2.10)

Remark. We consider the same boundary condition for uε as for u. When (2.1) is
solved numerically, the boundary conditions must be augmented by m− 1 numerical
boundary conditions at x = a. Correspondingly, additional boundary conditions that
model the numerical boundary conditions are needed for the parabolic PDE (2.7).
Numerical boundary conditions can introduce boundary layers in the solution. We
consider numerical boundary conditions where such effects are O(h2) or smaller. Ex-
trapolation of outgoing characteristic variables is a commonly used numerical bound-
ary condition, but other numerical boundary conditions are also possible, and would
not change the result of the analysis.

2.3. Exploring the modified problem using asymptotic expansions. To
explore the behavior of the model stated in Assumption 2, we will use the technique of
matched asymptotic expansions. In [8], an introduction on how to use asymptotics and
matching for internal layers is given. For a comprehensive description of asymptotic
techniques, see, e.g., [15] or [18]. In this subsection, we will follow the methods outlined
in [8] and use asymptotic expansions and matching for constructing an alternative
formulation of the model stated in Assumption 2.

Assumption 3. We assume that uε can be approximated by truncations of a
formal power series

uε(x, y) ∼
∞∑
i=0

εiui(x, y)(2.11)

in regions away from the inviscid shock interface at x = 0. The “outer” functions ui

may be discontinuous at x = 0 but are uniformly smooth up to x = 0. We assume
that u0 = u, i.e., the leading order term of the outer expansion is equal to the solution
of the corresponding inviscid problem stated in Assumption 1.
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Near x = 0, uε can be approximated by truncations of another formal power
series:

uε(x, y) ∼
∞∑
i=0

εiUi(x̃, y).(2.12)

The “inner” representation of uε is expressed using the variables (x̃, y), where

x̃ =
x

ε
.

Also, the position of the viscid shock interface, xε(y), can be expanded in ε:

xε(y) ∼ 0 + εx̃1 + ε2x̃2 + · · · .

The two expansions (2.11) and (2.12) can be matched in a region of overlap. The
more the terms included in the truncated series, the better the approximation. Also,
the region of overlap depends on how many terms are included in the truncated series;
if more terms are included, the region of overlap decreases. Let Σδ = {(x, y) : |x| ≤ δ}.
Let Dδ be the complement of Σδ in Ω. We denote truncations of series (2.11) including

terms up to order εN by uε(N)
outer, i.e.,

uε(N)
outer =

N∑
i=0

εiui(x, y),

and use the corresponding notation for truncations of series (2.12). We assume that
there exists a function δ(N, ε), with δ → 0 as ε → 0, such that

|uε − uε(N)
outer| = O(εN+1) as ε → 0(2.13)

uniformly for (x, y) ∈ Dδ(N,ε). This is to be true for all N up to some integer N0 that

depends on the context. We also assume that there is a function K̃(ε,N) such that
K̃ → ∞ as ε → 0 so that

|uε − uε(N)
inner| = O(εN+1) as ε → 0

uniformly for |x̃| < K̃(ε,N). Again, this is to be true for all N up to N0.
The asymptotic expansions above can be viewed as an alternative formulation of

the model of the numerical solution, as described in Assumption 2. Hence, instead
of analyzing the differential equation (2.7), we can analyze the different terms in the
truncated expansions. We model a numerical method which gives a formally second
order accurate approximation of the solution of (2.1) away from the shock region.
We claim that the solution will be second order accurate upstream of the shock, but
only first order accurate downstream, i.e., we must show that u1 = 0 is upstream
and u1 �= 0 is downstream. Hence, for our purposes, it is sufficient to truncate
the asymptotic expansions after the first two terms and then analyze the truncated
expansions with the purpose to show u1 �= 0 downstream. Therefore, we choose
N0 = 1.

To obtain equations for the terms in the outer and inner expansions, we substitute
the expansions into (2.7), Taylor expand and collect terms multiplying the same power
of ε. The equation for U0 is

(φ(x̃− x̃0)U0x̃)x̃ − f(U0)x̃ = 0,(2.14)
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where we have used that

∂

∂x
=

1

ε

∂

∂x̃
.

We have also used the fact that in the (x̃, y)-coordinate system, all derivatives of Ui

are O(1). If x̃0 denotes the position of the shock layer in U0, i.e.,

U
(1)
0 (x̃0, y) = (u−(1)(y) + u+(1)(y))/2,

then Assumption 3 gives x̃0 = x̃1 +O(ε). On each side of x = 0 the equation for u1 is

(f ′(u)u1)x + (g′(u)u1)y = 0.(2.15)

We also need boundary conditions for u1 on the two domains [−a, 0] and [0, a]. Us-
ing (2.4) and (2.8) in (2.13) we obtain

u1(−a, y) = 0.

No further boundary conditions are needed (or allowed) for u1 on the upstream side,
since all characteristics of (2.15) are going into the domain at x = −a and going out
of the domain at x = 0. Hence, u1 ≡ 0 in the upstream region. By using (2.5)
and (2.9) in (2.13) we obtain the boundary condition for u1 at x = a,

R′(u)u(a, y) = 0.

The boundary condition for u+
1 (y) remains to be determined. We will do that in the

next subsection.
We will now construct the region of overlap on the downstream side. The region

of overlap is obtained analogously on the upstream side. Expressed in the stretched
variable x̃, the region of overlap, which we will denote by J , is defined by

J : ε−1δ(ε, 1) ≤ x̃ ≤ K̃(ε, 1).

Both the inner and outer expansions are valid in J ; hence they must be equal in J ,
i.e.,

U0(x̃, y) + εU1(x̃, y) = u(εx̃, y) + εu1(εx̃, y) + O(ε2) in J .

Both u and u1 are assumed to be smooth up to x = 0. Using the Taylor series
expansion around x̃ = 0, we arrive at

(
U0(x̃, y) − u+(y)

)
+ ε

(
U1(y) − u+

x (y)x̃− u+
1 (y)

)
= O(ε2x̃2) in J .(2.16)

We will need ε−1δ(ε, 1) → ∞ as ε → 0. Hence, we make the ansatz

δ = εα, K = ε−β , 0 < α < 1, 1 − α < β,

i.e.,

J : εα−1 < x̃ < ε−β .

Both the terms (U0(x̃, y) − u+(y)) and ε
(
U1(x̃, y) − u+

x (y)x̃− u+
1 (y)

)
in (2.16)

are individually O(ε2x̃2) in J . To see this, we now consider ε as a function of x̃. In
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J we have ε = x̃−γ , where γ ∈ (1/β, 1/(1 − α)). Substituting this on the left-hand
side of (2.16), we arrive at

(
U0(x̃, y) − u+(·, y)

)
+ x̃−γ

(
U1(x̃, y) − u+

x (y)x̃− u+
1 (y)

)
= O(ε2x̃2) in J .(2.17)

We may then write (2.17) in the form

V0(x̃, y) + V1(x̃, y)

ε2x̃2
, which is bounded in J .(2.18)

If γ is chosen such that x̃ is strictly within J for ε = x̃−γ , x̃ will remain inside J ,
also for ε = x̃−γ′

, if γ′ = γ + η for η > 0 sufficiently small, i.e.,

V0(x̃, y) + x̃−ηV1(x̃, y)

ε2x̃2
is bounded in J .(2.19)

Subtracting (2.19) from (2.18) and resubstituting x̃−γ = ε, we obtain

U1(x̃, y) − u+
x (y)x̃− u+

1 (y) = O(εx̃2).

Then it follows that

U0(x̃, y) − u+(y) = O(ε2x̃2).

Hence, in J , we must have εx̃2 = o(1). This is true, e.g., if β = 1/3. We can
then choose, e.g., α = 1/4. The construction of J is then complete. The matching
conditions are

U0(±∞, y) = u±(y),(2.20)

U1(x̃, y) − u±
x (y)x̃− u±

1 (y) = o(1) as x̃ → ±∞.

Since φ(z) vanishes for |z| ≥ K1, we conclude from (2.14) that U0 must have reached
u±(y) at x̃0 ±K1. Hence, the matching condition (2.20) can be reformulated as

U0(x̃0 −K1, y) = u−(y), U0(x̃0 + K1, y) = u+(y).

2.4. Downstream boundary condition for the first order term. In this
subsection, we will derive the necessary boundary conditions for u1 at x = 0+.

Let x−
m denote one point in the upstream matching region and x+

m denote one
point in the downstream matching region. Integration of the viscous (2.7) from x−

m

to x+
m gives

[f(uε)]
x+
m

x−
m

+

∫ x+
m

x−
m

g(uε)y − c2ε
2uε

yy dx = O(ε2),(2.21)

where we have used that φ(x) vanishes in the matching regions. Using the outer
expansion of uε we obtain

[f(uε)]
x+
m

x−
m

= [f(u)]
x+
m

x−
m

+ ε[f ′(u)u1]
x+
m

x−
m

+ O(ε2).(2.22)

By integrating the inviscid (2.1) over the same interval we find

[f(u)]
x+
m

x−
m

= −
∫ 0−

x−
m

g(u)y dx−
∫ x+

m

0+

g(u)y dx.(2.23)
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Note that u is discontinuous at x= 0 and that the Rankine–Hugoniot
condition (2.6) applies across the discontinuity. Taking into account that u1 ≡ 0
upstream of the shock layer and introducing (2.22) and (2.23) into (2.21), and Taylor
expanding u and u1 around x̃ = 0, we arrive at

εf ′(u+(y))u+
1 (y) + I1(y) − I2(y) = O(ε2),(2.24)

where I1 and I2 are defined by

I1 =

∫ 0−

x−
m

(g(uε) − g(u))y dx +

∫ x+
m

0+

(g(uε) − g(u))y dx,

I2 =

∫ x+
m

x−
m

c2ε
2uε

yy dx.(2.25)

First, we consider I2. Expressed using the inner expansion of uε and the (x̃, y)-
coordinate system, we have

I2 = ε

∫ x̃+
m

x̃−
m

c2ε
2(U0 + εU1 + O(ε2))y dx̃.

In the (x̃, y)-coordinate system, all derivatives of Ui are O(1). Hence,

I2 = o(ε2),(2.26)

where we have used that εx̃ = o(1) in the matching region.
Next, we consider I1. We use the inner expansion of uε, the Taylor expansion of

u around x = 0± and change coordinates. Then we obtain

I1 = εĨ1,

Ĩ1 =

∫ 0

x̃−
m

(
g(U0) − g(u−)

)
y
dx̃ +

∫ x̃+
m

0

(
g(U0) − g(u+)

)
y
dx̃ + o(1),

where we have used that εx̃2 = o(1) in the matching region.

For the further analysis, it is convenient to introduce Û(x̃, y) defined by

(
φ(x̃)Ûx̃

)
x̃
− f(Û)x̃ = 0,

Û(−K1, y) = u−,(2.27)

Û(K1, y) = u+,

i.e., U0(x̃, y) = Û(x̃− x̃0, y). Hence, using Û we obtain

Ĩ1 =

∫ 0

x̃−
m

(g(Û(x̃− x̃0(y)) − g(u−))y dx̃

+

∫ x̃+
m

0

(g(Û(x̃− x̃0(y)) − g(u+))y dx̃ + o(1).

We now again change the coordinate system, introducing x̂ = x̃ − x̃0(y), ŷ = y. The
relations between derivatives in the (x̃, y)-coordinate system and the (x̂, ŷ)-coordinate
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system are

∂

∂x̃
=

∂

∂x̂
,

∂

∂y
= −x̃′

0(ŷ)
∂

∂x̂
+

∂

∂ŷ
.

After applying the change of coordinates, we arrive at

Ĩ1 = (−x̃0(ŷ)[g])ŷ + Î1ŷ + o(1),

where

Î1 =

∫ 0

−K1

g(Û) − g(u−) dx̂ +

∫ K1

0

g(Û) − g(u+) dx̂.

The leading terms of (2.24) together with condition (2.10) give that the equations
for u+

1 (y) and x̃1(y) are

f ′(u+)u+
1 − (x̃1[g])y = −Î1y,(2.28)

x̃1(0) = 0.(2.29)

We have used that x̃0 = x̃1 +O(ε) and that u and u1 are independent of ε. Note that
the terms x̃1[g(·, y)] and Î1 are one-variable functions; hence there is no difference
between ŷ and y.

(2.28) and (2.29) constitute the boundary condition for u1 at x = 0+. To
make (2.28) and (2.29) easier to understand, we rewrite them using the character-
istic variables of u1. Let wI be the characteristics of u1 going into the shock, and let
wII be the characteristic variables going out of the shock. We then have

u+ =
(
S+
I S+

II

)( wI

wII

)
.

Expressed in characteristic variables, (2.28) can be written as

(
wII

x̃′
1

)
= D−1

(
Λ+
II 0
0 −1

)−1

(x̃1[g] − S+
I wI − Î1y),(2.30)

where D is defined in (2.3) and Λ+
II = diag(λ+

2 , λ
+
3 , . . . , λ

+
m). By solving (2.30)

and (2.29) for x̃1, we can express wII in wI and known functions of time. The Laplace
transform method (see, e.g., [17]) shows that the equation and boundary conditions
for w constitute a well-posed problem. Well-posedness implies that for any Î1y there
exists a unique solution. The boundary condition for w at x = 0+ is homogeneous if
Î1y ≡ 0, and nonhomogeneous otherwise. Since w is a transformation of u1, the same
applies for u1.

2.5. Main result. We summarize the conclusions from the analysis in the fol-
lowing theorem.

Theorem 2.1. If Assumptions 1–3 are satisfied, then u1 ≡ 0 on the upstream
side and u1 together with x̃1 on the downstream side satisfy the well-posed problem
consisting of (2.15) with the boundary conditions (2.28) and (2.29) on the domain

0 < x < a, y > 0.
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γ

y

Σ

x

(y)

Fig. 2.2. For a curved shock, we define the shock curve Σ by Σ = {(x, y) : x = γ(y)}.

If Î1y ≡ 0, then u1 ≡ 0, and uε is a second order accurate approximation of u. In the
general case u1 �= 0, and uε will be a first order accurate approximation of u.

Remark. In [16] and [23], similar analysis was presented for steady-state solutions
of systems with source terms in one space dimension and time-dependent solutions
of systems in one space dimension, respectively. In both cases, integral conditions
similar to Î1y = 0 are necessary for second order accuracy of the numerical schemes.
In the 1D cases, we were able to design a matrix valued viscosity coefficient such that
the integral condition is satisfied. Numerical computations verified that the numerical
solutions obtained are indeed second order accurate both upstream and downstream
of the shock. In the 1D cases, however, the integral condition involved u and Û , while
the integral condition in two dimensions involved g(u) and g(Û). In general, g is
a complicated nonlinear function. We have not been able to design a matrix valued
viscosity coefficient such that the integral condition Î1y = 0 is satisfied.

2.6. Curved shocks. In this subsection we sketch how the analysis in the pre-
vious sections is altered if we consider curved shocks. The shock curve Σ is defined
by Σ = {(x, y) : x = γ(y)}; see Figure 2.2.

The normal of Σ is (−1, γ′)/
√

1 + |γ′|2. As long as |γ′| is bounded we have
from (2.2)

−[f ] + γ′[g] = 0.

After the coordinate transformation

x̂ = x− γ(y), ŷ = y,(2.31)

the inviscid steady-state solution

f(u)x − g(u)y = 0

becomes

(f(u) − γ′(ŷ)g(u))x̂ + g(u)ŷ = 0.

In numerical computations the dissipation is usually treated separately in each
grid direction. Therefore, instead of (2.7), we now consider the model equation

f(uε)x + g(uε)y = ε
(
φ1u

ε
x

)
x

+ ε
(
φ2u

ε
y

)
y

+ c2ε
2
(
uε
xx + uε

yy

)
(2.32)
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with the appropriate changes of boundary conditions, etc. The functions φ1 and φ2

are smooth functions of one variable modeling the switch mechanism. The model
equation (2.32) expressed in the (x̂, ŷ)-variables is

(f(uε) − γ′(ŷ)g(uε))x̂ + g(uε)ŷ(2.33)

= ε
((
φ1u

ε
x̂

)
x̂
− γ′(φ2

(
− γ′uε

x̂ + uε
ŷ

))
x̂

+
(
φ2

(
− γ′uε

x̂ + uε
ŷ

))
ŷ

)
+ O(ε2).

One of the most important assumptions in the analysis in the previous subsections
was that the derivatives in the x-direction were O(1/ε), whereas the y-derivatives
were O(1). As long as |γ′| 
 1, this also applies in this more general setting. After
introducing

f̂(u) = f(u) − γ′(ŷ)g(u)

the same analysis as before can be performed. Consequently, the downstream bound-
ary condition for the first order term is of the same form as (2.28) and (2.29).

In the case with a straight shock, the first order downstream error was driven only
by the variation along the shock of the states in the inviscid solution. From (2.27),
however, we see that in the case of a curved shock, the first order downstream error
is also driven by the curvature of the shock.

For a general shock, the analysis presented in this section can be applied after a
rotation. There is no essential difference in the analysis, but the calculations become
more tedious. The conclusion is still that the solution will be only first order accurate
downstream of a shock interface.

3. Summary. In this paper we present an analysis that yields a possible expla-
nation to the reduction in order of accuracy, when formally second and higher order
shock capturing schemes are used for solutions containing shocks. A detailed analysis
of the so-called modified equation for a generic shock capturing scheme is presented
for the case of a steady-state solution containing a shock that is straight and aligned
with one of the grid directions. We then show how the analysis can be extended to
curved shocks. The analysis yields that a reduction to first order accuracy in 2D
steady-state solutions in general is due to the variation of the solution in the direction
tangential to the shock layer in the vicinity of the shock. Note that in the 1D case
the reduction to first order accuracy in a steady-state solution is only possible with a
lower order term present in the conservation law. Such a term is not necessary in the
2D case.
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[7] B. Engquist and B. Sjögreen, The convergence rate of finite difference schemes in the pres-
ence of shocks, SIAM J. Numer. Anal., 35 (1998), pp. 2464–2485.

[8] P. Fife, Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional Conf.
Ser. in Appl. Math. 53, SIAM, Philadelphia, 1988.

[9] J. Goodman and A. Majda, The validity of the modified equation for nonlinear shock waves,
J. Comput. Phys., 58 (1985), pp. 336–348.

[10] D. F. Griffiths and J. M. Sanz-Serna, On the scope of the method of modified equations,
SIAM J. Sci. Stat. Comput., 7 (1986), pp. 994–1008.

[11] C. Hirsch, Numerical Computation of Internal and External Flows, Vol. I, Wiley, New York,
1988.

[12] A. Jameson, W. Schmidt, and E. Turkel, Numerical Solutions of the Euler Equations by
Finite Volume Methods Using Runge–Kutta Time-Stepping Schemes, AIAA Paper 81–
1259, 1981.

[13] G.-S. Jiang and S.-H. Yu, Discrete shocks for finite difference approximations to scalar con-
servation laws, SIAM J. Numer. Anal., 35 (1998), pp. 749–772.
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1. Introduction. Let Ω be a unit square (0, 1) × (0, 1) with boundary ∂Ω, and
let x = (x1, x2). We consider a Dirichlet boundary value problem (BVP)

Lu = f in Ω and u = 0 on ∂Ω,(1.1)

where we let

Lu (x) =

2∑
i,j=1

aij(x)uxixj (x) +

2∑
i=1

bi(x)uxi(x) + c(x)u(x).(1.2)

With respect to BVP (1.1), we make the following assumptions. The functions
{aij}2

i,j=1, {bi}2
i=1, c, and f are sufficiently smooth, and a12 = a21. The differen-

tial operator L satisfies the uniform ellipticity condition; that is, there is ν > 0 such
that

2∑
i,j=1

aij(x) ηi ηj ≥ ν(η2
1 + η2

2), x ∈ Ω, (η1, η2) ∈ R2.(1.3)

For any f ∈ L2(Ω), BVP (1.1) has a unique solution u(x) in

H̃2
0 (Ω) = {v ∈ H2(Ω) : v = 0 on ∂Ω},(1.4)

where L2(Ω) and H2(Ω) are the Sobolev spaces.
We approximate BVP (1.1) by an orthogonal spline collocation (OSC) scheme, in

which the discrete solution is sought in the Hermite space of piecewise bicubic polyno-
mials, and it satisfies the differential equation exactly at the special set of collocation
points. The primary advantages of the OSC method are as follows: it has low compu-
tational cost of forming a linear system of algebraic equations; it has relatively easy

∗Received by the editors June 11, 2004; accepted for publication (in revised form) December 13,
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application of higher order finite elements; the OSC solution possesses optimal order
error estimates [7]; and the solution exhibits the so-called superconvergence property
[8, 15]. The matrix of a linear system resulting from the OSC discretization is sparse
and can be expressed as a sum of tensor products of so-called almost block diagonal
matrices [2].

The solution of the OSC equations by a banded Gaussian elimination requires
O(N2) arithmetic operations, where N is the number of unknowns [22, 23, 34]. If the
differential operator is separable and the partition is uniform in one direction, then the
OSC problem can be solved by a fast direct algorithm with the cost O(N logN) [10].

Classical iterative methods, such as Jacobi, Gauss–Seidel, and SOR, for the OSC
solution of Poisson’s equation on a uniform partition were studied in [21, 26, 37].
ADI methods for solving OSC problems with separable operators were investigated
in [5, 14, 18].

Modern techniques are underdeveloped for the solution of OSC equations in com-
parison with finite element Galerkin or finite difference methods. Only a few optimal
cost algorithms have been proposed to solve the OSC discretization of self-adjoint pos-
itive definite BVPs. In [19], the multigrid method was applied to the OSC problem
and compared with a multigrid finite difference method. The author concluded that
the proposed multigrid OSC method is less efficient than a multigrid finite difference
method. A domain decomposition–based fast solver for the OSC discretization of the
Dirichlet problem for Poisson’s equation was developed in [6] requiring O(N log logN)
arithmetic operations. In [13], multigrid methods were developed and analyzed for
quadratic spline collocation equations. Numerical results were presented indicating
that a multigrid iteration is an efficient solver for the quadratic spline collocation
equations.

It is well known that the primary issue in the efficient application of an iterative
algorithm for solving a BVP is the construction of a good preconditioner. In [24], the
authors studied preconditioning of a non–self-adjoint or an indefinite OSC operator
by a finite element operator and investigated H1 condition numbers and the distri-
bution of singular values of the preconditioned matrices. Additive and multiplicative
multilevel preconditioners were proposed in [9] for the iterative solution of the OSC
discretization of a self-adjoint positive definite Dirichlet BVP. It was proved that the
preconditioners are uniformly spectrally equivalent to the OSC operator correspond-
ing to a BVP with the Laplacian and require O(N) arithmetic operations. An efficient
two-level domain decomposition–type “edge” preconditioner was proposed in [29] that
requires O(N) arithmetic operations. The preconditioner is applied with the GMRES
method, and the number of iterations is independent of the partition stepsize h.

Numerical techniques developed for self-adjoint positive definite BVPs are usually
inefficient or even fail when applied to non–self-adjoint or indefinite BVPs, and hence,
special, more sophisticated methods are required to obtain the solution [4, 11, 12, 27,
28]. A fast direct preconditioning algorithm for the solution of the normal OSC
equation approximating non–self-adjoint or indefinite BVPs was proposed in [1].

In this work, we develop additive and multiplicative multilevel preconditioners for
the computation of the solution of the normal OSC equation. Results and algorithms
presented in this paper are closely related to those in [1, 7, 9, 31, 32, 39, 40]. To prove
uniform spectral equivalence of our preconditioners, we use the approach described
in [31] and [32] based on the equivalence of a norm of a certain Besov space with the
Sobolev H2-norm. We note that the approach used in [39] and [40] requires higher
regularity of the solution of BVP (1.1). Our main conclusion in this work is that the
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general framework of multilevel methods can be applied to the OSC discretization
of BVPs to construct efficient preconditioners. Rather general non–self-adjoint or
indefinite OSC problems can be preconditioned quite well by the proposed multilevel
OSC preconditioners.

The outline of this article is as follows. We introduce our notation and define the
OSC problem in section 2. In section 3, we present auxiliary facts that are used to
prove main results of this work. In section 4, we define additive and multiplicative
OSC preconditioners and prove that they are uniformly spectrally equivalent to the
operator of the normal OSC equation. In section 5, we introduce the matrix-vector
form of the OSC problem in the standard Hermite finite element basis and obtain
recurrence relations for the computation of the OSC approximations and other quan-
tities required by the multilevel algorithms. In section 6, we describe implementations
of the additive and the multiplicative preconditioners, and in section 7, we present
numerical results of the application of the preconditioners with the preconditioned
conjugate gradient (PCG) method to solve test problems.

2. OSC problem. In this section, we introduce our notation and define the
OSC problem. Throughout this paper, C, C1, and C2 ≥ C1 denote generic positive
constants independent of the partition stepsize, the number of partition levels, and
other variables in the expressions where the constants appear. By ‖·‖L2(Ω) and ‖·‖H2(Ω)

we denote the standard Sobolev norms.
Construction of nested spaces. We set π0 = Ω and, for integer K > 0, we

construct a sequence of partitions {πk}Kk=0 by subdividing each rectangular element of
partition πk−1 into four congruent rectangular elements of partition πk. Let hk = 2−k

denote the stepsize of partition πk. In what follows, if not stated otherwise, the index
variable k takes all values in {0, 1, . . . ,K}. We note that there are K + 1 partition
levels, and integer K is an important parameter in our analysis.

Let Vk be the vector space of Hermite piecewise bicubic polynomials that vanish
on ∂Ω, which has the dimension Nk = 4k+1 (see Chapter 3 in [35]). The sequence of
vector spaces {Vk} is nested as follows:

V0 ⊂ V1 ⊂ · · · ⊂ VK ⊂ H̃2
0 (Ω).(2.1)

We denote h = hK , N = NK , πh = πK , and Vh = VK .
Original OSC equation. Let Gh be the set of nodes of the two-dimensional

composite Gaussian quadrature on partition πh with 4 nodes in each element of πh. In
the OSC discretization of BVP (1.1), we seek uh ∈ Vh that satisfies the OSC equations

Luh(ξ) = f(ξ), ξ ∈ Gh,(2.2)

where the differential operator L is defined in (1.2). Existence and uniqueness of a
solution and a convergence analysis of problem (2.2) are given in [7].

The OSC problem (2.2) can be written as the operator equation

Lhuh = fh,(2.3)

where the OSC operator Lh from Vh into Vh and the vector fh ∈ Vh are defined by

(Lhv)(ξ) = Lv(ξ), for any ξ ∈ Gh and for any v ∈ V h,(2.4)

fh(ξ) = f(ξ), for any ξ ∈ Gh.

Both Lh and fh are well defined since a function in Vh is uniquely determined by its
values at Gh (see Lemma 5.1 in [33]). We call (2.3) the original OSC equation.
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Normal OSC equation. The vector space Vh is a Hilbert space with the inner
product

(v, w)h =
h2

4

∑
ξ∈Gh

v(ξ)w(ξ),(2.5)

which corresponds to the composite Gaussian quadrature on πh. Let L∗
h be the adjoint

to Lh with respect to the inner product (·, ·)h. Applying L∗
h on (2.3), we obtain the

normal OSC equation

L∗
hLhuh = L∗

hfh.(2.6)

We introduce a bilinear form

ah(w, v) = (L∗
hLhw, v)h, w, v ∈ Vh,(2.7)

and consider the following variational form of problem (2.6): find uh ∈ Vh that satisfies

ah(uh, v) = (L∗
hfh, v)h for all v ∈ Vh.(2.8)

The problems (2.8) and (2.2) are equivalent; hence, problem (2.8) has a unique solu-
tion. In this work, we develop and analyze multilevel preconditioners for the iterative
solution of (2.8).

Space decompositions. In what follows, we denote
∑

k and
∑

k,i for
∑K

k=0

and
∑K

k=0

∑Nk

i=1, respectively, where Nk is the dimension of Vk.

Let {ψk
i }Nk

i=1 be a finite element basis of Vk that satisfies

C1h
1−|α|
k ≤ ‖∂αψk

i ‖L2(Ω) ≤ C2h
1−|α|
k , |α| ≤ 2,(2.9)

where α = (α1, α2) is a multi-index (see Theorem 5.7 in [3]). Let

Vki = span(ψk
i ), 1 ≤ i ≤ Nk,(2.10)

be one-dimensional subspaces of Vk. Based on (2.1), we consider the following two
space decompositions: ∑

k

Vk = Vh and
∑
k,i

Vki = Vh.

For v ∈ Vh, let

V1(v) =

{
{vk} :

∑
k

vk = v, vk ∈ Vk, 0 ≤ k ≤ K

}
,

V2(v) =

{
{vki} :

∑
ki

vki = v, vki ∈ Vki, 1 ≤ i ≤ Nk, 0 ≤ k ≤ K

}
.

We call an element in V1(v) and in V2(v) a representation of v. The sets V1(v) and
V2(v) will be used to define auxiliary equivalent norms on Vh.

3. Auxiliary results. In this section we present auxiliary facts that are used to
prove main results of this work. The following inequalities are proved in Theorem 3.1
in [1].

Lemma 3.1. For h sufficiently small,

C1‖v‖2
H2(Ω)

≤ ah(v, v) ≤ C2‖v‖2
H2(Ω)

, v ∈ Vh.(3.1)
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Remark. In what follows, by sufficiently small h, we mean values of h for which
the statement of Lemma 3.1 holds.

It follows from (3.1) and (2.7) that, for h sufficiently small, the bilinear form
ah(·, ·) is an inner product on Vh. The following is the estimate (8.24) in Chapter 3
of [25].

Lemma 3.2.

‖v‖H2(Ω) ≤ C‖Δv‖L2(Ω), v ∈ H̃2
0 (Ω).(3.2)

Inequalities (3.1), (3.2), and

‖Δv‖2
L2(Ω)

≤ C

∫
Ω

(v2
x1x1

+ v2
x2x2

)dx, v ∈ H̃2
0 (Ω),(3.3)

imply that, for h sufficiently small,

C1‖Δv‖2
L2(Ω)

≤ ah(v, v) ≤ C2‖Δv‖2
L2(Ω)

, v ∈ Vh.(3.4)

Lemma 3.3. Let v ∈ Vk, and let

v =

Nk∑
i=1

cjψ
k
i and 	cv = (c1, . . . , cNk

)t.(3.5)

Then,

C1hk|	cv| ≤ ‖v‖L2(Ω) ≤ C2hk|	cv|, v ∈ Vk,(3.6)

where | · | is the 2-norm on RNk .
Proof. Using (3.5), we obtain

‖v‖2
L2(Ω)

=

∫
Ω

Nk∑
i=1

ciψ
k
i

Nk∑
j=1

cjψ
k
j dx =

Nk∑
i,j=1

cicj

∫
Ω

ψk
i ψ

k
j dx.

The inequalities in (3.6) follow from the last identity and the fact that the eigenvalues
of the mass matrix corresponding to the finite element basis {ψk

i }Nk
i=1 belong to the

interval [C1h
2
k, C2h

2
k] (see (5.103) in [3]).

Let

‖v‖∗,h =

(
inf

V1(v)

K∑
k=0

h−4
k ‖vk‖2

L2(Ω)

)1/2

, v ∈ Vh,(3.7)

where infV1(v) denotes the infimum with respect to all representations {vk} in V1(v).
The following important statement is similar to Corollary 2.1 in [32] and Lemma 2
in [31].

Lemma 3.4. The norms ‖ · ‖H2(Ω) and ‖ · ‖∗,h are uniformly equivalent on Vh;
that is,

C1‖v‖H2(Ω) ≤ ‖v‖∗,h ≤ C2‖v‖H2(Ω), v ∈ Vh.(3.8)

Proof. First, we prove the second inequality in (3.8). It is known that the Besov
space B2

2,2(Ω) coincides, up to equivalent norms, with the Sobolev space H2(Ω) (see
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part (b) of Theorem 4.6.1 and (3) of section 4.2.1 in [38]). Since H̃2
0 (Ω) is a closed

subspace of H2(Ω), it is a closed subspace of B2
2,2(Ω). We note that functions in H̃2

0 (Ω)

are continuous on Ω, and therefore, for any v ∈ H̃2
0 (Ω), v(x) = 0 for all x ∈ ∂Ω; in

particular, the trace of v ∈ H̃2
0 (Ω) is continuous. In a natural way, we extend the

definition of {Vk} for k > K. It follows from Theorem 5.1 in [16] that

‖v‖A2
2,2

=

(
‖v‖2

L2(Ω)
+

∞∑
k=0

24k

(
inf
z∈Vk

‖v − z‖L2(Ω)

)2
)1/2

is a norm on H̃2
0 (Ω) equivalent to the standard norm in B2

2,2(Ω) (see [30] for a definition
of the approximation space A2

2,2). Therefore, using the equivalence of norms ‖ · ‖H2(Ω)

and ‖ · ‖A2
2,2

on H̃2
0 (Ω) and the fact Vh ⊂ H̃2

0 (Ω), we get

‖v‖A2
2,2

≤ C‖v‖H2(Ω), v ∈ Vh.(3.9)

Let us prove

‖v‖∗,h ≤ C‖v‖A2
2,2

, v ∈ Vh.(3.10)

We note that

‖v‖A2
2,2

=

(
‖v‖2

L2(Ω)
+

K−1∑
k=0

24k

(
inf
z∈Vk

‖v − z‖L2(Ω)

)2
)1/2

, v ∈ Vh,(3.11)

since

inf
z∈Vk

‖v − z‖L2(Ω) = 0, k ≥ K, v ∈ Vh.

Take any v ∈ Vh and set v0 = z0 and vk = zk − zk−1 for 1 ≤ k ≤ K, where zk
is the orthogonal L2-projection of v into Vk. Note that v = zK =

∑K
k=0 vk. Using

‖v0‖L2(Ω) ≤ ‖v‖L2(Ω), the triangle inequality, the definition of {zk}, and (3.11), we
obtain

K∑
k=0

h−4
k ‖vk‖2

L2(Ω)
= ‖v0‖2

L2(Ω)
+

K∑
k=1

h−4
k ‖zk − v + v − zk−1‖2

L2(Ω)

≤ ‖v‖2
L2(Ω)

+ 4

K−1∑
k=0

h−4
k ‖v − zk‖2

L2(Ω)

= ‖v‖2
L2(Ω)

+ 4

K−1∑
k=0

24k

(
inf
z∈Vk

‖v − z‖L2(Ω)

)2

≤ 4‖v‖2
A2

2,2
.

Taking the infimum over V1(v), we get (3.10). Inequalities (3.10) and (3.9) imply the
second inequality in (3.8).

Let us prove the first inequality in (3.8). Take any v ∈ Vh and let {vk} ∈ V1(v).
Using the strengthened Cauchy–Schwarz inequality,

∣∣∣∣
∫

Ω

Δvk Δvldx

∣∣∣∣ ≤ C2−|k−l|/2(hkhl)
−2‖vk‖L2(Ω)‖vl‖L2(Ω), vk ∈ Vk, vl ∈ Vl,
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(see Lemma 5.1 in [40]) and the fact that the spectral radius of matrix B = (bkl) with
the entries

bkl = 2−|k−l|/2, 0 ≤ k, l ≤ K,

is bounded by the maximum norm ‖B‖∞ ≤ 3 + 2
√

2, we get

‖Δv‖2
L2(Ω)

=

∫
Ω

(Δv)2dx =

∫
Ω

(
K∑

k=0

Δvk

)(
K∑
l=0

Δvl

)
dx =

K∑
k, l=0

∫
Ω

Δvk Δvldx

≤ C

K∑
k, l=0

2−|k−l|/2(hkhl)
−2‖vk‖L2(Ω)‖vl‖L2(Ω)

≤ C(3 + 2
√

2)
∑
k

h−4
k ‖vk‖2

L2(Ω)
.

From the last estimate, using (3.2) and taking the infimum over V1(v), we obtain the
first inequality in (3.8).

To finish the proof of the lemma, we establish that ‖ · ‖∗,h is a norm on Vh. It
follows from the inequalities in (3.8) that ‖v‖∗,h ≥ 0 for any v ∈ Vh, and ‖v‖∗,h = 0
if and only if v = 0. Let us show that ‖cv‖∗,h = |c| ‖v‖∗,h for any v ∈ Vh and c ∈ R.
Since the case c = 0 is trivial, assume c �= 0. Using the fact that the infimum over
V1(cv) equals the infimum over V1(v), we obtain

‖cv‖2
∗,h = inf

{wk}∈V1(cv)

K∑
k=0

h−4
k ‖wk‖2

L2(Ω)
= inf

{vk}∈V1(v)

K∑
k=0

h−4
k ‖cvk‖2

L2(Ω)
= c2‖v‖2

∗,h,

which implies the required identity.
To prove the triangle inequality for ‖ · ‖h,∗, using the triangle inequality for the

L2-norm and the Minkowski inequality, we obtain, for any v and w in Vh,

‖v + w‖2
∗,h = inf

{zk}∈V1(v+w)

K∑
k=0

h−4
k ‖zk‖2

L2(Ω)
≤ inf

V1(v)
inf

V1(w)

K∑
k=0

h−4
k ‖vk + wk‖2

L2(Ω)

≤ inf
V1(v)

inf
V1(w)

K∑
k=0

h−4
k (‖vk‖L2(Ω) + ‖wk‖L2(Ω))

2 ≤ (‖v‖∗,h + ‖w‖∗,h)2.

Thus, ‖ · ‖∗,h is a norm on Vh which is equivalent to the H2-norm.
Remark. The result of Lemma 3.4 is analogous to those formulated in [32, Corol-

lary 2.1] and [31, Lemma 2], where relations similar to (3.8) were proved first for
Sobolev spaces with equivalent norms involving infinite number series, and then the
versions for finite-dimensional subspaces were obtained. Our proof of Lemma 3.4 is
somewhat different since it is based on the representation (3.11).

Let

‖v‖Σ,Δ =

⎛
⎝ inf

V2(v)

∑
k,i

‖Δvki‖2
L2(Ω)

⎞
⎠

1/2

, v ∈ Vh.(3.12)

Lemma 3.5.

C1‖v‖H2(Ω) ≤ ‖v‖Σ,Δ ≤ C2‖v‖H2(Ω), v ∈ Vh.(3.13)
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Proof. We call nonnegative quantities A(h) and B(h) uniformly equivalent with
respect to h and write A(h) ≈ B(h) if

C1B(h) ≤ A(h) ≤ C2B(h).

Our proof consists of establishing the following sequence of equivalence relations:

‖v‖2
Σ,Δ ≈ inf

V2(v)

∑
k,i

h−4
k ‖vki‖2

L2(Ω)
≈ ‖v‖2

∗,h ≈ ‖v‖2
H2(Ω)

.(3.14)

The last equivalence relation in (3.14) is stated and proved in Lemma 3.4.
Let us prove the first equivalence relation in (3.14). Take any v ∈ Vh and consider

a representation {vki} ∈ V2(v). Using (2.10), (3.3), (3.2), and (2.9) with |α| = 2 and
α = (0, 0), we obtain

C1‖Δvki‖2
L2(Ω)

≤ h−4
k ‖vki‖2

L2(Ω)
≤ C2‖Δvki‖2

L2(Ω)
.

Summing these inequalities with respect to k and i and taking the infimum over V2(v),
we obtain the first equivalence relation in (3.14).

We now prove the second equivalence relation in (3.14):

C1 inf
V2(v)

∑
k,i

h−4
k ‖vki‖2

L2(Ω)
≤ ‖v‖2

∗,h ≤ C2 inf
V2(v)

∑
k,i

h−4
k ‖vki‖2

L2(Ω)
, v ∈ Vh.(3.15)

Take any v ∈ Vh. Using uniqueness of the representation

vk =

Nk∑
i=1

vki, vki ∈ Vki, 1 ≤ i ≤ Nk,

for vk ∈ Vk, we define injection mappings V1(v) → V2(v) and V2(v) → V1(v) by

∑
k

vk =
∑
ki

vki.

The Schroeder–Bernstein theorem implies that there is a bijection V1(v) → V2(v).
Consider any representation {vk} ∈ V1(v) and the representation {vki} ∈ V2(v)

given by the bijection V1(v) → V2(v). Let cki be such that vki = ckiψ
k
i . Using (2.9)

with α = (0, 0), we have

C1 c
2
kih

2
k ≤ ‖vki‖2

L2(Ω)
≤ C2 c

2
kih

2
k.

Summing the last inequalities with respect to i and using (3.6), we obtain

C1

Nk∑
i=1

‖vki‖2
L2(Ω)

≤ ‖vk‖2
L2(Ω)

≤ C2

Nk∑
i=1

‖vki‖2
L2(Ω)

.(3.16)

Multiplying (3.16) by h−4
k , summing for k = 0, 1, . . . ,K, taking the infimum over

V1(v), and using (3.7), we obtain

C1 inf
V1(v)

∑
k,i

h−4
k ‖vki‖2

L2(Ω)
≤ ‖v‖2

∗,h ≤ C2 inf
V1(v)

∑
k,i

h−4
k ‖vki‖2

L2(Ω)
.(3.17)

Since there is a bijection V1(v) → V2(v), the infimum over V1(v) is equal to the
infimum over V2(v); hence, (3.17) implies (3.15).
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4. Uniform spectral equivalence. In this section, we define additive and mul-
tiplicative OSC preconditioners and prove that they are uniformly spectrally equiva-
lent to the OSC operator L∗

hLh.
Additive preconditioner. For 0 ≤ k ≤ K and 1 ≤ i ≤ Nk, let T k

i be a linear
operator from Vh into Vki defined as follows: for any w ∈ Vh, T k

i w satisfies

ah(T k
i w, v) = ah(w, v) for all v ∈ Vki.(4.1)

The following is our main result for the additive preconditioner.
Theorem 4.1. Assume that h is sufficiently small. Linear operator

TA =
∑
k,i

T k
i(4.2)

is self-adjoint positive definite on Vh in the inner product ah(·, ·). Linear operator

BA = L∗
hLhT

−1
A(4.3)

is self-adjoint positive definite on Vh in the inner product (·, ·)h, and

C1(BAv, v)h ≤ (L∗
hLhv, v)h ≤ C2(BAv, v)h, v ∈ Vh.(4.4)

Proof. Let

‖v‖2
Σ,ah

= inf
V2(v)

∑
k,i

ah(vki, vki), v ∈ Vh.(4.5)

First, let us prove the equivalence relation

C1ah(v, v) ≤ ‖v‖2
Σ,ah

≤ C2ah(v, v), v ∈ Vh.(4.6)

Using (3.4), (3.12), and (4.5), we obtain inequalities

C1‖v‖Σ,Δ ≤ ‖v‖Σ,ah
≤ C2‖v‖Σ,Δ, v ∈ Vh,

which, by Lemma 3.5, imply

C1‖v‖H2(Ω) ≤ ‖v‖Σ,ah
≤ C2‖v‖H2(Ω), v ∈ Vh.

The last inequalities and Lemma 3.1 imply (4.6). We note that the second inequality
in (4.6) is one of the key assumptions in the abstract theory of Schwarz methods (see
Assumption 1 in section 5.2 of [36]).

Using (4.2), (4.1), the second inequality in (4.6), and (3.1), we obtain

ah(TAv, v) ≥ Cah(v, v) ≥ C‖v‖2
H2(Ω)

, v ∈ Vh

(see Theorem 1 in [17]). Therefore, operator TA is positive definite. Operators T k
i are

self-adjoint since ah(·, ·) is a symmetric bilinear form; hence, TA is self-adjoint (see
Lemma 2 in section 5.2 of [36]). Thus, operator T−1

A is self-adjoint positive definite.
It follows from (4.3), (2.7), and Lemma 1 in section 5.2 of [36] that

(BAv, v)h = ah(T−1
A v, v) = ‖v‖2

Σ,ah
, v ∈ Vh.

The last relation, along with (4.6) and (2.7), gives (4.4).
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Multiplicative preconditioner. Let

TM = Ih −
[

0∏
k=K

Nk∏
i=1

(
Ih − T k

i

)] [ K∏
k=0

1∏
i=Nk

(
Ih − T k

i

)]
,(4.7)

where Ih is the identity operator on V h.
Theorem 4.2. Assume that h is sufficiently small. Linear operator TM is self-

adjoint positive definite on Vh in the inner product ah(·, ·). Linear operator

BM = L∗
hLhT

−1
M(4.8)

is self-adjoint positive definite on V h in the inner product (·, ·)h, and

C1(BMv, v)h ≤ (L∗
hLhv, v)h ≤ C2(BMv, v)h, v ∈ V h.(4.9)

Proof. Since operators {T k
i } are self-adjoint on V h with respect to the inner

product ah(·, ·), it is easy to see that TM is also a self-adjoint operator. Hence, BM is
self-adjoint in the inner product (·, ·)h. Inequalities in (4.9) follow from Lemma 4 in
section 5.2 of [36] with ω = 1, the second inequality in (4.6), and Lemma 6.1 in [40]
formulated for {Vk}.

Remark. Using the multigrid terminology, we note that the multiplicative precon-
ditioner BM corresponds to the V-cycle multigrid algorithm with the Gauss–Seidel
smoother.

Iterative method. Since the operator of (2.6) is self-adjoint positive definite,
we can use our multilevel preconditioners with the PCG algorithm to compute the
OSC solution (see Algorithm 9.4.14 in [20]).

Let λmin,h and λmax,h be, respectively, the smallest and the largest eigenvalues of
the preconditioned operator

Ãh = M
−1/2
h L∗

hLhM
−1/2
h ,

where Mh is a preconditioner. It is well known that the convergence rate of the PCG
is bounded from above by

(
√
κh − 1)/(

√
κh + 1),

where κh = λmax,h/λmin,h is the spectral condition number of Ãh (see Theorem 9.4.14
in [20]). It follows from Theorems 4.1 and 4.2 that

κh ≤ C2/C1 < ∞ as h → ∞.(4.10)

The estimate (4.10) implies that it takes O(| ln ε|) iterations of the PCG algorithm
with the multilevel OSC preconditioners to approximate the solution of (2.6) with
tolerance ε; that is, the number of iterations is bounded by a constant independent
of h and K.

5. OSC matrix-vector representation. In this section, we introduce the
matrix-vector representation of the OSC problem in the standard Hermite finite ele-
ment basis and obtain recurrence relations for the computation of the OSC approxi-
mations and other required quantities.

Representation of Hermite piecewise cubic polynomials. Let V 1
k denote a

vector space of Hermite piecewise cubic polynomials vanishing at t = 0 and t = 1 and
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corresponding to the partition {tki = i/2k}2k

i=0 of the interval [0, 1]. The dimension of
V 1
k is Mk = 2k+1. Let

Φk = {sk0 , vk1 , sk1 , . . . , vk2k−1, s
k
2k−1, s

k
2k} ≡ {φi}Mk

i=1(5.1)

be the standard basis of V 1
k consisting of nodal value and nodal slope basis functions

vi(t) and si(t), respectively, defined for 0 ≤ i ≤ 2k by

vki (tkj ) = δij , (vki )′(tkj ) = 0, 0 ≤ j ≤ 2k,

ski (t
k
j ) = 0, (ski )

′(tkj ) = h−1
k δij , 0 ≤ j ≤ 2k,

(5.2)

where δij is the Kronecker delta. We note that the basis functions vk0 and vk2k corre-
sponding to the boundary points t = 0 and t = 1 are not included in Φk.

The value and the slope basis functions in Φk corresponding to an interior par-
tition node are uniquely expressed as a linear combination of five basis functions in
Φk+1 as follows:

vki = 1
2v

k+1
2i−1 + 3

4s
k+1
2i−1 + vk+1

2i + 1
2v

k+1
2i+1 − 3

4s
k+1
2i+1,

ski = − 1
8v

k+1
2i−1 − 1

8s
k+1
2i−1 + 1

2s
l+1
2i + 1

8v
k+1
2i+1 − 1

8s
k+1
2i+1.

(5.3)

Let

P =

(
4 −1
6 −1

)
, Q =

(
8 0
0 4

)
, and R =

(
4 1
−6 −1

)
(5.4)

be matrices corresponding to the representation (5.3). Let P 1
k be a 2Mk ×Mk matrix

obtained from

1

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q O O . . . O
R P O
O Q O
O R P
...

. . .
...

O . . . Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(2Mk+2)×(Mk+2),(5.5)

where O is the 2 × 2 zero matrix, by removing the first and next-to-last rows and
columns. For v ∈ V 1

k , let [v]H,k denote the vector representation of v in the basis Φk.
It follows from (5.3), (5.4), and (5.5) that

[v]H,k+1 = P 1
k [v]H,k, v ∈ V 1

k , k ∈ {0, 1, 2, . . . ,K − 1}.(5.6)

Representation of Hermite piecewise bicubic polynomials. We note that
Vk = V 1

k ⊗ V 1
k , where the symbol ⊗ denotes a vector space tensor product. Set

ψk
Mk(i−1)+j(x) = φi(x1)φj(x2) for 1 ≤ i, j ≤ Mk,(5.7)

where basis functions φi, for 1 ≤ i ≤ Mk, are defined by (5.1) and (5.2). The set
Ψk = {ψk

j }Nk
j=1, where Nk = M2

k = 4k+1, is the standard basis for Vk in the standard
ordering.

It follows from (5.3) and (5.7) that a basis function in Ψk corresponding to an
interior partition node is uniquely expressed as a linear combination of 25 basis func-
tions in Ψk+1. Let [v]H,k denote the vector representation of v ∈ Vk in the basis Ψk,
and let [v]H = [v]H,K for v ∈ Vh. It is obvious that

[ψk
j ]H,k = 	e k

j , 1 ≤ j ≤ Nk,(5.8)
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where 	e k
j is the jth standard basis vector in RNk .

We set

Pk = P 1
k ⊗ P 1

k ∈ R2Nk×Nk ,(5.9)

where P 1
k is the one-dimensional interpolation matrix in (5.6) and the symbol ⊗ now

denotes the matrix tensor product. Matrix Pk corresponds to the piecewise bicubic
Hermite interpolation in Vk+1, and we call Pk the interpolation matrix from level k
to level k + 1. It follows from (5.6), (5.7), and (5.9) that

[v]H,k+1 = Pk[v]H,k for 0 ≤ k ≤ K − 1 and v ∈ Vk.(5.10)

Applying formula (5.10) recurrently, we obtain

[v]H = PK−1 · · ·Pk[v]H,k, v ∈ Vk.(5.11)

In particular, replacing v in (5.11) by ψk
j and using (5.8), we get

[ψk
j ]H = PK−1 · · ·Pk	e

k
j , 1 ≤ j ≤ Nk.(5.12)

Matrix-vector form of the OSC problem. Assume that the set of Gauss
points Gh = {ξi}Ni=1 is ordered, and let

[v]G = [v(ξ1), . . . , v(ξN )]t

for any function v defined on Gh. From (2.5), we have

(v, w)h = (h2/4)[w]tG[v]G, v, w ∈ Vh.(5.13)

Let [Lh] be the OSC matrix of size N ×N , corresponding to the differential
operator L in (1.2), with entries LψK

j (ξi), where i is the row index. For a continuous
function g(x), let

D(g) = diag (g(ξ1), . . . , g(ξN ))

be a diagonal matrix. We note that

[Lh] = D(a11)(Â⊗ B̂) + 2D(a12)(Ĉ ⊗ Ĉ) + D(a22)(B̂ ⊗ Â)

+D(b1)(Ĉ ⊗ B̂) + D(b2)(B̂ ⊗ Ĉ) + D(c)(B̂ ⊗ B̂),

and the matrices Â, Ĉ, and B̂ have the following almost block diagonal structure:

⎛
⎜⎜⎜⎜⎜⎝

W̃ Z O O · · · O Õ

Õ W Z O

Õ O W Z
...

...
. . .

...
...

Õ O . . . W Z̃

⎞
⎟⎟⎟⎟⎟⎠

∈ RMK×MK ,

where W , Z, O and W̃ , Z̃, Õ are, respectively, 2×2 and 2×1 blocks; O and Õ are zero
matrices. The (i, j) entries of matrices Â, Ĉ, and B̂ are φ′′

i (ηj), φ
′
i(ηj), and φi(ηj),

respectively, where {ηj}MK
j=1 is the set of Gauss points in interval [0, 1] corresponding

to partition πh.
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It is easy to see that

[Lhv]G = [Lh][v]H, v ∈ Vh.(5.14)

Using (2.7), (5.13), and (5.14), we obtain, for any v and w in Vh,

ah(v, w) = (Lhv, Lhw)h = (h2/4)[Lhw]tG[Lhv]G = (h2/4)[w]tH[Lh]t[Lh][v]H.(5.15)

Let Ak = (akij) be an Nk ×Nk matrix with entries

akij = (4/h2)ah(ψk
j , ψ

k
i ),(5.16)

and let A = AK . From (5.16), using (5.15), we get

akij = [ψk
j ]tH[Lh]t[Lh][ψk

i ]H.(5.17)

From (5.17) for k = K, using (5.8), we obtain

A = [Lh]t[Lh].(5.18)

Similarly, using (5.13), (5.14), the relation [f ]G = [fh]G, and (5.8), we obtain

(4/h2)(L∗
hfh, ψ

K
i )h = (4/h2)(fh, Lhψ

K
i )h = [fh]tG[Lhψ

K
i ]G

= [f ]tG[Lh][ψK
i ]H = (	eK

i )t[Lh]t[f ]G.

Thus, the variational OSC equation (2.8) has the matrix-vector form

A [uh]H = [Lh]t[f ]G.(5.19)

6. Implementation. In this section, we describe implementations of both the
additive and the multiplicative OSC preconditioners.

Additive preconditioner. Let us describe the computation of w = B−1
A v for

v ∈ Vh, where BA is defined by (4.3). Let

wk =

Nk∑
i=1

wki, where wki = T k
i (L∗

hLh)−1v.(6.1)

Using (4.3), (4.2), and (6.1), we get

w = TA(L∗
hLh)−1v =

(∑
k,i

T k
i

)
(L∗

hLh)−1v =
∑
k,i

wki =
∑
k

wk.(6.2)

Thus, to compute w, we need to compute and sum wk for k = 0, 1, . . . ,K.
Using (4.1) and (2.7), we obtain, for 1 ≤ i ≤ Nk,

ah(wki, ψ
k
i ) = ah(T k

i (L∗
hLh)−1v, ψk

i ) = ah((L∗
hLh)−1v, ψk

i ) = (v, ψk
i )h.(6.3)

Let

wki = ckiψ
k
i , cki ∈ R,(6.4)

[v]k = (4/h2)[(v, ψk
1 )h, . . . , (v, ψ

k
Nk

)h]t ∈ RNk .(6.5)
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Substituting (6.4) into (6.3) and using (6.5) and (5.16), we rewrite (6.3) in the form

diag(Ak)	wk = [v]k,(6.6)

where 	wk = (ck1, . . . , ckNk
)t = [wk]

t
H,k and diag(Ak) = diag(ak11, . . . , a

k
NkNk

).

Let [Ih] be an N×N matrix with entries ψK
j (ξi), where i is the row index. Matrix

[Ih] is nonsingular and maps [v]H to [v]G, that is,

[v]G = [Ih] [v]H, v ∈ Vh.(6.7)

For [v]k defined by (6.5), let us show

[v]K = [Ih]t[v]G,(6.8)

[v]k = P t
k[v]k+1 for k = K − 1,K − 2, . . . , 0,(6.9)

where the interpolation matrix Pk is defined by (5.9) and (5.5). Using (6.5), (5.13),
and (6.7), we obtain

(	e k
j )t[v]k = (4/h2)(v, ψk

j )h = [ψk
j ]tG[v]G = [ψk

j ]tH[Ih]t[v]G, 1 ≤ j ≤ Nk.(6.10)

Relation (6.8) follows from (6.10) with k = K and (5.8). Using (6.10), (5.12), and
(6.8), we obtain

[v]k = P t
k · · ·P t

K−1[v]K ,

which implies (6.9).
The multiplication by P t

k is carried out using the representation

P t
k = ((P 1

k )t ⊗ Ik)(Ik ⊗ (P 1
k )t),

where Ik is the identity matrix of size Mk ×Mk. Matrices {Ak} can be precomputed
using the recurrence formula

Ak = P t
kAk+1Pk for k = K − 1,K − 2, . . . , 0,(6.11)

which follows from (5.17), (5.12), and (5.18). Finally, to compute w =
∑

k wk, that
is, [w]H, we implement

	wk+1 ← 	wk+1 + Pk 	wk, k = 0, 1, . . . ,K − 1.

The additive preconditioning algorithm is presented in Figure 6.1. It is easy to
see that the computational cost of the additive algorithm is O(h−2) = O(4K).

Multiplicative preconditioner. We now consider the computation of w =
B−1

M v for v ∈ Vh, where BM is defined in (4.8). Let

u = (L∗
hLh)−1v.(6.12)

Using (4.8) and (6.12), we get

w = B−1
M v = TM (L∗

hLh)−1v = TMu,

which, by (4.7), implies

u− w =

[
0∏

k=K

Nk∏
i=1

(
Ih − T k

i

)] [ K∏
k=0

1∏
i=Nk

(
Ih − T k

i

)]
u.(6.13)
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input: K, [v]K , {diag(Ak)}Kk=0

output: [w]H
	vK ← [v]K
for k = K,K − 1, . . . , 0

if (k < K) 	vk = P t
k	vk+1 end

solve diag(Ak)	wk = 	vk
end
for k = 0, 1, . . . ,K − 1

	wk+1 ← 	wk+1 + Pk 	wk

end
[w]H ← 	wK

Fig. 6.1. Additive preconditioning algorithm.

Let S be an ordered set of pairs (k, i) with the ordering corresponding to that
of factors in (6.13) from right to left. Setting y = u − w, we see that u − w can be
computed by

y ← u; y ← (Ih − T k
i )y for (k, i) ∈ S,

which is equivalent to

w ← 0; w ← w + T k
i (u− w) for (k, i) ∈ S.(6.14)

Let us develop an efficient implementation of the algorithm in (6.14). Using (4.1),
(2.7), and (6.12), we obtain

ah(T k
i (u− w), ψk

i ) = ah(u− w,ψk
i ) = (v, ψk

i )h − ah(w,ψk
i ), ψk

i ∈ Vki.(6.15)

Substituting T k
i (u− w) = ckiψ

k
i into (6.15) and (6.14), we get

cki = gki (w)/akii,(6.16)

w ← w + ckiψ
k
i ,(6.17)

where akii is as defined in (5.16), and

gki(w) = (4/h2)
[
(v, ψk

i )h − ah(w,ψk
i )
]
, 1 ≤ i ≤ Nk.(6.18)

Let 	gk(w) = (gk1(w), . . . , gkNk
(w))t. We note that, each time the value of w is

changed by (6.17), all entries of vector 	gk(w) should be updated by (6.18), and such
computation requires a matrix-vector product. It is more efficient to use a recurrent
assignment

	gk(w) ← 	gk(w) − cki(a
k
1i, . . . , a

k
Nk,i

)t,(6.19)

which is obtained by multiplying (6.17) by ψk
j in the ah(·, ·) inner product and sub-

tracting (v, ψk
j )h from both sides of the resulting assignment.

For k = K − 1,K − 2, . . . , 0, let wk be the value of w after implementing

w ← w + T l
i (u− w), i = 1, . . . , Nl, l = K,K − 1, . . . , k + 1,
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input: K, [v]K , {Ak}Kk=0

output: [w]H
	gK ← [v]K
for k = K, . . . , 0

solve Lk 	wk = 	gk
if (k > 0) 	gk−1 ← P t

k−1(	gk −Ak 	wk) end
end
for k = 0, . . . ,K

if (k > 0) 	wk ← 	wk + Pk−1 	wk−1 end
solve Lt

k 	w = 	gk −Ak 	wk

	wk ← 	wk + 	w
end
[w]H ← 	wK

Fig. 6.2. Multiplicative preconditioning algorithm.

and let

	gk = 	gk(wk).(6.20)

We note that (6.16) followed by (6.19) for i = 1, . . . , Nk is the column-oriented algo-
rithm of solving a lower triangular linear system Lk 	wk = 	gk, where matrix Lk contains
the lower triangular part of Ak and 	wk = (ck1, . . . , ck,Nk

)t.
Let us show that vectors {	gk} can be computed by the recurrence formula

	gk−1 = P t
k−1 (	gk −Ak 	wk).(6.21)

Using (6.19), the definition of wk−1, and (6.20), we obtain

	gk(wk−1) = 	gk −Ak 	wk.(6.22)

Applying (6.18), (6.5), (5.15), (5.12), we get

	gk(w) = [v]k − P t
k · · ·P t

K−1[Lh]t[Lh][w]H.(6.23)

From (6.23) with k replaced by k − 1 and (6.9), we have

	gk−1(w) = P t
k−1

(
[v]k − P t

k · · ·P t
K−1[Lh]t[Lh][w]H

)
= P t

k−1	gk(w),

which, by (6.22), implies (6.21).
In the ascend phase, for k = 0, . . . ,K, an upper triangular linear system with the

matrix Lt
k is solved. The algorithm implementing the multiplicative preconditioning

is given in Figure 6.2. It is easy to see that the cost of the multiplicative algorithm is
O(h−2) = O(4K).

7. Numerical results. In this section, we present numerical results for solving
test problems by the PCG method with the multilevel OSC preconditioners developed
in this work. For a chosen exact solution u(x) of BVP (1.1), we set f = Lu. PCG
iterations are stopped when the relative residual norm, that is, the ratio of the 2-
norm of the residual of (5.19) to the 2-norm of the right-hand side, becomes less than
tolerance ε.
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Table 7.1

Comparison of multilevel preconditioners to solve the normal and the original OSC equations
by PCG (L = Δ, ε = 10−12).

Normal OSC equation Original OSC equation

Additive Multiplicative Additive Multiplicative

h κh Iter. κh Iter. κh Iter. κh Iter.

1/16 4.490 26 1.434 12 7.551 30 1.169 9
1/32 5.016 29 1.476 13 7.794 30 1.167 9
1/64 5.488 32 1.501 13 7.908 30 1.165 9

1/128 5.845 34 1.516 14 7.962 29 1.164 9
1/256 6.162 35 1.525 14 7.991 28 1.162 9

The spectral condition number κh of the preconditioned OSC operator satisfies
(4.10), that is, κh < C2/C1 as h → 0. To demonstrate this fact numerically, we
compute quantities that approximate κh on a sequence of nested partitions using the
PCG iteration parameters and present these approximations in the following tables
under κh. Under “Iter.”, we report the numbers of iterations to reduce the relative
residual norm within the specified tolerance.

In the first set of experiments, we compare our preconditioners with those pro-
posed in [9], where both additive and multiplicative multilevel preconditioners were
developed to solve the original OSC equation (2.3) for a self-adjoint L. As in [9], we
take L = Δ, the Laplacian, and

u(x) = 10x2
1(1 − x1)x

2
2(1 − x2).

Since u(x) is a bicubic polynomial, it is also the solution of the OSC problem; hence,
the discretization error is zero. The numerical results are presented in Table 7.1,
and they indicate that, for L = Δ, PCG with multilevel preconditioners for the
original OSC equation is slightly more efficient than that for the normal OSC equation.
For smaller values of h, the approximations to κh and the numbers of iterations are
relatively small and change insignificantly.

In the next set of experiments, we solve the same problems as in [1], where the
PCG algorithm was tested with a direct solver preconditioner. The operator L in
(1.2) is taken with the coefficients

a11(x) = ex1x2 , b1(x) = x2e
x1x2 + β1 cos[π(x1 + x2)],

a12(x) = α/(1 + x1 + x2), b2(x) = −x1e
−x1x2 + β2 sin(2πx1x2),

a22(x) = e−x1x2 , c(x) = γ[1 + 1/(1 + x1 + x2)],
(7.1)

where α, β1, β2, and γ are parameters, and the exact solution of BVP (1.1) is set to

u(x) = ex1+x2x1x2(1 − x1)(1 − x2).

Using the PCG with the multiplicative preconditioner, we solve the following four
test problems corresponding to the differential operator L, which is defined in each
problem:

P1 – self-adjoint negative definite, α = β1 = β2 = γ = 0.
P2 – self-adjoint indefinite, α = β1 = β2 = 0 and γ = 100.
P3 – non–self-adjoint indefinite, β2 = 100 and α = β1 = γ = 0.
P4 – non–self-adjoint indefinite, α = 0.5, β1 = 10, β2 = γ = 50.
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Table 7.2

Approximations to the spectral condition number κh and PCG iteration numbers for the variable
coefficient L (ε = 10−10). Top part: multilevel preconditioner. Bottom part: additive preconditioner.

P1 P2 P3 P4

h κh Iter. κh Iter. κh Iter. κh Iter.

1/16 2.570 15 (26) 363.0 68 (46) 624.5 43 (34) 516.1 51 (68)
1/32 3.646 17 (30) 363.2 70 (51) 499.8 42 (38) 457.8 61 (75)
1/64 4.922 20 (33) 361.6 71 (54) 459.3 46 (40) 402.9 56 (81)
1/128 6.189 23 (34) 361.5 72 (55) 398.6 52 (42) 382.0 58 (84)
1/256 7.253 25 360.3 73 376.0 54 377.8 59

1/16 30.3 43 5835.0 103 9764.6 71 6961.2 67
1/32 50.9 58 5802.3 117 7396.7 79 5999.5 83
1/64 75.6 70 5801.5 128 6562.9 98 5131.5 104
1/128 99.9 81 5803.4 140 5414.9 122 5008.0 121
1/256 117.6 89 5805.2 147 5025.1 139 5213.8 137

In the top part of Table 7.2, we report results with the multiplicative precondi-
tioner, and, in parentheses, we reproduce results reported in [1].

For all four problems, the numbers of iterations increase slowly with decreasing
h. It takes the least number of iterations to solve the self-adjoint negative definite
problem P1, and the most number of iterations to solve P2, the “most indefinite”
problem of P1–P4. For P1, approximations to the spectral ratio κh are much smaller
than those for P2–P4, where the approximations to κh are about the same for smaller
values of h. It is interesting to note that κh monotonically increases for P1 and
decreases for P2–P4 as h decreases. We observe that the approximations to κh for
P2–P4 are significantly larger than those for P1. The numbers of iterations for P1
and P4 favor the multilevel multiplicative preconditioner rather than the direct solver
preconditioner developed in [1], although the preconditioner in [1] produces smaller
numbers of iterations for P2 and P3.

Results for the additive preconditioner are presented in the bottom part of Ta-
ble 7.2, and they suggest that, for the tested problems, the additive preconditioner
is less efficient, in terms of numbers of iterations, than the multiplicative precon-
ditioner. The approximations of κh computed with the additive preconditioner are
approximately 15 times larger than those computed with the multiplicative precondi-
tioner, and the indicated difference is reflected by a larger number of iterations for the
additive preconditioner. This result is intuitively expected based on known properties
of Jacobi and Gauss–Seidel smoothers for finite difference operators.

In Figure 7.1, we display plots of residual curves for h = 1/256. We observe
monotone convergence only for the self-adjoint negative definite problem P1; for P2–
P4, the residual curves are plotted relatively close to each other.

In the last set of experiments, we solve the Helmholtz equation Δu + k2u = f
for several values of k2. Numerical results were obtained using the multiplicative
preconditioner, and they are presented in Table 7.3. We see that the approximations
to κh change insignificantly when h is decreased for all taken values of k2. For k2 =
1000, the approximations to kh are very large; however, for k2 = 1400 they are the
smallest. The approximations to kh are large because of small values of the smallest
eigenvalue λmin,h of the preconditioned operator. In Figure 7.2, we plot the eigenvalues
of the OSC matrix [Lh] with h = 1/32 (N = 4, 096) for the Helmholtz equation with
k2 = 1400. We note that the eigenvalues are widely spread over the complex plane.
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Fig. 7.1. Logarithmic plots of the relative residual norm versus iteration number (h = 1/256).
Top figure: multiplicative preconditioner. Bottom figure: additive preconditioner.

Table 7.3

Approximations to the spectral condition number κh and PCG iteration numbers for the
Helmholtz equation (ε = 10−10).

k2 = 100 k2 = 500 k2 = 1000 k2 = 1400

h κh Iter. κh Iter. κh Iter. κh Iter.

1/16 1468.6 51 1808.6 108 133089.6 200 301.4 98
1/32 1446.7 51 1465.0 117 34202.1 175 514.3 133
1/64 1442.1 51 1437.6 125 26442.1 182 545.2 141
1/128 1441.2 51 1435.0 128 25981.5 183 546.1 151
1/256 1441.0 51 1434.8 144 25947.7 199 545.9 154
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Fig. 7.2. Eigenvalues of the OSC matrix [Lh] for the Helmholtz equation on the complex plane
(k2 = 1400, h = 1/32).
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Fig. 7.3. Eigenvalues of the OSC operator Lh for the Helmholtz equation plotted against their
ordering numbers (k2 = 1400, h = 1/32).

In Figure 7.3, we plot the eigenvalues of the symmetric matrix [Ih]t[Lh], which
are the eigenvalues of the OSC operator Lh. We note that Lh has large numbers of
both positive and negative eigenvalues.
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ADAPTIVE MULTIVARIATE APPROXIMATION USING BINARY
SPACE PARTITIONS AND GEOMETRIC WAVELETS∗
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Abstract. The binary space partition (BSP) technique is a simple and efficient method to adap-
tively partition an initial given domain to match the geometry of a given input function. As such,
the BSP technique has been widely used by practitioners, but up until now no rigorous mathematical
justification for it has been offered. Here we attempt to put the technique on sound mathematical
foundations, and we offer an enhancement of the BSP algorithm in the spirit of what we are going
to call geometric wavelets. This new approach to sparse geometric representation is based on re-
cent developments in the theory of multivariate nonlinear piecewise polynomial approximation. We
provide numerical examples of n-term geometric wavelet approximations of known test images and
compare them with dyadic wavelet approximation. We also discuss applications to image denoising
and compression.
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nonlinear approximation, adaptive multivariate approximation
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1. Introduction. The binary space partition (BSP) technique is widely used in
image processing and computer graphics [15, 17, 19], and can be described as follows.
Given an initial convex domain in R

d, such as [0, 1]d, and a function f ∈ Lp([0, 1]d),
0 < p < ∞, one subdivides the initial domain into two subdomains by intersecting
it with a hyperplane. The subdivision is performed so that a given cost function is
minimized. This subdivision process then proceeds recursively on the subdomains
until some exit criterion is met. To be specific, we describe the algorithm of [17],
which is a BSP algorithm, for the purpose of finding a compact geometric description
of the target function, in this case a digital image (d = 2).

In [17], at each stage of the BSP process, for a given convex polytope Ω, the
algorithm finds two subdomains Ω′, Ω′′ and two bivariate (linear) polynomials QΩ′ ,
QΩ′′ that minimize the quantity

‖f −QΩ′‖pLp(Ω′) + ‖f −QΩ′′‖pLp(Ω′′)

over all pairs Ω′, Ω′′ of polyhedral domains that are the result of a binary space
partition of Ω. The polynomials QΩ′ , QΩ′′ are found using the least-squares technique
with p = 2. The goal in [17] is to encode a cut of the BSP tree, i.e., a sparse
piecewise polynomial approximation of the original digital image based on a union of
disjoint polytopes from the BSP tree. Also, to meet a given bit target, rate-distortion
optimization strategies are used (see also [21]).

Inspired by recent progress in multivariate piecewise polynomial approximation,
made by Karaivanov, Petrushev, and collaborators [13, 14], we propose a modification
to the above method which can be described as a geometric wavelets approach. Let
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Ω′ be a child of Ω in a BSP tree; i.e., Ω′ ⊂ Ω and Ω′ has been created by a BSP
partition of Ω. We use the polynomial approximations QΩ, QΩ′ that were found for
these domains by the local optimization algorithm above and define

ψΩ′ := ψΩ′(f) := 1Ω′(QΩ′ −QΩ)(1.1)

as the geometric wavelet associated with the subdomain Ω′ and the function f . A
reader familiar with wavelets (see, e.g., [3, 7]) will notice that ψΩ′ is a “local difference”
component that belongs to the detail space between two levels in the BSP tree, a “low
resolution” level associated with Ω and a “high resolution” level associated with Ω′.
Also, these wavelets have what may be regarded as the “zero moments” property; i.e.,
if f is locally a polynomial over Ω, then we get QΩ′ = QΩ = f and ψΩ′ = 0. However,
the BSP method is highly nonlinear; both the partition and the geometric wavelets are
so dependent on the function f that one cannot expect some of the familiar properties
of wavelets like a two-scale relation, a partition of unity, or spanning of some a priori
given spaces.

Our modified BSP algorithm proceeds as follows. We apply the BSP algorithm
and create a “full” BSP tree P. Obviously, in applications, the subdivision process is
terminated when the leaves of the tree are subdomains of sufficiently small volume,
or equivalently, in image processing, when the subdomains contain only a few pixels.
We shall see that under certain mild conditions on the partition P and the function
f we have

f =
∑
Ω∈P

ψΩ(f) a.e. in [0, 1]d,

where

ψ[0,1]d := ψ[0,1]d(f) := 1[0,1]dQ[0,1]d .

We then compute all the geometric wavelets (1.1) and sort them according to their
Lp norms, i.e.,

‖ψΩk1
‖p ≥ ‖ψΩk2

‖p ≥ ‖ψΩk3
‖p · · · .(1.2)

Given an integer n ∈ N, we approximate f by the n-term geometric wavelet sum

n∑
j=1

ψΩkj
.(1.3)

The sum (1.3) is, in some sense, a generalization of the classical n-term wavelet
approximation (see [7] and references therein), where the wavelets are constructed
over dyadic cubes.

A key observation is that the BSP algorithm described above is a geometric greedy
algorithm. At each stage of the algorithm we try to find a locally optimal partition
of a given subdomain. Indeed, the problem of finding an optimal triangulation or
partition is associated with an NP-hard problem (see the discussion in [6, section 4]
and references therein).

It is known in classical wavelet theory (see, e.g., [7]) that the energy of the wavelet
basis coefficients in some lτ -norm, 0 < τ < p, is a valid gauge for the “sparseness”
of the wavelet representation of the given function. We follow this idea, extending it
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to our geometric wavelet setup. Thus we take as a reasonable benchmark by which
to measure the efficiency of the greedy algorithm, a BSP partition that “almost”
minimizes, over all possible partitions, the sum of energies of the geometric wavelets
of a given function, namely,

(∑
Ω∈P

‖ψΩ‖τp

)1/τ

,(1.4)

for some 0 < τ < p.
We note the following geometric suboptimality of the BSP algorithm (see [12, 25]

and references therein). We say that a BSP for n disjoint objects in a given convex
domain is a recursive dissection of the domain into convex regions such that each
object (or part of an object) is in a distinct region. Ideally, every object should be
in one convex region, but sometimes it is inevitable that some of the objects are
dissected. The size of the BSP is defined as the number of leaves in the resulting
BSP tree.

It can be shown that for a collection of n disjoint line segments in the plane, there
exists a BSP of complexity O(n log n). Recently, Tóth [24] showed a lower bound of
Ω(n log n/ log log n), meaning that for d = 2, in the worst case, the BSP algorithm
might need slightly more elements to “capture” arbitrary linear geometry. In higher
dimensions, the performance of the BSP in the worst case decreases. For example,
the known lower bound for the BSP of a collection of n disjoint rectangles in R

3 is
Ω(n2).

The paper is organized as follows. In section 2, we outline the algorithmic aspects
of the geometric wavelet approach so that the reader who is less interested in the rig-
orous mathematics may skip section 3 and proceed directly to section 4. In section 3,
we review the more theoretical aspects of our approach, and we provide some details
on the approximation spaces that are associated with the method. It is interesting to
note that, while the approximation spaces corresponding to nonlinear n-term wavelet
approximation are linear Besov spaces (see [7] for details), the adaptive nature of the
geometric wavelets implies that the corresponding approximation spaces are nonlin-
ear. Nevertheless, it turns out that the problem at hand is “tamed” enough so as
to enable the application of the classical machinery of the Jackson and Bernstein in-
equalities (see, e.g., [7]). Specifically, the analysis can be carried out because we are
adaptively selecting one nested fixed partition for a given function, from which we
select n-term geometric wavelets for any n. (In contrast, general adaptive piecewise
polynomial n-term approximation [6] allows for each n, the selection of any n pieces,
with no assumptions that they are taken from a fixed partition.) We conclude the
paper with section 4, where we provide some numerical examples of n-term geomet-
ric wavelet approximation of digital images and discussion of possible applications in
image denoising and compression.

2. Adaptive BSP partitions and the geometric wavelet approximation
algorithm. Let Πr−1 := Πr−1(R

d) denote the multivariate polynomials of total de-
gree r − 1 (order r) in d variables. Given a bounded domain Ω ⊂ R

d, we denote the
degree (error) of polynomial approximation of a function f ∈ Lp(Ω), 0 < p ≤ ∞, by

Er−1(f,Ω)p := inf
P∈Πr−1

‖f − P‖Lp(Ω).

Recall that the greedy BSP algorithm consists of finding, at each step, an optimal
dissection of some domain Ω, and computing the polynomials QΩ′ and QΩ′′ that best
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approximate the target function f in the p-norm over the children Ω′,Ω′′ ⊂ Ω. In
practice, we will have a suboptimal dissection, and near-best approximation. Thus,
we are going to assume that for each Ω ∈ P, QΩ is a near-best approximation, i.e.,

‖f −QΩ‖Lp(Ω) ≤ CEr−1(f,Ω)p,(2.1)

where C is independent of f and Ω but may depend on parameters like d, r, and
possibly p. We shall see in section 3 that for the purpose of analysis when p ≤ 1, we
need the stronger assumption that QΩ is a (possibly not unique) best approximation.

Let P be a partition of [0, 1]d, and let Ω′ be a child of Ω ∈ P. For f ∈ Lp([0, 1]d),
0 < p < ∞, we set ψΩ′ as in (1.1). As noted in the introduction, the function ψΩ′ in
(1.1) may be regarded as a local wavelet component of the function f that corresponds
to the partition P. For 0 < τ ≤ p we denote the τ -energy of the sequence of geometric
wavelets by the lτ -norm of its Lp-norms,

Nτ (f,P) :=

(∑
Ω∈P

‖ψΩ‖τp

)1/τ

.(2.2)

We will show that, under some mild conditions, the geometric wavelet expansion
converges to the function. Namely, we introduce a weak constraint on the BSP par-
titions, which allows the analysis below to be carried out (see, for example, the proof
of Theorem 3.5 below). We say that P is in BSP (ρ), 3/4 < ρ < 1, if for any child Ω′

of Ω we have

|Ω′| ≤ ρ|Ω|,(2.3)

where |V | denotes the volume of a bounded set V ⊂ R
d.

Theorem 2.1. Assume that Nτ (f,P) < ∞, for some f ∈ Lp([0, 1]d), 0 < p < ∞,
0 < τ < p, and P ∈ BSP(ρ). Then

1. f =
∑

Ω ψΩ, absolutely, a.e. in [0, 1]d,
2. ‖f‖p ≤ C(d, r, p, τ, ρ)Nτ (f,P).

Proof. The proof is almost identical to the proof of [13, Theorem 2.17], except
that here we take η = p, and we replace [13, Lemma 2.7] by Lemma 2.4 below.

Thus, it is expedient to look for partitions (and τ) that yield finite energy or,
better still, that minimize the energy. Obviously, this is not always possible or it may
be too costly, and we are willing to settle for somewhat less. To this end, we define
the following.

Definition 2.2. For f ∈ Lp([0, 1]d) and 0 < τ < p < ∞, we say that Pτ (f) ∈
BSP(ρ) is a near-best partition if

Nτ (f,Pτ (f)) ≤ C inf
P∈BSP(ρ)

Nτ (f,P).(2.4)

Let PD be the BSP partition that gives the classical subdivision of [0, 1]d into
dyadic cubes. This can be done, for example, in the case d = 2 by partitioning
[0, 1]2 along the line x1 = 1/2 and then partitioning the two resulting rectangles
along the line x2 = 1/2. We get four dyadic cubes, and we proceed on each one
recursively in the same manner. In section 3 we show the following relationship
between Nτ (f,Pτ (f)) and the Besov seminorm of f (compare with the classical dyadic
wavelet-type characterization of Besov spaces [10] and, in particular, the quantities
N3(f) and N4(f) therein).
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We will show that for f ∈ Lp([0, 1]d), 0 < p < ∞, α > 0, and 1/τ = α + 1/p,
we have

Nτ (f,Pτ (f)) ≤ CNτ (f,PD) ≈ |f |Bdα,r
τ

,(2.5)

where Bγ,r
τ , γ > 0, is the classical Besov space (see Definition 3.1 below). The proof

follows from the discussion beyond (3.6), and especially from (3.16).
We note that (2.2) was already defined in [16] for the special case of partitions

over dyadic boxes. Also in [16], the author gives an algorithm to find the best dyadic
box partition (see also [11]), thereby providing a complete solution to a restricted
version of (2.4).

For 1 < p < ∞, a more subtle but sharper definition of Pτ (f) would be to define it
as an “almost” minimizer of the weak �τ -norm of its corresponding geometric wavelets
instead of the �τ -norm (2.2). Recall that the weak �τ -norm of a sequence {ak} is
defined by

‖{ak}‖w�τ := inf{M : #{k : |ak| > Mε1/τ} ≤ ε−1 ∀ε > 0}

and satisfies ‖{ak}‖w�τ ≤ ‖{ak}‖�τ . This corresponds to a well-known fact that n-
term wavelet approximation can be estimated using the weaker p-norm when 1 < p <
∞ (see [13, Theorem 3.3] for details, and see [7, Theorem 7.2.5] for the case of classic
dyadic wavelets).

As we shall see, Nτ (f,P) may serve as a “quality gauge” for partitions, when τ
takes certain values strictly smaller than p. The following example demonstrates the
role of τ .

Example 2.3. Let Ω̃ ⊂ [0, 1]d be a convex polytope, and define f(x) := 1Ω̃(x).

Assume P is a partition such that for each Ω ∈ P either Ω̃ ⊆ Ω, Ω ⊆ Ω̃, or int(Ω∩Ω̃) =
∅, where int(E) denotes the interior of E ⊂ R

d. Then for p = 2 and r = 1 it is easy
to see that

QΩ =

⎧⎪⎨
⎪⎩

|Ω̃|
|Ω| , Ω̃ ⊆ Ω,

0, int(Ω ∩ Ω̃) = ∅.

Therefore we have ψ[0,1]d = |Ω̃|1[0,1]d and, for Ω,Ω′ ∈ P with Ω′ a child of Ω,

‖ψΩ′‖τ2 =‖QΩ′ −QΩ‖τL2(Ω′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|Ω̃|τ
(

1

|Ω′| −
1

|Ω|

)τ

|Ω′|τ/2, Ω̃ ⊆ Ω′,

|Ω̃|τ 1

|Ω|τ |Ω
′|τ/2, int(Ω̃) ⊂ Ω \ Ω′,

0, int(Ω ∩ Ω̃)=∅ or Ω⊆ Ω̃.

Thus, the energy of the geometric wavelets is given by the formal sum

N τ
τ (f,P) =

∑
Ω∈P

‖ψΩ‖τ2
(2.6)

= |Ω̃|τ

⎛
⎜⎝1 +

∑
Ω̃⊆Ω′

Ω′ child of Ω

(
1

|Ω′| −
1

|Ω|

)τ

|Ω′|τ/2 +
1

|Ω|τ (|Ω| − |Ω′|)τ/2

⎞
⎟⎠ .
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Fig. 1. Two BSPs with N2(f,P(1)) = N2(f,P(2)) = ‖f‖2.

The above sum converges, for example, if P is in BSP(ρ), for some ρ < 1. In the
special case τ = 2 we get

N 2
2 (f,P) = |Ω̃|2

⎛
⎜⎝1 +

∑
Ω̃⊆Ω′

Ω′ child of Ω

(
1

|Ω′| −
1

|Ω|

)2

|Ω′| + 1

|Ω|2 (|Ω| − |Ω′|)

⎞
⎟⎠

= |Ω̃|2

⎛
⎜⎝1 +

∑
Ω̃⊆Ω′

Ω′ child of Ω

(
1

|Ω′| −
1

|Ω|

)⎞⎟⎠

= |Ω̃|,

which implies that N2(f,P) = ‖f‖2. Since this equality holds for any partition that
satisfies the above conditions, it follows that N2(f,P) is not a good sparsity gauge
for adaptive partitions when p = 2.

Referring to Figure 1, we see that the partition P(1) is optimal since its BSP
lines coincide with the hyperplanes that describe ∂Ω̃, while P(2) contains “unnec-
essary” subdomains. Nevertheless, the equality N2(f,P(1)) = N2(f,P(2)) = ‖f‖2

holds. However, things change dramatically when we choose a sufficiently small τ .
In this case, the �τ -norm serves almost as a counting measure, and since the sum
(2.6) contains significantly fewer nonzero elements in the case of P(1), we obtain that
Nτ (f,P(1)) is much smaller than Nτ (f,P(2)).

Thus, we wish to address the issue of the expected range of the parameter τ for
digital images and p = 2. If the image contains a curve singularity that is not a straight
line, then the theory of section 3 below suggests that we should take τ ≥ 2/5. Since,
in a way, dyadic wavelets are a special case of geometric wavelets, we can obtain an
upper bound estimate on τ using the ideas of [8]. One needs to compute the discrete
dyadic wavelet transform of the image and then compute the rate of convergence of
the n-term wavelet approximation, by fitting the error function with the exponent
e(f, n) := C(f)n−α(f). Since we expect geometric wavelets to perform at least at the
rate of dyadic wavelets, we should take τ ≤ 2/(2α(f) + 1).

Going back to the greedy BSP step described in the introduction, let (Ω′,Ω′′) ∈
BSP(Ω), and let QΩ, QΩ′ , QΩ′′ be the near-best polynomial approximations for their
corresponding subdomains. Then we have, by (1.1),

‖ψΩ′‖τp + ‖ψΩ′′‖τp
(2.7)

≤ C(‖f −QΩ‖pLp(Ω) + ‖f −QΩ′‖pLp(Ω′) + ‖f −QΩ′′‖pLp(Ω′′)).
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Observing that QΩ has been already been determined at a previous (greedy) step, we
have that the local greedy optimization step of [17] will capture the geometry in which
the local geometric wavelet components of f are relatively small. If we denote the
levels of a BSP partition P of [0, 1]d by {Pm}m∈N, we say that Ω′ ∈ Pm+1 is a child
of Ω ∈ Pm if Ω′ ⊂ Ω. Then we note that our analysis also suggests that a significant
improvement may be obtained if the local optimization step is carried out for several
levels at once. Namely, given Ω ∈ Pm, try to minimize, for some (small) J ≥ 2,

J∑
j=1

∑
Ω̃⊂Ω

Ω̃∈Pm+j

‖f −QΩ̃‖
p

Lp(Ω̃)
.(2.8)

Finally, we return to the proof of Theorem 2.1. Condition (2.3) implies that

(1 − ρ)|Ω| ≤ |Ω′| ≤ ρ|Ω|.(2.9)

This condition for BSPs corresponds to the weak local regularity (WLR) condition that
is assumed for triangulations in [13]. Observe that a BSP still allows the polytopes
of the partition to be adaptive to the geometry of the function to be approximated;
i.e., the polytopes may become as thin as one may wish, so long as the “thinning”
process occurs over a sequence of levels of the partition. Also, note that we have not
limited the complexity of the polytopes. Indeed, polytopes at the mth level may be
of complexity m.

We need the following results on norms of polynomials over convex domains.
Lemma 2.4. Let P ∈ Πr−1(R

d), and let 0 < ρ < 1 and 0 < p, q ≤ ∞.
(a) Assume that Ω′,Ω ⊂ R

d are bounded convex domains such that Ω′ ⊆ Ω and
(1 − ρ)|Ω| ≤ |Ω′|. Then

‖P‖Lp(Ω) ≤ C(d, r, p, ρ)‖P‖Lp(Ω′).

(b) For any bounded convex domain Ω ⊂ R
d,

‖P‖Lq(Ω) ≈ |Ω|1/q−1/p‖P‖Lp(Ω),

with constants of equivalency depending only on d, r, p, and q.
(c) If Ω′ is a child of Ω in a BSP partition P ∈ BSP(ρ), then

‖P‖Lq(Ω) ≈ ‖P‖Lq(Ω′) ≈ |Ω|1/q−1/p‖P‖Lp(Ω′),

with constants of equivalency depending only on d, r, p, q, and ρ.
Proof. The proof of (a) and (b) can be found in [5, Lemma 3.1] and the first part

of the proof of [5, Lemma 3.2], respectively. Assertion (c) follows from (a) and (b),
since, by the properties of P, we have that all the domains concerned are convex, and
the following equivalence of volumes holds:

(1 − ρ)|Ω| ≤ |Ω′| ≤ (1 − ρ)−1|Ω \ Ω′|.

We conclude this section by outlining the steps of the adaptive geometric wavelet
approximation algorithm:

1. Given f ∈ Lp([0, 1]d), find a BSP using local steps of optimal partitions and
polynomial approximations (see discussion above (2.8)).
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2. For each subdomain of the partition, Ω ∈ P, compute the p-norm of the
corresponding geometric wavelet ψΩ.

3. Sort the geometric wavelets according their energy as in (1.2). As in the case
of classical dyadic wavelets, this step can be simplified by using thresholding (see [7,
section 7.8]).

4. For any n ≥ 1, construct the n-term geometric wavelet sum (1.3).

3. Theoretical aspects of the geometric wavelet approach. One of the
greatest challenges in approximation theory is the characterization of adaptive mul-
tivariate piecewise polynomial approximation (see the discussion in [7, section 6.5]
and [6]). Given f ∈ Lp([0, 1]d), we wish to understand the behavior of the degree of
nonlinear approximation

inf
S∈Σr

n

‖f − S‖Lp([0,1]d),(3.1)

where Σr
n is the collection

∑n
k=1 1Ωk

Pk; {Ωk} are convex polytopes with disjoint
interiors such that

⋃n
k=1 Ωk = [0, 1]d; and Pk ∈ Πr−1, 1 ≤ k ≤ n. Usually {Ωk} are

assumed to be simplices (triangles in the bivariate case), so as to keep their complexity
bounded. However, when using the BSP approach, the polytopes {Ωk} can be of
arbitrary complexity, and descendant polytopes are contained in their ancestors.

In the univariate case there is a certain equivalence between the two n-term
approximation methods, wavelets and piecewise polynomials. Namely, the approxi-
mation spaces associated with the two methods are characterized by the same Besov
spaces [7]. The advantage of wavelet approximation over piecewise polynomial ap-
proximation is the simplicity and efficiency with which one can implement it. When
d ≥ 2, these two methods are no longer equivalent. Wavelet approximation is still
characterized by the (linear) Besov spaces, while the approximation spaces associated
with piecewise polynomials are known to be nonlinear spaces [6], and their character-
ization remains an open problem.

While the geometric wavelet algorithm of section 2 is highly adaptive and geo-
metrically flexible, it is nothing but a “tamed” version of the piecewise polynomial
method (see also discussion in [13]). To explain this, for a given BSP partition P,
denote by Σr

n(P) the collection

n∑
k=1

1Ωk
Pk, Ωk ∈ P, Pk ∈ Πr−1, 1 ≤ k ≤ n.(3.2)

Observe that the n-term geometric wavelet sum (1.3) is in Σr
n(P), for the given

partition P. Let Pτ (f) ∈ BSP(ρ) be the near-best partition of Definition 2.2 for
f ∈ Lp([0, 1]d), 0 < τ < p. Then, the degree of nonlinear approximation from the
near-best partition is given by

σn,r,τ (f)p := inf
S∈Σr

n(Pτ (f))
‖f − S‖p.(3.3)

We see that the main difference between (3.1) and (3.3) is that in the latter the n-
term approximations are taken from a fixed partition. This is a major advantage,
as one of the main difficulties one encounters when trying to analyze the degree of
approximation of n-term piecewise polynomial approximation (where the supports
have disjoint interiors) is that for S1, S2 ∈ Σr

n we may have, in the worst case, that
S1+S2 is of complexity O(nd), that is, supported on nd domains with disjoint interiors.
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On the other hand, if we have a fixed partition P, and two piecewise polynomials
S1, S2 ∈ Σr

n(P), then S1 + S2 ∈ Σr
2n(P). Still, even for a fixed partition, it is hard to

find a solution to (3.3). As we demonstrate below, a good method for computing an
n-term piecewise polynomial approximation is to take the n-term geometric wavelet
sum (1.3) (see the proof of Theorem 3.6).

The goal of this section is to provide some characterization of the adaptive geo-
metric wavelet approximation, where the n-terms are taken from a near-best adaptive
partition Pτ (f), which we consider as a benchmark to any of the greedy algorithms
discussed above. To this end we denote by Aγ,r

q,τ (Lp), γ > 0, 0 < q ≤ ∞, 0 < τ < p, the
approximation space corresponding to nonlinear approximation from Pτ (f). This is
the collection of all functions f ∈ Lp([0, 1]d) for which the error (3.3) roughly “decays”
at the rate n−γ , i.e., f ∈ Lp([0, 1]d) for which

(f)Aγ,r
q,τ (Lp) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( ∞∑
m=0

(2mγσ2m,r,τ (f)p)
q

)1/q

, 0 < q < ∞,

sup
m≥0

(2mγσ2m,r,τ (f)p), q = ∞,

is finite.
Recall that for f ∈ Lτ (Ω), 0 < τ ≤ ∞, h ∈ R

d, and r ∈ N, we denote the rth
order difference operator by

Δr
h(f, x) := Δr

h(f,Ω, x) :=

⎧⎪⎨
⎪⎩

r∑
k=0

(−1)r+k

(
r

k

)
f(x + kh), [x, x + rh] ⊂ Ω,

0, otherwise,

where [x, y] denotes the line segment connecting the points x, y ∈ R
d. The modulus

of smoothness of order r of f ∈ Lτ (Ω) (see, e.g., [7, 9]) is defined by

ωr(f, t)Lτ (Ω) := sup
|h|≤t

‖Δr
h(f,Ω, ·)‖Lτ (Ω), t > 0,

where for h ∈ R
d, |h| denotes the length of h. We also define

ωr(f,Ω)τ := ωr(f,diam(Ω))Lτ (Ω).(3.4)

Definition 3.1. For γ > 0, τ > 0, and r ∈ N , the Besov space Bγ,r
τ is the

collection of functions f ∈ Lτ ([0, 1]d) for which

|f |Bγ,r
τ

:=

( ∞∑
m=0

(
2γmωr

(
f, 2−m

)
Lτ ([0,1]d)

)τ
)1/τ

< ∞.

Definition 3.2. For 0 < p < ∞, α > 0, ρ > 0, and 1/τ := α + 1/p, we define
the geometric B-space GBα,r

τ , r ∈ N , as the set of functions f ∈ Lp([0, 1]d) for which

(f)GBα,r
τ

:=

(
inf

P∈BSP(ρ)

∑
Ω∈P

(|Ω|−αωr(f,Ω)τ )
τ

)1/τ

< ∞.(3.5)
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Note that the smoothness measure (·)GBα,r
τ

is not a (quasi-)seminorm, since the
triangle inequality, in general, is not satisfied. However, it is easy to show that for
α1 ≤ α2 and 1/τk = αk + 1/p, k = 1, 2, we have GBα2,r

τ2 ⊆ GBα1,r
τ1 , so just as in

the case of Besov spaces, a larger α implies a smaller class of functions with “more
smoothness.” Also, the smoothness measure (·)GBα,r

τ
of a function is bounded by

the Besov (quasi-)seminorm of the function in Bdα,r
τ . Indeed, let PD denote the BSP

partition that gives the classical dyadic partition. If we denote the collection of dyadic
cubes of side length 2−m by Dm, then

(f)GBα,r
τ

≤
( ∑

Ω∈PD

(|Ω|−αωr(f,Ω)τ )
τ

)1/τ

≤ C

( ∞∑
m=0

∑
I∈Dm

(2dαmωr(f, I)τ )
τ

)1/τ

(3.6)

≤ C|f |Bdα,r
τ

.

For a geometric B-space GB we introduce the (nonlinear) K-functional corresponding
to the pair Lp and GB

K(f, t) := K(f, t, Lp,GB) := inf
g∈GB

{‖f − g‖p + t · (g)GB}, t > 0.(3.7)

The (nonlinear) interpolation space (Lp,GB)λ,q, λ > 0, 0 < q ≤ ∞, is defined as the
set of all f ∈ Lp([0, 1]d) such that

(f)(Lp,GB)λ,q
:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∞∑
m=0

(2mλK(f, 2−m))q

)1/q

, 0 < q < ∞,

sup
m≥0

2mλK(f, 2−m), q = ∞,

is finite. Although the interpolation spaces (Lp,GB)λ,q are nonlinear, we can still
apply the Jackson and Bernstein machinery that one usually applies in the case of
linear spaces defined over fixed geometry, such as dyadic partitions [7] or fixed trian-
gulations [13, 5]. We obtain the following characterization.

Theorem 3.3. Let 0 < γ < α, 0 < q ≤ ∞, and 0 < p < ∞; then

Aγ,r
q,τ (Lp) = (Lp,GBα,r

τ ) γ
α ,q,(3.8)

where 1/τ := α + 1/p.
The remainder of this section is devoted to the proof of Theorem 3.3.
In [5] we proved that for all bounded convex domains Ω ⊂ R

d and functions
f ∈ Lτ (Ω), 0 < τ ≤ ∞, we have the equivalence

Er−1(f,Ω)τ ≈ ωr(f,Ω)τ ,(3.9)

where the constants of equivalency depend only on d, r, and τ .
To proceed with our analysis, we have to show that the polynomial approximations

QΩ in (2.1), which are near-best approximations in the p-norm, are also near-best
approximations for some 0 < η < p. Indeed we show the following.
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Lemma 3.4. Let Ω ⊂ R
d be a bounded convex domain and let f ∈ Lp(Ω),

0 < p < ∞. Then for any r ∈ N there exists a polynomial Q ∈ Πr−1 such that for all
0 < η ≤ p if 0 < p ≤ 1, and for all 1 ≤ η ≤ p if 1 < p < ∞, we have

‖f −Q‖Lη(Ω) ≤ CEr−1(f,Ω)η,(3.10)

where for 1 < p < ∞, C = C(r, d), and for 0 < p ≤ 1, C = C(r, d, η) ≤ C(r, d, η0),
η0 ≤ η ≤ p.

Proof. We begin with the case 1 < p < ∞. Given a convex domain Ω ⊂ R
d, in [4]

we have constructed for any g ∈ Cr(Ω) a near-best polynomial Q̃ ∈ Πr−1 such that

‖g − Q̃‖Lη(Ω) ≤ C(r, d)Er−1(g,Ω)η, 1 ≤ η < ∞.(3.11)

Let f ∈ Lp(Ω), and let {gn} be a sequence in Cr(Ω) such that ‖f − gn‖p → 0 as
n → ∞. By Hölder’s inequality, it follows that for all 1 ≤ η ≤ p, ‖f − gn‖η → 0
as n → ∞. Now let Qn be the near-best approximation to gn guaranteed by (3.11).
Then ‖gn−Qn‖p ≤ C(r, d)‖g‖p, and since we may assume that ‖f − gn‖p ≤ ‖f‖p, we
obtain

‖Qn‖∞ ≤ C(r, d)|Ω|−1/p‖Qn‖p ≤ C(r, d)|Ω|−1/p‖f‖p.

Hence, the set of polynomials Qn is compact in C(Ω), and we may assume that {Qn}
converges in the uniform norm to a polynomial Q. Now

‖f −Q‖η ≤ ‖f − gn‖η + ‖gn −Qn‖η + ‖Qn −Q‖η, 1 ≤ η ≤ p,

whence

‖f −Q‖η ≤ lim
n→∞

C(r, d)Er−1(gn,Ω)η = C(r, d)Er−1(f,Ω)η, 1 ≤ η ≤ p.

This proves (3.10) for 1 < p < ∞.
For the case 0 < p ≤ 1, we first make the following observation. Let A be a

nonsingular affine mapping on R
d, given by A(x) := Mx+b, where M is a nonsingular

d × d matrix, and let f ∈ Lp(Ω). Define f̃ := f(A·), Q̃ := Q(A·), and Ω̃ := A−1Ω.

Then f̃ ∈ Lp(Ω̃), and

‖f −Q‖Lη(Ω) = |detM |1/η‖f̃ − Q̃‖Lη(Ω̃), 0 < η ≤ p.(3.12)

Therefore

Er−1(f,Ω)η = |detM |1/ηEr−1(f̃ , Ω̃)η, 0 < η ≤ p.(3.13)

By John’s theorem (see [4, 5] and references therein), for any bounded convex domain
Ω ⊂ R

d there exists a nonsingular affine mapping A such that

B(0, 1) ⊆ Ω̃ ⊆ B(0, d),(3.14)

where B(x0, R) denotes the ball of radius R with center at x0. Then we follow [1] (see

also [9, Theorem 3.10.4]), and for f̃ ∈ Lp(Ω̃) obtain Q̃ ∈ Πr−1, a so-called polynomial

of best approximation in L1(Ω̃), which satisfies

‖f̃ − Q̃‖Lη(Ω̃) ≤ C(r, d, η)Er−1(f̃ , Ω̃)η, η ≤ 1,(3.15)

where C(r, d, η) ≤ C(r, d, η0), η0 < η ≤ p. Now, (3.10) for 0 < p ≤ 1 follows by virtue
of (3.12) and (3.13).
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Theorem 3.5. For 0 < p < ∞, α > 0, 1/τ = α + 1/p, and f ∈ Lp([0, 1]d), we
have the equivalence

(f)GBα,r
τ

≈ Nτ (f,Pτ (f)),(3.16)

with constants of equivalency depending only on α, d, r, p, and ρ.
Proof. Let P ∈ BSP(ρ) be a given partition. For 0 < μ ≤ p and Ω ∈ P, denote

by QΩ,μ a near-best polynomial approximation of f ∈ Lμ(Ω). Note that with this
notation, the near-best polynomials used in (1.1) are QΩ = QΩ,p. We define

Nτ,μ(f,P) :=

(∑
Ω∈P

‖ψΩ,μ‖τp

)1/τ

,

where ψΩ,μ are defined in (1.1) with the near-best polynomials QΩ,μ, and

Ñτ,μ(f,P) :=

(∑
Ω∈P

(|Ω|1/p−1/μωr(f,Ω)μ)τ

)1/τ

.

By Lemma 3.4 we know that there is a τ < η < p such that for any Ω ∈ P we may
take ψΩ,η = ψΩ,p = ψΩ. Therefore, in order to prove (3.16), it suffices to prove that
for any P ∈ BSP(ρ)

Nτ,η(f,P) ≈ Ñτ,τ (f,P)(3.17)

holds with constants of equivalency that depend only on d, r, p, τ , η, and ρ.
To this end, take τ ≤ μ ≤ η, and recall that if Ω′ is a child of Ω, then

‖ψΩ′,μ‖μ ≤ C(‖f −QΩ,μ‖Lμ(Ω′) + ‖f −QΩ′ , μ‖Lμ(Ω′))
(3.18)

≤ C(Er−1(f,Ω)μ + Er−1(f,Ω
′)μ),

where C = C(r, d, μ). Hence

Nτ,μ(f,P) =

(∑
Ω∈P

‖ψΩ,μ‖τp

)1/τ

≤ C

(∑
Ω∈P

(|Ω|1/p−1/μ‖ψΩ,μ‖μ)τ

)1/τ

≤ C

(∑
Ω∈P

(|Ω|1/p−1/μEr−1(f,Ω)μ)τ

)1/τ

(3.19)

≤ C

(∑
Ω∈P

(|Ω|1/p−1/μωr(f,Ω)μ)τ

)1/τ

= CÑτ,μ(f,P),

where for the first inequality we applied Lemma 2.4, for the second we applied (3.18)
and (2.9), and finally for the third inequality we applied (3.9).

Next we show that for τ ≤ μ ≤ η

Ñτ,η(f,P) ≤ Nτ,μ(f,P).(3.20)
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We may assume that Nτ,μ(f,P) < ∞, because otherwise there is nothing to prove.
Since μ < p, we have that f ∈ Lμ([0, 1]d), and Theorem 2.1 implies

f =
∑
Ω∈P

ψΩ,μ a.e.

Therefore,

ωr(f,Ω)τη = ωr

⎛
⎝f −

∑
Ω̃∈P, Ω̃⊇Ω

ψΩ̃,μ,Ω

⎞
⎠

τ

η

≤ C

∥∥∥∥∥∥
∑

Ω̃∈P, Ω̃⊂Ω

|ψΩ̃,μ|

∥∥∥∥∥∥
τ

η

≤ C
∑

Ω̃∈P, Ω̃⊂Ω

‖ψΩ̃,μ‖
τ
η

≤ C
∑

Ω̃∈P, Ω̃⊂Ω

|Ω̃|τ(1/η−1/τ)‖ψΩ̃,μ‖
τ
τ ,

where for the equality we used the fact that for Ω ⊆ Ω̃ the geometric wavelet ψΩ̃,μ is a

polynomial of total degree ≤ r− 1, for the second inequality we applied [13, Theorem
3.3], and for the third inequality we applied Lemma 2.4. Therefore,

Ñτ,η(f,P)τ ≤ C
∑
Ω∈P

|Ω|τ(1/p−1/η)
∑
Ω̃⊂Ω

|Ω̃|τ(1/η−1/τ)‖ψΩ̃,μ‖
τ
τ

= C
∑
Ω∈P

∑
Ω̃⊂Ω

(
|Ω̃|
|Ω|

)τ(1/η−1/p)

(|Ω̃|1/p−1/τ‖ψΩ̃,μ‖τ )
τ

= C
∑
Ω̃∈P

(|Ω̃|1/p−1/τ‖ψΩ̃,μ‖τ )
τ
∑
Ω∈P
Ω⊃Ω̃

(
|Ω̃|
|Ω|

)τ(1/η−1/p)

.

Now, if Ω̃ ∈ Pm and Ω ∈ Pm−k, k > 0, is one of its ancestors, then by (2.9),

|Ω̃| ≤ |Ω|ρk.

Hence

∑
Ω∈P,Ω⊃Ω̃

(
|Ω̃|
|Ω|

)τ(1/η−1/p)

≤ C

∞∑
k=1

ρkτ(1/η−1/p) ≤ C(p, η, τ, ρ).

We conclude that

Ñτ,η(f,P)τ ≤ C
∑
Ω̃∈P

(|Ω̃|1/p−1/τ‖ψΩ̃,μ‖τ )
τ

≤ C
∑
Ω̃∈P

‖ψΩ̃,μ‖
τ
p = CNτ,μ(f,P)τ ,

where for the last inequality we again applied Lemma 2.4. This proves (3.20).
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Now combining (3.19) with μ = η, (3.20) with μ = τ , and then (3.19) with μ = τ ,
we obtain

Nτ,η(f,P) ≤ CÑτ,η(f,P) ≤ CNτ,τ (f,P) ≤ CÑτ,τ (f,P),

which proves one direction in (3.17). In order to prove the opposite direction, we
observe that it follows from Hölder’s inequality that

Ñτ,τ (f,P) ≤ Ñτ,η(f,P).

Using (3.20) with μ = η yields

Ñτ,η(f,P) ≤ CNτ,η(f,P),

which gives

Ñτ,τ (f,P) ≤ Ñτ,η(f,P) ≤ CNτ,η(f,P).

This completes the proof of the opposite direction in (3.17) and concludes our
proof.

In view of the above, one may draw the following conclusion. There are cases
of functions that are not in the Besov space of scale dα and therefore cannot be
approximated by n-term wavelet approximation at the “rate” n−α (see [7]). Yet,
there might exist an adaptive partition which captures the geometry (if it exists!) of
the function’s singularities and leads to a finite smoothness measure (3.5) for the scale
α. In fact we show that such a partition can also provide n-term geometric wavelet
approximation at the rate n−α.

Theorem 3.6 (Jackson estimate). Let 0 < p < ∞, α > 0, and r ∈ N. If
f ∈ GBα,r

τ , 1/τ = α + 1/p, then

σn,r,τ (f)p ≤ Cn−α(f)GBα,r
τ

,(3.21)

where C := C(α, d, r, p, ρ).
Proof. Given f , p, and τ , we select the near-best adaptive partition Pτ (f).

Applying [13, Theorem 3.4] with the collection {Φm} := {ψΩ}Ω∈Pτ (f) and then (3.16),
we obtain

σn,r,τ (f)p ≤ Cn−αNτ (f,Pτ (f))

≤ Cn−α(f)GBα,r
τ

.

Let φ ∈ Lp([0, 1]d) and let P ∈ BSP(ρ) be a fixed partition. Then, the smoothness
of φ with respect to the fixed partition P is

|φ|Bα,r
τ (P) :=

(∑
Ω∈P

(|Ω|−αωr(φ,Ω)τ )
τ

)1/τ

.

For a fixed partition P, the smoothness quantity | · |Bα,r
τ (P) is a quasi seminorm.

Therefore we obtain the Bernstein estimate for BSPs in much the same way that it
was proved for triangulations in the bivariate case in [13], and in arbitrary dimension
d ≥ 2 in [5]. Namely, we have the following.
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Theorem 3.7 (Bernstein estimate). Let P ∈ BSP(ρ), and let φ ∈ Σr
n(P). Then

for all 0 < p < ∞, α > 0, and 1/τ = α + 1/p,

|φ|Bα,r
τ (P) ≤ Cnα‖φ‖p,(3.22)

where C := C(α, d, r, p, ρ).
We are now ready to prove Theorem 3.3.
Proof of Theorem 3.3. The proof is similar to the proof of [9, Theorem 7.9.1].

The proof that the right-hand side of (3.8) is contained in the left-hand side readily
follows by the Jackson inequality. Indeed, it is a standard technique to show that
(3.21) implies that for every f ∈ Lp

σn,r,τ (f)p ≤ CK(f, n−α, Lp,GBα,r
τ ).

Hence by the first part of the proof of [9, Theorem 7.9.1]

(f)Aγ,r
q,τ

≤ C
(
‖f‖p + (f)(Lp,GBα,r

τ ) γ
α

,q

)
.

In order to prove that the left-hand side of (3.8) is contained in the right-hand side,
we have to estimate the appropriate K-functional. Namely, we replace the proof of [9,
Theorem 7.5.1(ii)] with the estimate

K(f, 2−mα, Lp,GBα,r
τ ) ≤ C2−mα

⎛
⎝ m∑

j=1

(2jασ2j−1(f)p)
μ + ‖f‖μp

⎞
⎠

1/μ

,(3.23)

where K(f, ·, Lp,GBα,r
τ ) is defined by (3.7), σ2j (f)p := σ2j ,r,τ (f)p, m ≥ 1, and μ :=

min(τ, 1). Note that, in proving this, special attention is needed to circumvent the fact
that (·)GBα,r

τ
is not a (quasi-)seminorm. Indeed, for each j ≥ 0 we take a geometric

wavelet sum Sj ∈ Σr
2j (Pτ (f)) such that

‖f − Sj‖Lp([0,1]d) ≤ 2σ2j (f)p.

Since Pτ (f) is a fixed nested partition, we have that φj := Sj −Sj−1 ∈ Σr
2j+1(Pτ (f)),

j ≥ 1, and

‖φj‖p ≤ ‖f − Sj‖p + ‖f − Sj−1‖p ≤ 2σ2j−1(f)p, j ≥ 1.

We also set φ0 := S0. Since S0 is a single geometric wavelet component, we conclude
that (3.9) implies that ‖φ0‖p ≤ C‖f‖p. Now, we substitute g := Sm =

∑m
j=0 φj in

(3.7) and apply the Bernstein inequality (3.22) on the fixed partition Pτ (f) to obtain

K(f, 2−mα, Lp,GBα,r
τ ) ≤ ‖f − Sm‖p + 2−mα(Sm)GBα,r

τ

≤ C(σ2m(f)p + 2−mα|Sm|Bα,r
τ (Pτ (f)))

≤ C

⎛
⎜⎝σ2m,r(f)p + 2−mα

⎛
⎝ m∑

j=0

|φj |μBα,r
τ (Pτ (f))

⎞
⎠

1/μ
⎞
⎟⎠

≤ C

⎛
⎜⎝σ2m(f)p + 2−mα

⎛
⎝ m∑

j=0

(2(j+1)α‖φj‖p)μ
⎞
⎠

1/μ
⎞
⎟⎠

≤ C2−mα

⎛
⎝ m∑

j=1

(2jασ2j−1(f)p)
μ + ‖f‖μp

⎞
⎠

1/μ

.

We leave the rest of the proof to the reader.
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Fig. 2. The “peppers” image 512 × 512.

4. Simulation results and discussion. We implemented the geometric wave-
let algorithm for the purpose of finding sparse representations of digital images with
r = 2 (linear polynomials) and p = 2. We point out that, in our current implementa-
tion, condition (2.3) does not come into play.

To reduce the time complexity of the implementation, the images were subdivided
into tiles of size 64 × 64, and a BSP tree was constructed over each of the tiles
separately. Although JPEG-like artifacts, resulting from the tiles’ boundaries, are
visible in the examples below, this approach ensures that the time complexity of the
algorithm is almost linear with respect to the image size. Once all the BSP trees were
constructed over the 64 × 64 tiles, and the geometric wavelets were computed, we
extracted a global n-term approximation (1.3) from the joint list of all the geometric
wavelets over all the tiles. Our experiments show that in most cases increasing the
tile size does not have a significant impact on the results.

To further improve the time complexity of the algorithm, we performed coarse
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Fig. 3. Geometric wavelet approximation of the peppers image with n = 2048, PSNR = 31.32.

partition searches at lower levels of the BSP tree and fine searches at the higher levels.
The search for the optimal partition was done by advancing two points on a domain’s
boundary, computing the two subdomains created by the line that goes through these
points, and then computing the two least-squares linear polynomials over each of these
subdomains. In lower levels of the BSP tree, this march was done in larger steps and
in finer levels, and the step size was set to 1, the pixel resolution. In some sense, the
idea of finer partitions at higher resolutions is related to the way curvelets [2] have
“more directions” at higher resolutions.

In Figure 3 we see an n-term geometric wavelet approximation of the known
test image peppers (cf. original in Figure 2) of size 512 × 512 with 2048 elements
and PSNR (peak signal-to-noise ratio) 31.32. In Figure 4 we see an n-term dyadic
wavelet approximation with twice as many elements, 4096, and still somewhat worse
PSNR, 29.22. In all the examples below, we used a ratio of 1:2 (peppers, Figures 3–4;
Lena, Figures 6–7), 1:3 (Barbara, Figures 13–14) or 1:4 (cameraman, Figures 9–11)
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Fig. 4. Dyadic biorthogonal wavelet approximation of the peppers image with n = 4096,
PSNR = 29.22.

between the number of geometric wavelets and dyadic wavelets, so as to make the
comparison more relevant. Observe that on the more “geometric” images, peppers
and cameraman, i.e., images that are roughly composed of smooth regions and strong
distinct edges, the geometric wavelets seem to perform relatively better. For example,
for the cameraman image the 512-term geometric wavelet approximation gives the
same PSNR as the 2048-term dyadic wavelet approximation.

For the dyadic wavelets approximation we used the MATLAB wavelet toolbox,
where we selected the well-known biorthogonal wavelet basis (4, 4) (see [3]), also known
as the “nine-seven” in the engineering community. This biorthogonal wavelet has four
zero moments, corresponding to r = 4. We note that we actually allowed the dyadic
wavelet approximation to use even slightly more elements than claimed in the figures,
so as to compensate for MATLAB handling of the image boundaries by a somewhat
overredundant wavelet decomposition. The results are summarized in Table 1.

In Figure 15 we see an example of image denoising using geometric wavelets. To
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Fig. 5. The “Lena” image 512 × 512.

Table 1

Comparison of n-term dyadic and geometric wavelets.

Image N-term N-term Ratio PSNR PSNR
dyadic geometric dyadic geometric

peppers 4096 2048 2:1 29.22 31.32

Lena 4096 2048 2:1 30.18 31.26

cameraman 2048 512 4:1 26.72 26.71

1024 28.93

Barbara 12288 4096 3:1 27.54 27.10

compare with results in [22], we added Gaussian white noise to the Lena test image
with standard deviation of 20, which gives a noisy image with PSNR = 22.14. Fol-
lowing the usual “sparse representation” methodology [22], we applied the geometric
wavelet algorithm to the noisy image and extracted an n-term approximation (1.3) to
the original image. We see that geometric features are recovered quite well in the pro-
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Fig. 6. Geometric wavelet approximation of the Lena image with n = 2048, PSNR = 31.26.

cess, in a manner which is very competitive with curvelets. The algorithm produced
a restored image with PSNR = 29.76.

As with classical wavelets, the n-term strategy can be used for progressive coding
and rate-distortion control, where more geometric wavelets are added according to
their order of appearance in (1.2). It is important to note that when trying to encode
the approximation (1.3) it should be remembered that for a geometric wavelet located
in a “deep” level of the BSP tree, one needs to encode the sequence of binary partitions
that created it. Thus, if the wavelet ψΩ is located at the mth level of the BSP partition,
O(m) bits are required to encode its location. Therefore, encoding geometric wavelets
at higher levels is more expensive when considering bit allocation. However, this is
no different from dyadic wavelet compression, where encoding the index of a dyadic
wavelet located at the resolution m also requires O(m) bits. Recall that at lower levels
of the BSP tree we perform coarse partitions and at higher levels, fine partitions. As
pointed out in [17], this also improves the coding performance, since it facilitates the
quantization and encoding of the partitions.
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Fig. 7. Dyadic biorthogonal wavelet approximation of the Lena image with n = 4096, PSNR =
30.18.

Although image coding using geometric wavelets is ongoing work, we anticipate
that the problem of encoding geometric side-information can be solved by using zero-
tree-type encoding [18, 20] and rate-distortion optimization techniques [21, 23]. Fur-
thermore, we plan to incorporate a geometric rate-distortion optimization technique
borrowed from the wavelet coding algorithm WedgePrints [26]. Namely, at each node
of the BSP tree, one may allocate a flag (bit) to signal to the decoder a decision
about whether all further partitions of this domain are uniform (nonadaptive) or ge-
ometrically adaptive. Encoding geometric wavelets whose supports lie in a “uniform”
ancestor domain is similar to dyadic wavelet encoding, where only an index of the
geometric wavelet in a uniform partition needs to be encoded and the support of
the geometric wavelet is known from the uniform partition of the ancestor. Thus,
using rate-distortion optimization techniques, one would choose at each node of the
BSP whether to use an adaptive partition whose geometry needs to be encoded, or a
uniform nonadaptive partition.
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Fig. 8. The “cameraman” image 256 × 256.

Fig. 9. Geometric wavelet approximation of the cameraman image with n = 512, PSNR = 26.71.
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Fig. 10. Geometric wavelet approximation of the cameraman image with n = 1024, PSNR =
28.93.

Fig. 11. Dyadic biorthogonal wavelet approximation of the cameraman image with n = 2048,
PSNR = 26.72.
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Fig. 12. The “Barbara” image 512 × 512.

Fig. 13. Geometric wavelet approximation of the Barbara image with n = 4096, PSNR = 27.10.
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Fig. 14. Dyadic biorthogonal wavelet approximation of the Barbara image with n = 12288,
PSNR = 27.54.

Fig. 15. Geometric wavelet denoising. Noisy image PSNR = 22.14; restored image PSNR = 29.76.
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OPTIMAL ERROR ESTIMATES FOR LINEAR PARABOLIC
PROBLEMS WITH DISCONTINUOUS COEFFICIENTS∗
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Abstract. A finite element discretization is proposed and analyzed for a linear parabolic prob-
lems with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to
achieve optimal order of convergence with classical finite element methods [Numer. Math., 79 (1998),
pp. 175–202]. In this paper, we have used a finite element discretization, where interface triangles
are assumed to be curved triangles instead of straight triangles as in classical finite element methods.
Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the
solution is low on the whole domain. While the continuous time Galerkin method is discussed for
the spatially discrete scheme, the discontinuous Galerkin method is analyzed for the fully discrete
scheme. The interfaces and boundaries of the domains are assumed to be smooth for our purpose.
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1. Introduction. In this paper, we consider a linear parabolic interface problem
of the form

ut + Lu = f(x, t) in Ω × (0, T ](1.1)

with initial and boundary conditions

u(x, 0) = u0 in Ω; u(x, t) = 0 on ∂Ω × (0, T ](1.2)

and interface conditions

[u] = 0,

[
A∂u

∂n

]
= g(x, t) along Γ,(1.3)

where Ω is a bounded domain in R
2 with smooth boundary ∂Ω, Ω1 ⊂ Ω is an open

domain with C2 boundary Γ, and Ω2 = Ω\Ω1 (see Figure 1). The operator L is a
second order elliptic partial differential operator of the form

Lv = −∇ · (A∇v).

The symbol [v] is a jump of a quantity v across the interface Γ and n denotes the unit
outward normal to the boundary ∂Ω1. We assume that the coefficient matrix A =
(aij(x))2i,j=1 is symmetric and uniformly positive definite in Ω. Moreover, the matrix
A is assumed to be discontinuous along Γ but piecewise smooth in each subdomain
Ω1 and Ω2, i.e.,

A = Al = (alij(x))2i,j=1 for x ∈ Ωl, l = 1, 2.

Here for each l, Al is a uniformly positive definite matrix.
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Ω 1

Ω 2

Γ

Fig. 1. Domain Ω and its subdomains Ω1, Ω2 with interface Γ.

Parabolic equations (1.1) with discontinuous coefficients occur in many applica-
tions, such as in material sciences and fluid dynamics, where domains consist of two
or more heterogeneous media, i.e., when two distinct materials or fluids with different
conductivities, densities, or diffusions are involved. Because of the discontinuity of
the coefficients along the interface, the solution of such a problem has low regularity
on the whole physical domain (cf. [10] and [5]).

In recent years, numerical methods for solving parabolic problems, by means of
finite element methods under minimal regularity assumption on the true solutions,
are the subject of much interest; see [5] and [6]. Due to low global regularity of the
true solution, achieving higher order accuracy by the classical finite element method
seems very difficult (cf. [2] and [5]). In [5], the authors studied the convergence of
the finite element method for the elliptic and parabolic problems by approximating
the smooth interface by a polygon and the interface function by its interpolant. They
obtained suboptimal order error estimates in both energy and L2 norms. It is also
mentioned [5, p. 177] that classical analysis is difficult to apply in the convergence
analysis for the interface problem. Subsequently, the author of [13] analyzed the
error in the finite element method applied to self-adjoint elliptic interface problems
and obtained optimal order error estimate in the H1 norm. More recently, in [16] the
authors studied elliptic interface type problems by means of the finite element method
and proved optimal rates of convergence when the global regularity of the solution
is low.

In the present paper, we propose a finite element discretization for the parabolic
interface problem (1.1)–(1.3) by allowing interface triangles to be curved triangles
instead of straight triangles. The analysis presented shows that the finite element
solutions approximate the true solutions with an optimal order even if the global
regularity is very low. More precisely, for the spatially discrete scheme, optimal order
error estimates are derived in L2 and H1 norms. The key to the present analysis is
the introduction of some auxiliary projections and duality arguments. Further, the
discontinuous Galerkin method is analyzed for the time discretization, and related
error estimates are obtained. To the best of our knowledge, optimal error estimates
using conforming finite element methods for the parabolic interface problem have not
been established earlier.

The previous work on finite element analysis of elliptic and parabolic problems
without interface can be found in [7], [8], [9], [12], [17], and references therein. For
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literature on the discontinuous Galerkin methods, we refer to [3], [11], [14], [15],
and [17].

A brief outline of this paper is as follows. In section 2, we introduce some notation,
recall some basic results from the literature, and obtain the a priori estimate for the
solution. In section 3, we describe a finite element discretization for the problem (1.1)–
(1.3) and prove some approximation properties related to the auxiliary projection used
in our analysis. Section 4 is devoted to the error estimates for the spatially discrete
scheme. Finally, the discontinuous Galerkin method is analyzed for the fully discrete
scheme, and related error estimates are derived in section 5.

Throughout this paper, C denotes a generic positive constant that does not de-
pend on the spatial and time discretization parameters h and k, respectively.

2. Preliminaries.

2.1. Basic notation. We shall use standard notation for Sobolev spaces and
norms. For m ≥ 0 and real p with 1 ≤ p ≤ ∞, we use Wm,p(Ω) to denote a
Sobolev space of order m with norm ‖.‖m and, in particular, for p = 2, we write
Wm,2(Ω) = Hm(Ω) = Hm. Hm

0 (Ω) is a closed subspace of Hm(Ω), which is also a
closure of C∞

0 (Ω) (the set of all C∞ functions with compact support) with respect to
the norm of Hm(Ω). For a fractional number s, Sobolev space Hs is defined in [1].
For a given Banach space B, we define for m = 0, 1,

Hm(0, T ;B) =

(
u(t) ∈ B for a.e. t ∈ (0, T ) and

m∑
j=0

∫ T

0

∥∥∥∥∂
ju(t)

∂tj

∥∥∥∥
2

B
dt < ∞

)

equipped with the norm

‖u‖Hm(0,T ;B) =

(
m∑
j=0

∫ T

0

∥∥∥∥∂
ju(t)

∂tj

∥∥∥∥
2

B
dt

) 1
2

.

We write ‖u‖2
H1(Ω) ≡ ‖u‖2

H1(Ω1)
+ ‖u‖2

H1(Ω2)
and L2(0, T ;B) = H0(0, T ;B).

In addition, we shall also work on the following spaces:

X = H1(Ω) ∩H2(Ω1) ∩H2(Ω2) and Y = L2(Ω) ∩H1(Ω1) ∩H1(Ω2)

equipped with the norms

‖v‖X = ‖v‖H1(Ω) + ‖v‖H2(Ω1) + ‖v‖H2(Ω2)

and

‖v‖Y = ‖v‖L2(Ω) + ‖v‖H1(Ω1) + ‖v‖H1(Ω2),

respectively.
In order to introduce the weak formulation of the problem, we now define the

bilinear form A(·, ·) : H1(Ω) ×H1(Ω) → R by

A(u, v) =

∫
Ω

A∇u · ∇vdx ∀u, v ∈ H1(Ω).

Then the weak formulation of the interface problem (1.1)–(1.3) is stated as follows.
Find u ∈ H1

0 (Ω) such that

(ut, v) + A(u, v) = (f, v) + 〈g, v〉Γ ∀v ∈ H1
0 (Ω), t ∈ (0, T ],(2.1)

with u(0) = u0. Here, (·, ·) and 〈·, ·〉 are used to denote the inner products of the
L2(Ω) and L2(Γ) spaces, respectively.
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2.2. A priori estimate. Due to the presence of discontinuous coefficients, the
solution u, in general, does not belong to H2(Ω). But one can expect higher local
regularity of the solution when the coefficients are locally smoother (cf. [10]). In
the theorem below, we prove the a priori estimate for the solution u of the interface
problem (1.1)–(1.3) under appropriate regularity conditions on f and g.

Theorem 2.1. Let f ∈ H1(0, T ;L2(Ω)), g ∈ H1(0, T ;H
1
2 (Γ)), and u0 ∈ H1

0 (Ω).
Then the problem (1.1)–(1.3) has a unique solution u ∈ L2(0, T ;X) ∩ H1(0, T ;Y ).
Further, u satisfies the a priori estimate

‖u‖L2(0,T ;X) ≤ C
{
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖H1(Ω) + ‖g(0)‖

H
1
2 (Γ)

+ ‖g(T )‖
H

1
2 (Γ)

+ ‖g‖
H1(0,T ;H

1
2 (Γ))

}
.(2.2)

Proof. The proof of the existence of a unique solution is in [10]. Next, to obtain
the a priori estimate (2.2), we first transform the problem (1.1)–(1.3) into the following
equivalent problem.

For a.e. t ∈ (0, T ], find u = u(x, t) ∈ H1
0 (Ω) ∩X satisfying

Lu = f(x, t) − ut in Ω,(2.3)

u = 0 on ∂Ω,

[u] = 0,

[
A∂u

∂n

]
= g(x, t) along Γ.

From the elliptic regularity estimate for the elliptic interface problem (cf. [5]), it
follows that

‖u‖X ≤ C
(
‖f − ut‖L2(Ω) + ‖g‖

H
1
2 (Γ)

)
.(2.4)

Multiply both sides of (2.3) by ut and then integrate over Ω to obtain

‖ut‖2
L2(Ω) + (Lu, ut) = (f, ut).(2.5)

Note that u ∈ H1(0, T ;X) and [u] = 0 on Γ imply [ut] = 0 on Γ. Hence, an integration
by parts leads to

(Lu, ut) =

∫
Ω1

A1∇u · ∇utdx +

∫
Ω2

A2∇u · ∇utdx +

∫
Γ

[
A∂u

∂n

]
utdS

= A1(u, ut) + A2(u, ut) + 〈g, ut〉Γ,(2.6)

where Al(., .) : H1(Ωl) ×H1(Ωl) → R is given by

Al(w, v) =

∫
Ωl

Al∇w · ∇vdx, l = 1, 2.

Equation (2.5), together with (2.6), yields

‖ut‖2
L2(Ω) +

1

2

d

dt

(
2∑

i=1

Ai(u, u)

)
= (f, ut) −

d

dt
〈g, u〉Γ + 〈gt, u〉Γ.
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Integrate the above equation from 0 to T . Then apply the Cauchy–Schwarz inequality
and the trace theorem (cf. [1]) to obtain

∫ T

0

‖ut‖2
L2(Ω)ds + ‖u(T )‖2

H1(Ω1)
+ ‖u(T )‖2

H1(Ω2)

≤ C

(∫ T

0

‖f‖L2(Ω)‖ut‖L2(Ω)ds

+ ‖g(T )‖L2(Γ)‖u(T )‖L2(Γ) + ‖g(x, 0)‖L2(Γ)‖u0‖L2(Γ)

+

∫ T

0

‖gt‖L2(Γ)‖u‖L2(Γ)ds + ‖u0‖2
H1(Ω1)

+ ‖u0‖2
H1(Ω2)

)

≤ C

(∫ T

0

‖f‖L2(Ω)‖ut‖L2(Ω)ds + ‖g(T )‖
H

1
2 (Γ)

‖u(T )‖H1(Ω)

+ ‖g(x, 0)‖
H

1
2 (Γ)

‖u0‖H1(Ω) +

∫ T

0

‖gt‖
H

1
2 (Γ)

‖u‖H1(Ω)ds + ‖u0‖2
H1(Ω)

)
.

Use a standard kickback argument to obtain

‖ut‖2
L2(0,T ;L2(Ω)) + ‖u(T )‖2

H1(Ω)

≤ C

(∫ T

0

‖f‖2
L2(Ω)ds + ‖g(T )‖2

H
1
2 (Γ)

+ ‖g(0)‖2

H
1
2 (Γ)

+

∫ T

0

‖gt‖2

H
1
2 (Γ)

ds + ‖u0‖2
H1(Ω)

)

+ C

∫ T

0

‖u(s)‖2
H1(Ω)ds.

Finally, an application of Gronwall’s lemma completes the proof.

3. Finite element discretization and some auxiliary results. In this sec-
tion, we shall describe a finite element discretization, introduce some auxiliary pro-
jections, and prove their approximation properties.

For the purpose of finite element approximation we now describe the triangulation
of Ω as follows: Let Th be a triangulation of Ω with mesh parameter h, 0 < h < 1. We
first approximate the domain Ω1 by a domain Ωh

1 with the polygonal boundary Γh

whose vertices all lie on the interface Γ. Let Ωh
2 be the approximation for the domain

Ω2 with polygonal exterior ∂Ωh
2 and interior boundary Γh. Further, let {Pj}mh

j=1 be
the set of all nodes of the triangulation Th lying on the interface Γ, and let {ej}(j =
1, . . . ,mh) be the edge connecting the two neighboring points Pj and Pj+1 such that
Pmh+1 = P1. Let T ∗

h be a triangulation obtained with a modification of Th. T ∗
h is

obtained by changing those triangles of Th having one ej edge (for some 1 ≤ j ≤ mh)
into curved triangles having two original edges unchanged but having their third edge
ej replaced with the curved segment (cf. Figure 2). The element K ∈ T ∗

h with one
curved edge along the interface Γ is called the interface curved triangle.

Triangulation T ∗
h of the domain Ω satisfies the following conditions:

(A1) Ω = ∪K∈T ∗
h
K.

(A2) If K1, K2 ∈ T ∗
h , and K1 �= K2, then either K1 ∩ K2 = ∅ or K1 ∩ K2 is a

common vertex, or edge, or one curved edge of both triangles.
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Γ
K

Fig. 2. Interface curved triangle K.

(A3) Each interface triangle K intersects Γ (interface) in at most two vertices
and has at most one curved edge.

(A4) For each triangle K ∈ T ∗
h , let rK , rK be the radii of its inscribed and

circumscribed circles, respectively. Let h = max{rK : K ∈ T ∗
h }. We

assume that, for some fixed h0 > 0, there exists two positive constants C0

and C1 independent of h such that

C0h ≤ diam(K) ≤ C1h ∀K ∈ T ∗
h , ∀h ∈ (0, h0).

Assumption (A4) allows us to relate L2 and H1 norms of the polynomials in each
element of T ∗

h by

‖v‖H1(K) ≤ Ch−1‖v‖L2(K) ∀K ∈ T ∗
h(3.1)

for any polynomial v ∈ P1(K) (cf. [4, Lem. 4.5.3]).
Let Vh be a family of finite element subspaces of H1

0 (Ω) defined on T ∗
h consisting

of piecewise linear polynomials vanishing on the boundary ∂Ω. Note that the con-
struction of such finite element spaces is not straightforward. We refer to [13] for the
construction and examples of various types of finite element spaces Vh.

Further, we assume that Vh satisfy the inverse estimate

‖φ‖H1(Ω) ≤ Ch−1‖φ‖L2(Ω) ∀ φ ∈ Vh,(3.2)

and this follows immediately from the estimate (3.1).
For v ∈ X, let

f∗ = −∇ · (Al∇v) in Ωl, l = 1, 2.

We now define an operator Rh : X ∩H1
0 (Ω) → Vh by

A(Rhv, φ) = (f∗, φ) ∀φ ∈ Vh, v ∈ X ∩H1
0 (Ω).(3.3)

It now follows from the definition of f∗ that

(f∗, φ) = A(v, φ) ∀φ ∈ Vh, v ∈ X ∩H1
0 (Ω)(3.4)

which, together with (3.3), yields

A(Rhv, φ) = (f∗, φ) = A(v, φ) ∀φ ∈ Vh, v ∈ X ∩H1
0 (Ω).(3.5)

Below, we present a proof that shows optimal error bounds for the projection operator
Rh. This lemma is very crucial for our later analysis.
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Lemma 3.1. Let Rh be defined by (3.5). Then there is a positive constant C
independent of h such that

‖v −Rhv‖ + h‖v −Rhv‖1 ≤ Ch2‖v‖X ∀v ∈ X ∩H1
0 (Ω).

Proof. By the definition of f∗, it is easy to see that

A(v, φ) = (f∗, φ) ∀φ ∈ H1
0 (Ω).(3.6)

For k = 1, 2, define fk : Ω → R by

fk =

{
f∗|Ωk

in Ωk,
0 otherwise.

Clearly, fk ∈ L2(Ω) and f∗ = f1 + f2 a.e. in Ω. We now consider the following
interface problems: Let wk ∈ H1

0 (Ω) be the solution of the interface problem

A(wk, φ) = (fk, φ) ∀φ ∈ H1
0 (Ω).(3.7)

Then by the coercivity of the operator A it follows immediately that v = w1 + w2.
Let wk

h ∈ Vh be the finite element approximation to wk defined by

A(wk
h, φ) = (fk, φ) ∀φ ∈ Vh.(3.8)

Again by the coercivity of the operator A and definition (3.5) of the Rh operator, it
follows that Rhv = w1

h + w2
h.

Since fk|Ωs
= 0, s = 1(2) if k = 2(1), we have for the elliptic interface problem

(3.7)–(3.8) (see [13, Thm. 6.1])

‖wk − wk
h‖H1(Ω) ≤ Ch(‖wk‖H2(Ω1) + ‖wk‖H2(Ω2))

≤ Ch‖wk‖X .(3.9)

Then by the elliptic regularity (cf. [5]) we have

‖wk‖X ≤ C‖fk‖L2(Ω)

≤ C‖f∗‖L2(Ωk) ≤ C‖v‖H2(Ωk).

This, together with (3.9), yields

‖wk − wk
h‖H1(Ω) ≤ Ch‖v‖H2(Ωk).(3.10)

Then

‖v −Rhv‖H1(Ω) ≤ ‖w1 − w1
h‖H1(Ω) + ‖w2 − w2

h‖H1(Ω)

≤ C (h‖w1‖X + h‖w2‖X)

≤ Ch
(
‖v‖H2(Ω1) + ‖v‖H2(Ω2)

)
≤ Ch‖v‖X ∀v ∈ X ∩H1

0 (Ω).(3.11)

For the L2 norm estimate, let us consider the following problem: Find w ∈ H1
0 (Ω)

such that

A(w, φ) = (v −Rhv, φ) ∀φ ∈ H1
0 (Ω).(3.12)
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By setting φ = v − Rhv ∈ H1
0 (Ω) in (3.12) and using definition (3.5) of the Rh

operator, we have

‖v −Rhv‖2
L2(Ω) = A(w, v −Rhv)

= A(w −Rhw, v −Rhv) + A(Rhw, v −Rhv)

= A(w −Rhw, v −Rhv)

≤ C‖w −Rhw‖H1(Ω)‖v −Rhv‖H1(Ω)

≤ Ch2‖v‖X‖w‖X ;

in the last inequality, we used (3.11). Then applying the elliptic regularity estimate
for the interface problem (3.12), we get

‖v −Rhv‖2
L2(Ω) ≤ Ch2‖v‖X‖w‖X

≤ Ch2‖v −Rhv‖L2(Ω)‖v‖X .

This completes the proof of Lemma 3.1.
Let Lh : L2(Ω) → Vh be the standard L2 projection defined by

(Lhv, φ) = (v, φ) ∀v ∈ L2(Ω), φ ∈ Vh,(3.13)

satisfying the stability estimate

‖Lhv‖H1(Ω) ≤ C‖v‖H1(Ω) ∀v ∈ H1
0 (Ω).(3.14)

It is well known that Lhv ∈ Vh is the best approximation in the L2 norm to v ∈ L2(Ω).
The following lemma shows that Lhv is a quasi-best approximation to v ∈ H1

0 (Ω)∩X
in the H1 norm.

Lemma 3.2. Let Rh and Lh be defined by (3.5) and (3.13), respectively. Then we
have

‖Lhv − v‖H1(Ω) ≤ C‖Rhv − v‖H1(Ω) ∀v ∈ H1
0 (Ω) ∩X.

Proof. For any v ∈ H1
0 (Ω) ∩ X, we know that there exists a unique solution

w ∈ H1
0 (Ω) for the elliptic interface problem

A(w, φ) = (Rhv − v, φ) ∀φ ∈ H1
0 (Ω).(3.15)

Equation (3.15), together with (3.5) and Lemma 3.1, leads to

‖Rhv − v‖2
L2(Ω) = A(w −Rhw,Rhv − v) + A(Rhw,Rhv − v)

≤ C‖w −Rhw‖H1(Ω)‖v −Rhv‖H1(Ω)

≤ Ch‖w‖X‖v −Rhv‖H1(Ω)

≤ Ch‖v −Rhv‖L2(Ω)‖v −Rhv‖H1(Ω).(3.16)

Here we used the fact that ‖w‖X ≤ C‖v − Rhv‖L2(Ω). Use of the triangle inequality
and (3.2) yields

‖Lhv − v‖H1(Ω) ≤ ‖Rhv − v‖H1(Ω) + ‖Lhv −Rhv‖H1(Ω)

≤ ‖Rhv − v‖H1(Ω) + Ch−1‖Lhv −Rhv‖L2(Ω)

≤ ‖Rhv − v‖H1(Ω) + Ch−1{‖v −Rhv‖L2(Ω) + ‖Lhv − v‖L2(Ω)}.(3.17)

We know Lhv is the best approximation of v ∈ L2(Ω) with respect to the L2 norm.
Since v ∈ X∩H1

0 (Ω), Rhv ∈ Vh. Thus, ‖v−Lhv‖L2(Ω) ≤ C‖v−Rhv‖L2(Ω). Therefore,
(3.17) implies

‖Lhv − v‖H1(Ω) ≤ ‖Rhv − v‖H1(Ω) + Ch−1‖v −Rhv‖L2(Ω).(3.18)

The desired estimate now follows from (3.16) and (3.18).
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4. The continuous time Galerkin approximation. This section deals with
the error analysis for the spatially discrete scheme. Optimal order of convergence in
both L2 and H1 norms is established when the global regularity of the solution is low
on the entire domain.

The continuous time Galerkin finite element approximation to (2.1) is stated as
follows: Find uh(t) ∈ Vh such that

(uht, vh) + A(uh, vh) = (f, vh) + 〈g, vh〉Γ ∀vh ∈ Vh, t ∈ (0, T ],(4.1)

with uh(0) = Lhu0. Subtracting (4.1) from (2.1) we have

(ut − uht, vh) + A(u− uh, vh) = 0 ∀vh ∈ Vh.(4.2)

Define the error e(t) as e(t) = u(t) − uh(t). Setting vh = Lhu in (4.2) and using
(3.13), we obtain

1

2

d

dt
‖e‖2

L2(Ω) + A(e, e)

= A(u− uh, u− Lhu) + (ut − uht, u− Lhu)

= A(u− uh, u− Lhu) + (ut − Lhut, u− Lhu)

+ (Lhut − uht, u− Lhu)

= A(u− uh, u− Lhu) + (ut − (Lhu)t, u− Lhu)

+ (Lhut − uht, u− Lhu)

= A(u− uh, u− Lhu) +
1

2

d

dt
(u− Lhu, u− Lhu).(4.3)

In the last equality we used the fact that Lhut − uht ∈ Vh and the definition (3.13) of
the Lh operator. Integrate the above equation from 0 to t. Then apply the Cauchy–
Schwarz inequality and Young’s inequality to obtain

‖e‖2
L2(Ω) +

∫ t

0

‖e‖2
H1(Ω)ds

≤ C

(∫ t

0

‖u− Lhu‖2
H1(Ω)ds + ‖u− Lhu‖2

L2(Ω) + ‖u0 − Lhu0‖2
L2(Ω)

)
.

An application of Lemma 3.2 leads to

‖e‖2
L2(Ω) +

∫ t

0

‖e‖2
H1(Ω)ds

≤ C

(∫ t

0

‖u−Rhu‖2
H1(Ω)ds + ‖u− Lhu‖2

L2(Ω) + ‖u0 − Lhu0‖2
L2(Ω)

)
,

which, together with Lemma 3.1 and the fact ‖Lhv − v‖L2(Ω) ≤ Ch‖v‖H1(Ω)∀v ∈
H1

0 (Ω) yields

∫ t

0

‖e‖2
H1(Ω)ds ≤ h2

{
‖u0‖2

H1(Ω) + ‖u‖2
X + ‖u‖2

L2(0,T ;X)

}
.

Thus we have proved the following optimal H1 norm estimate.
Theorem 4.1. Let u and uh be the solutions of the problem (1.1)–(1.3) and (4.1),

respectively. Then, for u0 ∈ H1
0 (Ω), f ∈ H1(0, T ;L2(Ω)), and g ∈ H1(0, T ;H

1
2 (Γ)),

we have

‖u− uh‖L2(0,T ;H1(Ω)) ≤ Ch
{
‖u0‖H1(Ω) + ‖u‖X + ‖u‖L2(0,T ;X)

}
.
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Next, for the L2 norm error estimate, we shall use the duality argument. For this
purpose, we now consider the following auxiliary problem: Find z ∈ H1

0 (Ω) such that

A(z, v) = (u− uh, v) ∀v ∈ H1
0 (Ω), t ∈ (0, T ],(4.4)

with [A ∂z
∂n ] = 0 across the interface Γ. Then its finite element approximation is

defined to be a function zh ∈ Vh satisfying

A(zh, vh) = (u− uh, vh) ∀vh ∈ Vh, t ∈ (0, T ].(4.5)

Setting v = u− uh in (4.4) and using (4.2), we obtain

‖u− uh‖2
L2(Ω) = A(z, u− uh)

= A(z − zh, u− uh) + A(zh, u− uh)

= A(z − zh, u− uh) − (ut − uht, zh).(4.6)

Differentiating (4.5) with respect to t, we obtain

A(zht, vh) = (ut − uht, vh).

Thus, we have

1

2

d

dt
A(zh, zh) = A(zht, zh) = (ut − uht, zh),

and hence, integrating (4.6) from 0 to T we obtain

‖u− uh‖2
L2(0,T ;L2(Ω)) +

1

2
A(zh, zh)

≤ C

∫ T

0

‖z − zh‖H1(Ω)‖u− uh‖H1(Ω)ds +
1

2
A(zh(0), zh(0)).

Further, using the regularity estimate for the elliptic interface problem (4.4)–(4.5)
and Lemma 3.1, we obtain

‖z − zh‖H1(Ω) ≤ C‖z −Rhz‖H1(Ω)

≤ Ch‖z‖X
≤ Ch‖u− uh‖L2(Ω),

and hence

‖u− uh‖2
L2(0,T ;L2(Ω))

≤ C

∫ T

0

h‖u− uh‖L2(Ω)‖u− uh‖H1(Ω)ds +
1

2
A(zh(0), zh(0)).(4.7)

Taking t → 0, it now follows from (4.5) that

A(zh(0), zh(0)) = (u0 − Lhu0, zh(0)) = 0.

This, together with (4.7) and Theorem 4.1, leads to

‖u− uh‖2
L2(0,T ;L2(Ω))

≤ Ch

(∫ T

0

‖u− uh‖2
L2(Ω)ds

) 1
2
(∫ T

0

‖u− uh‖2
H1(Ω)ds

) 1
2

≤ Ch2‖u− uh‖L2(0,T ;L2(Ω))

{
‖u0‖H1(Ω) + ‖u‖X + ‖u‖L2(0,T ;X)

}
.

Thus we have proved the following optimal L2 norm estimate.
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Theorem 4.2. Let u and uh be the solutions of the problems (1.1)–(1.3) and

(4.1), respectively. Then, for u0 ∈ H1
0 (Ω), f ∈ H1(0, T ;L2(Ω)), g ∈ H1(0, T ;H

1
2 (Γ)),

we have

‖u− uh‖L2(0,T ;L2(Ω)) ≤ Ch2
{
‖u0‖H1(Ω) + ‖u‖X + ‖u‖L2(0,T ;X)

}
.

Remark 4.1. Note that Theorems 4.1 and 4.2 yield an optimal order of conver-
gence, assuming that the interface triangles are curved instead of straight. In contrast
to [5] we do not require the interface function g ∈ C(Γ), but g ∈ H1(0, T ;H1/2(Γ))
suffices for the present analysis.

5. Discrete time discontinuous Galerkin method. In this section, we apply
the discontinuous Galerkin method in the direction of the time variable. In this
method an approximation to the solution is sought as a piecewise constant polynomial
function in t, which is not necessarily continuous at the nodes of the defining partition.

We first divide the interval [0, T ] into M equally spaced subintervals by the points

0 = t0 < t1 < · · · < tM = T

with tn = nk, k = T/M being the time step. Let In = (tn−1, tn] be the nth subinterval.
In order to discretize (2.1) in time, we shall use the finite dimensional space

Vhk = {φ : [0, T ] → Vh : φ|In ∈ Vh is constant in time}.

For φ ∈ Vhk, we denote φn and φn
+ to be the value of φ and its limit from the above

at tn, respectively. Further, we write V n
hk for the restriction to In of the functions in

Vhk.
Remark 5.1. The functions belonging to Vhk need not be continuous at the nodes

but are taken to be continuous to the left there.
Now we introduce the backward difference quotient

Δkφ
n =

φn − φn−1

k

for a given sequence {φn}Mn=0 ⊂ L2(Ω). For a given Banach space B and some function
ξ ∈ L2(0, T ;B), we write

ξ
n

= k−1

∫
In

ξ(x, t)dt.(5.1)

The fully discrete finite element approximation to the problem (2.1) is defined as
follows: Find Un ∈ Vhk, for n = 1, 2, . . . ,M , such that

(ΔkU
n, vh) + A(Un, vh) = (f

n
, vh) + 〈g n, vh〉Γ ∀vh ∈ V n

hk(5.2)

with U0 = Rhu0 and f
n

defined as in (5.1).
Below we prove the stability result for the solution Un satisfying (5.2).
Lemma 5.1. Let Un be satisfy (5.2). Then we have

‖UM‖2
L2(Ω) +

M∑
n=1

k‖Un‖2
H1(Ω)

≤ C

(
‖f‖2

L2(0,T ;L2(Ω)) + ‖u0‖2
H1(Ω) + ‖g‖2

L2(0,T ;H
1
2 (Γ))

)
.
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Proof. Setting vh = Un in (5.2) and then using the Cauchy–Schwarz inequality
we obtain

‖Un‖2
L2(Ω) + k‖Un‖2

H1(Ω)

≤ k(f
n
, Un) + k〈g n, Un〉Γ + (Un−1, Un)

≤ k‖f n‖L2(Ω)‖Un‖L2(Ω) + k‖g n‖L2(Γ)‖Un‖L2(Γ)

+ ‖Un−1‖L2(Ω)‖Un‖L2(Ω).

Applying Young’s inequality, summing over n from n = 1 to n = M , and noting that
‖Rhu0‖H1(Ω) ≤ C‖u0‖H1(Ω), we obtain

‖UM‖2
L2(Ω) +

M∑
n=1

k‖Un‖2
H1(Ω)

≤ C

(
‖u0‖2

H1(Ω) +

M∑
n=1

k‖f n‖2
L2(Ω) +

M∑
n=1

k‖g n‖2
L2(Γ)

)
.

It follows from simple calculation that

M∑
n=1

k‖f n‖2
L2(Ω) ≤ C‖f‖2

L2(0,T ;L2(Ω)) and

M∑
n=1

k‖g n‖2
L2(Γ) ≤ C‖g‖2

L2(0,T ;H
1
2 (Γ))

.

Altogether these estimates lead to the desired result and complete the proof.
Now we introduce the interpolant Pk ∈ Vhk of u defined by

∫
In

A(Pk − u, φ) ds = 0 ∀φ ∈ Vhk,

i.e. Pk|In = k−1

∫
In

Rhuds

= P k
n
.(5.3)

It is easy to notice from Lemma 3.1 that

(
M∑
n=1

k‖u n − P k
n‖2

Hm(Ω)

) 1
2

≤ Ch2−m‖u‖L2(0,T ;X), m = 0, 1.(5.4)

Now we state the main results of this section in the following theorems.
Theorem 5.2. Let u and U be the solutions of (1.1)–(1.3) and (5.2), respectively.

Then, for u0 ∈ X∩H1
0 (Ω), f ∈ H1(0, T ;L2(Ω)), and g ∈ H1(0, T ;H

1
2 (Γ)), there exists

a constant C independent of h and k such that

‖u− U‖L2(0,T ;L2(Ω)) ≤ C(k + h2)
{
‖u0‖X + ‖u‖L2(0,T ;X) + ‖ut‖L2(0,T ;L2(Ω))

}
.

Theorem 5.3. Let u and U be the solutions of (1.1)–(1.3) and (5.2), respectively.

Then, for u0 ∈ X∩H1
0 (Ω), f ∈ H1(0, T ;L2(Ω)), and g ∈ H1(0, T ;H

1
2 (Γ)), there exists

a positive constant C independent of h and k such that

‖u− U‖L2(0,T ;H1(Ω)) ≤ C(k + h)
{
‖u0‖X + ‖u‖L2(0,T ;X) + ‖ut‖L2(0,T ;Y )

}
.
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The proofs of the above theorems require some preparation. We now appeal to
the parabolic duality arguments. Consider the following auxiliary problem: Find
zn ∈ Vhk such that

(−∇kz
n, vh) + A(zn−1

+ , vh) = (u n − Un, vh) ∀vh ∈ V n
hk, 1 ≤ n ≤ M,(5.5)

with zM+ = 0, ∇kz
n =

zn
+−zn−1

+

k . The following stability result of the solution zn of
(5.5) is very crucial for the convergence analysis.

Lemma 5.4. Let zn be the solution of (5.5). Then we have

M∑
n=1

k‖∇kz
n‖2

L2(Ω) + ‖z0
+‖2

H1(Ω)

≤ C

M∑
n=1

k‖u n − Un‖2
L2(Ω).

Proof. Taking vh = −k∇kz
n in (5.5) and applying the Cauchy–Schwarz inequal-

ity, we obtain

k‖∇kz
n‖2

L2(Ω) + A(zn−1
+ , zn−1

+ − zn+) ≤ Ck‖u n − Un‖2
L2(Ω).(5.6)

It is easy to notice that

A(zn−1
+ , zn−1

+ − zn+) =
k2

2
A(∇kz

n,∇kz
n)

−1

2
A(zn+, z

n
+) +

1

2
A(zn−1

+ , zn−1
+ ).

This, combined with (5.6), yields

k‖∇kz
n‖2

L2(Ω) +
k2

2
A(∇kz

n,∇kz
n) − 1

2
A(zn+, z

n
+) +

1

2
A(zn−1

+ , zn−1
+ )

≤ Ck‖u n − Un‖2
L2(Ω).

Summing over n from n = 1 to n = M , we obtain

M∑
n=1

k‖∇kz
n‖2

L2(Ω) + A(z0
+, z

0
+) ≤

M∑
n=1

k‖u n − Un‖2
L2(Ω).

This completes the proof.
Proof of Theorem 5.2. Choose vh = k(P k

n − Un) ∈ V n
hk in (5.5). Observing that

A(zn−1
+ , P k

n
) = A(zn−1

+ , u n), we have

k‖u n − Un‖2
L2(Ω)

= k(u n − Un, u n − P k
n
) + k(−∇kz

n, P k
n − Un) + kA(zn−1

+ , P k
n − Un)

= k(u n − Un, u n − P k
n
) + k(−∇kz

n, P k
n − Un) + kA(zn−1

+ , u n − Un)

= k(u n − P k
n
, u n − Un) + k(−∇kz

n, P k
n − un)

+ k(−∇kz
n, un − Un) + kA(zn−1

+ , u n − Un).(5.7)
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Now summing over n from n = 1 to n = M , we obtain

M∑
n=1

k‖u n − Un‖2
L2(Ω) =

M∑
n=1

{
k(u n − P k

n
, u n − Un)

}

+
M∑
n=1

{
k(−∇kz

n, P k
n − un)

}

+

M∑
n=1

k
{
(−∇kz

n, un − Un) + A(zn−1
+ , u n − Un)

}

=: I1 + I2 + I3.(5.8)

Before estimating the three terms in (5.8), we first rewrite the term I3. Note that for
all v ∈ H1

0 (Ω), we have

(Δku
n, v) + A(u n, v) = (f

n
, v) + 〈g n, v〉Γ, 1 ≤ n ≤ M.(5.9)

Now, taking vh = v = zn−1
+ in both (5.2) and (5.9), subtracting one from the other,

and summing the resulting equation over n, we obtain

M∑
n=1

k
{
(Δk(u

n − Un), zn−1
+ ) + A(u n − Un, zn−1

+ )
}

= 0(5.10)

which, together with (5.8), yields

M∑
n=1

k‖u n − Un‖2
L2(Ω)

= I1 + I2 +

M∑
n=1

k

(
(−∇kz

n, un − Un) + (−Δk(u
n − Un), zn−1

+ )

)

=: I1 + I2 + I4.(5.11)

Using the fact that zM+ = 0, and applying the identity

M∑
n=1

(an − an−1)bn = aMbM − a0b0 −
M∑
n=1

an−1(bn − bn−1)

to I4 with an = zn+ and bn = un − Un, we obtain

I4 =

M∑
n=1

k
{
(−∇kz

n, un − Un) + (−Δk(u
n − Un), zn−1

+ )
}

= (z0
+, u0 −Rhu0).(5.12)

Using (5.4) and the Cauchy–Schwarz inequality, it now follows that

|I1| ≤
(

M∑
n=1

k‖u n − P k
n‖2

L2(Ω)

) 1
2
(

M∑
n=1

k‖u n − Un‖2
L2(Ω)

) 1
2

≤ Ch2‖u‖L2(0,T ;X)

(
M∑
n=1

k‖u n − Un‖2
L2(Ω)

) 1
2

.(5.13)
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Similarly, for I2, use of (5.4) and Lemma 5.4 leads to

|I2| ≤ C

(
M∑
n=1

k‖∇kz
n‖2

L2(Ω)

) 1
2

×

⎡
⎣
(

M∑
n=1

k‖P k
n − u n‖2

L2(Ω)

) 1
2

+

(
M∑
n=1

k‖u n − un‖2
L2(Ω)

) 1
2

⎤
⎦

≤ C(k + h2)
(
‖u‖2

L2(0,T ;X) + ‖ut‖2
L2(0,T ;L2(Ω))

) 1
2

(
M∑
n=1

k‖∇kz
n‖2

L2(Ω)

) 1
2

≤ C(k + h2)
(
‖u‖2

L2(0,T ;X) + ‖ut‖2
L2(0,T ;L2(Ω))

) 1
2

×
(

M∑
n=1

k‖u n − Un‖2
L2(Ω)

) 1
2

.(5.14)

Finally, using Lemmas 3.1 and 5.4, the term I4 is estimated as

|I4| ≤ ‖z0
+‖H1(Ω)‖u0 −Rhu0‖L2(Ω)

≤ h2‖u0‖X

(
M∑
n=1

k‖u n − Un‖2
L2(Ω)

) 1
2

.(5.15)

By simple calculation, it follows that

‖u− U‖L2(0,T ;L2(Ω)) ≤ Ck‖ut‖L2(0,T ;L2(Ω))

+ C

(
M∑
n=1

k‖u n − Un‖2
L2(Ω)

) 1
2

,(5.16)

and hence, the desired result now follows from (5.11) and the estimates (5.13)–(5.16).
This completes the proof.

For the H1 norm estimate, as for the L2 norm, we analyze the following auxiliary
discrete problem: For 1 ≤ n ≤ M , find wn ∈ Vhk such that

(−∇kw
n, vh) + A(wn−1

+ , vh) = (∇(u n − Un),∇vh) ∀vh ∈ V n
hk,(5.17)

with wM
+ = 0. Applying the standard arguments (cf. [5]) and (3.14), we have the

following stability result of the solution w satisfying (5.17). This stability result is
crucial for the H1 norm estimate.

Lemma 5.5. Let wn satisfy (5.17). Then the following stability results hold:

max
1≤n≤M

‖wn−1
+ ‖2

L2(Ω) +

M∑
n=1

k‖wn−1‖2
H1(Ω) ≤

M∑
n=1

k‖∇(u n − Un)‖2
L2(Ω)

and

M∑
n=1

k‖∇kw
n‖2

H−1(Ω) ≤
M∑
n=1

k‖∇(u n − Un)‖2
L2(Ω).
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Proof of Theorem 5.3. Now choose vh = k(P k
n − Un) in (5.17) and repeat the

same analysis as for deriving I4 in (5.12) to obtain

M∑
n=1

k‖∇(u n − Un)‖2
L2(Ω)

=

M∑
n=1

k(∇(u n − P k
n
),∇(u n − Un)) +

M∑
n=1

k(−∇kw
n, P k

n − un)

+
M∑
n=1

(
k(−∇kw

n, un − Un) + kA(wn−1
+ , u n − Un)

)

=

M∑
n=1

k(∇(u n − P k
n
),∇(u n − Un)) +

M∑
n=1

k(−∇kw
n, P k

n − un)

+ (w0
+, u0 −Rhu0)

=: II1 + II2 + II3.(5.18)

For the term II1, use the Cauchy–Schwarz inequality and (5.4) to obtain

|II1| ≤
M∑
n=1

k‖∇(u n − P k
n
)‖L2(Ω)‖∇(u n − Un)‖L2(Ω)

≤
{

M∑
n=1

k‖∇(u n − P k
n
)‖2

L2(Ω)

} 1
2
{

M∑
n=1

k‖∇(u n − Un)‖2
L2(Ω)

} 1
2

≤ Ch‖u‖L2(0,T ;X)

{
M∑
n=1

k‖∇(u n − Un)‖2
L2(Ω)

} 1
2

.(5.19)

The term II2 is estimated in a manner similar to I2 as in (5.14). Thus, using (5.4)
and Lemma 5.5, we obtain

|II2| ≤
(

M∑
n=1

k‖∇kw
n‖2

H−1(Ω)

) 1
2

·
[{

M∑
n=1

k‖u n − P k
n‖2

H1(Ω)

} 1
2

+

{
M∑
n=1

k‖u n − un‖2
H1(Ω)

} 1
2
]

≤ C(k + h)
(
‖u‖2

L2(0,T ;X) + ‖ut‖2
L2(0,T ;Y )

) 1
2

·
(

M∑
n=1

k‖∇(u n − Un)‖2
L2(Ω)

) 1
2

.(5.20)

An application of Lemmas 3.1 and 5.5 yields

|II3| ≤ Ch‖u0‖X

(
M∑
n=1

k‖∇(u n − Un)‖2
L2(Ω)

) 1
2

.(5.21)
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Again, by an easy calculation (cf. [5]), it follows that

‖u− U‖L2(0,T ;H1(Ω)) ≤ k‖ut‖L2(0,T ;Y ) +

(
M∑
n=1

k‖∇(u n − Un)‖2
L2(Ω)

) 1
2

,(5.22)

and hence, the desired estimate now follows from (5.18)–(5.22). This completes the
proof.
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POLYNOMIALS AND POTENTIAL THEORY FOR GAUSSIAN
RADIAL BASIS FUNCTION INTERPOLATION∗

RODRIGO B. PLATTE† AND TOBIN A. DRISCOLL†

Abstract. We explore a connection between Gaussian radial basis functions and polynomials.
Using standard tools of potential theory, we find that these radial functions are susceptible to the
Runge phenomenon, not only in the limit of increasingly flat functions, but also in the finite shape
parameter case. We show that there exist interpolation node distributions that prevent such phe-
nomena and allow stable approximations. Using polynomials also provides an explicit interpolation
formula that avoids the difficulties of inverting interpolation matrices, while not imposing restrictions
on the shape parameter or number of points.

Key words. Gaussian radial basis functions, RBF, potential theory, Runge phenomenon, con-
vergence, stability

AMS subject classifications. 65D05, 41A30
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1. Introduction. Radial basis functions (RBFs) have been popular for some
time in high-dimensional approximation [3] and are increasingly being used in the
numerical solution of partial differential equations [7, 14, 17, 20]. Given a set of
centers ξ0, . . . , ξN in Rd, an RBF approximation takes the form

F (x) =

N∑
k=0

λk φ
(
‖x− ξk‖

)
,(1.1)

where ‖ · ‖ denotes the Euclidean distance between two points and φ(r) is a function
defined for r ≥ 0. The coefficients λ0, . . . , λN may be chosen by interpolation or other
conditions at a set of nodes that typically coincide with the centers. In this article,
however, we give special attention to the case in which the locations of centers and
nodes differ. Moreover, we shall consider equally spaced centers in most parts of this
exposition.

Common choices for φ fall into two main categories:
• infinitely smooth and containing a free parameter, such as multiquadrics

(φ(r) =
√
r2 + c2) and Gaussians (φ(r) = e−(r/c)2);

• piecewise smooth and parameter-free, such as cubics (φ(r) = r3) and thin
plate splines (φ(r) = r2 ln r).

Convergence analysis of RBF interpolation has been carried out by several re-
searchers—see, e.g., [18, 19, 25]. For smooth φ, spectral convergence has been proved
for functions belonging to a certain reproducing kernel Hilbert space Fφ [19]. This
space, however, is rather small since the Fourier transform of functions in Fφ must
decay very quickly or have compact support [25]. More recently, in [26] Yoon obtained
spectral orders on Sobolev spaces, and in [11] error analysis was performed by consid-
ering the simplified case of equispaced periodic data. In this article, we use standard
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2004; published electronically August 31, 2005. This research was supported by National Science
Foundation grant DMS-0104229.
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tools of polynomial interpolation and potential theory to study several properties of
Gaussian RBF (GRBF) interpolation in one dimension, including convergence and
stability.

As is well known in polynomial interpolation, a proper choice of interpolation
nodes is essential for good approximations. It is also known that, for fixed N in the
limit c → ∞, RBF interpolation is equivalent to polynomial interpolation on the same
nodes [6]; hence, the classical Runge phenomenon, and its remedy through node spac-
ing, applies. For practical implementations it is well appreciated that node clustering
near the boundaries is helpful [10, 20], but to our knowledge there has been no clear
statement about the Runge phenomenon or asymptotically stable interpolation nodes
for finite-parameter RBFs. The question has perhaps been obscured somewhat by
the fact that the straightforward approach to computing the λk is itself numerically
ill-conditioned when the underlying approximations are accurate [22].

In this paper we explore the fact that GRBFs with equally spaced centers are
related to polynomials through a simple change of variable. Using this connection,
in section 2 we demonstrate a Runge phenomenon using GRBFs on equispaced and
classical Chebyshev nodes, and we compute asymptotically optimal node densities
using potential theory. Numerical calculations suggest that these node densities give
Lebesgue constants that grow at logarithmic rates, allowing stable approximations. In
section 3 we explore the algorithmic implications of the connections we have made and
derive a barycentric interpolation formula that circumvents the difficulty of inverting a
poorly conditioned matrix, so approximations can be carried out to machine precision
without restrictions on the values of the shape parameter c and number of centers N .
Finally, section 4 contains observations on multiquadrics and other possible extensions
of the methods presented.

2. Gaussian RBFs as polynomials. In (1.1) we now choose d = 1, Gaussian
shape functions, and centers ξk = −1 + 2k/N = −1 + kh, k = 0, . . . , N . Hence the
GRBF approximation is

F (x) =

N∑
k=0

λke
−(x+1−kh)2/c2 = e−(x+1)2/c2

N∑
k=0

λke
(2kh−k2h2)/c2e2kxh/c2 .(2.1)

Making the definition β = 2h/c2 = 4/(Nc2) and using the transformation

s = eβx, s ∈ [e−β , eβ ],

we find that

G(s) = F

(
log(s)

β

)
= e−

N
4β (log s+β)2

N∑
k=0

λ̃ks
k = ψN

β (s)

N∑
k=0

λ̃ks
k,(2.2)

where the λ̃k are independent of s. In this section we regard β as a fixed parameter
of the GRBF method. In the literature this is sometimes called the stationary case
[2].

From (2.2) it is clear that G/ψN
β is a polynomial of degree no greater than N . If

F is chosen by interpolation to a given f at N +1 nodes, then we can apply standard
potential theory to find necessary convergence conditions on the singularities of f in
the complex plane z = x + iy.

Lemma 2.1. Suppose that f is analytic in a closed simply connected region R
that lies inside the strip −π/(2β) < Im(z) < π/(2β) and that C is a simple, closed,
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rectifiable curve that lies in R and contains the interpolation points x0, x1, . . . , xN .
Then the remainder of the GRBF interpolation for f at x can be represented as the
contour integral

f(x) − F (x) =
βηN (x)

2πi

∫
C

f(z)eβz

ηN (z)(eβz − eβx)
dz,

where ηN (x) = e−
Nβ
4 (x+1)2

∏N
k=0(e

βx − eβxk).
Proof. Consider the conformal map w = eβz, and let g(s) = f(log(s)/β). Under

this transformation, the region R is mapped to a closed simply connected region that
lies in the half-plane Re(w) > 0. Thus g/ψN

β is analytic in this region in the w-plane,
and we can use the Hermite formula for the error in polynomial interpolation [5],

g(s) −G(s) = ψN
β (s)

(
g(s)

ψN
β (s)

−
N∑

k=0

λ̃ks
k

)

=
ψN
β (s)

∏N
k=0(s− sk)

2πi

∫
C

g(w)

(w − s)ψN
β (w)

∏N
k=0(w − sk)

dw,

where sk = eβxk and C is the image of C in the w-plane. A change of variables
completes the proof.

We now turn our attention to necessary conditions for uniform convergence of
the interpolation process. To this end, we need the concept of limiting node density
functions. These functions describe how the density of node distributions varies over
[−1, 1] as N → ∞ [10, 16]. Given a node density function μ, it follows that the node
locations xj satisfy [10]

j

N
=

∫ xj

−1

μ(x)dx, j = 0, . . . , N.

Since our analysis parallels the convergence proof for polynomial interpolation
(see, e.g., [5, 16, 24]), define

uβ(z) =
β

4
Re

[
(z + 1)2

]
−
∫ 1

−1

log(|eβz − eβt|)μ(t)dt.(2.3)

We shall refer to this function as the logarithmic potential and to its level curves as
equipotentials.

In the theorem below we shall assume that μ is such that there exist a and b,
a < b, with the property that if K ∈ [a, b], then there exists a simple, closed, rectifiable
curve that satisfies uβ(z) = K and contains the interval [−1, 1] in its interior. We
denote this curve by CK and by RK the part of the plane which lies inside it. We
also require that if K1 > K2, then RK1 ⊂ RK2 . To illustrate this feature, consider
the logarithmic potential for uniformly distributed nodes on [−1, 1] and β = 1. In
this case we have that μ(t) = 1/2. The level curves of u1 are presented in Figure 2.1.
In this instance one could choose a = 0.5 and b = 0.7.

Theorem 2.2. Suppose μ satisfies the properties above, and let B be the clo-
sure of Rb. If f is an analytic function in an open region R which lies inside the
strip −π/(2β) < Im(z) < π/(2β) and contains B in its interior, then the GRBF
interpolation described above converges uniformly with respect to z ∈ B.
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Fig. 2.1. Level curves of the logarithmic potential for β = 1 and μ(t) = 1/2. The straight line
represents the interval [−1, 1].

Proof. Since R is open and B is closed, there exist K1 and K2 such that K1 <
K2 < b and RK1 ∪ CK1 lies inside R. Using Lemma 2.1, we have that for any x on
CK2

,

|f(x) − F (x)| ≤ βM

2πδ

∫
CK1

|ηN (x)|
|ηN (z)|dz,(2.4)

where M is the largest value of |f(z)eβz| on CK1
and δ is the smallest value of

|eβz − eβx| for z ∈ CK1 and x ∈ CK2 .
We also have that

|ηN (x)|
|ηN (z)| = exp

{
−N

(
log |ηN (z)| 1

N − log |ηN (x)| 1
N

)}
.(2.5)

A bound on this exponential can be obtained using the limiting logarithmic potential.
Notice that

lim
N→∞

log |ηN (z)| 1
N = −uβ(z) = −K1 for z ∈ CK1

and

lim
N→∞

log |ηN (x)| 1
N = −uβ(x) = −K2 for x ∈ CK2

.

Hence, for any given ε, 0 < ε < (K2 −K1)/2, there exists Nε such that for N > Nε

−K1 − ε < log |ηN (z)| 1
N < −K1 + ε,

−K2 − ε < log |ηN (x)| 1
N < −K2 + ε,

which implies that

log |ηN (z)| 1
N − log |ηN (x)| 1

N < mε,(2.6)

where mε = K2 −K1 + 2ε > 0.
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Combining (2.4), (2.5), and (2.6) gives

|f(x) − F (x)| ≤ βMκ

2πδ
e−Nmε , N > Nε, x ∈ CK2 ,(2.7)

where κ is the length of CK1
.

This last inequality implies that |f − F | → 0 uniformly as N → ∞ on CK2 .
Since f − F is analytic in RK2

, by the maximum modulus principle we have that F
converges uniformly to f in RK2 .

We point out that, as happens in polynomial interpolation, the convergence in
(2.7) is exponential with a rate that is governed by the equipotentials induced by the
nodes.

2.1. The Runge phenomenon. The Runge phenomenon is well understood
in polynomial interpolation in one dimension [5, 9] . Even if a function is smooth
on the interpolation interval [−1, 1], polynomial interpolants will not converge to it
uniformly as N → ∞ unless the function is analytic in a larger complex region whose
shape depends on the interpolation nodes. Clustering nodes more densely near the
ends of the interval avoids this difficulty. Specifically, points distributed with density
π−1(1 − x2)−1/2, such as Chebyshev extreme points xj = − cos(jπ/N) and zeros of
Chebyshev and Legendre polynomials, are common choices of interpolation nodes on
[−1, 1]. Uniform convergence of polynomial interpolants is guaranteed for these nodes
as long as the function being interpolated is analytic inside an ellipse with foci ±1
and semiminor larger than δ, for some δ > 0 [9].

In this section we show that for GRBFs uniform convergence may be lost, not
only in the polynomial limit c → ∞ but also for constant β (which implies c → 0
as N → ∞), if the distribution of interpolation nodes is not chosen appropriately.
Theorem 2.2 can be used to state the regularity requirements of the function being
interpolated using a given node distribution, enabling us to determine whether the
interpolation process is convergent.

We point out that, for β � 1,

uβ(z) = − log(β) −
∫ 1

−1

log |z − t|μ(t)dt + O(β).(2.8)

In this case, the level curves of uβ are similar to equipotentials of polynomial interpo-
lation, and the convergence of the GRBF interpolation process can be predicted from
the well-known behavior of polynomial interpolation.

Equipotentials for β = 0.1, 0.8, 2, 5 are presented in Figure 2.2. On the left of this
figure, we present contour maps obtained with a uniform node distribution, and on the
right, contour maps obtained with the Chebyshev extreme points. Equipotentials for
β = 0.1 are similar to equipotentials for polynomial interpolation [9], as expected. By
Theorem 2.2, convergence is guaranteed if the function is analytic inside the contour
line that surrounds the smallest equipotential domain that includes [−1, 1], whereas
any singularity inside this region leads to spurious oscillations that usually grow expo-
nentially. Therefore, it is desirable to have the region where the function is required to
be analytic be as small as possible. In this sense, we note that for β = 0.1 the Cheby-
shev distribution is close to optimal, and for β = 5 a uniform distribution seems to be
more appropriate. We also note that, for large β, Chebyshev density overclusters the
nodes near the ends of the interval. In fact, if this clustering is used with β = 5, even
the interpolation of f ≡ 1 is unstable; in this case there is no equipotential region
that encloses [−1, 1].



POLYNOMIALS AND POTENTIAL THEORY FOR GAUSSIAN RBFs 755

μ(t) = 1/2 μ(t) = 1/π
√

1 − t2

β = 0.1

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

β = 0.8

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

β = 2

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

β = 5

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

Fig. 2.2. Contour maps of the logarithmic potential. Plots on the left were obtained with
uniform node distribution. Plots on the right were obtained with Chebyshev distribution.

To demonstrate how the equipotentials and singularities of the interpolated func-
tion restrict the convergence of GRBF interpolation, in Figures 2.3 and 2.4 we show
two pairs of interpolants. Each pair consists of one function that leads to the Runge
phenomenon and one that leads to a stable interpolation process. In Figure 2.3, eq-
uispaced nodes were used. The interpolation of f(x) = 1/(4 + 25x2) is convergent,
while the interpolation of f(x) = 1/(1 + 25x2) is not. Notice from Figure 2.2 that
the former function is singular at points inside the smallest equipotential domain,
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f(x) = 1/(1 + 25x2) f(x) = 1/(4 + 25x2)

Fig. 2.3. Interpolation of f with 25 equispaced nodes and β = 0.8. Closed curves are level
curves of the logarithmic potential, dots mark the singularities of f , and straight lines represent the
interval [−1, 1].

f(x) = 1/(x2 − 1.8x + 0.82) f(x) = 1/(x2 − 1.8x + 0.85)

Fig. 2.4. Interpolation of f with 41 Chebyshev nodes and β = 2. Closed curves are level curves
of the logarithmic potential, dots mark the singularities of f , and straight lines represent the interval
[−1, 1].

and the singularities of the latter function lie outside this region. For Chebyshev
nodes and β = 2, interpolation of f(x) = 1/(x2 − 1.8x + 0.82) generates spurious
oscillation in the center of the interval. Interpolation of a slightly different function,
f(x) = 1/(x2 − 1.8x + 0.85), gives a well-behaved interpolant.

2.2. Lebesgue constants. Although Theorem 2.2 guarantees convergence for
sufficiently smooth functions and properly chosen interpolation points, approxima-
tions may not converge in the presence of rounding errors due to the rapid growth of
the Lebesgue constant. For GRBF interpolation, we define the Lebesgue constant by

ΛGRBF
N = max

x∈[−1,1]

N∑
k=0

|Lk(x)|,(2.9)

where

Lk(x) = e−
Nβ
4 ((x+1)2−(xk+1)2)

N∏
j=0
j �=k

(eβx − eβxj )

(eβxk − eβxj )
(2.10)

is the GRBF cardinal function. Notice that Lk(xk) = 1, Lk(xj) = 0 (j = k), and

by (2.2), Lk(x) ∈ Span{e−(x−ξk)2/c2}. Thus, the unique GRBF interpolant can be
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Fig. 2.5. Lebesgue constant for different values of β. Dashed lines mark the Lebesgue constant
values for polynomial interpolation.

written as

F (x) =

N∑
k=0

Lk(x)f(xk),(2.11)

and it follows that

‖F − f‖∞ ≤ (1 + ΛGRBF
N )‖F opt − f‖∞,(2.12)

where F opt is the best approximation to f in the GRBF subspace with respect to the
infinity norm.

Figure 2.5 illustrates how the GRBF Lebesgue constant grows with N for equi-
spaced nodes (left) and Chebyshev nodes (right). As expected, for small β the GRBF
Lebesgue constants approximate the polynomial Lebesgue constants, which behave
asymptotically as O(2N/(N logN)) for equispaced nodes and O(logN) for Chebyshev
nodes [9, 23]. This figure shows that the Lebesgue constants grow exponentially for
both node distributions, except for large values of β for uniform nodes and small
values of β for Chebyshev nodes.

In the presence of rounding errors, (2.12) indicates that if computations are carried
out with precision ε, then the solution will generally be contaminated by errors of size
εΛGRBF

N [23]. For instance, if f(x) = 1/(x2 − 1.8x+0.85) and β = 2, the convergence
of the interpolation process on Chebyshev nodes in double precision stops at N = 80,
with a minimum residue of O(10−7) due to rounding error. Similar results have been
observed on equispaced nodes if β is small.

2.3. Stable interpolation nodes. Our goal now is to find node distributions
that lead to a convergent interpolation process whenever the function is analytic
on [−1, 1]. This happens only if [−1, 1] is itself an equipotential, as is the case for
Chebyshev density in polynomial interpolation. Therefore, we seek a density function
μ that satisfies

β

4
(x + 1)2 =

∫ 1

−1

log(|eβx − eβt|)μ(t)dt + constant, x ∈ [−1, 1].(2.13)
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Fig. 2.6. Numerical approximations of the optimal density functions for several values of β.
The dashed line shows the Chebyshev density function.

In order to find a numerical solution to this integral equation, we assume that the
optimal μ can be approximated by

μ(t) ∼=
Nμ∑
k=0

ak
T2k(t)√
1 − t2

,(2.14)

where T2k is the Chebyshev polynomial of order 2k. We consider only even functions
in our expansion because we expect the density function to be even due to symmetry.
This generalizes the Chebyshev density function μ(t) = π−1(1−t2)−1/2. We also tried
more general expressions, replacing

√
1 − t2 with (1− t2)−α, and found that α = 1/2

was suitable.
Figure 2.6 shows density functions computed with the expression above. We

computed the coefficients ak by discrete least-squares, and the integral in (2.13) was
approximated by Gaussian quadrature. We used Nμ = 9 and 50 points to evaluate
the residue in the least-squares process. With this choice of parameters, the residual
was less than 10−7 in all computations.

In Figure 2.7 we show 21 nodes computed using (2.13) and (2.14) for several values
of β. For large values of β the nodes are nearly equally spaced, and for small values
they are approximately equal to Chebyshev extreme points. The optimal equipoten-
tials obtained for β = 0.1, 0.8, 2, 5 are presented in Figure 2.8. For all these values of
β, [−1, 1] seems to be a level curve of the logarithmic potential.

As mentioned in section 2.2, in the presence of rounding errors the Lebesgue
constant also plays a crucial role. Fortunately, for the optimal nodes computed nu-
merically in this section, experiments suggest that the Lebesgue constant grows at
a logarithmic rate. Figure 2.9 presents computed Lebesgue constants for different
values of β on optimal nodes.

Figure 2.10 shows the convergence of the GRBF interpolation to the four functions
used to illustrate the Runge phenomenon in section 2.1. Now all four functions can
be approximated nearly to machine precision. The algorithm used to obtain these
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Fig. 2.7. Node locations obtained using a density function computed by solving the integral
equation (2.13) for N = 20 and several values of β.
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Fig. 2.8. Contour maps of the logarithmic potential obtained with a numerically approximated
optimal density function.

data is presented in section 3. Notice that the convergence rates are determined by
the singularities of the function being interpolated. Dashed lines in this figure mark
the convergence rates predicted by (2.7). For instance, if f(x) = 1/(1 + 25x2) and
β = 0.8, then mε is approximately the difference between the value of the potential
in [−1, 1] and the potential at z = 0.2i (where f is singular), giving mε

∼= 0.23.
Notice that for β = 2 the equipotentials that enclose the interval [−1, 1] are
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Fig. 2.10. Maximum error of the interpolation process using optimal nodes. Left: f(x) =
1/(1 + 25x2) (•) and f(x) = 1/(4 + 25x2) (∗). Right: f(x) = 1/(x2 − 1.8x + 0.82) (•) and f(x) =
1/(x2 − 1.8x + 0.85) (∗). Dashed lines mark convergence rates predicted by (2.7).

contained in a bounded region (Figure 2.8). This indicates that the convergence rate
given by (2.7) is the same for all functions that have singularities outside this region.
In polynomial interpolation, convergence to entire functions is much faster than to
functions with finite singularities. This is not the case for GRBFs. With β = 2
we found that the rate of convergence of interpolants of 1/(1 + 4x2), 1/(100 + x2),
sin(x), and |x+ 2| were all about the same. What these functions have in common is
that they are analytic inside the smallest region that includes all equipotentials that
enclose [−1, 1].

It is also worth noting that the one-parameter family μγ of node density functions
proportional to (1−t2)−γ [9] was used in [10] and [20] to cluster nodes near boundaries
in RBF approximations. Although numerical results there showed improvement in
accuracy, no clear criteria for choosing γ was provided in those papers. By using
these node density functions and minimizing the residue in (2.13) with respect to γ,
we found that optimal values of γ are approximately given by γ ∼= 0.5e−0.3β . We point
out, however, that interpolations using these density functions may not converge if
large values of N are required.

2.4. Location of centers. Up to this point we have assumed that the centers
are uniformly distributed on [−1, 1]. Here we briefly investigate the consequences of



POLYNOMIALS AND POTENTIAL THEORY FOR GAUSSIAN RBFs 761

centers on [−0.5, 0.5] centers on [−0.75, 0.75]

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

centers on [−1.25, 1.25] centers on [−1.5, 1.5]

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

Fig. 2.11. Equipotentials for β = 2 (compare with Figure 2.2). Uniformly distributed centers
on interval specified above. Interpolation points are uniformly distributed on [−1, 1].

choosing centers ξk that are equispaced on the interval [−L,L], where L = 1, and
also discuss results where centers are not equally spaced. Taking centers outside the
interval of approximation, as was suggested in [10, 17] to improve edge accuracy, is of
practical interest.

For equispaced centers on [−L,L], a straightforward modification of (2.2) gives

F (x) = e
−Nβ
4L (x+L)2

N∑
k=0

λ̃ke
kβx,

where β = 4L/Nc2. In this case the logarithmic potential becomes

uL
β (z) =

β

4L
Re

[
(z + L)2

]
−
∫ 1

−1

log(|eβz − eβt|)μ(t)dt.

Equipotentials for different values of L are presented in Figure 2.11. We consid-
ered equispaced interpolation nodes on [−1, 1]. Notice that if L = 0.5, there is no
guarantee of convergence, as no equipotential encloses [−1, 1]. For L =0.75, 1.25, and
1.5, there are equipotentials enclosing this interval. The region where f is required to
be smooth seems to increase with L. We also point out that the asymptotic behavior
for small β, given in (2.8), holds independently of L, indicating that center location
is irrelevant in the polynomial limit.

It is common practice to choose the same nodes for centers and interpolation. In
Figure 2.12 we show the graphs of the GRBF interpolants, for f(x) = 1/(x2 − 1.8x+
0.82) and f(x) = 1/(x2−1.8x+0.85), where both centers and interpolation nodes are
Chebyshev points. These data suggest that interpolation with Chebyshev centers also
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f(x) = 1/(x2 − 1.8x + 0.82) f(x) = 1/(x2 − 1.8x + 0.85)
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Fig. 2.12. GRBF interpolation using Chebyshev points for centers and interpolation nodes, β = 2.

suffers from the Runge phenomenon. These results are similar to the ones obtained in
Figure 2.4 for equispaced centers. Notice that we cannot use the definition involving h
for β if the centers are not equispaced; in this case we use the definition β = 4/(Nc2).

3. Algorithmic implications. It is well known that most RBF-based algo-
rithms suffer from ill-conditioning. The interpolation matrix [φ(‖xi − ξj‖)] in most
conditions becomes ill-conditioned as the approximations get more accurate, to the
extent that global interpolants are rarely computed for more than a couple of hundred
nodes. Based on numerical and theoretical observations, in [22] Schaback states that
for RBFs, “Either one goes for a small error and gets a bad sensitivity, or one wants a
stable algorithm and has to take a comparably larger error.” Several researchers have
addressed this issue [4, 8, 15, 21]. In particular, Fornberg and Wright [12] recently
presented a contour-integral approach that allows numerically stable computations of
RBF interpolants for all values of the free parameter c, but this technique is expensive
and has been applied only for experimental purposes.

For GRBFs with equispaced centers, (2.11) provides an explicit interpolation
formula through the use of the cardinal functions Lk, so the difficulty of inverting
the interpolation matrix can be avoided. This is equivalent to Lagrange polynomial
interpolation.

Notice that the exponential term e−
Nβ
4 ((x+1)2−(xk+1)2) in (2.10) becomes very

close to zero for certain values of x if N is large, affecting the accuracy of the approx-
imations. A simple modification of (2.10) improves matters:

Lk(x) =

N∏
j=0
j �=k

e−
β
4 ((x+1)2−(xk+1)2)(eβx − eβxj )

(eβxk − eβxj )
.(3.1)

The direct implementation of (3.1) together with (2.11) provides a simple algorithm
for computing the GRBF interpolant for moderate values of N . In our experiments,
effective computations were carried out up to N = 300. We shall next derive a more
stable formula to handle larger problems.

In [1] Berrut and Trefethen point out the difficulties of using the standard La-
grange formula for practical computations and argue that the barycentric form of
Lagrange interpolation should be the method of choice for polynomial interpolation.
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For GRBFs we define the barycentric weights by

wk =

⎛
⎜⎜⎝

N∏
j=0
j �=k

e−
β
4 (xk+1)2

(
eβxk − eβxj

)
⎞
⎟⎟⎠

−1

,(3.2)

and thus we have that

Lk(x) = L(x)
wk

e−
β
4 (x+1)2 (eβx − eβxk)

(x = xk),

where

L(x) =

N∏
j=0

e−
β
4 (x+1)2

(
eβx − eβxj

)
.

Therefore, the GRBF interpolant can be written as

F (x) = L(x)
N∑

k=0

wk

e−
β
4 (x+1)2 (eβx − eβxk)

f(xk).(3.3)

For reasons of numerical stability, it is desirable to write L as a sum involving the
barycentric weights. For polynomial interpolation this is done by considering that 1
can be exactly written in terms of interpolation formulas, since it is itself a polynomial.
Unfortunately, a constant function is not exactly represented in terms of GRBFs.
Nevertheless, this difficulty can be circumvented if we properly choose a function that
belongs to the GRBF space. In our implementation, we consider the function

v(x) =
1

N

N∑
k=0

e−
Nβ
4 (x−ξk)2 .

Notice that in this case,

L(x) =
v(x)∑N

k=0
wk

e−
β
4

(x+1)2(eβx−eβxk)
v(xk)

.

Combining the last expression with (3.3) gives our GRBF barycentric formula:

F (x) = v(x)

∑N
k=0

wk

(eβx−eβxk)
f(xk)∑N

k=0
wk

(eβx−eβxk)
v(xk)

.(3.4)

As mentioned in [1], the fact that the weights wk appear symmetrically in the de-
nominator and in the numerator means that any common factor in all the weights
may be canceled without affecting the value of F . In some cases it is necessary to
rescale terms in (3.2) to avoid overflow. In our implementation we divided each term

by
∏N

j=1 |eβxj − e−β |1/N .
In [13] Higham shows that for polynomials the barycentric formula is forward sta-

ble for any set of interpolation points with a small Lebesgue constant. Our numerical
experiments suggest that the GRBF barycentric formula is also stable.
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Fig. 3.1. Maximum error of the interpolation of f(x) = 1/(1 + 25x2) using barycentric inter-

polation (•) and the standard RBF algorithm (∗). Left: β fixed. Right: c fixed.

Figure 2.10 was obtained using the barycentric formula. We point out that the
direct inversion of the interpolation matrix becomes unstable even for moderate values
of N . In Figure 3.1 we compare the convergence of the GRBF interpolant computed
with the barycentric formula with that found by inverting the interpolation matrix
(standard RBF algorithm). We first computed approximations with β fixed (left
graph). Notice that for the standard implementation, convergence rate changes at a
level around 10−2, and the method becomes very inefficient for larger values of N .
For the barycentric formula, on the other hand, convergence continues to machine
precision. For these approximations we used nodes computed with an approximate
optimal density function, as in section 2.3.

We also compared the algorithms for fixed c (right graph). In this instance we
used Chebyshev nodes, as c constant implies that β → 0 as N becomes large and
approximations become polynomial. The performance of the standard algorithm is
even worse in this case.

4. Final remarks. GRBFs using equally spaced centers are easily related to
polynomials in a transformed variable through (2.2). This connection allows us to
apply polynomial interpolation and potential theory to draw a number of precise
conclusions about the convergence of GRBF interpolation. In particular, for a given
interpolation node density, one can derive spectral convergence (or divergence) rates
based on the singularity locations of the target function. Conversely, one can easily
compute node densities for which analyticity of the function in [−1, 1] is sufficient
for convergence and for which the Lebesgue constant is controlled. Furthermore,
the polynomial connection allows us to exploit barycentric Lagrange interpolation to
construct a simple explicit interpolation algorithm that avoids the ill-conditioning of
the interpolation matrix. We stress that the convergence illustrated in Figure 3.1 is
made possible only through the use of both the stable nodes and the stable algorithm.

Numerical evidence suggests that other RBFs such as multiquadrics may also be
susceptible to the Runge phenomenon and dependent on node location for numeri-
cally stable interpolations. Figure 4.1 shows graphs of multiquadric interpolants of
two functions. We first considered the small β case (nearly polynomial) with the
same function that caused the Runge phenomenon for GRBFs on equispaced nodes.
The high oscillations of the interpolant at the ends of the interval indicates that
this function also causes the Runge phenomenon for multiquadrics. The multiquadric
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Fig. 4.1. Runge phenomenon in multiquadric RBF interpolation. Left: Interpolation of f(x) =
1/(1+25x2) using equispaced nodes and β = 0.1. Right: Interpolation of f(x) = 1/(x2−1.8x+0.82)
using Chebyshev nodes and β = 2.

interpolant of f(x) = 1/(x2 − 1.8x + 0.82) with β = 2 and equispaced centers also
presented spurious oscillations, as its GRBF counterpart did, when Chebyshev inter-
polation nodes were used.

Practical interest in RBF methods is fueled by their flexibility in the node and
center locations and by their simple use in higher-dimensional approximation. The
results of this paper do not extend immediately in either of those directions, except
to a tensor-product situation of uniform center locations in a box. Still, we believe
that the explicit GRBF interpolation algorithm, in particular, may be adaptable to
selective resolution requirements and geometric flexibility.
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Abstract. We consider a regularization concept for the solution of ill-posed operator equations,
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1. Introduction. The goal of this paper is to analyze regularization models for
the stable solution of ill-posed operator equations

F (P (φ)) = y.(1.1)

Here F is a continuous operator between Banach spaces X and Y , and P is a prob-
ably discontinuous operator into an admissible class P ⊂ X. Classical results on
convergence and stability of variational regularization principles for solving nonlinear
ill-posed problems (see, e.g., [19, 20, 10]) in a Hilbert spaces setting such as

1. existence of a regularized solution,
2. stability of the regularized approximations,
3. approximation properties of the regularized solutions

are applicable if the operator P is

1. bounded and linear or
2. nonlinear, continuous, and weakly closed.

In this paper we particularly emphasize operator equations (1.1), where the operator
P is discontinuous. Of particular interest for this paper is

P (t) :=

{
0 for t < 0,
1 for t ≥ 0.

(1.2)
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768 F. FRÜHAUF, O. SCHERZER, AND A. LEITÃO

With P there is associated the admissible class

P :=
{
u : u = χD, where D ⊆ Ω is measurable and Hn−1(∂D) < ∞

}
.(1.3)

Here
1. Hn−1(∂D) denotes the n−1-dimensional Hausdorff-measure of the boundary

of D;
2. χD denotes the characteristic function of the set D.

We refer to a regularization approach involving this projection as a level set regulariza-
tion since we recover the boundary of an object ∂D, which is a level set (for instance,
with value 0) of a function φ. The idea of considering characteristic functions as level
sets of higher-dimensional data has been used before in the context of multiphase flow
(see, e.g., [18, 26, 8]) and segmentation (see, e.g., [7]). Level set methods have been
used successively in many applications since the pioneering work of Osher and Sethian
[22]. For solving inverse problems applications with level sets, we refer to Santosa [24]
and Burger [5].

In this work we base our considerations on ideas from nonlinear convex semigroup
theory (cf. Brezis [4]), which allows us to characterize the solution of an evolution pro-
cess by implicit time steps of regularization models. Since our regularization models
appear to be nonconvex, the theoretical results of nonlinear semigroup theory are not
available. Simulating this approach, we show in this work that iterated regularization
is well posed, and (aside from the lack of theoretical results) we can interpret the
iterated regularized solutions as time instance of an evolution process.

Various other models fit in the general framework of this paper but are not par-
ticularly emphasized: for instance, for a ∈ R let us consider the projection operator

P a(t) :=

⎧⎨
⎩

−a for t < −a,
t for −a ≤ t ≤ a,
a for t > a,

with the admissible class

Pa :=
{
u : u = P a(φ) with φ ∈ H1(Ω)

}
.(1.4)

The operator P a ensures that the recovered functions are absolutely bounded by a.
The operator

P+(t) := exp(t)

with the admissible class

P+ :=
{
u : 0 < u = P+(φ)

}
(1.5)

can be used to guarantee nonnegativity. Depending on the operator P , we actu-
ally solve a constraint optimization problem. With P+, Pa, P we guarantee that the
solution is in the corresponding admissible class.

The outline of this paper is as follows. In section 2 we introduce the concept
of level set regularization, based on considerations in [24, 5, 17]. The level set reg-
ularization functionals derived in [17] are modified such that a convergence analysis
becomes tractable (cf. section 2.1). That is, we show that each implicit time step
is well defined. This a prerequisite step in showing that the corresponding gradient
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flow equation (cf. section 2.1) is well defined. To this end, we introduce a novel con-
cept of a minimizer of regularization functionals involving discontinuous operators (cf.
section 2.2). A convergence analysis is presented in section 2.3. The problem of nu-
merical minimization is discussed in section 3, and in section 4 a relation to iterative
regularization is considered. Finally, numerical examples are presented in section 5.

2. Analysis of level set regularization. In the following we pose the general
assumptions which we assume to hold throughout this paper:

1. Ω ⊆ R
n is bounded with ∂Ω piecewise C1 (see, e.g., [2]).

2. The operator F : L1(Ω) → Y is continuous and Fréchet-differentiable. Y is
a Banach space.

3. ε, α, β denote positive parameters.
4. We use the following notation:

(i) → denotes strong convergence.

(ii)
(∗)
⇀ denotes weak(∗) convergence.

(iii) Lp(Ω) denotes the space of measurable p-times-integrable functions.
(iv) W 1,p(Ω) denotes the Sobolev space of one time weakly differentiable

functions where the function and its derivative are in Lp; in particular we set H1 =
W 1,2.

(v) BV(Ω) denotes the space of functions of bounded variation.
5. We assume that (1.1) has a solution; i.e., there exists a z ∈ P satisfying

F (z) = y and a function φ ∈ H1(Ω) satisfying |∇φ| 
= 0 in a neighborhood of {φ = 0}
and P (φ) = z. If z = χA and ∅ 
= A, then we let

φ = −dA + dCA,

where dA and dCA denote the distance functions from A, and CA, respectively. Since
dA and dCA are uniformly Lipschitz-continuous (see, e.g., [9]), they are in L∞(Ω).
Moreover, |∇dA| ≤ 1 and |∇dCA| ≤ 1 (see again, e.g., [9]). In particular this shows
that dA, dCA ∈ W 1,∞(Ω) ⊆ H1(Ω). Thus z ∈ P if z = χA and A satisfies that the
closure of the interior of A is the closure of A.

We consider the unconstrained inverse problem of solving (1.1) with

P : H1(Ω) → P ,

φ �→ 1

2
+

1

2
sgn(φ) =:

1

2
+

1

2

{
1 for φ ≥ 0,

−1 for φ < 0.

The standard form of Tikhonov regularization for solving (1.1) consists of minimizing
the functional

Fα(φ) := ‖F (P (φ)) − yδ‖2
Y + α‖φ− φ0‖2

H1(Ω)(2.1)

over H1(Ω). Actually, we understand the minimizer φα of this functional as

φα = lim
ε→0+

φε,α,

where the limit is understood in an appropriate sense (weak, weak∗ convergence) and
φε,α minimizes the functional over H1(Ω):

Fε,α(φ) := ‖F (Pε(φ)) − yδ‖2
Y + α‖φ− φ0‖2

H1(Ω),(2.2)
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where we use

Pε(φ) :=

⎧⎨
⎩

0 for φ < −ε,

1 + φ
ε for φ ∈ [−ε, 0] ,
1 for φ > 0,

for approximating P as ε → 0+. In this case we define

P ′(t) := lim
ε→0+

P ′
ε(t) = δ(t).

Here and in the following, δ(t) denotes the one-dimensional δ-distribution.
Taking into account that

‖Pε(φk) − Pε(φ)‖L1(Ω) ≤
1

ε

√
meas(Ω)‖φk − φ‖L2(Ω) ,

the proof of existence of a minimizer of the functional Fε,α is similar to the proof of ex-
istence of regularized solutions of Tikhonov functionals for approximately minimizing
nonlinear ill-posed problems in [11, 25] (see also [10]).

Theorem 2.1. For any φ0 ∈ H1(Ω) the functional Fε,α (cf. (2.2)) attains a
minimizer φε,α in H1(Ω).

2.1. Towards an analysis of level set regularization techniques. In the
following we outline the difficulties in performing a rigorous analysis for the functional
Fα, defined in (2.1).

1. φε,α satisfies

‖P (φε,α)‖L∞ ≤ 1 and ‖φε,α − φ0‖H1(Ω) < ∞.

Since L∞(Ω) is the dual of L1(Ω), i.e., L1∗(Ω) = L∞(Ω), we find that there exists a
subsequence {φεk,αk

}k∈N such that

φεk,αk
⇀ φ in H1(Ω) and P (φεk,αk

)
∗
⇀ z in L∞(Ω).

There is no analytical evidence for z ∈ P; i.e., it may not be in the range of the
operator P .

2. To overcome this difficulty let us assume that the sequence {φεk,αk
}k∈N sat-

isfies the condition that the Hausdorff-measure of the boundary of the set

{x : φεk,αk
(x) ≥ 0}

is uniformly bounded. Then the bounded variation seminorm of P (φεk,αk
) is uni-

formly bounded, and consequently P (φεk,αk
) has a convergent subsequence in L1(Ω),

showing that z is admissible.
This suggests that we incorporate in the functional (2.1) as an additional reg-

ularization term the bounded variation seminorm of P (φ), penalizing the length of
the zero level set of φ. Actually in design problems the necessity of incorporating
such a term is well documented in [14, 15, 16]. This leads to the following modified
regularization method of minimizing

Gα(φ) := ‖F (P (φ)) − yδ‖2
Y + 2βα|P (φ)|BV + α‖φ− φ0‖2

H1(Ω) .(2.3)

In order to guarantee existence of a minimizer of Gα we introduce a novel concept of
a minimizer in the next subsection.
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2.2. Minimizing concept.
Definition 2.2. 1. A pair of functions

(z, φ) ∈ L∞(Ω) ×H1(Ω)

is called admissible
(i) if there exists a sequence {φk}k∈N in H1(Ω) such that φk → φ with respect

to the L2(Ω)-norm and
(ii) if there exists a sequence {εk}k∈N of positive numbers converging to zero

such that

Pεk(φk) → z in L1(Ω).

2. A minimizer of Gα is considered any admissible pair of functions (z, φ) mini-
mizing

Gα(z, φ) = ‖F (z) − yδ‖2
Y + αρ(z, φ)(2.4)

over all admissible pairs. Here

ρ(z, φ) := inf lim inf
k→∞

{
2β|Pεk(φk)|BV + ‖φk − φ0‖2

H1(Ω)

}
,(2.5)

where the infimum is taken with respect to all sequences {εk}k∈N satisfying item 1(ii)
and {φk}k∈N satisfying item 1(i).

A generalized minimizer of Gα(φ) is a minimizer of Gα(z, φ) on the set of admis-
sible pairs.

The following lemma shows that the functional ρ is coercive on the set of admis-
sible pairs.

Lemma 2.3. For each (z, φ) admissible,

2β|z|BV + ‖φ− φ0‖2
H1(Ω) ≤ ρ(z, φ).

Proof. Let (z, φ) be an admissible pair; then there exists sequences {εk}k∈N and
{φk}k∈N satisfying items 1(i) and 1(ii) and

ρ(z, φ) = lim
k→∞

2β|Pεk(φk)|BV + ‖φk − φ0‖2
H1(Ω).

By the weak lower semicontinuity of the BV and H1-norms, it follows that

‖φ− φ0‖2
H1(Ω) ≤ lim inf

k∈N

‖φk − φ0‖2
H1(Ω),

|z|BV ≤ lim inf
k∈N

|Pεk(φk)|BV ,

which proves the assertion.
The definition of ρ(z, φ) is impractical, since it is defined via a relaxation proce-

dure. The following arguments allow an explicit characterization of this functional.
From several experiments which we outline below, we conjecture the following char-
acterization of the functional ρ(z, φ).

Conjecture 2.4. We define

Φ+ = {x ∈ Ω : φ(x) > 0} and Φ− = {x ∈ Ω : φ(x) < 0}

and

CΦ = Ω\(Φ+ ∪ Φ−).
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φ

φP(ε )
P(ε )ψ

ψ

Fig. 2.1. (Left) n = 1: The functions φ and Pε(φ): |Pε(φ)|BV = 4. (Right) A slight perturbation:
ψ and Pε(ψ): |Pε(ψ)|BV = 2.

φ>0

φ=0

φ<0

Minimal Evolvent

Minimal Length Evolvent

φ=0

φ>0

φ<0

Fig. 2.2. The minimal evolvent in CΦ.

(i) If ∂Φ+ ∩ Ω = ∂Φ− ∩ Ω, then

ρ(z, φ) = 2βHn−1(∂Φ− ∩ Ω) + ‖φ− φ0‖2
H1(Ω)

= 2βHn−1(∂Φ+ ∩ Ω) + ‖φ− φ0‖2
H1(Ω) .

(ii) If the n-dimensional Lebesgue measure λn(CΦ) > 0, then z is not uniquely
identified; in particular, z can attain all values in [0, 1] in CΦ. We conjecture that

inf
z admissible

ρ(z, φ) = 2βHn−1(S) + ‖φ− φ0‖2
H1(Ω).

The problem consists of finding the surface S of minimal n−1-dimensional Hausdorff-
measure, which is contained in CΦ and divides Ω in two sets. One set completely
contains Φ+ and the other set contains Φ− (cf. Figures 2.1 and 2.2).

Intuitively the conjecture is quite obvious. Assuming the conjecture to be true,
we are further led to conjecture that the functional ρ is independent of the choice of
the approximation Pε. Thus any other approximation of P with Lipschitz-continuous
functions Pε approximating the δ-distribution is suitable as well.

Remark 2.5. For φ ∈ H1(Ω), where {φ = 0} is a set of positive Lebesgue measure
(cf. Figure 2.3), it is possible to find sequences {φk}k∈N and {φ̃k}k∈N, which converge
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φ>0
φ<0

φ=0

Fig. 2.3. Top: The level set function has critical values (i.e., |∇φ| = 0 in a circle). Bottom:
Two possible functions z and z̃. The black value corresponds to a value of z = 1.

strongly to φ in L2(Ω). However, the limits of the projections are different; i.e.,
z = limk→∞ Pεk(φk) 
= z̃ = limk→∞ Pεk(φ̃k); cf. Figure 2.3. In such a situation we
have ρ(z, φ) 
= ρ(z̃, φ).

In the following we summarize some properties of the functional ρ.
Lemma 2.6. The functional ρ satisfies

ρ(z, φ) ≤ lim inf
n∈N

ρ(zn, φn)

if zn → z in L1(Ω) and if φn ⇀ φ in H1(Ω) and (zn, φn) is admissible.
Proof. From the definition of the functional ρ and Lemma 2.3 it follows that the

functional ρ is a Γ−-limit (see, e.g., [3]), and thus we conclude that it is weak lower
semicontinuous.

Remark 2.7. Suppose for the moment that P is a continuous operator, in which
case we can set Pε := P . Then the admissible class is just the set of pairs (z, φ)
satisfying P (φ) = z. This is just another formulation of constraint optimization. In
our context P is discontinuous, and therefore we consider the more general concept
of admissible pairs.

Example 2.8. Let φ ∈ H1(Ω) satisfying |∇φ| > 0 in a neighborhood of {φ = 0}.
1. Let φk = φ ∈ H1(Ω) and let z = P (φk). Since for any sequence εk → 0

Pεk(φk) → z in L1(Ω),

it follows that (z, φ) is admissible.
2. Let φ ∈ H1(Ω) and define φk = 1

kφ. Then there is a sequence εk → 0 with

Pεk(φk) → z in L1(Ω).

Consequently, (z, 0) is admissible.
The consequence of the second item is striking. Suppose that φ0 = 0 and that

there exists a minimizer φα 
= 0 of (2.3). Then for any k ∈ N

Gα(φα/k) < Gα(φ) ,

showing that a minimizer of Gα is not attained in a common setting. However, the
pair (z = P (φα), 0) is admissible and can be considered as the generalized solution.

Note that in this example we consider only functions φ ∈ H1(Ω) without critical
points along the zero level set.
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2.3. Well-posedness and convergence analysis.
Theorem 2.9 (well-posedness). Both the functional Gα and the functional

G̃α(z, φ) := ‖F (z) − yδ‖2
Y + 2βα|z|BV + α‖φ− φ0‖2

H1(Ω)

attain minimizers on the set of admissible pairs.
Proof. 1. Since (0, 0) is admissible, the set of admissible pairs is not empty.
2. Suppose that {(zk, φk)}k∈N is a sequence of admissible pairs such that

Gα(zk, φk) → inf Gα ≤ Gα(0, 0) < ∞.

From Lemma 2.3 it follows that {(zk, φk)}k∈N is uniformly bounded in BV ×H1(Ω).
By the Sobolev embedding theorem there exists a subsequence, denoted again by
{φk}k∈N, such that

φk ⇀ φ in H1(Ω) and φk → φ in L2(Ω),

zk → z in L1(Ω), 2β|z|BV ≤ ρ(z, φ) ≤ lim inf
k→∞

ρ(zk, φk).

Since ρ is weakly lower semicontinuous (cf. Lemma 2.6) it follows that

inf Gα = lim
k→∞

Gα(zk, φk)

= lim
k→∞

{
‖F (zk) − yδ‖2

Y + αρ(zk, φk)
}

≥ ‖F (z) − yδ‖2
Y + αρ(z, φ)

= Gα(z, φ).

(2.6)

3. It remains to prove that (z, φ) is admissible. For k fixed, since (zk, φk) is admis-
sible, there exists a sequence {εk,l}l∈N of positive numbers and a sequence {φk,l}l∈N

in H1(Ω) such that

φk,l →l→∞ φk in L2(Ω), Pεk,l
(φk,l) →l→∞ zk in L1(Ω).

Thus there exists an index l(k) ∈ N such that
(i) εk,l(k) <

1
2εk−1,l(k−1);

(ii) ‖φk,l(k) − φk‖L2(Ω) ≤ 1
k ;

(iii) ‖Pεk,l(k)
(φk,l(k)) − zk‖L1(Ω) ≤ 1

k .
Define

ψk := φk,l(k) and ηk := εk,l(k).

Then, since

ψk → φ in L2(Ω) and Pηk
(ψk) → z in L1(Ω),

we see that (z, φ) is admissible.
The proof of existence of a minimizer of G̃α is analogous to that for Gα and is

thus omitted.
We have shown that for any positive parameters α, β the functionals Gα and G̃α

both attain a minimizer.
In what follows we denote by (zα, φα) a minimizer of Gα.
In the following we summarize some convergence results for regularized minimiz-

ers, which are based on the existence of a minimum norm solution.
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Theorem 2.10 (existence of a minimum norm solution). Under the general
assumptions of this paper there exists a minimum norm solution (z†, φ†), that is, an
admissible pair of functions that satisfies

1. F (z†) = y,
2. ρ(z†, φ†) = ms := inf {ρ(z, φ) : (z, φ) admissible and F (z) = y} .

Proof. 1. According to assumption 5 in section 2, there exists a function z̃ ∈ P
and a function φ̃ ∈ H1(Ω) such that P (φ̃) = z̃ and F (z̃) = y. Then the pair (z̃, φ̃) is
admissible for the sequence φ̃k = φ̃, because Pεk(φ̃k) → z̃ converges in L1(Ω) for every
sequence εk → 0 due to the fact that Pεk is a convolution of P with a δ-distribution;
i.e., Pεk = P ∗ δk. Thus the set of admissible pairs with F (z) = y is not empty.

2. Suppose that {(zk, φk)}k∈N is a sequence of admissible pairs with F (zk) = y
such that

ρ(zk, φk) → ms ≤ ρ(z̃, φ̃) < ∞.

From Lemma 2.3 it follows that the sequences {φk}k∈N and {zk}k∈N are uniformly
bounded in H1(Ω) and BV(Ω), respectively. Thus there exists subsequences, again
denoted by {φk}k∈N and {zk}k∈N, such that

φk → φ† in L2(Ω), zk → z† in L1(Ω).

Since ρ is weakly lower semicontinuous, it follows that

ms = lim
k→∞

ρ(zk, φk) ≥ ρ(z†, φ†).

Since F is continuous on L1(Ω), F (z†) = limk→∞ F (zk) = y. Analogous to the proof
of Theorem 2.9 it follows that (z†, φ†) is admissible and therefore a minimal norm
solution.

Below, we summarize a stability and convergence result. The proof uses classical
techniques from the analysis of Tikhonov-type regularization methods (e.g., see [11,
25, 1, 10, 21]) and thus is omitted.

Theorem 2.11 (convergence and stability). Let ‖yδ − y‖Y ≤ δ. If α = α(δ)
satisfies

lim
δ→0

α(δ) = 0 and lim
δ→0

δ2

α(δ)
= 0,

then, for a sequence {δk}k∈N converging to 0, there exists a sequence {αk := α(δk)}k∈N

such that (zαk
, φαk

) converges in L1(Ω) × L2(Ω) to a minimal norm solution.

3. Numerical solution. We consider a stabilized functional

Gε,α(φ) := ‖F (Pε(φ)) − yδ‖2
Y + 2βα|Pε(φ)|BV + α‖φ− φ0‖2

H1(Ω).(3.1)

This functional is well posed, as the following lemma shows.
Lemma 3.1. For any φ0 ∈ H1(Ω) the functional (3.1) attains a minimizer.
Proof. The proof is similar to that of Theorem 2.1, taking into account that,

for any sequence {φk}k∈N converging weakly to φ in the H1(Ω)-norm, there exists
a strongly convergent subsequence in L2(Ω). Denoting the subsequence again by
{φk}k∈N, we find

1.

‖Pε(φk) − Pε(φ)‖L1(Ω) ≤
1

ε

√
meas(Ω)‖φk − φ‖L2(Ω) → 0.
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2. Therefore

|Pε(φ)|BV ≤ lim inf
k→∞

|Pε(φk)|BV.

Now, the assertion can be proved as for Theorem 2.1.
In the following we show that for ε → 0 the minimizer of Gε,α approximates a

minimizer of Gα; i.e., it approximates an admissible pair.
Theorem 3.2. Let φε,α be a minimizer of Gε,α. Then for εk → 0 there exists a

convergent subsequence (Pεk(φεk,α), φεk,α) → (z̃, φ̃) in L1(Ω) × L2(Ω), and the limit
minimizes Gα in the set of admissible pairs.

Proof. 1. The infimum of Gα is attained (cf. Theorem 2.9); i.e., there exists
(zα, φα) minimizing Gα over all admissible pairs. In particular, taking into account
the definition of admissible pairs, there exists a sequence {εk}k∈N of positive numbers
converging to zero and a corresponding sequence {φk}k∈N

in H1(Ω) satisfying

(Pεk(φk), φk) → (zα, φα) in L1(Ω) × L2(Ω),

ρ(zα, φα) = lim
k→∞

{
2β|Pεk(φk)|BV + ‖φk − φ0‖2

H1(Ω)

}
.

2. Let φεk be a minimizer of Gεk,α. The sequence {φεk}k∈N is uniformly bounded
in H1(Ω). Thus it has a weakly convergent subsequence (which is again denoted
by the same indices), and the weak limit is denoted φ̃. Moreover, {Pεk(φεk)}k∈N is
uniformly bounded in BV(Ω). Thus, by the compact Sobolev embedding theorem there
exists a subsequence {φεk}k∈N (again denoted with the same indices) satisfying

φεk → φ̃ in L2(Ω) and Pεk(φεk) → z̃ in L1(Ω).

Thus (z̃, φ̃) ∈ P ×H1(Ω) is admissible.
3. From the definition of ρ and the continuity of F : L1(Ω) → Y it follows that

‖F (z̃) − yδ‖2
Y = lim

k→∞
‖F (Pεk(φεk)) − yδ‖2

Y ,

ρ(z̃, φ̃) ≤ lim inf
k→∞

{
2β|Pεk(φεk)|BV + ‖φεk − φ0‖2

H1(Ω)

}
.

This shows that

Gα(z̃, φ̃) ≤ lim inf
k→∞

Gεk,α(φεk)

≤ lim inf
k→∞

Gεk,α(φk)

= ‖F (zα) − yδ‖2
Y + αρ(zα, φα)

= inf Gα.

Therefore the infimum of Gα is attained at (z̃, φ̃).
Theorem 3.2 justifies using the functionals Gε,α for approximation of the minimizer

of Gα. In contrast to the minimizer of Gε,α, which is a function in H1(Ω), the minimizer
of Gα is an admissible pair (zα, φα). Recall that the function zα is not uniquely
defined by φα if it attains critical values in a neighborhood of the zero level set (cf.
Remark 2.5).

For numerical purposes it is convenient to derive the optimality conditions of
a minimizer of this functional. To this end we consider the functional Gε,α with
Y = L2(∂Ω).
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Since P ′
ε(φ) is self-adjoint, we can write the formal optimality condition for a

minimizer of the functional Gε,α as follows:

α(Δ − I)(φ− φ0) = Rε,α,β(φ),(3.2)

where

Rε,α,β(φ) = P ′
ε(φ)F ′(Pε(φ))∗(F (Pε(φ)) − yδ) − βαP ′

ε(φ)∇ ·
(

∇Pε(φ)

|∇Pε(φ)|

)
.

4. Iterative regularization and the relation to dynamic level set meth-

ods. For n = 1 set G(1)
α (z, φ) = Gα(z, φ) (cf. (2.4)). Iterative regularization consists

of minimizing the family of functionals

G(n)
α (z, φ) = ‖F (z) − yδ‖2

Y + αρ(n)(z, φ),(4.1)

where ρ(n) is the functional ρ (as defined in (2.5)) with φ0 replaced by φn−1. The

minimizer of G(n)
α (z, φ) is denoted by φn.

Proceeding as before, we find that φn can be realized by solving the formal opti-
mality condition

α(Δ − I)(φ− φn−1) = Rε,α,β(φ).(4.2)

Identifying α = 1/Δt, tn = nΔt, and φn = φ(tn), n = 0, 1, . . . , we find

(Δ − I)

(
φ(tn) − φ(tn−1)

Δt

)
= Rε,1/Δt,β(φ(tn)).(4.3)

Considering Δt as a time discretization and using β = bΔΔt, we find that in a formal
sense the iterative regularized solution φn is a solution of an implicit time step for the
dynamic system

(Δ − I)

(
∂φ(t)

∂t

)
= Rε,1/Δt,bΔΔt(φ(t)).(4.4)

In our numerical experiments we have calculated the solution of the dynamic system
(4.4).

Each time step requires solving (4.3). Then φ(tn) in (4.3) can be solved with a
fixed point iteration: setting φ(tn−1) = φ(0), we get φ(tn) = limk→∞ φ(k)

(Δ − I)

(
φ(k+1) − φ(0)

Δt

)
= Rε,1/Δt,bΔΔt(φ

(k)) .(4.5)

In our numerical experiments we observed that the iteration starts oscillating after the
first iteration (cf. Figure 4.1). This behavior becomes transparent by noting that the
H1-seminorm typically dominates the L2-norm in the quadratic regularization term.
The H1-seminorm difference of the regularized solution and φ(0) is small if it is just
shifted up or down. In numerical experiments it is observed that the first iteration
almost corresponds to a horizontal shift of φ(0) such that the residual functional is
minimized (cf. Figure 4.2), and also the further iterations are again nearly horizontally
shifted versions of φ(0) (cf. Figure 4.3).

In almost all test examples the residual ‖F (Pε(φ
(k)))−yδ‖2 is oscillating in a way

dependent on k (cf. Figure 4.2) and smallest for k = 1.
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Fig. 4.1. The functions φ(0) (solid line), φ(1) (dashed line), φ(2) (dash-dot line), and φ(3)

(dotted line). To recover is the interval [0.4, 0.6], which is displayed by the grey rectangle. The first
iteration is the best. In the right picture α is smaller than in the left picture.
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30

10 20 30 40 50

Fig. 4.2. Decay of the residual ‖F (Pε(φ(k))) − yδ‖2
Y dependent on the number of iterations

(residual evaluated for the first experiment—noise-free data in section 5). After the first iteration
the fixed-point iteration stagnates.
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Fig. 4.3. The differences between φ(0) and the functions φ(1) (dashed line), φ(2) (dash-dot
line), and φ(3) (dotted line) from the left picture of Figure 4.1.
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The above consideration justifies our restricting attention to the approximate
solution of the dynamic system (4.2), where in each time step only one iteration step
of (4.5) is used; i.e., we use an explicit Euler method for solving the evolution process.
In this case numerical instabilities may occur by dividing by small absolute values

of the gradient in the differential ∇ ·
( ∇Pε(φ)
|∇Pε(φ)|

)
. Thus, for numerical purposes it is

convenient to introduce a small positive number h and replace the differential by

∇ ·
(

∇Pε(φ)√
|∇Pε(φ)|2 + h2

)
.

Usually semiimplicit iteration schemes require a less restrictive time marching. (This
approach is commonly referred to as Dziuk’s method.) The implementation would
require solving

(Δ − I)

(
φ(k+1) − φ(0)

Δt

)
= P ′

ε(φ
(k))F ′(Pε(φ

(k)))∗(F (Pε(φ
(k))) − yδ)

− bΔP ′
ε(φ

(k))∇ ·
(

∇Pε(φ
(k+1))√

|∇Pε(φ(k))|2 + h2

)
.

(4.6)

In implementation of this approach the difficulty arises that the function in front of
∇·

(
∇Pε(φ

(k+1))/
√
|∇Pε(φ(k))|2 + h2

)
vanishes outside of a neighborhood of the zero

level set, which makes it almost impossible to implement this scheme efficiently.

5. Numerical experiments. In this section we shall consider an inverse po-
tential problem of recovering the shape of a domain D using the knowledge of its
(constant) density and the measurements of the Cauchy data of the corresponding
potential on the boundary of a fixed Lipschitz domain Ω ⊂ R

2, which contains D.
This is the same problem as considered by Hettlich and Rundell [12], which used
iterative methods for recovering a single star-shaped object.

To achieve an analogous problem, a certain definition of the operator F is neces-
sary:

F : L2(Ω) →L2(∂Ω),
χD → F (χD).

This is possible because we consider only characteristic functions χD. The L2(Ω)-
norm is then equivalent to the L1(Ω)-norm of χD. Therefore the necessary properties
are retained.

The problem introduced above can mathematically be described as follows:

Δu = χD in Ω, u|∂Ω = 0,(5.1)

where χD is the characteristic function of the domain D ⊂ Ω, which has to be re-
constructed. Since χD ∈ L2(Ω), the Dirichlet boundary value problem in (5.1) has
a unique solution, the potential u ∈ H2(Ω) ∩ H1

0 (Ω). Here H1
0 (Ω) is defined as the

closure with respect to H1(Ω) of functions in C∞(Ω) with compact support in Ω.
The inverse problem that we are concerned with consists of determining the shape

of D from measurements of the Neumann trace of u at ∂Ω, i.e., from [∂u/∂ν]∂Ω, where
ν represents the outer normal vector to ∂Ω.

Notice that this problem can be considered in the framework of an inverse problem
for the Dirichlet-to-Neumann map. For given h ∈ L2(Ω), the Dirichlet-to-Neumann
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operator maps a Dirichlet boundary datum onto the Neumann trace of the potential,
i.e., Λ : H1/2(∂Ω) → H−1/2(∂Ω), Λ(ϕ) := [∂ũ/∂ν]∂Ω, where ũ solves

Δũ = h in Ω, ũ|∂Ω = ϕ .

The inverse problem for the Λ operator consists of determining the unknown param-
eter (i.e., the function h) from different pairs of Dirichlet Neumann boundary data.
The general case with h ∈ L2(Ω) has already been considered by many authors, in-
cluding [6, 23], who introduced numerical methods based on Tikhonov regularization,
and [12], who used iterative regularization methods.

Hettlich and Rundell [12] observe that, in the particular case h = χD, one pair
of Dirichlet–Neumann measurement data furnishes as much information as the full
Dirichlet–Neumann operator; i.e., it is sufficient to consider only one pair of Cauchy
data for the inverse problem. Therefore, no further information on D can be gained
by using various pairs of Dirichlet–Neumann data, since we can always reduce the
reconstruction problem to the homogeneous Dirichlet case.

For the particular case h = χD, it has been observed by Hettlich and Rundell [12]
that the Cauchy data may not furnish enough information to reconstruct the boundary
of D, e.g., if D is not simply connected. On the other hand, Isakov observed in [13]
that star-like domains D are uniquely determined by their potentials.

The inverse potential problem is discussed within the general framework intro-
duced in section 1. In particular, we allow domains that consist of a number of
connected inclusions. For this general class we do not have unique identifiability, and
we restrict our attention to “minimum-norm solutions.” Recall that in this case a
minimum-norm solution is a level set function φ, where P (φ) determines the inclu-
sion. A minimum-norm solution satisfies the requirement that it minimize the func-
tional ρ(z, φ) in the class of level set functions such that the corresponding Neumann
boundary values ∂u

∂ν fit the data yδ.

5.1. The level set regularization algorithm. In the following we describe the
level set regularization algorithm. This method is comparable with the Landweber
iteration as proposed by Hettlich and Rundell [12]. In our context the operator F ′

can be considered as an approximation of the domain derivative operator for multiple
connected domains (cf. Figure 5.1).

The complexity of our algorithm is as follows: at each iteration of the level set
method, three elliptic boundary value problems are solved (two of Dirichlet type and
one of Neumann type).

In Figure 5.1 the iteration procedure for the solution of the formal optimality
condition (3.2) is outlined. The algorithm can be implemented using finite element
codes (as we did) or finite difference methods for the solution of partial differential
equations.

5.2. Reconstruction of a density function with non–simply connected
support. In this first experiment we consider the inverse problem of reconstructing
the right-hand-side χD in (5.1) from the knowledge of a single pair of boundary data
(u,Λu) = (0, yδ) at ∂Ω. In the examples considered below we always use the squared
domain Ω = (0, 1)2 ⊂ R

2. Additionally, χD ∈ L2(Ω) is the characteristic function as
represented in Figure 5.2.

The overdetermined boundary measurement data yδ for solving the inverse pro-
blem is obtained by solving the elliptic boundary value problem in (5.1). Notice that
χD corresponds to the characteristic function of a not-connected proper subset of Ω.
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1. Evaluate the residual rk := F (Pε(φk)) − yδ = ∂uk

∂ν − yδ,
where uk solves

Δuk = Pε(φk) in Ω, uk|∂Ω = 0.

2. Evaluate vk := F ′(Pε(φk))
∗(rk) ∈ L2(Ω), solving

Δvk = 0 in Ω, vk|∂Ω = rk .

3. Evaluate wk ∈ H1(Ω), satisfying

(I − Δ)wk = −P ′
ε(φk) vk + βαP ′

ε(φk)∇ ·
(

∇Pε(φk)

|∇Pε(φk)|

)
in Ω,

∂wk

∂ν
|∂Ω = 0.

4. Update the level set function φk+1 = φk + 1
α wk.

Fig. 5.1. Implementation of a single iteration step for minimizing the level set regularization.

Fig. 5.2. The picture on the left-hand side shows the coefficient to be reconstructed. In the
other picture, the initial condition for the level set regularization method is given.

The initial condition for the level set function is shown in Figure 5.2. In order to
avoid inverse crimes, the direct problem (5.1) is solved on an adaptively refined grid
with 8.807 nodes (three levels of adaptive refinement). Alternatively, in the numerical
implementation of the level set method, all boundary value problems are solved on a
uniformly refined grid with 2.113 nodes.

When the data is given exactly, we tested the iterative level set regularization
without the additional regularization term |Pε(φk)|BV, i.e., β = 0.

In all computed experiments we use the operator Pε defined in section 2 with
ε = 1/8. This seems to be compatible with the size of our mesh, since the diameter of
the triangles in the uniform grid (used in the finite element method) is approximately√

2/32.
In Figure 5.3 we present the evolution of the level set function for given exact

data for the first 3000 iterative steps. As one can see in this figure, the original
level set splits into two convex components after approximately 800 iterations. After
1000 iterations, the level set function still changes but very slowly. We performed
similar tests for different initial conditions and observed that, after 1000 iterations,
the corresponding pictures look very much alike.
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Fig. 5.3. Level set evolution for exact data. Plots after (grouped by row) 0, 1, 2, 10;
100, 200, 300, 400; 500, 600, 700, 800; 900, 1000, 2000, 3000 iterative steps.

For the second part of this experiment, the density function to be reconstructed
is still the one shown in Figure 5.2. This time, however, we add randomly generated
noise to the data yδ used in the first part of the experiment.

The exact boundary data yδ is shown in Figure 5.4 as the square-dotted (blue)
line. We consider actually two distinct sets of perturbed data. For the first experiment
we add to the exact data a white noise of 10% (in the l∞-norm). For the second
experiment we use a noise level of 50%. Both sets of inaccurate data are plotted in
Figure 5.4 and correspond to the solid (red) line.

As in the noise-free experiment, care was taken to avoid inverse crimes. The choice
of the parameter ε (operator Pε) also follows the same criteria as before. However,
since we are now dealing with noisy data, we have to develop a strategy for choosing
the regularization parameter β. For this proposal we opted for the fit-to-data strategy;
i.e., βα is chosen such that the regularization term (see Figure 5.1) has the same order
as the noise level.

The corresponding results generated by the level set method were surprisingly
stable, as one can observe in Figures 5.5 and 5.6. In the first case (noise level of 10%)
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Fig. 5.4. The square-dotted (blue) line represents the exact data yδ; the solid (red) line repre-
sents the perturbed data. The noise level corresponds to 10% at the left-hand side and 50% at the
right-hand side.

Fig. 5.5. Level set evolution for inaccurate data; noise level of 10%. Plots after 0, 1, 2, 10;
100, 200, 300, 400; 500, 600, 700, 800; 900, 1000, 2000, 3000 iterative steps.
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Fig. 5.6. Level set evolution for inaccurate data; noise level of 50%. Plots after 0, 1, 2, 10;
100, 200, 300, 400; 500, 600, 700, 800; 900, 1000, 1300, 1600 iterative steps.

the results are comparable with the previous experiment, where exact data was avail-
able. In the second case (noise level of 50%) we are not able to precisely recover the
shape of the set D, corresponding to the characteristic function shown in Figure 5.2.
However, we are still able to identify the number of connected components of D, as
well as their relative positions inside the domain Ω.

5.3. Reconstruction of a density function with nonconvex support. In
this second experiment we consider the problem of reconstructing the density function
shown in Figure 5.7. The main goal now is to investigate the difficulty of the level
set method in recovering nonconvex domains. The domain Ω is the same used in
subsection 5.2, and again we aim to reconstruct the density function in (5.1) from
boundary measurements.

As in the first part of the previous experiment, the data is given almost exactly,
and the velocity wk is again obtained by solving the boundary value problem with
β = 0. The evolution of the level set function is shown in Figure 5.8.
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Fig. 5.7. (Left) The coefficient to be reconstructed. (Right) The (projection of the) initial
condition for the level set regularization method.

Fig. 5.8. Level set evolution for the second experiment. Plots after 0, 1, 5, 20; 50, 100, 200, 400;
600, 800, 1000, 2000; 5000, 10000, 20000, 50000 iterative steps.
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Remark 5.1. The effect of parameter changes. In our numerical observations we
observed that in numerical simulations the minimizer is not severely affected by the
choice of βα and can, in fact, be neglected.
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GAUSSIAN INTERVAL QUADRATURE FORMULAE FOR
TCHEBYCHEFF SYSTEMS∗
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Abstract. For any given system of continuously differentiable functions {uk}2n
k=1 that constitute

an extended Tchebycheff system of order 2 on [a, b] we prove the existence and uniqueness of the
Gaussian interval quadrature formula based on n weighted integrals over nonoverlapping subintervals
of [a, b] of preassigned lengths. This supplies an analogue of the result of Krein about canonical
representation of linear positive functionals.
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1. Introduction. The classical Gauss quadrature formula was extended over the
years in various directions. The present paper concerns an interesting development
of the subject, initiated by Krein in [5]. He proved that for any given system U2n :=
{u1, u2, . . . , u2n} of continuous functions that form a Tchebycheff system on [a, b],
there exists a unique set of points x1 < · · · < xn in [a, b] such that the interpolatory
quadrature formula

∫ b

a

f(t) dt ≈
n∑

k=1

Ckf(xk)

is exact for every generalized polynomial

u(t) = c1u1(t) + · · · + c2nu2n(t)

with real coefficients {cj}. Actually, his result is slightly stronger and covers the
canonical representation of a general linear positive functional L[f ] on C[a, b]. Sim-
plified proofs of Krein’s result can be found in [4] and [1].

A significant effort was made in the last few decades in extending the Gauss
formula to other natural types of data, in addition to the standard one of sampling
function values. Recently, we proved in [2], [3] the existence and uniqueness of a
formula of the form

∫ b

a

f(t) dt ≈
n∑

k=1

Ak
1

hk

∫ xk+hk

xk

f(t) dt

of highest degree of precision with respect to the class of algebraic polynomials, for
any fixed system of lengths {hk}, h1 + · · ·+ hn ≤ b− a. The problem stayed open for
quite a long time (see [7], [9], [10], [11], [12] for previous results). In [8], Milovanović
and Cvetković showed that the proof from [3] can be modified to cover the case of
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Jacobi weight function. The purpose of this paper is to go further and show that the
result also holds for Tchebycheff systems and thus supplies an interval analogue of
Krein’s result. In case all lengths {hk} are supposed equal to zero, the quadrature
reduces to Krein’s canonical representation.

Throughout this paper we assume that n is a natural number, [a, b] is a fixed finite
interval, and U2n := {u1, u2, . . . , u2n} is a given system of continuously differentiable
functions which constitute an extended Tchebycheff (ET) system of order 2 on [a, b].
Recall that the system U2n constitutes an ET system of order 2 on [a, b] if any nonzero
generalized polynomial u with respect to U2n possesses no more than 2n − 1 zeros
in [a, b] (counting twice every common zero of u and u′) (see [4, Chapter II]). We
shall denote by U2n the linear space of all generalized polynomials with respect to the
system U2n, that is,

U2n := span {u1, u2, . . . , u2n}.

Further, assume that μ(t) is a given integrable function on [a, b], which is contin-
uous and strictly positive on (a, b), and denote by L[f ] the integral

L[f ] :=

∫ b

a

μ(t)f(t) dt.

We are going to give a canonical representation of L[f ] in U2n of the form

L[f ] =

n∑
k=1

ak
1

Ik
Ik[f ] ,

where

Ik[g] :=

∫ xk+hk

xk

μ(t)g(t) dt, Ik := Ik[1].

Here we assume that

Δk := [xk, xk + hk]

are n nonoverlapping subintervals of [a, b] of preassigned lengths |Δk| := hk ≥ 0.
In case hk = 0 the quantity Ik[f ]/Ik is defined by continuity, that is,

1

Ik
Ik[f ]

∣∣∣
hk=0

:= lim
hk→0

1

Ik
Ik[f ] = f(xk).

Keeping the notation from [3], we introduce the set H of admissible lengths
h = (h1, . . . , hn),

H :=

{
h ∈ R

n
: hk ≥ 0, k = 1, . . . , n,

n∑
k=1

hk < b− a

}
,

the associated set

D = D(h) := {x ∈ R
n

: a < x1 ≤ x1 + h1 < · · · < xn ≤ xn + hn < b}

of admissible nodes, and its closure

D̄ = D̄(h) := {x ∈ R
n

: a ≤ x1 ≤ x1 + h1 ≤ · · · ≤ xn ≤ xn + hn ≤ b}.
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Let us denote by ∂D the boundary of D. We prove the following.
Theorem 1. Let U2n = {u1, . . . , u2n} be any ET system of order 2 of continu-

ously differentiable functions on [a, b] and let μ be an integrable function on [a, b] which
is continuous and positive on (a, b). Then, for every given set of numbers h ∈ H there
exists a unique set of nodes x ∈ D(h) such that

L[f ] =

n∑
k=1

ak
1

Ik

∫ xk+hk

xk

μ(t)f(t) dt(1)

for every f from the space U2n.
We shall call (1) a Gaussian formula.
Note that Theorem 1 also holds in the trivial case h1 + · · ·+ hn = b− a since the

uniqueness of the best coefficients ak = Ik, k = 1, . . . , n, can be easily verified.
The proof of Theorem 1 is given in section 3 and is based on some auxiliary results

contained in section 2.

2. Auxiliary results. The lemmas in this section hold under weakened condi-
tions on the space U2n and the weight μ. It is enough to assume that the Tchebycheff
system U2n consists of continuous functions on [a, b] and μ(t) is any given continuous

weight function on (a, b) such that
∫ β

α
μ(t) dt > 0 for every a ≤ α < β ≤ b.

We begin with two lemmas concerning interpolation properties of the Tchebycheff
space U2n.

Lemma 1. Let

a ≤ t1 ≤ t1 + h1 ≤ · · · ≤ t2n ≤ t2n + h2n ≤ b

be given points such that ti < ti+1 in case hi = hi+1 = 0. Then the interpolation
problem

(∫ tk+hk

tk

μ(t) dt

)−1

·
∫ tk+hk

tk

μ(t)u(t) dt = fk , k = 1, . . . , 2n,(2)

is uniquely solvable in U2n for any values fk ∈ R.
Proof. It is sufficient to show that the corresponding homogeneous interpolation

problem admits only the zero solution u ≡ 0. In order to do this, suppose that u ∈ U2n

satisfies conditions (2) with fk = 0. Note that in case hk = 0 the corresponding
homogeneous condition reduces to u(tk) = 0, and if hk > 0, it implies that u(t) must
change sign on (tk, tk + hk). Then u must have at least one zero in every interval
[tk, tk + hk] , i.e., at least 2n zeros in total. But this means that u ≡ 0 , since U2n is a
Tchebycheff space, and the proof is complete.

Lemma 2. Let h ∈ H be fixed. Then for every x ∈ ∂D there exists a generalized
polynomial u ∈ U2n which is positive on [a, b]\ ∪n

k=1 Δk and

Ik[u]

Ik
= 0 , for k = 1, . . . , n.(3)

Proof. We consider only the case xj + hj = xj+1 for some j ∈ {1, . . . , n − 1},
hj > 0, hj+1 > 0, xk + hk < xk+1 for all k �= j. The other cases follow similarly.

Any generalized polynomial w from U2n,

w = c1u1 + · · · + c2nu2n ,
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is completely determined by its coefficients {ci}. We shall look for a generalized
polynomial w satisfying the conditions (3) and, in addition,

w(xk + hk) = 0 for every k �= j, j + 1.

If some hk = 0, we interpret the conditions Ik[w]/Ik = 0, w(xk + hk) = 0 as “xk is
a double zero of w” (see [4, Chapter I, Theorems 5.1 and 5.2] for handling “double
zeros” of Tchebycheff systems). Thus, we have imposed 2n− 2 zero conditions on w.
Now, if one of the end points, say a, is not among the prescribed nodes x1, . . . , xn,
we define one more condition, w(a) = 0. If a = x1 and b = xn + hn, then we delete
the condition w(x1 + h1) = 0, choose two distinct points ξ1 and ξ2 outside any of
the subintervals Δk, k = 1, . . . , n, and impose the conditions “w has a double zero
at ξ1,” w(ξ2) = 1. In this way, we have a system of 2n linear equations with respect
to the coefficients of w. It is easy to see that the corresponding homogeneous system
admits only the zero solution since any of the 2n homogeneous equations leads to a
zero of w. Thus the system of conditions imposed on u determine it uniquely. All
zeros of w lie in the intervals {Δi}ni=1 and also at ξ1. Constructing similarly another
polynomial v ∈ U2n with different point ξ1, we conclude that u = w + v is positive
outside {Δi}ni=1 and satisfies (3). The lemma is proved.

The next observation is a simple consequence from known properties of the
Tchebycheff systems.

Lemma 3. For all h ∈ H, the coefficients ak of the Gaussian formula (1) are
uniformly bounded.

Proof. It is a well-known fact (see, for example, [6, Chapter II, Theorem 1.4])
that every Tchebycheff space contains a strictly positive function. Let ũ ∈ U2n and
ũ(t) > 0 on [a, b]. Since (1) holds for ũ and the coefficients ak are strictly positive
(see [2, Theorem 1]), then

ak <

∫ b

a
μ(x)ũ(x) dx

min x∈[a,b]ũ(x)
, k = 1, . . . , n.

Further, we prove a lemma similar to Lemma 2 from [3] , which asserts that the
node subintervals of any Gaussian formula are uniformly distant from each other and
from the end points of the interval [a, b].

For each 0 < ε < b− a we define

Hε :=

{
h ∈ H :

n∑
k=1

hk ≤ b− a− ε

}
.

Lemma 4. Let 0 < ε < b − a. Then there exists an ε0 ∈ (0, ε) such that all
h ∈ Hε and the corresponding nodes x ∈ D(h) which define a Gaussian formula (1)
satisfy the conditions

x1 − a > ε0, xj+1 − xj − hj > ε0, j = 1, . . . , n− 1, b− xn − hn > ε0.(4)

Proof. Assume the contrary. Then for each 0 < δ < ε there exist numbers
hδ ∈ Hε and nodes xδ ∈ D(hδ) which define a Gaussian quadrature formula (1) with
coefficients ak,δ, but at least one of the conditions in (4) (with ε0 = δ) is violated.

Since the sequences {hδ} and {xδ} are bounded, and according to Lemma 3
the corresponding coefficients ak,δ are bounded, there exist subsequences {h(i)}∞i=1,
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{x(i)}∞i=1, and {a(i)
k }∞i=1 , with x(i) ∈ D(h(i)), which converge to certain h(0) ∈ Hε,

x(0) ∈ ∂D(h(0)), and a
(0)
k , respectively. They define a Gaussian formula

L[u] =
n∑

k=1

a
(0)
k

1

I
(0)
k

I
(0)
k [u](5)

(with I
(0)
k and I

(0)
k [u], defined by x

(0)
k and h

(0)
k ). In addition, since x(0) ∈ ∂D(h(0)),

at least one of the following equalities holds:

x
(0)
1 = a, x

(0)
j+1 = x

(0)
j + h

(0)
j , j = 1, . . . , n− 1, x(0)

n + h(0)
n = b.

Using Lemma 2, in any of the above cases we can construct a generalized polynomial
u ∈ U2n for which the right-hand side of (5) is zero, but the integral in the left-hand
side is positive. This leads to a contradiction, and the proof is complete.

3. Proof of Theorem 1. Let h ∈ Hε be a fixed vector. First we shall find a
system of equations for the nodes x ∈ D(h) ensuring the Gaussian property of formula
(1). Lemma 4 implies that the nodes of any Gaussian formula (1) belong to the set
Dε0(h) defined by (4). Let us choose arbitrary points

a < s1 < · · · < sn < a + ε0/2 and b− ε0/2 < t1 < · · · < tn < b.

According to Lemma 1, for each i ∈ {1, . . . , n}, there exist a unique pair of generalized
polynomials pi, qi from U2n such that

pi(sk) = 0 ,
1

Ik
Ik[pi] = δik , i, k = 1, . . . , n ,(6)

and

qi(tk) = 0 ,
1

Ik
Ik[qi] = δik , i, k = 1, . . . , n.(7)

It is easily seen that {pi, qi}ni=1 are linearly independent and thus form a basis in U2n.
Thus, the interval formula (1) is Gaussian if and only if

ai = L[pi] = L[qi] , i = 1, . . . , n ,

and the latter is equivalent to the system

Ψi(x) := Ψi(x,h) := L[pi − qi] = 0 , i = 1, . . . , n.(8)

Let

pi(t) =

2n∑
m=1

αimum(t), qi(t) =

2n∑
m=1

βimum(t).

We have to show that the system (8) possesses a unique solution in Dε0(h). To this
aim, we prove first that the Jacobian of (8) is distinct from zero and has a constant sign
at any solution of (8). In order to compute the elements of the Jacobian matrix, we
note that, in view of Lemma 1, the matrix D (which does not depend on i) of the linear
system (6) with respect to the coefficients {αim} possesses a nonzero determinant.
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Moreover, by the implicit function theorem, the coefficients are differentiable functions
of xj and

∂αim

∂xj
= −Cij

detDjm

detD
,

where Djm is the matrix obtained from D by replacing the (n + j)th element of its
mth column by 1 and the other elements of the column by zero. The constant Cij is
given by

Cij =
∂

∂xj

{
Ij [pi]

Ij

}
.

But, by Cramer’s rule,

αim =
detDim

detD
.

Therefore

∂αim

∂xj
= − ∂

∂xj

{
Ij [pi]

Ij

}
αjm.

This implies the relation

∂pi(t)

∂xj
= − ∂

∂xj

{
Ij [pi]

Ij

}
pj(t).

Similarly we obtain

∂qi(t)

∂xj
= − ∂

∂xj

{
Ij [qi]

Ij

}
qj(t).

Using the last relations and the equality

L[pi] = L[qi] = ai,

we easily compute the elements of the Jacobian matrix

J := J(x,h) :=

{
∂Ψi

∂xj

}n

i,j=1

.

We have

∂Ψi

∂xj
=

∂

∂xj
L[pi(t) − qi(t)]

= L

[
∂

∂xj
(pi(t) − qi(t))

]

= − ∂

∂xj

{
Ij [pi]

Ij

}
L[pj ] +

∂

∂xj

{
Ij [qi]

Ij

}
L[qj ]

= ajdj [ri] ,

where ri := qi − pi and

dj [g] :=
∂

∂xj

{
Ij [g]

Ij

}
.
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Thus,

det J(x,h) = a1 · · · an det J1(x,h) ,

J1 being the matrix

J1(x,h) :=

⎡
⎢⎢⎢⎣

d1[r1] d2[r1] · · · dn[r1]
d1[r2] d2[r2] · · · dn[r2]

...
...

...
...

d1[rn] d2[rn] · · · dn[rn]

⎤
⎥⎥⎥⎦ .

Besides, the coefficients of any Gaussian formula are positive (see [2]). Thus aj > 0
at any solution x of (8). Next we examine the sign of J1(y,v) in the set

Eε0 := {(y,v) : v ∈ H , y ∈ Dε0(v)}.

Eε0 is a bounded connected set with nonempty interior which contains all the points
(x,h) corresponding to any Gaussian formula (1).

Now we show that det J1(y,v) �= 0 at every point (y,v) ∈ Eε0 . Assume the
contrary, i.e., detJ1(x,h) = 0 for some (x,h) ∈ Eε0 . Then there exists a linear
dependence between the rows of J1(x,h), and thus there exists a nonzero vector
(b1, . . . , bn) such that

dj [r] =
∂

∂xj

{
Ij [r]

Ij

}
= 0 , j = 1, . . . , n ,(9)

where r :=
∑n

i=1 biri. In case hj = 0 the last condition reduces to r′(xj) = 0. Besides,
by (6) and (7), r(xj) = 0 and thus r has a double zero at xj . If hj > 0, then Ij > 0
and (9) leads to

(
∂

∂xj
Ij [r]

)
Ij − Ij [r]

∂

∂xj
Ij = 0.

On the other hand, (6) and (7) yield

Ij [r] = 0 , j = 1, . . . , n.

Therefore, if hj > 0, (9) reduces to

∂

∂xj
Ij [r] = 0.

Performing the differentiation we obtain

∂

∂xj
Ij [r] = μ(xj + hj)r(xj + hj) − μ(xj)r(xj) = 0.

Since Ij [r] = 0 and μ(t) > 0, the function r(t) must have at least two zeros in
[xj , xj+hj ] (counting the multiplicities up to 2). And this holds for every j = 1, . . . , n.
Therefore r has at least 2n zeros in (a, b), and hence r ≡ 0. This was the point at
which we used that U2n is an ET space of order 2. Then

r =
n∑

i=1

bi(qi − pi) ≡ 0,
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and thus
∑n

i=1 bipi must vanish at s1, . . . , sn, t1, . . . , tn. This means that b1 = · · · =
bn = 0, which is a contradiction. Therefore detJ1(y,v) does not vanish in Eε0 , and
consequently detJ(x,h) �= 0 (and even has a constant sign) at any solution x of
system (8).

Now we are ready to complete the proof of Theorem 1. The existence of (1) was
proved in [2] in a more general case. It can also be derived easily from the implicit
function theorem. Indeed, for any given h ∈ Hε we consider the family of lengths αh,
parameterized by α, 0 ≤ α ≤ 1. According to Krein’s theorem (see [5]), the Gaussian
quadrature exists for α = 0. We shall use this fact to extend the solution (x(α), αh)
to any 0 ≤ α ≤ 1. And this can be done by the implicit function theorem since the
Jacobian J is different from zero at any solution (x(α), αh) of (8) (since αh ∈ Hε for
0 ≤ α ≤ 1).

It remains to prove that the Gaussian quadrature is unique. Assume the contrary,
that is, assume that system (8) has two distinct solutions x and y. Consider the
unique extensions x(α), y(α) of these solutions for α going back from 1 to 0. We
have x(1) = x, y(1) = y, and x(1) �= y(1). On the other hand, by Krein’s theorem
x(0) = y(0). Let us set

α0 := max{α ∈ [0, 1) : x(α) = y(α)}.

Then, there must be two different extensions of x(α0) = y(α0) in a neighborhood
of α0, which is a contradiction to the implicit function theorem. This ends the
proof.

It is worth mentioning explicitly the important particular case of interval quadra-
ture formula of Gauss–Christoffel type.

Corollary 1. Let μ be any integrable function on [a, b] that is continuous and
positive on (a, b). Then, for every given set of nonnegative numbers h satisfying the
condition

h1 + · · · + hn < b− a,

there exists a unique set of nodes x ∈ D(h) such that

∫ b

a

μ(t)f(t) dt =

n∑
k=1

ak
1

Ik

∫ xk+hk

xk

μ(t)f(t) dt

for every algebraic polynomial of degree less than or equal to 2n− 1.
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Abstract. Compressible flows in a nozzle can be modeled by the gas dynamics equations in
one-dimensional space with source terms. It turns out that along stationary waves, the entropy
is conserved. Investigating properties of the system leads us to the determination of stationary
waves. Relying on this analysis, we construct a numerical scheme which takes into account the use
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demonstrates the efficiency of the new scheme over classical ones, which usually give unsatisfactory
results when reducing the refinement of the mesh-size. Moreover, our scheme converges much faster
than the classical ones in most cases.
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1. Introduction. In this paper we consider the following one-dimensional space
gas dynamics equations that describe the evolution of a gas flow in a nozzle with
cross-sectional area a = a(x) > 0, x ∈ RI :

∂t(aρ) + ∂x(aρu) = 0,

∂t(aρu) + ∂x(a(ρu2 + p)) = p∂xa,

∂t(aρe) + ∂x(au(ρe + p)) = 0, x ∈ RI , t > 0.

(1.1)

As usual, the thermodynamical variables ε, ρ, v = 1/ρ, p, T, S are the internal energy,
density, specific volume, pressure, absolute temperature, and entropy, respectively; u
is the velocity; and e = ε + u2/2 is the total energy. The system (1.1) has the form
of a system of conservation laws with source terms. It is nonconservative due to the
effect of the geometry.

An efficient way to deal with system (1.1) is to supplement it with an additional
trivial equation,

∂ta = 0(1.2)

(see [24, 21]), and then treat a (nontrivially) as an unknown. This step drives out the
obstacle of the nonconservativeness in producing another characteristic field which
turns out to be linearly degenerate. However, the system is then nonstrictly hyper-
bolic. Consequently, this causes the ill-posedness of the initial value problem. The
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reader is referred to the related works in [24, 14, 15, 9, 22, 1]. In [22], the Riemann
problem for isentropic flows with discontinuous cross-section area was solved.

Due to the geometry, system (1.1) has the form of conservation laws with source
terms. There is another familiar form of systems of conservation laws with sources:
the model of shallow water equations. There have recently been lots of contribution
studies of hyperbolic systems of conservation laws with source terms. A well-balanced
scheme was proposed for a single conservation law by [12, 13]. In [23], the author pro-
posed modified Riemann problems for the Godunov method. Recently, well-balanced
schemes aimed at dealing with conservation laws with sources were constructed in
[6, 11, 4, 5, 2, 16]. In particular, for a single conservation law with sources, the
method in [4, 5] actually gives a high accuracy, and seems to be efficient at captur-
ing stationary solutions. The computations and comparisons with two-dimensional
averaged computing were carried out in [1].

Our main purpose in this paper is to construct a new scheme for the system of
conservation laws with source terms (1.1) which is capable of maintaining equilibrium
states. The idea was originally proposed by Greenberg and Leroux [12] (see also [13])
for scalar conservation laws. Here, we first provide some background and investigate
properties of the system (1.1). The motivation is given and the notion of stationary
contact waves for ideal isentropic gas flows [22] is reviewed and is formulated for
general nonisentropic fluid flows. It turns out that the entropy is conserved across
any stationary solution. Based on this step, we propose a new scheme which is
capable of capturing stationary contact waves whenever available. The new scheme is
constructed from the following arguments: first we take care of the effect of the source
terms which produce equilibrium states resulted by stationary contact waves; second,
using any standard finite difference scheme for gas dynamics equations (without source
terms) in one-dimensional space, we take into account all the available equilibrium
states. Our method can be seen as being composed of two steps, in which the first
one deals with stationary waves, which are independent of time. Thus, we can argue
that the first step provides an immediate response that gives us equilibrium states.
Therefore, the first step does not delay the evolution of the fluid described by system
(1.1), roughly speaking. Since the first step provides us with the exact equilibrium
states produced from the source terms, our method has advantage over the standard
finite difference schemes for gas dynamics equations with a usual discretization of the
source terms, referred in the following as classical schemes. This explains the reason
why the new scheme converges much faster than the classical schemes as seen from
our test cases. Although our method can be applied to any standard finite difference
scheme, for simplicity, in the test cases we just take the Lax–Friedrichs scheme which
has the numerical flux of the form

gL(U, V ) :=
1

2
(f(U) + f(V )) − 1

2λ
(V − U).(1.3)

Here, we use the definition of numerical fluxes as the one in standard books of con-
servation laws (see [18, 10], for example).

Our scheme is determined for a broad class of fluids which satisfy

2pρ(ρ, S) + ρpρρ(ρ, S) > 0(1.4)

in the domain under consideration. The condition (1.3) is fulfilled by the stiffened gas
equation of state (see Menikoff and Plohr [25])

p = (γ − 1)ρ(ε− ε∞) − γp∞, γ > 1,(1.5)
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where ε∞, p∞ are constants, depending on the material under consideration, and by
van der Waals fluid equations of states in a certain domain where the system may
not be genuinely nonlinear, but necessarily strictly hyperbolic. Notice that a stiffened
gas equation of state reduces to an ideal polytropic gas when p∞ = 0 and ε∞ = 0.
And, as mentioned in [25], for some materials, p∞ can be quite large.

To demonstrate the efficiency of our scheme, we consider test cases for polytropic
gases which have equations of state of the form

p = (γ − 1)ρε, γ > 1,(1.6)

for nonisentropic gases and

p = κργ , κ > 0, γ > 1,(1.7)

for isentropic gases, which for simplicity, we take κ = 1. Precisely, the test cases
include the following: two tests for stationary waves for a nonisentropic polytropic
gas (1.6) and for an isentropic ideal gas (1.7); seven tests for nonstationary waves for
an isentropic ideal gas (1.7); and two tests for nonstationary waves for a nonisentropic
polytropic gas (1.6). We note that the seven test cases for the isentropic gas (1.7)
cover all the possibilities of the location of left- and right-hand states of the Riemann
problem: either the left- and right-hand states lying in the same phase or in different
phases. Here, we call a phase the biggest region of the phase domain where the system
remains strictly hyperbolic. As shown in [22], there are exactly three such phases.

The paper is organized as follows. Section 2 provides a simple way of modeling
of fluid flows in a nozzle. Although the model has been known for a long time, to our
knowledge the complete derivation is not available in the literature. Therefore, we
want to review it for the sake of completeness. We assume the nozzle is smooth with
small variation so that the flow through it would have some symmetry and relatively
uniform properties. We note here that for fluid flows in an arbitrary nozzle, and in
particular a nozzle with discontinuous cross-sections, we can consider the same model,
but the derivation presented here may not be applied. In section 3 we will investigate
the properties of general fluid flows, and we will give the definition of elementary
waves. We will show that the entropy is conserved across any stationary wave. This
will help us construct the new scheme by solving the jump relations of a system as if it
were of isentropic gases. Section 4 will deal with the analysis of stationary waves which
yields their determination at the end. In section 5 we will construct the numerical
scheme, relying on the use of stationary waves. Section 6 will show the evidence of
the advantage of the new scheme over the classical ones. Here we compare the CPU
times of the two schemes: The modified Lax–Friedrichs scheme, which takes the Lax–
Friedrichs scheme together with a usual cell average discretization of the source term,
and our new one.

The model of fluid flows in a nozzle (1.1) is closely related to the model of mul-
tiphase flows which has a vast domain of applications. Formally, the previous one
can be obtained from the last one by restricting it to a single fluid. Both systems
share common features such as the lack of strict hyperbolicity, systems of conservation
laws with sources, ill-posedness, etc. A two-phase mixture theory for reactive granu-
lar materials was introduced by [3]. We note that a theory of multiphase flows was
established in the book [8]. An overview of the ill-posedness of the two-fluid model
was observed in [7]. In recent research [17], the authors investigated properties of the
two-fluid model which lacks hyperbolicity. See also the references therein.



NUMERICAL SOLUTIONS TO FLOWS IN A NOZZLE 799

Several important properties of the numerical scheme presented in this paper
concerning the minimum principle of the numerical entropy and the nonnegativity of
the numerical density can be found in [20]. A well-balanced scheme for the nonreactive
version of the Baer–Nunziato (BN) model of two-phase fluids which aim to maintain
equilibrium states has been under study in [19].

2. A simple way of modeling. The model (1.1) is well known and one could
easily find it in the literature. However, we do not know whether it was derived in a
complete form. The derivation in the stationary case can be found in the standard
book of Zucrow and Hoffman [26]. Here, for the sake of completeness, we present a
simple way of modeling the physical phenomenon. To validate our analysis below, we
restrict our attention to a given smooth nozzle with small variation.

Let the Euler equations in a two-dimensional tube with height a(x) > 0 be given:

∂tρ + ∂x(ρu) + ∂y(ρv) = 0,

∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) = 0,

∂t(ρv) + ∂x(ρuv) + ∂y(ρv
2 + p) = 0,

∂t(ρe) + ∂x(u(ρe + p)) + ∂y(v(ρe + p)) = 0, x, y ∈ RI , t > 0.

(2.1)

Let us assume that the nozzle is put in the x-direction (see Figure 2.1). First,
we consider the first and the second equations. Integrating the first and the second
equations of (2.1) in y we obtain, respectively,

∫ a(x)

0

[∂tρ + ∂x(ρu) + ∂y(ρv)] dy = 0,∫ a(x)

0

[
∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv)

]
dy = 0, x ∈ RI , t > 0,

or

∂t

(∫ a(x)

0

ρ(x, y, t) dy

)
+

∫ a(x)

0

∂x(ρu) dy +

∫ a(x)

0

∂y(ρv) dy = 0,

∂t

(∫ a(x)

0

ρu(x, y, t) dy

)
+

∫ a(x)

0

∂x(ρu2 + p) dy +

∫ a(x)

0

∂y(ρuv) dy = 0.

(2.2)

Clearly,

∫ a(x)

0

∂y(ρv) dy = ρv(x, a(x), t) − ρv(x, 0, t),

∫ a(x)

0

∂y(ρuv) dy = ρuv(x, a(x), t) − ρuv(x, 0, t).

(2.3)

In addition, at the boundary, particles are moving along the boundary and thus
their trajectories follow the shape of the boundary. Thus, the particle velocity (u, v)
at each point on the boundary, which has the coordinate (x, y = a(x)), is the tangent
of the nozzle at that point. In other words, it holds that

v(x, a(x), t) = u(x, a(x), t) tanα,

where α is the angle between the tangent of the graph of a(x) and the x-axis. Since

tanα = a′(x),
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Fig. 2.1. Flows moving inside a nozzle.

we have from the last two equations

v(x, a(x), t) = a′(x)u(x, a(x), t).(2.4)

Similarly,

v(x, y = 0, t) = 0,(2.5)

since the boundary of the nozzle at the bottom y = 0 is parallel to the x-direction. It
is derived from (2.3) to (2.5) that

∫ a(x)

0

∂y(ρv) dy = a′(x)ρu(x, a(x), t),

∫ a(x)

0

∂y(ρuv) dy = a′(x)ρu2(x, a(x), t).

(2.6)

On the other hand, we have

∂x

(∫ a(x)

0

ρu(x, y, t) dy

)
=

∫ a(x)

0

∂x(ρu)(x, y, t) dy + a′(x)ρu(x, a(x), t),

∂x

(∫ a(x)

0

ρu2(x, y, t) dy

)
=

∫ a(x)

0

∂x(ρu2)(x, y, t) dy + a′(x)ρu2(x, a(x), t),

∂x

(∫ a(x)

0

p(x, y, t) dy

)
=

∫ a(x)

0

∂xp(x, y, t) dy + a′(x)p(x, a(x), t).

(2.7)

From (2.2) and (2.7), we obtain

∂t

(∫ a(x)

0

ρ(x, y, t) dy

)
+ ∂x

(∫ a(x)

0

ρu(x, y, t) dy

)
= 0,

∂t

(∫ a(x)

0

ρu(x, y, t) dy

)
+ ∂x

(∫ a(x)

0

(ρu2 + p)(x, y, t) dy

)
= a′(x)p(x, a(x), t).

(2.8)

To obtain the first two equations of (1.1) from (2.8), we make the following assump-
tions.
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• The cross-section average density and pressure ρ̄, p̄ play the role of ρ, p, re-
spectively, where, for example,

ρ̄(x, t) :=
1

a(x)

∫ a(x)

0

ρ(x, y, t) dy, x ∈ RI , t > 0.

• The u-component of the particle velocity is uniform in each cross-section, i.e.,

u(x, y, t) = u(x, y′, t) := ū(x, t) ∀y, y′ ∈ (0, a(x)) ∀x ∈ RI , t > 0.

• The average pressure p̄ is approximated by p(x, a(x), t).
We observe that these assumptions are quite limited, since the nozzle then should be
smooth with small variation so that the flow through it would approximately have the
symmetry and uniform properties. Since the system (1.1) serves only the component
u of the velocity in the x-direction, we can ignore the third equation of (2.1). The
third equation of (1.1) can be similarly derived as the first equation. The modeling
is complete.

3. Basic properties and stationary waves. In this section we recall basic
properties of system (1.1)–(1.2) and draw elementary conclusions for stationary waves
which will be used in the next sections. Together with shock waves and rarefaction
waves in genuinely nonlinear characteristic fields, and contact discontinuities in the
linearly degenerate field of the usual gas dynamics equations, stationary waves will
be defined as one kind of elementary wave. We will show that the entropy remains
constant across stationary waves. This result enables us to determine stationary waves
as in the isentropic case (see [22]).

Precisely, we are studying the following system:

∂t(aρ) + ∂x(aρu) = 0,

∂t(aρu) + ∂x(a(ρu2 + p)) = p∂xa,

∂t(aρe) + ∂x(au(ρe + p)) = 0,

∂ta = 0, x ∈ RI , t > 0.

(3.1)

In what follows, the density and the entropy are chosen as independent thermody-
namics variables. Note that other thermodynamics variables can always be expressed
in terms of any two thermodynamics variables. Thus, we can write p = p(ρ, S), ε =
ε(ρ, S), etc. Let us be given a smooth solution U(x, t) = (ρ(x, t), u(x, t), S(x, t), a(x))
of the system (4.1). A straightforward calculation shows that the smooth solution U
satisfies the following system of conservation laws in nonconservative form:

ρt + uρx + ρux +
uρ

a
ax = 0,

ut + uux +
1

ρ
px = 0,

St + uSx = 0,

at = 0, x ∈ RI , t > 0.

(3.2)

The Jacobian matrix of the system (3.2) is given by

B(U) =

⎛
⎜⎜⎜⎝

u ρ 0 uρ
a

pρ

ρ u pS

ρ 0

0 0 u 0
0 0 0 0

⎞
⎟⎟⎟⎠ .(3.3)
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The characteristic equation is given by

λ(u− λ)[(u− λ)2 − pρ] = 0.(3.4)

Note. In fact, (3.4) is obtained by multiplying a factor λ, which represents an
additional linearly degenerate field, to the characteristic equation of the usual gas
dynamics equations.

Thus, we obtain four real eigenvalues,

λ0 = 0, λ1 = u− c, λ2 = u, λ3 = u + c,(3.5)

where c is the local sound speed

c =
√
pρ ≥ 0.

The associated eigenvectors of B(U) can be chosen as

r0 =

⎛
⎜⎜⎝

u2ρ
−upρ

0
a(pρ − u2)

⎞
⎟⎟⎠ , r1 =

⎛
⎜⎜⎝

ρ
−c
0
0

⎞
⎟⎟⎠ , r2 =

⎛
⎜⎜⎝

−pS
0
pρ
0

⎞
⎟⎟⎠ , r3 =

⎛
⎜⎜⎝

ρ
c
0
0

⎞
⎟⎟⎠ .

In the following we will assume that the local sound speed is positive:

c =
√
pρ > 0.

The system (3.1) is in general not strictly hyperbolic, since the characteristic field
associated with λ0 may coincide with any other field. The phase domain is in fact
divided into four regions in which the system is strictly hyperbolic:

G1 = {U : λ1(U) < λ2(U) < λ3(U) < λ0(U)},
G2 = {U : λ1(U) < λ2(U) < λ0(U) < λ3(U)},
G3 = {U : λ1(U) < λ0(U) < λ2(U) < λ3(U)},
G4 = {U : λ0(U) < λ1(U) < λ2(U) < λ3(U)}.

(3.6)

In what follows, we will call each of these regions a phase. The phases are separated
by three isolated surfaces on which the system fails to be strictly hyperbolic:

Σ+ = {U : λ1(U) = λ0(U)},
Σ0 = {U : λ2(U) = λ0(U)},
Σ− = {U : λ3(U) = λ0(U)}.

(3.7)

We will refer to each of these surfaces a hyperbolic boundary.
Clearly, the 0- and the 2-characteristic fields are linearly degenerate. And under

the condition that

∂c

∂ρ
≥ 0,

one can easily check that the 1- and the 3-characteristic fields are genuinely nonlinear.
A stationary smooth solution U of (1.1) is a time-independent smooth solution.

Thus, the derivative in t in (1.1) can be omitted. Stationary solutions of the initial
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value problem for (1.1) are, therefore, the ones for the following ordinary differential
equations:

(aρu)′ = 0,

(a(ρu2 + p))′ = pa′,

(au(ρe + p))′ = 0,

(3.8)

with the smooth initial data

U(x, 0) = U0(x),(3.9)

where we denote

d(.)

dx
= (.)′.

The following lemma will help us in computing stationary contacts.
Lemma 3.1. The system (3.8) for smooth solutions is equivalent to

(aρu)′ = 0,

uu′ +
p′

ρ
= 0,

S′ = 0.

(3.10)

In other words, the entropy is conserved across any stationary smooth solution of the
initial value problem for (1.1).

Consequently, the nonisentropic system is reduced to the isentropic case for sta-
tionary solutions. Therefore, we can define a stationary contact of (3.1) as the limit
of sequences of stationary smooth solutions in a similar way of the isentropic gases
(see [22]).

Proof. Let us be given initial data U0. The first equation of (4.8) can be expressed
as

aρu = C

for some constant C dependent only on U0. Therefore, the second equation can be
written as

(C · u + a · p)′ = p · a′

or

C · u′ + a · p′ = 0.

Restoring C from its original definition, we obtain

aρ

(
uu′ +

p′

ρ

)
= 0.

Since the cross-section is assumed to be positive, the last equation can be written as
the second equation of (3.10). Besides, the third equation of (3.8) can be written as

C ·
(
e +

p

ρ

)′
= 0.(3.11)
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Recall the thermodynamics identity that

TdS = dε + pdv, v =
1

ρ
.

Since we are considering stationary waves, i.e., solutions independent of time, the
thermodynamics identity applied to this kind of wave gives

TS′ = ε′ + pv′.(3.12)

It is derived from the definition of the total energy and from (3.12) that (3.11) can
be written as

ε′ + uu′ + (pv)′ = 0

or

TS′ +
p′

ρ
+ uu′ = 0.

In view of the second equation of (3.10) we just established, the last equation takes
the simpler form

S′ =
dS

dx
= 0.

Thus, we have demonstrated that system (3.8) is equivalent to (3.10).
Furthermore, since we are considering stationary waves, we have

dS =
dS

dx
dx +

dS

dt
dt = 0,(3.13)

which implies the rest of Lemma 3.1.
Let us now discuss the notion of shock waves of the system (3.1). A shock

wave from a left-hand state U− = (ρ−, u−, S−, a−) to a right-hand state U+ =
(ρ+, u+, S+, a+), which propagates with a speed λ̄, should satisfy the Rankine–Hugoniot
relation for the last equation of (3.1), which yields

λ̄[a] = 0,(3.14)

where [a] = a+ − a−. This implies that either
– the component a must be constant, or
– the shock speed is equal to zero (stationary contact).

Assume first that this shock corresponds to a constant level of the cross-section a.
The right-hand side of the system (3.1) thus vanishes, and system (3.1) is reduced
to the usual form of conservation laws. It is not difficult to check that the left- and
right-hand states of the shock are constraint by the Rankine–Hugoniot relations for
the usual form of gas dynamics equations:

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρe) + ∂x(u(ρe + p)) = 0, x ∈ RI , t > 0.

(3.15)
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Assume next that the shock speed λ̄ is zero. Then, we define this kind of shock wave
as the ones provided by Lemma 3.1. Let us introduce the specific enthalpy

h = ε + pv,(3.16)

which satisfies

dh = T dS + v dp.

In view of Lemma 3.1, the left- and right-hand states of the shock are constraint by
the jump relations

S = S− = S+,

p = p(ρ, S−),

[aρu] = 0,
[u2

2
+ h(ρ, S−)

]
= 0,

(3.17)

where h is the specific enthalpy (3.16). Observe in this case that

∂

∂ρ
h(ρ, S−) = v

∂

∂ρ
p(ρ, S−).

For rarefaction waves of (3.1), which are smooth solutions, it is not difficult to see
that they are the ones of the usual gas dynamics equations (3.15). Similar arguments
can be applied for contact discontinuities. Finally, we can define the elementary waves
of (3.1) as follows.

Definition 3.2. Elementary waves for the system (3.1) are the following ones.
• If a = const, all the elementary waves (shock waves, rarefaction waves, con-

tact discontinuities) are the ones of the usual gas dynamics equations (3.15).
• The stationary contacts which have zero propagation speed and are given by

(3.17).

4. Equilibrium states. We will describe in this section how to get the exact
equilibrium states, i.e., the two left- and right-hand states of a stationary contact. In
other words, we search for an exact solution of (3.17) for given data U− and given
cross-sections on the left and right of the stationary contact. This exact solution will
be used in the second part for the construction of the new scheme.

Let us be given a state U− = (ρ−, u−, a−) with a level of cross-section a− and an-
other level cross-section a+. As seen in the previous section, a state U+ = (ρ+, u+, a+)
with the level cross-section a+ which can be connected with U− via a stationary wave
is determined by the system

S = S− = S+,

p = p(ρ, S−),

[aρu] = 0,
[u2

2
+ h(ρ, S−)

]
= 0,

(4.1)

where h is the specific enthalpy (3.16), which satisfies

∂

∂ρ
h(ρ, S−) = v

∂

∂ρ
p(ρ, S−).(4.2)
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To solve system (4.1) for ρ+ = ρ, we solve the equation

Φ(ρ) := (u2
− + 2h(ρ−, S−))ρ2 − 2ρ2h(ρ, S−) =

(a−u−ρ−
a+

)2

.(4.3)

To this end, we investigate properties of the function Φ. We have due to (4.2)

Φ′(ρ) = 2(u2
− + 2h(ρ−, S−))ρ− 4ρh(ρ, S−) − 2ρ2hρ(ρ, S−)

= 2(u2
− + 2h(ρ−, S−))ρ− 4ρh(ρ, S−) − 2ρpρ(ρ, S−)

= 2ρ

(
u2
− + 2

∫ ρ−

ρ

hρ(τ, S−) dτ − pρ(ρ, S−)

)

= 2ρ

(
u2
− + 2

∫ ρ−

ρ

pρ(τ, S−)

τ
dτ − pρ(ρ, S−)

)
,

which has the same sign as

Ψ(ρ) :=
Φ′(ρ)

2ρ
= u2

− + 2

∫ ρ−

ρ

pρ(τ, S−)

τ
dτ − pρ(ρ, S−).(4.4)

Assumption (1.4) implies

Ψ′(ρ) := −(2hρ(ρ, S−) + pρρ(ρ, S−))

= −1

ρ

(
2pρ(ρ, S−) + ρpρρ(ρ, S−)

)
< 0 ∀ ρ.

(4.5)

In addition, we can always have

Ψ(ρ) > 0 as ρ → 0,
Ψ(ρ) < 0 for large ρ,

(4.6)

for example, under the assumptions that

pρ(ρ = 0, S−) = 0,
pρ(ρ, S−) → +∞ as ρ → +∞.

(4.7)

It is, therefore, derived from (4.4) to (4.6) that there exists exactly one value ρ = ρmax

such that

Φ′(ρ) > 0, ρ < ρmax,
Φ′(ρ) < 0, ρ > ρmax,
Φ′(ρ) = 0, ρ = ρmax.

(4.8)

Observe that

Φ(ρ = 0) = 0,
Φ(ρ) → −∞ as ρ → +∞,

(4.9)

and that the right-hand side of (4.3) is nonnegative. It is thus derived from (4.8) to
(4.9) that (4.3) has a solution iff

Φ(ρmax) ≥
(a−u−ρ−

a+

)2

(4.10)
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or, equivalently,

a+ ≥ amin(U−) :=
a−u−ρ−√
Φ(ρmax)

.(4.11)

In this case, we can easily see that (4.3), and, therefore, system (4.1), has two roots,
denoted by ϕ1(U−, a+) ≤ ϕ2(U−, a+), which coincide iff a+ = amin(U−). The fact
that a = a− still gives us a solution of (4.1) and, therefore, of (4.3), a− has to satisfy

amin(U−) ≤ a−.(4.12)

For polytropic ideal gases (1.6), it is not difficult to check that amin(U−) = a− iff
the state U− belongs to the hyperbolic boundaries (3.7) (see Lemma 2.3 of [22]).
Therefore, we can conclude from (4.11) to (4.12) that the capturing stationary waves
can always be done when a+ is closed to a−, which holds for nozzles with small sudden
changes.

In order to select one solution ϕ1(U−, a+) or ϕ2(U−, a+) of (5.1), we will use the
following admissibility criterion. Observe that for a given state U−, the last equation
of (4.1) also determines a curve u = u(ρ) in the plan (ρ, u), called stationary curve,
and, therefore, the third equation of (4.1) implies the component a can be expressed
as a function a = a(ρ) of the variable ρ along this curve. Let us impose an additional
admissibility criterion (see [14, 22]).

Admissibility Criterion 4.1. Along the stationary curve in the (ρ, u)-plan
between left- and right-hand states of any stationary wave, the component a obtained
from (4.1) and expressed as a function of ρ has to be monotone in ρ.

We know by the previous section that entropy is constant along stationary curves.
Thus, we arrive at the following lemma as in the case of isentropic gases [22], and,
therefore, we omit the proof.

Lemma 4.1. Admissibility Criterion 4.1 is equivalent to the statement that any
stationary wave has to remain in the closure of only one phase.

Remark 1. Without such an admissibility condition, the Riemann problem for
piecewise constant cross-sections may admit a one-parameter family of solutions; when
this condition is used, the Riemann problem may have at most three solutions (see
[14, 22, 9]). Here, it is interesting that the approximate solutions given by our scheme
and the chosen standard Lax–Friedrichs scheme will both converge to the same exact
solution in all the tests (see section 6).

Remark 2. It is derived from (4.1) that, under Admissibility Criterion 4.1, the
equilibrium states depend continuously on the cross-section component in the sense
that when the left- and the right-hand cross-sections a± of a stationary wave are
closed, the corresponding states U± remain closed as well. That implies the continuous
dependence on the data of our numerical scheme defined in the next section when the
nozzle is a continuous function of x ∈ RI . If the nozzle is discontinuous, this conclusion
may not be held. In fact, let one state U0 of the stationary wave with fixed distinct
cross-sections a± belong to the hyperbolic boundaries. Then, a small perturbation to
this state U0 would cause a considerable difference. For example, let a small ε > 0 and
U0 ∈ Σ+ be given (see (3.7)). We consider the stationary wave with the cross-sections
a± from any fixed left-hand state U1 ∈ B(U0, ε) ∩G3, and the stationary wave from
any fixed left-hand state U2 ∈ B(U0, ε) ∩ G4, where B(U0, ε) is the open ball with
center U0 and radius ε. The stationary wave from U1 remains in G3 while the one
from U2 belongs to G4 in view of Lemma 4.1. As a consequence, the structures of
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solutions (e.g., the number and the order of waves) are thus different as observed from
the constructions of the Riemann solutions in [22, 9].

Since a is positive, the function a = a(ρ) is decreasing (increasing) in ρ between
ρ− and ρ+ if the function

(
a−u−ρ−
a(ρ)

)2

= (u2
− + 2h(ρ−, S−))ρ2 − 2ρ2h(ρ, S−) = Φ(ρ)(4.13)

is increasing (decreasing, respectively) in ρ between ρ− and ρ+. Hence, Admissibility
Criterion 4.1 selects only one root ρ = ϕi(U−, a+), i ∈ {1, 2}, of (4.1) such that the
function Φ is monotone between ρ− and ϕi(U−, a+). That means ρ− and ϕi(U−, a+)
must be located in the same side with respect to ρmax obtained from (4.8), i.e.,

(ϕi(U−, a+) − ρmax)(ρ− − ρmax) ≥ 0.(4.14)

Let us now discuss the geometrical sense of the condition (4.14). Let u = u(ρ) be
the stationary curve defined by the last equation of (4.1). Then, since a(ρ)ρu(ρ) =
a−ρ−u− for all ρ, we have

u(ρmax) · u− ≥ 0,

u(ρmax)
2 − pρ(ρmax) = Ψ(ρmax) = 0.

(4.15)

The relations (4.15) imply that the point Umax := (ρmax, u(ρmax), S−) belongs to the
hyperbolic boundaries. More precisely,

Umax ∈ Σ+ for u− > 0,

Umax ∈ Σ0 for u− = 0,

Umax ∈ Σ− for u− < 0.

(4.16)

Now, the condition (4.14) simply implies that the stationary contact wave remains in
the same phase whenever U− belongs to one of the phase domains Gi, i = 1, 2, 3, 4,
or the hyperbolic boundary Σ0. When U− belongs to the hyperbolic boundaries Σ±,
in the following scheme, we can avoid the situation of multiple choices by skipping to
the next space-step, which means we do not use stationary jump at U−. Another way,
following our experience in the construction of composite wave curves of the Riemann
problem [22], is the following:

• choose ϕ1(U−, a+) when U− ∈ Σ+, choose ϕ2(U−, a+) when U− ∈ Σ− for
forward construction, i.e., when U− is the left-hand state and we look for a
right-hand state of a stationary contact;

• vice versa for backward construction: given a right-hand state U+ and another
cross-section level a−, we look for a left-hand state U− of a stationary contact;
then, we choose ϕ2(U+, a−) when U+ ∈ Σ+, and choose ϕ1(U+, a−) when
U+ ∈ Σ−.

5. Numerical schemes. In this section we will present a new scheme for ap-
proximating solutions of the system (1.1), relying on the arguments in the previ-
ous sections. Given a uniform time step Δt and a special mesh size Δx, setting
xj = jΔx, j ∈ Z, and tn = nΔt, n ∈ N, we denote by Un

j in what follows the approx-
imation of the values U(xj , tn) of the exact solution U = (aρ, aρu, aρe) of (1.1).

Set

λ =
Δt

Δx
.
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Let us take any standard finite difference scheme for gas dynamics equations with the
numerical flux gC. The classical scheme is of the form

Un+1
j = Un

j − λ
(
gC

(
Un
j , U

n
j+1

)
− gC

(
Un
j−1, U

n
j

))
+

λ

2

(
0, pnj (aj+1 − aj−1), 0

)
,(5.1)

where pnj is given by suitable equations of state, and aj := a(xj). The modified
Lax–Friedrichs scheme is the one of (5.1) with the Lax–Friedrichs numerical flux:

gC(U, V ) :=
1

2
(f(U) + f(V )) − 1

2λ
(V − U),

U := (aρ, aρu, aρe), f(U) := (aρu, a(ρu2 + p), au(ρe + p)).
(5.2)

The constant λ is also required to satisfy the so-called CFL stability condition

λ max
U

|f ′(U)| ≤ 1.(5.3)

The motivation of our study in the following new scheme is to take into account
the effect of stationary waves. The method was originally developed in [12, 13], and
extended to more general problems in [4, 5, 2]. It can be described by two steps.

• First, at each grid node xj , j ∈ Z, we determine two stationary waves of (1.1)
in which one stationary wave arrives at xj with the cross-section level aj from
the given left-hand state Un

j−1 (with a = aj−1) by a right-hand state, denoted
by Un

j−1,+, and another stationary wave arrives at xj with the cross-section
level aj from the given right-hand state Un

j+1 (with a = aj+1) by a left-hand
state, denoted by Un

j+1,−.
• Second, taking the Lax–Freidrichs scheme for the usual gas dynamics equa-

tions (3.15) for computing Un+1
j at time t = (n+ 1)h, we substitute Un

j+1 by
Un
j+1,− and Un

j−1 by Un
j−1,+.

Precisely, the new scheme is defined by

Un+1
j = Un

j − λ
(
gN(Un

j , U
n
j+1,−) − gN(Un

j−1,+, U
n
j )

)
,(5.4)

where gN(U, V ) can be any standard numerical flux for gas dynamics equations, and
Un
j+1,−, U

n
j−1,+ are given shortly below. In the next section devoted to numerical tests,

we take the Lax–Friedrichs numerical flux:

gN(U, V ) := gC(U, V ) =
1

2

(
f(U) + f(V )

)
− 1

2λ
(V − U),

U := (ρ, ρu, ρe), f(U) :=
(
ρu, (ρu2 + p), u(ρe + p)

)
.

In the scheme (5.4), the states

Un
j+1,− = (ρ, ρu, ρe)nj+1,−, Un

j−1,+ = (ρ, ρu, ρe)nj−1,+

are defined by observing that the entropy is constant across each stationary jump,
and by computing ρnj+1,−, u

n
j+1,− from the equations

anj+1ρ
n
j+1u

n
j+1 = anj ρ

n
j+1,−u

n
j+1,−,

(un
j+1)

2

2
+ h(ρnj+1) =

(un
j+1,−)2

2
+ h(ρnj+1,−),

(5.5)
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and computing ρnj−1,+, u
n
j−1,+ from the equations

anj−1ρ
n
j−1u

n
j−1 = anj ρ

n
j−1,+u

n
j−1,+,

(un
j−1)

2

2
+ h(ρnj−1) =

(un
j−1,+)2

2
+ h(ρnj−1,+).

(5.6)

Remember that we have for stationary solutions

anj+1ρ
n
j+1u

n
j+1 = anj ρ

n
j u

n
j ,

(un
j+1)

2

2
+ h(ρnj+1) =

(un
j )2

2
+ h(ρnj ).

(5.7)

Therefore, the definition of Un
j+1,−, U

n
j−1,+ in (5.5) and (5.6), respectively, implies

that in the stationary case the unique solutions of (5.5) and (5.6) will be

ρnj+1,− = ρnj , un
j+1,− = un

j ,

ρnj−1,+ = ρnj , un
j−1,+ = un

j ,
(5.8)

i.e.,

Un
j+1,− = Un

j , Un
j−1,+ = Un

j ,

and, therefore (see (5.4)),

Un+1
j = Un

j .(5.9)

This means that we exactly recover the stationary solution.
In a domain where a is a constant, it is easy to verify from (5.5) and (5.6) that

Un
j+1,− = Un

j+1, Un
j−1,+ = Un

j−1,(5.10)

which implies that in this case (a constant) the scheme (5.4) as well as the modified
scheme (5.1) both reduce to the chosen standard scheme for gas dynamics equations
(3.15) without source term effects.

The convergence of numerical approximations given by this method was estab-
lished in [12, 4] for (scalar) single conservation laws in one-dimensional space, and in
[5] for single conservation laws in multidimensional space.

6. Test cases. In this section we will provide some test cases to demonstrate
the efficiency of our new scheme (5.4) by using MATLAB. To compare between two
kinds of schemes, we take the standard Lax–Friedrichs numerical flux. We first com-
pute solutions by using the modified Lax–Friedrichs scheme (5.1)–(5.2) and the new
scheme (5.4). Then, we compare the numerical solutions with the corresponding exact
solutions, which were obtained in [22] for the isentropic gases. We provide the exact
Riemann solutions for the nonisentropic test cases only for special data. In that case,
the exact Riemann solution can be easily computed.

The first subsection, consisting of two test cases, is devoted to computing sta-
tionary waves for both nonisentropic polytropic and isentropic ideal gases (1.6), (1.7),
respectively. The second subsection consists of seven test cases of nonstationary waves
for isentropic gases (1.7). The third subsection consists of test cases of nonstationary
waves for nonisentropic polytropic gases (1.6). For all test cases, the exact solutions
are available (see also [22]) and we will compute the error and the corresponding CPU
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times. The notation UC
h , UN

h refer to Lax–Friedrichs solutions obtained by (5.1)–(5.2)
and the new scheme (5.4), respectively.

Solutions U(x, t) of the Riemann problem for system (1.1) will be computed for

x ∈ [−1, 1], t = 0.2.

We note the left- and right-hand states of the Riemann problem by UL, UR, respec-
tively.

6.1. Stationary contacts. In this subsection, our new scheme will be shown to
maintain equilibrium states resulted by stationary waves.

6.1.1. Test case 1. Nonisentropic polytropic ideal gases. Let us denote
U = (ρ, u, p, a). The Riemann initial data

UL = (3.4718,−2.5923, 5.7118, 1), UR = (2,−3, 2.639, 1.5), CFL = 0.5

can be easily verified from the relations (3.17) to correspond to a stationary contact.
The two columns on the left of Figure 6.1 shows an approximation with a visi-

ble distinction from describing a stationary contact for the modified Lax–Friedrichs
scheme (5.1)–(5.2) after 156 s of CPU time with 1000 mesh-points. Meanwhile, the
two columns on the right of Figure 6.1 show an immediate recovery of the stationary
wave by our new scheme after 112 s of CPU time with 400 mesh-points.
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Density at t = 0.20004
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Lax– Friedrichs: Velocity
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Lax– Friedrichs: Pressure
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New scheme: Velocity

– 1 – 0.5 0 0.5 1
2.5

3

3.5

4

4.5

5

5.5

6
New scheme: Pressure

Fig. 6.1. Test case 1: A stationary contact approximated by the two schemes. Left four plots:
Lax–Friedrichs. Right four plots: New scheme.

6.1.2. Test case 2. Isentropic ideal gases. We denote U = (ρ, u, a) and take

UL = (3.4718,−2.5923, 1), UR = (2,−3, 1.5), CFL = 0.5.

Description. The solution is just a stationary wave from UL to UR; see Figure 6.2
(see [22]).

N ||UC
h − U ||L1 CPU time (s)

500 0.0522 44
1000 0.0538 141
2000 0.0550 473

(6.1)
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Fig. 6.2. Test case 1: Exact Riemann solution at t = 0.2.
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Fig. 6.3. Test case 2: Isentropic gases: A stationary contact approximated by the two schemes.

Looking at table (6.1), we can see that the Lax–Friedrichs scheme gives unsatisfactory
results: while decreasing the mesh-size, the errors increase. In this case the numerical
results show that our scheme can maintain the equilibrium states, i.e., the states
before and after a stationary jump, while there is a visible oscillation for the modified
Lax–Friedrichs scheme (see Figure 6.3).

N ||UN
h − U ||L1 CPU time (s)

500 0.000016 91
(6.2)

6.2. Nonstationary waves for isentropic gases. To provide the comparison
of CPU time between the two schemes, we need exact solutions of the Riemann
problem which were all constructed in [22] for isentropic ideal gases, where the pressure
is given by

p = κ ργ , κ > 0, 1 < γ < 5/3.(6.3)

The exact solutions of the Riemann problem will be used as reference solutions to
compare the CPU times of convergence between the modified Lax–Friedrichs scheme
and the new scheme.

As seen in section 3, there are three regions separated by two curves, in which the
system is strictly hyperbolic, and the order of eigenvalues in each region is different
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Fig. 6.4. Hyperbolic boundaries and the three phases.

(see Figure 6.4). Precisely, let us define

G1 := {(ρ, u) : λ1(ρ, u) < λ3(ρ, u) < λ2(ρ, u)},
G2 := {(ρ, u) : λ1(ρ, u) < λ2(ρ, u) < λ3(ρ, u)},
G3 := {(ρ, u) : λ2(ρ, u) < λ1(ρ, u) < λ3(ρ, u)}.

(6.4)

The tests in this subsection consist of seven cases which cover all possible locations
of the left- and right-hand states of the Riemann data with respect to the hyperbolic
boundaries.

• Test case 3: UL ∈ G1, UR ∈ G1.

• Test case 4: UL ∈ G1, UR ∈ G2.

• Test case 5: UL ∈ G2, UR ∈ G1.

• Test case 6: UL ∈ G2, UR ∈ G2.

• Test case 7: UL ∈ G2, UR ∈ G3.

• Test case 8: UL ∈ G3, UR ∈ G2.

• Test case 9: UL ∈ G3, UR ∈ G3.

6.2.1. Test case 3.

UL = (0.5,−1, 1) ∈ G1, UR = (2,−3, 1.5) ∈ G1, CFL = 0.5.

Description. The solution is a 1-shock from UL to a state U1, followed by a
3-rarefaction wave from U1 to a state U2, then followed by a stationary contact from
U2 to UR. All these states belong to the same phase G1 (see Figures 6.5 and 6.6).
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Fig. 6.5. Test case 3: Exact Riemann solution at t = 0.2.
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Fig. 6.6. Test case 3: Numerical solutions by schemes with 2000 mesh-points.

N ||UC
h − U ||L1 CPU time (s)

1000 0.0864 138
2000 0.0684 495
4000 0.0626 2262 = 37.71 mn

(6.5)

N ||UN
h − U ||L1 CPU time (s)

1000 0.0600 342
2000 0.0349 1403 = 23.39 mn

(6.6)

6.2.2. Test case 4.

UL = (1,−3, 1) ∈ G1, UR = (5, 0.5, 1.5) ∈ G2, CFL = 0.75.

Description. The states UL, UR belong to the different phases. The solution is a
1-rarefaction wave from UL to a state U1, followed by a 3-rarefaction wave from U1 to
a state U2 on the hyperbolicity boundary, then jumps to a state U3 by a stationary
contact, followed by a 3-rarefaction wave from U3 to UR (see Figures 6.7 and 6.8).
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Fig. 6.7. Test case 4: Exact Riemann solution at t = 0.2.
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Fig. 6.8. Test case 4: Numerical solutions: L-F with 4000 mesh-points. New scheme with 3000
mesh-points.

N ||UC
h − U ||L1 CPU time (s)

1500 0.1302 176
2000 0.1149 304
4000 0.0984 1426 = 23.7683 mn

(6.7)

N ||UN
h − U ||L1 CPU time (s)

1500 0.1222 473
2000 0.0826 838.5960 = 13.9766 mn

(6.8)

6.2.3. Test case 5.

UL = (4,−1, 1) ∈ G2, UR = (2,−3, 1.5) ∈ G1, CFL = 0.5.

Description. The solution is a 1-shock from UL to a state U1, followed by a 3-
shock from U1 to a state U2, then followed by a stationary contact from U2 to UR.
All these states belong to the same phase (see Figures 6.9 and 6.10).
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Fig. 6.9. Test case 5: Exact Riemann solution at t = 0.2.
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Fig. 6.10. Test case 5: Numerical solutions by schemes with 1000 mesh-points.

N ||UC
h − U ||L1 CPU time (s)

1000 0.1463 127
2000 0.1051 483
4000 0.0877 2.1128e+003 = 35.2133 mn

(6.9)

N ||UN
h − U ||L1 CPU time (s)

700 0.1101 166
720 0.1072 167
1000 0.0801 331
2000 0.0439 1.3422e+003 = 22.3700 mn

(6.10)

6.2.4. Test case 6.

UL = (6,−1, 1) ∈ G2, UR = (7,−.5, 1.5) ∈ G2, CFL = 0.75.

Description. The solution begins with a 1-shock from UL to a state U1, followed
by a stationary wave from U1 to U2, then followed by a 3-rarefaction wave from U2

to UR. Both states UL, UR belong to the same phase (see Figures 6.11 and 6.12).
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Fig. 6.11. Test case 6: Exact Riemann solution.
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Fig. 6.12. Test case 6: Numerical solutions: Lax–Friedrichs scheme with 2000 mesh-points.
New scheme with 1000 mesh-points, CFL = 0.5.

N ||UC
h − U ||L1 CPU time (s)

500 0.1378 17
1000 0.1322 53
2000 0.1297 196

(6.11)

N ||UN
h − U ||L1 CPU time (s)

500 0.0309 35
1000 0.0284 130

(6.12)

If we take CFL = 0.5, then we have

N ||UC
h − U ||L1 CPU time (s)

2000 0.1414 306
(6.13)

N ||UN
h − U ||L1 CPU time (s)

1000 0.0302 207
(6.14)
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Fig. 6.13. Test case 7: Exact Riemann solution.
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Fig. 6.14. Test case 7: Numerical solutions with 1000 mesh-points, CFL = 0.5.

6.2.5. Test case 7.

UL = (1, 1, 1) ∈ G2, UR = (0.5, 1.6, 1.5) ∈ G3, CFL = 0.75.

Description. UL, UR belong to different phases. The solution starts with a 1-
rarefaction wave from UL to a state U1 belonging to the hyperbolicity boundary, then
followed by a stationary contact from U1 to a state U2, followed by a 1-shock from U2

to a state U3, then followed by a 3-rarefaction wave from U3 to UR (see Figures 6.13
and 6.14).

N ||UC
h − U ||L1 CPU time (s)

500 0.0528 17
1000 0.0470 78
2000 0.0348 289

(6.15)

N ||UN
h − U ||L1 CPU time (s)

500 0.0246 52
1000 0.0151 196

(6.16)
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With CFL = 0.5

N ||UC
h − U ||L1 CPU time (s)

1000 0.0489 87
2000 0.0354 311

(6.17)

N ||UN
h − U ||L1 CPU time (s)

1000 0.0174 209
(6.18)
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Fig. 6.15. Test case 8: Exact Riemann solution.

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8
Solution at time = 0.20032            Cross–section

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

1.4
Lax–Friedrichs: density ; Initial  rho = 1.2  and  1

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
1.2

1.4

1.6

1.8

2
Lax–Friedrichs: Velocity ; Initial  velocity = 1.5  and  1.3

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8
Cross–section                       Solution at time = 0.2

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
0.5

1

1.5
New scheme: density ; Initial  rho = 1.2  and  1

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5
New scheme: Velocity ; Initial  velocity =1.5  and  1.3

Fig. 6.16. Test case 8: Numerical solutions with 1000 mesh-points.

6.2.6. Test case 8.

UL = (1, 1.5, 1) ∈ G3, UR = (1, 1.2, 1.5) ∈ G2, CFL = 0.5.

Description. UL, UR belong to different phases. The solution starts by a station-
ary contact from UL to a state U1, followed by a 1-shock from U1 to a state U2, then
followed by a 3-shock from U2 to UR (see Figures 6.15 and 6.16).
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N ||UC
h − U ||L1 CPU time (s)

1000 0.0295 90
2000 0.0198 335
4000 0.0153 1476 = 24.6 mn

(6.19)

N ||UN
h − U ||L1 CPU time (s)

1000 0.0170 226
1500 0.0114 501 =8.35 mn
2000 0.0086 919 = 15.32 mn

(6.20)

6.2.7. Test case 9.

UL = (1, 2, 1) ∈ G3, UR = (0.8, 1.8, 1.5) ∈ G3, CFL = 0.5.

Description. The solution starts with a stationary contact from UL to a state U1,
followed by a 1-shock from U1 to s state U2, then followed by a 3-shock wave from U2

to UR (see Figures 6.17 and 6.18).

N ||UC
h − U ||L1 CPU time (s)

1000 0.0192 108
2000 0.0122 369

(6.21)

N ||UN
h − U ||L1 CPU time (s)

1000 0.0148 249
1200 0.0127 348
1500 0.0105 556

(6.22)

In this case, both schemes give good results.
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Fig. 6.17. Test case 9: Exact Riemann solution.
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Fig. 6.18. Test case 9: Numerical solutions with 1000 mesh-points.

6.3. Nonstationary waves for nonisentropic gases. Denote in this subsec-
tion for the tests

U = (ρ, u, p, a).

It is not difficult to construct concrete Riemann solution of (1.1). In this subsection we
will present two tests for nonisentropic waves in the case of nonisentropic polytropic
ideal gases (1.6). In all the following figures addressed to the comparison between the
two schemes, the two columns on the left are the plotting of numerical solutions from
the modified Lax–Friedrichs scheme (5.1)–(5.2), and the two columns on the right are
the plotting of numerical solutions from our scheme (5.4).

6.3.1. Test case 10. Riemann data

UL = (4.7, 0.7452, 8.7042, 1), UR = (4.9, 0.4131, 9.2549, 1.5).

Set

U1 := (4.7607, 0.7229, 8.8867, 1),
U2 := (5.0542, 0.4539, 9.6630, 1.5),
U3 := (5, 0.4539, 9.6630, 1.5).

Description. The solution is a 1-shock wave from UL to the state U1, followed by
a stationary contact from U1 to a state U2, followed by a contact discontinuity from
U2 to the state U3, then followed by a 3-shock wave from U3 to UR (see Figures 6.19
and 6.20).

N ||UC
h − U ||L1 CPU time (s)

1000 0.1783 86
2000 0.1676 321

(6.23)

N ||UN
h − U ||L1 CPU time (s)

700 0.0968 109
1000 0.0967 210

(6.24)
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Fig. 6.19. Test case 10: Exact Riemann solution.
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Fig. 6.20. Test case 10: Numerical solutions with 1000 mesh-points. Left four plots: Lax–
Friedrichs. Right four plots: New scheme.

6.3.2. Test case 11. Riemann data

UL = (5.5,−0.44, 11.9281, 1), UR = (6,−0.3512, 12.4326, 1.5).

Set

U1 := (5.8000,−0.4945, 12.2445, 1),
U2 := (5.9855,−0.4945, 12.2445, 1),
U3 := (6.1340,−0.3217, 12.6719, 1.5).

Description. The solution is a 1-shock wave from UL to the state U1 followed by
a contact discontinuity from U1 to the state U2, followed by a stationary contact from
U2 to the state U3, then followed by a 3-shock wave from U3 to UR (see Figures 6.21
and 6.22).

N ||UC
h − U ||L1 CPU time (s)

1000 0.2799 84
2000 0.2783 293
3000 0.2783 723

(6.25)
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Fig. 6.21. Test case 11: Exact Riemann solution.
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Fig. 6.22. Test case 11: Numerical solutions with 1000 mesh-points. Left four plots: Lax–
Friedrichs. Right four plots: New scheme.

N ||UN
h − U ||L1 CPU time (s)

700 0.2329 155
1000 0.2322 309

(6.26)
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AN ERROR ANALYSIS OF CONSERVATIVE
SPACE-TIME MESH REFINEMENT METHODS FOR

THE ONE-DIMENSIONAL WAVE EQUATION∗

PATRICK JOLY† AND JERÓNIMO RODRÍGUEZ†

Abstract. We study two space-time mesh refinement methods as the one introduced in [F. Col-
lino, T. Fouquet, and P. Joly, Numer. Math., 95 (2003), pp. 197–221]. The stability of such methods
is guaranteed by construction through the conservation of a discrete energy. In this paper, we show
the L2 convergence of these schemes and provide optimal error estimates. The proof is based on
energy techniques and bootstrap arguments. Our results are validated with numerical simulations
and compared with results from plane wave analysis [F. Collino, T. Fouquet, and P. Joly, Numer.
Math., 95 (2003), pp. 223–251].

Key words. mesh refinement, local time stepping, error estimates, stability, energy conserva-
tion, wave equation
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1. Introduction. For the numerical solution of time-dependent wave propaga-
tion problems, in which one often has to deal with complex geometries in diffraction
problems, it is natural to try to use local mesh refinements with nonmatching grids.
One initial idea consists in using only spatial refinement (see [1] for acoustic waves, [8]
and [22] for Maxwell’s equations). However, with explicit schemes, when a uniform
time step is used, it is the finest mesh that imposes the time step because of the
stability condition. There are two problems with this. First, the computational cost
is increased. Second, the ratio cΔt/h (where h is the space step size) in the coarser
grid will be much smaller than its optimal value. With standard numerical schemes
(such as Yee’s scheme for Maxwell’s equations) this generates dispersion errors. To
avoid these problems, it is useful to be able to work with a local time step in order
to keep the ratio cΔt/h constant (or almost constant) in the whole computational
domain.

The use of local time stepping raises new practical and theoretical problems,
especially for hyperbolic equations, that are much more delicate than those raised by
a simple spatial refinement.

The solutions suggested in the electromagnetic literature are primarily based on
interpolation techniques (in time and/or in space) especially designed to guarantee
the consistency of the scheme at the coarse grid/fine grid interface (see [20], [18],
[24], [9]). Unfortunately, the resulting schemes appear to be very difficult to analyze
and may suffer from some instability phenomena [11]. Another possible solution for
local time stepping is to use a domain decomposition approach such as that recently
developed in [14]. However, the stability and convergence analysis of these techniques
remain to be completed.
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It seems that very few papers in the mathematical literature have been devoted
to space-time mesh refinement for the specific case of Maxwell’s equations (and more
generally for linear wave propagation problems). However, these questions have been
treated in many articles in the conservation laws community during the 1980s. Let
us mention, for instance, the work of Osher and Sanders [23] based on finite volume
methods or, closer to what we are doing here, the works of Berger and her coauthors
[3, 4, 7, 5] on finite differences schemes. These works are devoted to various space-
time mesh refinement techniques for first order hyperbolic systems. These techniques
are mainly based on interpolation-type procedures and concern both overlapping and
nonoverlapping grids (see [7, 5] for a general presentation). In [3], Berger has devel-
oped a stability analysis of such methods in the cases of the one-dimensional (1D)
linear advection equations using the GKS theory [19, 15]. She was able to estab-
lish the results in the case where dissipative interior schemes (typically Lax–Wendroff
scheme) were used or when conservative (typically leap-frog) schemes are used pro-
vided that overlapping grids are considered. However, it is also mentioned in [3] that
using leap-frog-type schemes and nonoverlapping grids may lead to instability, as has
already been mentioned for Maxwell’s equations.

Recently, we developed alternative solutions to these interpolation procedures
that we call conservative space-time mesh refinement methods. These methods, origi-
nally invented for the 1D wave equation, have been developed for Maxwell’s equations
[13] and recently extended to the elastodynamic equations [2]. A general presentation
of these kinds of methods can be found in [16]. The main ideas and properties of
these methods have been treated in more detail in [10] for the model problem of the
1D wave equation written as the first order system

⎧⎨
⎩

∂u

∂t
+

∂v

∂x
= 0,

∂v

∂t
+

∂u

∂x
= 0, x ∈ R, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),

(1.1)

when one uses the FDTD Yee [26] scheme as the reference interior scheme in each
subdomain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+1
j − un

j

Δt
+

v
n+ 1

2

j+ 1
2

− v
n+ 1

2

j− 1
2

h
= 0, j ∈ Z, n ≥ 0,

v
n+ 1

2

j+ 1
2

− v
n− 1

2

j+ 1
2

Δt
+

un
j+1 − un

j

h
= 0, j ∈ Z, n ≥ 0.

(1.2)

In particular the construction of the scheme and stability analysis based on energy
conservation properties is presented in [10]. An important fact is that the stability
CFL condition, namely, in the 1D case,

α =
Δt

h
< 1,(1.3)

is not affected by the mesh refinement process. A plane wave analysis for measuring
the accuracy of the method is detailed in [12]. The present article, whose purpose is
essentially theoretical, is the sequel to [12]. Our goal is to derive optimal error esti-
mates and to validate them through numerical tests. More precisely, we present a con-
vergence analysis for two different conservative space-time mesh refinement schemes
introduced in [11].
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We mention that in [4] and more recently in [6] the authors have constructed
space-time mesh refinement schemes devoted to the conservation of a discrete equiv-
alent of the integral of the solution of a first order hyperbolic system. Such schemes
are also called conservative schemes in the conservation laws community, but they
are not necessarily stable (the integral of the solution is not a norm!). However, such
conservation properties are highly desirable for the approximation of solutions with
shocks.

The outline of the rest of the article is as follows. In section 2, we define our two
grids model problem, present the two mesh refinement schemes (I and II) and recall
the main stability theorems. In section 3, we state our main convergence Theorem
3.1. Section 4, devoted to the proof of this theorem, is the main section of this article.
We think that one of the contributions of the present paper is precisely the proof that
appears rather nonstandard, although based on energy techniques. Finally, in section
5, the theoretical results are compared to numerical ones and those obtained in [12]
by Fourier-like techniques. This analysis did not result in rigorous error estimates, as
did that of Theorem 3.1, but permitted us to predict the order of convergence that
we prove in the present paper. The other interest of the energy proof we develop
here is that it can be generalized to spatially variable coefficients and higher space
dimensions with only purely technical additional difficulties.

2. Conservative space-time mesh refinement schemes. We recall the con-
struction of the method presented in [11]. In order to solve system (1.1) with a local
space-time mesh refinement, the computational domain is split into two half-spaces,
Ωc = {x < 0} and Ωf = {x > 0}. Denoting by (uc, vc) and (uf , vf ) the restrictions
of (u, v) to Ωc and Ωf respectively, problem (1.1) can be rewritten as a transmission
problem through the interface x = 0 as follows:⎧⎪⎪⎨

⎪⎪⎩

∂uc

∂t
+

∂vc
∂x

= 0,

∂vc
∂t

+
∂uc

∂x
= 0,

in Ωc,(2.1)

⎧⎪⎪⎨
⎪⎪⎩

∂uf

∂t
+

∂vf
∂x

= 0,

∂vf
∂t

+
∂uf

∂x
= 0,

in Ωf ,(2.2)

coupled by the interface conditions

uc(0, t) = uf (0, t),(2.3)

vc(0, t) = vf (0, t),(2.4)

to obtain a solution of the global problem.

2.1. The interior scheme. Assume that we have a mesh with step size (2h, 2Δt)
for Ωc and a mesh with step size (h,Δt) for Ωf . It is important to note that the ratio
of the time step to the space step is the same in both domains. With the obvious
notation, the unknowns of our scheme will be the following:

• for the coarse grid,

u2n
2j , j ≤ 0, n ≥ 0, v2n+1

2j+1 , j ≤ −1, n ≥ 0;
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ul

vl
, l ∈ {c, f}

t2n

t2n+1

t2n+2

t2n+3

t2n+4

x0x−2 x0 x1 x2

Fig. 2.1. Distribution of the unknowns over Γ.

• for the fine grid,

un
j , j ≥ 0, n ≥ 0, v

n+ 1
2

j+ 1
2

, j ≥ 0, n ≥ 0.

At the interior of each subdomain, the standard Yee scheme [26, 25] is considered.
The discrete equations in the coarse and in the fine grids between the instants t2n

and t2n+2 are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(uc)
2n+2
2j − (uc)

2n
2j

2Δt
+

(vc)
2n+1
2j+1 − (vc)

2n+1
2j−1

2h
= 0, j ≤ −1, n ≥ 0,

(vc)
2n+1
2j+1 − (vc)

2n−1
2j+1

2Δt
+

(uc)
2n
2j+2 − (uc)

2n
2j

2h
= 0, j ≤ −1, n ≥ 0,

(2.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(uf )2n+1
j − (uf )2nj

Δt
+

(vf )
2n+ 1

2

j+ 1
2

− (vf )
2n+ 1

2

j− 1
2

h
= 0, j ≥ 1, n ≥ 0,

(vf )
2n+ 1

2

j+ 1
2

− (vf )
2n− 1

2

j+ 1
2

Δt
+

(uf )2nj+1 − (uf )2nj
h

= 0, j ≥ 0, n ≥ 0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(uf )2n+2
j − (uf )2n+1

j

Δt
+

(vf )
2n+ 3

2

j+ 1
2

− (vf )
2n+ 3

2

j− 1
2

h
= 0, j ≥ 1, n ≥ 0,

(vf )
2n+ 3

2

j+ 1
2

− (vf )
2n+ 1

2

j+ 1
2

Δt
+

(uf )2n+1
j+1 − (uf )2n+1

j

h
= 0, j ≥ 0, n ≥ 0,

(2.6)

completed with discrete initial conditions.

(uc)
0
2j , j ≤ 0, (vc)

1
2j+1, j ≤ −1 ,

(uf )0j , j ≥ 0, (vf )
1
2

j+ 1
2

, j ≥ 0 .
(2.7)

As is shown in Figure 2.1, two values of the solution are allowed along the interface
Γ = {x = 0} at the even time steps. The continuity of the unknown u is imposed in
a weak way: this seems to be useful for guaranteeing the stability of the scheme [11].
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2.2. The discrete transmission conditions. For coupling (2.5) and (2.6), the
idea is to approximate the transmission conditions (2.3) and (2.4) in such a way that
the stability of the method is ensured a priori. A simple way to do that is to impose
a discrete version of the energy conservation property

E(t) = E(0), where E(t) =
1

2

∫
R

u(x, t)2dx +
1

2

∫
R

v(x, t)2dx,

satisfied by the exact solution of (1.1). In our case, it is natural to define the total
discrete energy only at the even instants by

E2n = E2n
c + E2n

f ,(2.8)

where E2n
c and E2n

f are, respectively, the coarse grid and fine grid energies:

E2n
c =

1

2

⎛
⎝ ∑

j≤−1

|(uc)
2n
2j |2 2h +

∑
j≤−1

(vc)
2n+1
2j+1 (vc)

2n−1
2j+1 2h + |(uc)

2n
0 |2 h

⎞
⎠ ,

En
f =

1

2

⎛
⎝∑

j≥1

|(uf )nj |2 h +
∑
j≥0

(vf )
n+ 1

2

j+ 1
2

(vf )
n− 1

2

j+ 1
2

h + |(uf )n0 |2
h

2

⎞
⎠ .

This is the most natural extension to the “two grids” scheme of the discrete energy
which is conserved with the Yee scheme on a single grid. The idea pursued in [11]
is to impose the conservation of E2n. To state the main result of [11], it is useful to
introduce the following “discrete traces” of uc, vc, uf , and vf :

⎧⎪⎪⎨
⎪⎪⎩

(Uc)
2n+1
0 =

1

2

(
(uc)

2n+2
0 + (uc)

2n
0

)
,

(Vc)
2n+1
0 = (vc)

2n+1
−1 − h

(uc)
2n+2
0 − (uc)

2n
0

2Δt
,

(2.9)

⎧⎪⎪⎨
⎪⎪⎩

(Uf )
n+ 1

2
0 =

1

2

(
(uf )n+1

0 + (uf )n0
)
,

(Vf )
n+ 1

2
0 = (vf )

n+ 1
2

1
2

+
h

2

(uf )n+1
0 − (uf )n0

Δt
.

(2.10)

Theorem 2.1. Consider a solution of (2.5) and (2.6), the discrete energy (2.8)
is conserved if and only if

1

2

(
(Uf )

2n+ 1
2

0 (Vf )
2n+ 1

2
0 + (Uf )

2n+ 3
2

0 (Vf )
2n+ 3

2
0

)
= (Uc)

2n+1
0 (Vc)

2n+1
0 .(2.11)

Let us come back to the approximation of the continuity conditions (2.3) and
(2.4). We first remark that, assuming the discrete unknowns have been computed up
to time t2n, the interior scheme given by (2.5) and (2.6) permits us to obtain all the
unknowns up to time t2n+2 except the three following values:

(uc)
2n+2
0 , (uf )2n+1

0 , (uf )2n+2
0 .
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So, three additional (linear) equations consistent with the transmission conditions
(2.3) and (2.4) and compatible with (2.11) should be added. A first natural choice
consists in imposing the following discrete continuity conditions:

⎧⎪⎨
⎪⎩

(Vf )
2n+ 1

2
0 = (Vf )

2n+ 3
2

0 = (Vc)
2n+1
0 ,

1

2

(
(Uf )

2n+ 1
2

0 + (Uf )
2n+ 3

2
0

)
= (Uc)

2n+1
0 .

(2.12)

The scheme given by (2.5), (2.6), and (2.12) will be called scheme I. The continuity
of u is imposed once and that of v twice. A second possible choice is given by

⎧⎪⎨
⎪⎩

(Uf )
2n+ 1

2
0 = (Uf )

2n+ 3
2

0 = (Uc)
2n+1
0 ,

1

2

(
(Vf )

2n+ 1
2

0 + (Vf )
2n+ 3

2
0

)
= (Vc)

2n+1
0 ,

(2.13)

which gives us scheme II. Unlike in the previous scheme, the continuity of u is written
twice and that of v once.

Remark 2.1. Using the two first equations of (2.13) we can easily prove that
(uf )2n+2

0 = (uf )2n0 and so the discrete trace of u in the fine side at the even instants is
always the same. As a consequence, this scheme cannot be L∞-convergent. However
the numerical simulations will show us that scheme II gives a “good” approximation
of the solution “except at the interface,” and the L2-convergence will be proven in
section 4.

3. Error analysis: The main results.

Notation. We first introduce some notation for discrete sequences. In order
to show the L2-stability and convergence of both schemes, some discrete norms and
spaces must be introduced. Let us define the discrete coarse and fine L2 spaces for u,

L2
c,u =

{
uc,h = {(uc)2j}j≤0 such that

∑
j≤0

|(uc)2j |2 < +∞
}
,

L2
f,u =

{
uf,h = {(uf )j}j≥0 such that

∑
j≥0

|(uf )j |2 < +∞
}
,

(3.1)

and their natural Hilbert norms,

‖uc,h‖2 =
∑
j≤−1

|(uc)2j |22h + |(uc)0|2 h,

‖uf,h‖2 =
∑
j≥1

|(uf )j |2h + |(uf )0|2
h

2
.

(3.2)

In the same way, we have the discrete coarse and fine L2 spaces for v,

L2
c,v =

{
vc,h = {(vc)2j+1}j≤−1 such that

∑
j≤−1

|(vc)2j+1|2 < +∞
}
,

L2
f,v =

{
vf,h = {(vf )j+ 1

2
}j≥0 such that

∑
j≥0

|(vf )j+ 1
2
|2 < +∞

}
,

(3.3)
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and the norms,

‖vc,h‖2 =
∑
j≤−1

|(vc)2j+1|2 2h, ‖vf,h‖2 =
∑
j≥1

|(vf )j+ 1
2
|2 h.(3.4)

It is immediate to check that our schemes are well posed in these spaces; i.e., as soon

as the discrete initial data u0
c,h, v

1
c,h, u

0
f,h, and v

1
2

f,h belong, respectively, to L2
c,u, L2

c,v,
L2
f,u, and L2

f,v, then the discrete solution is such that

(
u2n
c,h, v

2n+1
c,h , un

f,h, v
n+ 1

2

f,h

)
∈ L2

c,u × L2
c,v × L2

f,u × L2
f,v.

For the convergence study, we assume that our solution is at least continuous and we
introduce the pointwise exact values

ũs
r = u(rh, sΔt), ṽsr = v(rh, sΔt), (r, s) ∈ R × R

+.

We will assume that the corresponding sequences ũ2n
c,h, ṽ

2n+1
c,h , ũn

f,h, and ṽ
n+ 1

2

c,h belong,

respectively, to L2
c,u, L2

c,v, L
2
f,u, and L2

f,v. We then define the pointwise errors:

∣∣∣∣∣∣∣

(
euc,h

)2n
= ũ2n

c,h − u2n
c,h,

(
euf,h

)n
= ũn

f,h − un
f,h,

(
evc,h

)2n+1
= ṽ2n

c,h − v2n
c,h,

(
evf,h

)n+ 1
2 = ṽ

n+ 1
2

f,h − v
n+ 1

2

f,h .

We shall denote by a superscript h sequences in both discrete space and time. More
precisely, we set

⎧⎪⎪⎨
⎪⎪⎩
uh
c =

(
u2n
c,h

)
n≥0

, uh
f =

(
un
f,h

)
n≥0

, uh =
(
uh
c , u

h
f

)
,

vhc =
(
v2n+1
c,h

)
n≥0

, vhf =
(
v
n+ 1

2

f,h

)
n≥0

, vh =
(
vhc , v

h
f

)
,

for the discrete solutions and, in the same way,

⎧⎪⎪⎨
⎪⎪⎩
eu,hc =

((
euc,h

)2n)
n≥0

, eu,hf =
((

euf,h
)n)

n≥0
, eu,h (≡ u− uh) =

(
eu,hc , eu,hf

)
,

ev,hc =
((

evc,h
)2n+1

)
n≥0

, ev,hf =
((

evf,h
)n+ 1

2

)
n≥0

, ev,h (≡ v − vh) =
(
ev,hc , ev,hf

)
,

for the errors.
For a given T > 0, we can introduce the discrete L∞(0, T ;L2) norms (that we

define here for the errors eu,h = u− uh and ev,h = v − vh)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖eu,h‖∗∞,2,T = sup
t2n+ 3

2 ≤T

(
‖
(
euc,h

)2n‖ + ‖
(
euf,h

)2n‖ ) ,

‖eu,h‖∞,2,T = ‖eu,h‖∗∞,2,T + sup
t2n+ 3

2 ≤T

‖
(
euf,h

)2n+1‖,

‖ev,h‖∞,2,T = sup
t2n+ 3

2 ≤T

(
‖
(
evc,h

)2n+1‖ + ‖
(
evf,h

)2n+ 1
2 ‖ + ‖

(
evf,h

)2n+ 3
2 ‖

)
.

(3.5)
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Remark 3.1. Note that ‖uh‖∗∞,2,T is only a seminorm since the odd instants are

not concerned. The complete norm is ‖uh‖∞,2,T . The interest of the introduction of
the seminorm ‖uh‖∗∞,2,T will appear in the proof of Theorem 3.1 (cf. section 4).

We also need to introduce some notation for norms in spaces of continuous func-
tions. For any a > 0 and any integer k ≥ 0, we shall denote

‖f‖Ck
a,T

= sup
x∈[−a,a], 0≤t≤T

sup
i+j≤k

∣∣∣∣ ∂
i+jf

∂xi∂tj
(x, t)

∣∣∣∣ ∀ f ∈ Ck([−a, a] × [O, T ]),(3.6)

‖(u, v)‖Ck
a,T

= ‖u‖Ck
a,T

+ ‖v‖Ck
a,T

∀ (u, v) ∈ Ck([−a, a] × [O, T ])2.(3.7)

It will also be useful to introduce the class of functions

C∞
a,T = {(u, v) ∈ C∞([−a, a] × [O, T ])2 such that (3.9) holds}.(3.8)

Property (3.9) expresses in some sense that the successive derivatives of the functions
do not increase too quickly with the order of derivation. More precisely, that

|||(u, v)|||C∞
a,T

≡ sup
k≥0

|||(u, v)|||Ck
a,T

< +∞,(3.9)

where, for each integer k,

|||(u, v)|||Ck
a,T

= ‖(u, v)‖
1

2k

Ck
a,T

k∏
j=1

‖(u, v)‖
1

2j

Cj+1
a,T

.(3.10)

In what follows, if (u, v) is defined for x ∈ R, t ≥ 0, we shall say that (u, v) ∈ C∞
a,T if

its restriction to [−a, a] × [O, T ] belongs to C∞
a,T .

Remark 3.2. The introduction of the set C∞
a,T as well as the “norms” |||(·, ·)|||Ck

a,T

and |||(·, ·)|||C∞
a,T

is rather surprising in such a simple context as the 1D wave equation,

and we are not sure that it is really necessary (see also the comments that follow the
statement of the theorem at the end of this section). However, these notions will
naturally appear in the proof of the theorem. It is interesting to note the following
here:

• From the remark that

∀ k ≥ 1,

k∑
j=1

1

2j
+

1

2k
= 1,(3.11)

it follows that the maps (u, v) → |||(u, v)|||Ck
a,T

and (u, v) → ||(u, v)|||C∞
a,T

are

homogeneous of degree 1, and that the set C∞
a,T is a cone. It also possesses

a homogeneity property. Let (u, v) be defined for all real x and all positive t.
For any real λ > 0, we set

(uλ(x, t), vλ(x, t)) = (u(λx, λt), v(λx, λt));

then

(u, v) ∈ C∞
a,T =⇒ (uλ, vλ) ∈ C∞

a/λ,T/λ.
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It suffices to remark that if λ̂ = max(1, λ), then

|||(uλ, vλ)|||Ck
a/λ,T/λ

≤
(
λ̂

1

2k

k∏
j=1

λ̂
j+1

2j

)
|||(u, v)|||Ck

a,T
,

and that limk→+∞ λ̂
1

2k = 1,
∏+∞

j=1 λ̂
j+1

2j < +∞. Note also that |||(u, v)|||Ck
a,T

=

0 =⇒ (u, v) = 0.
• However, |||(·, ·)|||Ck

a,T
and |||(·, ·)|||C∞

a,T
are not norms since they do not satisfy

the triangular inequality. As a consequence, it is not so clear that the set C∞
a,T

is a vector set (this point may be interesting but not central to this paper).
Clearly, the fact that u belongs to C∞

a,T implies that the successive derivatives
of u must not increase too quickly with the order of derivation. It is easy to
see that C∞

a,T contains some well-known functional spaces such as the Gevrey
spaces Gs

a,T , s ≥ 1 that can be defined as (see [21] for instance)

Gs
a,T =

{
(u, v) ∈ C∞

a,T / ∃ (C, γ) / ‖(u, v)‖Cj
a,T

≤ C γj (j!)s
}
.(3.12)

The set G1
a,T is made up of analytic functions while the set Gs

a,T for s > 1
contains functions with compact support such as

f(x, t) = e
1

(x−t)2−α2 χ[−α,α],

which is easily shown to belong to G3
a,T .

Let us introduce the spaces

Hk(R) =
{
f ∈ L2(R) such that ∂k̃

xf ∈ L2(R), 0 ≤ k̃ ≤ k
}
,

equipped by the natural norm (in particular H0(R) = L2(R)). Let us also define for
any Hilbert space H

W k,∞([0, T ], H) =

{
w : [0, T ] �→ H, such that sup

t∈[0,T ]

‖∂k̃
t w(t)‖H ≤ ∞, 0 ≤ k̃ ≤ k

}
,

also equipped by the natural norm. In that way, we set the space

E = W 3,∞([0, T ], L2(R)) ∩W 0,∞([0, T ], H3(R)),

and we introduce the following notation:

‖f‖E = max
{
‖f‖W 3,∞([0,T ],L2(R)), ‖f‖W 0,∞([0,T ],H3(R))

}
∀ f ∈ E,

‖(u, v)‖E = ‖u‖E + ‖v‖E ∀ (u, v) ∈ E2.

For technical reasons we will assume that the initial conditions of problem (1.1)
are such that

(u0, v0) ∈
(
H3(R)

)2
, supp(u0, v0) ∩ {0} = ∅,(3.13)

so that the exact solution (u, v) ∈ E2. In particular, this implies that

ũ2n
c,h ∈ L2

c,u, ṽ2n+1
c,h ∈ L2

c,v, un
f,h ∈ L2

f,u, v
n+ 1

2

f,h ∈ L2
f,v

(3.14)
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for all n ∈ N. Let us also assume that the discrete initial conditions (2.7) satisfy

u0
c,h ∈ L2

c,u, v1
c,h ∈ L2

c,v, u0
f,h ∈ L2

f,u, v
1
2

f,h ∈ L2
f,v,(3.15)

and that they are a good approximation of the exact initial conditions, for example,

(uc)
0
2j =

1

2h

∫ x2j+1

x2j−1

u0(x)dx,

(vc)
1
2j+1 =

1

2h

∫ x2j+2

x2j

v0(x)dx− Δt
(uc)

0
2j+2 − (uc)

0
2j

2h
,

(uf )0j =
1

h

∫ x
j+ 1

2

x
j− 1

2

u0(x)dx,

(vf )
1
2

j+ 1
2

=
1

h

∫ xj+1

xj

v0(x)dx− Δt

2

(uf )0j+1 − (uf )0j
h

,

(3.16)

or

(uc)
0
2j = u0(2jh), (vc)

1
2j+1 = v0((2j + 1)h) − Δt

(uc)
0
2j+2 − (uc)

0
2j

2h
,

(uf )0j = u0(jh), (vf )
1
2

j+ 1
2

= v0((n + 1
2 )h) − Δt

2

(uf )0j+1 − (uf )0j
h

.

(3.17)

Statement of the main results.
Theorem 3.1. Assume that the discretization parameters h and Δt are related

by the strict CFL condition (1.3) and that the initial condition (u0, v0) of equations
(1.1) satisfies (3.13) (so that the exact solution (u, v) belongs to E2). Let us consider
initial data given by (3.16) or (3.17). Then the following hold:

(i) The discrete solutions (uh, vh) given by the schemes I and II satisfy the error
estimates∣∣∣∣∣∣

‖u− uh‖∞,2,T + ‖v − vh‖∞,2,T ≤ C (1 − α2)−1 T h
1
2 ‖(u, v)‖C1

a,T

+ C (1 − α2)−1 (1 + T ) h2 ‖(u, v)‖E .
(3.18)

(ii) If moreover (u, v) ∈ Ck+1([−a, a] × [0, T ]) for some real a > 0 and integer
k ≥ 1, the discrete solution given by the scheme I satisfies

∣∣∣∣∣∣∣
‖u− uh‖∞,2,T + ‖v − vh‖∞,2,T ≤ C (1 − α2)−1T h

(
3
2−

1

2k

)
|||(u, v)|||Ck

a,T

+ C (1 − α2)−1 (1 + T ) h2 ‖(u, v)‖E .
(3.19)

(iii) If, finally, (u, v) ∈ E2 ∩ C∞
a,T , the discrete solution given by the scheme I

satisfies

∣∣∣∣∣∣
‖u− uh‖∞,2,T + ‖v − vh‖∞,2,T ≤ C (1 − α2)−1 T h

3
2 |||(u, v)|||C∞

a,T

+ C (1 − α2)−1 (1 + T ) h2 ‖(u, v)‖E .
(3.20)

Let us complete this theorem by the following comments:
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• This theorem expresses the fact that, in the L∞(0, T ;L2) norm, scheme I is
of order 3/2 while scheme II is of order 1/2. In (3.18), (3.19), and (3.20),
the right-hand side is the sum of two terms: the first one measures the error
introduced by the transmission scheme while the second one (of second order)
is due to the interior scheme.

• The coefficients appearing in the right-hand side of estimates (3.18) through
(3.20) blow up when α goes to 1. This is coherent with what one observes
numerically: the two schemes are not strongly convergent for α = 1. Nev-
ertheless, as has been explained in [12], good results are obtained with the
values of α close to 1 (see also section 5).

• One can define the discrete L∞(0, T ;L∞) norm of the error, namely, ‖u −
uh‖∞,T and ‖v−vh‖∞,T , by replacing in definition (3.5) the discrete L2 norms
‖uf,h‖, ‖vf,h‖, ‖uc,h‖, and ‖vc,h‖ by the discrete L∞ norms

|uf,h|∞ = sup
j≥0

|uj |, |vf,h|∞ = sup
j≥0

|vj+ 1
2
|,

|uc,h|∞ = sup
j≤0

|u2j |, |vf,h|∞ = sup
j≤−1

|v2j+1|.

From the obvious inequality (see also Lemma 4.5)

‖u− uh‖∞,T ≤ C√
h
‖u− uh‖∞,2,T ,(3.21)

we deduce that⎧⎨
⎩
‖u− uh‖∞,T + ‖v − uh‖∞,T = O(h) with scheme I.

‖u− uh‖∞,T + ‖v − uh‖∞,T = O(1) with scheme II.

• From Remark 2.1, we already know that scheme II cannot be convergent in
the (discrete) L∞(0, T ;L∞) space. As a consequence, using (3.21), we deduce
that the error estimate (3.18) is sharp (see also section 5). We also conjecture
that the O(h3/2) estimate for scheme I is optimal. This is more or less implicit
in the plane wave analysis (see [12] and section 5.2) and in good agreement
with the numerical results.

• If our results are optimal in terms of powers of h, it is not clear that it is
the case concerning the required regularity of the solution, for instance, that
we need the C∞ regularity to obtain the O(h3/2) error estimate with scheme
I. However, the Fourier analysis (see [12]) does suggest that, at least, time
regularity is needed. Moreover, the “norms” |||(u, v)|||Ck

a,T
naturally appears

in the proof of the theorem (see section 3.1).
• If the solution of the continuous problem is regular enough, scheme I is of

order h
3
2 in the L∞(0, T ;L2) norm. As is strongly suggested by the plane

wave reflection-transmission analysis (see [12]) as well as numerical results
(cf. section 5), we conjecture that scheme I (resp., scheme II) provides O(h2)
(resp., O(h)) errors when these are measured in space regions that do not
contain a neighborhood of the origin. The proof of such a result remains an
open question for us.

• We have considered here the case of the 1D wave equation with constant
coefficients. However, it is not difficult to see that the proofs of section
4 (based on energy methods) can be adapted to the case of the 1D wave
equation with spatially variable coefficients.
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Remark 3.3. The hypotheses demanded in Theorem 3.1 can be rewritten in terms
of the regularity of the initial condition. In this way we have the following:

• Estimation (3.19) is satisfied since the initial condition satisfies (3.13) and
belongs to Ck+1(−a− T, a + T ).

• We define the class of functions

C∞
b = {(u, v) ∈ C∞([−b, b])2 such that (3.22) holds},

where

|||(u, v)|||C∞
b

≡ sup
k≥0

|||(u, v)|||Ck
b
< +∞,(3.22)

with

|||(u, v)|||Ck
b

= ‖(u, v)‖
1

2k

Ck
b

k∏
j=1

‖(u, v)‖
1

2j

Cj+1
b

,

and

‖f‖Ck
b

= sup
x∈[−b,b]

sup
i+j≤k

∣∣∣∣ ∂
i+jf

∂xi∂tj
(x, t)

∣∣∣∣ ∀ f ∈ Ck([−b, b]).

Then the hypothesis demanded in statement (iii) is satisfied since (u0, v0) ∈
C∞

a+T .

4. Proof of the error estimates.

4.1. The equations satisfied by the errors. The first step of the proof con-
sists, of course, in writing the scheme satisfied by the errors. This is also the oppor-
tunity to define some useful notation. We introduce “discrete traces” for the exact
solution, ⎧⎪⎪⎨

⎪⎪⎩
(Ũc)

2n+1
0 =

1

2

(
ũ2n+2

0 + ũ2n
0

)
,

(Ṽc)
2n+1
0 = ṽ2n+1

−1 − h
ũ2n+2

0 − ũ2n
0

2Δt
,

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

(Ũf )
n+ 1

2
0 =

1

2

(
ũn+1

0 + ũn
0

)
,

(Ṽf )
n+ 1

2
0 = ṽ

n+ 1
2

1
2

+
h

2

ũn+1
0 − ũn

0

Δt
,

(4.2)

and for the error,
⎧⎪⎪⎨
⎪⎪⎩

(
eUc

)2n+1

0
=

1

2

((
euc
)2n+2

0
+
(
euc
)2n
0

)
,

(
eVc

)2n+1

0
=

(
evc
)2n+1

−1
− h

(
euc
)2n+2

0
−
(
euc
)2n
0

2Δt
,

(4.3)

⎧⎪⎪⎨
⎪⎪⎩

(
eUf

)n+ 1
2

0
=

1

2

((
euf
)n+1

0
+
(
euf
)n
0

)
,

(
eVf

)n+ 1
2

0
=

(
evf
)n+ 1

2
1
2

+
h

2

(
euf
)n+1

0
−
(
euf
)n
0

Δt
.

(4.4)
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The interior equations satisfied by the error are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
euc
)2n+2

2j
−
(
euc
)2n
2j

2Δt
+

(
evc
)2n+1

2j+1
−
(
evc
)2n+1

2j−1

2h
=

(
ηuc
)2n+1

2j
, j ≤ −1,

(
evc
)2n+1

2j+1
−
(
evc
)2n−1

2j+1

2Δt
+

(
euc
)2n
2j+2

−
(
euc
)2n
2j

2h
=

(
ηvc
)2n
2j+1

, j ≤ −1,

(4.5)

in the coarse grid, and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
euf
)2n+1

j
−
(
euf
)2n
j

Δt
+

(
evf
)2n+ 1

2

j+ 1
2

−
(
evf
)2n+ 1

2

j− 1
2

h
=

(
ηuf
)2n+ 1

2

j
, j ≥ 1,

(
evf
)2n+ 1

2

j+ 1
2

−
(
evf
)2n− 1

2

j+ 1
2

Δt
+

(
euf
)2n
j+1

−
(
euf
)2n
j

h
=

(
ηvf
)2n
j+ 1

2

, j ≥ 0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
euf
)2n+2

j
−
(
euf
)2n+1

j

Δt
+

(
evf
)2n+ 3

2

j+ 1
2

−
(
evf
)2n+ 3

2

j− 1
2

h
=

(
ηuf
)2n+ 3

2

j
, j ≥ 1,

(
evf
)2n+ 3

2

j+ 1
2

−
(
evf
)2n+ 1

2

j+ 1
2

Δt
+

(
euf
)2n+1

j+1
−
(
euf
)2n+1

j

h
=

(
ηvf
)2n+1

j+ 1
2

, j ≥ 0,

(4.6)

in the fine grid. In (4.5) and (4.6), the terms on the right-hand side are classical
interior truncation errors that are completely defined from the exact solution: they are
nothing but the quantities in the left-hand sides of (4.5) and (4.6) after the substitution

(
euc
)2n
2j
,
(
evc
)2n+1

2j+1
,
(
euf
)n
j
,
(
evf
)n+ 1

2

j+ 1
2

−→ (ũc)
2n
2j , (ṽc)

2n+1
2j+1 , (ũf )nj , (ṽf )

n+ 1
2

j+ 1
2

.

The equations on the interface are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
eVc

)2n+1

0
−
(
eVf

)2n+ 1
2

0
=
(
εvr
)2n+ 1

2 ,

(
eVc

)2n+1

0
−
(
eVf

)2n+ 3
2

0
=
(
εvr
)2n+ 3

2 ,

(
eUc

)2n+1

0
− 1

2

((
eUf

)2n+ 1
2

0
+
(
eUf

)2n+ 3
2

0

)
=
(
εur
)2n+1

(4.7)

for scheme I, and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
eUc

)2n+1

0
−
(
eUf

)2n+ 1
2

0
=
(
ε̃ur
)2n+ 1

2 ,

(
eUc

)2n+1

0
−
(
eUf

)2n+ 3
2

0
=
(
ε̃ur
)2n+ 3

2 ,

(
eVc

)2n+1

0
− 1

2

((
eVf

)2n+ 1
2

0
+
(
eVf

)2n+ 3
2

0

)
=
(
ε̃vr
)2n+1

(4.8)

for scheme II. The quantities on the right-hand side of (4.7) (resp., (4.8)) are the
interface truncation errors for scheme I (resp., scheme II). Once again, they are com-
pletely defined by the exact solution, as the terms in the left-hand side of (4.7) (resp.,
(4.8)) in which we have made the substitution

(
eUc

)2n+1

0
,
(
eVc

)2n+1

0
,
(
eUf

)n+ 1
2

0
,
(
eVf

)n+ 1
2

0
−→ (Ũc)

2n+1
0 , (Ṽc)

2n+1
0 , (Ũf )

n+ 1
2

0 , (Ṽf )
n+ 1

2
0 .
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4.2. Outline of the proof. It is clear that, by exploiting the linearity of the
equations, the error can be separated into two parts:

• the error due to the interior truncation errors and initial conditions;
• the error due to the interface truncation errors.

Let us formalize this setting:

δh :=
{(

euc
)0
2j
,
(
evc
)1
2j+1

,
(
euf
)0
j
,
(
evf
) 1

2

j+ 1
2

}
, the initial errors,

ηh :=
{(

ηuc
)2n
2j
,
(
ηvc
)2n+1

2j+1
,
(
ηuf
)n+ 1

2

j
,
(
ηvf
)n
j+ 1

2

}
, the interior truncation errors,

εhI :=
{(

εur
)
,
(
εvr
) }

, εhII :=
{(

ε̃ur
)
,
(
ε̃vr
)}

, the interface truncation errors.

It is clear that if (δh, ηh, εh) are known, the sequences (eu,h, ev,h) are completely
characterized by the interior equations and the transmission scheme I or II. In this
way, we define two maps Φl, l = I, II,

(
δh, ηh, εhl

) Φl−→ (eu,h, ev,h),

which are linear. In particular

((
eu,hc

)
,
(
ev,hc

)
,
(
eu,hf

)
,
(
ev,hf

))
= Φl(δ

h, ηh, 0) + Φl

(
0, 0, εhl

)
.

• The estimate of Φl(δ
h, ηh, 0), due to the interior truncation errors and the

approximations of initial data, does not really depend on the transmission
scheme, provided that this scheme is conservative in the sense of Theorem 2.1,
which is the case for schemes I and II. As a consequence of the centered na-
ture of the scheme, this error is O(h2) provided that the initial conditions are
approximated to O(h2). The precise result is the following.

Proposition 4.1. Let h and Δt be constants such that

α :=
Δt

h
< 1

and let T > 0. Assume that the initial condition (u0, v0) of equations (1.1)
satisfies (3.13) (so that the exact solution (u, v) belongs to E2). Let us con-
sider initial data given by (3.16) or (3.17). Then, (eu,h, ev,h) = Φl(δ

h, ηh, 0)
satisfies the following estimate:

‖eu,h‖∞,2,T + ‖ev,h‖∞,2,T ≤ C(1 − α2)−1 (1 + T )h2‖(u, v)‖E .(4.9)

The analysis of this error is very similar to that (rather standard) of the
“pure” Yee scheme (i.e., without any mesh refinement) and, as this point is
not central to this paper, we have chosen not to give the proof here. We refer
to the reader to [17] for more details.

• The estimate of Φl(0, 0, ε
h
l ) does depend on the transmission scheme. The

analysis, presented in sections 4.3 and 4.4, is much less classical and consists
in two main steps:

– For both schemes I and II, a direct analysis combining the use of energy
techniques (as for the stability analysis), consistency estimates for the
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transmission conditions (globally in O(h)—see Lemma 4.3), and the use
of a discrete trace inequality (which results in the loss of one half-power
of h—see Lemma 4.5) permits us to show an O(

√
h) estimate for both

schemes I and II. This is Lemma 4.2. The proof stops here for scheme II.
– For scheme I, one can use a bootstrap argument to improve iteratively

the obtained rate of convergence: the estimate that will lead to (3.19)
is proved by induction on k (this is Lemma 4.8) and that leading to
(3.20) by passing to the limit when k → +∞ (this is Lemma 4.9). This
demands a closer look at the structure of the transmission truncation
error εI that has some properties that the error εII does not.

In summary, estimate (3.18) is obtained by combining Proposition 4.1 with Lemma
4.2, (3.19) is obtained by regrouping Proposition 4.1 with Lemma 4.8, and (3.20) is
obtained by regrouping Proposition 4.1 with Lemma 4.9.

4.3. Proof of the O(
√

h) estimates. Provided that similar techniques can be
applied to the analysis of scheme II, only the estimate for scheme I will be proven.
The main difference between the two proofs will be pointed out in Remark 4.1.

What we are going to derive here is the equivalent of estimate (3.18) for ΦI(0, 0, εl).
For the sake of simplicity, we shall still denote in this section

ΦI

(
0, 0, εhl

)
=
((

eu,hc

)
,
(
ev,hc

)
,
(
eu,hf

)
,
(
ev,hf

))
.

We shall also use the notation

eu,h =
((

eu,hc

)
,
(
eu,hf

))
, ev,h =

((
ev,hc

)
,
(
ev,hf

))

and refer to definition (3.5) for the discrete norms. Throughout this section we will
use only the last two norms of (3.5). The first one (that we call norm-star) will be
useful for the proof of (3.19). The estimate we want to prove here is the following.

Lemma 4.2. If the solution of the continuous problem (1.1) belongs to C1
a,T for

a > 0, then

‖eu,h‖∞,2,T + ‖ev,h‖∞,2,T ≤ C (1 − α2)−1 T h
1
2 ‖(u, v)‖C1

a,T
.(4.10)

The rest of this section is devoted to the proof of this lemma. By definition,(
eu,hc

)
,
(
ev,hc

)
,
(
eu,hf

)
, and

(
ev,hf

)
satisfy the homogeneous interior equations (4.5) and (4.6) (i.e., with zero right-hand
sides), and we recall below the equations at the interface,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
eVc

)2n+1

0
−
(
eVf

)2n+ 1
2

0
= (εvr)

2n+ 1
2 ,

(
eVc

)2n+1

0
−
(
eVf

)2n+ 3
2

0
=
(
εvr
)2n+ 3

2 ,

(
eUc

)2n+1

0
− 1

2

((
eUf

)2n+ 1
2

0
+
(
eUf

)2n+ 3
2

0

)
= (εur )2n+1,

(4.11)

where the interface truncation errors are given by (we indicate the order of magnitude
of each term obtained by a Taylor expansion)

(
εvr
)2n+ 1

2 = (Ṽc)
2n+1
0 − (Ṽf )

2n+ 1
2

0 = O(Δt),

(
εvr
)2n+ 3

2 = (Ṽc)
2n+1
0 − (Ṽf )

2n+ 3
2

0 = O(Δt),

(
εur
)2n+1

= (Ũc)
2n+1
0 − 1

2

(
(Ũf )

2n+ 1
2

0 + (Ũf )
2n+ 3

2
0

)
= O(Δt2),
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where the quantities (Ũc)
2n+1
0 , (Ṽc)

2n+1
0 , (Ṽf )

2n+ 1
2

0 , (Ṽf )
2n+ 1

2
0 are defined from the ex-

act solution (u, v) by ((4.1) and (4.2)). The following lemma, whose immediate proof
is omitted here (it is based on a simple Taylor expansion), gives us the magnitude of
these quantities.

Lemma 4.3. Assume that, for some a > 0, u and v belong to C1
a,T . Then, provided

that α ≤ 1,

sup
t2n≤T

|
(
εvr
)n+ 1

2 | ≤ C h ‖(u, v)‖C1
a,T

, sup
t2n≤T

|
(
εur
)2n+1| ≤ C α h ‖u‖C1

a,T
.(4.12)

If moreover (u, v) ∈ C2
a,T , then

sup
t2n≤T

|(εur )2n+1| ≤ C α2 h2 ‖u‖C2
a,T

, sup
t2n≤T

|
(
εvr
)2n+ 1

2 +
(
εvr
)2n+ 3

2 | ≤ C h2 ‖(u, v)‖C2
a,T

.

(4.13)
Next, as for to the discrete energy (2.8), we introduce the discrete energy of the

error at even instants:

E2n = E2n
c + E2n

f ,(4.14)

where

∣∣∣∣∣∣∣∣∣∣

E2n
c =

1

2

∑
j≤−1

|
(
euc
)2n
2j
|2 2h +

1

2

∑
j≤−1

(
evc
)2n+1

2j+1

(
evc
)2n−1

2j+1
2h +

1

2
|
(
euc
)2n
0
|2 h,

En
f =

1

2

∑
j≥1

|
(
euf
)n
j
|2 h +

1

2

∑
j≥0

(
evf
)n+ 1

2

j+ 1
2

(
evf
)n− 1

2

j+ 1
2

h +
1

2
|
(
euf
)n
0
|2 h

2
.

Our goal will be to obtain an estimate for
√
E2n. This will provide an L2-estimate for

the error with the aid of the following lemma.
Lemma 4.4. Assume that (1.3) holds and that

((
euf,h

)n
,
(
evf,h

)n+ 1
2

)
∈ L2

f,u × L2
f,v and

((
euc,h

)2n
,
(
evc,h

)2n+1
)
∈ L2

c,u × L2
c,v.

Then, there exists a positive constant C independent of Δt, h, and α such that for any
n > 0

‖
(
euc,h

)2n‖2 + ‖
(
evc,h

)2n+1‖2 + ‖
(
evc,h

)2n−1‖2 ≤ C (1 − α2)−1 E2n
c ,(4.15)

‖
(
euf,h

)2n‖2 + ‖
(
evf,h

)2n+ 1
2 ‖2 + ‖

(
evf,h

)2n− 1
2 ‖2 ≤ C (1 − α2)−1 E2n

f ,(4.16)

‖
(
euf,h

)2n+1‖2 ≤ C (1 − α2)−1
(
E2n + E2n+2

)
+ C h |

(
εur
)2n+1|2.(4.17)

Proof. We first prove (4.15). Using the identity 4ab = (a + b)2 − (a − b)2, we
obtain ∣∣∣∣∣∣∣∣∣∣∣∣

E2n
c =

1

2

⎛
⎝ ∑

j≤−1

|
(
euc
)2n
2j
|2 2h+|

(
euc
)2n
0
|2 h

⎞
⎠+

1

2

∑
j≤−1

∣∣∣∣∣∣
(
evc
)2n+1

2j+1
+
(
evc
)2n−1

2j+1

2

∣∣∣∣∣∣
2

2h

− 1

2

∑
j≤−1

∣∣∣∣∣∣
(
evc
)2n+1

2j+1
−
(
evc
)2n−1

2j+1

2

∣∣∣∣∣∣
2

2h.

(4.18)
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Using the second equation of scheme (4.5), we observe that

∣∣∣∣∣∣
(
evc
)2n+1

2j+1
−
(
evc
)2n−1

2j+1

2

∣∣∣∣∣∣
2

=
α2

4

∣∣∣(euc )2n2j+2
−
(
euc
)2n
2j

∣∣∣2 ≤ α2

2

(∣∣∣(euc )2n2j+2

∣∣∣2 +
∣∣∣(euc )2n2j

∣∣∣2
)
.

We use this in (4.18) to deduce that

E2n
c ≥ 1

2

∥∥∥∥∥
(
evc,h

)2n−1
+
(
evc,h

)2n+1

2

∥∥∥∥∥
2

+
1 − α2

2

∥∥∥(euc,h)2n
∥∥∥2

,(4.19)

which implies in particular

‖
(
euc,h

)2n‖2 ≤ 2 (1 − α2)−1 E2n
c .(4.20)

Next, we remark that the second equality of (4.5) can be rewritten as

(
evc
)2n±1

2j+1
=

(
evc
)2n+1

2j+1
+
(
evc
)2n−1

2j+1

2
∓ Δt

2h

((
euc
)2n
2j+2

−
(
euc
)2n
2j

)
.

Then, using the inequality (a + b)2 ≤ 2(a2 + b2) twice, we obtain

‖
(
evc,h

)2n±1‖2 ≤ 2 ‖
(
evc,h

)2n−1
+
(
evc,h

)2n+1

2
‖2 + 2α2 ‖

(
euc,h

)2n‖2.

Using now (4.19) and (4.20), we deduce the existence of a constant C such that

‖
(
euc,h

)2n‖2 + ‖
(
evc,h

)2n+1‖2 + ‖
(
evc,h

)2n−1‖2 ≤ C(1 − α2)−1E2n
c ,(4.21)

and (4.15) is proven.
If we use techniques similar to those used above, it is easy (we omit the details)

to show that, for any integer k,

‖
(
euf,h

)k‖2 + ‖
(
evf,h

)k+ 1
2 ‖2 + ‖

(
evf,h

)k− 1
2 ‖2 ≤ C(1 − α2)−1Ek

f ,

which gives (4.16) for k = 2n.
If we take k = 2n + 1, we are only able to bound ‖(euf,h)2n+1‖ in terms of E2n+1

f

but not in terms of E2n and E2n+2 (the conserved energy).
In order to do so, we use the first equality of (4.6) for j ≥ 1 to obtain

|
(
euf
)2n+1

j
| ≤ |

(
euf
)2n
j
| + α

(
|
(
evf
)2n+ 1

2

j+ 1
2

| + |
(
evf
)2n+ 1

2

j− 1
2

|
)
.

Therefore, using (a + b)2 ≤ 2(a2 + b2) once again,

‖
(
euf,h

)2n+1‖2 ≤ C
(
‖
(
euf,h

)2n‖2 + ‖
(
evf,h

)2n+ 1
2 ‖2

)
+

h

2
|
(
euf
)2n
0
|2,

which yields, with the aid of (4.16),

‖
(
euf,h

)2n+1‖2 ≤ C
(
1 − α2

)−1 E2n
f +

h

2
|
(
euf
)2n+1

0
|2.(4.22)
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To conclude we use the third equality of (4.7) rewritten as

(
euf
)2n+1

0
=
(
euc
)2n+2

0
+
(
euc
)2n
0

− 1

2

((
euf
)2n+2

0
+
(
euf
)2n
0

)
− 2(εur )2n+1.

This obviously implies that

|
(
euf
)2n+1

0
|2 ≤ C

h
( ‖

(
euc,h

)2n+2‖2+‖
(
euc,h

)2n‖2+‖
(
euf,h

)2n+2‖2+‖
(
euf,h

)2n‖2)+|
(
εur
)2n+1|2,

which yields, using this time (4.15) and (4.16), that

h

2
|
(
euf
)2n+1

0
|2 ≤ C (1 − α2)−1

(
E2n + E2n+2

)
+ C h |

(
εur
)2n+1|2.(4.23)

Finally, (4.17) is a direct consequence of (4.22) and (4.23).
For the estimation of the energy, we use the following identity which is the equiv-

alent for the error of the estimate of Theorem 2.1 for the discrete solution:∣∣∣∣∣∣∣

1

2Δt

(
E2n+2 − E2n

)
=

1

2

((
eUf

)2n+ 1
2

0

(
eVf

)2n+ 1
2

0
+
(
eUf

)2n+ 3
2

0

(
eVf

)2n+ 3
2

0

)

−
(
eUc

)2n+1

0

(
eVc

)2n+1

0
.

(4.24)

The rest of the proof consists in deducing from (4.24) an appropriate estimate for the
energy E2n and then applying Lemma 4.3 to get an estimate of the error. In order to
do this, we reorganize the three terms using (4.7) in order to exhibit the consistency
errors (see Remark 4.1)

∣∣∣∣∣∣∣

1

2Δt

(
E2n+2 − E2n

)
= −1

2

((
eUf

)2n+ 1
2

0

(
εvr
)2n+ 1

2 +
(
eUf

)2n+ 3
2

0

(
εvr
)2n+ 3

2

)

−
(
εur
)2n+1(

eVc
)2n+1

0
.

(4.25)

According to Lemma 4.3, the quantities (εvr)
2n+ 1

2 , (εvr)
2n+ 3

2 , and (εur )2n+1 are small.
In order to bound the other terms appearing on the right-hand side of (4.25) (and
defined in (4.3) and (4.4)) by a function of the error norm, we use a discrete trace
lemma.

Lemma 4.5. Under the hypotheses of Lemma 4.4, there exists a positive constant
C independent of Δt and h such that, for each n > 0,

|
(
euf
)n
0
| ≤

√
2√
h
‖
(
euf,h

)n‖, |
(
evf
)n+ 1

2

0
| ≤ 1√

h
‖
(
evf,h

)n+ 1
2 ‖,

|
(
euc
)2n
0
| ≤ 1√

h
‖
(
euc,h

)2n‖, |
(
evc
)2n+1

0
| ≤ 1√

2h
‖
(
evc,h

)2n+1‖.
(4.26)

Proof. The result is trivial.
For simplicity of exposition, it is useful to introduce a local measure of the error

on the time interval I2n+1 = [t2n, t2n+2]. Thus we set

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖eu,h‖2
h,I2n+1

= ‖
(
euc,h

)2n‖2 + ‖
(
euc,h

)2n+2‖2

+‖
(
euf,h

)2n‖2 + ‖
(
euf,h

)2n+1‖2 + ‖
(
euf,h

)2n+2‖2,

‖ev,h‖2
h,I2n+1

= ‖
(
evc,h

)2n+1‖2 + ‖
(
evf,h

)2n+ 1
2 ‖2 + ‖

(
evf,h

)2n+ 3
2 ‖2.

(4.27)
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Note that these are the quantities appearing in the left-hand sides of inequalities
(4.15) through (4.17) of Lemma 4.4. By definition of the discrete L∞(0, T ;L2) norm,
we have, for t2n+2 ≤ T ,

⎧⎪⎨
⎪⎩
‖eu,h‖h,I2n+1

≤ C ‖eu,h‖∞,2,T , ‖ev,h‖h,I2n+1
≤ C ‖ev,h‖∞,2,T ,

‖eu,h‖∞,2,T ≤ sup
t2n+2≤T

‖eu,h‖h,I2n+1 , ‖ev,h‖∞,2,T ≤ sup
t2n+2≤T

‖ev,h‖h,I2n+1 .

(4.28)
Using elementary manipulations on expression (4.25) and Lemma 4.5, the following
inequality can be obtained (note that the factor 1/α appearing below comes from the
right-hand side of the second equation of (4.3)):∣∣∣∣∣∣∣∣∣

E2n+2 − E2n

2Δt
≤ C√

h
‖eu,h‖h,I2n+1

{
|(εvr)2n+ 1

2 | + |(εvr)2n+ 3
2 |
}

+
C

α
√
h

{
‖eu,h‖h,I2n+1

+ α‖ev,h‖h,I2n+1

}
|(εur )2n+1|.

Then, by Lemma 4.3 (inequalities (4.12)) and (4.28)

E2n+2 − E2n

2Δt
≤ C

√
h ‖(u, v)‖C1

a,T

(
‖eu,h‖∞,2,T + ‖ev,h‖∞,2,T

)
.(4.29)

Adding the above inequalities from n = 0 to m − 1, for any integer m > 1, we
obtain (E0 = 0)

E2m ≤ C t2m
√
h ‖(u, v)‖C1

a,T

{
‖eu,h‖∞,2,T + ‖ev,h‖∞,2,T

}
.

Now, using Lemma 4.4, we can write, for t2n+2 ≤ T ,∣∣∣∣∣∣∣
‖eu,h‖2

h,I2n+1
+ ‖ev,h‖2

h,I2n+1
≤ C (1 − α2)−1

(
E2n + E2n+2

)
+ C h |(εur )2n+1|2

≤ C (1 − α2)−1 T
√
h ‖(u, v)‖C1

a,T

{
‖eu,h‖∞,2,T + ‖ev,h‖∞,2,T

}
+ C h3 ‖(u, v)‖2

C1
a,T

.

Therefore, taking the supremum over t2n+2 ≤ T , using (4.28) and classical manipula-
tions based on Young’s inequality, one proves the final estimate (4.10) (we omit the
details).

Remark 4.1. Let us give some details concerning the derivation of (4.25). We
start from the identities(

eUf
)2n+ 1

2

0

(
eVf

)2n+ 1
2

0
=
(
eUf

)2n+ 1
2

0

[(
eVf

)2n+ 1
2

0
−
(
eVc

)2n+1

0

]
+
(
eUf

)2n+ 1
2

0

(
eVc

)2n+1

0
,

(
eUf

)2n+ 3
2

0

(
eVf

)2n+ 3
2

0
=
(
eUf

)2n+ 3
2

0

[(
eVf

)2n+ 3
2

0
−
(
eVc

)2n+1

0

]
+
(
eUf

)2n+ 3
2

0

(
eVc

)2n+1

0
.

After summation, we obtain, using (4.11),

1

2

{(
eUf

)2n+ 1
2

0

(
eVf

)2n+ 1
2

0
+
(
eUf

)2n+ 3
2

0

(
eVf

)2n+ 3
2

0

}
=
(
eVc

)2n+1

0

⎡
⎣
(
eUf

)2n+ 1
2

0
+
(
eUf

)2n+ 3
2

0

2

⎤
⎦

− 1

2

(
eUf

)2n+ 1
2

0
(εvr)

2n+ 1
2

0 − 1

2

(
eUf

)2n+ 3
2

0

(
εvr
)2n+ 3

2

0
.

(4.30)
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On the other hand, one has the identity

∣∣∣∣∣∣∣∣

(
eUc

)2n+1

0

(
eVc

)2n+1

0
=

[(
eUc

)2n+1

0
− 1

2

{(
eUf

)2n+ 3
2

0
+
(
eUf

)2n+ 3
2

0

}] (
eVc

)2n+1

0

+
1

2

[(
eUf

)2n+ 3
2

0
+
(
eUf

)2n+ 3
2

0

] (
eVc

)2n+1

0
,

that is to say, with the aid of (4.11),

(
eUc

)2n+1

0

(
eVc

)2n+1

0
=
(
eVc

)2n+1

0

(
εur
)2n+1

0
+

1

2

[(
eUf

)2n+ 3
2

0
+
(
eUf

)2n+ 3
2

0

] (
eVc

)2n+1

0
.(4.31)

Finally, (4.25) is obtained as the difference between (4.30) and (4.31).
If scheme II is used, we have

E2n+2 − E2n

2Δt
= −1

2

((
eVf

)2n+ 1
2

0

(
ε̃ur
)2n+ 1

2 +
(
eVf

)2n+ 3
2

0

(
ε̃ur
)2n+ 3

2

)
−
(
ε̃vr
)2n+1(

eUc
)2n+1

0
,

(4.32)
and the proof of estimate (3.18) is similar to that presented for scheme I.

4.4. Proof of estimate (3.19). Apart from the results of section 4.4.1, which
are essentially generalizations of estimate (3.18), what we do in this section is valid
only when we use scheme I to do the coupling. The real novelty in the proof will
appear in section 4.4.2. The main differences between scheme I and scheme II will be
explained in Remark 4.3.

4.4.1. Estimate of coarse discrete derivatives. Our goal in this paragraph
is to derive estimates similar to (3.18) for which we shall call the successive coarse time
discrete derivatives of the error (eu,h, ev,h). The proof is essentially a repetition of the
proof of section 4.3, but the statement of the precise result requires some notation.

We define the coarse discrete derivative operator D by defining its action on a
sequence wh = (w)ts (where t and s are integers or integers plus one half—negative
indices t are allowed):

(Dw)t+1
s :=

(w)t+2
s − (w)ts
2Δt

.

We also define Dm as the mth successive power of D:

Dmwh = D (Dm−1wh).

We shall now write the numerical scheme satisfied by the mth discrete derivative
of eu,h and ev,h (these sequences are implicitly extended by 0 for negative times).
Note that the sequences Dmeu,h and Dmev,h are naturally defined on a grid shifted
by mΔt (the initial grid is supposed to contain negative discrete instants), so that the
fine grids differ depending whether m is odd or even. As the scheme (4.5), (4.6), and
(4.7) is “invariant” under a translation by 2Δt, it is easy to see that the odd discrete

coarse derivative of the sequences (eu,hc ), (ev,hc ), (eu,hf ), and (ev,hf ), namely,

(
D2q+1eu,hc

)
,
(
D2q+1ev,hc

)
,
(
D2q+1eu,hf

)
, and

(
D2q+1ev,hf

)
,

satisfies a similar but different set of equations. More precisely, at the instants at
which the odd discrete derivative are defined, the only change concerns the coarse
grid and corresponds to the substitutions euc,h ↔ D2q+1evc,h and evc,h ↔ D2q+1euc,h.
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(D2kevc,h)2n−1

(D2keuc,h)2n

(D2kevc,h)2n+1

(D2keuc,h)2n+2

(D2keuf,h)2n−1

(D2keuf,h)2n

(D2keuf,h)2n+1

(D2keuf,h)2n+2

(D2kevf,h)2n− 1
2

(D2kevf,h)2n+ 1
2

(D2kevf,h)2n+ 3
2

(D2k+1euc,h)2n−1

(D2k+1evc,h)2n

(D2k+1euc,h)2n+1

(D2k+1evc,h)2n+2

(D2k+1euf,h)2n−1

(D2k+1euf,h)2n

(D2k+1euf,h)2n+1

(D2k+1euf,h)2n+2

(D2k+1evf,h)2n− 1
2

(D2k+1evf,h)2n+ 1
2

(D2k+1evf,h)2n+ 3
2

Fig. 4.1. Time distribution of the unknowns.

Other than this change, the scheme for the time intervals [t2n−1, t2n+1] for the odd
coarse discrete derivative is the same as that satisfied by eu,h and ev,h in the time
intervals [t2n, t2n+2]. This is illustrated by Figure 4.1 in which the arrows represent
the discrete transmission conditions. We shall find two types of schemes that are
easily deduced from each other. In order to avoid repetition, it is useful to introduce

m = 1 if m is odd , m = 0 if m is even.

Then the equations of the scheme in a characteristic interval [t2n−m, t2n+2−m] are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Dmeuc

)2n+2−m

2j
−
(
Dmeuc

)2n−m

2j

2Δt
+

(
Dmevc

)2n+1−m

2j+1
−
(
Dmevc

)2n+1−m

2j−1

2h
= 0,

(
Dmevc

)2n+1−m

2j+1
−
(
Dmevc

)2n−1−m

2j+1

2Δt
+

(
Dmeuc

)2n−m

2j+2
−
(
Dmeuc

)2n−m

2j

2h
= 0

(4.33)

on the coarse grid (i.e., for j ≤ −1), and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Dmeuf

)2n+1

j
−
(
Dmeuf

)2n
j

Δt
+

(
Dmevf

)2n+ 1
2

j+ 1
2

−
(
Dmevf

)2n+ 1
2

j− 1
2

h
= 0, j ≥ 1,

(
Dmevf

)2n+ 1
2

j+ 1
2

−
(
Dmevf

)2n− 1
2

j+ 1
2

Δt
+

(
Dmeuf

)2n
j+1

−
(
Dmeuf

)2n
j

h
= 0, j ≥ 0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Dmeuf

)2n+2

j
−
(
Dmeuf

)2n+1

j

Δt
+

(
Dmevf

)2n+ 3
2

j+ 1
2

−
(
Dmevf

)2n+ 3
2

j− 1
2

h
= 0, j ≥ 1,

(
Dmevf

)2n+ 3
2

j+ 1
2

−
(
Dmevf

)2n+ 1
2

j+ 1
2

Δt
+

(
Dmeuf

)2n+1

j+1
−
(
Dmeuf

)2n+1

j

h
= 0, j ≥ 0,

(4.34)
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on the fine grid. Finally the discrete transmission conditions read

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
DmeVc

)2n+1−m

0
−
(
DmeVf

)2n+ 1
2−m

0
=
(
Dmεvr

)2n+ 1
2−m

,

(
DmeVc

)2n+1−m

0
−
(
DmeVf

)2n+ 3
2−m

0
=
(
Dmεvr

)2n+ 3
2−m

,

(
DmeUc

)2n+1−m

0
− 1

2

((
DmeUf

)2n+ 1
2−m

0
+
(
DmeUf

)2n+ 3
2−m

0

)
=
(
Dmεur

)2n+1−m
.

(4.35)

If we assume that the exact solution (u, v) belongs to Cm+1
a,T , using a Taylor–Lagrange

expansion, it is easy to show that the truncation errors appearing on the right-hand
side of (4.35) satisfy (this is the analog of (4.12) of Lemma 4.3)

sup
t2n≤T

|
(
Dmεur

)2n+1| ≤ C α h ‖u‖Cm+1
a,T

, sup
t2n≤T

|
(
Dmεvr

)n+ 1
2 | ≤ C h ‖(u, v)‖Cm+1

a,T
.(4.36)

If we define the discrete L∞(0, T ;L2) norms of the discrete coarse derivatives as
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖Dmeu,h‖∗∞,2,T = sup
t2n+ 3

2 ≤T

(
‖
(
Dmeuc,h

)2n−m‖ + ‖
(
Dmeuf,h

)2n−m‖
)

‖Dmeu,h‖∞,2,T = ‖Dmeu,h‖∗∞,2,T + sup
t2n+ 3

2 ≤T

‖
(
Dmeuf,h

)2n+1−m‖

‖Dmev,h‖∞,2,T = sup
t2n+ 3

2 ≤T

(
‖
(
Dmevc,h

)2n+1−m‖

+ ‖
(
Dmevf,h

)2n+ 1
2−m‖ + ‖

(
Dmevf,h

)2n+ 3
2−m‖

)
,

(4.37)

we can apply the proof of section 4.3 to prove the following lemma.
Lemma 4.6. If the solution of the continuous problem (1.1) belongs to Cm+1

a,T for
a > 0, then

‖Dmeu,h‖∞,2,T + ‖Dmev,h‖∞,2,T ≤ C (1 − α2)−1 T h
1
2 ‖

(
∂m
t u, ∂m

t v
)
‖C1

a,T
.(4.38)

4.4.2. The bootstrap argument.
Step 1: Derivation of an O(h) estimate. In order to improve estimate (4.10), we

note that equations (4.11) can be rewritten as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
eVf

)2n+ 3
2

0
−
(
eVf

)2n+ 1
2

0
=
(
εvr
)2n+ 1

2 −
(
εvr
)2n+ 3

2 = O(Δt)

2(eVc )2n+1
0 −

((
eVf

)2n+ 3
2

0
+
(
eVf

)2n+ 1
2

0

)
=
(
εvr
)2n+ 1

2 +
(
εvr
)2n+ 3

2 = O(Δt2)

(
eUc

)2n+1

0
− 1

2

((
eUf

)2n+ 1
2

0
+
(
eUf

)2n+ 3
2

0

)
=
(
εur
)2n+1

= O(Δt2).

(4.39)

Now, we reorganize the right-hand side of (4.24) in a clever way so that the left-hand
sides of (4.39) appear as (see Remark 4.2)∣∣∣∣∣∣∣∣∣∣∣∣∣

E2n+2 − E2n

2Δt
= − 1

2

(
εur
)2n+1

((
eVf

)2n+ 1
2

0
+
(
eVf

)2n+ 3
2

0

)

− 1

2

((
εvr
)2n+ 1

2 +
(
εvr
)2n+ 3

2

) (
eUc

)2n+1

0

+
1

4

((
εvr
)2n+ 3

2 −
(
εvr
)2n+ 1

2

)((
eUf

)2n+ 3
2

0
−
(
eUf

)2n+ 1
2

0

)
.

(4.40)
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Let us analyze the equality in detail. In order to bound the terms appearing on the
right-hand side by an L2 norm of the error, we first point out that from (4.3) and
(4.4) it follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
eVf

)2n+ 1
2

0
+
(
eVf

)2n+ 3
2

0
=

(
evf
)2n+ 1

2
1
2

+
(
evf
)2n+ 3

2
1
2

+ h

(
euf
)2n+2

0
−
(
euf
)2n
0

2Δt
,

(
eUc

)2n+1

0
=

1

2

((
euc
)2n+2

0
+
(
euc
)2n
0

)
,

(
eUf

)2n+ 3
2

0
−
(
eUf

)2n+ 1
2

0
=

1

2

((
euf
)2n+2

0
−
(
euf
)2n
0

)
.

(4.41)

It is important to note that the quantity (euf )2n+1
0 does not appear in expression

(4.40). This fact allows us to work with the norm ‖eu,h‖∗∞,2,T , which uses only the
even time steps of the error of u. This will permit us to use only inequalities (4.15)
and (4.16) of Lemma 4.4. Obtaining an estimate using the norm-star yields a similar
estimate for the other norm because of the following lemma.

Lemma 4.7. Assume the hypothesis of Lemma 4.4. Then

sup
t2n+ 3

2 ≤T

‖
(
euf,h

)2n+1‖∞,2,T ≤ C
(
‖eu,h‖∗∞,2,T + ‖ev,h‖∞,2,T + h

5
2 ‖(u, v)‖C2

a,T

)
.(4.42)

Proof. Using the first equality of (4.6) for j ≥ 1 we get

(
euf
)2n+1

j
=
(
euf
)2n
j

− α
((

evf
)2n+ 1

2

j+ 1
2

−
(
evf
)2n+ 1

2

j− 1
2

)
,

and in this way we also get

‖
(
euf,h

)2n+1‖2 ≤ C
(
‖
(
euf,h

)2n‖2 + ‖
(
evf,h

)2n+ 1
2 ‖2

)
+

h

2
|
(
euf
)2n+1

0
|2.(4.43)

In order to estimate the last term we use the last equation in (4.7) to obtain

(
euf
)2n+1

0
= −2

(
εur
)2n+1

+
(
euc
)2n
0

+
(
euc
)2n+2

0
−
((

euf
)2n
0

+
(
euf
)2n+2

0

)
/2.

Thus it is clear that

h

2
|
(
euf
)2n+1

0
|2 ≤ C

(
‖
(
euf,h

)2n‖2 + ‖
(
euf,h

)2n+2‖2 + ‖
(
euc,h

)2n‖2

+ ‖
(
euc,h

)2n+2‖2 + h|
(
εur
)2n+1|2

)
.

Introducing this inequality in (4.43) and using (4.13) of Lemma 4.3 we obtain

‖
(
euf,h

)2n+1‖2 ≤ C
(
‖eu,h‖∗∞,2,T

2
+ ‖ev,h‖2

∞,2,T + h5‖(u, v)‖2
C2
a,T

)
,

which easily implies (4.42).

Returning to (4.40), we use successively the trace Lemma 4.5 and the inequalities
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(4.13) of Lemma 4.3 to obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

2

∣∣∣(eVf )2n+ 1
2

0
+
(
eVf

)2n+ 3
2

0

∣∣∣
∣∣∣(εur )2n+1

∣∣∣ +
1

2

∣∣∣(eUc )2n+1

0

∣∣∣
∣∣∣(εvr)2n+ 1

2 +
(
εvr
)2n+ 3

2

∣∣∣
≤ C

α
√
h

(
‖eu,h‖∗∞,2,T + α‖ev,h‖∞,2,T

)
|
(
εur
)2n+1|

+
C√
h

(
|
(
εvr
)2n+ 1

2 + ‖eu,h‖∗∞,2,T

(
εvr
)2n+ 3

2 |
)
‖eu,h‖∗∞,2,T

≤ C h
3
2 ‖(u, v)‖C2

a,T

(
‖eu,h‖∗∞,2,T + ‖ev,h‖∞,2,T

)
.

(4.44)

The third term of the right-hand side of (4.40) is more complicated to treat, and this
is where we need the result on coarse discrete derivatives. Indeed, we can write, using
estimate (4.12) of Lemma 4.3 and the discrete trace Lemma 4.5,∣∣∣∣∣∣∣∣∣∣∣∣

1

4
|
(
εvr
)2n+ 1

2 −
(
εvr
)2n+ 3

2 | |
(
eUf

)2n+ 3
2

0
−
(
eUf

)2n+ 1
2

0
|

=
Δt

4
|
(
εvr
)2n+ 1

2 −
(
εvr
)2n+ 3

2 | |
(
Deuf

)2n+1

0
|

≤ C h
3
2 ‖(u, v)‖C1

a,T
‖Deu,h‖∗∞,2,T .

(4.45)

Substituting (4.44) and (4.45) into (4.40) and using inequalities (4.10) and (4.38) (for
m = 1) from Lemmas 4.2 and 4.6, we finally obtain

E2n+2 − E2n

2Δt
≤ C (1 − α2)−1 T h2 ‖(u, v)‖C2

a,T
‖(u, v)‖C1

a,T
.(4.46)

As a consequence, after summation over n, we have

E2n ≤ C (1 − α2)−1 T 2 h2 ‖(u, v)‖C2
a,T

‖(u, v)‖C1
a,T

,

and similar computations to those of the previous section lead to

‖eu,h‖∗∞,h,T + ‖ev,h‖∞,h,T ≤ C1 (1 − α2)−1 T h ‖(u, v)‖
1
2

C2
a,T

‖(u, v)‖
1
2

C1
a,T

.(4.47)

That is, using (4.47), (4.42), and Proposition 4.1, we obtain estimate (3.19) for k = 1;
i.e., the scheme is of order h.

To initiate the recurrence that will be the object of step 2 of the proof, we shall
also need similar estimates for the successive discrete coarse derivatives of the error
(eu,h, ev,h) (where we assume more regularity for the exact solution). Such estimates
are easily obtained along the same lines as (4.47). Clearly, if the exact solution belongs
to C2+m

a,T , we have that

sup
t2n≤T

|
(
Dmεur

)2n+1−m| ≤ C α2 h2 ‖∂k
t u‖C2

a,T
,

sup
t2n≤T

|
(
Dmεvr

)2n+ 1
2−m

+
(
Dmεvr

)2n+ 3
2−m| ≤ C h2 ‖

(
∂k
t u, ∂

k
t v
)
‖C2

a,T
,

(4.48)

and so we can apply in the case of the mth discrete coarse derivatives (Dmeu,h, Dmev,h)
a proof similar to that used for proving (4.47) and obtain

‖Dmeu,h‖∗∞,2,T + ‖Dmev,h‖∞,2,T ≤ C (1 − α2)−1 T h

×‖
(
∂m
t u, ∂m

t v
)
‖

1
2

C2
a,T

‖
(
∂m
t u, ∂m

t v
)
‖

1
2

C1
a,T

.
(4.49)
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Step 2: The recurrence proof. Assume the following by induction.
Assumption Rk. If (u, v) belongs to Cm+k+1

a,T , for m ≥ 0,

∣∣∣∣∣∣∣∣∣

‖Dmeu,h‖∗∞,h,T + ‖Dmev,h‖∞,h,T ≤ Ck (1 − α2)−1 T hpk

× ‖(∂m
t u, ∂m

t v)‖
1

2k

Ck
a,T

k∏
j=1

‖(∂m
t u, ∂m

t v)‖
1

2j

Cj+1
a,T

.

In what follows, the constant C should change from one line to another, but it is
always independent of k. From (4.40), using (4.44) and (4.45) we obtain

∣∣∣∣∣∣∣
E2n+2 − E2n

2Δt
≤ C h

3
2 ‖(u, v)‖C2

a,T

(
‖eu,h‖∗∞,h,T + ‖ev,h‖∞,h,T

)

+ C h
3
2 ‖(u, v)‖C1

a,T

(
‖Deu,h‖∗∞,h,T + ‖Dev,h‖∞,h,T

)
.

(4.50)

We assume that (u, v) ∈ Ck+2
a,T . Using Assumption Rk for m = 0 and for m = 1, we

obtain∣∣∣∣∣∣∣∣∣∣∣∣

E2n+2 − E2n

2Δt
≤ C Ck (1−α2)−1 T hpk+ 3

2

⎛
⎝‖(u, v)‖C2

a,T
‖(u, v)‖

1

2k

Ck
a,T

k∏
j=1

‖(u, v)‖
1

2j

Cj+1
a,T

+ ‖(u, v)‖C1
a,T

‖(u, v)‖
1

2k

Ck+1
a,T

k∏
j=1

‖(u, v)‖
1

2j

Cj+2
a,T

⎞
⎠ .

From the inequalities

‖(u, v)‖C2
a,T

≥ ‖(u, v)‖C1
a,T

, ‖(u, v)‖Ck
a,T

≤ ‖(u, v)‖Ck+1
a,T

and ‖(u, v)‖Cj+1
a,T

≤ ‖(u, v)‖Cj+2
a,T

,

we deduce that

E2n+2 − E2n

2Δt
≤ C Ck (1−α2)−1 T hpk+ 3

2

(
‖(u, v)‖C2

a,T
‖(u, v)‖

1

2k

Ck+1
a,T

k∏
j=1

‖(u, v)‖
1

2j

Cj+2
a,T

)
.

Summing over n, we obtain after some manipulations (including a shift of index in
the product)

E2n ≤ C Ck (1 − α2)−1 T 2 hpk+ 3
2

(
‖(u, v)‖

1

2k

Ck+1
a,T

k+1∏
j=1

‖(u, v)‖
1

2j−1

Cj+1
a,T

)
.

To conclude, it suffices to use once again (4.15) and (4.16) of Lemma 4.4, which gives

‖eu,h‖∗∞,h,T+‖ev,h‖∞,h,T ≤ (C Ck)
1
2 (1−α2)−1 T h

pk
2 + 3

4

(
‖(u, v)‖

1

2k+1

Ck+1
a,T

k+1∏
j=1

‖(u, v)‖
1

2j

Cj+1
a,T

)
,

which is what we wanted to prove with

pk+1 =
pk
2

+
3

4
, Ck+1 = (C Ck)

1
2 .
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In order to finish the recurrence proof we should obtain similar estimates for the
mth discrete coarse derivative of the error assuming more regularity of the solution.
Suppose that (u, v) ∈ Cm+k+2

a,T . Using similar techniques to those used in the present
section (and using Rk with m and m + 1) it is easy to show that

∣∣∣∣∣∣∣
‖Dmeu,h‖∗∞,h,T + ‖Dmev,h‖∞,h,T ≤ Ck (1 − α2)−1 T hpk+1

× ‖
(
∂m
t u, ∂m

t v
)
‖

1

2k+1

Ck+1
a,T

k+1∏
j=1

‖
(
∂m
t u, ∂m

t v
)
‖

1

2j

Cj+1
a,T

.

Since the result of Step 1, namely, estimates (4.47) and (4.49), is nothing but As-
sumption R1, we see easily that

pk =
3

2
− 1

2k
, Ck = C (C1/C)

1

2k−1 .

As the sequence Ck is convergent, it is in particular bounded. Finally we obtain the
estimate

‖eu,h‖∗∞,2,T + ‖ev,h‖∞,2,T ≤ C (1 − α2)−1 T h

(
3
2−

1

2k

)
|||(u, v)|||Ck

a,T
(4.51)

and using Lemma 4.7 we complete the proof of the following lemma.
Lemma 4.8. If the solution of the continuous problem (1.1) belongs to Ck

a,T for
a > 0, then

‖eu,h‖∞,2,T+‖ev,h‖∞,2,T ≤ C (1−α2)−1 T h

(
3
2−

1

2k

)
|||(u, v)|||Ck

a,T
+C h

5
2 ‖(u, v)‖C2

a,T
.

(4.52)
Step 3: Case (u, v) ∈ C∞

a,T . Under this hypothesis, and using the previous part
of the proof, we have that

‖eu,h‖∗∞,2,T + ‖ev,h‖∞,2,T ≤ C (1 − α2)−1 T h

(
3
2−

1

2k

)
|||(u, v)|||Ck

a,T

≤ C (1 − α2)−1 T h

(
3
2−

1

2k

)
|||(u, v)|||C∞

a,T

for all k ∈ N. Passing to the limit when k → +∞ and using Lemma 4.7, we get the
following.

Lemma 4.9. If the solution of the continuous problem (1.1) belongs to C∞
a,T for

a > 0, then

‖eu,h‖∞,2,T + ‖ev,h‖∞,2,T ≤ C (1 − α2)−1 T h
3
2 |||(u, v)|||C∞

a,T
+ C h

5
2 ‖(u, v)‖C2

a,T
.

(4.53)
Remark 4.2. To see how (4.40) can be derived, we start from the two following

identities:

(
eUf

)2n+1± 1
2

0

(
eVf

)2n+1± 1
2

0
=
(
eVf

)2n+1± 1
2

0

⎡
⎣
(
eUf

)2n+ 1
2

0
+
(
eUf

)2n+ 3
2

0

2
−
(
eUc

)2n+1

0

⎤
⎦

+
(
eVf

)2n+1± 1
2

0

⎡
⎣(eUc )2n+1

0
±

(
eUf

)2n+ 3
2

0
−
(
eUf

)2n+ 1
2

0

2

⎤
⎦ .
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Adding and identifying the consistency errors we obtain

1

2

((
eUf

)2n+ 1
2

0

(
eVf

)2n+ 1
2

0
+
(
eUf

)2n+ 3
2

0

(
eVf

)2n+ 3
2

0

)
= −1

2
(εur )2n+1

((
eVf

)2n+ 1
2

0
+
(
eVf

)2n+ 3
2

0

)

+
1

2

(
eUc

)2n+1

0

((
eVf

)2n+ 3
2

0
+
(
eVf

)2n+ 1
2

0

)

+
1

4

((
εvr
)2n+ 3

2 −
(
εvr
)2n+ 1

2

)((
eUf

)2n+ 3
2

0
−
(
eUf

)2n+ 1
2

0

)
.

Finally subtracting the term (eUc )2n+1
0 (eVc )2n+1

0 we obtain the desired expression.
Remark 4.3. Let us explain why we cannot use the same proof for scheme II.

Following the same steps as for scheme I we rewrite the transmission conditions (4.8)
as ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
eUf

)2n+ 3
2

0
−
(
eUf

)2n+ 1
2

0
= (ε̃ur )2n+ 1

2 −
(
ε̃ur
)2n+ 3

2 = O(Δt),

2
(
eUc

)2n+1

0
−
((

eUf
)2n+ 3

2

0
+
(
eUf

)2n+ 1
2

0

)
=
(
ε̃ur
)2n+ 1

2 +
(
ε̃ur
)2n+ 3

2 = O(Δt2),

(
eVc

)2n+1

0
− 1

2

((
eVf

)2n+ 1
2

0
+
(
eVf

)2n+ 3
2

0

)
=
(
ε̃vr
)2n+1

= O(Δt2)

(4.54)

in order to have two consistency errors of order two and only one of first order. We
rewrite (4.32) using this last truncation errors obtaining

∣∣∣∣∣∣∣∣∣∣∣∣∣

1

2Δt

(
E2n+2 − E2n

)
= − 1

2

((
eUf

)2n+ 1
2

0
+
(
eUf

)2n+ 3
2

0

) (
ε̃vr
)2n+1

− 1

2

(
eVc

)2n+1

0

((
ε̃ur
)2n+ 1

2 +
(
ε̃ur
)2n+ 3

2

)

+
1

4

((
ε̃ur
)2n+ 1

2 −
(
ε̃ur
)2n+ 3

2

)((
eVf

)2n+ 3
2

0
−
(
eVf

)2n+ 1
2

0

)
,

(4.55)

which is an analog of (4.40) for scheme II. The term that is most complicated to treat
is, as for scheme I, the last one. However, its expression in this case is not as easy as
for scheme I because

(eVf )
2n+ 3

2
0 − (eVf )

2n+ 1
2

0 = (evf )
n+ 3

2
1
2

− (evf )
n+ 1

2
1
2

+
h

2

(euf )2n+2
0 − 2(euf )2n+1

0 + (euf )2n0
Δt

.

In fact we cannot use similar arguments as before to estimate the last term. We recall
that for scheme I we had an simpler expression (third equation of (4.41)).

5. Comparison between theory and numerics. The results obtained in sec-
tion 3 are compared in subsection 5.2 to those obtained in [12] using the Fourier
technique (see subsection 5.1 for a brief recap of these results) and with some numer-
ical results in subsection 5.3.

5.1. Fourier analysis results. This study is based on the behavior of plane
wave solutions in the presence of a space-time mesh refinement. More precisely,
we study the reflection and transmission through the artificial interface between the
coarse grid and the fine grid of an incident wave in Ωc, of amplitude 1 and frequency
ω. One reflected wave and one transmitted wave each of frequency ω and of amplitude
Rc (reflection coefficient) and Tc (transmission coefficient), respectively, are generated
in the coarse and fine grids, respectively. Due to the aliasing phenomena (namely,
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1

ω

Rc

ω

Tc

ω

T p
c

ω − π
Δt

Ωc ΩfΓ

Waves on Ωc eiωt2n

Frequencies ω ω + π
Δt

Waves on Ωf eiωtn (−1)neiωtn

Fig. 5.1. Schematic representation of the aliasing phenomena.

that the frequencies ω and ω + π
Δt coincide in the coarse grid but are distinct in the

fine grid—see Figure 5.1) a parasitic transmitted wave of frequency ω + π
Δt is gener-

ated in the fine grid. If ωh is small enough and α is less than 1, this parasitic wave
is highly oscillatory in space (with space frequency π

h ) and evanescent (i.e., decaying
exponentially with distance from the interface) with a penetration depth l(h, α) which
satisfies

l(h, α) =
h

2argch(1/α)
+ O(h3).(5.1)

The amplitude of this parasitic wave at the interface is given by a coefficient T p
c , the

parasitic transmission coefficient. The particular solution one looks for is thus given
by the following expressions for u (the wave numbers kc and kf appearing in the
formula below depend on α and h and are deduced from the dispersion relation on
each grids—see [12] for more details):

⎧⎨
⎩

(uc)
2n
2j = ei(kcx2j−ωt2n) + Rc ei(−kcx2j−ωt2n), j ≤ 0,

(uf )nj = Tc ei(kfxj−ωtn) + T p
c (−1)j+n e−iωtn e−

xj
l(h,α) , j ≥ 0.

The expressions for v are similar. The unknown coefficients Rc, Tc, and T p
c can be

determined from the coupling equations (2.12) or (2.13). As the interface x = 0 is
purely artificial, if we consider the continuous case, we should find

Rc = 0, Tc = 1, T p
c = 0,

the physical values of the parameters. In the discrete case the coefficients Rc, Tc, and
T p
c depend only on ωh and α, and, for fixed 0 < α < 1, their Taylor expansions for

small ωh are given by

Rc(ωh, α) =
1

16

(
α2 − 3

)
(ωh)2 + O

(
(ωh)3

)
,

Tc(ωh, α) = 1 − 3

16

(
α2 + 1

)
(ωh)2 + O

(
(ωh)3

)
,

T p
c (ωh, α) =

1

2

iα2

√
1 − α2

(ωh) + O
(
(ωh)3

)
(5.2)
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if scheme I is used and

Rc(ωh, α) = − i
√

1 − α2

4
(ωh) + O(ω2h2),

Tc(ωh, α) = 1 − i
√

1 − α2

4
(ωh) + O(ω2h2),

T p
c (ωh, α) = −1 +

i
√

1 − α2

4
(ωh) + O(ω2h2)

(5.3)

if scheme II is used.

Remark 5.1. When one considers the limit case α = 1, one can show that the
parasitic wave becomes propagative (l(h, α) tends to infinity when α tends to one)
and we have for both schemes

Rc = 0, Tc = 1 + O(ω2h2), T p
c = −1 + O(ω2h2).

5.2. Comparing our results with the Fourier analysis results. Let us
summarize the main information provided by the Fourier analysis. First of all we
consider scheme I with α < 1. In this case we have the following:

• The discrete reflection and transmission coefficients are second order approx-
imations of the physical ones. The contribution to the error is of order two
in the L∞ and Lp, p > 1, norms.

• The L∞ norm of the error coming from the parasitic transmitted wave is
approximately (for h small enough)

α2ωh√
1 − α2

,(5.4)

that is, the method should be first order accurate for this norm. Due to the
exponential decay of this wave, the Lp error is approximately

(∫ ∞

0

(α2ωh)p

(1 − α2)
p
2

e−
2px argch(α−1)

h dx

) 1
p

≈ h
p+1
p

(1 − α)
p+1
2p

(α −→ 1).(5.5)

Taking p = 2 we remark that the order of convergence is in conformity with
that given by Theorem 3.1 and the comments following it. It seems that the
Fourier techniques allow us to obtain a sharper estimate for the dependence
on 1 − α when α goes to 1. The best estimate is obtained in the L1 norm,
where the error should be of order two.

• We also remark that this last error is localized at the artificial interface. In
effect, computing the L∞ and Lp, p ≥ 1, norms on the complement of a
neighborhood of the artificial interface, this error is exponentially decreasing
with the space step. The method should be of order two in these norms.

Concerning scheme II with α < 1, the Fourier analysis allows us to make the following
conclusions:

• The error coming from the reflected and (not parasitic) transmitted waves is
of order one in the L∞ and Lp, p ≥ 1, norms.

• The amplitude of the parasitic transmitted wave does not go to zero when
the discretization parameters go to zero. This means that the method does
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not converge in the L∞ norm. Due to the exponential decay of this wave, a
simple computation allows us to estimate its Lp error,

h
1
p

argch
1
p (α−1)

≈ h
1
p

(1 − α)
1
2p

(α −→ 1).

Again, the results obtained for p = 2 are coherent with those of Theorem 3.1
and the comments given later on. The L1 error should be of order one. The
estimate for the dependence on 1 − α seems to be more precise with the
Fourier techniques.

• As for scheme I, this last error is localized. If we consider the L∞ and Lp, p ≥
1, norms on the complement of a neighborhood of the point x = 0, the
method should be of first order, because the error provided by the transmitted
parasitic wave is exponentially decreasing.

For α = 1, the amplitude of the transmitted parasitic wave does not tend to zero and
the wave is not evanescent. Neither method should be strongly convergent.

5.3. Numerical results. In this section we will obtain numerically the orders of
convergence of schemes I and II for several norms to compare them with the theoretical
ones provided by Theorem 3.1 and the Fourier analysis. We consider the 1D wave
equation

⎧⎪⎨
⎪⎩

∂u

∂t
+

∂v

∂x
= 0,

∂v

∂t
+

∂u

∂x
= 0,

(x, t) ∈ R × R
+,

{
u(x, t = 0) = u0(

x−x0

L ),

v(x, t = 0) = 0,
x ∈ R,(5.6)

where x0 = −0.25, L = 0.25, and

u0(x) =

{
256(x− 1/2)4(x + 1/2)4 if x ∈ [−1/2, 1/2],

0 otherwise.

The exact solution of the problem is given by

u(x, t) =
1

2
u0 ((x− x0 − t)/L) +

1

2
u0 ((x− x0 + t)/L) ,

v(x, t) =
1

2
u0 ((x− x0 − t)/L) − 1

2
u0 ((x− x0 + t)/L) .

The computational domain for the numerical resolution of the equations is the interval
Ω = [−0.5, 0.5]. We use transparent boundary conditions to simulate the unbounded
domain. A space step of size h is used in Ωc = [−0.5, 0] and of size h/2 in Ωf = [0, 0.5].
We recall that both schemes also depend on the parameter α = Δt/h that we must
choose in the interval (0, 1) to ensure the stability of the method. In practice, it is
interesting to choose α to be as large as possible to reduce the computational costs.
The problem is that all the error and stability estimates given in section 3 blow up
when α tends to 1. In Figures 5.2 and 5.3 we can note this phenomenon as well. For
α = 1 both schemes give us similar results. A high frequency wave appears when
the waves cross the artificial boundary (see Figures 5.2(a) and 5.2(d)). Even so, the
method seems to be L2 stable. Taking α < 1 most of oscillatory parasitic waves
become evanescent and we obtain a good solution if we remove the behavior near
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(f) Scheme II, α = 0.95

Fig. 5.2. Dependence on α of uh. T ≈ 0.3. Zoom around x = 0.

x = 0. The penetration depth of the transmitted parasitic wave increases as α goes
to the limit value 1. As we can see in Figures 5.2(c) and 5.2(f), α = 0.95 is sufficient
to obtain a good result. We can also see that the amplitude of the parasitic wave is
higher for scheme II than for scheme I (see Figure 5.3). In particular, scheme II does
not converge in the L∞ norm (see Remark 2.1).

In order to measure the error between the exact solution (u, v) and the numerical
solution (uh, vh) we consider the discrete equivalent of the norms

L∞
t ([0, T ], Lp

x(Ω)), L∞
t ([0, T ], L∞

x (Ω)),

L∞
t ([0, T ], Lp

x(Ω�)), L∞
t ([0, T ], L∞

x (Ω�))
(5.7)

(with Ω� = Ω \ [0, 0.1], and p ∈ N), which we will denote by

‖eh‖∞,p,T , ‖eh‖∞,T , ‖eh‖�∞,p,T , ‖eh‖�∞,T .

Let us assume that the error has approximately the form

‖eh‖ ≈ C(u, v)(1 − α)−k2hk1 .(5.8)

Fixing a value of the parameter α and computing the different norms at T = 0.5 (where
the wave has already crossed the artificial interface) for h = 0.005, 0.003̂, 0.0025, and
0.002 we obtain the value of k1 for each norm. The results for α = 0.95, using the
discrete L∞

t ([0, T ], L1
x(Ω)), L∞

t ([0, T ], L2
x(Ω)), and L∞

t ([0, T ], L∞
x (Ω)) norms, are plot-

ted in Figures 5.4(a), 5.5(a), and 5.6(a), respectively. We can see that the slopes are
coherent with the estimates predicted in section 3 and subsection 5.2. As we pointed
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Fig. 5.3. Dependence on α of uh − u. T ≈ 0.3. Zoom around x = 0.
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Fig. 5.4. L∞(0, T, L1(Ω)) norm with α = 0.95.

out in section 5.2, the most important part of the error is localized at the interface as
we can see in Figure 5.7, where the L∞

t ([0, T ], L2
x(Ω�)), and L∞

t ([0, T ], Lp
x(Ω�)) errors

have been computed.

The same computations have been done with α = 0.85, 0.9, 0.97, and 0.99 and
the same orders of convergence have been obtained (see Table 5.1). This allows
us to compute the dependence on α of the method when this parameter goes to
1. In Figures 5.4(b), 5.5(b), and 5.6(b), we represent the results obtained for the
L∞
t ([0, T ], L1

x(Ω)), L∞
t ([0, T ], L2

x(Ω)), and L∞
t ([0, T ], L∞

x (Ω)) norms that are in cor-
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Fig. 5.5. L∞(0, T, L2(Ω)) norm with α = 0.95.
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Fig. 5.6. L∞(0, T, L∞(Ω)) norm with α = 0.95.
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Fig. 5.7. Convergence of both schemes with α = 0.95.

respondence with the Fourier analysis (that gives sharper estimates) and, in conse-
quence, also with Theorem 3.1. We have also noted that the hypotheses demanded in
Theorem 3.1 concerning the smoothness of the exact solution of (1.1) are in practice
too strong. We have observed the same rates of convergence for initial conditions that
are C2(R × [0, T ])2.
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Table 5.1

Observed orders of convergence.

‖eh‖L1 ‖eh‖L2 ‖eh‖L∞ ‖eh‖L2
∗

‖eh‖L∞
∗

Scheme I 2 1.5 1 2 2
Scheme II 1 0.5 n.c. 1 1
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Abstract. We are interested in a robust and accurate domain decomposition method with
arbitrary interface conditions on nonmatching multiblock grids using a finite volume discretization.
To take into account the nonmatching grids at the interface, we introduce transmission operators,
Dirichlet–Neumann interface conditions, and arbitrary equivalent interface conditions (for example,
Robin interface conditions). Under a compatibility assumption on the transmission operators, we
prove the equivalence between the different types of interface conditions and the well posedness of
the local and global problems. Then two error estimates are proven in terms of the discrete H1-
norm: the first in O(h)1/2 with transmission operators based on piecewise constant functions and
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rebuilding. In conclusion, numerical results are presented in confirmation of the theory.
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1. Introduction. Our aim is to develop numerical methods which combine a
finite volume method [21] and a domain decomposition [1] algorithm on nonmatching
multiblock grids with arbitrary interface conditions. The goal is to obtain a numerical
scheme as accurate as the finite volume scheme on matching grids (O(h) in discrete
H1-norm). Finite volume schemes are used for their conservation property and are
well adapted to deal with convective terms. A particular case of arbitrary interface
conditions is the Robin interface conditions ( ∂

∂n +α) which were introduced in domain
decomposition methods in [18]. They enable the use of nonoverlapping subdomains
and speed up the convergence of iterative domain decomposition algorithms [20] and
[17]. Nonmatching grids make grid generation much easier and faster, since it is then
a parallel task, and enable sliding blocks.

Some domain decomposition methods use the same numerical schemes in each
subdomain as in the matching case. They define transmission operators and interface
conditions to impose weak continuity of the primary unknown and its normal deriva-
tive across the nonmatching interface. The first introduced, the mortar method [7],
is based on a finite element discretization [12] and introduces a mortar space at the
interface to define interface conditions of Dirichlet–Neumann-type (mortar interface
conditions). An extension to mixed finite elements with different Dirichlet–Neumann
interface conditions is done in [4]. In [13], the mortar method is extended to the finite
volume method after formulating the discretization as a finite element method using
the dual mesh. In all these methods, error estimates are proven (order 1 (O(h)) in
H1-norm with P 1 finite element, with RT0 mixed finite element, or with vertex cen-
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(laurent.saas@wanadoo.fr, isabelle.faille@ifp.fr, francoise.willien@ifp.fr).
‡CMAP, Ecole Polytechnique, 91128 Palaiseau cedex, France (nataf@cmap.polytechnique.fr).

860



ARBITRARY INTERFACE CONDITIONS ON NONMATCHING GRIDS 861

tered finite volume), but the use of Robin interface conditions does not seem possible.
In [3] a finite volume scheme with Robin interface conditions is proposed (see [5] for
the mixed finite element case). The error estimate depends on the Robin interface
conditions ( ∂ .

∂n + α .): if α = O(1/h)γ , the error estimate is in O(h)1−γ/2, and opti-
mized Robin interface coefficients with respect to the convergence rate of the iterative
domain decomposition algorithm [20], αopt = O(1/h)1/2, give an error of O(h)3/4 (less
than that in the matching case). Moreover the Robin coefficients must be constant
along the interface. These methods enable the use of Robin interface conditions but
not arbitrary ones involving, for instance, second-order tangential derivatives.

Other domain decomposition methods for nonmatching grids consist of introduc-
ing a matching subgrid at the interface. They use classical interface conditions on this
subgrid but need a modified numerical scheme in each subdomain. In the two-point
flux approximation (TPFA) method, the intersection grids at the interface are intro-
duced and classical Robin conditions are used. This method has already been used
in oil engineering applications [6] and has been studied in [11] and [10]. A two-point
scheme is used on the subgrid leading to an error estimate in O(h)1/2 [10] because
of the lack of consistency of the flux (a more general error estimate is performed
depending on the number of nonmatching elements). In [8] the previous method is
extended using interpolation near the subgrid to ensure a consistent flux approxima-
tion: stability and an error estimate are not proven but it seems to be in O(h). In [2]
a multipoint flux approximation (MPFA) is used near the nonmatching interface to
ensure weak continuity of the principal unknown and of its normal derivative, but no
theoretical results are proven.

All those methods either do not use arbitrary interface conditions or do not have
finite volume accuracy or a mathematical basis. In this paper, we present and study,
for a second-order elliptic problem, a domain decomposition method on nonmatching
multiblock grids using finite volume and arbitrary interface conditions. For instance,
the interface conditions used in the domain decomposition method could involve the
discrete Steklov–Poincaré operator (see [20]), Robin interface conditions as in [5] or
in [19], or second-order tangential derivatives as in [17], [16]. The reason for using
such interface conditions is that they lead to faster domain decomposition methods.

The paper is organized as follows. In section 2, we introduce the domain decom-
position formulation of a problem and its discretization by a finite volume scheme.
Section 2.3 gives the finite volume discretization on the nonmatching grids. In sec-
tion 3, we define transmission operators, Dirichlet–Neumann interface conditions, and
equivalent arbitrary interface conditions. Section 4 deals with the wellposedness of
the global and local problems. We give two examples of transmission operators in
section 5. In section 6 error estimates are performed. The first transmission opera-
tors are piecewise constant projections and lead to an error estimate in O(h1/2). The
second transmission operators are based on the linear rebuilding of [4] and lead to
an error estimate in O(h) as in the matching case. In section 7 numerical results are
shown. Finally, in section 8 we give our conclusion.

2. Formulation of the problem.

2.1. Domain decomposition. Let Ω be a bounded domain in R
d (d = 2, 3),

η > 0 and div(�a) ≥ 0 with �a ∈ C1(Ω). We consider the following second-order elliptic
problem:

ηp− Δp + div(�ap) =f in Ω,(2.1)

p =g on ∂Ω,(2.2)
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where f and g are given data. The assumption η > 0 is made throughout the paper.
It may probably be relaxed but at the expense of longer and more tedious proofs.
The domain Ω is decomposed into N (N ≥ 2) nonoverlapping subdomains Ωi, and
we introduce the set I = {i ∈ N | 1 ≤ i ≤ N} such that Ω = ∪i∈IΩi (with Ωi ∩
Ωj = ∅). We also introduce for all i ∈ I, Vi = {j ∈ I | i �= j and dim(Ωi ∩
Ωj) = d − 1} and for all j ∈ Vi, we denote Γij = Ωi ∩ Ωj (we have the following
property: i ∈ Vj ⇐⇒ j ∈ Vi). At the continuous level, for all i ∈ I, for all j ∈ Vi

given arbitrary positive definite interface operators S̃i
j acting on functions living on

the interface between two subdomains Ωi and Ωj , the above problem (2.1)–(2.2)
can be reformulated as the following domain decomposition problem with arbitrary
continuous interface conditions (2.5): for all i ∈ I

ηpi − Δpi + div(�api) = f in Ωi,(2.3)

pi = g on ∂Ω ∩ ∂Ωi,(2.4)

∂pi
∂ni

+ S̃i
j(pi) =− ∂pj

∂nj
+ S̃i

j(pj) on Γij ∀j ∈ Vi.(2.5)

A simple iterative method for solving the above domain decomposition method
is the additive Schwarz method:

ηpn+1
i − Δpn+1

i + div(�apn+1
i ) = f in Ω,(2.6)

pn+1
i = g on ∂Ω ∩ ∂Ωi,(2.7)

∂pn+1
i

∂ni
+ S̃i

j(p
n+1
i ) =−

∂pnj
∂nj

+ S̃i
j

(
pnj
)

on Γij ∀j ∈ Vi.(2.8)

The wellposedness and convergence of the above problems have been studied in [18] for
Robin interface conditions (S̃j

i (p) = αj
ip with αj

i > 0). It is also possible to use (2.6)–
(2.8) as a preconditioner for Krylov-type methods; see, for example, [1], [22]. In this
paper, we present a finite volume counterpart of problem (2.1)–(2.2) on nonmatching
multiblock grids with discrete arbitrary interface conditions. We want to solve it with
an iterative domain decomposition algorithm of the same type as (2.6)–(2.8). In the
next subsection, we give the classical finite volume that we use inside a subdomain
Ωi.

2.2. Finite volume discretization. (2.1)–(2.2) are discretized using a cell cen-
tered finite volume scheme in each subdomain [21]. We choose this scheme as an
example but other schemes would be possible as well.

2.2.1. Mesh and definition. For i ∈ I, let Ti be a set of closed polygonal
subsets associated with Ωi such that Ωi = ∪K∈TiK. We shall use the following
notation for all i ∈ I.

• EΩi is the set of faces of Ti.
• EiD is the set of faces such that ∂Ωi ∩ ∂Ω = ∪ε∈EiD

ε (let us recall that a
Dirichlet boundary condition will be imposed on ∂Ωi ∩ ∂Ω).

• Ei is the set of faces such that ∂Ωi\∂Ω = ∪ε∈Eiε (let us recall that a Dirichlet–
Neumann or an arbitrary boundary condition will be imposed on ∂Ωi\∂Ω).

• For all j ∈ Vi, Ei→j = {ε ∈ Ei|ε ∩ Γij �= ∅}, the grid of Γij for the subdomain
Ωi, Ei = ∪j∈Vi

Ei→j (because the grids are nonmatching at the interface Γij ,
we have Ei→j �= Ej→i).

• For all j ∈ Vi, Eij = {εi∩εj |εi ∈ Ei→j and εj ∈ Ej→i}, the subgrid intersection
of Ei→j and Ej→i. For any ε ∈ Eij , there exists a unique pair (Ki,Kj) ∈ Ti×Tj
such that ε = Ki∩Kj . We shall use the notation Ki = Ki(ε) and Kj = Kj(ε).
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xK
yεK'x

pε uε

Fig. 1. Assumption 1.

• ∀K ∈ Ti,
E(K) denotes the set of faces of K.
EiD(K) = E(K) ∩ EiD is the set of faces of K which are on ∂Ωi ∩ ∂Ω.
Ei(K) = E(K) ∩ Ei is the set of faces of K which are on ∂Ωi\∂Ω.
Ni(K) = {K ′ ∈ Ti|K ∩K ′ ∈ EΩi} is the set of the control cells adjacent

to K in Ωi.
Nij(K) = {K ′ ∈ Tj |K ∩K ′ ∈ Eij} is the set of the control cells adjacent

to K which belongs to Ωj .
N (K) = Ni(K) ∪ (∪j∈Vi

Nij(K)) and we note for all K ′ ∈ N (K),
[K,K ′] = K ∩K ′.

We make the following geometrical assumptions on the meshes (see Figure 1).
Assumption 1. For all i ∈ I, Ti is a finite volume admissible mesh, i.e., Ti is a set

of closed subsets of dimension d such that
• for any (K,K ′) ∈ T 2

i with K �= K ′, one has either K ∩K ′ ∈ EΩi or dim(K ∩
K ′) < d− 1

• there exist points (yε)ε∈EΩi
on the faces and points (xK)K∈Ti inside the cells

such that
◦ for any adjacent cells K and K ′, the straight line [xK , xK′ ] is perpen-

dicular to the face [K,K ′] and [xK , xK′ ] ∩ [K,K ′] = {y[K,K′]}
◦ for any face ε ∈ EiD, let K(ε) ∈ Ti be such that ε ⊂ K: then the straight

line [xK(ε), yε] is perpendicular to ε
• for all i ∈ I, no face intersects both ∂Ωi\∂Ω and ∂Ωi ∩ ∂Ω (Ei ∩ EiD = ∅)
• for all j ∈ Vi, Γij = ∂Ωi ∩ ∂Ωj can be written as the union of faces of Ei→j

and of Ej→i

Remark 2.1. As a result,
⋃

i∈I ∂Ωi ∩ ∂Ω can be written as a union of (whole)
faces. The same holds for ∂Ωi\∂Ω. For all j ∈ Vi and for all k ∈ Vi (j �= k), we have
Ei→j ∩ Ei→k = ∅. We note T = ∪i∈ITi and h = maxi∈I,K∈Ti diam(K) its mesh size.

2.2.2. Cell centered finite volume scheme in the subdomains. Let i ∈ I;
we shall use the primary unknowns (piK)K∈Ti which aim at being approximations of
p(xK) and for ε ∈ Ei, (piε, u

i
ε) which aim at being approximations of

(p(yε), ∂p/∂ni(yε)).

The scheme is obtained by integrating (2.6) over each control volume K ∈ Ti:
∫
K

ηp−
∫
∂K

∂p

∂�nK
+

∫
∂K

�a · �nKp =

∫
K

f,(2.9)

where �nK is the outward normal on ∂K of K. If we introduce FK such that

SK =
1

meas(K)

∫
K

f − FK = O(diam(K)).(2.10)
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(2.9) is discretized by

(2.11)

η meas(K)piK −
∑

K′∈Ni(K)

[ui
K,K′meas([K,K ′]) + viK,K′ ] −

∑
ε∈EiD(K)∪Ei(K)

ui
εmeas(ε)

+
∑
j∈Vi

∑
K′∈Nij(K)

vi,j[K,K′] +
∑

ε∈EiD(K)

viε,K+ = FKmeas(K),

where meas(·) denotes the Lebesgue measure and ui and vi are defined in what follows.
For an interior face [K,K ′] ∈ EΩi\(EiD ∪ Ei), we define

ui
K,K′ =

piK′ − piK
d(xK′ , xK)

,(2.12)

where d(x, y) is the Euclidean distance between x and y. For a face ε ∈ EiD(K) on
the boundary ∂Ωi ∩ Ω, the Dirichlet boundary condition (2.7) is taken into account
by using

ui
ε =

giε − piK
d(yε, xK)

,(2.13)

where giε = g(yε). On each interface face ε ∈ Ei(K), we have

ui
ε =

piε − piK
d(yε, xK)

.(2.14)

As for the convective terms, for any adjacent cells K, K ′, let

viK,K′ = a[K,K′]p
i
[K,K′]+ ,(2.15)

where a[K,K′] =
∫
[K,K′] �a · �nK . If a[K,K′] ≥ 0, then pi[K,K′]+ = piK ; else pi[K,K′]+ =

piK′ (upwind scheme). Note that (2.15) will even be used for cells adjacent to the
interfaces between subdomains. We have the useful properties that ui

K,K′ = −ui
K′,K ,

a[K,K′] = −a[K′,K], and pi[K,K′]+ = pi[K′,K]+ . For the discretization of the convective

term on ε ∈ EiD(K), we introduce aε,K =
∫
ε
�a ·�nK , and if aε,K ≥ 0, then piε,K+ = piK ;

else piε,K+ = g(yε). We define

viε,K+ = aε,Kpiε,K+ .(2.16)

When there is no domain decomposition, this scheme has been analyzed in [21] in the
more general case of discontinuous coefficients, and it is proven to be of order 1 for a
discrete H1-norm.

In order to define the domain decomposition discretization scheme, we shall define
in section 2.3 the convective fluxes on the interface and the matching conditions for
the diffusive fluxes.

To simplify the notation, for all i ∈ I, we associate with any discrete values
(piε)ε∈Ei , pi its natural piecewise constant extrapolation in P 0(Ei):

pi : ∂Ωi\∂Ω −→ R,
y �−→ pi(y) = piε if y ∈ ε ⊂ Ei
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and also for all j ∈ Vi, p
j
i the restriction of pi to ∂Ωi ∩ ∂Ωj .

We define the spaces of discretization and the associated discrete norms for all
i ∈ I:

P 0(Ei→j) = {p : Γij −→ R | p is constant on all ε ∈ Ei→j},

P 0(Ei) = {p is constant on all ε ∈ Ei},

Zi = {p : Ωi −→ R | ∀K ∈ Ti, p is constant on K},

Z =
∏
i∈I

Zi.

The discrete L2-norms and H1-norms are defined by the following: for all p ∈ Zi,

‖p‖2
L2(Ωi)

=
∑
K∈Ti

(pK)2meas(K)

and for all q ∈ P 0(Ei),

‖q‖2
L2(∂Ωi)

=
∑

ε∈EiD∪Ei

(qε)
2meas(ε).

Let Xi = Zi ×P 0(Ei) be endowed with the following seminorms: for p̃ = (p, pb) ∈ Xi,

|p̃|21,Ti
=

∑
K∈Ti

[ ∑
K′∈Ni(K)

(pK − pK′)2

d(xK , xK′)
meas([K,K ′])

+
∑

ε∈EiD(K)

(pK)2

d(xK , yε)
meas(ε) +

∑
ε∈Ei(K)

(pbε − pK)2

d(xK , yε)
meas(ε)

]

and

‖p̃‖L2(∂Ωi) =
(∑

ε∈Ei

|pbε|2 meas(ε)
)1/2

.

In what follows, we shall drop the subscript b.
For all p = (pi)i∈I ∈ Z, let ‖p‖2

L2(Ω) =
∑N

i=1 ‖pi‖2
L2(Ωi)

. Let the product

space X = Πi∈IXi be endowed with the following seminorm: for p̃ = (p̃i)i∈I ∈ X,

|p̃|21,T =
∑N

i=1 |p̃i|21,Ti
.

2.3. Finite volume scheme on the interfaces. We first give the discretiza-
tion of the convective flux through the interface on the nonmatching grids. Then
in order to enforce the weak continuity of the primary unknown p and of its nor-
mal derivative (denoted by u) through the interface on the nonmatching grids, we
introduce transmission operators.

Convective flux. The convective flux on the nonmatching grids is discretized as
in the matching case by an upwind scheme [21]. For all K ∈ Ti, for all j ∈ Vi, for all
K ′ ∈ Nij(K), we define

vi,j[K,K′] = a[K,K′]p
i,j
[K,K′]+ ,(2.17)

where a[K,K′] =
∫
[K,K′] �a · �nK and pi,j[K,K′]+ = piK if a[K,K′] ≥ 0, and pi,j[K,K′]+ = pjK

otherwise.
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Transmission operators and Dirichlet–Neumann interface conditions. In order to
enforce a weak continuity across the interface Γij of the principal unknown p and of
its normal derivative (denoted by u), we introduce the linear transmission operators
Qj

i : P 0(Ej→i) −→ P 0(Ei→j). They satisfy the following compatibility condition.
Assumption 2. For all i ∈ I, j ∈ Vi and u ∈ P 0(Ei→j) and v ∈ P 0(Ej→i),

〈Qi
j(u), v〉L2(Γij) = 〈u,Qj

i (v)〉L2(Γij)

As in mortar methods [7], we consider that one subdomain enforces the weak
continuity of the primary unknown which is interpreted as the Dirichlet interface
condition. This subdomain is called the master. The other subdomain enforces the
weak continuity of the normal derivative which corresponds to a Neumann interface
condition and is called the slave. The conditions are interpreted and considered in
the following as Dirichlet–Neumann interface conditions. We introduce the following
definition.

Definition 2.2. For all i ∈ I, Vi is partitioned as Vi = Si ∪ Mi such that
Si ∩Mi = ∅ and for all j ∈ I, i ∈ Sj ⇐⇒ j ∈ Mi.

We define for all i ∈ I, for all j ∈ Si, pi, ui ∈ P 0(Ej→i), and pj , uj ∈ P 0(Ei→j)
the Dirichlet–Neumann interface conditions on Γij by

pj = Qi
j(pi),(2.18)

ui = Qj
i (−uj),(2.19)

where, if j ∈ Si, subdomain Ωi is the master of subdomain Ωj which is the slave. On
each interface between two subdomains, one side has to be the master and the other
one the slave. This choice is arbitrary. In what follows, when there is no ambiguity,
we shall drop the superscripts in the above equalities. Two types of transmission
operators will be given in section 5.

3. Interface boundary conditions. To define more general interface condi-
tions that have an impact on the convergence rate of the iterative domain decomposi-
tion algorithm (2.6)–(2.8) but not on the converged solution, we introduce the linear
interface operator Si,j : P 0(Ei→j) −→ P 0(Ei→j). The interface operators satisfy the
following hypothesis.

Assumption 3. For all i ∈ I, j ∈ Vi, i �= j, Si,j is positive definite (for all
u ∈ P 0(Ei→j), u �= 0, 〈Si,j(u), u〉L2(Γij) > 0).

Assumption 3 implies that Si,j is invertible. For example Si,j can be
• the discrete Steklov–Poincaré operator (see [20]);
• a diagonal operator (Si,j = diag(αε), with αε > 0 a constant Robin coefficient

on ε ∈ Ei→j);
• optimized Robin interface coefficients of order 0 (Si,j = diag(αopt

ε ), with
αopt
ε > 0 Robin optimized coefficients on ε ∈ Ei→j) (see [19]);

• the discretization of (α − ∂
∂τ (β ∂

∂τ )), where τ is the tangential vector of the
interface (Si,j is a tridiagonal operator with αopt

ε > 0 and βopt
ε for ε ∈ Ei→j)

(see [17], [16]).
In what follows, when there is no ambiguity, we shall denote Si,j by Si.

3.1. Dirichlet–Neumann and arbitrary interface conditions. The arbi-
trary interface conditions are defined by the following: for all i ∈ I, for all j ∈ Si,

ui + Qi(SjQj(pi)) = Qi(−uj + Sj(pj)) on Γi,j ,(3.1)

Qj(S
−1
i Qi(uj)) + pj = Qj(−S−1

i (ui) + pi) on Γi,j .(3.2)
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Theorem 3.1 proves that conditions (2.19) and (2.18) and conditions (3.1) and
(3.2) are equivalent.

Theorem 3.1. Assume that for all i ∈ I, for all j ∈ Si, the transmission opera-
tors Qj

i satisfy Assumption 2 and that the interface operators Si,j satisfy Assumption
3; then we have the following equivalence: for all (pi, ui) ∈ P 0(Ei→j) × P 0(Ei→j) and
for all (pj , uj) ∈ P 0(Ej→i) × P 0(Ej→i),

{
ui + Qi(Sj,iQj(pi)) = Qi(−uj + Sj,i(pj))
Qj(S

−1
i,j Qi(uj)) + pj = Qj(−S−1

i,j (ui) + pi)
⇐⇒

{
ui = Qi(−uj),
pj = Qj(pi).

Proof. (⇒) We introduce the auxiliary variables

{
δpj = Qj(pi) − pj ,
δui = Qi(uj) + ui.

Then conditions (3.1) and (3.2) are rewritten with δpj and δui as

{
Qi(Sj(δpj)) + δui = 0,
−Qj(S

−1
i (δui)) + δpj = 0.

By multiplying the first equation by S−1
i (δui) and the second by Sj(δpj), integrating

over Γij , and summing we obtain

∫
Γij

Qi(Sj(δpj))S
−1
i (δui) −

∫
Γij

Qj(S
−1
i (δui))Sj(δpj)

+

∫
Γij

(δui)S
−1
i (δui) +

∫
Γij

(δpj)Sj(δpj) = 0.(3.3)

From Assumption 2, we deduce

∫
Γij

Qi(Sj(δpj))S
−1
i (δui) =

∫
Γij

Sj(δpj)QjS
−1
i (δui).

Consequently (3.3) becomes

∫
Γij

δuiS
−1
i (δui) +

∫
Γij

δpjSj(δpj) = 0.

Si and Sj satisfying Assumption 3, we have δui = δpj = 0, and thus ui = Qi(−uj)
and pj = Qj(pi).

(⇐) Equation (2.18) yields

pij = Qi
j(p

j
i ) ⇒ Sj,i(p

i
j) = Sj,iQ

i
j(p

j
i ) ⇒ Qj

i (Sj,i(p
i
j)) = Qj

i (Sj,iQ
i
j(p

j
i ));(3.4)

then combining (3.4) and (2.19) we get (3.1). Proceeding in the same way with (2.19),
we get (3.2).
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4. Wellposedness. Before proving that the global problem defined by (2.11)–
(2.19) is well posed, we state the following lemma.

Lemma 4.1. In each subdomain Ωi (i ∈ I), if (p, uε) ∈ Xi × P 0(Ei) satisfy
(2.11)–(2.16), then the following estimate holds:

∑
K∈Ti

(
η meas(K)(piK)2 +

1

2

∑
K′∈Ni(K)

(piK − piK′)2

d(xK , xK′)
meas([K,K ′])

+
∑

ε∈EiD(K)

(piK)2

d(yε, xK)
meas(ε) +

∑
ε∈Ei(K)

d(yε, xK)(ui
ε)

2meas(ε)−
∑

ε∈Ei(K)

ui
εp

i
εmeas(ε)

+
1

2

∑
ε∈E(K)\Ei(K)

[∫
ε

�a · �nK

]
(piK)2 +

∑
j∈Vi

∑
K′∈Nij(K)

vi,j[K,K′]p
i
K

)

≤
∑
K∈Ti

FKpiKmeas(K) +
∑

ε∈EiD

piKgiε
d(yε, xK)

meas(ε) −
∑

ε∈EiD

1[aε,K≤0] aε,Kgiεp
i
K .

Remark 4.2. For any K such that E(K) ⊂ [EΩi\(Ei ∪EiD)], thanks to div (�a) ≥ 0,
we have

∑
ε∈E(K)

∫
ε

�a · �nK(ε)(p
i
K(ε))

2 =

∫
K

(div(�a))(piK(ε))
2 ≥ 0.

Proof. The summation over K ∈ Ti in (2.11) multiplied by piK yields

∑
K∈Ti

(
η meas(K)(piK)2 −

∑
K′∈Ni(K)

[
ui
K,K′piKmeas([K,K ′]) + vi[K,K′]+p

i
K

]

−
∑

ε∈EiD(K)∪Ei(K)

ui
εp

i
Kmeas(ε) +

∑
j∈Vi

∑
K′∈Nij(K)

vi,j[K,K′]p
i
K +

∑
ε∈EiD(K)

viε,K+piK

)

=
∑
K∈Ti

FKpiKmeas(K).(4.1)

Taking into account (2.12)–(2.16), (4.1) reads as

∑
K∈Ti

(
η meas(K)(piK)2 +

∑
K′∈Ni(K)

[
piK

piK − piK′

d(xK , xK′)
meas([K,K ′]) + a[K,K′]p

i
[K,K′]+p

i
K

]

+
∑

ε∈EiD(K)

piK
piK − giε
d(yε, xK)

meas(ε) +
∑

ε∈Ei(K)

d(yε, xK)(ui
ε)

2meas(ε)

+
∑

ε∈EiD(K)

aε,Kpiε,K+piK −
∑

ε∈Ei(K)

ui
εp

i
εmeas(ε) +

∑
j∈Vi

∑
K′∈Nij(K)

vi,j[K,K′]p
i
K

)

=
∑
K∈Ti

FKpiKmeas(K).(4.2)

The second term of (4.2) can be replaced by

∑
K′∈Ni(K)

piK
piK − piK′

d(xK , xK′)
meas([K,K ′]) =

1

2

∑
K∈Ti

∑
K′∈Ni(K)

(piK − piK′)2

d(xK , xK′)
meas([K,K ′]).
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The third term of (4.2) corresponds to the convective term inside the subdomain Ωi,
and proceeding as in [21], we obtain

∑
K∈Ti

∑
K′∈Ni(K)

a[K,K′]p
i
[K,K′]+p

i
K ≥ 1

2

∑
K∈Ti

∑
ε∈E(K)\(EiD(K)∪Ei(K))

∫
ε

�a · �nK |piK |2.(4.3)

For the convection fluxes on the Dirichlet boundary ∂Ωi ∩ ∂Ω, we have

∑
K∈Ti

∑
ε∈EiD(K)

aε,Kpiε,K+piK

=
∑
K∈Ti

∑
ε∈EiD(K)

1[aε,K≥0] aε,K(piK)2 +
∑
K∈Ti

∑
ε∈EiD(K)

1[aε,K≤0] aε,Kgiεp
i
K

≥ 1

2

∑
K∈Ti

∑
ε∈EiD(K)

1[aε,K≥0] aε,K(piK)2 +
∑
K∈Ti

∑
ε∈EiD(K)

1[aε,K≤0] aε,Kgiεp
i
K

≥
∑
K∈Ti

(
1

2

∑
ε∈EiD(K)

[∫
ε

�a · �nK

]
(piK)2 +

∑
ε∈EiD(K)

1[aε,K≤0] aε,Kgiεp
i
K

)
.(4.4)

Thus combining (4.2)–(4.4), we get the inequality of Lemma 4.1.

4.1. Global wellposedness.

Theorem 4.3. Under Assumptions 2 and 3, the finite volume discretization
defined by (2.11)–(2.19) is well posed and if (giε)ε∈EiD

= 0, there exists C ≥ 0 such
that its unique solution p ∈ X satisfies

η‖p‖2
L2(Ω) + |p|21,T ≤ C‖F‖2

L2(Ω).(4.5)

Remark 4.4. The assumptions of Theorem 3.1 are satisfied, so the interface con-
ditions (2.19) and (2.18) are equivalent to the interface conditions (3.1) and (3.2),
which are easier to use. The global problem is defined also with (2.19) and (2.18)
instead of (3.1) and (3.2).

Proof. The global system is a linear square, so we just have to prove that the
solution of the global homogeneous problem ((FK)K∈Ti

= 0 and (giε)ε∈EiD
= 0 for all

∈ I) is zero. We sum over i ∈ I the equality of Lemma 4.1 and with (2.17) for all
i ∈ I, for all j ∈ Vi, it yields

∑
i∈I

∑
K∈Ti

(
η meas(K)(piK)2 +

1

2

∑
K′∈Ni(K)

(piK − piK′)2

d(xK , xK′)
meas([K,K ′])

+
∑

ε∈EiD(K)

(piK)2

d(yε, xK)
meas(ε) +

∑
ε∈Ei(K)

d(yε, xK)(ui
ε)

2meas(ε)

−
∑

ε∈Ei(K)

ui
εp

i
εmeas(ε) +

∑
ε∈E(K)\Ei(K)

[∫
ε

�a · �nK

]
(piK)2

+
∑
j∈Vi

∑
K′∈Nij(K)

a[K,K′]p
i,j
[K,K′]+p

i
K

)
≤
∑
i∈I

(∑
K∈Ti

FKpiKmeas(K)

+
∑

ε∈EiD

piKgiε
d(yε, xK)

meas(ε) −
∑

ε∈EiD

1[aε,K≤0] aε,Kgiεp
i
K

)
.(4.6)
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The term of the diffusive fluxes could be rewritten as

−
∑
i∈I

∑
ε∈Ei

ui
εp

i
εmeas(ε) = −

∑
i∈I

∫
Γi

uipi = −
∑
i∈I

∑
j∈Vi

∫
Γij

uj
ip

j
i

= −
∑
i∈I

∑
j∈Mi

∫
Γij

[
uj
ip

j
i + ui

jp
i
j

]

= −
∑
i∈I

∑
j∈Mi

∫
Γij

[
uj
iQ

j
i (p

i
j) −Qi

j(u
j
i )p

i
j

]

and using Assumption 2

= −
∑
i∈I

∑
j∈Mi

∫
Γij

[
uj
iQ

j
i (p

i
j) − uj

iQ
j
i (p

i
j)
]

= 0.(4.7)

For the convective fluxes on the interface, we obtain

T1 =
∑
i∈I

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

a[K,K′]p
i,j
[K,K′]+p

i
K

=
1

2

∑
i∈I

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

(
a[K,K′]p

i,j
[K,K′]+p

i
K + a[K′,K]p

j,i
[K′,K]+p

j
K′

)
.

Since pi,j[K,K′]+ = pj,i[K′,K]+ and a[K,K′] = −a[K′,K], we write

T1 =
1

2

∑
i∈I

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

a[K,K′]p
i,j
[K,K′]+(piK − pjK′).(4.8)

We introduce the downstream value pi,j[K,K′]− to [K,K ′] with respect to �a, i.e., if

a[K,K′] ≤ 0, then pi,j[K,K′]− = piK else pi,j[K,K′]− = pjK′ . We transform the term

a[K,K′]p
i,j
[K,K′]+(piK − pjK′) as follows:

a[K,K′]p
i,j
[K,K′]+(piK − pjK′) = |a[K,K′]|pi,j[K,K′]+(pi,j[K,K′]+ − pi,j[K,K′]−).

Then (4.8) becomes

T1 =
1

2

∑
i∈I

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

|a[K,K′]|pi,j[K,K′]+

(
pi,j[K,K′]+ − pi,j[K,K′]−

)

=
1

4

∑
i∈I

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

|a[K,K′]|
[(
pi,j[K,K′]+ − pi,j[K,K′]−

)2]

+
((
pi,j[K,K′]+

)2 − (pi,j[K,K′]−

)2)
,

and then we write

T1 ≥ 1

4

∑
i∈I

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

|a[K,K′]|
[(
pi,j[K,K′]+

)2 − (pi,j[K,K′]−

)2]

≥ 1

4

∑
i∈I

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

[
a[K,K′](p

i
K)2 + a[K′,K](p

j
K′)

2
]

≥ 1

2

∑
i∈I

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

a[K,K′](p
i
K)2
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≥ 1

2

∑
i∈I

∑
j∈Vi

∑
K∈Ti

∑
ε∈Eij(K)

[∫
ε

�a · �nK

]
(piK)2 =

1

2

∑
i∈I

∑
K∈Ti

∑
ε∈Ei(K)

[∫
ε

�a · �nK

]
(piK)2.

Let us denote by T2 the convective terms that are not on the interfaces. Using the
same method for the convective term inside the subdomains and on the Dirichlet
boundary as in [21], we have

T2 ≥ 1

2

∑
i∈I

∑
K∈Ti

⎡
⎣ ∑
ε∈E(K)\Ei(K)

∫
ε

�a · �nK(ε)

⎤
⎦ (piK(ε))

2 +
∑

ε∈EiD

1[aε,K≤0] aε,Kgiεp
i
K .

Consequently for the convective term, we obtain thanks to div(�a) ≥ 0

T1 + T2 ≥
∑
i∈I

∑
K∈Ti

∑
ε∈E(K)

[∫
ε

�a · �nK(ε)

]
(piK(ε))

2 +
∑

ε∈EiD

1[aε,K≤0] aε,Kgiεp
i
K

≥
∑
i∈I

∑
K∈Ti

∫
K

[div(�a)(piK(ε))
2] +

∑
ε∈EiD

1[aε,K≤0] aε,Kgiεp
i
K

≥
∑

ε∈EiD

1[aε,K≤0] aε,Kgiεp
i
K .

(4.6) leads to

∑
i∈I

(∑
K∈Ti

(
η meas(K)(piK)2 +

1

2

∑
K′∈Ni(K)

(piK − piK′)2

d(xK , xK′)
meas([K,K ′])

+
∑

ε∈EiD(K)

(piK)2

d(yε, xK)
meas(ε) +

∑
ε∈Ei(K)

d(yε, xK)(ui
ε)

2meas(ε)

))

≤
∑
i∈I

(∑
K∈Ti

FKpiKmeas(K) +
∑

ε∈EiD

piKgiε
d(yε, xK)

meas(ε)

−
∑

ε∈EiD

1[aε,K≤0] aε,Kgiεp
i
K

)
.(4.9)

For the homogeneous problem ((FK)K∈Ti = 0 and (giε)ε∈EiD
= 0), all the terms on

the right-hand side of (4.9) are nonnegative. We conclude that for all i ∈ I

piK = 0 ∀K ∈ Ti(4.10)

ui
ε = 0 ∀ε ∈ Ei.(4.11)

Using (2.14), (4.10), and (4.11), we obtain piε = 0 for all ε ∈ Ei. Consequently the
global system is invertible and the wellposedness of the scheme for the global domain
is proven.

Moreover if (giε)ε∈EiD
= 0 for all i ∈ I and using the Young inequality, for all

Cf > 0, we have for all i ∈ I
∑
K∈Ti

FKpiKmeas(K) ≤ 1

2Cf

∑
K∈Ti

(piK)2meas(K) +
Cf

2

∑
K∈Ti

(FK)2meas(K)

≤ 1

2Cf
‖pi‖2

L2(Ωi)
+

Cf

2
‖F‖2

L2(Ωi)
.(4.12)
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Then (4.9)–(4.12) give

(
η − 1

2Cf

)∑
i∈I

‖pi‖2
L2(Ωi)

+
∑
i∈I

(
1

2

∑
K′∈Ni(K)

(piK − piK′)2

d(xK , xK′)
meas([K,K ′])

+
∑

ε∈EiD(K)

(piK)2

d(yε, xK)
meas(ε) +

∑
ε∈Ei(K)

d(yε, xK)(ui
ε)

2meas(ε)

)
≤ Cf

2

∑
i∈I

‖F‖2
L2(Ωi)

.

Taking Cf > 1/η with (2.14) we obtain with C ≥ Cf

η

2
‖p‖2

L2(Ω) +
1

2
|p|21,T ≤ C‖F‖2

L2(Ω).(4.13)

4.2. Local wellposedness. We want to solve the global problem on Ω with an
iterative domain decomposition method based on the computation of successive local
boundary problems on Ωi for i ∈ I. Given (Rε)ε∈Ei and (Cε)ε∈∪jE+

ij
where, for all

j ∈ Vi, E+
ij is the subset of Eij where aε < 0. The local problem on Ωi is defined by

the boundary conditions on Γij for all j ∈ Vi, for all ε ∈ Ei→j :

ui,j
ε + [Qj

iSj,iQ
i
j(p

j
i )]ε = Rε if j ∈ Si,(4.14)

[Qj
iS

−1
j,i Q

i
j(u

j
i )]ε + pi,jε = Rε if j ∈ Mi,(4.15)

and by (2.11)–(2.16) where in (2.11), we have for all j ∈ Vi, for any K ′ ∈ Nij(K),

vi,j[K,K′] =

{
aε p

i
K(ε) if aε ≥ 0

Cε if aε < 0.
(4.16)

where ε = [K,K ′]. We have the following theorem
Theorem 1. Assume Assumptions 2 and 3 hold. Then, there exists a unique

pi ∈ Xi and (vi,jε )ε∈Ei→j satisfying the local problem on Ωi defined by (2.11)–(2.16)
and (4.14)–(4.16).

Proof. The system in pi and vi,jε is linear and square, so it suffices to prove that
the solution of the homogeneous local problem is zero. The homogeneous form of the
equation of Lemma 4.1 is

(4.17)
∑
K∈Ti

(
η meas(K)(piK)2 +

1

2

∑
K′∈Ni(K)

(piK − piK′)2

d(xK , xK′)
d(xK , xK′) meas([K,K ′])

+
1

2

∑
ε∈EΩi

(K)\Ei(K)

[∫
ε

�a · �nK

]
(piK)2 +

∑
ε∈EiD(K)

(piK)2

d(yε, xK)
meas(ε)

+
∑

ε∈Ei(K)

d(yε, xK)(ui
ε)

2meas(ε) +
∑
j∈Vi

∑
K′∈Nij(K)

vi,j[K,K′]p
i
K

)
≤
∑
ε∈Ei

ui
εp

i
εmeas(ε).

The homogeneous boundary conditions on Ei→j are

pji + Qj
i (S

−1
j,i Q

i
j(u

j
i )) = 0 ∀j ∈ Si,

uj
i + Qj

i (Sj,iQ
i
j(p

j
i )) = 0 ∀j ∈ Mi
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and give

pji = −Qj
i (S

−1
j,i Q

i
j(u

j
i )) ∀j ∈ Si,

uj
i = −Qj

i (Sj,iQ
i
j(p

j
i )) ∀j ∈ Mi

so the term on the interface reads

∑
ε∈Ei

ui
εp

i
εmeas(ε) =

∫
Γi

uipi =
∑
j∈Vi

∫
Γij

uj
ip

j
i =

∑
j∈Si

∫
Γij

uj
ip

j
i +

∑
j∈Mi

∫
Γij

uj
ip

j
i

= −
∑
j∈Si

∫
Γij

Qj
i (Sj,iQ

i
j(p

j
i ))p

j
i −

∑
j∈Mi

∫
Γij

Qj
i (S

−1
j,i Q

i
j(u

j
i ))u

j
i

= −
∑
j∈Si

∫
Γij

Sj,iQ
i
j(p

j
i )Q

i
j(p

j
i ) −

∑
j∈Mi

∫
Γij

S−1
j,i Q

i
j(u

j
i )Q

i
j(u

j
i ) ≤ 0

because Qj
i and Qi

j satisfy Assumption 2 and Sj,i satisfies Assumption 3. For the
homogeneous convective term on the interface, we have

T1 =
∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

1[a[K,K′]≥0]a[K,K′](p
i
K)2

≥ 1

2

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

1[a[K,K′]≥0]a[K,K′](p
i
K)2 ≥ 1

2

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

a[K,K′](p
i
K)2

≥ 1

2

∑
j∈Vi

∑
K∈Ti

∑
K′∈Nij(K)

∫
[K,K′]

�a · �nK(piK)2≥1

2

∑
j∈Vi

∑
K∈Ti

∑
ε∈Ei(K)

∫
ε

�a · �nK(piK(ε))
2.

For the convective term inside the subdomains Ωi and on the homogeneous Dirichlet
boundary, we have

T2 =
1

2

∑
K∈Ti

∑
ε∈E(K)\Ei(K)

[∫
ε

�a · �nK(ε)

]
(piK)2.

So using div(�a) ≥ 0, we have

T1 + T2 ≥ 1

2

∑
K∈Ti

∑
ε∈E(K)

[∫
ε

�a · �nK(ε)

]
(piK)2

=
∑
K∈Ti

∫
K

[div(�a)(piK(ε))
2] ≥ 0.

Then inequality (4.17) could be rewritten as

∑
K∈Ti

(
η meas(K)(piK)2 +

1

2

∑
K′∈Ni(K)

(piK − piK′)2

d(xK , xK′)
d(xK , xK′) meas([K,K ′])(4.18)

+
∑

ε∈EiD(K)

(piK)2

d(yε, xK)
meas(ε) +

∑
ε∈Ei(K)

d(yε, xK)(ui
ε)

2 meas(ε)

)
≤ 0.

All the left-hand-side terms of (4.18) are ≥ 0, so this implies

piK = 0 ∀K ∈ Ti,(4.19)

ui
ε = 0 ∀ε ∈ Ei.(4.20)
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Fig. 2. Projection on P 0(Ej→i) and interpolation on P 1
d (E2

i→j) via the coarsened grid.

Using (2.14), (4.19), and (4.20), we obtain piε = 0 for all ε ∈ Ei. Then, from (4.16),
we have vi,j[K,K′] = 0 for j ∈ Vi, K

′ ∈ Nij(K). So the solution of the homogeneous

problem on Ωi is zero.

5. Examples of transmission operators. We give two types of transmission
operators which satisfy Assumption 2, but other transmission operators may be used.
In the next section, an error estimate is performed for general transmission operators
and then applied to the two types of transmission operators defined in the following.

5.1. Orthogonal L2 projection on P 0(Ei→j). For i ∈ I, j ∈ Vi, let PC
i,j be the

L2 orthogonal projection onto P 0(Ei→j). The first type of operator is the restriction
of PC

i,j to P 0(Ej→i). Let uj ∈ P 0(Ej→i) and ε ∈ Ei→j ; it is defined by

[PC
i,j(uj)]ε =

1

meas(ε)

∫
ε

uj =
∑
ε′∈Ej

meas(ε ∩ ε′)

meas(ε)
uj,ε′ .(5.1)

Assumption 2 is satisfied.

5.2. Transmission operators with linear rebuilding. The second type of
operator, inspired by [4], uses a linear rebuilding process to have a more accurate
transmission; see Figure 2. We shall use the following assumption.

Assumption 4. For all i ∈ I, for all j ∈ Si, there exists a coarsened grid E2
i→j of

Ei→j (with half the number of edges in two dimensions and one fourth the number of
faces in three dimensions) such that

• if d = 2, for all ε ∈ E2
i→j , there exists (ε1, ε2) ∈ (Ei→j)

2 such that ε = ε1 ∪ ε2
and ε1 ∩ ε2 �= ∅

• if d = 3, for all ε ∈ E2
i→j , there exists (ε1, ε2, ε3, ε4) ∈ (Ei→j)

4 such that

ε = ∪4
k=1εk and for all 1 ≤ k ≤ 4, card({l|1 ≤ l ≤ 4, l �= k, and dim(εl∩εk) =

1}) = 2.
For d = 3, some examples of mesh Ei→j which satisfy Assumption 4 are corner

point geometry mesh or quasi-uniform rectangular mesh. We introduce P 1
d (E2

i→j),

the space of discontinuous piecewise linear functions on E2
i→j if d = 2, or the space of

discontinuous piecewise bilinear functions on E2
i→j if d = 3. The interpolation operator

Iji : P 0(Ei→j) −→ P 1
d (E2

i→j) is defined for all p ∈ P 0(Ei→j) by [Iji (p)](yε) = p(yε),

where yε is the barycenter of ε ∈ Ei→j and (Iji )
T : P 1

d (E2
i→j) −→ P 0(Ei→j) is its

transpose with respect to the L2(Γij) inner product. We also introduce PL
i,j , the

L2(Γij) orthogonal projection onto P 1
d (E2

i→j). For i ∈ I, j ∈ Si, the transmission
operator is

Qi
j = [PC

j,i|P 1
d
(E2

i→j
)]I

j
i (for the primary unknown).(5.2)
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In order to satisfy Assumption 2, we have

Qj
i = (Iji )

T [PL
i,j|P 0(Ej→i)

] (for the normal derivative).(5.3)

When the grids match, Qj
i is the identity operator.

6. Error estimates. In this section, we study the accuracy of the finite volume
scheme defined by (2.11)–(2.18) on nonmatching grids. The first subsection is an
error estimate without taking into account the terms of the interface Γij . The second
subsection proves the error estimate in the general case with an additional assumption
on transmission errors. In the other subsections we compute the transmission error
in order to obtain the error estimate in the discrete H1-norm. For the L2 orthogonal
projection on piecewise constant functions, we obtain an error in O(h)1/2 in the general
case and in O(h) if the master sides are subgrids of the slave sides (subsection 5.1)
and for the transmission operator with linear rebuilding (subsection 5.2), we get an
error in O(h). We denote the interface interpolation operators for all i ∈ I, for all
j ∈ Vi on Γij , by

Pj
i : C2(Ω) −→ P 0(Ei→j),

Uj
i : C2(Ω) −→ P 0(Ei→j).

We note Pi,j
ε (p) = [Pj

i (p)]ε and U i,j
ε ( ∂f

∂ni
) = [Uj

i ( ∂f
∂ni

)]ε. These error interpolation
operators allow us to introduce with flexibility an interpolated solution of p, the exact
solution of (2.1)–(2.2), and of its normal derivative on Γij (for all i ∈ I, for all j ∈ Vi)
which is used to define the discrete error. The interpolated solution is defined by the
following, for all i ∈ I:

• p̃iK = p(xK) for any cell K in Ti.
• p̃iε = p(yε) and ũi

ε = ∂p
∂ni

(yε) for any ε ∈ EiD.

• For all K ∈ Ti, for all K ′ ∈ Ni(K), if a[K,K′] ≥ 0, then p̃i[K,K′]+ = p(xK); else

p̃i[K,K′]+ = p(xK′).

• For all K ∈ Ti, for all ε ∈ EiD(K), if aε,K ≥ 0, then p̃iε,K+ = p(xK); else

p̃iε,K+ = p(yε).

• For all K ∈ Ti, for all j ∈ Vi, for all K ∈ Nij(K), if a[K,K′] ≥ 0, then

p̃i,j[K,K′]+ = p(xK); else p̃i,j[K,K′]+ = p(xK′).

For the interface edges, the interpolated solution is adapted to the transmission op-
erators:

• for j ∈ Vi and ε ∈ Ei→j , p̃
i
ε = Pj

i (p)ε and ũi
ε = Uj

i ( ∂p
∂ni

)ε.

The discrete errors are defined by eiK = piK − p̃iK (for all K ∈ Ti), eiε = piε − p̃iε (for
all ε ∈ EiD ∪ Ei), qiε = ui

ε − ũi
ε (for all ε ∈ Ei ∪ EiD), ei[K,K′]+ = pi[K,K′]+ − p̃i[K,K′]+

(for all K ∈ Ti, for all K ′ ∈ Ni(K)), eiε,K+ = piε,K+ − p̃iε,K+ (for all K ∈ Ti, for all

ε ∈ EiD(K)), and ei,j[K,K′]+ = pi,j[K,K′]+ p̃
i,j
[K,K′]+ (for all K ∈ Ti, for all j ∈ Vi, for all

K ′ ∈ Nij(K)). To simplify, we note for all i ∈ I
• Ri

K =
1

meas(K)

∫
K

η(pi − p̃iK) for all K ∈ Ti,

• Ri
K,K′ =

1

meas([K,K ′])

∫
[K,K′]

∂pi
∂ni

− p̃iK′ − p̃iK
d(xK , xK′)

for all K ∈ Ti, for all K ′ ∈

Ni(K),

• Ri
ε =

1

meas(ε)

∫
ε

∂pi
∂ni

− ũi
ε for all ε ∈ Ei ∪ EiD,
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• riK,K′ =
1

meas([K,K ′])

∫
[K,K′]

�a · �nK(p− p̃i[K,K′]+) for all K ∈ Ti for all K ′ ∈

Ni,

• riK,ε =
1

meas(ε)

∫
ε

�a · �nK(ε)(p− p̃iε,K+) for all K ∈ Ti, for all ε ∈ EiD(K),

• ri,jK,K′ =
1

meas([K,K ′])

∫
[K,K′]

�a · �nK(p− p̃i,j[K,K′]+) for all K ∈ Ti, for all j ∈

Vi, for all K ′ ∈ Nij(K).
For ε ∈ Ei→j , let us define

T i
ε = eiK(ε) − eiε − d(xK , yε)q

i
ε,

Ri
ε = 1

meas(ε)

∫
ε

∂p
∂ni

−
[
Uj
i

(
∂p
∂n

)]
ε
,

Δeji,ε = [Qj
i (Pi

j(p)) − Pj
i (p)]

ε
if j ∈ Mi,

Δqji,ε = [Qj
i (U i

j(
∂p
∂nj

)) + Uj
i ( ∂p

∂ni
)]
ε

if j ∈ Si.

We introduce the global transmission errors:
• R = maxi∈I,εEi |Ri

ε|,
• T = maxi∈I,εEi |T i

ε |,
• T 2

d = maxi∈I,ε∈Ei

(T i
ε )2

d(xK(ε),yε)
,

• δe = maxi∈I,j∈Mi,ε∈Ei
|Δeji,ε|,

• δe2
d = maxi∈I,j∈Mi,ε∈Ei

(Δej
i,ε

)2

d(xK(ε),yε)
,

• δq = maxi∈I,j∈Mi,ε∈Ej |Δqij,ε|.
6.1. Error analysis without the terms due to nonmatching grids. In this

section we give Lemma 6.1 in which we study the classical term of error without taking
into account the term on the interface Γij due to the nonmatching grids (Ei→j �= Ej→i).
This lemma will be used in the next subsection to estimate the interface error and
thus the global error.

Lemma 6.1. Assuming that p the solution of (2.1)–(2.2) belongs to C2(Ω) for each
domain Ωi (i ∈ I), there exists C > 0 depending only on p, Ωi, d, f, g, η such that

(6.1)
∑
i∈I

∑
K∈Ti

(
η

2
meas(K)(eiK)2 +

1

4

∑
K′∈Ni(K)

(eiK − eiK′)2

d(xK , xK′)
meas([K,K ′])

+
∑
j∈Vi

∑
K′∈Nij(K)

a[K,K′]e
i,j
[K,K′]+ +

1

2

∑
ε∈EiD(K)

(eiK)2

d(xK , yε)
meas(ε)

−
∑

ε∈Ei(K)

qiεe
i
Kmeas(ε) +

1

2

∑
ε∈E(K)\Ei(K)

[∫
ε

�a · �nK

]
(eiK)2

)

≤ Ch2 +
∑
i∈I

∑
K∈Ti

( ∑
ε∈Ei(K)

Ri
εe

i
Kmeas(ε) +

∑
j∈Vi

∑
K′∈Nij(K)

eiKri,jK,K′meas([K,K ′])

)
.

The proof is based on standard arguments; see [3] or more generally [21].

6.2. Error analysis with interface terms. In order to have as far as possible
a common treatment of the error analysis for the two transmission operators we
consider, we first derive a general estimate making the following extra assumption.
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Assumption 5. There exist γ1 > 0, γ2 > 0, γ3 > 0, γ4 > 0, γ5 > 0, and γ6 > 0
such that R = O(h)γ1 , T = O(h)γ2 , δe = O(h)γ3 , δq = O(h)γ4 , T 2

d = O(h)γ5 , and
δe2

d = O(h)γ6 .
The values of the parameters γ depend on the transmission operator and will be

analyzed in sections 6.3 and 6.4. To estimate the interface term due to the nonmatch-
ing grids, we need the following theorem which is proven in [15].

Theorem 6.2. For all p ∈ Xi, there exists C(Ωi) > 0 depending only on Ωi and
d such that

‖p‖L2(∂Ωi) ≤ C(Ωi)(‖p‖L2(Ωi) + |p|1,Ti).(6.2)

We shall also use the following formula (see [21]):

∑
K∈Ti

( ∑
K′∈Ni(K)

d(xK , xK′)meas([K,K ′]) +
∑

ε∈EiD(K)∪Ei(K)

d(xK , yε)meas(ε)
)

(6.3)

= dmeas(Ωi).

We have the following theorem.
Theorem 6.3. Let us consider a family of admissible meshes Ti (for all i ∈ I)

which satisfy Assumption 1. We assume that the solution p of (2.1)–(2.2) is C2(Ω)
and that Assumptions 2, 5, and 3 are satisfied; then there exists C > 0 independent
of h such that

(
η‖e‖2

L2(Ω) + |e|21,T
)1/2 ≤ Chβ ,

where h = maxi∈I,K∈Ti diam(K) and β = 1
2min(2, 2γ1, γ2 + γ3, 2γ4, γ5, γ6).

Proof. Lemma 6.1 is satisfied for all i ∈ I, so we sum over i ∈ I (6.1):

∑
i∈I

∑
K∈Ti

(
η

2
meas(K)(eiK)2 +

1

4

∑
K′∈Ni(K)

(eiK − eiK′)2

d(xK , xK′)
meas([K,K ′])(6.4)

+
∑
j∈Vi

∑
K′∈Nij(K)

a[K,K′]e
i,j
[K,K′]+ +

1

2

∑
ε∈EiD(K)

(eiK)2

d(yε, xK)
meas(ε)

−
∑

ε∈Ei(K)

qiεe
i
Kmeas(ε) +

1

2

∑
K∈Ti

∑
ε∈EΩi

(K)\Ei(K)

[∫
ε

�a · �nK

]
(eiK)2

)

≤
∑
i∈I

Cih
2 +
∑
i∈I

(∑
ε∈Ei

Ri
εe

i
K(ε)meas(ε) +

∑
K∈Ti

∑
j∈Vi

∑
K′∈Nij(K)

ri,jK,K′e
i
Kmeas([K,K ′])

)
.

For the term E1 =
∑

i∈I
∑

ε∈Ei
Ri

εe
i
K(ε)meas(ε), we have used the Young inequality

for all C6 > 0:

E1 =
∑
i∈I

∑
ε∈Ei

Ri
ε(e

i
K(ε) − eiε)meas(ε) +

∑
i∈I

∑
ε∈Ei

Ri
εe

i
εmeas(ε)(6.5)

≤
∑
i∈I

∑
ε∈Ei

Ri
εe

i
εmeas(ε) +

C6

2

∑
i∈I

∑
ε∈Ei

d(xK(ε), yε)(R
i
ε)

2meas(ε)

+
1

2C6

∑
i∈I

∑
K∈Ti

∑
ε∈Ei(K)

(eiε − eiK)2

d(xK , yε)
meas(ε).
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The first right-hand-side term of (6.5) becomes, with the Young inequality for all
C7 > 0 and Theorem 6.2,

E2 =
∑
i∈I

∑
ε∈Ei

Ri
εe

i
εmeas(ε) ≤ C7

2

∑
i∈I

∑
ε∈Ei

(Ri
ε)

2meas(ε) +
1

2C7
‖e‖2

L2(∂Ωi)

≤ C7

2

∑
i∈I

∑
ε∈Ei

(Ri
ε)

2meas(ε) +
∑
i∈I

C(Ωi)

2C7
(‖e‖2

L2(Ωi)
+ |e|21,Ti

).(6.6)

We estimate E3 =
∑

i∈I
∑

K∈Ti

∑
j∈Vi

∑
K′∈Nij(K) r

i,j
K,K′eiKmeas([K,K ′]). For

any positive constants C1
c and C2

c , we have

E3 ≤ 1

2C1
c

∑
i∈I

∑
K∈Ti

∑
j∈Vi

∑
K′∈Nij(K)

(eiε − eiK)2

d(xK , yε)
meas([K,K ′])

+
C1

c

2

∑
i∈I

∑
K∈Ti

∑
j∈Vi

∑
K′∈Nij(K)

d(xK , yε)(r
i,j
K,K′)

2meas([K,K ′])

+
1

2C2
c

∑
i∈I

∑
K∈Ti

∑
ε∈Ei(K)

(eiε)
2meas(ε)

+
C2

c

2

∑
i∈I

∑
K∈Ti

∑
j∈Vi

∑
K′∈Nij(K)

(ri,jK,K′)
2meas([K,K ′]).

By the Taylor expansion there exists C > 0 such that |ri,jK,K′ | ≤ Ch so that together
with (6.3), we have

E3 ≤ 1

2C1
c

∑
i∈I

∑
K∈Ti

∑
j∈Vi

∑
K′∈Nij(K)

(eiε − eiK)2

d(xK , yε)
meas([K,K ′])

+
C1

c

2
C2h2d

∑
i∈I

∑
j∈Vi

meas(Ωj)

+
1

2C2
c

∑
i∈I

∑
K∈Ti

∑
ε∈Ei(K)

(eiε)
2meas(ε) +

C2
c

2
C2h2

∑
i∈I

∑
j∈Vi

meas(Γij).

With Theorem 6.2, we obtain

E3 ≤ 1

2C1
c

∑
i∈I

∑
K∈Ti

∑
j∈Vi

∑
K′∈Nij(K)

(eiε − eiK)2

d(xK , yε)
meas([K,K ′])(6.7)

+
∑
i∈I

C(Ωi)

2C2
c

(‖e‖2
L2(Ωi)

+ |e|21,Ti
) +

C1
c

2
C2h2d

∑
i∈I

∑
j∈Vi

meas(Ωj)

+
Cc

2
C2h2

∑
i∈I

∑
j∈Vi

meas(Γij).

For the term T1 =
∑

i∈I
∑

K∈Ti

∑
ε∈Ei(K) e

i
Kqiεmeas(ε), one has

T1 = −
∑
i∈I

∑
ε∈Ei

qiεe
i
εmeas(ε) −

∑
i∈I

∑
K∈Ti

∑
ε∈Ei(K)

qiε(e
i
K − eiε)meas(ε)

= −
∑
i∈I

∑
ε∈Ei

qiεe
i
εmeas(ε) +

∑
K∈Ti

∑
ε∈Ei(K)

(eiK − eiε)
2

d(xK , yε)
meas(ε)
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−
∑
i∈I

∑
K∈Ti

∑
ε∈Ei(K)

(eiK − eiε)T
i
ε

d(xK , yε)
meas(ε).

Then by the Young inequality for all C8 > 0,

T1 ≥ −
∑
i∈I

∑
ε∈Ei

qiεe
i
εmeas(ε) − C8

2

∑
i∈I

∑
K∈Ti

∑
ε∈Ei(K)

(T i
ε )

2

d(xK , yε)
meas(ε)

+

(
1 − 1

2C8

)∑
i∈I

∑
K∈Ti

∑
ε∈Ei(K)

(eiK − eiε)
2

d(xK , yε)
meas(ε).(6.8)

Using the definition of the sets Mi and Si, the term T2 = −
∑

i∈I
∑

ε∈Ei
qiεe

i
εmeas(ε)

is rewritten as

T2 = −
∑
i∈I

∑
j∈Mi

∫
Γij

[
qji e

j
i + qije

i
j

]
.(6.9)

By definition we have on Γij for all i ∈ I and for all j ∈ Vi

ei,jε = pi,jε − p̃i,jε = pi,jε − Pi,j
ε (p).

Using the interface conditions (2.18), the discrete error on the primary unknown ei,jε
corresponds to, for all j ∈ Mi,

ei,jε =
[
Qj

i

(
pij
)]

ε
− Pi,j

ε (p) =
[
Qj

i

(
eij + Pi

j(p)
)]

ε
− Pi,j

ε (p)

=
[
Qj

i

(
eij
)]

ε
+
[
Qj

i

(
Pi
j(p)
)]

ε
− Pi,j

ε (p) =
[
Qj

i

(
eij
)]

ε
+ Δei,jε(6.10)

or, in compact form, eji = Qj
i (e

i
j) + Δeji . In the same way, we have for all j ∈ Mi

qj,iε =
[
Qi

j

(
− qji

)]
ε
+ Δqi,jε(6.11)

or, in compact form, qij = Qi
j(q

j
i ) + Δqij . From (6.9)–(6.11) and Assumption 2, we

have

T2 = −
∑
i∈I

∑
j∈Mi

∫
Γij

[
qji Δeji + Δqji e

i
j

]
.(6.12)

By the Young inequality, for all C9 > 0, and by definition of T ε
i , we have

T3 = −
∑
i∈I

∑
j∈Mi

∫
Γij

qji Δeji = −
∑
i∈I

∑
j∈Mi

∑
ε∈Ej→i

qi,jε Δei,jε meas(ε)

≥ −
∑
i∈I

∑
j∈Mi

∑
ε∈Ej→i

|T i
ε ||Δei,jε |meas(ε) − 1

2C9

∑
i∈I

∑
j∈Mi

∑
ε∈Ej→i

(eiε − eiK(ε))
2

d(xK(ε), yε)
meas(ε)

−C9

2

∑
i∈I

∑
j∈Mi

∑
ε∈Ej→i

(Δei,jε )2

d(xK(ε), yε)
meas(ε).(6.13)

Using Theorem 6.2 on Ωi, the second term becomes, with the Young inequality for
all C10 > 0,

−
∑
i∈I

∑
j∈Mi

∫
Γij

Δqji e
i
j ≥ − 1

2C10

∑
i∈I

∑
j∈Mi

‖e‖2
L2(∂Ωj)

− C10

2

∑
i∈I

∑
j∈Mi

∑
ε∈Ei→j

(Δqj,iε )2meas(Γij).
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With Theorem 6.2, we get

−
∑
i∈I

∑
j∈Mi

∫
Γij

Δqji e
i
j ≥

∑
i∈I

∑
j∈Mi

C(Ωj)

2C10
(‖e‖2

L2(Ωj)
+ |e|21,Tj

)(6.14)

− C10

2

∑
i∈I

∑
j∈Mi

∑
ε∈Ei→j

(Δqj,iε )2meas(Γij).

For the convective fluxes on the interfaces we proceed as in the proof of Theorem 4.3:
we have

∑
i∈I,j∈Vi,K∈Ti,K′∈Nij(K)

a[K,K′]e
i,j
[K,K′]+e

i
K ≥ 1

2

∑
i∈I

∑
ε∈Ei

[∫
ε

�a · �nK(ε)

]
(eiK(ε))

2.(6.15)

Let T be the convective terms of (6.4); thanks to (6.15) and div(�a) ≥ 0, we have

T ≥ 1

2

∑
i∈I

(∑
ε∈Ei

[∫
ε

�a · �nK(ε)

]
(eiK(ε))

2 +
∑
K∈Ti

∑
ε∈E(K)\Ei(K)

[∫
ε

�a · �nK

]
(eiK)2

)

≥ 1

2

∑
i∈I

∑
K∈Ti

∫
K

[div(�a)](eiK(ε))
2 ≥ 0.(6.16)

So we obtain for the global error estimate, thanks to (6.4)–(6.6), (6.8), (6.13), (6.14),
and (6.16),

∑
i∈I

[∑
K∈Ti

(
η

2
meas(K)(eiK)2 +

1

4

∑
K′∈Ni(K)

(eiK − eiK′)2

d(xK , xK′)
meas([K,K ′])

+

(
1 − 1

2C6
− 1

2C8
− 1

2C9

) ∑
ε∈Ei(K)

(eiε − eiK)2

d(yε, xK)
meas(ε)

+
1

2

∑
ε∈EiD(K)

(eiK)2

d(yε, xK)
meas(ε)

)⎤
⎦−∑

i∈I
C(Ωi)

(
1

2C7
+

1

2C10

)
(‖e‖2

L2(Ωi)
+ |e|21,Ti

)

≤
∑
i∈I

[
Cih

2 +
C7

2

∑
ε∈Ei

(Ri
ε)

2meas(ε) +
C6

2

∑
K∈Ti

∑
ε∈Ei(K)

d(xK , yε)(R
i
ε)

2meas(ε)

+
C8

2

∑
K∈Ti

∑
ε∈Ei(K)

(T i
ε )

2

d(xK , yε)
meas(ε)

]
+
∑
i∈I

∑
j∈Mi

∑
ε∈Ej→i

|T i
ε ||Δei,jε |meas(ε)

+
C9

2

∑
i∈I

∑
j∈Mi

∑
ε∈Ej→i

(Δei,jε )2

d(xK(ε), yε)
meas(ε) +

C10

2

∑
i∈I

∑
j∈Mi

∑
ε∈Ei→j

(Δqi,jε )2meas(ε).

We conclude the proof of Theorem 6.3 by using Assumption 5.
We are now interested in the consistency of the diffusive fluxes. For all ε ∈ Ei(K),

using (2.14) and the Taylor expansion, we get

T i
ε = eiK − eiε + d(xK , yε)q

i
ε = (piK − p̃iK) − (piε − p̃iε) + d(xK , yε)(u

i
ε − ũi

ε)

= −p̃iK + p̃iε − d(xK , yε)ũ
i
ε

= −p(yε) + d(xK , yε)
∂p

∂ni
(yε) + p̃iε − d(xK , yε)ũ

i
ε + O(d(xK , yε))

2
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= [Pi
ε(p) − p(yε)] + d(xK , yε)

[
∂p

∂ni
(yε) − U i

ε

(
∂p

∂ni

)]
+ O(d(xK , yε))

2

= [Pi
ε(p) − p(yε)] + d(xK , yε)

[
∂p

∂ni
(yε) − U i

ε

(
∂p

∂ni

)]
+ O(d(xK , yε))

2.(6.17)

6.3. Error estimate for orthogonal L2 projection on P 0(Ei→j). In order
to give the error estimate for the transmission operators defined by (5.1), we define
the interpolation error operator for all f ∈ C2(Ω), i ∈ I, and j ∈ Vi, ε ∈ Ei→j as

Pi,j
ε (f) = [PC

i,j(f)]ε =
1

meas(ε)

∫
ε

f,

U i,j
ε

(
∂f

∂ni

)
=

[
Qj

i

(
∂f

∂ni

)]
ε

=

[
PC
i,j

(
∂f

∂ni

)]
ε

=
1

meas(ε)

∫
ε

∂f

∂ni
.

We have to estimate the transmission error of Assumption 5 due to the transmission
operator (5.1) to state the following theorem.

Theorem 6.4. We assume that the solution p of (2.1)–(2.2) is C2(Ω). Let us
consider a family of admissible meshes Ti (for all i ∈ I) which satisfy Assumption 1.

We assume that the transmission operators are defined by (5.1), that the interface
operators satisfy Assumption 3, and that C > 0 independent of the mesh such that

∀i ∈ I,∀ε ∈ Ei diam(ε) ≤ C(d(xK(ε), yε));(6.18)

then there exists C1 > 0 such that

(
η‖e‖2

L2(Ω) + |e|21,T
)1/2

≤ C1h
1/2.

Moreover if for all i ∈ I, for all j ∈ Si, Ei→j is a subgrid of Ej→i (the grids of the
masters are subgrids of the slaves) and (yε)ε∈Ei are the barycenter of ε and there exists
C > 0 independent of the mesh such that

∀i ∈ I,∀ε ∈ Ei diam(ε) ≤ C(d(xK(ε), yε))
1/2,(6.19)

then there exists C2 > 0 such that

(
η‖e‖2

L2(Ω) + |e|21,T
)1/2

≤ C2h.

Remark 6.5. The assumption that the master sides are subgrids of the slave sides
allows both a weaker assumption on the mesh ((6.19) is weaker than (6.18)) and a
better error estimate. This result is assessed in the numerical tests; see Figure 6.

Proof. For all i ∈ I, for all ε ∈ Ei, we have

Ri
ε =

1

meas(ε)

∫
ε

∂p

∂ni
−
[
Ui

(
∂p

∂ni

)]
ε

= 0.

Then R = 0 and we can take any γ1 > 0. Using (6.17), we get

T i
ε =

[
p(yε)−

1

meas(ε)

∫
ε

p

]
+ d(xK(ε), yε)

[
∂pi
∂ni

(yε)−
1

meas(ε)

∫
ε

∂p

∂ni

]

−O(d(xK(ε), yε))
2

= [O(diam(ε))] + d(xK(ε), yε)O(diam(ε)) −O(d(xK(ε), yε))
2 = O(h).
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It implies that γ2 = 1. For all ε ∈ Ei→j , we write

Δeji,ε =
[
Qj

i

(
Pi
j(p)
)
− Pj

i (p)
]
ε
=
[
PC
i,jP

C
j,i(p) − PC

i,j(p)
]
ε
=
[
PC
i,j

(
PC
j,i − I

)
(p)
]
ε

=
1

meas(ε)

∫
ε

(
PC
j,i − I

)
(p) = O

(
max

ε′∈Ej→i

diam(ε′)
)

= O(h).

Hence we get γ3 = 1. For all ε ∈ Ej→i, we have

Δqij,ε =

[
Qi

j

(
Uj
i

(
∂p

∂ni

))
+ U i

j

(
∂p

∂nj

)]
ε

=

[
PC
j,iP

C
i,j

(
∂p

∂ni

)
+ PC

j,i

(
∂p

∂nj

)]
ε

=

[
PC
j,i(P

C
i,j − I)

(
∂p

∂nj

)]
ε

=
1

meas(ε)

∫
ε

(PC
i,j − I)

(
∂p

∂nj

)
= O

(
max

ε′∈Ei→j

diam(ε′)

)
= O(h).

It gives γ4 = 1. Using (6.18), we have

(T i
ε )

2

d(xK(ε), yε)
=

O(diam(ε))2

d(xK(ε), yε)
+ d(xK(ε), yε)O(diam(ε))2 + O(d(xK(ε), yε))

3

+O(diam(ε)) + O(d(xK , yε))O(diam(ε))2 + O(d(xK(ε), yε))
2O(diam(ε)) = O(h).

We have for T 2
d = O(h), so we have γ5 = 1. Using (6.18), we obtain the following

estimate:

(Δei,jε )2

d(xK(ε), yε)
=

O(diam(ε))2

d(xK(ε), yε)
= O(h).

We get δe2
d = O so that γ6 = 1. Consequently due to γ6 = 1 we obtain 1

2 min(2, 2γ1, γ2+
γ3, 2γ4, γ5, γ6) = 1

2 . This proves the first part of Theorem 6.4.
As for the second part of Theorem 6.4, we assume that for all i ∈ I, for all j ∈ Si,

Ei→j is a subgrid of Ej→i (the grids of the masters are subgrids of the slaves). This
assumption implies that for all j ∈ Si, P

C
i,j = PC

i,jP
C
j,i and consequently

Δei,jε = [PC
i,j(P

C
j,i − I)(p)]ε = 0.

We get δe = 0 and δe2
d = 0. For all ε ∈ Ei, yε is the barycenter of ε and p is C2(Ω), so

we get p(ε) − 1
meas(ε)

∫
ε
p = O(diam(ε))2, and consequently the consistency error on

the fluxes becomes

T i
ε = [p(yε) − Pi

ε(p)] + d(xK(ε), yε)

[
∂pi
∂ni

(yε) − U i
ε

(
∂p

∂ni

)]
−O(d(xK(ε), yε))

2

=

[
p(yε) −

1

meas(ε)

∫
ε

p

]
+ d(xK(ε), yε)

[
∂pi
∂ni

(yε) −
1

meas(ε)

∫
ε

∂p

∂ni

]
−O(h)2

= [O(diam(ε))2] + d(xK(ε), yε)O(diam(ε)) −O(h)2 = O(h)2;

then γ2 = 2. For T 2
d , we have using (6.19)

(T i
ε )

2

d(xK(ε), yε)
=

O(diam(ε))4

d(xK(ε), yε)
+ d(xK(ε), yε)O(diam(ε))2 + O(d(xK(ε), yε))

3 = O(h2).

Then γ1 and γ4 are unchanged, γ2 = 2, γ5 = 2, and we can take any γ3 > 0 and
γ6 > 0 (for example, γ3 = γ6 = 2), which gives

1

2
min(2, 2γ1, γ2 + γ3, 2γ4, γ5, γ6) = 1.
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6.4. Error estimate for transmission operators with linear rebuilding.
For the error estimate with transmission operators defined by (5.3) and (5.2), we
assume the following geometrical additional assumption is satisfied.

Assumption 6. For all i ∈ I, for all j ∈ Si, the grid of the master Ei→j is
Cartesian and there exists δ independent of the mesh such that for all ε ∈ E2

i→j

maxε′∈Ei→j |ε′⊂ε meas(ε′) ≤ δminε′∈Ei→j |ε′⊂ε meas(ε′).

We define a local operator Ej
i = (Iji )

T −PC
i,j|P 0(Ej→i)

= (Iji )
T − (Iji )

−1 and prove

the following lemma.
Lemma 6.6. For d = {2, 3} and under Assumption 6, for all i ∈ I, for all

j ∈ Si, I
j
i is invertible, (Iji )

−1 = PC
i,j|P 1

d
(Ei→j)

, ker(Ej
i ) = P 0(E2

i→j), and there exists

CE(δ) > 0 such that ‖Ej
i ‖L2(Γij) < CE(δ).

Proof. From the locality of the operators, it suffices to consider ε1, ε2 ∈ (Ei→j)
2

such that ε = ε1 ∪ ε2 ∈ E2
i→j and the restriction Ej

i,ε of Ej
i from P 0(ε1) × P 0(ε2) to

P 1
d (ε). Let

e1(y) = 1 if y ∈ ε1 ∪ ε2,

e2(y) =

{
−meas(ε2) if y ∈ ε1,
meas(ε1) if y ∈ ε2,

f1 = Iji (e1) = 1,

f2 = Iji (e2) = 2y − (meas(ε2) −meas(ε1))/2,

and ẽi = ei/‖ei‖L2(ε), f̃i = fi/‖fi‖L2(ε) for i = 1, 2. The bases (ẽ1, ẽ2) of P 0(ε1) ×
P 0(ε2) and (f̃1, f̃2) of P 1

d (ε) are orthonormal. In these bases, the matrix of Ej
i,ε is

‖f2‖L2

‖e2‖L2

⎡
⎣ 0 0

0 1 − (meas(ε1) + meas(ε2))
2

3meas(ε1)meas(ε2)

⎤
⎦ .

Since 1− (meas(ε1)+meas(ε2))
2

3meas(ε1)meas(ε2)
< 0, we have ker(Ej

i,ε) = Re1 = P 0(ε). By Assumption 6,

we have that there exists C(δ) > 0 independent of ε such that ‖Ej
i,ε‖L2(ε) ≤ C(δ).

Lemma 6.6 holds locally for Ej
i,ε and therefore globally for Ej

i .
For d = 3, the proof is very similar. Let us just indicate that we consider in local

coordinates four faces ε1 = [−h1, 0] × [−k1, 0], ε2 = [−h1, 0] × [0, k2], ε3 = [0, h2] ×
[−k1, 0], ε4 = [0, h2] × [0, k2] such that ∪4

i=1εi ∈ E2
i→j . It is convenient to introduce

(e1, e2, e3, e4) a local basis of the space of piecewise constant functions
∏4

i=1 P
0(εi):

e1(y, z) = 1 on E = ∪4
i=1εi, e2(y, z) =

⎧⎪⎪⎨
⎪⎪⎩

−h2 on ε1,
−h2 on ε2,
h1 on ε3,
h1 on ε4,

e3(y, z) =

⎧⎪⎪⎨
⎪⎪⎩

−k2 on ε1,
k1 on ε2,
−k2 on ε3,
k1 on ε4

and e4(y, z) =

⎧⎪⎪⎨
⎪⎪⎩

h2k2 on ε1,
−k1h2 on ε2,
−k2h1 on ε3,
h1k1 on ε4.

As in the case d = 2, let fi = Iji (ei), ẽi = ei/‖ei‖L2 , and f̃i = fi/‖fi‖L2 for i =

1, . . . , 4. The theorem is proved by considering the matrix of the restriction of Ej
i in

the orthonormal bases (ẽi)i=1,...,4 and (f̃i)i=1,...,4.
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We now define the transmission interpolations operator by

Pi,j
ε (f) = PC

i,j(f) =
1

meas(ε)

∫
ε

f U i,j
ε

(
∂f

∂ni

)
= PC

i,j

(
∂f

∂ni

)
=

1

meas(ε)

∂f

∂ni

for all f ∈ C2(Ω), for all i ∈ I, for all j ∈ Mi, for any ε ∈ Ei→j and by

Pi,j
ε (f) = (Iji )

−1PL
i,j(f) =

1

meas(ε)
PL
i,j(f) U i,j

ε

(
∂f

∂ni

)
= (Iji )

TPL
i,jP

C
j,i

(
∂f

∂ni

)

for all i ∈ I, for all j ∈ Si.
Theorem 6.7. We assume that the solution p of (2.1)–(2.2) is C2(Ω). Let us

consider a family of admissible meshes for all i ∈ I Ti which satisfies Assumptions
1–4 and 6. Assume that for all ε ∈ Ei yε is the barycenter of ε and that there exists
C ′ > 0, independent of the family of meshes, such that

∀i ∈ I,∀ε ∈ Ei diam(ε) ≤ C ′ d(yε, xK)1/2.(6.20)

We assume that the transmission operators are defined by (5.3) and (5.2) and that the
interface operators satisfy Assumption 3; then there exists C > 0 such that

(
η‖e‖2

L2(Ω) + |e|21,T
)1/2

≤ Ch.

Proof. For all i ∈ I, for all j ∈ Mi, for all ε ∈ Ei→j , we have

Ri
ε =

1

meas(ε)

∫
ε

∂p

∂ni
−
[
Ui

(
∂p

∂ni

)]
ε

= 0,

and using the fact that yε is the barycenter of ε ∈ Ei

T i
ε = [p(yε) − PC

i,j(p)] + d(xK(ε), yε)

[
∂p

∂ni
(yε) − PC

i,j

(
∂p

∂ni

)]
−O(d(xK(ε), yε))

2

= O(diam(ε))2 + d(xK(ε), yε)O(diam(ε)) −O(d(xK(ε), yε))
2 = O(h)2.

We introduce PC
ij , the L2(Γij) orthogonal projection on P 0(E2

i→j). Then we have

Ri
ε =

1

meas(ε)

∫
ε

∂p

∂ni
−
[
Uj
i

(
∂p

∂ni

)]
ε

=

[
PC
i,j

(
∂p

∂ni

)
− (Iji )

−1PL
i,jP

C
j,i

(
∂p

∂ni

)]
ε

+

[
(Iji )

−1PL
i,jP

C
j,i

(
∂p

∂ni

)
− (Iji )

TPL
i,jP

C
j,i

(
∂p

∂ni

)]
ε

.

Thanks to Lemma 6.6, we have (Iji )
−1 = PC

i,j|P 1
d
(E2

i→j
)

and by definition Ej
i =

(Iji )
−1 − (Iji )

T so that

Ri
ε =

[
PC
i,j

(
∂p

∂ni
− PL

i,jP
C
j,i

(
∂p

∂ni

))]
ε

+

[
Ej

i P
L
i,jP

C
j,i

(
∂p

∂ni

)]
ε

.
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Since ker(Ej
i ) = P 0(E2

i→j) and PC
ij P

L
i,jP

C
j,i(

∂p
∂ni

) ∈ P 0(E2
i→j) we get

Ri
ε =

[
PC
i,j

((
∂p

∂ni

)
− PC

j,i

(
∂p

∂ni

)
+ PC

j,i

(
∂p

∂ni

)
− PL

i,jP
C
j,i

(
∂p

∂ni

))]
ε

+

[
Ej

i

[
PL
i,jP

C
j,i

(
∂p

∂ni

)
− PC

ij P
L
i,jP

C
j,i

(
∂p

∂ni

)]]
ε

=

[
PC
i,j

[
(I − PC

j,i)

(
∂p

∂ni

)]]
ε

+

[
PC
i,j

[
(I − PL

i,j)P
C
j,i

(
∂p

∂ni

)]]
ε

+

[
Ej

i

[
(I − PC

ij )PL
i,jP

C
j,i

(
∂p

∂ni

)]]
ε

= O( max
εj∈Ej→i

diam(εj)) +

[
PC
i,j

[
(I − PL

i,j)P
C
j,i

(
∂p

∂ni

)]]
ε

+

[
Ej

i

[
(I − PC

ij )PL
i,jP

C
j,i

(
∂p

∂ni

)]]
ε

.

For all i ∈ I, for all j ∈ Si, for all ε ∈ Ei→j , we denote by ε2 the unique ε2 ∈ Ei→j

such that ε ⊂ ε2. The second term gives

[
PC
i,j

[
(I − PL

i,j)P
C
j,i

(
∂p

∂ni

)]]
ε

=
1

meas(ε)

∫
ε

[
(I − PL

i,j)P
C
j,i

(
∂p

∂ni

)]

≤ 1

(meas(ε))1/2

∥∥∥∥(I − PL
i,j)P

C
j,i

(
∂p

∂ni

)∥∥∥∥
L2(ε2)

≤
(
meas(ε2)

meas(ε)

)1/2

O(diam(ε2))
2

≤ O(diam(ε))2 (thanks to Assumption 6).

By the definition of Ej
i , the third term becomes

[
Ej

i

[
(I − PC

ij )PL
i,jP

C
j,i

(
∂p

∂ni

)]]
ε

=
1

meas(ε)

∫
ε

Ej
i

[
(I − PC

ij )PL
i,jP

C
j,i

(
∂p

∂ni

)]

≤ 1

(meas(ε))1/2

∥∥∥∥Ej
i [(I − PC

ij )PL
i,jP

C
j,i

(
∂p

∂ni

)∥∥∥∥
L2(ε2)

≤ 1

(meas(ε))1/2
‖Ej

i ‖L2(ε2)

∥∥∥∥(I − PC
ij )PL

i,jP
C
j,i

(
∂p

∂ni

)∥∥∥∥
L2(ε2)

≤
(
meas(ε2)

meas(ε)

)1/2

CE(δ)O(diam(ε2)) = O(h).

The last line comes from Lemma 6.6. Thus we have Ri
ε = O(diam(ε)).

From (6.17), we have

T i
ε = [p(yε) − Pi

ε(p)] + d(xK(ε), yε)

[
∂pi
∂ni

(yε) − U i
ε

(
∂p

∂ni

)]
−O(d(xK(ε), yε))

2

= [p(yε) − Pi
ε(p)] + d(xK(ε), yε)
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×
[
∂pi
∂ni

(yε) −
1

meas(ε)

∫
ε

∂p

∂ni
+

1

meas(ε)

∫
ε

∂p

∂ni
− U i

ε

(
∂p

∂ni

)]
−O(h)2

= [p(yε) − (Iji )
−1PL

i,j(p)] + d(xK(ε), yε)

[
∂pi
∂ni

(yε) −
1

meas(ε)

∫
ε

∂p

∂ni
+ Ri

ε

]
−O(h)2;

by assumption yε is the barycenter of ε ∈ Ei, so

= [p(yε) − (Iji )
−1PL

i,j(p)] + d(xK(ε), yε)[R
i
ε + O(diam(ε))2] −O(h)2;

using Lemma 6.6, we get

= [PC
i,j [I − PL

i,j ](p)]ε + d(xK(ε), yε)O(diam(ε)) −O(h)2

= O(diam(ε))2 + d(xK(ε), yε)O(diam(ε)) −O(d(xK(ε), yε))
2 = O(h)2.

Thus for all i ∈ I, for all ε ∈ Ei, we have shown that Ri
ε = O(h) and T i

ε = O(h)2 and
consequently γ1 = 1 and γ2 = 2. Now we estimate δe, δq, T2

d, and δe2
d only for all

i ∈ I, for all j ∈ Mi, for all ε ∈ Ei→j :

Δei,jε = [Qj
i (Pi

j(f)) − Pj
i (f)]

ε
= [PC

i,jI
i
jP

C
j,i(p)] − PC

i,jI
i
jP

C
j,i(p) = 0(6.21)

and similarly

Δqj,iε =

[
(Iij)

TPL
j,i

(
PC
j,i

(
∂p

∂ni

))
+ (Iij)

TPL
j,i

(
PC
j,i

(
∂p

∂nj

))]
ε

= 0.(6.22)

(6.21) and (6.22) allow us to take any γ3, γ4 > 0, for example, γ3 = 2 and γ4 = 2.
With (6.21) and (6.20), we estimate γ5:

(T i
ε )

2

d(xK(ε), yε)
=

1

d(xK(ε), yε)
[O(diam(ε))2 + d(xK(ε), yε)O(diam(ε)) −O(d(xK(ε), yε))

2]2

=
1

d(xK(ε), yε)
[O(diam(ε))2 + d(xK(ε), yε)O(h)]2

=
O(diam(ε))4

d(xK(ε), yε)
+ O(h)O(diam(ε))2 + d(xK(ε), yε)O(h)2 = O(h)2.

Hence we have γ5 = 2. (6.21) implies that
(Δei,jε )2

d(xK(ε),yε)
= 0, and so we can take, for

example, γ6 = 2. We conclude that min(2, 2γ1, γ2 + γ3, 2γ4, γ5, γ6) = 2.

7. Numerical results. We consider the domain Ω =]0, 1[×]0, 1[ with the prob-
lem defined by η = 1, f(x, y) = x3y2 − 6x2y2 − 2x3 + (1 + x2 + y2) sin(xy) and
g(x, y) = x3y2+sin(xy). The associated analytical solution is p(x, y) = x3y2+sin(xy).
We have tested a two-domain decomposition and a four-domain decomposition with a
corner in order to compare the following methods on nonmatching grids: TPFA [9] (or
[11]), Ceres (like TPFA but a linear interpolation is done to have a consistent flux on
the interface; see [24], [8], which tested only for a two-domain decomposition because
of an implementation too complex when there is a corner), New Cement [3], and our
two methods associated with the transmission operators (5.1) (method Constant) and
(5.3) and (5.2) (method Linear). In [3], the interface conditions (3.1) and (3.2) are
replaced by a more symmetric form:

ui + Si(pi) = Qi(−uj + Si(pj)) on Γi,j ,(7.1)

uj + Sj(pj) = Qj(−ui + Sj(pi)) on Γi,j(7.2)
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with the peculiarity that the solution depends on the choice of the Robin parameters
in Si,j . We study the dependency of the error estimate in discrete H1-norm and of the
number of GMRES iterations as a function of the mesh size and for Robin interface
conditions corresponding to different diagonal interface operators: Si = diag(αi

ε) with
for all ε ∈ Ei αi

ε = 1 or αi
ε = αi

opt,ε = O(1/
√
hi) or αi

ε = 1/hi with hi the size of the
mesh of Ωi.

7.1. Domain decomposition solver. The algorithm that we used is defined
in detail in [23]. When no interface grid is a subgrid of the other, the Robin interface
conditions (3.1) and (3.2) introduce a dependency of the interface conditions on Ωi

with the grid of the neighboring subdomain Ωj . To cancel this dependency a subgrid
based on Ei→j and Ej→i and new unknowns are introduced on Γij to write arbitrary
interface conditions equivalent to interface conditions (3.1) and (3.2). As a result,
we get a new finite volume discretization equivalent to (2.11)–(2.13), (3.1), and (3.2),
which is locally and globally well posed, but an additional interface band linear system
has to be solved [23] at each domain decomposition iteration. Then the problem is
formulated as a substructuring method and is solved by a GMRES algorithm.

7.2. Two-subdomain decomposition. For the decomposition into two sub-
domains, we use two regular Cartesian meshes on Ω = Ω1 ∪ Ω2 =]0, 1[×]0, 1[. Figure
4 shows the solution and the error for the different methods. We see that the error is
located on the interface and on the Dirichlet boundary. Figure 3 gives the asymptotic
behavior of the log of the error as a function of the log of the mesh size h for the dif-
ferent interface operators. We observe that the solution and the error do not depend
on the interface operators except for the method New Cement. This is in agreement
with Theorem 3.1. For Ceres and Linear we obtain an order of 1.8 (higher than what
is expected, maybe because we use regular Cartesian meshes in each subdomain). For
New Cement, as predicted by theory, the order depends on the choice of αi

ε (αi
ε = 1,

order 1.8; αi
opt,ε, order 0.8; and αi

ε = 1/hi, order 0.5). For TPFA and Constant we
obtain an order of 0.5 as expected.

7.3. Four-subdomain decomposition with a corner. We cut the domain
Ω = ∪4

i=1Ωi =]0, 1[×]0, 1[ into four subdomains with a corner. The method Ceres
is not tested in this decomposition because the scheme does not extend easily to
this situation. In Figure 7.3, we observe the H1-norm of the error for the different
methods and for the different interface operators. As in the decomposition into two
subdomains only the error and the solution for New Cement depend on the interface
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operators. For Linear we have an error order of 1.5. This is better than the error in
O(h) proved in Theorem 6.7. This is most probably due to the regular meshes in each
subdomain which yield a superconvergence effect. For New Cement the order is 1.3
with αi

ε = 1, 0.9 with αi
opt,ε, and 0.6 with αi

ε = 1/hi. For TPFA and Constant we see
an order of 0.5. As an illustration of the second error estimate in Theorem 6.4, we
show Figure 6, which illustrates the need to have the master grid as a subgrid of the
slave grid in order to have an error of order O(h) when using only piecewise constant
projections. Figure 7.3 represents the number of GMRES iterations for the different
interface operators as a function of the log of the mesh size, and we note that the
number of GMRES iterations is always the lowest for αi = αi

opt,ε as expected.

8. Conclusion. We have presented a finite volume method for a domain de-
composition with nonmatching grids that allows for the use of arbitrary interface
conditions. This last feature is important for a fast convergence of the iterative do-
main decomposition algorithm. Contrary to [5] or [3] the discrete solution does not
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depend on the interface conditions. In practical computations in porous media flow,
the diffusion operator is not a scalar nor a smooth function. It is typical to have
jumps in the coefficients of diffusion of four orders of magnitude that do not match
across the interface. In order to still have good results, the proposed method has
to be enhanced by the introduction of a thin subdomain at each interface; see [14].
Numerical results are very satisfactory but the corresponding analysis still demands
further investigation.
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AN EFFICIENT AND STABLE METHOD FOR COMPUTING
MULTIPLE SADDLE POINTS WITH SYMMETRIES∗

ZHI-QIANG WANG† AND JIANXIN ZHOU‡

Abstract. In this paper, an efficient and stable numerical algorithm for computing multiple
saddle points with symmetries is developed by modifying the local minimax method established in
[Y. Li and J. Zhou, SIAM J. Sci. Comput. 23 (2001), pp. 840–865; Y. Li and J. Zhou, SIAM J. Sci.
Comput., 24 (2002), pp. 840–865]. First an invariant space is defined in a more general sense and
a principle of invariant criticality is proved for the generalization. Then the orthogonal projection
to the invariant space is used to preserve the invariance and to reduce computational error across
iterations. Simple averaging formulas are used for the orthogonal projections. Numerical computa-
tions of examples with various symmetries, of which some can and others cannot be characterized
by a compact group of linear isomorphisms, are carried out to confirm the theory and to illustrate
applications. The mathematical features of various problems demonstrated in these examples fall
into two categories: nodal solutions of saddle-point type with large Morse indices and nonradial pos-
itive solutions via symmetry breaking in radially symmetric elliptic problems. The new numerical
algorithm generates these rather unstable solutions in an efficient and stable way. The existence of
many unstable solutions and their behavior found in this paper remain to be investigated.

Key words. multiple saddle points, Morse index, symmetry, invariance, local minimax method,
semilinear PDE
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1. Introduction. Let H be a Hilbert space and let J : H → R be Fréchet
differentiable; let J ′ be its Fréchet derivative and let ∇J be the gradient and J ′′ its
second Fréchet derivative if it exists. A point u∗ ∈ H is a critical point of J if u∗

solves the Euler–Lagrange equation J ′(u∗) = 0. A critical point u∗ is nondegenerate
if J ′′(u∗) is invertible; otherwise u∗ is degenerate. According to the Morse theory, the
Morse index (MI) of a critical point u∗ of J is the maximal dimension of a subspace of
H on which the operator J ′′(u∗) is negative definite. The first candidates for a critical
point are the local extrema to which the classical critical point theory was devoted in
calculus of variations [22]. Most conventional numerical algorithms focus on finding
such stable solutions. Critical points that are not local extrema are unstable and
called saddle points. Because of unstable nature, saddle points are too elusive to be
numerically captured.

It is interesting for both theory and applications to develop efficient and stable
numerical algorithms for finding multiple saddle points. Minimax principle is one
of the most popular approaches in critical point theory. However, most minimax
theorems in the literature (see [1], [2], [3], [6], [16], [18], [19], [20], [21], [24]), such as
the mountain pass, various linking and saddle point theorems, require one to solve
a two-level global optimization problem and, therefore, are not useful for algorithm
implementation.
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Efforts for numerically computing saddle points have been made in [7] for MI =
1 and in [10] for MI = 2 which were motivated by theoretical (global minimax)
characterizations of saddle points in [1] and [23], respectively. Inspired by [7], [10],
and an idea in [9], [17], a local minimax method (LMM) was developed in [12], [13] and
many multiple solutions were numerically computed for a class of semilinear elliptic
equations. Its convergence results are obtained in [13]. Several results in instability
analysis of saddle points are established in [14], [25].

Let us briefly recall LMM. Its basic idea is to define a local peak selection and a
solution set. Let L ⊂ H be a closed subspace, called a support to the critical point
u∗ to be found, SL⊥ = {v ∈ L⊥ : ‖v‖ = 1} and denote [L, v] = {tv + vL : t ∈ R, vL ∈
L} ∀v ∈ SL⊥ . A set-valued mapping P : SL⊥ → 2H is called a peak mapping of J if
P (v) is the set of all local maximum points of J in [L, v]. A single-valued mapping
p : SL⊥ → H is called a peak selection if p(v) ∈ P (v)∀v ∈ SL⊥ . Let v ∈ SL⊥ be a
point. p is said to be a local peak selection of J with respect to (w.r.t.) L at v if a
peak selection p is locally defined near v.

A local minimax theorem which characterizes a saddle point as a local minimax
solution has been established in [12]. It states the following: let a solution set be
defined by

M = {p(v) : v ∈ SL⊥};(1.1)

then a point u∗ = p(v∗) ∈ M is a saddle point of J if p is continuous at v∗, p(v∗) �∈ L,
and

v∗ = arg loc-min
v∈S

L⊥
J(p(v)) = arg loc-min

v∈S
L⊥

loc-max
u∈[L,v]

J(u).

It becomes a local minimization problem on the solution set M, which can be numer-
ically approximated by, e.g., the steepest descent method.

A numerical LMM.
Step 1. Given positive ε and λ, let n − 1 critical points w1, w2, . . . , wn−1 of J be

given, of which wn−1 has the highest critical value. Set the support L =
span{w1, w2, . . . , wn−1}. Let v1

n ∈ SL⊥ be an ascent direction at wn−1. Let
t00 = 1 and v0

L = wn−1 and set k = 0.
Step 2. Use the initial guess w = tk0v

k + vkL; solve for

wk ≡ p(vk) ≡ tk0v
k+vkL = arg max

w∈[L,vk]
J(w) and denote tk0v

k+vkL =wk ≡ p(vk).

Step 3. Compute the steepest descent vector dk = −∇J(wk).
Step 4. If ‖dk‖ ≤ ε, then output wn = wk, stop; else go to Step 5.

Step 5. Set vk(s) = vk+sdk

‖vk+sdk‖ and find

sk = max
{ λ

2m

∣∣∣m ∈ N, J
(
p
(
vk

( λ

2m

)))
−J(wk) ≤ − t∗0

2
‖dk‖

∥∥∥vk( λ

2m

)
−vk

∥∥∥}.
Initial guess u = tk0v

k( λ
2m ) + vkL, where tk0 and vkL are found in Step 2, is used

to find the local maximum point p(vk( λ
2m )) in [L, vk( λ

2m )], similar to Step 2.
Step 6. Set vk+1 = vk(sk) and update k = k + 1, then go to Step 2.
The subspace L containing critical points previously found serves as a support to a
saddle point u∗ to be found at a higher critical level. A support to u∗ is said to be
sufficient if it contains all critical points below u∗’s critical level. When MI of u∗ gets
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larger, the dimension of L grows larger [25]. Solving the local maximization problem
in the space [L, vk] in Step 2 of LMM becomes more expensive. Since u∗ = p(v∗)
and v∗ = arg maxv∈S

L⊥ J(p(v)), the solution set M is a stable set, i.e., when J is
restricted to M, u∗ is a stable solution.

Symmetries exist in many natural phenomena, such as in crystals, elementary
particle physics, symmetry of the Schrödinger equation for the atomic nucleus and the
electron shell w.r.t. permutations and rotations, energy conservation law for systems
which are invariant w.r.t. time translation, etc. Symmetry properties are usually
studied by group actions in mathematics. Symmetries described by compact group
actions in variational problems have been used in the literature to prove the existence
of multiple critical points, typically in the Ljusternik–Schnirelman theory (see recent
results in [5], [15], [11], and others). It is known that symmetries in a nonlinear
variational problem can lead to the existence of more solutions of saddle type and
can also cause degeneracy. In this paper, we study the impact of the presence of
symmetries on LMM in finding multiple saddle points. By modifying LMM, we shall
develop an efficient and stable numerical algorithm for computing multiple critical
points with general symmetries. Consider a semilinear elliptic BVP and its energy
function J ,

{
Δu(x) + F (u(x), x) = 0, x ∈ Ω ⊂ Rn,
u(x) = 0, x ∈ ∂Ω,

J(u) =

∫
Ω

{
1

2
|∇u(x)|2 − f(u(x), x)

}
dx,

where f(t, x) =
∫ t

0
F (τ, x)dτ satisfies some standard conditions. When L = {0}, the

solution set becomes M = {tuu : u ∈ H, ‖u‖ = 1, tu �= 0, 〈∇J(tuu), u〉 = 0}, which
is called the Nehari manifold. Under some standard conditions, it can be shown that
M is smooth, or the peak selection p is continuously differentiable [12].

Several researchers have tried to use certain symmetry of a problem to capture
a solution of higher MI. For example, odd symmetry is used in [7] to capture sign-
changing solutions (MI = 2) by a minimization on the Nehari manifold with an
odd symmetric initial guess. When a negative gradient-type minimax algorithm is
used, the symmetry is inherited but not enforced, and the sequence generated by
the algorithm will get close to a saddle point. However, when computational error
builds up or ‖∇J(u)‖ becomes small, computational error will dominate and break the
symmetry of ∇J(u). Eventually the symmetry of the sequence collapses. Therefore,
the sequence will not stop near a sign-changing solution; instead it will slide down
to a positive solution (MI = 1), unless a forcing stop action is taken. Thus such an
approximation is unstable and no convergence can be established. Even rotational
symmetry is considered in [8] to capture sign-changing solutions (MI = 3) by a high-
linking algorithm. Action to preserve the symmetry is taken, so the algorithm is
stable.

In this paper, we consider more general symmetries and try to establish some
mathematical justifications. In particular, we are concerned with not only preserving
the symmetry but also reducing computational error across iterations. There are at
least three motivations for one to use symmetries to define an invariant space HI in
computing a saddle point:

(1) a sufficient support is available in H, but one wants to reduce its dimension by
using a sufficient support L in HI to enhance the efficiency of the algorithm;

(2) no sufficient support is available in H; one has to use the symmetries to find
a sufficient support L in HI ;

(3) to use symmetries to bypass the degeneracy of a problem.
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To find a critical point u∗ at a higher critical level by LMM, one needs to know
if the support L is sufficient or not. If the answer is yes, one can expect a stable
convergence even without using any symmetry. If the answer is no, the minimization
process will sooner or later find a slider and bypass u∗. The algorithm becomes
unstable and fails to reach u∗.

Assume one has identified symmetries of a problem and defined an invariant
subspace HI . Then one can restrict the problem in HI , i.e., the support L contains
critical points at lower critical level only in HI . By doing so, the dimension of the
support L can be greatly reduced. Since LMM with an insufficient support in HI

is unstable, we assume the support L in HI is sufficient. When computational error
builds up or ‖∇J(wk)‖ becomes small, computational error will dominate and break
the symmetry of ∇J(wk). That is, ∇J(wk), eventually wk+1 goes outside of HI .
There are two possibilities. If the support L in HI is also sufficient in H, there is no
slider around u∗. Thus the symmetry has no effect on the algorithm and, therefore, the
collapse of the symmetry has no effect either; the algorithm will still converge to u∗. If
the support L in HI is not sufficient in H, and wk+1 is outside HI , the minimization
process will sooner or later find a slider and then fail to reach u∗. A projection of
∇J(wk) onto HI will pull ∇J(wk) and then wk+1 back to HI and resolve the problem.

These types of projections into an invariant space have been used in the literature
to preserve the symmetry, where computational error is not a concern. In this case any
projection operator onto HI will serve the purpose. However, computational error is a
main concern in numerical computation, particularly in multilevel iterations for find-
ing unstable saddle points at a higher critical level, which is rather sensitive to compu-
tational error. It is, therefore, a main concern of this paper. There are infinitely many
projection operators onto HI . Some of them are poor at handling computational error.
Only the orthogonal projection operator onto HI is the optimal one to handle com-
putational error. Thus in this paper, we look for the orthogonal projection operator
onto HI . It is known that finding an orthogonal projection onto a subspace is equiv-
alent to an infinite-dimensional minimization problem, which is very expensive. It is
in particular very difficult, since there is no explicit expression for HI . The average
formula defined by the Haar integral has been used in the literature to project a point
onto an invariant subspace. Here we expose a fact that the Haar integral operator is
actually the orthogonal projection operator onto HI . Implementation of this formula
with LMM for numerical computations of multiple critical points with symmetries at
higher critical levels will be discussed in detail by using typical numerical examples.

The numerical examples we choose also serve to reveal new phenomena in the cor-
responding mathematical problems. Here we are mainly interested in two directions:
nodal solutions of saddle-point type for nonlinear elliptic problems and nonradial pos-
itive solutions in radially symmetric elliptic equations. In both cases, people expect
that many unstable solutions exist, that these solutions should have large MIs, and
that degeneracy occurs in general. Using LMM with symmetry we shall not only
demonstrate solutions that are known to exist in theory but also exhibit many cases
for which the existence is still open in theory. Some of these examples give surprising,
new mathematical features and should shed light on the study of the nonlinear elliptic
PDEs.

2. Invariant space and its orthogonal projection.

2.1. Invariant spaces and LMM in invariant spaces. In order to let LMM
handle symmetry we need the concept of invariant spaces. The following is a more
general one without reference to symmetry.
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Definition 2.1. Let H be a Hilbert space and J ∈ C1(H,R). A closed subspace
HI of H is said to be a J-invariant space if for every u ∈ HI it holds that ∇J(u) ∈
HI .

Along the line of the classical principle of symmetric criticality by Palais, we have
the following principle of invariant criticality (PIC) without reference to symmetry.

Theorem 2.1. Let H be a Hilbert space, J ∈ C1(H,R) and HI a J-invariant
space. If u∗ ∈ HI is a critical point of J restricted to HI , then u∗ is a critical point
of J in H.

Proof. That u∗ is a critical point of J restricted to HI implies 〈∇J(u∗), v〉 =
0 ∀v ∈ HI , i.e., ∇J(u∗) ⊥ HI . On the other hand, HI is a J-invariant space, i.e.,
u∗ ∈ HI implies ∇J(u∗) ∈ HI . Therefore, ∇J(u∗) ∈ HI ∩H⊥

I = {0}.
Thus we can restrict solving the problem only in HI . It is clear that H is trivially

a J-invariant space. Since the smaller the dimension of HI is, the smaller the MI of
u∗ relative to HI is—which implies that the smaller the dimension of the support L
[25] in HI is, the more efficient and stable is the numerical computation—we always
look for the smallest such J-invariant space. In this way, LMM can be used, in a much
more efficient and stable way, to find multiple saddle points with certain symmetries
at higher critical level.

Let L be a closed subspace of HI and denote SL⊥ = {v ∈ HI : ‖v‖ = 1, v ⊥ L}.
Let k = 0; started from a point vk ∈ SL⊥ we have p(vk) = tkvk + vkL ∈ HI for some

tk �= 0 and vkL ∈ L ⊂ HI . Then dk = −∇J(p(vk)) ∈ HI and vk+1 = vk+skdk

‖vk+skdk‖ ∈ HI ,

where sk > 0 is the stepsize. If v0 ∈ HI and dk = −∇J(p(vk)) �= 0, we have [12]

J(p(vk+1)) − J(p(vk)) < − tk

2
‖dk‖‖vk+1 − vk‖.

This brings us to the conclusion that, in theory, LMM is closed in an invariant space
HI and generates a strict minimizing sequence {p(vk)} = {tkvk + vkL} in M ∩ HI ,
where M is the solution set defined in (1.1). The limit of the sequence is a critical
point of J in HI by the convergence results in [13] and thus a critical point of J in H by
PIC. However, in numerical computation of the negative gradient dk = −∇J(p(vk)),
it involves discretization, approximation, round-off error, etc. It generates numerical
error and then breaks the invariance of dk. To preserve the invariance, we use the
decomposition H = HI ⊕Hc

I for some complement space Hc
I of HI in H and

dk = dkI + (dk)cI , dkI ∈ HI , (dk)cI ∈ Hc
I .

Note that if p(vk) ∈ HI and dk = −∇J(p(vk)) is computed exactly, we should have

dk = (dk)I ∈ HI and (dk)cI = 0.

When numerical error is involved, we use (dk)I to replace dk in Step 3 of LMM, the
updated point vk+1 is now in HI , and the invariance is preserved.

The above decomposition for H needs to find a projection operator T from H to
HI . There are infinitely many such projection operators. If preserving the invariance
is the only concern, by PIC, any one of them will serve the purpose. However, when
error analysis is concerned, the case is different. Note that the term (dk)cI = dk −
(dk)I represents computational error. In numerical computation, we have to not
only preserve the invariance, but also reduce error which will be carried to the next
iteration. Among all those projection operators, some of them are very poor at dealing
with error and there is the optimal one that minimizes the distance from dk to HI , the
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error term, that is, the orthogonal projection. In this case, the maximum invariant
part of dk has been carried to (dk)I and (dk)cI becomes (dk)⊥I , i.e.,

dk = (dk)I + (dk)⊥I and (dk)I ⊥ (dk)⊥I .

For this reason, in this paper we will do our best to adopt the orthogonal projection.
Example 2.1. Let X = R2, X2 = {(0, x2)

T }. Both A = [ 0 0
100 1 ] and B = [ 0 0

0 1 ]
are projection operators of X onto X2. Let (ε1, ε2)

T represents computational error
in computing (0, 1)T ∈ X2; we get u = (ε1, ε2 + 1)T �∈ X2. To do projection, we have

Au = (0, 100ε1 + 1 + ε2)
T ∈ X2 and Bu = (0, 1 + ε2)

T ∈ X2.

It is clear that A greatly enlarges error while B does not. As a matter of fact, where
error analysis is concerned, B is the optimal operator that minimizes error, i.e., B is
the orthogonal projection operator from X → X2 and Bu is the best approximation
one can get.

2.2. Invariant spaces from symmetries. Invariant spaces appear naturally
when the problems considered possess certain symmetry, e.g., when the function J is
invariant w.r.t. certain symmetry. There are two usual ways in numerical computa-
tions to preserve symmetry. By dividing the domain into several subdomains along
the axes of symmetry, one may solve the problem only on one subdomain with an
additional continuity condition with the Neumann data across the cuts; the problem
may become much harder to solve, but the size of the problem becomes smaller; one
may also solve the problem on the entire domain, but use the solution data only on
one subdomain. Then in either case, one can produce a solution on the entire domain
according to the symmetry. Note that either way, it preserves the symmetry, but
carries computational error with the solution to the next iteration. Indeed it forces
computational error to be of the same symmetry. However, computational error is
usually asymmetric and even random.

In contrast to the usual method, our new method separates a solution from com-
putational error (at least the asymmetric part), and then carries only the solution,
not the error, in iterations. Thus the advantage is clear that it makes the algorithm
more efficient and more stable. Our numerical examples confirm the analysis.

Let us start with the most studied symmetries in the literature, i.e., those sym-
metries that can be characterized by a compact group of linear isomorphisms.

Let H be a Hilbert space and G be a compact group of linear isomorphisms of
H, i.e., the map from G ×H → H evaluated by (g, u) → gu is continuous such that
for each h ∈ G,

1 · u = u, (gh)u = g(hu), u → gu is linear, ‖gu‖ = ‖u‖.

The identification of G as a subgroup of linear isomorphisms of H is called a repre-
sentation of G, and we shall still use G to stand for a representation of it.

For a representation of G we may define its invariant subspace. A set A ⊂ H
is G-invariant if g(A) = A∀g ∈ G. The G-invariant subspace of H is the subspace
HG = {u ∈ H : gu = u ∀g ∈ G}. Let J ∈ C1(H,R). J is said to be G-invariant
if J(gu) = J(u) for every (g, u) ∈ G × H. A map F : H → H is G-equivariant if
g ◦ F = F ◦ g for every g ∈ G. Since J ∈ C1(H,R) is G-invariant implies that ∇J
is G-equivariant, i.e., ∇J(gu) = g∇J(u) ∀u ∈ H, when u ∈ HG, we have g∇J(u) =
∇J(gu) = ∇J(u) ∀g ∈ G or ∇J(u) = ∇J(u)G.
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The above definition for an invariant space separates the space H from the func-
tion J , which may have other applications. On the other hand, Definition 2.1 com-
bines the space H with the function J in the definition of a J-invariant space, which
serves precisely the purpose of applications in this research. It is clear that if J is
G-invariant, then HG is a J-invariant space as in Definition 2.1. Thus the following
classical result follows from Theorem 2.1.

Theorem 2.2 (principle of symmetric criticality (Palais, 1979)). Let H be a
Hilbert space and G a compact group of linear isomorphisms of H. If J ∈ C1(H,R)
is G-invariant and if u ∈ HG is a critical point of J restricted to HG, then u is a
critical point of J .

2.3. Orthogonal projections. Note that the invariant space HG is usually
infinite-dimensional and in particular does not have an explicit formula; finding the
orthogonal projection of dk onto HG is very expensive and difficult. However, for
many usual symmetries, the orthogonal projection onto HG turns out to be simple
algebraic computations. Let us first cite the following theorem.

Theorem 2.3 (Haar, 1933). Let G be a compact group and C(G) the vector
space of real-valued continuous functions on G. Then there exists a unique positive
integral (the Haar integral) such that the map C(G) → R by f �→

∫
G
f(g) dg is

(a) linear, monotone, and normalized (
∫
G

1 dg = 1);
(b) left-invariant, i.e.,

∫
G
f(h−1g) dg =

∫
G
f(g) dg ∀h ∈ G.

The Haar integral operator H from H to HG defined by Hu =
∫
G
gu dg ∀u ∈ H has

been used in the literature as a projection from H onto HG to preserve an invariance,
where computational error is not a concern. When reducing computational error
across iterations is a concern, we are interested mainly in the orthogonal projection
onto HG. Since for u, v ∈ H,

〈Hu,Hv〉 =

∫
G

〈gu,Hv〉 dg =

∫
G

〈u, g∗Hv〉 dg

=

∫
G

〈u,Hv〉 dg = 〈u,Hv〉,

we have 〈u−Hu, v〉 = 〈u−Hu,Hv〉 = 0 ∀v ∈ HG, i.e., H turns out to be the orthogonal
projection operator from H onto HG and u = Hu+ (u−Hu) is the orthogonal direct
sum.

2.4. Examples. We give some examples that will be used in our numerical
computations.

Example 2.2. Let H be a Hilbert space with inner product 〈, 〉 and G a finite
group of linear isomorphisms of H with m elements. Then for each u ∈ H, the Haar
integral operator on u is given by Hu = uG = 1

m

∑
g∈G gu ∈ HG and u⊥

G = u− uG ∈
H⊥

G .

Example 2.3. Let Ω ⊂ Rn (n ≥ 1) be a bounded open set and H = W k,2(Ω),
where k ≥ 0 be the Sobolev space. Let O(n) be the set of all orthogonal matrices in
Rn×n. O(n) is a compact group. Let G be the set of all orthogonal matrices g ∈ O(n)
such that g(Ω) = Ω. For each g ∈ G and u ∈ H, let gu(x) = u(gx)∀x ∈ Ω; then G is
a compact group of linear isomorphisms of H. The Haar integral operator H defines
the orthogonal projection operator from H onto HG. Indeed, if g is represented by
an orthogonal matrix, then g is an isomorphism of H, or in other words, the inner
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product is g-invariant, i.e.,

〈gu, gv〉 =

∫
Ω

∑
|α|≤k

(Dαu(gx))T (Dαv(gx)) dx

(by substituting y = gx and g(Ω) = Ω, gT g = I)

=

∫
Ω

∑
|α|≤k

(Dαu(y))T (gT )α(g)α(Dαv(y))|g| dy = 〈u, v〉 ∀u, v ∈ H.

Example 2.4. Let Ω ⊂ Rn be a bounded open domain. Assume that Ω is symmet-
ric about the reflections w.r.t. the first n− 1 axes. Let H = W k,2(Ω). Define g : H →
H by (gu)(x1, . . . , xn−1, xn) = −u(−x1, . . . ,−xn−1, xn). Then G = {id, g} ∼= Z2.

Example 2.5. Let Ω ⊂ R2 be a bounded open domain. Let m > 1 be an integer.
For each point x = (r, θ) ∈ Ω denote gx ≡ g(r, θ) = (r, θ + 2π

m ) and h̄x ≡ h̄(r, θ) =
(r,−θ), i.e., for α = 2π

m , g = [ cos(α) −sin(α)

sin(α) cos(α) ] and h̄ = [ 1 0
0 −1 ]. Let g(Ω) = Ω, h̄(Ω) = Ω

and H = W 1,2(Ω) be the Sobolev space of functions on Ω with the inner product
〈u, v〉 =

∫
Ω
(∇u · ∇v + uv) dx. Let eo = ±1 be fixed. For each u ∈ H, we define

g(u)(x) = u(gx) and h(u)(x) = eo(h̄x).

It is clear that g represents a rotation and h represents an even (eo = 1) or an odd
(eo = −1) reflection. The inner product is invariant under both linear operators g
and h. To see this let f denote the operator g or h and the matrix g or h̄. We have
fT f = I, and thus

〈fu, fv〉 =

∫
Ω

(∇u(fx)T fT f∇v(fx) + u(fx)v(fx)) dx

(substituting y = fx and note f(Ω) = Ω, |f | = 1)

=

∫
Ω

(∇u(y)∇v(y) + u(y)v(y))|f | dy = 〈u, v〉.

We have a finite group G = {g, g2, . . . , gm, hg, hg2, . . . , hgm} of linear isomorphisms
of H which has two generators g and h. The invariant subspace HG of H is defined
by

HG = {u ∈ H : giu = u and hgiu = u ∀i = 1, 2, . . . ,m}.

For each u ∈ H, the Haar integral operator on u is given by

Hu = uG ≡ 1

2m

(
m∑
i=1

giu +

m∑
i=1

hgiu

)
∈ HG and u⊥

G ≡ u− uG ∈ H⊥
G .

There are symmetries that cannot be defined by a compact group of linear isomor-
phisms of H, such as composite symmetries involving partially defined symmetries.
We may identify those symmetries by using several projections, among which the first
one is orthogonal with which computational error is expected to be minimized.

Example 2.6. Let Ω = [−a, a]×[−a, a] in R2 and H = H1
0 (Ω). We are interested

in finding a critical point u∗ with the following symmetries. The profile of u∗ is even
symmetric about the line y = −x, even symmetric about the x-axis for points (x, y)
with 0 ≥ y ≥ −x ≥ −a, and even symmetric about the y-axis for points (x, y) with
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0 ≥ −x ≥ y ≥ −a. To define the invariant space, we combine two projection operators
T = T2 · T1, where

{
(T1u)(x, y) = 1

2 (u(x, y) + u(−y,−x)),
(x, y) ∈ Ω,

(T2u)(x, y) =

⎧⎨
⎩

u(x,−y), 0 ≥ y ≥ −x,
u(−x, y), 0 ≥ −x ≥ y,
u(x, y) otherwise.

T1 is an orthogonal projection from H to HT1 with which computational error is
minimized and T2 is a projection from HT1

to HT . Note that T2 can map H to
outside of H. However, T2 projects HT1 into H. Thus T = T2 · T1 projects H into
HT ⊂ H.

Remark 2.1. When certain symmetries cannot be described by a compact group
of linear isomorphisms, such as the case in Example 2.6, it is difficult to analytically
verify whether or not a point u having the symmetries will imply that ∇J(u) has the
same symmetries. But it can be numerically checked as follows. Let T represent the
projection operator onto HI . The term ∇J(u)−T (∇J(u)) represents the asymmetric
part of ∇J(u) together with the computational error. Let ε represent the order of
the computational error. If ‖∇J(u) − T (∇J(u))‖ ≈ ε‖∇J(u)‖, it means that the
asymmetric part is caused by the computational error, not the asymmetric part of
∇J(u). Thus ∇J(u) has the same symmetries. Otherwise ∇J(u) does not have the
same symmetries.

3. Numerical examples. In this section, we present several typical examples
to illustrate the theory and numerical algorithm. Each of these examples has its
own feature in symmetry and other properties. These examples also exhibit two
types of mathematical phenomena. The first is about symmetry breaking in terms of
some parameters of the problems. In general, for the problems with the full radial
symmetry in Rn, there is always a radial solution for all parameters. When we vary
the parameters the problems may or may not have nonradial solutions. If nonradial
solutions appear, we say symmetry breaking occurs. We demonstrate this feature by
using autonomous equations with the Dirichlet boundary condition (the Lane–Emden
equation) on thin annular domains as well as for the Henon equation in ball domains.
For the existence of these solutions, some have been proved theoretically and others
are still open (see [5], [4] for more references of theoretical studies). These nonradial
solutions tend to have higher energy and possess large MIs. The second is about
nodal solutions (sign-changing solutions) for nonlinear Dirichlet problems. Again
these solutions tend to have higher energy and large MIs. The existence of most
of these solutions are still open (see [11] for more references of theoretical studies
on nodal solutions). As these examples show our new numerical algorithm is very
powerful in dealing with multiple saddle points with large MIs and is very efficient
and stable in dealing with the presence of symmetries.

To find a saddle point of J , when H is replaced by a J-invariant space HI in
LMM, whether or not the algorithm is stable depends on whether or not the support
L in HI is sufficient. We will pay special attention to the case where L = {0}, the
smallest possible support. So we have tried to explore the symmetries of a problem
to the maximum. It is known that when L = {0}, our solution set coincides with the
Nehari manifold in HG defined by

M = {tuu : u ∈ HG, ‖u‖ = 1, tu �= 0, 〈∇J(tuu), u〉 = 0}.

Under some standard conditions, it can be shown [12] that M is smooth and the peak
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selection p is unique and C1, which gives us a great advantage to show the convergence
of LMM [13].

Let Ω ⊂ R2 be a bounded open domain. Consider the Henon equation (p = 3, q ≥
0)

Δu(x) + |x|qup(x) = 0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω.(2.0)

When q = 0, (2.0) reduces to the Lane–Emden equation. When q > 0, due to an
explicit dependency on x, the well-known Gidas–Ni–Nirenberg theorem on symmetry
does not apply. Thus it is interesting to examine the symmetry breaking phenomena.

Though the abstract theory asserts the invariance under general conditions of the
group action, we demonstrate as an example for the Henon equation how to verify
this for certain symmetries. We show here if u has a symmetry, then ∇J(u) possesses
the same symmetry, where J is the corresponding functional to the Henon equation.
Let G ⊂ O(n) be a closed subgroup, and Ω is invariant under the action of G. Let
λ1 < λ2 < λ3 < · · · be the eigenvalues of −Δ with Dirichlet boundary condition and
Ei the eigenspace corresponding to λi. Then for u ∈ Ei, −Δu = λiu. It follows from
this that for g ∈ G we also have −Δgu = λigu. That is, Ei is invariant subspace
under G. This means HG, the invariant space of group G, and H⊥

G are both generated
by G-invariant eigenspaces. Now it is easy to verify that

(∇J(u), v) =

∫
Ω

∇(u− (−Δ)−1|x|qup)∇v dx,

which implies ∇J(u) = u− (−Δ)−1|x|qup. Assume u ∈ HG is in the G-invariant sub-
space. Then |x|qup ∈ HG and we have ∇J(u) ∈ HG if and only if w = (−Δ)−1|x|qup ∈
HG. Let w = wG + w⊥

G with wG ∈ HG and w⊥
G ∈ H⊥

G . Since w solves for
−Δw = |x|qup ∈ HG we have −Δw⊥

G = 0. Thus w⊥
G = 0 and w ∈ HG. This

gives ∇J(u) ∈ HG.
In the examples we consider four types of domains:

(a) Ωs = [−1, 1] × [−1, 1], (c) Ωd = {(x, y) ∈ R2 : x2 + y2 ≤ 1},
(b) Ωr = [−1.5, 1.5] × [−1, 1], (d) Ωa = {(x, y) ∈ R2 : 0.7 ≤

√
x2 + y2 ≤ 1}.

Domains Ωs and Ωr are used to exploit the structure of nodal solutions which are
saddle points with large MIs. Domains Ωd and Ωa are discs and annulars which will
be used to demonstrate symmetry breaking phenomena and to find nonradial positive
solutions while radial positive solutions always exist. Disks and annular domains
are the most symmetric domains in R2, i.e., they are invariant under the full O(2)
symmetry. But the symmetry causes degeneracy, due to the fact that a rotation of
a nonradial solution about any angle is still a solution. Thus the solutions are not
isolated in the whole space H. When symmetry is properly used to define an invariant
space HI , a solution in HI can be isolated.

It is known that on a disk, the Lane–Emden equation has a unique positive so-
lution as the ground state which is radially symmetric and has a single peak; while
the Henon equation, in addition to the radially symmetric positive solution which
has the highest critical level among all other positive solutions if exist, may have a
nonradially symmetric positive solution. The existence of a nonradial solution to the
Henon equation depends on the parameter q, which is a typical symmetry breaking
phenomenon. There may have multipeak positive solutions. The number of peaks
that a positive solution may have depends on the parameter q. This may be con-
sidered a bifurcation problem with parameter q. Because of high critical level, the
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Fig. 1. Solution contours to the Lane–Emden equation on Ωs, J = 9.441 (left), J = 48.81
(center), and J = 53.58 (right).
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Fig. 2. Solution contours to the Lane–Emden equation on Ωs, J = 151.0 (left), J = 195.1
(center), and J = 233.0 (right).
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radially symmetric positive solution is the most unstable and, therefore, most elusive
to capture among all positive solutions by LMM, since it will never get a sufficient
support, unless one uses the radial symmetry to convert it into solving an ordinary
differential equation. However, the method developed in this paper can easily capture
this radially symmetric solution.

We point out that for a numerical computation using symmetry to be successful,
it is important that its discretized mesh points must match the symmetry. In the
numerical examples, ε < 10−4 is used to terminate iterations, an initial guess v1

0 is
obtained from solving

Δv(x) = c(x), x ∈ Ω, and v(x) = 0, x ∈ ∂Ω,

where c(x) is equal to −1 (+1) if one wants v(x) to be convex down (up) at x and is
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equal to 0 if the profile of v(x) is not of concern at x, and L = {0}, i.e., the smallest
possible invariant subspace is used unless it is otherwise specified. In all the figures,
J is the critical value. Figures 1, 2, and 3 are solutions to the Lane–Emden equation
and we mainly want to demonstrate a variety of nodal solutions which are saddle
points having large MIs. Figure 4 contains two positive solutions of the Lane-Emden
equation on annular domains. Figures 5, 6, 7, 8, 9, and 10 are solutions to the Henon
equation. For Figures 5 and 6, we explore the symmetry breaking phenomenon by
showing that as the parameter q increases more and more nonradial positive solutions
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appear which should also have large MIs. For Figures 7, 8, and 9, we show how to
handle various even and/or odd symmetries. The symmetry in Figure 10 is partial
and cannot be described by a compact group. The following list contains details on
how we use symmetries to find each of the solutions, i.e., a formula is given in each
case for us to compute H(dk) and then to replace dk in LMM.

(1) Cf. Figure 1 (left). No symmetry is needed or (Hu)(x, y) = u(x, y). This is a
mountain-pass solution with MI = 1.

(2) Cf. Figure 1 (center). Either odd reflection about the line y = x or odd re-
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Fig. 10. A solution to the Henon equation on Ωs and its contours with q = 9, J = 129.1.

flection about the origin. (Hu)(x, y) = 1
2 (u(x, y) − u(−y,−x)) or (Hu)(x, y) =

1
2 (u(x, y) − u(−x,−y)). This is a solution whose MI is at least 2 in H, and its
MI is 1 when restricted in HI .

(3) Cf. Figure 1 (right). Odd reflection about the x-axis. (Hu)(x, y) = 1
2 (u(x, y) −

u(x,−y)).
(4) Cf. Figure 2 (left). Either odd reflections about the x-axis and the y-axis, or

odd symmetry about the rotation by π
2 . (Hu)(x, y) = 1

4 (u(x, y) − u(−x, y) +
u(−x,−y)−u(x,−y)) or (Hu)(θ, r) = 1

4 (u(θ, r)−u(θ+ π
2 , r)+u(θ+π, r)−u(θ+

3π
2 , r)). This solution has MI at least 4 in H though the MI = 1 in HI .

(5) Cf. Figure 2 (center). Odd reflections about the lines y = x and y = −x.
(Hu)(x, y) = 1

4 (u(x, y) − u(y, x) + u(−x,−y) − u(−y,−x)).
(6) Cf. Figure 2 (right). Either even reflections about the x-axis and the y-axis, or

even symmetry about the rotation by π
2 . L = {u1} and u1 is the solution in

(1). (Hu)(x, y) = 1
4 (u(x, y) + u(−x, y) + u(−x,−y) + u(x,−y)) or (Hu)(θ, r) =

1
4 (u(θ, r) + u(θ + π

2 , r) + u(θ + π, r) + u(θ + 3π
2 , r)).

(7) Cf. Figure 3 (left). Odd reflections about the x-axis, the y-axis, the lines
y = x and y = −x. H = H4H3H2H1, where (H1u)(x, y) = 1

2 (u(x, y) −
u(x,−y)), (H2u)(x, y) = 1

2 (u(x, y)−u(−x, y)), (H3u)(x, y) = 1
2 (u(x, y)−u(y, x)),

(H4u)(x, y) = 1
2 (u(x, y)− u(−y,−x)). Such a solution has a vary large MI in H

and is too expensive to compute without using the symmetry.
(8) Cf. Figure 3 (center). Odd reflections about the x-axis and the y-axis. (Hu)(x, y)

= 1
4 (u(x, y)−u(−x, y)+u(−x,−y)−u(x,−y)). Since the domain is a rectangle,

the rotation by π
2 is not applicable. Contrast to Figure 2 (left).

(9) Cf. Figure 3 (right). Even reflections about the x-axis and the y-axis. (Hu)(x, y)
= 1

4 (u(x, y) + u(−x, y) + u(−x,−y) + u(x,−y)). L = {u1}, where u1 is the sin-
gle peak positive solution in the rectangle. This is the same symmetry used
in the example shown in Figure 2 (right). It is interesting to compare this to
Figure 2 (right). If we let the rectangle [−1.5, 1.5] × [−1, 1] change gradually
to the square [−1, 1] × [−1, 1], e.g., [−1.01, 1.01] × [−1, 1], the solution remains
of the same profile; it is an interesting observation. If we compare the critical
values, profiles and symmetries of Figure 2 (left) and (right) with that of Fig-
ure 3 (center) and (right), we note that their sequential orders in critical level
and profiles have changed drastically due to even a slight change in the geometry
of the domain.

(10) Cf. Figure 4 (left). Rotation symmetry by 2π
3 . (Hu)(θ, r) = 1

3 (u(θ, r) + u(θ +
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2π
3 , r) + u(θ + 4π

3 , r)). Such a solution failed to be captured in [12] due to
the fact that without using the symmetry, a sufficient support L in H contains
infinitely many saddle points at lower critical level. We observe that the solution
generated not only has the Z3 symmetry it also has the additional symmetry of
being even about the rotation by 2π

3 . Thus the solution has D3 symmetry as
well. With our new algorithm we may capture, in a stable way, solutions with
Dk symmetry for any prime number k. The MIs of these solutions should be
large depending upon the number of peaks k. This is related to the symmetry
breaking phenomena for radially symmetric elliptic problems. The existence
and qualitative behavior of these solutions can be found in [5] and the references
therein. A rotation of the solution by any angle is still a solution. It is a
degenerate case. However, adding an even symmetry about the x-axis can bypass
the degeneracy.

(11) Cf. Figure 4 (right). Same symmetry as in Example 2.6. The existence of such
a solution is still open. By Remark 2.1, we numerically checked that for each
vk = p(uk) ∈ HI generated by LMM, ∇J(vk) ∈ HI , i.e., the invariant subspace
HI is well defined. However, this problem is degenerate and also ill-conditioned
in the sense that if we fix one peak and move another peak around, the change
in J is almost invisible.

(12) Cf. Figure 5 (left). No symmetry is needed. This radial solution should be the
unique positive solution to the Henon equation. A nonradial solution can be
found for q ≥ 1.

(13) Cf. Figure 5 (center). No symmetry is needed. However, adding an even sym-
metry about the x-axis will bypass the degeneracy. This is the least energy
solution of the problem and this exhibits the phenomenon of symmetry breaking
of ground state solutions (see [4]).

(14) Cf. Figure 5 (right). Even symmetry about the origin or rotation by π. (Hu)(x, y)
= 1

2 (u(x, y) + u(−x,−y)). Such a radially symmetric solution is impossible to
capture without using the symmetry since it has the highest critical value among
all positive solutions and a sufficient support L in H needs to contain infinitely
many positive solutions. A traditional way to find this solution is to use the
radial symmetry to convert it into an ODE. On the other hand, this also shows
that for small q (in this case q = 3) the radial solution is still the least energy
solution in the class of even functions, and when we increase q to q = 4 as in
the next example, the radial solution is going to lose its stability and the least
energy solution becomes nonradial again.

(15) Cf. Figure 6 (left). Either even symmetry about the origin or even symmetry
about the rotation by π. (Hu)(x, y) = 1

2 (u(x, y) + u(−x,−y)). Adding an even
symmetry about the x-axis or y-axis will bypass the degeneracy. A symmetry
about the rotation by 2π

3 will generate the radially symmetric solution. From
this example onward, the solutions demonstrated should have large MI depend-
ing upon the number of peaks of the solutions.

(16) Cf. Figure 6 (center). Symmetry about the rotation by 2π
3 . (Hu)(θ, r) =

1
3 (u(θ, r) + u(θ + 2π

3 , r) + u(θ + 4π
3 , r)). Adding an even symmetry about the

x-axis will bypass the degeneracy. A symmetry about the rotation by π
2 will

generate the radially symmetric solution. This implies the radial solution is the
ground state in the class of functions invariant under Z4, but is not the ground
state in the class of Z3-invariant functions.

(17) Cf. Figure 6 (right). Symmetry about the rotation by π
2 . (Hu)(θ, r) = 1

4 (u(θ, r)+
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u(θ + π
4 , r) + u(θ + π

2 , r) + u(θ + 3π
4 , r)). Adding an even symmetry about the

x-axis or y-axis will bypass the degeneracy.
(18) Cf. Figure 7 (left). No symmetry is needed or Hu(x, y) = u(x, y).
(19) Cf. Figure 7 (center). Even reflection about the y-axis. (Hu)(x, y) = 1

2 (u(x, y)+
u(−x, y)).

(20) Cf. Figure 7 (right). Even reflection about the line y = −x. (Hu)(x, y) =
1
2 (u(x, y) + u(−y,−x)).

(21) Cf. Figure 8 (left). Even reflection about the x-axis and the y-axis. (Hu)(x, y) =
1
4 (u(x, y) + u(−x, y) + u(−x,−y) + u(x,−y)).

(22) Cf. Figure 8 (center). Odd reflection about the y-axis. (Hu)(x, y) = 1
2 (u(x, y)−

u(−x, y)).
(23) Cf. Figure 8 (right). Odd reflection about the line y = −x. (Hu)(x, y) =

1
2 (u(x, y) − u(−y,−x)).

(24) Cf. Figure 9 (left). Even reflection about the y-axis and odd reflection about
the x-axis.

(25) Cf. Figure 9 (center). Odd reflections about the x-axis and the y-axis. (Hu)(x, y)
= 1

4 (u(x, y) + u(−x, y) − u(−x,−y) − u(x,−y)).
(26) Cf. Figure 9 (right). The same symmetry used in finding the solution in (7). Such

a solution has a vary large MI in H and is too expensive to compute without
using the symmetry.

(27) Cf. Figure 10. The same symmetry as in Example 2.6 and also in (11). It is
an interesting example, since its symmetry is partial and cannot be described
by a compact group. Theoretically the existence of such a solution is still open.
However, we are able to follow Remark 2.1 to numerically verify the invari-
ant subspace in the sense of Definition 2.1. For each vk = p(uk) ∈ HI gen-
erated in LMM, we find that the asymmetric part of dk = ∇J(vk) satisfies
‖asymmetric part of dk‖H1

0

∼= 2 × 10−4‖dk‖H1
0
. Thus we are very optimistic

about the existence of this solution.
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SHARP ERROR ESTIMATES FOR INTERPOLATORY
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Abstract. Let P be a convex polytope in the d-dimensional Euclidean space. We consider an
interpolation of a function f at the vertices of P and compare it with the interpolation of f and its
derivative at a fixed point y ∈ P. The two methods may be seen as multivariate analogues of an
interpolation by secants and tangents, respectively. For twice continuously differentiable functions,
we establish sharp error estimates with respect to a generalized Lp norm for 1 ≤ p ≤ ∞. The case
p = 1 is of special interest since it provides analogues of the midpoint rule and the trapezoidal rule
for approximate integration over the polytope P. In the case where P is a simplex and p > 1, this
investigation covers recent results by S. Waldron [SIAM J. Numer. Anal., 35 (1998), pp. 1191–1200]
and by M. Stämpfle [J. Approx. Theory, 103 (2000), pp. 78–90].
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1. Introduction and notation. Denote by P1 the class of all polynomials in
d real variables of degree at most 1, also called the class of affine functions on R

d.
Let P ⊂ R

d be a convex polytope of positive measure with vertices v1, . . . , vn, and let
B1, . . . , Bn be an associated system of continuous functions on P with the following
properties.

Nonnegativity. For i = 1, . . . , n, we have

Bi(x) ≥ 0 (x ∈ P).(1.1)

Linear precision. For every λ ∈ P1, we have

λ(x) =
n∑

i=1

λ(vi)Bi(x).(1.2)

Warren [10] showed that B1, . . . , Bn can be chosen as rational functions, which are
uniquely determined if one requires that each Bi have minimal degree. Furthermore,
for an arbitrary convex polytope, he presented an algorithm for constructing these
functions B1, . . . , Bn in a finite number of steps.

Since vertices of a convex polytope are extremal points, it is easily deduced from
the “linear precision” that

Bi(vj) = δij (i, j ∈ {1, . . . , n}),(1.3)

where we use Kronecker’s delta. As a consequence of (1.2) and (1.3), the functions
B1, . . . , Bn are linearly independent and span an n-dimensional linear space Rn which
contains P1 as a subspace.
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By C(P), C1(P), and C2(P), we denote the spaces of functions which are de-
fined on P and are continuous, continuously differentiable, and twice continuously
differentiable, respectively.

Next, let L be a positive linear functional on C(P). The positivity means that
L(f) > 0 for every nontrivial nonnegative function f ∈ C(P).

Examples of such functionals are weighted integrals

L(f) :=

∫
P

w(x)f(x)dx
(
f ∈ C(P)

)
,(1.4)

where w is integrable and positive on P except for a set of measure zero.
For f ∈ C(P), we introduce

‖f‖p :=
(
L(|f |p)

)1/p
(1 ≤ p < ∞)(1.5)

and

‖f‖∞ := sup
x∈P

|f(x)| ,(1.6)

which define norms on C(P). When L is given by (1.4) and w = 1, then ‖ · ‖p is
the familiar Lp norm. For general L, we may think of P as being equipped with a
mass distribution such that L(1) is the total mass of P. The possibility of having an
arbitrary L is of interest mainly in our applications of the case p = 1 (see section 4).
For this reason, we do not use a weighted supremum norm.

By ‖ · ‖, without any subscript, and by 〈·, ·〉, we want to denote the Euclidean
norm and the standard inner product in R

d.
In this paper, we shall study the linear interpolation operator Λv, defined by

Λv[f ] :=

n∑
i=1

f(vi)Bi

(
f ∈ C(P)

)
,(1.7)

which interpolates f at the vertices of P, and shall compare it with

Λy[f ] := f(y) + Df(y)(· − y)
(
f ∈ C1(P)

)
,(1.8)

where y ∈ P. Clearly, Λy[f ] interpolates f at y, and the same holds for the first
derivative.

As regards our notation, we want to follow the convention that a superscript
in roman type indicates an abbreviation for a word, while a subscript in italic type
is a mathematical quantity. In particular, the superscript v shall always refer to
interpolation at the vertices. Similarly, we shall use the superscripts sb for smallest
ball and cm for center of mass.

2. Auxiliary results. For convenient reference, we first state some properties
of the operators Λy and Λv as lemmas.

Lemma 2.1. For y ∈ P, the operator Λy has the following properties:
(i) It maps C1(P) into P1.
(ii) It reproduces functions from P1.
(iii) It approximates convex functions from below.
Proof. The properties (i) and (ii) are obvious. Property (iii) is a well-known fact

about differentiable, convex functions; see [5, Theorem A, p. 98].
Lemma 2.2. The operator Λv has the following properties:
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(i) It maps C(P) into Rn.
(ii) It reproduces functions from Rn.
(iii) It approximates convex functions from above.
(iv) If f, g ∈ C(P) and f(vi) ≤ g(vi) for i = 1, . . . , n, then Λv[f ] ≤ Λv[g].
Proof. Since {B1, . . . , Bn} is a basis of Rn, the properties (i) and (ii) are obvious

consequences of the definition of Λv.
Next, it follows from (1.2) that

x =

n∑
i=1

viBi(x) (x ∈ P),

which is a representation of x as a convex combination of the vertices of P. Hence,
for a convex function f ,

f(x) = f

(
n∑

i=1

viBi(x)

)
≤

n∑
i=1

f(vi)Bi(x) = Λv[f ](x) (x ∈ P),

and so statement (iii) is verified.
Finally, recalling (1.1), we see that, under the hypothesis of statement (iv),

Λv[f ] =

n∑
i=1

f(vi)Bi ≤
n∑

i=1

g(vi)Bi = Λv[g].

This completes the proof.
It will turn out that the constants in our error estimates are determined by the

interpolation error of the quadratic function ‖ · ‖2. We therefore introduce the (non-
negative) functions

ey := ‖ · ‖2 − Λy

[
‖ · ‖2

]
,(2.1)

where y ∈ P, and

ev := Λv
[
‖ · ‖2

]
− ‖ · ‖2 =

n∑
i=1

‖vi‖2Bi − ‖ · ‖2.(2.2)

Representations, interrelations, and estimates for these functions are stated in the
following lemma.

Lemma 2.3. The functions ey and ev are nonnegative and vanish at the interpo-
lation points of Λy and Λv, respectively. They satisfy the equations

ey = ‖ · −y‖2,(2.3)

ev =

n∑
i=1

‖ · −vi‖2Bi,(2.4)

ev + ey =

n∑
i=1

ey(vi)Bi.(2.5)

Furthermore, denoting by

B
sb =: {x ∈ R

d : ‖x− xsb‖ ≤ rsb}(2.6)
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the smallest ball that contains P, we have

ev(x) ≤ (rsb)2 − ‖x− xsb‖2 ≤ (rsb)2(2.7)

for all x ∈ P.
For notational simplicity, we write

Λsb := Λy and esb := ey if y = xsb.(2.8)

Proof. From the definition of the functions ey and ev, it is clear that they vanish
at the interpolation points of Λy and Λv, respectively. Since ‖·‖2 is a convex function,
the statements (iii) of Lemmas 2.1 and 2.2 show that ey and ev are nonnegative.

Next, from the definition of ey, we deduce that

ey(x) = ‖x‖2 −
(
‖y‖2 + 2〈y, x− y〉

)
= ‖x‖2 + ‖y‖2 − 2〈y, x〉 = ‖x− y‖2,

which is (2.3).
Since ev + ey belongs to Rn, statement (ii) of Lemma 2.2 shows that, for any

x ∈ P, we have

ev(x) + ey(x) =

n∑
i=1

(
ev(vi) + ey(vi)

)
Bi(x) =

n∑
i=1

ey(vi)Bi(x),(2.9)

which is (2.5).
Substituting y = x in (2.9) and using (2.3), we obtain (2.4).
For a proof of (2.7), we first note that xsb ∈ P, as a consequence of the convexity

of P. Since

hsb := (rsb)2 − ‖ · −xsb‖2(2.10)

is nonnegative on P, while ev vanishes at all the vertices of P, we clearly have

hsb(vi) − ev(vi) ≥ 0 (i = 1, . . . , n).

Therefore statement (iv) of Lemma 2.2 implies that Λv[hsb − ev] ≥ 0. Furthermore,
using (2.3), (2.5), and the notation (2.8), we find that

hsb − ev = (rsb)2 − esb − ev = (rsb)2 −
n∑

i=1

esb(vi)Bi,(2.11)

which obviously belongs to Rn. Hence statement (ii) of Lemma 2.2 allows us to con-
clude that

hsb − ev = Λv
[
hsb − ev

]
≥ 0,(2.12)

which gives (2.7) immediately.
Remark 2.4. Inequality (2.7) is of interest for the following reason. As we shall

see, the best constants in our error estimates for Λv[f ] are determined by norms of ev.
If ev is complicated, then we may use the simpler function (2.10) instead and obtain
a constant which is possibly somewhat worse, but which may still be good enough for
practical applications. In the case where P is a simplex, it can even be shown that

sup
x∈P

ev(x) = sup
x∈P

hsb(x) = (rsb)2;

see [6, Lemma 4.2].
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3. Approximation of functions. We are mainly interested in approximation
of functions from C2(P). However, in the case where P is a simplex, Stämpfle [6,
Theorem 4.1, statements (i)–(iv)] also presented results for functions belonging to
lower regularity classes. These statements extend to Λv by exactly the same arguments
as in [6]. We only mention a result for a Lipschitz class which is more general than
the one considered in [6].

For α ∈ (0, 1] and L > 0, we write f ∈ LipL(α,P) and say that f satisfies a
Lipschitz condition of order α with Lipschitz constant L on P if f ∈ C(P) and

|f(x) − f(y)| ≤ L‖x− y‖α (x, y ∈ P).

Theorem 3.1. Let f ∈ LipL(α,P). Then

∣∣f(x) − Λv[f ](x)
∣∣ ≤ L

(
ev(x)

)α/2
(x ∈ P)(3.1)

and, for each p ∈ [1,∞], ∥∥f − Λv[f ]
∥∥
p
≤ L

∥∥(ev)α/2
∥∥
p
.(3.2)

Proof. From (1.2) and the definition of Λv, it is clear that

f(x) − Λv[f ](x) =

n∑
i=1

(
f(x) − f(vi)

)
Bi(x),

and so, by the triangle inequality and the Lipschitz condition,

∣∣f(x) − Λv[f ](x)
∣∣ ≤ L

n∑
i=1

‖x− vi‖αBi(x).(3.3)

Next, using Hölder’s inequality with p := 2/α and q := 2/(2 − α), which is an
admissible pair of exponents, and recalling (1.2) and (2.4), we find that

n∑
i=1

‖x− vi‖αBi(x) =

n∑
i=1

‖x− vi‖αBi(x)1/p ·Bi(x)1/q

≤
(

n∑
i=1

‖x− vi‖αpBi(x)

)1/p

·
(

n∑
i=1

Bi(x)

)1/q

=

(
n∑

i=1

‖x− vi‖2Bi(x)

)α/2

=
(
ev(x)

)α/2
.

Combining this with (3.3), we obtain (3.1). Clearly, (3.2) is an immediate consequence
of (3.1).

For twice differentiable functions f : P → R, we denote by

H[f ](x) :=

(
∂2f

∂xi∂xj
(x)

)
i,j=1,...,d

the Hessian matrix of f at x and introduce⎪⎪⎪⎪D2f
⎪⎪⎪⎪ := sup

x∈P

sup
y∈R

d

‖y‖=1

∣∣y�H[f ](x)y
∣∣ ,(3.4)
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agreeing that the elements of R
d are column vectors so that y�, which denotes the

transpose of y, becomes a row vector. Clearly,
⎪⎪⎪⎪D2f

⎪⎪⎪⎪ = 0 for f ∈ P1, and
⎪⎪⎪⎪D2f

⎪⎪⎪⎪ =
2 |c| for f = c‖ · ‖2.

Subsequently, we shall often refer to the space

F2 :=
{
f := λ + c ‖·‖2

: λ ∈ P1, c ∈ R

}
.(3.5)

The following theorem for Λy is not more than an easy exercise in calculus. We
formulate it as a theorem only in order to compare it with the corresponding result
for Λv.

Theorem 3.2. Let f ∈ C2(P). Then,

∣∣f(x) − Λy[f ](x)
∣∣ ≤ 1

2
‖x− y‖2

⎪⎪⎪⎪D2f
⎪⎪⎪⎪ (x, y ∈ P).(3.6)

Furthermore, for each p ∈ [1,∞],

∥∥f − Λy[f ]
∥∥
p
≤ cy,p

⎪⎪⎪⎪D2f
⎪⎪⎪⎪,(3.7)

where

cy,p :=
1

2
‖ey‖p.(3.8)

Both inequalities are sharp. Equality is attained for every f ∈ F2.
Proof. By the Taylor formula of order two, we have

f(x) − Λy[f ](x) =
1

2
(x− y)�H[f ]

(
y + θ(x− y)

)
(x− y)

for some θ ∈ (0, 1). Now the definition of
⎪⎪⎪⎪D2f

⎪⎪⎪⎪, given in (3.4), shows that (3.6)
holds. Inequality (3.7) is an immediate consequence of (3.6). Finally, the case of
equality is easily verified.

Theorem 3.3. Let f ∈ C2(P). Then,

∣∣f(x) − Λv[f ](x)
∣∣ ≤ 1

2
ev(x)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪ (x ∈ P).(3.9)

Furthermore, for each p ∈ [1,∞],

∥∥f − Λv[f ]
∥∥
p
≤ cvp

⎪⎪⎪⎪D2f
⎪⎪⎪⎪,(3.10)

where

cvp :=
1

2
‖ev‖p.(3.11)

Both inequalities are sharp. Equality is attained for every f ∈ F2.
Proof. Inequality (3.6) may be rewritten as

− 1

2
‖x− y‖2

⎪⎪⎪⎪D2f
⎪⎪⎪⎪ ≤ f(x) − Λy[f ](x) ≤ 1

2
‖x− y‖2

⎪⎪⎪⎪D2f
⎪⎪⎪⎪ (x, y ∈ P).(3.12)

Next, from statement (iv) of Lemma 2.2, it follows that inequalities between contin-
uous functions on P are preserved when the operator Λv is applied on both sides.
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Moreover, statement (i) of Lemma 2.1 together with statement (ii) of Lemma 2.2
shows that

Λv
[
Λy[f ]

]
= Λy[f ].

Hence (3.12) implies that

− 1

2
Λv

[
‖ · −y‖2

]
(x)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪ ≤ Λv[f ](x) − Λy[f ](x) ≤ 1

2
Λv

[
‖ · −y‖2

]
(x)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪.

Now, taking y = x and noting that Λx[f ](x) = f(x) and, by (2.4),

Λv
[
‖ · −x‖2

]
(x) =

n∑
i=1

‖vi − x‖2Bi(x) = ev(x),

we obtain

−1

2
ev(x)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪ ≤ Λv[f ](x) − f(x) ≤ 1

2
ev(x)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪,

which is equivalent to (3.9). Inequality (3.10) is an immediate consequence of (3.9).
The statement on the occurrence of equality is easily verified by a calculation.

Remark 3.4. Since Λv is a positive operator which reproduces affine functions,
inequality (3.9) can also be deduced from [9, Theorem 1.4] in conjunction with the
above Lemma 2.3.

The operator Λy has just one interpolation point, which is of multiplicity two.
Such an interpolation can be described by d + 1 scalar equations. The interpolation
of the operator Λv, which has n simple interpolation points, can be described by n
scalar equations. Since n ≥ d + 1, we may expect that the operator Λv is at least as
precise as Λy. In the following proposition, we compare the constants (3.8) and (3.11)
when p = ∞.

Proposition 3.5. For p = ∞, the constants (3.8) and (3.11) satisfy the relations

cv∞ ≤ cy,∞ (y ∈ P)(3.13)

and

inf
y∈P

cy,∞ =
(rsb)2

2
,(3.14)

the infimum being attained for y = xsb, where rsb and xsb specify the smallest ball
Bsb which contains P, as introduced in (2.6).

If all the vertices of P lie on the boundary of Bsb, then

cv∞ =
(rsb)2

2
.(3.15)

Proof. It follows from (2.5) that

ev(x) ≤
n∑

i=1

ey(vi)Bi(x) ≤ max
1≤i≤n

ey(vi) (x ∈ P),(3.16)

which implies (3.13).
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Since a convex function, defined on a convex set, attains its supremum at an
extreme point (see, for example, [4, p. 91]), we have

max
1≤i≤n

ey(vi) = sup
x∈P

ey(x) = 2cy,∞.(3.17)

This shows that cy,∞ attains its smallest value at a point where

φ(y) := max
1≤i≤n

ey(vi) = max
1≤i≤n

‖y − vi‖2

attains its minimum. Clearly, this is the center of the smallest ball Bsb that contains
P, and so

min
y∈P

φ(y) = φ(xsb) = (rsb)2.

Thus (3.14) is verified.
If all the vertices of P lie on the boundary of Bsb, then ‖xsb − vi‖ = rsb for

i = 1, . . . , n. Therefore, by (2.4),

ev(xsb) =

n∑
i=1

‖xsb − vi‖2Bi(x
sb) = (rsb)2

n∑
i=1

Bi(x
sb) = (rsb)2,

which shows that cv∞ ≥ (rsb)2/2. Combining this inequality with (3.13) and (3.14),
we obtain (3.15).

In the univariate case, where P is an interval [a, b], it is known and also seen from
(3.15) that, for y = (b + a)/2, we have

cv∞ = cy,∞ =
(b− a)2

8
.

Moreover, the mean value

1

2

(
Λy[f ] + Λv[f ]

) (
y =

a + b

2

)

gives an approximation whose constant in the error bound is (b− a)2/16. A general-
ization is given in the following proposition.

Proposition 3.6. Let f ∈ C2(P). Then, for every y ∈ P and α ∈ [0, 1], we have

∥∥f − αΛy[f ] − (1 − α)Λv[f ]
∥∥
∞ ≤ c(α, y)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪,(3.18)

where

c(α, y) :=
1

2
sup
x∈P

(
αey(x) + (1 − α)ev(x)

)
.(3.19)

Furthermore,

inf
0≤α≤1

inf
y∈P

c(α, y) ≤ (rsb)2

4
= c

(
1

2
, xsb

)
,(3.20)

where rsb and xsb are the radius and the center, respectively, of the smallest ball Bsb

that contains P. Equality occurs in (3.20) if all the vertices of P lie on the boundary
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of Bsb. In this case, inequality (3.18) is sharp when α = 1/2 and y = xsb, and equality
is attained for every function f ∈ F2.

Proof. The estimates (3.6) and (3.9) may be rewritten as

−1

2
ey(x)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪ ≤ f(x) − Λy[f ](x) ≤ 1

2
ey(x)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪

and

−1

2
ev(x)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪ ≤ f(x) − Λv[f ](x) ≤ 1

2
ev(x)

⎪⎪⎪⎪D2f
⎪⎪⎪⎪.

Multiplying the first inequalities by α and the second by 1−α, and adding the results,
we obtain

∣∣f(x) − αΛy[f ](x) − (1 − α)Λv[f ](x)
∣∣ ≤ 1

2

(
αey(x) + (1 − α)ev(x)

)⎪⎪⎪⎪D2f
⎪⎪⎪⎪.

This implies (3.18).
Next, using (2.5) and the notation (2.8), we find that

c

(
1

2
, xsb

)
=

1

4
sup
x∈P

(
ev(x) + esb(x)

)
=

1

4
sup
x∈P

n∑
i=1

‖xsb − vi‖2Bi(x).

If vj is a vertex on the boundary of Bsb, then, by (1.1), (1.3), (2.11), and (2.12),

n∑
i=1

‖xsb − vi‖2Bi(vj) = ‖xsb − vj‖2 = (rsb)2 ≥
n∑

i=1

‖xsb − vi‖2Bi(x)

for all x ∈ P. This shows that

sup
x∈P

n∑
i=1

‖xsb − vi‖2Bi(x) = (rsb)2

and completes the proof of (3.20).
Using (3.19), we deduce that

c(α, y) ≥ 1 − α

2
sup
x∈P

ev(x) = (1 − α) cv∞ ≥ cv∞
2

if α ∈
[
0,

1

2

]

and, in conjunction with (3.14),

c(α, y) ≥ α

2
sup
x∈P

ey(x) = α cy,∞ ≥ (rsb)2

4
if α ∈

[
1

2
, 1

]
.

Under the hypothesis that all the vertices of P lie on the boundary of Bsb, we know
from Proposition 3.5 that

cv∞ =
(rsb)2

2
.

Hence

c(α, y) ≥ (rsb)2

4
(α ∈ [0, 1], y ∈ P),
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which shows that equality occurs in (3.20).
Finally, we have to verify the statement on the occurrence of equality for functions

f from the class F2. For this, it is clearly enough to consider the function f := ‖ · ‖2

only.
Using the notation (2.8), we may rewrite (2.1) and (2.2) as

f(x) − Λsb[f ](x) = esb(x),

f(x) − Λv[f ](x) = −ev(x).

Therefore,

f(x) − 1

2
Λsb[f ](x) − 1

2
Λv[f ](x) =

1

2

(
esb(x) − ev(x)

)

and consequently,
∥∥∥∥f − 1

2
Λsb[f ] − 1

2
Λv[f ]

∥∥∥∥
∞

=
1

2
sup
x∈P

∣∣esb(x) − ev(x)
∣∣.

If all the vertices of P lie on the boundary of Bsb, then

sup
x∈P

∣∣esb(x) − ev(x)
∣∣ ≥

∣∣esb(xsb) − ev(xsb)
∣∣ = ev(xsb) = (rsb)2,

where the last equation follows from (2.4) and (1.2), and so

∥∥∥∥f − 1

2
Λsb[f ] − 1

2
Λv[f ]

∥∥∥∥
∞

≥ (rsb)2

2
.

On the other hand, (3.18) and (3.20) show that

∥∥∥∥f − 1

2
Λsb[f ] − 1

2
Λv[f ]

∥∥∥∥
∞

≤ (rsb)2

2
.

Hence equality occurs for f = ‖ · ‖2.

4. Approximation of linear functionals. In the case p = 1, Theorems 3.1–3.3
provide an approximation of L(f), defined in (1.4), by the values of f (and possibly
of Df) at the interpolation points of Λy and Λv, respectively. Indeed, if Λ is any of
the two operators Λy and Λv, and I(f) := L(Λ[f ]), then, using that L is linear and
positive, we have

∣∣L(f) − I(f)
∣∣ =

∣∣L(f − Λ[f ])
∣∣ ≤ L

(
|f − Λ[f ]|

)
=

∥∥f − Λ[f ]
∥∥

1
.

Let us now turn to details. Denoting by id the identity mapping on P and
observing that L(id) is a mapping from P into R

d, we shall consider the operators

Iy(f) := L(Λy[f ]) = L(1)

[
f(y) + Df(y)

(
L(id)

L(1)
− y

)]
(4.1)

and

Iv(f) := L(Λv[f ]) =

n∑
i=1

f(vi)L(Bi).(4.2)
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In the case p = 1, the constants (3.8) and (3.11) can be expressed as

cy,1 =
1

2
L(ey) and cv1 =

1

2

(
Iv(ey) − L(ey)

)
.(4.3)

Note that the last equation, which is deduced with the help of (2.5), is independent
of y. Now Theorems 3.2 and 3.3 imply the following corollaries.

Corollary 4.1. Let f ∈ C2(P). Then, for any y ∈ P, we have

|L(f) − Iy(f)| ≤ L(ey)

2

⎪⎪⎪⎪D2f
⎪⎪⎪⎪.

Equality is attained for every f ∈ F2.
Corollary 4.2. Let f ∈ C2(P). Then, for any y ∈ P, we have

|L(f) − Iv(f)| ≤ Iv(ey) − L(ey)

2

⎪⎪⎪⎪D2f
⎪⎪⎪⎪.

Equality is attained for every f ∈ F2.
Remark 4.3. The conclusions of Corollaries 4.1 and 4.2 can be refined when, in

addition, f is known to be a convex function. In fact, in this case, we also have

Iy(f) ≤ L(f) ≤ Iv(f)

as a consequence of the statements (iii) of Lemmas 2.1 and 2.2.
The “cubature rule” Iv(f) may be seen as a multivariate analogue of the trape-

zoidal rule. As (4.1) shows, the “cubature rule” Iy(f) simplifies and does not depend
on Df if y is chosen as

xcm :=
L(id)

L(1)
.

In this case, Iy(f) is a multivariate analogue of the midpoint rule.
The point xcm will be called the center of mass of P with respect to the functional

L. Note that xcm always belongs to P. Indeed, if xcm were outside P, then there
would exist a separating hyperplane

λ(x) := a + 〈b, x〉 = 0,

where a ∈ R and b ∈ R
d, such that λ(x) > 0 for x ∈ P and λ(xcm) < 0. Since L is

positive, we would have L(λ) > 0. On the other hand, the linearity of L implies that

L(λ) = aL(1) + 〈b,L(id)〉 = aL(1) + 〈b,L(1)xcm〉 = L(1)λ(xcm) < 0,

which is a contradiction.
For notational simplicity, we now write

Λcm := Λy, Icm := Iy, ecm := ey, ccmp := cy,p if y = xcm.(4.4)

Since

ey(x) = ‖x− y‖2 = ‖x− xcm‖2 + ‖xcm − y‖2 + 2〈x− xcm, xcm − y〉,

we find, using the definition of xcm, that

cy,1 = L(ey) = L(ecm) + L(1)‖xcm − y‖2.
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This shows that the constant in the error estimate of Corollary 4.1 becomes smallest
if and only if y = xcm.

Remark 4.4. It may be interesting to compare the operators Icm and Iv. Recalling
that cv1 in (4.3) does not depend on y, we may take y = xcm. Then Corollaries 4.1
and 4.2 show that the quotient

κ :=
L(ecm)

Iv(ecm)
(4.5)

indicates which one of the two operators Icm and Iv has the smaller constant in
its error estimate. We see that ccm1 < cv1 if and only if κ ∈ (0, 1/2). Since, for
convex functions, Iv approximates L from above, we always have κ ∈ (0, 1). In all the
standard examples considered by us, we found that κ ∈ (0, 1/2). However, κ ∈ [1/2, 1)
will occur when L is of the form (1.4) and the weight function w is large near the
vertices.

5. Examples. We illustrate our results by considering three special classes of
convex polytopes for which interpolation and approximation problems have been stud-
ied in the literature.

5.1. Intervals (the univariate case). Let d := 1, P := [a, b], and L(f) :=∫ b

a
f(x) dx. Then xsb = xcm = 1

2 (a + b),

Λcm[f ](x) = f

(
a + b

2

)
+ f ′

(
a + b

2

)(
x− a + b

2

)
,

and

Λv[f ](x) =
b− x

b− a
f(a) +

x− a

b− a
f(b).

Moreover,
⎪⎪⎪⎪D2f

⎪⎪⎪⎪ = supa≤x≤b |f ′′(x)| . For the constants (3.8) with y = xcm and
(3.11), we find that

ccmp =
1

2

[
(b− a)2p+1

22p(2p + 1)

]1/p

(1 ≤ p < ∞)

and

cvp =
1

2

[
B(p + 1, p + 1)(b− a)2p+1

]1/p
(1 ≤ p < ∞),

where

B(s, t) :=

∫ 1

0

xs−1(1 − x)t−1 dx

is the beta function. Furthermore,

ccm∞ = cv∞ =
(b− a)2

8
.

It can be shown that ccmp < cvp for 1 ≤ p < ∞. In particular, cv1/c
cm
1 = 2, which

expresses the well-known fact that the constant in the error term of the trapezoidal
rule is twice as large as that of the midpoint rule.
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5.2. Multidimensional simplices. Let S ⊂ R
d be a nondegenerate simplex

with vertices v0, . . . , vd. The uniquely determined rational basis functions B0, . . . , Bd

of minimal degree are the classical barycentric coordinates, which may be constructed
as follows. Let λi(x) = 0 be the equation of a hyperplane that contains all the vertices
of S other than vi. Then

Bi(x) =
λi(x)

λi(vi)
(i = 0, . . . , d).

For L(f) :=
∫

S
f(x) dx, we obtain

xcm =
1

|S|

∫
S

xdx =
1

d + 1

d∑
i=0

vi,

where we write |S| for the d-dimensional volume of S. This gives a representation of
ecm in terms of the vertices, which, via (4.4) and (3.17), leads us to

ccm∞ =
1

2(d + 1)2
max
0≤i≤d

∥∥∥∥∥∥
d∑

j=0

(vi − vj)

∥∥∥∥∥∥
2

.

Since the basis functions Bi belong to P1, the function ev, defined in (2.2), is now
of the form ev = λ − ‖ · ‖2, where λ ∈ P1. Therefore ev(x) = 0 is the equation of
the uniquely defined sphere that contains all the vertices of S (see, e.g., Stämpfle [6,
Proposition 3.1]). Thus ev can be represented as

ev(x) = r̂2 − ‖x− x̂‖2

for some r̂ > 0 and x̂ ∈ R
d.

The case of the approximation by Λv with respect to the norm ‖ · ‖∞ is covered
by the papers of Waldron [8, Theorem 2.1] and Stämpfle [6, Theorem 4.1]; also see
de Boor [1]. Clearly, cv∞ = r̂2/2 when x̂ ∈ S. Otherwise, it can be shown that
cv∞ = 1

2 (r̂2 − ρ2), where ρ is the distance of x̂ from S. Geometrically, 2cv∞ may be
interpreted as the square of the radius of the smallest ball that contains S (see [6,
Lemma 4.2]).

For the standard unit simplex of dimension d ≥ 2, a straightforward calculation
gives

ccm∞ =
d2 + d− 1

2(d + 1)2
and cv∞ =

d− 1

2d
,

and so

cv∞
ccm∞

= 1 − 1

d(d2 + d− 1)
< 1.

For the calculation of the constants (4.3) for y = xcm, we first determine L(ecm)
with the help of a cubature rule which is exact for all polynomials of degree less than
or equal to 2, taken from the book of Stroud [7, formula Tn : 2-2, p. 307]. This gives

L(ecm) =

∫
S

ecm(x) dx =
(2 − d) |S|

(d + 2)(d + 1)

d∑
i=0

ecm(vi)

+
4 |S|

(d + 2)(d + 1)

∑
0≤i<j≤d

ecm(vij),
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where vij = 1
2 (vi + vj). Simplifying the second sum by making use of the special form

of ecm, we arrive at

L(ecm) =
|S|

(d + 2)(d + 1)

d∑
i=0

ecm(vi).

Since the basis functions B0, . . . , Bd belong to P1, we conclude that

L(Bi) = L(1)Bi(x
cm) =

L(1)

d + 1
=

|S|
d + 1

(i = 0, . . . , d)

and therefore

Iv(ecm) =
|S|
d + 1

d∑
i=0

ecm(vi).

Thus, by (4.3), the definition of ecm in (4.4), and the representation in (2.3), we have

ccm1 =
|S|

2(d + 2)(d + 1)

d∑
i=0

‖vi − xcm‖2

and

cv1 =
|S|

2(d + 2)

d∑
i=0

‖vi − xcm‖2.

These values for ccm1 and cv1 also follow from [3, Corollary 6.2, formulae (6.4) and
(6.5)]. We see that cv1 = (d + 1)ccm1 and κ = 1/(d + 2) in (4.5).

5.3. Hyperrectangles. Let

R := [a1, b1] × · · · × [ad, bd]

be a rectangle in R
d with vertices

vi := (vi1, . . . , vid) (i = 1, . . . , 2d).

To each vertex vi, there corresponds exactly one vertex of maximal distance, which
we call the diametrically opposite vertex and which we denote by vi := (vi1, . . . , vid).
Any two vertices vi and vj have at least one common component unless they are a
pair of diametrically opposite vertices. Therefore

Bi(x) :=

d∏
j=1

xj − vij
vij − vij

(i = 1, . . . , 2d),

where x = (x1, . . . , xd), are the rational basis functions of smallest degree, spanning
a polynomial space of dimension 2d, which contains P1 as a subspace.

For L(f) :=
∫

R
f(x) dx, the center of mass is

xcm =
1

2
(a1 + b1, . . . , ad + bd).
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With this, we find that

ecm(vi) =
1

4

d∑
i=1

(ai − bi)
2 =: (rcm)2 (i = 1, . . . , 2d).

Therefore (2.5) implies that

ecm(x) + ev(x) = (rcm)2

for all x. Consequently,

sup
x∈R

ecm(x) = sup
x∈R

ev(x) = (rcm)2,

or equivalently,

ccm∞ = cv∞ =
(rcm)2

2
.

For determining the best constants in the case p = 1, we first calculate

L(ecm) =

∫
R

‖x− xcm‖2 dx =
(rcm)2

3
|R| ,

where |R| =
∏d

i=1(bi − ai), and note that

Iv(ecm) = (rcm)2 |R| .

Hence (4.3) with y = xcm implies that

ccm1 =
(rcm)2

6
|R| and cv1 =

(rcm)2

3
|R| .

Thus, cv1/c
cm
1 = 2 and κ = 1/3, as in the univariate case.

In the literature, analogues of the trapezoidal rule for hyperrectangles have been
studied in the context of tensor product rules (see, e.g., [2, section 8.2]).
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[6] M. Stämpfle, Optimal estimates for the linear interpolation error on simplices, J. Approx.

Theory, 103 (2000), pp. 78–90.
[7] A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice–Hall, Englewood Cliffs,

NJ, 1971.
[8] S. Waldron, The error in linear interpolation at the vertices of a simplex, SIAM J. Numer.

Anal., 35 (1998), pp. 1191–1200.
[9] S. Waldron, Sharp error estimates for multivariate positive linear operators, in Approximation

Theory IX (Proceedings of the 9th International Conference, Nashville, TN, 1998), C. K.
Chui and L. L. Schumaker, eds., Vanderbilt University Press, Nashville, TN, 1998, Vol. I,
pp. 339–346.

[10] J. Warren, Barycentric coordinates for convex polytopes, Adv. Comput. Math., 6 (1996), pp.
97–108.



SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 43, No. 3, pp. 924–948

REPRESENTATIONS OF RUNGE–KUTTA METHODS AND
STRONG STABILITY PRESERVING METHODS∗

INMACULADA HIGUERAS†
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extra associate problem is considered. In this paper we interpret these schemes as representations
of perturbed Runge–Kutta methods. We extend the concept of radius of absolute monotonicity and
give sufficient conditions for monotonicity. Optimal representations can be constructed from the
Butcher tableau of a perturbed Runge–Kutta method.
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1. Introduction. We consider initial value problems for ordinary differential
systems (ODEs) of the form

d

dt
u(t) = f(u(t)), t ≥ t0,(1.1)

u(t0) = u0.

We assume that t0 ∈ R, u0 ∈ R
m, and f is a function from R

m to R
m such that for

each t0 ∈ R and u0 ∈ R
m the problem (1.1) has a unique solution u : [t0,∞) → R

m.
We assume too that ‖ · ‖ : R

m → R is a convex functional (e.g., a norm, a seminorm,
etc.) such that for any t0 ∈ R and any solution u(t) to (1.1) we have

‖u(t)‖ ≤ ‖u(t0)‖ ∀ t ≥ t0.(1.2)

On (f, ‖ · ‖) we impose the condition∥∥∥∥y +
1

ρ
f(y)

∥∥∥∥ ≤ ‖y‖ ∀ y ∈ R
m(1.3)

for some fixed ρ > 0, and we denote this class of problems by F(ρ). From [10, Lemma
II.5.1], we get that if (1.3) holds, condition

‖y + τf(y)‖ ≤ ‖y‖, 0 ≤ τ ≤ 1

ρ
,(1.4)
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also holds. Denoting by D+ the right-hand derivative, for u(t), the solution of (1.1),
we obtain [1, Lemma 1.5.3]

D+‖u(t)‖ = lim
τ→0+

‖u(t) + τu′(t)‖ − ‖u(t)‖
τ

= lim
τ→0+

‖u(t) + τf(u(t))‖ − ‖u(t)‖
τ

≤ 0.

Hence assumption (1.3) with ρ > 0 gives the monotonicity inequality (1.2) for the
solution of the ODE (1.1). Later on, we will also use the inequality

‖y‖ ≤ ‖y + τf(y)‖ ∀ τ < 0, ∀ y ∈ R
m.(1.5)

From [10, Lemma II.5.1], it can be concluded that condition (1.3) implies condition
(1.5). In the rest of the paper we assume that f in (1.1) satisfies (f, ‖ · ‖) ∈ F(ρ).

Given the initial value problem (1.1), a common class of one-step methods to
solve it numerically is the Runge–Kutta (RK) methods. An s-stage RK method is
defined by an s×s real matrix A and a real vector b ∈ R

s; we will refer to it as (A, b).
From un, the numerical approximation of the solution u(t) at t = tn, we obtain un+1,
the numerical approximation of the solution at tn+1 = tn + h from

un+1 = un + h

s∑
i=1

bif(Ui),(1.6)

Ui = un + h

s∑
j=1

aijf(Uj).(1.7)

The internal stage Ui approximates u(tn + cih), where ci =
∑s

j=1 aij . Furthermore,
for many methods ci ≥ 0, i = 1, . . . , s, and thus tn + cih ≥ tn.

If we solve numerically an ODE (1.1) with (f, ‖ · ‖) ∈ F(ρ) with an RK method,
a natural requirement for the internal stages and the numerical solution is

‖Ui‖ ≤ ‖un‖, i = 1, . . . , s, ‖un+1‖ ≤ ‖un‖,(1.8)

for all n ≥ 0, probably under a stepsize restriction h ≤ ΔtMAX .

1.1. SSP methods. Over the last few years ([13], [14], [5], [11], [16], [6]; see
[4], [15] for reviews on this topic) a great effort has been done to develop high order
methods satisfying (1.8) when the forward Euler discretization of (1.1) satisfies (1.8),

‖un + hf(un)‖ ≤ ‖un‖ for h ≤ ΔtFE .(1.9)

These methods are called strong stability preserving methods (SSP methods). The
class of ODEs considered in this context arise from a method-of-lines approximation of
hyperbolic conservation laws. A simple numerical example given in [4] shows that the
use of non-SSP methods for the time discretization of these ODEs has the potential
to produce an undesirable overshoot.

As the forward Euler method has the drawback of a low order of accuracy, higher
order SSP methods are of great interest. The idea in [14], [13] is to derive condi-
tions (1.8) from condition (1.9) for the forward Euler method by means of convex
combinations of it. In [13], Shu and Osher write explicit s-stage RK methods as

u(1) = un,

u(i) =

i−1∑
k=1

(αiku
(k) + hβik f(u(k))), i = 2, . . . , s + 1,(1.10)

un+1 = u(s+1),
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where αik ≥ 0 for all i, j, and
∑i−1

k=1 αik = 1, i = 2, . . . , s + 1. It is also imposed that

βi,j = 0 whenever αij = 0.(1.11)

Proceeding in this way, the new method will also be strongly stable, perhaps with a
modified stepsize restriction

h ≤ cΔtFE .(1.12)

The coefficient c in (1.12) is known as a CFL coefficient. Convex combinations of
the forward Euler method are obtained in (1.10) if βij ≥ 0. In this case, the CFL
coefficient is given by

c = min
ik

αik

βik
.(1.13)

The representation of RK methods in the form (1.10) is not unique [16]. Different
representations give rise to different values for the CFL coefficient (1.13).

If some βij < 0, then f is replaced by an associated operator f̃ corresponding to

stepping backward in time. The requirement for f̃ is that it approximate the same
spatial derivatives as f , and that (1.8) hold with the same stepsize restriction for the
explicit Euler scheme solved backwards, un+1 = un − hf̃(un); i.e.,

‖un − hf̃(un)‖ ≤ ‖un‖ for h ≤ ΔtFE .(1.14)

In this case [13], the RK method is SSP under the stepsize restriction (1.12) with

c = min
ik

αik

|βik|
.(1.15)

For example, the classical fourth order four-stage RK method can be written [13] as

u(1) = u(0),

u(2) = u(1) +
1

2
hf(u(1)),

u(3) =
1

2
u(1) − 1

4
hf̃(u(1)) +

1

2
u(2) +

1

2
hf(u(2)),(1.16)

u(4) =
1

9
u(1) − 1

9
hf̃(u(1)) +

2

9
u(2) − 1

3
hf̃(u(2)) +

2

3
u(3) + hf(u(3)),

u(5) =
1

3
u(2) +

1

6
hf(u(2)) +

1

3
u(3) +

1

3
u(4) +

1

6
hf(u(4)).

The CFL coefficient given by (1.15) is c = 2/3. A better definition of u(4) allows us
to raise the CFL coefficient to c = 137/200 [13].

A particular class of implicit RK methods is also considered in [4, section 6.2]:

u(1) = un,

u(i) =

i−1∑
k=1

αiku
(k) + hβi f(u(i)), i = 2, . . . , s + 1,(1.17)

un+1 = u(s+1),
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with αik ≥ 0 and
∑i−1

k=1 αik = 1. In this case, monotonicity, or more precisely uncon-
ditional monotonicity, is assumed on the implicit Euler method; i.e., for

un+1 = un + h f(un+1),

it holds that ‖un+1‖ ≤ ‖un‖ for any stepsize h; i.e.,

‖un+1‖ ≤ ‖un+1 − h f(un+1)‖ ∀h > 0.(1.18)

At this point we would like to establish a link between the class of problems
considered in this paper and SSP methods. If we compare the condition (1.3) (see also
(1.4)) imposed on the problem, with the condition (1.9) assumed in the SSP context for
the explicit Euler method, we get that ΔtFE = 1/ρ; i.e., the stepsize restriction for the
forward Euler method is determined by the class of problem considered. Furthermore,
condition (1.18) imposed for implicit problems in the SSP context is precisely (1.5).
Remember that (1.3) implies (1.5).

Therefore the class of problems considered in the SSP context is also (f, ‖ · ‖) ∈
F(ρ). For these problems, the explicit Euler method is monotone under stepsize
restriction h ≤ 1/ρ, whereas the implicit Euler method is unconditionally monotone.

1.2. Radius of absolute monotonicity. In the context of contractive RK
methods, the concept of radius of absolute monotonicity plays an important role [7].
Recently, Ferracina and Spijker [2] have proved that this concept is also relevant for
monotone methods. We remember the definitions of absolute monotonicity and radius
of absolute monotonicity.

Definition 1.1 (see [7, Definition 2.4]). An s-stage RK method with coefficients
(A, b) is said to be absolutely monotonic at a given point ξ ≤ 0 if I−ξA is nonsingular,
the stability function φ(ξ) = 1 + ξ bt(I − ξA)−1e ≥ 0, A(ξ) = A(I − ξA)−1 ≥ 0,
b(ξ)t = bt(I − ξA)−1 ≥ 0, and e(ξ) = (I − ξA)−1e ≥ 0, where e = (1, 1, . . . , 1) ∈ R

s,
and the vector inequalities are understood componentwise. Further, the method is said
to be absolutely monotonic on a given set Ω ⊂ R if it is absolutely monotonic at each
ξ ∈ Ω. The radius of absolute monotonicity R(A, b) is defined by

R(A, b) = sup{r | r ≥ 0 and (A, b) is absolutely monotonic on [−r, 0]}.(1.19)

If there is no r > 0 such that (A, b) is absolutely monotonic on [−r, 0], we set
R(A, b) = 0.

Observe that the four conditions on φ(ξ), A(ξ), b(ξ), and e(ξ) in Definition 1.1
can be written in compact form as

(
(I − ξA)−1 0

ξ bt(I − ξA)−1 1

)(
e

1

)
≥ 0,

(
(I − ξA)−1 0

ξ bt(I − ξA)−1 1

)(A 0

bt 0

)
≥ 0.(1.20)

Denoting the coefficients of an RK method by

A =

(A 0

bt 0

)
,

we can write (1.20) as

(I − ξA)−1
A ≥ 0, (I − ξA)−1e ≥ 0,(1.21)
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where now e = (1, 1, . . . , 1)t ∈ R
s+1. In the following we will denote R(A, b) in (1.19)

by R(A).

1.3. Scope of the paper. Recently, Ferracina and Spijker [2] have established
a link between the radius of absolute stability and the stepsize restriction (1.12).
More precisely, in [2] it is proved that if (1.9) holds, irreducible RK methods are
monotone with stepsize restriction h ≤ cΔtFE if and only if c ≤ R(A). In other
words, the optimal CFL coefficient in (1.12) is R(A). As the CFL coefficient in (1.13)
is normally obtained using a numerical optimal representation, a natural question
that arises is whether, given the Butcher tableau of an explicit RK method, there
exists a representation such that the CFL coefficient (1.13) is the maximum one
R(A). On the other hand, representations (1.10) and (1.17) are given for explicit
methods and a class of implicit methods, respectively, whereas R(A) is defined for
general RK methods. This suggests that more general representations can be con-
sidered, and from them a notion of CFL coefficient like the one in (1.13) can be
computed. In this paper we study these issues. The rest of the paper is organized as
follows.

In section 2 we define a kind of representation of the RK methods that con-
tains schemes (1.10) and (1.17) as particular cases, and we extend the CFL coef-
ficient (1.13). We also prove that if R(A) > 0, it is possible to obtain an op-
timal representation such that the CFL coefficient computed from it is equal to
R(A).

Section 3 is devoted to RK methods A with R(A) = 0. In the Shu–Osher
representation, methods with negative coefficients βij imply that R(A) = 0, and
to deal with them, an extra associate problem is considered. In this paper we
interpret these schemes as representations of perturbed RK methods. An exten-
sion of the CFL coefficient (1.15) is defined. We also extend the concept of radius
of absolute monotonicity and give sufficient conditions for monotonicity. Optimal
representations can be constructed from the Butcher tableau of a perturbed RK
method.

The paper ends with some conclusions and some open questions for future work.

2. Representations of an RK method. We consider methods of the form

U = α⊗ un + (Λ ⊗ I)U + h(Γ ⊗ I)F (U),(2.1)

where α ∈ R
s+1, Λ and Γ are (s + 1) × (s + 1) matrices such that Λ e + α = e,

the matrix I − Λ is invertible, and the last column in Γ, Λ is zero. We have de-
fined e = (1, . . . , 1)t ∈ R

s+1, U = (U t
1, . . . , U

t
s , u

t
n+1)

t ∈ R
(s+1)m, and F (U) =

(f(U1)
t, . . . , f(Us)

t, 0)t ∈ R
(s+1)m. The symbol ⊗ denotes the Kronecker product

(see, e.g., [9, section 12.1]).
Method (1.10) is a particular case of (2.1), with α = (1, 0, . . . , 0)t and

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · 0

α21 0
. . .

...

α31 α32 0
. . .

...

...
...

. . .
. . . 0

αs+1,1 αs+1,2 · · · αs+1,s 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · 0

β21 0
. . .

...

β31 β32 0
. . .

...

...
...

. . .
. . . 0

βs+1,1 βs+1,2 · · · βs+1,s 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.2)



REPRESENTATIONS OF RK METHODS AND SSP METHODS 929

Method (1.17) is also a particular case of (2.1) with α = (α21, α31, . . . , αs+1,1, 0)t and

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · · · · 0

α32 0
. . .

...

α42 α43 0
. . .

...

...
...

. . .
. . .

. . . 0

αs+1,2 αs+1,3 · · · αs+1,s 0 0

0 · · · · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β2 0 · · · · · · · · · 0

0 β3
. . .

...

0
. . . β4

. . .
...

...
. . .

. . .
. . .

. . .
...

0 · · · · · · 0 βs+1 0

0 · · · · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.3)

Remark 1. Observe that in (2.2), U1 = un, and hence the elements α21, . . . , αs+1,1

in Λ can appear either in Λ or in α.
In compact form, (1.6)–(1.7) can be written as

U = e⊗ un + h (A ⊗ I)F (U).(2.4)

It is straightforward to obtain that (2.1) can be written as

U = e⊗ un + h (((I − Λ)−1Γ) ⊗ I)F (U).

Comparing this expression with (2.4), we obtain that (2.1) is an RK method with
A = (I − Λ)−1Γ, and for this reason we will refer to (2.1) as a representation of the
RK method A. On the other hand, if the RK coefficient matrix A can be factorized
as A = (I − Λ)−1Γ, we can write (2.4) in the form of (2.1). Observe that such a
representation is always possible. For example, we can always take a trivial one with
Λ = 0 and Γ = A. More interesting representations can also be given.

Example 1. For the classical four-stage order four method we can write A =
(I − Λi)

−1Γi, i = 1, 2, with

(2.5)

Λ1 =

⎛
⎜⎜⎜⎜⎜⎝

0

1 0

1/2 1/2 0

1/9 2/9 2/3 0

0 1/3 1/3 1/3 0

⎞
⎟⎟⎟⎟⎟⎠
, Γ1 =

⎛
⎜⎜⎜⎜⎜⎝

0

1/2 0

−1/4 1/2 0

−1/9 −1/3 1 0

0 1/6 0 1/6 0

⎞
⎟⎟⎟⎟⎟⎠
,

(2.6)

Λ2 =

⎛
⎜⎜⎜⎜⎜⎝

0

1/3 0

2/9 1/3 0

2/27 2/9 2/3 0

40/243 22/81 4/27 1/9 0

⎞
⎟⎟⎟⎟⎟⎠
, Γ2 =

⎛
⎜⎜⎜⎜⎜⎝

0

1/2 0

−1/6 1/2 0

−1/9 −1/3 1 0

5/162 7/27 2/9 1/6 0

⎞
⎟⎟⎟⎟⎟⎠
.

Observe that in both cases, Λ ≥ 0 but Γ contains negative elements.
Once we have defined the representations (2.1), the next step is to extend the

CFL coefficient (1.13) that gives the stepsize restriction for monotonicity.
Proposition 2.1. Consider a method of the form (2.1) such that Λ e ≤ e, Λ ≥ 0,

Γ ≥ 0, and

Λ − cΓ ≥ 0 for some c > 0.(2.7)
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Then for

h ≤ c
1

ρ
,(2.8)

it holds that ‖Ui‖ ≤ ‖un‖, i = 1, . . . , s, ‖un+1‖ ≤ ‖un‖.
Proof. The proof is the same as that for Proposition 3.9 below, with Λ̃ = 0 and

Γ̃ = 0.
Remark 2.

1. Observe that (2.7) implies condition (1.11).
2. Observe that the maximum c in (2.7) is

c = min
ij

αij

βij
.(2.9)

As a particular case we get the CFL coefficient (1.13) obtained in the SSP
context.

3. As α + Λ e = e, with α ≥ 0, Λ ≥ 0, the proof is also valid for a convex
functional ‖ · ‖.

Observe that, whereas the CFL coefficient (1.13) was defined only for explicit
methods, the CFL coefficient c in (2.7) can also be computed for implicit methods.

Example 2. We consider the methods of the form (2.1) with α = (1, 0, 0)t and

Λ =

⎛
⎜⎝

0 0 0

1/2 1/2 0

1/2 1/2 0

⎞
⎟⎠, Γ =

⎛
⎜⎝

0 0 0

1/4 1/4 0

1/4 1/4 0

⎞
⎟⎠.(2.10)

It corresponds to the RK method A with

A =

⎛
⎜⎝

0 0 0

1/2 1/2 0

1/2 1/2 0

⎞
⎟⎠.(2.11)

We get Λ−cΓ = 0 for c = 2. Hence Proposition 2.1 gives that the method is monotone
under stepsize restriction (2.8) with c = 2.

The next goal is to establish a relationship between representations of an RK
method A, A = (I −Λ)−1Γ, the CFL coefficient c in (2.7), and R(A). Although from
the study done by Ferracina and Spijker [2] we can conclude that, for irreducible RK
methods, for the CFL coefficient c dictated by (2.7) we have c ≤ R(A), this fact can
easily be obtained directly for arbitrary RK schemes.

Proposition 2.2. Consider an RK method A. Assume that it can be written in
terms of Λ and Γ with

Λ e ≤ e, Γ ≥ 0, Λ − cΓ ≥ 0,

and the matrix I − (Λ− cΓ) invertible for some coefficient c ≥ 0. Then the method is
absolutely monotonic at −c.

Proof. The proof is the same as that for Proposition 3.11 below, with Λ̃ = 0 and
Γ̃ = 0.

In particular, if for an RK method it holds that R(A) = 0, then it is not possible
to get a representation with Λ ≥ 0, Γ ≥ 0, α ≥ 0, and Λ − cΓ ≥ 0 for some c > 0.
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An algebraic criterion for obtaining R(A) > 0 for irreducible methods is given in
[7, Theorem 4.2]. See [1, Definitions 4.4.1 and 4.4.3] for the definition of reducible
methods, and [7] for a complete study of order barriers and stage order barriers when
R(A) > 0. Taking into account the extension we plan to do in section 3, we are going
to obtain algebraic criteria for obtaining R(A) > 0 for any reducible or irreducible
RK methods. To proceed we need the following definition.

Definition 2.3. For matrix F = (fij) we define its incidence matrix Inc(F ) =
(gij) by gij = 1 if fij �= 0 and by gij = 0 if fij = 0.

We give an algebraic criterion for getting R(A) > 0.
Proposition 2.4. Consider an RK method with coefficients A. Then R(A) > 0

if and only if A ≥ 0 and

Inc(A2) ≤ Inc(A).(2.12)

Proof. See the proof of Proposition 3.7 below for Ã = 0.
Recall that Proposition 2.4 is not exactly Theorem 4.2 in [7], as we have not

assumed the irreducibility of the RK method. In the following lemma we study some
of the conditions involved in Proposition 2.4 for irreducible methods.

Lemma 2.5. Consider an irreducible RK method A with A ≥ 0. Then b > 0 if
and only if Inc(btA) ≤ Inc(bt).

Proof. If b > 0, then trivially Inc(btA) ≤ Inc(bt). We assume now that Inc(btA) ≤
Inc(bt). We consider the sets S = {j | bj = 0} and T = {j | bj �= 0}. If there
is an index j such that bj = 0, then S �= ∅. Condition Inc(btA) ≤ Inc(bt) gives∑s

i=1 biaij = 0 for all j ∈ S, and hence, as A ≥ 0, we get biaij = 0, i = 1, . . . , s, for all
j ∈ S. Thus we obtain aij = 0 for all i ∈ T , j ∈ S. This implies that the method is
DJ-reducible [1, Definition 4.4.1], that contradicts the irreducibility assumption, and
therefore b > 0.

With this lemma, we get the result in [7] for irreducible methods.
Corollary 2.6 (see [7, Theorem 4.2]). For an irreducible coefficient scheme A

we have R(A) > 0 if and only if A ≥ 0, b > 0, and Inc(A2) ≤ Inc(A).
Proof. In terms of (A, b), the conditions in Proposition 2.4 are A ≥ 0, b ≥ 0,

Inc(A2) ≤ Inc(A), Inc(btA) ≤ Inc(bt). By Lemma 2.5, for irreducible methods,
conditions b > 0 and Inc(btA) ≤ Inc(bt) are equivalent.

The algebraic criterion in Proposition 2.4 is extremely useful to determine wheth-
er, for a given method, the condition R(A) > 0 holds. For example, for the classical
four-stage order four method it is straightforward to prove that condition Inc(A2) ≤
Inc(A) does not hold and thus R(A) = 0.

So far we have obtained that, given a representation, the CFL coefficient c com-
puted in (2.7) satisfies c ≤ R(A). Remember that the representation of an RK method
is not unique, and hence the CFL coefficient computed in (2.7) depends on the rep-
resentation available. Next we study whether, given the Butcher tableau of an RK
method A with radius R(A), there is a representation such that the CFL coefficient
computed from (2.7) is equal to R(A). We will refer to such representations as opti-
mal ones. We remark that our study for optimal representations is done for a given
method, and it differs from the study done in [16], where an optimization process over
the CFL coefficient within classes of explicit methods, with a given number of stages
and order, is done.

Proposition 2.7. We consider an RK method A. If 0 < r = R(A) < ∞, then
there exist matrices Λ and Γ such that A = (I − Λ)−1Γ with Λ ≥ 0, Γ ≥ 0, Λe ≤ e,
I − (Λ − rΓ) invertible, and Λ − rΓ ≥ 0.
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Proof. See the proof of Proposition 3.7 below for Ã = 0.
The proof of the above result is constructive and can be used to get, for a given

method, an optimal representation. We remark that we can construct a representation
such that Λ − rΓ = 0, namely,

Λ = rA(I + rA)−1, Γ = A − ΛA,(2.13)

and α = e− Λe.
Example 3. Consider the method

0 0
1 1 0
1

2

1

4

1

4
0

1

6

1

6

2

3

.

For this method, R(A) = 1. From (2.13) we compute

Λ = rA(I + rA)−1 =

⎛
⎜⎜⎜⎝

0 0 0 0

1 0 0 0

0 1
4 0 0

0 0 2
3 0

⎞
⎟⎟⎟⎠, Γ = A − ΛA =

⎛
⎜⎜⎜⎝

0 0 0 0

1 0 0 0

0 1
4 0 0

0 0 2
3 0

⎞
⎟⎟⎟⎠,

and α = e− Λe = (1, 0, 3/4, 1/3)t. This is essentially the representation given in [16,
Table A1]. See Remark 1.

Example 4. For the method (2.11) the radius of absolute monotonicity is R(A) =
2. The representation obtained from (2.13) is (2.10).

In Proposition 2.1 we have given conditions to ensure conditional monotonicity.
The rest of the section is devoted to unconditional monotonicity issues.

The concept of M -matrix will be used. We remember that a matrix A is said to
be an M -matrix if A is nonsingular, A−1 ≥ 0, and the off-diagonal elements of A are
nonpositive. In the following results, Γ∗ denotes the matrix Γ, where the last column
has been changed to (0, . . . , 0, 1)t.

Proposition 2.8. Consider a representation (2.1) such that Γ∗ is invertible,
Γ−1
∗ α ≥ 0, and Γ−1

∗ (I − Λ) is an M -matrix. Then for any stepsize it holds that
‖Ui‖ ≤ ‖un‖, i = 1, . . . , s, ‖un+1‖ ≤ ‖un‖.

Proof. The proof is similar to the one done in [7, Theorem 6.1]. We remark that
it is also valid for a convex functional ‖ · ‖.

For RK methods, unconditional monotonicity is obtained when R(A) = ∞. If we
define

A∗ =

(A 0

bt 1

)
,

and assume that the matrix A∗ is nonsingular, then R(A) = ∞ if and only if A
−1
∗ is

an M -matrix and A
−1
∗ e ≥ 0 [7, Lemma 4.5].

Observe that if A = (I − Λ)−1Γ, then A∗ = (I − Λ)−1Γ∗. Hence it is straightfor-
ward to prove that if the conditions of Proposition 2.8 hold, then R(A) = ∞.

If R(A) = ∞, an optimal representation can be given trivially,

Γ = A, Λ = 0.(2.14)



REPRESENTATIONS OF RK METHODS AND SSP METHODS 933

Unfortunately methods with R(A) = ∞ have at most order one [7, Theorem 8.3],
and therefore they are not of great interest.

Remark 3. Some of the results contained in this section have also been obtained
independently by Ferracina and Spijker [3]. The main difference is how the case
of unconditional monotonicity is handled. We briefly summarize the analogies and
differences between both papers. Formula (2.1) in [3] is essentially our representation
(2.1). The relationship between the matrices in [3, formula (2.2)] and our matrices Λ
and Γ is

Λ =

(
L0 0

L1 0

)
, Γ =

(
M0 0

M1 0

)
.

The regularity assumption for the matrix I−Λ is equivalent to the regularity of I−L0

in [3], our relationship A = (I − Λ)−1Γ is expression (2.5) in [3], and our conditions
Λ ≥ 0 and Λ e ≤ e are assumption (2.8) in [3]. There are two differences between the
definition of the coefficient c in formula (2.9) in [3] and our CFL coefficient c in (2.7): at
this point we do not consider unconditional monotonicity, and in Λ−cΓ ≥ 0 we do not
make distinctions between diagonal and nondiagonal elements. However, for explicit
methods both definitions are the essentially the same. Part I in Theorem 2.2 in [3] is
contained in the introduction of section 2. Our Propositions 2.1 and 2.8 on conditional
and unconditional monotonicity are part II in Theorem 2.2 in [3]. We remark that
Theorem 2.2 in [3] is proved simultaneously for R(A) < ∞ and R(A) = ∞, whereas we
have obtained the results separately with different techniques. With regard to optimal
representations, if R(A) < ∞, the ones given in (3.2b) in [3, Theorem 3.4] are the same
as the ones given in this paper (see (2.13) in Proposition 2.7). If R(A) = ∞, we have
given the trivial representation (2.14) that fulfills our requirements, whereas in [3]
another representation is given, as it is intended to obtain the CFL coefficient ∞ in
formula (2.9) in [3]. Finally, irreducibility of the RK scheme is imposed in Theorem 3.4
in [3], whereas in this paper this condition is not assumed. A detailed reading of its
proof gives that irreducibility is required to prove parts I and II, where some maximal
properties of CFL coefficients obtained from representations are stated. Parts I and II
in [3, Theorem 3.4] are closely related with the fact that for irreducible RK methods
the maximum CFL coefficient for monotonicity is R(A) [2].

3. Perturbed RK methods. In this section we consider RK methods A with
R(A) = 0. In this case (see Proposition 2.1), it is not possible to obtain a repre-
sentation (2.1) with positive CFL coefficient (2.7). When R(A) = 0, we can try to

perturb the method so that the new numerical solution u
(p)
n satisfies the monotonicity

condition

‖U (p)
i ‖ ≤ ‖u(p)

n ‖, i = 1, . . . , s, ‖u(p)
n+1‖ ≤ ‖u(p)

n ‖.

To do so, we consider an auxiliary problem

d

dt
u(t) = −f̃(u(t)), t ≥ t0,(3.1)

and assume that, like the original problem, (−f̃ , ‖ · ‖) ∈ F(ρ); i.e.,

∥∥∥∥y − 1

ρ
f̃(y)

∥∥∥∥ ≤ ‖y‖ ∀ y ∈ R
m.(3.2)
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Given an RK method A, we define the perturbed RK method (A, Ã)

U (p) = e⊗ u(p)
n + h(A ⊗ I)F (U (p)) + h(Ã ⊗ I)

(
F (U (p)) − F̃ (U (p))

)
,(3.3)

with Ã an (s + 1) × (s + 1) matrix with the last column equal to (0, . . . , 0)t, and

F̃ (U) = (f̃(U1)
t, . . . , f̃(Us)

t, 0t) ∈ R
(s+1)m. As far as we know, this is a new concept.

Assuming stability of the RK method A, it is easy to prove that if the perturba-
tions are small enough, then the perturbed method (A, Ã) will retain the order of the
unperturbed problem. The standard stability bounds [8, p. 32] give

‖u(p)
n − un‖ ≤ Mε,

provided that

h‖F (U) − F̃ (U)‖ ≤ ε.(3.4)

Hence, if the method A has order p, we have

‖u(p)
n − u(tn)‖ ≤ ‖u(p)

n − un‖ + ‖un − u(tn)‖ ≤ Mε + Chp,

and therefore we obtain order p whenever Mε = ϑ(hp). In the following we drop the
exponent (p) for the perturbed solution.

In the context of SSP methods, where the ODE comes from a semidiscretization of
the hyperbolic conservation laws, the auxiliary problem (3.1) is obtained with another
semidiscretization such that (3.2) holds. For example [13, p. 444], for ut = ux we can
semidiscretize ux as

ux(xj , t) ≈
u(xj + Δx, t) − u(xj , t)

Δx
:= f(u)j

and

ux(xj , t) ≈
u(xj , t) − u(xj − Δx, t)

Δx
:= f̃(u)j ,

obtaining, respectively, properties (1.3) and (3.2) for ρ = 1/Δx. In this case (3.4)
holds with ε depending on the space discretization step Δx.

3.1. The radius of absolute monotonicity for perturbed RK methods.
The radius of absolute monotonicity had an important role in monotonicity. In this
section we extend this concept to perturbed RK methods (A, Ã) and analyze some
of its properties. For a better understanding of that extension, we briefly show how
conditions in Definition 1.1 arise in [7].

In [7] the scalar linear problems u′ = λu, u′ = λ(t)u and the vectorial linear
problem u′ = L(t)u(t), with L(t) an m×m matrix, are considered. An RK method A

for these problems gives, respectively, U = φ(hλ)un with φ(z) = (Is+1 − zA)−1e,
U = K (diag(hλ1, . . . , hλs, 0))un with K(Z) = (Is+1 − AZ)−1e and Z a diagonal
matrix, and U = K (diag(hL1, . . . , hLs, 0)) ⊗ un with

K(Z) =
(
I(s+1)·m − (A ⊗ Im)Z

)−1
(e⊗ Im)

and Z a block diagonal matrix. The concepts of absolute monotonicity at a given
point ξ ∈ R for φ, K, and K are given in [7, p. 487]. Roughly speaking, they mean the
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nonnegativity of all coefficients of the Taylor expansion of φ, K, and K about z = ξ,
Z = ξIs+1, or Z = ξI(s+1)·m, respectively. In particular, for Z = ξI(s+1)·m + W with
W sufficiently close to zero, we obtain

K(Z) =
[
I(s+1)·m − (A(ξ) ⊗ Im)W

]−1
e(ξ) ⊗ Im

with A(ξ) = (Is+1 − ξA)−1
A and e(ξ) = (Is+1 − ξA)−1e. Thus with A(ξ) ≥ 0 and

e(ξ) ≥ 0 (see (1.21)), we obtain the absolute monotonicity of K at ξI(s+1)·m.

Similarly, if we consider now the perturbed problems, u′ = −λ̃u, u′ = −λ̃(t)u,
and u′ = −L̃(t)u(t), with L̃(t) an m × m matrix, a perturbed RK method (A, Ã)

gives, respectively, U = φ(hλ, hλ̃)un with φ(z, z̃) = (Is+1 − z(A + Ã) − z̃Ã)−1e,
U = K (diag(hλ1, . . . , hλs, 0),diag(hλ̃1, . . . , hλ̃s, 0))un with

K(Z, Z̃) = (Is+1 − (A + Ã)Z − ÃZ̃)−1e

and Z, Z̃ diagonal matrices, and

U = K (diag(hL1, . . . , hLs, 0),diag(hL̃1, . . . , hL̃s, 0)) ⊗ un

with

K(Z, Z̃) = (I(s+1)·m − ((A + Ã) ⊗ Im)Z − (Ã ⊗ Im)Z̃)−1(e⊗ Im)

and Z, Z̃ block diagonal matrices. For Z = ξI(s+1)·m + W, Z̃ = ξI(s+1)·m + W̃ with

W, W̃ sufficiently close to zero, we obtain

K(Z, Z̃) = [I(s+1)·m − (A(ξ) ⊗ Im)W − (Ã(ξ) ⊗ Im)W̃]−1 (e(ξ) ⊗ Im)

with A(ξ), Ã(ξ), and e(ξ) defined by (3.5)–(3.7) below. Thus with A(ξ) ≥ 0, Ã(ξ) ≥ 0,
e(ξ) ≥ 0, we obtain that all the coefficients in the Taylor expansion of K at ξI(s+1)·m
are nonnegative. This analysis leads us to the extension of Definition 1.1 as follows.

Definition 3.1. An s-stage perturbed RK method (A, Ã) is said to be absolutely
monotonic at a given point ξ ≤ 0 if I − ξ(A + 2Ã) is invertible and

A(ξ) = (I − ξ(A + 2Ã))−1(A + Ã) ≥ 0,(3.5)

Ã(ξ) = (I − ξ(A + 2Ã))−1
Ã ≥ 0,(3.6)

e(ξ) = (I − ξ(A + 2Ã))−1e ≥ 0.(3.7)

Further, the perturbed method is said to be absolutely monotonic on a given set Ω ∈ R

if it is absolutely monotonic at each ξ ∈ Ω. The radius of absolute monotonicity
R(A, Ã) is defined by

R(A, Ã) = sup{r | r ≥ 0 and (A, Ã) is absolutely monotonic on [−r, 0]}.

If there is no r > 0 such that (A, Ã) is absolutely monotonic on [−r, 0], we set
R(A, Ã) = 0.

We go deeper into the concept of radius of absolute monotonicity. In [7, Lemma
4.4] it is proved that for checking the absolute monotonicity of an RK method A on
a given interval [−r, 0] it is sufficient to consider the left endpoint −r only. Our next
goal is to prove that a similar result is also true for perturbed RK methods (A, Ã).
We begin with some technical lemmas.
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Lemma 3.2. Consider an order m matrix B ≥ 0 such that for a given r ≥ 0 the
matrix I + rB is nonsingular and B(I + rB)−1 ≥ 0. Then I − ξB is nonsingular for
all ξ ∈ [−2r, 0].

Proof. As B(I + rB)−1 ≥ 0 and B ≥ 0, then (I + rB)−1 = I − rB(I + rB)−1 is
an M -matrix, and hence [9, section 15.2], denoting by σ(C) the spectral radius of the
matrix C, we have σ (rB(I + rB)−1) < 1. Therefore det (λI − rB(I + rB)−1) �= 0 for
all λ with |λ| ≥ 1. For ξ �= −r, r �= 0, we have that

det
(
I − (ξ + r)B(I + rB)−1

)
=

(ξ + r)m

rm
det

(
r

ξ + r
I − rB(I + rB)−1

)
,

obtaining det (I − (ξ + r)B(I + rB)−1) �= 0 for all ξ with |ξ + r| ≤ r. Finally, as
I − ξB = (I − (ξ + r)B(I + rB)−1) · (I + rB), we can write

det(I − ξB) = det
(
I − (ξ + r)B(I + rB)−1

)
· det(I + rB)

to obtain that I − ξB is nonsingular for all ξ ∈ [−2r, 0].
For the next result we recall the concept of absolutely monotonic function [7,

Definition 2.1]. A function ψ(z) is said to be absolutely monotonic at a given point
ξ ∈ R if (dkψ/dzk)(ξ) ≥ 0, k = 0, 1, . . . . For matrices or vectors whose components
are functions, we will say that they are absolutely monotonic at a given point ξ if
each element or component is absolutely monotonic at ξ.

Lemma 3.3. Consider the functions A(ξ), Ã(ξ), and e(ξ), defined by (3.5), (3.6),

and (3.7), respectively. Then the perturbed RK method (A, Ã) is absolutely monotonic
at ξ0 if and only if the functions A(ξ), Ã(ξ), and e(ξ) are absolutely monotonic at ξ0.

Proof. Recall that from the definition the perturbed RK method (A, Ã) is abso-
lutely monotonic at ξ0 if and only if A(ξ0) ≥ 0, Ã(ξ0) ≥ 0, and e(ξ0) ≥ 0. The if
part is trivial. For the only if part we simply have to observe that (dkA/dξk)(ξ0) =
k! [A(ξ0)+Ã(ξ0)]

kA(ξ0), and similarly for (dkÃ/dξk)(ξ0) and (dke/dξk)(ξ0). Thus from

A(ξ0) ≥ 0, Ã(ξ0) ≥ 0, and e(ξ0) ≥ 0 we obtain the absolute monotonicity of A(ξ),
Ã(ξ), and e(ξ) at ξ0.

We are in position to prove for the perturbed RK methods an analogous result
to Lemma 4.4 in [7].

Proposition 3.4. Consider a perturbed RK method (A, Ã) and a real positive
number r. Then R(A, Ã) ≥ r if and only if (A, Ã) is absolutely monotonic at ξ = −r
and A + Ã ≥ 0, Ã ≥ 0.

Proof. 1. We begin by assuming that R(A, Ã) ≥ r. Then (A, Ã) is absolutely
monotonic on (−r, 0], and hence by Lemma 3.3 the functions A(ξ), Ã(ξ), and e(ξ) are
absolutely monotonic on (−r, 0]. We can now apply componentwise Lemma 3.6 in [7]
to get that they are also absolutely monotonic on [−r, 0]. In particular, the method
is absolutely monotonic at ξ = 0, and hence A + Ã ≥ 0 and Ã ≥ 0.

2. We assume now that (A, Ã) is absolutely monotonic at ξ = −r and A + Ã ≥ 0,
Ã ≥ 0. Using Lemma 3.2 for B = A+2Ã, we get that I−ξ(A+2Ã) is nonsingular for all
ξ ∈ [−r, 0], and hence the functions A(ξ), Ã(ξ), and e(ξ) are well defined for ξ ∈ [−r, 0].
We can apply componentwise Lemma 3.1 in [7] to obtain that these functions are
absolutely monotonic on [−r, 0], and hence, by Lemma 3.3, R(A, Ã) ≥ r.

Example 5. For the classical fourth order RK method we consider the perturbed
RK method

U1 = un,

U2 = un +
1

2
hf(U1),
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U3 = un +
1

2
hf(U2) +

1

4
h[f(U1) − f̃(U1)],

U4 = un + hf(U3) +
5

18
h[f(U1) − f̃(U1)] +

1

3
h[f(U2) − f̃(U2)],

un+1 = un +
1

6
hf(U1) +

1

3
hf(U2) +

1

3
hf(U3) +

1

6
hf(U4) +

19

108
h[f(U1) − f̃(U1)]

+
1

9
h[f(U2) − f̃(U2)].

The coefficient matrices (A, Ã) are

A =

⎛
⎜⎜⎜⎜⎜⎝

0

1/2 0

0 1/2 0

0 0 1 0

1/6 1/3 1/3 1/6 0

⎞
⎟⎟⎟⎟⎟⎠
, Ã =

⎛
⎜⎜⎜⎜⎜⎝

0

0 0

1/4 0 0

5/18 1/3 0 0

19/108 1/9 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
.(3.8)

It can be checked that for this perturbed RK method R(A, Ã) = 2/3.
We are in position to obtain a conditional monotonicity result for the perturbed

method.
Theorem 3.5. Assume that the perturbed RK method (A, Ã) is absolutely mono-

tonic at −r. Then for

h ≤ r
1

ρ

it holds that ‖Ui‖ ≤ ‖un‖, i = 1, . . . , s, ‖un+1‖ ≤ ‖un‖.
Proof. The perturbed RK method can be written as

U = e⊗ un + h((A + Ã) ⊗ I)F (U) − h(Ã ⊗ I)F̃ (U).(3.9)

Observe that the conditions on the problems imply, for h ≤ r/ρ, that∥∥∥∥Ui +
h

r
F (Ui)

∥∥∥∥ ≤ ‖Ui‖,
∥∥∥∥Ui −

h

r
F̃ (Ui)

∥∥∥∥ ≤ ‖Ui‖.(3.10)

In (3.9) we add to both sides r((A + 2Ã) ⊗ I)U , obtaining

(I + r((A + 2Ã) ⊗ I))U

= e⊗ un + r ((A + Ã) ⊗ I)

(
U +

h

r
F (U)

)
+ r (Ã ⊗ I)

(
U − h

r
F̃ (U)

)
,

or equivalently

U = e(−r) ⊗ un + r (A(−r) ⊗ I)

(
U +

h

r
F (U)

)
+ r (Ã(−r)) ⊗ I)

(
U − h

r
F̃ (U)

)
,

where e(ξ), A(ξ), and Ã(ξ) are given by (3.5)–(3.7). If we take norms, the conditions
on e(−r), A(−r), and Ã(−r) imply

[‖U‖] ≤ e(−r) ⊗ ‖un‖ + r (A(−r) ⊗ I)

[∥∥∥∥U +
h

r
F (U)

∥∥∥∥
]

+ r (Ã(−r) ⊗ I)

[∥∥∥∥U − h

r
F̃ (U)

∥∥∥∥
]
,(3.11)
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where [‖U‖]t = (‖U1‖, . . . , ‖Us‖, ‖un+1‖)t ∈ R
s+1. Conditions (3.10) now imply

[‖U‖] ≤ e(−r) ⊗ ‖un‖ + r ((A(−r) + Ã(−r)) ⊗ I)[‖U‖],

and hence

((I + r(A + 2Ã))−1 ⊗ I) [‖U‖] ≤ ((I + r(A + 2Ã))−1e) ⊗ ‖un‖,(3.12)

where we have used that I − r(A(−r)+ Ã(−r)) = (I + r(A +2Ã))−1. We simply have
to multiply (3.12) by I + r(A +2Ã) ≥ 0 to get ‖Ui‖ ≤ ‖un‖, i = 1, . . . , s+1. Observe
that Us+1 = un+1, and thus we obtain the desired result.

Remark 4. As e(−r) + A(−r) e + Ã(−r) e = e, with e(−r) ≥ 0, A(−r) ≥ 0, and
Ã(−r) ≥ 0, inequality (3.11) is also valid for a convex functional ‖ · ‖.

The above result gives us monotonicity under the stepsize restriction

h ≤ R(A, Ã)
1

ρ
.(3.13)

Hence, given a method A with R(A) = 0, we should find Ã such that R(A, Ã) > 0,
because in this case we have a positive stepsize restriction for monotonicity.

We prove the following auxiliary lemma.
Lemma 3.6. Consider matrices A = (aij) and B = (bij) such that A ≥ 0, B ≥ 0,

and Inc(BA) ≤ Inc(A). Then Inc(BkA) ≤ Inc(A) for all k ≥ 2.
Proof. We prove it by induction. For k = 1 the statement is true. We assume

that it is also true for k, and we will prove it for k + 1. If (Bk+1A)ij �= 0, then
bil(B

kA)lj �= 0 for some l, and hence bil �= 0 and (BkA)lj �= 0. From (BkA)lj �= 0
and Inc(BkA) ≤ Inc(A), we get that alj �= 0. Now from bil �= 0 and alj �= 0 we obtain
that (BA)ij �= 0. Finally, from Inc(BA) ≤ Inc(A) we obtain that aij �= 0.

We are in position to give a criterion for getting R(A, Ã) > 0.
Proposition 3.7. We have R(A, Ã) > 0 if and only if A + Ã ≥ 0, Ã ≥ 0, and

Inc((A + 2Ã)(A + Ã)) ≤ Inc(A + Ã),(3.14)

Inc((A + 2Ã)Ã) ≤ Inc(Ã).(3.15)

Proof. The proof is similar to that of Theorem 4.2 in [7]. For real ξ close to zero,
the matrix (I − ξ(A + 2Ã)) is nonsingular and

(I − ξ(A + 2Ã))−1 = I + ξ(A + 2Ã) + ξ2(A + 2Ã)3 + · · · ,

and hence

(I − ξ(A + 2Ã))−1(A + Ã) = A + Ã + ξ(A + 2Ã)(A + Ã) + · · · ,(3.16)

(I − ξ(A + 2Ã))−1
Ã = Ã + ξ(A + 2Ã)Ã + · · · .(3.17)

From (3.16) and (3.17) we see that A + Ã ≥ 0, Ã ≥ 0, and (3.14)–(3.15) are necessary
conditions for (3.5) and (3.6) to hold on a left neighborhood of ξ = 0. To see that
they are also sufficient we use Lemma 3.6 with B = A + 2Ã, A = A + Ã, and A = Ã

to state that for k ≥ 2 we have

Inc((A + 2Ã)k(A + Ã)) ≤ Inc(A + Ã), Inc((A + 2Ã)kÃ) ≤ Inc(Ã).
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Hence as A+Ã ≥ 0 and Ã ≥ 0, in (3.16) and (3.17) we get (3.5) and (3.6), respectively.
Observe that inequality (3.7) always holds for r close to zero.

Given a method A with R(A) = 0, we want to find Ã such that R(A, Ã) > 0.
In terms of computation and storage it is expensive to deal with f(Ui) and f̃(Ui).

Furthermore, as it is pointed out in [12, p. 978], the differences f(Ui)−f̃(Ui) contribute
to artificial dissipation and smearing. Therefore the matrix Ã should have as few
nonzero columns as possible, although, on the other hand, with more nonzero columns,
perhaps better CFL coefficients can be found.

Example 6. Consider the family of four-stage order four methods with w �= 0,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · 0

1/2 0
. . . 0

1/2 − 1/(6w) 1/(6w) 0
. . . 0

0 1 − 3w 3w 0 0

1/6 2/3 − w w 1/6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.(3.18)

As we should have A+Ã ≥ 0, whenever aij < 0 we require that ãij �= 0. Hence the sign

pattern of the coefficient matrix A determines the compulsory nonzero elements in Ã.
Furthermore, from conditions (3.14) we obtain that ã31 �= 0 implies that ã41 �= 0;
ã32 �= 0 implies that ã42 �= 0; ã41 �= 0 implies that ã51 �= 0; ã42 �= 0 implies that
ã52 �= 0; and ã43 �= 0 implies that ã53 �= 0. For w < 0 or w > 1/3 from (3.15) we get
that ã42 �= 0 implies that ã41 �= 0. Hence, we conclude the following.

w Compulsory nonzero elements Implied nonzero elements

w < 0 ã32, ã43, ã53 ã41, ã42, ã51, ã52

0 < w < 1
3 ã31 ã41, ã51

w = 1
3 ã31, ã41, ã51, ã42, ã52

1
3 < w < 2

3 ã42 ã41, ã51, ã52

w = 2
3 ã42 ã41, ã51, ã52

2
3 < w ã42, ã52 ã41, ã51

Observe that for 0 < w < 1/3 in Ã only one column is required, whereas for the
rest we must consider two or three columns. Recall that the classical fourth order
four-stage method is obtained for w = 1/3.

3.2. Representations of perturbed RK methods. We consider now per-
turbed methods of the form

U = α⊗ un + ((Λ + Λ̃) ⊗ I)U + h(Γ ⊗ I)F (U) − h(Γ̃ ⊗ I)F̃ (U),(3.19)

with α ∈ R
s+1; Λ, Λ̃, Γ, and Γ̃ are (s+1)×(s+1) matrices such that (Λ+Λ̃) e+α = e,

the matrix I − (Λ + Λ̃) is invertible, and the last column in Λ, Λ̃, Γ, and Γ̃ is zero.
The elements in Λ̃, Γ̃ will be denoted by α̃ij and β̃ij , respectively. The elements in

Λ + Λ̃ will be denoted by λij .

We remark that in (3.19) we have considered the matrix Λ + Λ̃. We have used
this notation because later on this matrix will be split into Λ and Λ̃.
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It is straightforward to get that (3.19) can be written as

U = e⊗ un + h (((I − (Λ + Λ̃))−1Γ) ⊗ I)F (U) − h (((I − (Λ + Λ̃))−1Γ̃) ⊗ I) F̃ (U).

Comparing this expression with (3.3), we obtain that (3.19) is a perturbed RK method
with

A = (I − (Λ + Λ̃))−1(Γ − Γ̃), Ã = (I − (Λ + Λ̃))−1Γ̃.(3.20)

Example 7. Method (1.16) is a perturbed RK method (3.19) with

Λ + Λ̃ =

⎛
⎜⎜⎜⎜⎜⎝

0

1 0

1/2 1/2 0

1/9 2/9 2/3 0

0 1/3 1/3 1/3 0

⎞
⎟⎟⎟⎟⎟⎠
,(3.21)

α = (1, 0, 0, 0, 0)t, and

Γ =

⎛
⎜⎜⎜⎜⎜⎝

0

1/2 0

0 1/2 0

0 0 1 0

0 1/6 0 1/6 0

⎞
⎟⎟⎟⎟⎟⎠
, Γ̃ =

⎛
⎜⎜⎜⎜⎜⎝

0

0 0

1/4 0 0

1/9 1/3 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
.(3.22)

Later on we will split (3.21) into Λ and Λ̃. Observe that in Γ = (βij) and Γ̃ = (β̃ij)

whenever βij �= 0, then β̃ij = 0, and whenever β̃ij �= 0, then βij = 0.

From (3.20) we obtain the matrices A and Ã in (3.8). The matrices Λ1 and Γ1 in
the factorization (2.5) are Λ1 = Λ + Λ̃ and Γ1 = Γ − Γ̃, with Λ + Λ̃, Γ, and Γ̃ from
(3.21)–(3.22).

For some results in the rest of the paper, the following technical lemma will be
useful.

Lemma 3.8. If a matrix B ∈ R
m×m satisfies B ≥ 0, B e ≤ e and I − B is

invertible, then (I −B)−1 ≥ 0.
Proof. As B e ≤ e, by the Gershgorin theorem, the spectral radius ρ(B) satisfies

ρ(B) ≤ 1. As B ≥ 0, the matrix B has a real eigenvalue r, equal to the spectral radius
of B [9, Theorem 15.5.1]. Thus if ρ(B) = 1, the matrix B would have the eigenvalue
r = 1, which contradicts the invertibility of I −B. Hence ρ(B) < 1. In this case, the
matrix I −B is an M -matrix [9, Theorem 15.2.2]; i.e., (I −B)−1 ≥ 0.

We study stepsize restrictions to get monotonicity for the schemes (3.19). We get
an extension of the CFL coefficient (1.15) for the Shu–Osher representations (1.10).

Proposition 3.9. Consider a method of the form (3.19) such that (Λ+Λ̃)e ≤ e,
Λ ≥ 0, Λ̃ ≥ 0, Γ ≥ 0, Γ̃ ≥ 0, and

Λ − cΓ ≥ 0, Λ̃ − c Γ̃ ≥ 0 for some c > 0.(3.23)

Then for

h ≤ c
1

ρ
(3.24)

it holds that ‖Ui‖ ≤ ‖un‖, i = 1, . . . , s, ‖un+1‖ ≤ ‖un‖.
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Proof. Conditions on the problems imply that∥∥∥∥Uj + h
βij

αij
F (Uj)

∥∥∥∥ ≤ ‖Uj‖ for h
βij

αij
≤ 1

ρ
,

∥∥∥∥∥Uj − h
β̃ij

α̃ij
F̃ (Uj)

∥∥∥∥∥ ≤ ‖Uj‖ for h
β̃ij

α̃ij
≤ 1

ρ
.

From (3.19), using that α ≥ 0, Λ ≥ 0, Λ̃ ≥ 0, Γ ≥ 0, and Γ̃ ≥ 0, we immediately
obtain

‖Ui‖ ≤ αi‖un‖ +

s∑
j=1

αij

∥∥∥∥Uj + h
βij

αij
F (Uj)

∥∥∥∥ +

s∑
j=1

α̃ij

∥∥∥∥∥Uj − h
β̃ij

α̃ij
F̃ (Uj)

∥∥∥∥∥
≤ αi‖un‖ +

s∑
j=1

(αij + α̃ij)‖Uj‖,(3.25)

for h satisfying (3.24), or in vectorial form

[‖U‖] ≤ α⊗ ‖un‖ + ((Λ + Λ̃) ⊗ I) [‖U‖] ,
i.e.,

((I − (Λ + Λ̃)) ⊗ I) [‖U‖] ≤ α⊗ ‖un‖.
We can apply Lemma 3.8 to Λ + Λ̃ to obtain that (I − (Λ + Λ̃))−1 ≥ 0, and thus we
obtain the desired result.

Remark 5.

1. Observe that from (3.23) we get that αij = 0 implies βij = 0, and α̃ij = 0

implies β̃ij = 0.
2. Observe that the maximum c in (3.23) is

c = min
ij

{
αij

βij
,
α̃ij

β̃ij

}
.(3.26)

3. Given any factorization A = (I − Λ)−1Γ, where Γ has positive and negative
coefficients, we can consider the sign splitting Γ = Γ+−Γ−, with Γ+ ≥ 0 and
Γ− ≥ 0. According to this splitting we take the corresponding terms in Λ to
split it into Λ = Λ+ − Λ−. This is essentially the way of proceeding in the
SSP context. It turns out that (3.26) is precisely the CFL coefficient (1.15)
obtained in the SSP context.

4. As α + Λ e + Λ̃ e = e, with α ≥ 0, Λ ≥ 0, and Λ̃ ≥ 0, the first inequality in
(3.25) is also valid for a convex functional ‖ · ‖.

Example 8. We consider the representation (3.21)–(3.22) in Example 7 for the
perturbed four-stage order four RK method. To split Λ+Λ̃ = (λij) in (3.21) we follow

the zeros pattern in Γ and Γ̃ in (3.22); i.e., if βij �= 0, we take αij = λij and α̃ij = 0,

and in a similar way if β̃ij �= 0. In this way we obtain

Λ =

⎛
⎜⎜⎜⎜⎜⎝

0

1 0

0 1/2 0

0 0 2/3 0

0 1/3 1/3 1/3 0

⎞
⎟⎟⎟⎟⎟⎠
, Λ̃ =

⎛
⎜⎜⎜⎜⎜⎝

0

0 0

1/2 0 0

1/9 2/9 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
.

It can be checked that condition (3.23) holds for c = 2/3.
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Example 9. The numerically optimized four-stage order four RK method in [5,
formula (3.4)] has

Λ + Λ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

1 0 0 0 0

649
1600

951
1600 0 0 0

53989
2500000

4806213
20000000

23619
32000 0 0

1
5

6127
30000

7873
30000

1
3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

α = (1, 0, 0, 0, 0)t, and

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

1
2 0 0 0 0

0 5000
7873 0 0 0

0 0 7873
10000 0 0

1
10

1
6 0 1

6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Γ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

10890423
25193600 0 0 0 0

102261
5000000

5121
20000 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Following the zeros pattern in Γ and Γ̃, we can split Λ + Λ̃ into

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

1 0 0 0 0

0 951
1600 0 0 0

0 0 23619
32000 0 0

1
5

6127
30000

7873
30000

1
3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

649
1600 0 0 0 0

53989
2500000

4806213
20000000 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It can be checked that condition (3.23) holds for c = 7487223
8000000 ≈ 0.936. If we compute

the matrices A and Ã from (3.20), we obtain a perturbed RK method (A, Ã) with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

1
2 0 0 0 0

− 2127
15746

5000
7873 0 0 0

0 2127
10000

7873
10000 0 0

1
6

12127
30000

7873
30000

1
6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

10890423
25193600 0 0 0 0

869139357
2560000000

5121
20000 0 0 0

580124399
2560000000

1707
20000 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix A is the four-stage order four method in the family (3.18) for w = 7873
30000 .

It can be computed that R(A, Ã) = 7487223
8000000 . Observe that, for this value of w, the

coefficient a31 in A is negative, and therefore, although Ã has two nontrivial columns,
only the elements ã31, ã41, and ã51 in Ã are required in order to get R(A, Ã) > 0.

Under some conditions on Λ and Γ, Proposition 3.9 ensures monotonicity under
the stepsize restriction

h ≤ c
1

ρ
,(3.27)
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where c is such that Λ−cΓ ≥ 0 and Λ̃−cΓ̃ ≥ 0. If we compare the stepsize restriction
(3.27) with the stepsize restriction (3.13) obtained in terms of R(A, Ã), it is natural to
wonder about the relationship between c in (3.27) and R(A, Ã). We begin expressing
the concept of absolute monotonicity for the perturbed RK method in terms of the
representation (3.19). The proof is omitted because it is straightforward.

Lemma 3.10. Consider a perturbed RK method (A, Ã) such that it can be fac-
torized as A = (I − (Λ + Λ̃))−1(Γ − Γ̃), Ã = (I − (Λ + Λ̃))−1Γ̃. Then the method is
absolutely monotonic at ξ if and only if

1. the matrix I − (Λ + Λ̃ + ξ (Γ + Γ̃)) is invertible,
2. the following inequalities hold:

(I − (Λ + Λ̃ + ξ (Γ + Γ̃))−1Γ ≥ 0,

(I − (Λ + Λ̃ + ξ (Γ + Γ̃))−1Γ̃ ≥ 0,(3.28)

(I − (Λ + Λ̃ + ξ (Γ + Γ̃)))−1(I − (Λ + Λ̃)) e ≥ 0.

The following result relates conditions in Proposition 3.9 with absolute mono-
tonicity at a given point.

Proposition 3.11. Consider a perturbed RK method (A, Ã). Assume that it can
be written in terms of Λ, Λ̃, Γ, and Γ̃ with

(I − (Λ + Λ̃)) e ≥ 0, Γ ≥ 0, Γ̃ ≥ 0, Λ + Λ̃ − c (Γ + Γ̃) ≥ 0,

and I − (Λ + Λ̃ − c (Γ + Γ̃)) invertible for some coefficient c ≥ 0. Then the method is
absolutely monotonic at −c.

Proof. We will get the absolute monotonicity at −c from Lemma 3.10. Some of
the conditions imposed give part 1 in Lemma 3.10, and hence we simply have to check
part 2. As c (Γ + Γ̃) ≥ 0 and (Λ + Λ̃) e ≤ e, we obtain

(Λ + Λ̃ − c (Γ + Γ̃)) e ≤ (Λ + Λ̃) e ≤ e.

This inequality, together with the assumption Λ+Λ̃−c (Γ+Γ̃) ≥ 0 and the regularity
of the matrix I − (Λ + Λ̃ − c (Γ + Γ̃)), allows us to apply Lemma 3.8 with B =
Λ + Λ̃ − c (Γ + Γ̃), obtaining

(I − (Λ + Λ̃ − c (Γ + Γ̃)))−1 ≥ 0.

In this way, as Γ ≥ 0, Γ̃ ≥ 0, and (I − (Λ + Λ̃)) e ≥ 0, we get (3.28) and thus the
desired result.

From Proposition 3.11 we get that the CFL coefficient (3.23) obtained from a
representation satisfies c ≤ R(A, Ã). The next step is to study whether, given a per-
turbed RK method (A, Ã), there exists a representation such that the CFL coefficient

(3.23) satisfies c = R(A, Ã). We will refer to these representations as optimal ones.

3.3. Optimal perturbed representations. In the next result we prove that
optimal representations exist, and we show how to construct them.

Proposition 3.12. We consider a perturbed RK method (A, Ã). If r = R(A, Ã)
> 0, then there exist matrices Λ, Λ̃,Γ, Γ̃ such that A = (I − (Λ + Λ̃))−1(Γ − Γ̃),
Ã = (I − (Λ + Λ̃))−1Γ̃, with Λ + Λ̃ ≥ 0, Γ ≥ 0, Γ̃ ≥ 0, and (I − (Λ + Λ̃))e ≥ 0,
I − (Λ + Λ̃ − r(Γ + Γ̃)) invertible and Λ − rΓ ≥ 0, Λ̃ − rΓ̃ ≥ 0.

Proof. Remember that R(A, Ã) > 0 implies that A + Ã ≥ 0 and Ã ≥ 0. As
(I + r(A + 2Ã))−1 = I − r(A + 2Ã)(I + r(A + 2Ã))−1, we can write
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A + Ã − r(A + 2Ã)(I + r(A + 2Ã))−1(A + Ã) = (I + r(A + 2Ã))−1(A + Ã) ≥ 0,

Ã − r(A + 2Ã)(I + r(A + 2Ã))−1
Ã = (I + r(A + 2Ã))−1

Ã ≥ 0,

e− r(A + 2Ã)(I + r(A + 2Ã))−1e = (I + r(A + 2Ã))−1e ≥ 0.

Thus

r(A + 2Ã)(I + r(A + 2Ã))−1(A + Ã) ≤ A + Ã,(3.29)

r(A + 2Ã)(I + r(A + 2Ã))−1
Ã ≤ Ã,(3.30)

r(A + 2Ã)(I + r(A + 2Ã))−1e ≤ e.(3.31)

As r > 0, conditions (3.5)–(3.6) give

r (A + 2Ã)(I + r(A + 2Ã))−1 ≥ 0.

Thus, taking this together with (3.31), we get

0 ≤ r (A + 2Ã)(I + r(A + 2Ã))−1 ≤ E,

with E the matrix whose elements are all equal to one. We can take matrices Λ + Λ̃
such that

0 ≤ r (A + 2Ã)(I + r(A + 2Ã))−1 ≤ Λ + Λ̃ ≤ E.(3.32)

If we multiply (3.32) by e, we obtain

r (A + 2Ã)(I + r(A + 2Ã))−1e ≤ (Λ + Λ̃) e ≤ s e.

As e ≤ s e, inequality (3.31) gives

r (A + 2Ã)(I + r(A + 2Ã))−1e ≤ e ≤ s e,

and hence we can impose for (Λ + Λ̃)e the condition

r (A + 2Ã)(I + r(A + 2Ã))−1e ≤ (Λ + Λ̃) e ≤ e.(3.33)

If we now multiply (3.32) by A + Ã ≥ 0, we obtain

r (A + 2Ã)(I + r(A + 2Ã))−1(A + Ã) ≤ (Λ + Λ̃)(A + Ã) ≤ E (A + Ã).

As A + Ã ≤ E (A + Ã), inequality (3.29) gives

r (A + 2Ã)(I + r(A + 2Ã))−1(A + Ã) ≤ A + Ã ≤ E (A + Ã),

and therefore we can impose for (Λ + Λ̃)(A + Ã) the condition

r (A + 2Ã)(I + r(A + 2Ã))−1(A + Ã) ≤ (Λ + Λ̃)(A + Ã) ≤ A + Ã.(3.34)

Finally, if we multiply (3.32) by Ã ≥ 0, we obtain

r (A + 2Ã)(I + r(A + 2Ã))−1
Ã ≤ (Λ + Λ̃)Ã ≤ E Ã.

As Ã ≤ E Ã, inequality (3.30) gives

r (A + 2Ã)(I + r(A + 2Ã))−1
Ã ≤ Ã ≤ E Ã.
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We can impose for (Λ + Λ̃)Ã the condition

r (A + 2Ã)(I + r(A + 2Ã))−1
Ã ≤ (Λ + Λ̃)Ã ≤ Ã.(3.35)

It is possible to impose conditions (3.32)–(3.35). For example, we can take

Λ = r (I + r(A + 2Ã))−1(A + Ã), Λ̃ = r (I + r(A + 2Ã))−1
Ã.(3.36)

In this case, the matrix I − (Λ + Λ̃) is invertible. Some other choices of Λ + Λ̃ are
possible. Once that Λ + Λ̃ has been chosen satisfying (3.32)–(3.35), with I − (Λ + Λ̃)
invertible, we define

Γ = A + Ã − (Λ + Λ̃)(A + Ã), Γ̃ = Ã − (Λ + Λ̃)Ã, α = e− (Λ + Λ̃)e.(3.37)

Respectively from (3.34), (3.35), and (3.33) we get Γ ≥ 0, Γ̃ ≥ 0, and (Λ + Λ̃)e ≤ e.

In order to prove that Λ + Λ̃ − r(Γ + Γ̃) ≥ 0, we compute

(Λ + Λ̃ − r(Γ + Γ̃))(I + r(A + 2Ã))−1 = Λ + Λ̃ − r(A + 2Ã)(I + r(A + 2Ã))−1 ≥ 0,

where we have used (3.32). If we right-multiply this expression by I + r(A +2Ã) ≥ 0,
we obtain that

Λ + Λ̃ − r(Γ + Γ̃) ≥ 0.(3.38)

If we choose Λ and Λ̃ from (3.36), we obtain Λ − rΓ = 0, Λ̃ − rΓ̃ = 0. Otherwise, we
have to prove that

Λ − rΓ ≥ 0 and Λ̃ − rΓ̃ ≥ 0.(3.39)

Observe that so far the different conditions imposed and the definitions of Γ, Γ̃, and α
depend on Λ + Λ̃. Thus, once the matrix Λ + Λ̃ has been determined, we have to
obtain Λ and Λ̃ such that (3.39) holds. We proceed componentwise as follows. We
take, for example, αij = rβij ; in this way (Λ − rΓ)ij = 0, and using (3.38), we have

α̃ij − rβ̃ij = αij + α̃ij − rβ̃ij − rβij ≥ 0.

We can alternatively take α̃ij = rβ̃ij to get (Λ̃ − rΓ̃)ij = 0 and αij − rβij ≥ 0.

Finally, remember that r = R(A, Ã) implies the invertibility of I+r(A+2Ã), and
hence by Lemma 3.10 the invertibility of I − (Λ − rΓ).

Remark 6.

1. We can construct matrices Λ, Λ̃, Γ, and Γ̃ such that Λ−rΓ = 0 and Λ̃−rΓ̃ = 0,
namely Λ and Λ̃ from (3.36), and Γ, Γ̃, and α from (3.37).

2. Inequality (3.32) has been used to prove (3.38). However, when a represen-
tation is constructed, if we ensure (3.38), we can drop (3.32).

Example 10. We consider again the classical four-stage fourth order RK method
and its perturbation (3.8) with R(A, Ã) = 2/3 (see Example 5). According to Proposi-
tion 3.12, if we construct Λ and Λ̃ from (3.36), and Γ, Γ̃, and α from (3.37), we obtain
Λ, Λ̃, Γ, and Γ̃ such that Λ − 2/3Γ = Λ̃ − 2/3Γ̃ = 0, and thus the CFL coefficient
(3.23) is also 2/3. Simple computations give that
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Λ =

⎛
⎜⎜⎜⎜⎜⎝

0

1/3 0

1/18 1/3 0

0 0 2/3 0

5/54 2/9 4/27 1/9 0

⎞
⎟⎟⎟⎟⎟⎠
, Γ =

⎛
⎜⎜⎜⎜⎜⎝

0

1/2 0

1/12 1/2 0

0 0 1 0

5/36 1/3 2/9 1/6 0

⎞
⎟⎟⎟⎟⎟⎠
,

Λ̃ =

⎛
⎜⎜⎜⎜⎜⎝

0

0 0

1/6 0 0

2/27 2/9 0 0

35/486 4/81 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
, Γ̃ =

⎛
⎜⎜⎜⎜⎜⎝

0

0 0

1/4 0 0

1/9 1/3 0 0

35/324 2/27 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
,

and α = (1, 2/3, 4/9, 1/27, 74/243)t. From A = (I − (Λ + Λ̃))−1(Γ − Γ̃), we get the
factorization given in (2.6), i.e., Λ2 = Λ + Λ̃ and Γ2 = Γ − Γ̃. However, from the
implementation point of view, such a representation is not optimal as it requires one
to store f(un), f(U2), f(U3), f(U4), f̃(un), and f̃(U2) until the computation of un+1.
The computational cost can be decreased if the matrices Γ and Γ̃ have as many zeros
as possible and the nonzeros appear in optimal positions. We will try to impose
β̃ij = 0 whenever βij �= 0, and vice versa: βij = 0 whenever β̃ij �= 0.

Denoting the elements of Λ+Λ̃ by λij , if we compute inequality (3.34), we obtain

that λ43 = 2/3 and λ42 = 2/9. Next we construct Γ = (βij) and Γ̃ = (βij) from

(3.37). As β̃31 �= 0, we impose β31 = 0, which gives λ32 = 1/2. We can get β̃52 = 0 if
we set λ54 = 1/3. Similarly, we can obtain β̃51 = 0, imposing λ53 = 1/3. Finally we
can get β51 = 0, imposing λ52 = 1/3. If we impose α = (1, 0, 0, 0, 0)t, we get λ21 = 1,
λ31 = 1/2, λ41 = 1/9, and λ51 = 0. So far we have obtained the matrix Λ + Λ̃ in
(3.21), and the matrices Γ and Γ̃ in (3.22) in Example 7.

They satisfy (3.38), although condition (3.32) does not hold (see Remark 6). We
can take into account the zeros distribution in Γ and Γ̃ to split out Λ+Λ̃ into Λ and Λ̃
(see Example 8). We have that Λ−2/3Γ ≥ 0, Λ̃−2/3Γ̃ ≥ 0. This is the representation
(1.16) taken from [13].

We finish the section showing how the theory developed in this paper applies to
the schemes in [12].

Example 11. In [12], explicit RK schemes are represented in terms of coefficient
matrices Λ = (αij) ≥ 0 and Γ = (βij). The matrix Γ is such that the nonzero
coefficients βik for a given k are all of the same sign. If a sign splitting is done for Γ,
i.e., Γ = Γ+ − Γ−, the RK method is applied as follows:

U = α⊗ un + h(Λ ⊗ I)U + h(Γ+ ⊗ I)F (U) − h(Γ− ⊗ I)F̃ (U),(3.40)

where α = (1, 0, . . . , 0)t. The same sign splitting can be done in Λ, Λ = Λ+ − Λ−,
and then the CFL coefficient in the SSP context (1.15) is the same as that given
in expression (3.23) of Proposition 3.9 (see Remark 5). Scheme (3.40) can also be
written as

U = e⊗ un + h(A+ ⊗ I)F (U) − h(A− ⊗ I)F̃ (U),(3.41)

where A+ = (I − Λ)−1Γ+ and A− = (I − Λ)−1Γ−. Observe that by Lemma 3.8
we have A+ ≥ 0 and A− ≥ 0. Observe too that (3.41) can also be formulated as a

perturbed RK method (A, Ã), with A = A+ −A− and Ã = A−. The sign distribution



REPRESENTATIONS OF RK METHODS AND SSP METHODS 947

of the matrix Γ gives that A+ and A− are a sign splitting of A. As has been pointed
out above, the coefficient c computed from (3.23) (or (1.15) from the SSP context)
satisfies c ≤ R(A,A−).

Three optimal fifth order methods, denoted by SSP(7,5), SSP(8,5), and SSP(9,5),
are constructed in [12]. For these methods it has been checked that the CFL coeffi-
cient c given in [12], computed from (1.15), is the radius of absolute monotonicity of
the perturbed method (A,A−), i.e., c = R(A,A−). We remark that for these methods
only one column in the matrix A− is different from zero. This is enough to obtain
schemes with R(A,A−) > 0.

4. Conclusions and future work. In this paper we have extended the Shu–
Osher representations to general RK methods, and we have related the stepsize re-
strictions for monotonicity with the radius of absolute monotonicity giving optimal
representations. The case of Shu–Osher representations with positive coefficients cor-
responds to the case R(A) > 0. Optimal representations are given by

Λ = r(I − rA)−1
A, Γ = (I − Λ)A, α = (I − Λ)e,

with r = R(A). In this case Λ − rΓ = 0.
The case of Shu–Osher representations with negative coefficients corresponds to

the case R(A) = 0. To deal with this case, we have interpreted the numerical inte-
gration as perturbations of the original RK method A with some coefficients Ã, and
we have referred to (A, Ã) as perturbed RK methods. These perturbed RK methods
have perturbed representations.

A new definition of radius of absolute monotonicity for the perturbed RK method
(A, Ã) has been given, and some of its properties have been investigated. In this way
it is possible to have a positive generalized radius R(A, Ã) > 0 if RK methods with
R(A) = 0 are used. For R(A, Ã) > 0, we obtain monotonicity under nontrivial stepsize
restrictions. Optimal representations are given by

Λ = r (I + r(A + 2Ã))−1(A + Ã), Λ̃ = r (I + r(A + 2Ã))−1
Ã,

Γ = A + Ã − (Λ + Λ̃)(A + Ã), Γ̃ = Ã − (Λ + Λ̃)Ã,

α = e− (Λ + Λ̃)e,

with r = R(A, Ã). In this case Λ − rΓ = 0 and Λ̃ − rΓ̃ = 0.
With regard to the new concept R(A, Ã), at least two questions remain open

for future work. The first one concerns the possibility of getting R(A, Ã) = ∞ and
hence unconditional monotonicity for high order methods. The second one is how to
construct Ã for a given RK method A so that R(A, Ã) is as large as possible.

Acknowledgment. The author thanks the anonymous referees for their valuable
remarks and comments on the paper.
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Abstract. A quasilinear elliptic equation of second order can be split into a first order system
in various ways. We present and analyze a stabilized finite element method for the system, which
is well suited for any of these possible splittings. Under minimal assumptions on the continuous
solution, existence and (nearly) optimal convergence in L∞ of the discrete solutions is established.
This result holds for any choice of the stabilization parameter ω > 0. Moreover, the paper presents
a framework for investigating other mixed methods for unsymmetric first order systems.
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1. Introduction. Let Ω ⊂ R
n, n = 2, 3, be a bounded domain. Consider the

first order system with unknown functions u = (u1, . . . , un) and p,

uα = bα(x, p,∇p) in Ω, α = 1, . . . , n,(1.1)

∂ici(x, p, u) = g(x, p,∇p) in Ω, p = 0 on ∂Ω.(1.2)

Here and in the following we use the usual summation convention for small Latin
(i, j = 0, . . . , n, ∂0 := 1) and Greek (α, β = 1, . . . , n) indices. It is assumed that
the functions bα, g, ci are sufficiently smooth with respect to the arguments u, p, and
q = ∇p. The system is equivalent to the second order equation

∂ici(x, p, b(x, p,∇p)) = g(x, p,∇p),(1.3)

which is quasilinear; i.e., it is linear in the second derivatives of p. The coefficient
function of the main part of (1.3) is given by

aij = cαi b
α
j , i, j = 1, . . . , n,(1.4)

with

cαi (x, p, u) =
∂

∂uα
ci(x, p, u), α = 1, . . . , n,

bαj (x, p, q) =
∂

∂qj
bα(x, p, q), j = 1, . . . , n.
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Now we can formulate our existence and ellipticity condition, as follows.

Assumption A. There exists a solution (u, p) ∈ C0(Ω)n ×C1(Ω) of (1.1), (1.2)
such that the coefficient function

aij(x) := aij(x, u(x), p(x),∇p(x))

in (1.4) satisfies

m0|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ M0|ξ|2 ∀ξ ∈ R
n(1.5)

with constants m0,M0 > 0 independent of x ∈ Ω.

Note that (1.5) is a purely local condition. Hence, no growth conditions for the
functions cαi , b

α
j are required.

Our next condition is concerned with the linearized operator of (1.1), (1.2). Writ-
ing

bα0 =
∂

∂p
bα, c0i =

∂

∂p
ci,

g0 =
∂

∂p
g, gi =

∂

∂qi
g (g = g(x, p, q)),

we define the linear first order operators

Bq(x) = (bαi ∂iq(x))α=1,...,n,

Ci(v(x), q(x)) = c0i q(x) + cαi v
α(x),

Dq(x) = gi∂iq(x).

Note that bαi , c
α
i are evaluated in p,∇p or p, u. The linearized operator of (1.1), (1.2)

can be written in weak form. For

(v, q), (ϕ,ψ) ∈ L2(Ω)n ×H1,2
0 (Ω)

we define the bilinear form

a((v, q), (ϕ,ψ)) = (v, ϕ) − (Bq, ϕ) − (Ci(v, q), ∂iψ) − (Dq, ψ).

Obviously, the operator L corresponding to a(·, ·) is a continuous mapping

L : L2(Ω)n ×H1,2
0 (Ω) → (L2(Ω)n ×H1,2

0 (Ω))′.

Here and below we use the usual Lebesgue and Sobolev spaces with norms

‖v‖Hm,p(Ω) = ‖v‖m,p =

(
m∑
i=0

‖∇iv‖pp

)1/p

.
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Theorem 1.1. Assume that condition A holds. Then the operator L satisfies
Fredholm’s alternative: Either the problem

L(v, q) = (f, g)(1.6)

is uniquely solvable for all (f, g) ∈ (L2(Ω)n × H1,2
0 (Ω))′ or λ = 0 is an eigenvalue

of L.
This theorem is a simple consequence of the ellipticity condition (1.5) and will be

proved in section 2. Usually, the second alternative in Theorem 1.1 signifies that (u, p)
lies in a singularity of the bifurcation diagram of (1.1), (1.2). In this case, however,
the system cannot be discretized by a direct finite element method. Hence, we state
our next condition.

Assumption B. λ = 0 is not an eigenvalue of the linearized operator L.
In view of the fact that L can also be written as a second order elliptic operator,

H2-regularity can be assumed in the following form.
Assumption C. For (f, g) ∈ H1,2(Ω)n × L2(Ω) the solution of (1.6) satisfies

(v, q) ∈ H1,2(Ω)n ×H2,2(Ω) and

||v||1,2 + ||q||2,2 ≤ c{||f ||1,2 + ||g||2}.

Let us describe our finite element method for approximating the system (1.1),
(1.2). Let Sm ⊂ C0(Ω) be a standard Lagrangian finite element space (see [9]) con-
taining the polynomials of degree ≤ m on each element Λ of a quasi-regular subdivision
Π of Ω, possibly isoperimetrically modified at the boundary ∂Ω. It is assumed that
each element Λ is contained in a ball of radius h and contains a ball of radius ch. Here
and in the following the generic constant c does not depend on the mesh parameter
h. Set Sm

0 = Sm ∩ H1,2
0 . The discrete solution (uh, ph) will be defined in the space

Xh × Yh with Xh = (Sl)n, Yh = Sm
0 . In view of the fact that u is coupled with ∇p,

we assume that l ≥ m− 1. (uh, ph) ∈ Xh × Yh is defined by

(uh, ϕh) = (b(·, ph,∇ph), ϕh) ∀ϕh ∈ Xh,(1.7)

(∂ici(·, ph, uh), ψh) + ω(uh − b(·, ph,∇ph), B(ph)ψh)(1.8)

= (g(·, ph,∇ph), ψh) ∀ψh ∈ Yh.

Here, ω > 0 is the (uncritical) stabilization parameter and

B(ph)ψh(x) = (bαi (x, ph(x),∇ph(x))∂iψh(x))α=1,...,n

according to our notation introduced above. Note that, in contrast to stabilized mixed
methods for the Stokes equation (see [7]), the stabilizing term is conforming; i.e., the
solution (u, p) of the continuous system satisfies (1.7), (1.8) as well.

Now we can state the main result of this paper.
Theorem 1.2. Assume that Assumptions A, B, C hold. Assume further that the

solution (u, p) of (1.1), (1.2) is in the space Hm,∞(Ω)n ×Hm+1,∞(Ω), and that the
stabilization parameter ω > 0 is chosen independent of h. Then there exists a h0 > 0
such that for 0 < h ≤ h0 the discrete system (1.7), (1.8) has a local solution in a
neighborhood of (u, p) which satisfies the error estimate

h||u− uh||∞ + ||p− ph||∞ ≤ chm+1−ε{||u||m,∞ + ||p||m+1,∞}

for all ε > 0 with a constant c = c(ε).
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The proof of this theorem will be given in the next sections.
Since our results are also new in the linear case, we study the corresponding linear

problem

(u, ϕ) + b(p, ϕ) = f(ϕ),(1.9)

c(u, ψ) = g(ψ),(1.10)

where the bilinear forms b(·, ·), c(·, ·) correspond to linear first order operators. Again,
we do not assume that b(ψ,ϕ) = c(ϕ,ψ). The problem (1.9), (1.10) is discretized by
the method analogous to (1.7), (1.8),

(uh, ϕh) + b(ph, ϕh) = f(ϕh) ∀ϕh ∈ Xh,(1.11)

c(uh, ψh) + ω(uh + Bph, Bψh) = g(ψh) + ωf(Bψh) ∀ψh ∈ Yh,(1.12)

where (Bp, ϕ) = b(p, ϕ). It is now obvious that the stabilization term is the first
variation of

‖u + Bp− f‖2

with respect to p. Hence, the method is a Galerkin least squares method already
considered in [13] for the elasticity problem. It is the object of this paper to demon-
strate that the Galerkin least squares approach allows nearly arbitrary, in particular
unsymmetric, splittings of the second order equation. For the classical and other least
squares methods, we refer to [8] and [3].

With a proof similar to that for Theorem 1.2 we can show the following.
Theorem 1.3. Assume that (1.5) and Assumptions B and C hold. Assume

further that the solution (u, p) of (1.9), (1.10) is in the space Hm,2(Ω)n×Hm+1,2(Ω)
and that the stabilization parameter ω > 0 is chosen independent of h. Then there
exists a h0 > 0 such that for 0 < h ≤ h0 the discrete system (1.11), (1.12) has a
solution which satisfies the error estimate

h||u− uh||2 + ||p− ph||2 ≤ chm+1{||u||m,2 + ||p||m+1,2}.

We remark that we have assumed only that λ = 0 is not an eigenvalue of the
continuous system. This carries over to the discretized system only for sufficiently
small h. Thus, the condition 0 < h ≤ h0 cannot be removed in the linear case.

A further object of this paper is to present a framework for analyzing other mixed
methods for first order systems of the type (1.9), (1.10). The classical mixed finite
element theory (see, e.g., [4], [6]) requires a symmetry condition for the forms b(·, ·)
and c(·, ·), but what can be done if this condition is violated? Our improvement
in the analysis of first order systems is Lemma 2.1, which states that any elliptic
first order system can be transformed into a first order system with “nearly” adjoint
forms b(·, ·) and c(·, ·). Using this lemma, it is a simple exercise to prove convergence
for the classical mixed elements introduced in [22], [5] for general first order systems.
Mixed methods for unsymmetric systems are also treated in [18], but the methodology
presented there is different. The idea of Lemma 2.1 can also be applied to generalized
Stokes equations [11].

Mixed methods for nonlinear first order systems are also treated in [17], [20],
[16]. In all of these papers, only the symmetric case is considered. Moreover, the
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convergence proofs are based on L2-estimates, which restricts the results to space
dimension n = 2 or higher order elements.

Theorem 1.2 states that for an elliptic second order equation

∂iFi(x, p,∇p) = 0(1.13)

any splitting of the form (1.1), (1.2) is allowed. For example, the coefficient function
aij in (1.4) of Poisson’s equation

Δp = g

is the identity matrix. If we use the splitting

u1 = ∂1p + ∂2p, u2 = −∂1p + ∂2p, ∂1u
1 + ∂2u

2 = g,

we again obtain Poisson’s equation, but now with coefficient matrix

A =

(
1 1
−1 1

)
.

In contrast to the direct finite element method for the second order equation, the
corresponding mixed method is different from the mixed method of the standard
splitting

u = ∇p, ∂1u
1 + ∂2u

2 = g.

More natural splittings for (1.13) are

u = ∇p, ∂iFi(x, p, u) = 0

and

ui = Fi(x, p,∇p) for i = 1, . . . , n,

n∑
i=1

∂iu
i = −F0(x, p,∇p).

Numerical examples for both splittings are given in [23]. These splittings also give an
idea of how to discretize the general elliptic equation

F (x, q,∇q,∇2q) = 0,

which can be treated by

u = ∇p, F (x, p, u,∇u) = 0.

We remark that in this case our convergence proof works only for higher order ele-
ments, i.e., m ≥ 2.

2. Linear systems of first order. We consider the system

vα − bαi ∂iq = fα in Ω, α = 1, . . . , n,(2.1)

∂i(c
α
i v

α) + di∂iq = g in Ω, q = 0 on ∂Ω,(2.2)
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where the coefficient functions bαi , c
α
i , di are assumed to be smooth functions of x ∈ Ω.

Introducing the bilinear forms

b(q, ϕ) = − (bαi ∂iq, ϕ
α) ,

c(v, ψ) = −
(

n∑
i=1

cαi v
α, ∂iψ

)
+ (cα0 v

α, ψ),

d(q, ψ) = (di∂iq, ψ),

the weak solution (v, q) ∈ L2(Ω)n ×H1,2
0 (Ω) is defined by

(v, ϕ) + b(q, ϕ) = (f, ϕ) ∀ϕ ∈ L2(Ω)n,(2.3)

c(v, ψ) + d(q, ψ) = (g, ψ) ∀ψ ∈ H1,2
0 (Ω).(2.4)

The characteristic problem in the finite element analysis of (2.1), (2.2) is that we have
the condition of ellipticity in (1.5), but we need conditions for the forms b(·, ·) and
c(·, ·). Therefore, the following lemma is the basis of the finite element analysis of
(2.1), (2.2) and the corresponding nonlinear case in (1.7), (1.8).

Lemma 2.1. The following statements are equivalent:
(i) The system (2.1), (2.2) is elliptic in the sense of (1.5); i.e., the coefficients

aij = cαi b
α
j , i, j = 1, . . . , n,(2.5)

satisfy

m0|ξ|2 ≤ aij(x)ξiξj ≤ M0|ξ|2 ∀ξ ∈ R
n.(2.6)

(ii) The following two conditions hold:
(a) There exists a matrix M(x) ∈ R

n×n which is as smooth as the coefficient
functions bαi , c

α
i such that with a constant m1 > 0

m1||v||22 ≤ (v,Mv) ∀v ∈ L2(Ω)n(2.7)

and

|b(q,Mv) − c(v, q)| ≤ c||v||2||q||2, ∀v ∈ L2(Ω)n, ∀q ∈ H1,2
0 (Ω).(2.8)

(b) Setting

Bq = (bαi ∂iq)α=1,...,n,

we have with a constant m2 > 0

m2||∇q||2 ≤ ||Bq||22 + c||q||22 ∀q ∈ H1,2
0 (Ω).(2.9)

Remarks. (i) Condition (2.7) is satisfied if M is uniformly real positive. (ii) The
forms b(·, ·) and c(·, ·) are of first order, but the right-hand side in (2.8) is not. The
intuitive meaning of condition (2.8) is that (2.3) can be transformed by the matrix M
such that the transformed form of b(·, ·) is adjoint to c(·, ·) in the leading terms; i.e.,

b(q,Mv) = c(v, q) + l.o.t.



FINITE ELEMENT METHOD FOR ELLIPTIC SYSTEMS 955

Proof. Introducing the matrices

C̃ = (cαi )i,α=1,...,n, B̃ = (bαi )i,α=1,...,n, A = (aij)i,j=1,...,n,

formula (2.5) can be written in the form

A = C̃B̃T .(2.10)

In the next step, we derive a representation of the matrix M from condition (2.8).
Since it is stated that M is as smooth as the coefficient functions, we can assume that
at least M ∈ C(Ω)n×n. Let x0 ∈ Ω, Bε(x0) ⊂ Ω, and ϕ ∈ C∞

0 (Bε(x0)) with ||ϕ||2 = 1.
For r, s ∈ R

n set (i =
√
−1)

q(x) = e2πir·xϕ(x), v(x) = e−2πir·xϕ(x)s.

Then

∇q(x) = 2πirq(x) + e2πir·x∇ϕ(x),

and hence

b(q,Mv) − c(v, q) =

∫
Ω

n∑
i=1

{−2πibαi riϕMαβϕsβ + 2πicαi sαϕriϕ} dx + R,(2.11)

where the lower order terms in R satisfy the estimate

|R| ≤ c|s| ||ϕ||21,2

with a constant c independent of r, s. We replace r in (2.11) by λr, λ ∈ R, and apply
the mean value theorem which gives, for x1 ∈ Bε(x0),

b(q,Mv) − c(v, q) = −λ2πiS + R,(2.12)

where

S =
n∑

i=1

{bαi (x1)riMαβ(x1)sβ − cαi (x1)sαri} .

In view of the fact that condition (2.8) must hold for all λ ∈ R and

||q||2||v||2 ≤ c|s|,

we have S = 0 or

rT B̃(x1)M(x1)s = rT C̃(x1)s ∀r, s ∈ R
n,

and, since B̃, C̃,M are continuous and ε can be chosen arbitrary small,

C̃ = B̃M in Ω.

Comparing this with (2.10), we obtain that A = B̃MB̃T is real positive. This implies
that M is also real positive.

Finally, we show that condition (2.9) is equivalent to the uniform regularity of
the matrix B̃. Let B̃(x) be uniformly regular, i.e.,

|B̃(x)−T r|2 ≤ c|r|2 ∀x ∈ Ω, ∀r ∈ R
n.
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Inserting r = B̃(x)T∇q(x) and integrating gives

||∇q||2 ≤ c||B̃T∇q||2.(2.13)

From

(Bq)α = bαi ∂iq = (B̃T∇q)α + bα0 q,

it follows that

‖Bq‖2 ≥ ‖B̃T∇q‖2 − ‖b0q‖2,

and condition (2.9) is proved by (2.13). Conversely, if condition (2.9) is satisfied, we
proceed with similar arguments as before. Let x0 ∈ Ω and ε > 0 such that Bε(x0) ⊂ Ω.
Let ϕ ∈ C∞

0 (Bε(x0)) with ||ϕ||2 = 1. For r ∈ R
n set

q(x) = e2πir·xϕ(x).

Then

∇q(x) = 2πirq(x) + e2πir·x∇ϕ(x)

and

||q||2 = ||ϕ||2 = 1.

For the terms in (2.9) we obtain

m2||∇q||2 ≥ m2

2
||2πirϕ||2 −m2||∇ϕ||2 =

m2

2
(|r|2 − 2||∇ϕ||2),

||Bq|| ≤ ||bαi ∂iq|| ≤ ||B̃T rq||2 + c||ϕ||1,2.

Using the mean value theorem, we obtain for x1 ∈ Bε(x0)

||B̃T rq||2 = |B̃T (x1)r|.

From (2.9) and the above estimates it follows that

m2

2
(|r|2 − 2||∇ϕ||22) ≤ 2|B̃(x1)r|2 + c||ϕ||21,2.

Replacing r by λr, we conclude that B̃ is uniformly regular in Ω.
Proof of Theorem 1.1. The theorem can clearly be proved by considering the

second order equation corresponding to (2.3), (2.4). Here we want to show how the
methodology of Lemma 2.1 can be applied. The finite element analysis in Lemma 4.2
is more complicated but uses the same arguments.

We consider (2.3) and a compactly perturbed (2.4), namely,

c(v, ψ) + d(q, ψ) − λ(q, ψ) = (g, ψ) ∀ψ ∈ H1,2
0 (Ω),(2.14)

with a parameter λ > 0. Assume that (v, q) ∈ L2(Ω)n × H1,2
0 (Ω) is a solution of

(2.3), (2.14). Inserting ϕ = Mv into (2.3) and ψ = q into (2.14) and subtracting the
resulting equations yields

(v,Mv) + b(q,Mv) − c(v, q) − d(q, q) + λ||q||22 = (f,Mv) − (g, q),
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and hence, by conditions (2.7) and (2.8),

m1||v||22 + λ||q||22 ≤ c||v||2||q||2 + c||q||1,2||q||2 + c||f ||2||v||2 + ||g||−1,2||q||1,2.(2.15)

From the strong formulation of (2.3) we conclude that

||Bq||22 ≤ 2||v||22 + 2||f ||22
and, by condition (2.9),

m2||∇q||2 ≤ 2||v||22 + 2||f ||22 + c||q||22.

Combining this estimate with (2.15) gives the a priori bound for sufficiently large
λ > 0,

||v||22 + ||q||21,2 ≤ c{||f ||22 + ||g||2−1,2}.(2.16)

From the bound (2.16) we conclude an inf-sup condition for the bilinear form

Bλ((v, q), (ϕ,ψ)) = (v, ϕ) + b(q, ϕ) − c(v, ψ) − d(q, ψ) + λ(q, ψ),

since

||f ||2 + ||g||−1 = sup
ϕ∈L2(Ω)n

(v, ϕ) + b(q, ϕ)

||ϕ||2
+ sup

ψ∈H1,2
0 (Ω)

−c(v, ψ) − d(q, ψ) + λ(q, ψ)

||ψ||1,2

= sup
||ϕ||2=1,||ψ||1,2=1

Bλ((v, q), (ϕ,ψ)),

and hence, by (2.16),

||v||2 + ||q||1,2 ≤ c sup
||ϕ||2=1,||ψ||1,2=1

Bλ((v, q), (ϕ,ψ)).

In order to prove existence of a solution of (2.3), (2.14), an a priori bound analogous
to (2.16) for the adjoint problem is required (see [2]). This can be done by the same
method by observing that the adjoint forms satisfy condition (2.8),

|c(M−1v, q) − b(q, v)| ≤ c||v||2||q||2

and M−1 is real positive. Thus, we have proved that the system (2.3), (2.14) has a
uniquely determined solution. In view of the fact that λ(q, ψ) is a compact perturba-
tion of the bilinear form B0, we obtain from standard arguments (see, e.g., [1, p. 102])
that (2.3), (2.4) satisfies Fredholm’s alternative.

3. Standard finite element spaces and weighted Sobolev norms. Through-
out the rest of the paper we assume that Ω is a polygonal or polyhedral domain and
that Ω = ∪Λ. The interpolation operator Ih : C0(Ω) → Sm of a standard Lagrangian
finite element space Sm satisfies

||∇k(u− Ihu)||p;Λ ≤ chl−k||∇lu||p;Λ ∀u ∈ H l,p(Λ),(3.1)

for 0 ≤ k ≤ l ≤ m + 1 and 1 ≤ p ≤ ∞ with lp > n (see, e.g., [9]). Moreover, the
inverse estimates hold,

||∇kuh||p;Λ ≤ ch−k||uh||p;Λ ∀uh ∈ Sm, 0 ≤ k ≤ m, 1 ≤ p ≤ ∞,(3.2)

||uh||∞;Λ ≤ ch−n/2||uh||2;Λ ∀uh ∈ Sm.(3.3)
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For nonsmooth functions we use the approximation operator Rh : L1(Ω) → Sm

defined in [10] with the properties

||∇k(u−Rhu)||p;Λ ≤ chl−k||∇lu||p;U(Λ), 0 ≤ k ≤ l ≤ m + 1, 1 ≤ p ≤ ∞,(3.4)

||∇kRhu||p;Λ ≤ c||∇ku||p;U(Λ), 0 ≤ k ≤ m, 1 ≤ p ≤ ∞,(3.5)

where U(Λ) denotes a neighborhood of Λ of diameter ch. Since Π is assumed to be a
quasi-uniform partition, the estimates (3.4), (3.5) carry over to the domain Ω.

For x0 ∈ Ω we define the weight function

σ(x) = (|x− x0|2 + ρ2)1/2,

where ρ = c∗hβ and c∗ ≥ 1, β ≥ 1 will be determined later. σ satisfies

σ−1 ≤ ρ−1, |∇kσ| ≤ cσ−k+1 ∀k ∈ N(3.6)

and, in view of diam (Λ) ≤ h,

max
x∈Λ

σ(x) ≤ cmin
x∈Λ

σ(x).(3.7)

Using polar coordinates, one can easily show that

∫
Ω

σ−α dx ≤

⎧⎨
⎩

c for α < n,
c| ln ρ| for α = n,
cρn−α for α > n.

(3.8)

For k ∈ N and α ∈ R the corresponding weighted Sobolev norms are defined by

||v||2(α) =
∑
Λ

∫
Λ

|v|2σα dx, ||v||2(k,α) =

k∑
i=0

||∇iv||2(α).

Estimate (3.7) is the crucial point which allows us to prove the interpolation and
inverse estimates (3.1)–(3.5) also in weighted norms; for example,

||∇k(u− Ihu)||2(α) =
∑
Λ

∫
Λ

|∇k(u− Ihu)|2σα dx

≤
∑
Λ

max
x∈Λ

σα(x)||∇k(u− Ihu)||22;Λ

≤ ch2(l−k)
∑
Λ

min
x∈Λ

σα(x)||∇lu||22;Λ

≤ ch2(l−k)||∇lu||2(α),

and hence,

||∇k(u− Ihu)||(α) ≤ chl−k||∇lu||(α), 0 ≤ k ≤ l ≤ m + 1, 2l > n,(3.9)

||∇k(u−Rhu)||(α) ≤ chl−k||∇lu||(α), 0 ≤ k ≤ l ≤ m + 1,(3.10)

||∇kRhu||(α) ≤ c||∇ku||(α),(3.11)

||∇kuh||(α) ≤ ch−k||uk||(α).(3.12)
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The next lemma presents the key idea of the weighted Sobolev norms, namely the
control of the L∞-norm by a weighted L2-norm.

Lemma 3.1. Let v ∈ H l,∞(Ω), 1 ≤ l ≤ m + 1, and vh ∈ Sm. Then there exists a
point x0 such that for the corresponding weighted norm

||v − vh||∞ ≤ ch−n/2ρn/2||v − vh||(−n) + ch−n/2ρn/2hl| ln ρ|1/2||v||l,∞.

Proof. Using (3.4) and (3.3), we obtain for some x0 ∈ Λ

||v − vh||∞ ≤ ||v −Rhv||∞ + ||Rhv − vh||∞

≤ chl||v||l,∞ + |Rhv − vh|(x0)

≤ chl||v||l,∞ + ch−n/2||Rhv − vh||2;Λ.

The second term on the right-hand side can be bounded by a weighted norm,

||Rhv − vh||2;Λ ≤ cρn/2||Rhv − vh||(−n)

≤ cρn/2
(
||v −Rhv||(−n) + ||v − vh||(−n)

)
.

Now we use (3.10), (3.8),

||v −Rhv||(−n) ≤ chl||∇lv||(−n) ≤ chl| ln ρ|1/2||v||l,∞,

which completes the proof of the lemma.
For the duality argument in finite element analysis an a priori estimate in weighted

Sobolev norms is required.
Lemma 3.2. Assume that conditions B and C hold for the linear problem (1.6).

Then, for f ∈ H1,2(Ω)n, g ∈ L2(Ω), the solution (v, q) ∈ L2(Ω)n × H1,2
0 (Ω) of

L(v, q) = (f, g) satisfies

||v||(1,n) + ||q||(2,n) ≤ cρ−κ(||f ||(1,n) + ||g||(n))

for all κ > 0 with a constant c = c(κ). The estimate also holds for the adjoint system.
Proof. The result is well known for second order equations (see, e.g., [19], [21]).

It also holds with ρ−κ replaced by | ln ρ|1/2. Since our system can equivalently be
transformed into a second order equation, the result follows.

4. Finite element approximation of linear systems. We return to the linear
system (2.1), (2.2), but assume that di = 0 in view of the fact that this term is
definitely of lower order. Using again the notation

Bq(x) = (bαi ∂iq)α=1,...,n,

the solution of (2.1), (2.2) satisfies

(u, ϕ) + b(p, ϕ) = (f, ϕ) ∀ϕ ∈ L2(Ω)n,(4.1)

c(u, ψ) + ω{(u,Bψ) + b(p,Bψ) − (f,Bψ)} = (g, ψ) ∀ψ ∈ H1,2
0 (Ω).(4.2)

The stabilized finite element approximation is defined by an analogous set of equa-
tions. Subtracting the defining equations for (u, p) and (uh, ph) gives

(u− uh, ϕh) + b(p− ph, ϕh) = F (ϕh) ∀ϕh ∈ Xh,(4.3)

c(u− uh, ψh) + ω(u− uh, Bψh) + ωb(p− ph, Bψh) = G(ψh) ∀ψh ∈ Yh(4.4)
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with F = 0, G = 0. The functionals F,G are introduced for treating the nonlinear case
described in the next section. F is a continuous linear functional on L2(Ω)n, whereas
G is continuous on H1,2

0 (Ω). The corresponding weighted norms of the functionals
are defined by

||F ||(−n) = sup
v∈L2(Ω)n

|F (v)|
||v||(n)

,

||G||(−1,−n) = sup
q∈H1,2

0 (Ω)

|G(q)|
||q||(1,n)

.

In the following, we assume that the system (4.1), (4.2) for ω = 0 satisfies the as-
sumptions of the first section.

In order to simplify the presentation we assume that l = m− 1 and m ≥ 2. The
proof for the case l = m = 1 is given in [23]. The latter case does not really differ
in this section, but the treatment of the nonlinearities in the next section requires a
special technique already described in [15], [12].

In the following we use the weighted norm technique introduced in [19]. It allows
an easy treatment of the nonlinearities, but the results are not as sharp as those
obtained from the methods using regularized Green’s functions (see, e.g., [14]).

We start with a technical estimate which is used only in the proof of Lemma 4.2.
Lemma 4.1. For u ∈ Hm,∞(Ω)n, uh ∈ Xh, and ϕh = Ih(M(u− uh)σ−n) with a

smooth matrix M we have

||M(u− uh)σ−n − ϕh||(n) ≤ chρ−1||u− uh||(−n) + chm||∇mu||(−n).(4.5)

Proof. We use the interpolation estimate for Ih in (3.9):

||M(u− uh)σ−n − ϕh||(n) ≤ chm||∇m(M(u− uh)σ−n)||(n).(4.6)

Recall that the weighted norm is defined for piecewise smooth functions. In view of
the fact that uh |Λ∈ Pm−1 we have

||∇m(u− uh)||(−n) = ||∇mu||(−n),

and hence, by Leibniz’ rule and (3.6),

||∇m(M(u− uh)σ−n)||(n) ≤ c

m−1∑
i=0

||u− uh||(i,−n−2m+2i) + c||∇mu||(−n).

Using (3.9) and (3.12), we immediately obtain

||∇k(u − uh)||(α) ≤ ||∇k(u− uh − Ih(u− uh))||(α) + ||∇kIh(u− uh)||(α)

≤ chm−k||∇mu||(α) + ch−k||Ih(u− uh) − (u− uh)||(α) + ch−k||u− uh||(α)

≤ ch−k||u− uh||(α) + chm−k||∇mu||(α).

From this estimate we have

||∇m(M(u− uh)σ−n||(n) ≤ c

m−1∑
i=0

h−i||u− uh||(−n−2m+2i)

+ c

m−1∑
i=0

hm−i||∇mu||(−n−2m+2i) + c||∇mu||(−n).
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Now we use the estimates

||v||(−n−2β) ≤ cρ−β ||v||(−n)

and ρ−1 ≤ h−1,

||∇m(M(u− uh)σ−n||(n) ≤ ch−m+1ρ−1||u− uh||(−n) + c||∇mu||(−n).

This estimate and (4.6) complete the proof of the lemma.
Lemma 4.2. For pairs (u, p) and (uh, ph) ∈ Xh × Yh satisfying (4.3), (4.4) we

have the error estimates

||u− uh||2(−n) + ||p− ph||2(1,−n) ≤ c||p− ph||2(−n−2) + c{||F ||2(−n) + ||G||2(−1,−n)}(4.7)

+ ch2m−ε
{
||u||2m,∞ + ||p||2m+1,∞

}
for all ε > 0 with a constant c = c(ε).

Proof. The proof follows the lines of the proof of Theorem 1.1. Lemma 4.2 can
be regarded as the energy estimate of the error in a weighted norm. The terms on
the right-hand side of (4.7) are denoted by

R = ||p− ph||2(−n−2) + ||F ||2(−n) + ||G||2(−1,−n) + h2m−ε{||u||2m,∞ + ||p||2m+1,∞}.

In view of the fact that the system is elliptic, we can apply condition (2.7) in Lemma 2.1,
and we obtain with a smooth matrix M

m1||u− uh||2(−n) ≤ (u− uh,M(u− uh)σ−n)(4.8)

= (u− uh,M(u− uh)σ−n − ϕh) + F (ϕh)

− b(p− ph, ϕh −M(u− uh)σ−n)

− b(p− ph,M(u− uh)σ−n)

= (i) + (ii) + (iii) + (iv).

Here we have used (4.3) with ϕh = Ih(M(u− uh)σ−n).
The first term in (4.8) is estimated by Cauchy’s inequality,

(i) ≤ ||u− uh||(−n)||M(u− uh)σ−n − ϕh||(n).

From Lemma 4.1 and Young’s inequality ab ≤ ε
2a

2 + 1
2εb

2 we conclude

(i) ≤
(
chρ−1 +

m1

16

)
||u− uh||2(−n) + ch2m||∇mu||2(−n)

and, by ρ = c∗h and c∗ sufficiently large,

(i) ≤ m1

8
||u− uh||2(−n) + ch2m||∇mu||2(−n).

For the second term, we obtain from the definition of the weighted norm of F

(ii) = F (ϕh) ≤ ||F ||(−n)||ϕh||(n)

≤ ||F ||(−n)

(
||ϕh −M(u− uh)σ−n||(n) + ||M(u− uh)σ−n||(n)

)
.
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Using Lemma 4.1 and

||M(u− uh)σ−n||(n) ≤ c||u− uh||(−n),

we get

(ii) ≤ m1

8
||u− uh||2(−n) + c||F ||2(−n) + ch2m||∇mu||2(−n).

For the third term we conclude similarly from (4.5)

(iii) ≤ ||p− ph||(1,−n)||M(u− uh)σ−n − ϕh||(n)

≤ chρ−1||p− ph||(1,−n)||u− uh||(−n) + chm||p− ph||(1,−n)||∇mu||(−n)

≤ η||p− ph||2(1,−n) +
m1

8
||u− uh||2(−n) + ch2m||∇mu||2(−n),

with an η > 0 which will be determined later sufficiently small.
Collecting the preceding estimates, it follows from (4.8) that

m1

2
||u− uh||2(−n) ≤ η||p− ph||2(1,−n) + cR− b(p− ph,M(u− uh)σ−n).(4.9)

In order to estimate the last term on the right-hand side we use condition (2.8) in
Lemma 2.1 in the form

|b(q,Mv) − c(v, q)| ≤ c||v||(α)||q||(−α),

which can be proved in the same way as (2.8). Now

−b(p−ph,M(u− uh)σ−n)

= −b(p− ph,M(u− uh)σ−n) + c((u− uh)σ−n, p− ph) − c((u− uh)σ−n, p− ph)

≤ c||(u− uh)σ−n||(n)||p− ph||(−n) − c((u− uh)σ−n, p− ph).

Thus we have proved that

−b(p− ph,M(u− uh)σ−n) ≤ m1

8
||u− uh||2(−n) + c||p− ph||2(−n) + A,(4.10)

where A = −c((u − uh)σ−n, p − ph). Since we want to apply the error relation (4.4)
to A, we have to shift the weight function σ−n to the second argument of c(·, ·),

A =

∫
Ω

n∑
i=1

cαi (u− uh)ασ−n∂i(p− ph) dx−
∫

Ω

cα0 (u− uh)ασ−n(p− ph) dx

≤ −c(u− uh, (p− ph)σ−n) + c

∫
Ω

|u− uh||∇σ−n||p− ph| dx

≤ −c(u− uh, (p− ph)σ−n) +
m1

8
||u− uh||2(−n) + c||p− ph||2(−n−2).

Combining this estimate with (4.10) and using the fact that ||p − ph||2(−n) ≤
c||p− ph||2(−n−2), we obtain

−b((p− ph),M(u− uh)σ−n) ≤ m1

4
||u− uh||2(−n) + c||p− ph||2(−n−2) + B(4.11)
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with

B = −c(u− uh, (p− ph)σ−n),

and hence, by (4.9), (4.11),

m1

4
||u− uh||2(−n) ≤ η||p− ph||2(1,−n) + cR + B.(4.12)

Term B is estimated by (4.4):

B = −c(u− uh, (p− ph)σ−n − ψh) + ω(u− uh, B(ψh − (p− ph)σ−n))(4.13)

+ ωb(p− ph, B(ψh − (p− ph)σ−n)) −G(ψh − (p− ph)σ−n)

+ ω(u− uh, B((p− ph)σ−n)) + ωb(p− ph, B((p− ph)σ−n))

− G((p− ph)σ−n),

where ψh = Ih((p− ph)σ−n). In view of the fact that we gain a factor hρ−1 in terms
containing v − Ihv in contrast to the terms containing v, we restrict ourselves to the
estimation of the last three terms in (4.13), namely

(i) = ω(u− uh, B((p− ph)σ−n)),(4.14)

(ii) = ωb(p− ph, B((p− ph)σ−n)),

(iii) = −G((p− ph)σ−n);

the other terms in (4.13) can be bounded by

m1

16
||u− uh||2(−n) + η||p− ph||2(1,−n) + cR,(4.15)

since the constant ω > 0 is assumed to be fixed.
For the first term in (4.14) we obtain

(i) = −ω

∫
Ω

(u− uh)αbαi ∂i(p− ph)σ−n dx− ω

n∑
i=1

∫
Ω

(u− uh)αbαi (p− ph)∂iσ
−n dx

≤ ω||u− uh||(−n)||B(p− ph)||(−n) +
m1

16
‖u− uh‖2

(−n) + c‖p− ph‖2
(−n−2).

The second term in (4.14) gives us the second term with the “right” sign,

(ii) = −ω

∫
Ω

bαi ∂i(p− ph)bαj ∂j((p− ph)σ−n) dx

≤ −ω||B(p− ph)||2(−n) + c||p− ph||(1,−n)||p− ph||(−n−2)

≤ −ω||B(p− ph)||2(−n) + η||p− ph||2(1,−n) + cR.

The third term in (4.14) is simply bounded by

(iii) ≤ ||G||(−1,−n)||p− ph||(1,−n) ≤ η||p− ph||2(1,−n) + cR.
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These estimates together with (4.12), (4.13), (4.15) give

m1

8
||u − uh||2(−n) + ω||B(p− ph)||2(−n)(4.16)

≤ ω||u− uh||(−n)||B(p− ph)||(−n) + 3η||p− ph||2(1,−n) + cR.

It is obvious that the term

ω||u− uh||(−n)||B(p− ph)||(−n)

cannot be put into the left-hand side of (4.16) for all ω > 0. Since we will prove the
lemma for all ω > 0, we will estimate ||u − uh||(−n) by ||B(p − ph)||(−n). Similar
to the method described at the beginning of the proof, we use (4.3) with ϕh =
Ih((u− uh)σ−n),

||u− uh||2(−n) = (u− uh, (u− uh)σ−n − ϕh) + b(p− ph, (u− uh)σ−n − ϕh)

+ F (ϕh) − b(p− ph, (u− uh)σ−n).

Using Lemma 4.1 with M = E, the first three terms of the right-hand side can be
bounded by

ε1||u− uh||2(−n) + ε1||B(p− ph)||2(−n) + cR

with arbitrarily small ε1 > 0, and for the last term we have trivially

−b(p− ph, (u− uh)σ−n) ≤ ||B(p− ph)||(−n)||u− uh||(−n),

and hence

||u− uh||2(−n) ≤ (1 + ε)||B(p− ph)||2(−n) + cR(4.17)

with c = c(ε) and ε can be chosen arbitrary small. We obtain from (4.16) and (4.17)
for all ω > 0

||u− uh||2(−n) + ||B(p− ph)||2(−n) ≤ cη||p− ph||2(1,−n) + cR.

The lemma follows by applying the analogue of (2.9) in Lemma 2.1 and choosing η
sufficiently small.

Lemma 4.3. For pairs (u, p) and (uh, ph) ∈ Xh × Yh satisfying (4.3), (4.4) we
have the error estimates

||p− ph||(−n) ≤ cρ−κh{||u− uh||(−n) + ||p− ph||(1,−n)}(4.18)

+ cρ−κ{||F ||(−n) + ||G||(−1,−n)}

with an arbitrarily small κ > 0 and a constant c = c(κ).
Proof. Let (v, q) ∈ L2(Ω)n ×H1,2

0 (Ω) be the solution of the adjoint problem

(ϕ, v) + c(ϕ, q) + ω(ϕ,Bq) = 0 ∀ϕ ∈ L2(Ω)n,

b(ψ, v) + ωb(ψ,Bq) = ((p− ph)σ−n, ψ) ∀ψ ∈ H1,2
0 (Ω).
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Inserting ϕ = u− uh, ψ = p− ph and using the error relations (4.3), (4.4) gives

||p− ph||2(−n) = (u− uh, v −Rhv) + c(u− uh, q −Rhq)(4.19)

+ ω(u− uh, B(q −Rhq)) + b(p− ph, v −Rhv)

+ ωb(p− ph, B(q −Rhq)) + F (Rhv) + G(Rhq).

The bilinear forms are estimated by Cauchy’s inequality and (3.10); for example,

(u− uh, v −Rhv) ≤ ||u− uh||(−n)||v −Rhv||(n)

≤ ch||u− uh||(−n)||v||(1,n),

ωb(p− ph, B(q −Rhq)) ≤ c||p− ph||(1,−n)||q −Rhq||(1,n)

≤ ch||p− ph||(1,−n)||q||(2,n).

The functionals are simply bounded by their norms and (3.11):

F (Rhv) + G(Rhq) ≤ ||F ||(−n)||Rhv||(n) + ||G||(−1,−n)||Rhq||(1,n)

≤ c||F ||(−n)||v||(1,n) + c||G||(−1,−n)||q||(2,n).

Inserting these estimates into (4.19) gives

||p− ph||2(−n) ≤ c(h||u− uh||(−n) + h||p− ph||(1,−n) + ||F ||(−n) + ||G||(−1,−n))

×(||v||(1,n) + ||q||(2,n)).

The lemma follows by applying Lemma 3.2,

||v||(1,n) + ||q||(2,n) ≤ cρ−κ||(p− ph)σ−n||(n) = cρ−κ||p− ph||(−n).

Lemma 4.4. There exists an h0 > 0 such that for all h ≤ h0 all solutions
(uh, ph) ∈ Xh × Yh of (4.3), (4.4) satisfy the error estimates

h||u− uh||∞ + h||p− ph||1,∞ + ||p− ph||∞ ≤ chm+1−ε(||u||m,∞ + ||p||m+1,∞)

+ ch−ε{||F ||(−n) + ||G||(−1,−n)}

for all ε > 0 with constants c = c(ε).
Proof. We add ρ−2||p − ph||2(−n) to both sides of (4.7) in Lemma 4.2, use the

estimate

||p− ph||2(−n−2) ≤ ρ−2||p− ph||2(−n)

on the right-hand side of (4.7), and insert the estimate (4.18) into the resulting esti-
mate,

||u− uh||2(−n) + ||p− ph||2(−1,−n) + ρ−2||p− ph||2(−n)(4.20)

≤ cρ−2−2κh2{||u− uh||2(−n) + ||p− ph||2(1,−n)}

+ cρ−2−2κ{||F ||2(−n) + ||G||2(−1,−n)}

+ ch2m−ε{||u||2m,∞ + ||p||2m+1,∞},
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where κ and ε can be chosen arbitrarily small. For small κ we choose ρ = c∗h = h1−2κ

such that

cρ−2−2κh2 = ch(1−2κ)(−2−2κ)h2 ≤ 1

2

for h ≤ h0. By this procedure, the first term on the right-hand side of (4.20) can be
put into the left-hand side. We determine

max(||u− uh||∞, ||p− ph||1,∞, ρ−1||p− ph||∞)

and choose x0 such that Lemma 3.1 can be applied to the corresponding term. In
view of the fact that κ can be chosen arbitrarily small, the lemma is proved.

5. Proof of Theorem 1.2. We return to the definition of the discrete solution
in (1.7), (1.8). Subtracting this system from the corresponding continuous system
yields

(u− uh, ϕh) = (b(·, p,∇p) − b(·, ph,∇ph), ϕh) ∀ϕh ∈ Xh,(5.1)

−
n∑

i=1

(ci(·, p, u) − ci(·, ph, uh), ∂iψh) + (c0(·, p, u) − c0(·, ph, uh), ψh)(5.2)

+ ω(u− uh − b(·, p,∇p) + b(·, ph,∇ph), B(ph)ψh)

= (g(·, p,∇p) − g(·, ph,∇ph), ψh) ∀ψh ∈ Yh.

Setting

b̄αi =

∫ 1

0

bαi (x, tp + (1 − t)ph, t∇p + (1 − t)∇ph) dt,

we have

(b(·, p,∇p) − b(·, ph,∇ph), ϕh) = (b̄αi ∂i(p− ph), ϕα
h)

= −b(p− ph, ϕh) + F (ph;ϕh),

where

b(q, v) = −
∫

Ω

bαi ∂iq v dx

and

F (ph;ϕh) = ((b̄αi − bαi )∂i(p− ph), ϕh)

satisfies

|F (ph;ϕh)| ≤ c

∫
Ω

(|p− ph|2 + |∇(p− ph)|2)|ϕh| dx.(5.3)

Thus we have shown that (5.1) is of the form

(u− uh, ϕh) + b(p− ph, ϕh) = F (ph;ϕh) ∀ϕh ∈ Xh,(5.4)
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which is exactly (4.3). The first two terms in (5.2) are treated by the same method

−
n∑

i=1

(ci(·, p, u) − ci(·, ph, uh), ∂iψh) + (c0(·, p, u) − c0(·, ph, uh), ψh)

= c(u− uh, ψh) + d1(p− ph, ψh) −G1(uh, ph;ψh),

where G1 satisfies

|G1(u, p;ψh)| ≤ c

∫
Ω

(|p− ph| + |u− uh|)2(|ψh| + |∇ψh|) dx.(5.5)

For the right-hand side we obtain similarly

(g(·, p,∇p) − g(·, ph,∇ph), ψh) = −d2(p− ph, ψh) + G2(ph;ψh)

with

|G2(ph;ψh)| ≤ c

∫
Ω

(|p− ph| + |∇p−∇ph|)2|ψh| dx.(5.6)

For the remaining term in (5.2) we obtain

ω(u− uh − b(·, p,∇p) + b(·, ph,∇ph), B(ph)ψh)

= ω(u− uh − b(·, p,∇p) + b(·, ph,∇ph), (B(ph) −B(p))ψh)

+ ω(u− uh − b(·, p,∇p) + b(·, ph,∇ph), B(p)ψh)

= −G3(uh, ph;ψh) + ω(u− uh, B(p)ψh)

+ ωb(p− ph, B(p)ψh) −G4(uh, ph;ψh)

with G3, G4 satisfying

|G3(uh, ph;ψh)| + |G4(uh, ph;ψh)|(5.7)

≤ c

∫
Ω

(|u− uh|2 + |p− ph|2 + |∇p−∇ph|2)(|ψh| + |∇ψh|) dx.

Now (5.1), (5.2) are exactly of the form (4.3), (4.4) with G = G1 + G2 + G3 + G4,
d = d1 + d2. From (5.3), (5.5), (5.6), (5.7), it follows with the aid of Cauchy’s
inequality that

||F (uh; ·)||(−n) ≤
(∫

Ω

(|p− ph|2 + |∇(p− ph)|2)2σ−n dx

)1/2

(5.8)

≤ c| lnh|1/2||p− ph||21,∞,

||G(uh, ph; ·)||(−1,−n) ≤ c| lnh|1/2(||u− uh||2∞ + ||p− ph||21,∞).(5.9)
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Define the set

KR = {(vh, qh) ∈ Xh × Yh : ||u− vh||∞ + ||p− qh||1,∞ ≤ R}

and the operator T : KR → Xh × Yh, T (vh, qh) = (uh, ph) by

(u− uh, ϕh) + b(p− ph, ϕh) = F (vh;ϕh) ∀ϕh ∈ Xh,(5.10)

c(u− uh, ψh) + ω(u− uh, Bψh) + ωb(p− ph, Bψh)(5.11)

= G(vh, qh;ψh) ∀ψh ∈ Yh,

where B = B(p). In order to demonstrate that T is well defined let h ≤ h0 such
that Lemma 4.4 can be applied. Set F = 0, G = 0, u = 0, p = 0. Then it follows
from Lemma 4.4 that uh = 0 and ph = 0. This proves that (5.10), (5.11) is a regular
system for h sufficiently small.

By Lemma 4.4, (uh, ph) satisfies

||u− uh||∞ + ||p− ph||1,∞ ≤ c(u, p)hm−ε

+ ch−1−ε
{
||F (vh; ·)||(−n) + ||G(vh, qh; ·)||(−1,−n)

}

≤ c(u, p)hm−ε + ch−1−2εR2,

where we have used (5.8), (5.9) and that (vh, qh) ∈ KR. Choosing R = 2c(u, p)hm−ε

and recalling m ≥ 2, the last estimate demonstrates that T : KR → KR for sufficiently
small h. By Brouwer’s fixed point theorem, T has a fixed point, which is a solution
of (1.7), (1.8). The better estimate for ||p− ph||∞ follows from Lemma 4.4.
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Abstract. We present the first part of a theory of monotone implicit methods for scalar con-
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1. Introduction. The aim of this paper is to describe the first part of a con-
structive approach to the entropy solution of hyperbolic conservation laws in the sense
of Kružkov for the most general case possible in 1-D, i.e., essentially for merely con-
tinuous flux functions. Finally, we seek to develop a theory of implicit finite difference
methods which is centered around a rigorously verified implicit monotonicity notion.

The validation of the monotonicity property is not trivial in the implicit case.
We restrict our attention in this note on the upwind method, i.e., on continuous
nonstrictly growing monotone fluxes. The extension to the mentioned more general
case is the subject of a forthcoming paper. In contrast to fundamental works within
this field; see, e.g., [4, 3, 16, 13], we do not rely on the Lipschitz continuity of the flux,
nor on the boundedness of the solution in space, nor on boundedness with respect
to the total variation of the solution. In the nonconstructive sense, the existence
and uniqueness results of corresponding solutions are documented within a number
of papers of Kružkov and his co-workers; see [1, 11, 12] and the references therein.
Related to the subject of the present work are also problems with discontinuous fluxes;
see, e.g., [6] for a useful presentation.

In order to point out the difficulties encountered when approaching the described
task, let us briefly discuss the consequences of our basic assumptions.

If the flux function of a nonlinear conservation law is not Lipschitz continuous,
it may happen that information is propagated with infinite speed. This is, e.g., the
case in the example given by Kružkov and Panov in [12], which is concerned with the
equation

∂

∂t
u(x, t) +

∂

∂x

(
|u(x, t)|α

α

)
= 0, α ∈ (0, 1), t > 0, x ∈ R.(1.1)
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Given the initial condition

u0(x) =

⎧⎨
⎩

0 : x < −1,
1 : −1 ≤ x ≤ 0,
0 : x > 0,

(1.2)

the exact solution defined over a time interval depending on the exact choice of α
reads

u(x, t) =

⎧⎨
⎩

0 : t > α(x + 1),
1 : x < t ≤ α(x + 1),(

t
x

)1/(1−α)
: t ≤ x.

(1.3)

As can easily be seen, this solution incorporates a rarefaction wave extending to
infinity after arbitrarily small time. Mathematically, two properties of special interest
are contained within this example: the flux features a pole at u = 0, and the domain
of the solution is infinite even for an initial condition with compact support. The first
property yields that the CFL number would be effectively zero when using an explicit
scheme. Also, the Kuznetsov approach to convergence [13] does not work since it
explicitly uses the Lipschitz continuity of the flux (as well as the boundedness of the
domain of the solution). The second property implies that the main other traditional
approaches to the convergence of numerical methods are also not suitable, as can be
seen as follows. There are essentially two further approaches to be noted: the first one
relies on Helly’s theorem, using the compactness of the space of functions of bounded
variations to extract a converging sequence of numerical solutions as the grid is refined.
This is, e.g., the case in the convergence proofs of TVD methods. As described in
detail by LeVeque [14], this function space is only compact when employing the BV
concept over a fixed compact space-time-domain, thus the compactness property of
this function space is in general not applicable in the discussed case. Note that
also within the paper of Crandall and Majda [4] on explicit monotone methods, the
properties of this function space are used to obtain a compactness argument. The
second approach relies on the concept of measure valued solutions introduced by
DiPerna [5]. Also here, the compactness of the space-time-domain of the solution is
assumed which is, e.g., already noted in [3].

By this discussion, it is evident that we have to employ implicit schemes in a
framework which enables the use of a convergence strategy different from the men-
tioned classical ones. We achieve this by using the monotonicity of an implicit method
as a means of nonlinear stability. It is then verified that the monotonicity property is
enough to guarantee the convergence of such methods to the entropy solution in the
sense of Kružkov.

The need to be sure about the monotonicity property needs to be addressed in
detail within this paper. In fact, within the literature about numerical methods for
conservation laws, the monotonicity of numerical schemes is generally discussed for
explicit schemes; see, e.g., [7, 14] and the references therein. It makes no sense to
cite here numerous more practically oriented papers on implicit methods, where the
numerical flux function of a scheme which is monotone under a CFL condition in the
explicit case is employed in some context, and where an implicit time-stepping proce-
dure is applied for evaluating the fluxes, e.g., to ensure the stability of an algorithm,
or, e.g., to enhance the effectiveness of a method for computing steady state solutions,
etc.. Since the aim of these works is typically a totally different one from ours, it is
also not at all our objective to criticize them. However, an existing mathematically
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rigorous investigation of the monotonicity property of implicit schemes is not known
by the author. Furthermore, with respect to the continuity of the flux, it is necessary
that the validation of an implicit monotonicity criterion does not involve any deriva-
tive of the flux. Consequently, we develop a monotonicity notion which is verified by
comparing data sets using the induction principle.

One further point of interest is the validity of a discrete entropy condition. Since
we are interested in the Kružkov entropy notion, it is adequate to use a discrete
version of the corresponding entropy inequality. We found that the relation between
a monotone method and a discrete entropy inequality used by Crandall and Majda [4]
(which is in turn based on the previous work of Harten, Hyman, and Lax [9]) can also
be used in the implicit case. This is not at all self-evident; it is based on the fact that
even in the original derivation of this relation no technique is used which relies on the
Lipschitz property of the flux. This was also already noted in the original paper [4].
However, the validity of this relation of course has to be verified rigorously since there
are some differences with respect to the explicit case within the techniques in use.
It is mandatory to stress that only the relation between the implicit upwind method
and the discrete entropy condition is derived similarly to the proceeding in [4]. The
remainder of the content of this paper including the convergence proof is technically
completely different than the theory presented in [4].

The proof of convergence can be sketched as follows. Using pointwise comparison
of data sets, the monotone implicit upwind method yields a monotonously growing ap-
proximative sequence of numerical solutions corresponding to a constructed sequence
of monotonously growing discrete initial data. The sequence is L∞-bounded by the
monotonicity of the method for L∞-bounded initial data. Thus, it is possible to use
the theorem of monotone convergence by Beppo Levi to obtain strong convergence a.e.
of the whole sequence to a unique limit over any arbitrarily chosen compact domain.
Since the approximative sequence satisfies a discrete entropy inequality, convergence
to the entropy condition of Kružkov follows by the established strong convergence a.e.
of the sequence. To the knowledge of the author, this principle is not used up to now
in any other work.

According to the discussion above, this paper is organized as follows. At first,
implicit notions are developed which are centered around the monotonicity notion for
the implicit upwind schemes. A minor stability result is established which is needed
within the convergence proof. The upwind method is investigated with respect to its
monotonicity. The proof of convergence to the entropy solution is illustrated. Finally,
we discuss numerical approximations followed by conclusive remarks and acknowl-
edgements.

2. The implicit upwind method. In the following, ul
m denotes the value of

the numerical solution at mΔx and lΔt. The presence of a uniform grid with a
constant mesh ratio λ = Δt/Δx is assumed, but this is only for a more transparent
notation and is not essential.

In order to avoid some inconveniences within the notation, implicit 3-point-
methods of the form

un+1
0 = H̃(un+1

−1 , un+1
0 , un+1

1 ;un
0 )

are sometimes addressed which includes both possible upwind schemes

un+1
j = un

j − λ
[
f(un+1

j ) − f(un+1
j−1 )

]
(2.1)
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and

un+1
j = un

j − λ
[
f(un+1

j ) − f(un+1
j+1 )

]
.

However, in this paper we only discuss in detail the upwind scheme (2.1). All state-
ments given within the paper can easily be adapted in an identical fashion to the
other possible implicit upwind scheme.

Since we restrict our attention in the following to (2.1), it is convenient to use as
the abbreviated form of the method

un+1
0 = H(un+1

−1 , un+1
0 ;un

0 ).(2.2)

2.1. Implicit notions. For the completeness of the presentation, we give the
definitions of the conservation form, the numerical flux function, and consistency.
These notions are completely analogous to the corresponding ones for explicit schemes.

Definition 2.1 (conservation form, numerical flux function). A 3-point numeri-
cal scheme is in conservation form if a continuous numerical flux function g : R2 → R
exists, so that the method reads

H̃(un+1
−1 , un+1

0 , un+1
1 ;un

0 ) = un
0 − λ

[
g(un+1

0 , un+1
1 ) − g(un+1

−1 , un+1
0 )

]
.

Definition 2.2 (consistency). A 3-point numerical method described by g is
consistent if g(v, v) = f(v) holds for all v ∈ R.
Obviously, the implicit upwind scheme (2.1) is a consistent and conservative scheme
with

g ≡ g(u, v) ≡ g(u) = f(u).(2.3)

The key to nonlinear stability is the notion of monotonicity.
Definition 2.3 (monotonicity). Let two data sequences vn and wn be given.

Let the upwind scheme (2.1) produce new sequences of data vn+1 and wn+1 out of the
given data vn and wn, respectively. Then the method is monotone iff the implication

vn ≥ wn ⇒ vn+1 ≥ wn+1(2.4)

holds in the sense of the comparison of components.
Note that Definition 2.3 captures the essence of the notion of monotonicity and is free
of derivatives of H.

In the following, we use the abbreviations wn+1
j−1 =: a, wn+1

j =: b and wn
j =: d

when appropriate to simplify the notation.
Theorem 2.1 (monotonicity of the upwind scheme). The upwind method (2.1)

is monotone if the following conditions hold:

H(a + Δa, b; d) ≥ H(a, b, c; d),(2.5)

H(a, b; d + Δd) ≥ H(a, b; d),(2.6)

with Δa,Δd ≥ 0, respectively. Thereby, the condition (2.5) has the meaning that the
scheme (2.1) is monotone if the flux is a nonstrictly growing monotonous function.
Before we proceed with the proof, let us give an insight into the meaning of the
properties of the mapping H which follow from (2.5) and (2.6).

In the case of explicit 3-point schemes, the monotonicity of a scheme is verified
by computing the derivatives of the function k of the method,

un+1
j = k(un

j−1, u
n
j , u

n
j+1).
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The monotonicity condition is then

∂

∂ai
k(a1, a2, a3) ≥ 0 ∀ i ∈ {1, 2, 3}.

Note that this means not to investigate concrete changes in un+1 due to changes in
a given data set un. Rather than that, the effects of changes in un are studied this
way, answering the question: If we change the given data set un in a positive way, is
the effect a nonnegative change in un+1 or not?

Since we deal with continuous fluxes in this paper, we cannot generally compute
a derivative. However, if we fix, for instance, our attention on the first monotonicity
requirement (2.5)

H(a + Δa, b; d) ≥ H(a, b; d)

for Δa > 0, then we may subtract the right-hand side from this inequality and divide
by Δa to obtain the condition

H(a + Δa, b; d) −H(a, b; d)

Δa
≥ 0

which takes the form of a discretized derivative. We observe the connection between
the explicit and the implicit monotonicity notion.

Proof of Theorem 2.1. Let us first verify the validity of the conditions (2.5) and
(2.6) before we proceed further.
To condition (2.5),

H(a + Δa, b; d) −H(a, b; d)

=
[
d− λ

[
f(b) − f(a + Δa)

]]
−
[
d− λ

[
f(b) − f(a)

]]
= λ [f(a + Δa) − f(a)] .

The condition (2.5) is only valid if f grows monotonously.
To condition (2.6),

H(a, b, c; d + Δd) −H(a, b, c; d)

=
[
d + Δd− λ

[
f(b) − f(a)

]]
−
[
d− λ

[
f(b) − f(a)

]]
= Δd (≥ 0) .

The latter condition seems to be redundant by the general form of the discussed
methods. However, the condition (2.6) fixes the necessary coupling mechanism needed
to obtain a comparison principle as given in Definition 2.3. Note that f does not need
to be Lipschitz continuous in order to fulfill the stated monotonicity conditions. Let
us now prepare the main part of the proof and let us note that (2.1) is defined for the
indices j > J and n ≥ 0, whereby un+1

J must be given for some index J .
In the notation used before, the scheme (2.1) reads

b = d− λ (f(b) − f(a)) ,

or, equivalently,

b + λf(b) = d + λf(a).
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Let us define the function

F(b) := b + λf(b).

For δb > 0 we have

F(b + δb) −F(b)

=
[
b + δb + λf(b + δb)

]
−
[
b + λf(b)

]
= δb︸︷︷︸

>0

+λ (f(b + δb) − f(b))︸ ︷︷ ︸
≥0

since f is a nonstrictly growing monotone function. Thus, F is a strictly growing
monotone function so that there exists a strictly increasing inverse function F−1.
Now, let two sequences vn, wn be given with vn 	→ vn+1 and wn 	→ wn+1 by ap-
plication of the considered scheme. Furthermore, let (vn = wn) ⇒

(
vn+1 = wn+1

)
hold. According to the assertion of the theorem, we seek to establish the comparison
principle vn+1 ≥ wn+1 for any two given sequences vn ≥ wn by using the properties
(2.5) and (2.6) of the mapping H. The idea of the proof worked out in the following
is to assume inductively a ≥ a′ and d ≥ d′ resulting in

b = F−1 [d + λf (a)] ≥ F−1 [d′ + λf (a′)] = b′,(2.7)

which is nothing but the pointwise realization of the sought monotone comparison
principle.

Let I be the set of indices k with vnk > wn
k , vnk ∈ vn, wn

k ∈ wn. There are only a
few possibilities for the composition of the set I: It may consist of the empty set or
a finite or infinite subset of Z. The proof of the assertion of the theorem follows by
diversion of cases and induction by the number of indices in I. The aim is to show in
each step of the induction the validity of the defined comparison principle.

Note that we neglect the choice of the value un+1
J which must be given within an

algorithm. For our purpose, the index J can be considered as the minimum index in
the index set I if I is not empty.
Case: I = I0 = ∅. The validity of the assertion is trivial for I0 = ∅ since vn is equal
to wn in that case.
Case: I �= ∅. As already indicated, the proof is done by induction.
Beginning of the induction (induction level 1): �I1 = 1 (i.e., I = I1).
Let k =: J be the index in the arbitrarily chosen but fixed index set I1. By definition,
this is equivalent to

vnJ > wn
J and vni = wn

i ∀ i > J .

The indices i′ with i′ < J are not important since we discuss nonstrictly growing
monotone fluxes, i.e., any signal will be transported from left to right and

vn+1
i′ = vni′ ≡ wn

i′ ∀ i′ < J

will hold for all considered time level indices n, n + 1. We prove the comparison
principle sought here by induction over the indices ĩ ≥ J .

Beginning of the induction (induction level 2): ĩ = J .
By the properties of F worked out above, we have

vn+1
J = F−1

[
vnJ + λf

(
vn+1
J−1

)]
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≥ F−1
[
wn

J + λf
(
vn+1
J−1

)]
= F−1

[
wn

J + λf
(
wn+1

J−1

)]
= wn+1

J .

Assumption of the induction (induction level 2): For all indices ĩ ≥ J but ĩ ≤ ī it
holds vn+1

ĩ
≥ wn+1

ĩ
.

Induction step (induction level 2): ī 	→ ī + 1.
Let us consider the situation at the index ī + 1. As before, we employ the properties
of G to obtain

vn+1
ī+1

= F−1
[
vnī+1 + λf

(
vn+1
ī

)]
= F−1

[
wn

ī+1 + λf
(
vn+1
ī

)]
≥ F−1

[
wn

ī+1 + λf
(
wn+1

ī

)]
= wn+1

ī+1
.

This proves the assertion of the beginning of the induction over I.
Assumption (induction level 1):
Consider �Im = m with m > 1, m ∈ N (i.e., I = Im). Let the upwind scheme under
consideration be monotone with respect to the proceeding for all subsets of Im, i.e.,
it holds vn+1 ≥ wn+1 for perturbations vni > wn

i , i ∈ Ĩ, for any arbitrarily chosen but
fixed subset Ĩ of Im.
Induction step (induction level 1): m 	→ m + 1.
Now, �Im+1 = m + 1 is considered. For the following proceeding, it is useful to have
in mind that the construction of the induction step has to be well defined, i.e., the
proceeding does not rely on any specific choice of indices.

We first choose (in a well-defined fashion) two indices m1, m2 useful for the
procedure.

Let Im ⊂ Im+1 hold without limitation of generality. Let m1 be an arbitrary but
fixed index with

m1 ∈ [Im ⊂ Im+1] .

Moreover, let m2 be the index by which

m2 ∈ [Im+1 \ Im]

holds. In other words, m1 is an index in both Im and Im+1, while m2 corresponds
exactly to the difference between the given index set Im and the new index set Im+1.

By the assumption of the induction, the implicit upwind scheme is monotone with
respect to positive changes in values corresponding to the index set Im. This means
in particular that a positive change in vnm1

together with positive changes in other
values vnk , k ∈ Im \ {m1}, leads to nonnegative changes in the sequence vn+1.

In order to undertake the induction step, we have to consider now the effect of
the additional nonnegative perturbation in the index m2.

Thus, simultaneous positive changes in vnm1
and vnm2

are considered while in the
background there are arbitrary but fixed positive changes in the values corresponding
to

Īm := Im+1 \ {m1,m2} ⊂ Im
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due to the assumption of the induction.
Let us briefly consider the effects of the latter positive perturbations in the values

corresponding to Īm. We recall that by the assumption of the induction, the applica-
tion of the upwind scheme has the effect that the comparison principle vn+1 ≥ wn+1

holds for positive changes in vnk , k ∈ Īm. Let us fix these influences by denoting the
data computed by positive perturbations in vnk , k ∈ Īm, by v̄n+1. Having defined
this notion, we know that v̄n+1 ≥ wn+1 holds by the assumption of the induction
step because of Īm ⊂ Im. Furthermore, we have achieved that v̄n+1 denotes the state
before taking into account further changes caused by nonnegative perturbations in
vnm1

and vnm2
.

We now focus our attention especially on the indices m1 and m2 defined above.
Let Δ1

j be a change in v̄n+1
j induced by a positive change in vnm1

. Then Δ1
j is always

nonnegative by the assumption of the induction since m1 ∈ Im. Analogously, let Δ2
j

be a change in v̄n+1
j induced by a positive change in vnm2

. The change Δ2
j is also

nonnegative because of the assumed validity of condition (2.6) and application of the
procedure within the level two induction.

Thus, the single effects of separately considered nonnegative perturbations at
m1 and m2 are nonnegative. Now, for the mutual effects of such changes in data
corresponding to an arbitrary but fixed index i, i /∈ {m1,m2}, there are only two
possibilities because of m1 �= m2:

1. m1 > m2:
We set J := m2. The procedure within the level two induction especially
reveals vn+1

m1−1 ≥ wn+1
m1−1, thus we obtain the estimate vn+1

m1
≥ wn+1

m1
in the

same fashion as in (2.7). Then the assertion follows by the same type of
induction as in the level two induction over I.

2. m2 > m1:
We set J := m1. The assertion follows analogously to the case m1 > m2.

Thus, the mutual effects cannot result in a different situation as investigated up to
now. Note the arbitrary choice of m1 and m2 together with simultaneous changes in
the data corresponding to the index set Īm. Since there are no limitations concerning
the choice of the index set Im, the proceeding as a whole is well defined and so the
proof is finished.

By the monotonicity of the implicit upwind method, one can easily derive the
following stability statement. This is not the nonlinear stability we seek, but it is
needed as a technical assertion in the convergence proof.

Theorem 2.2 (L∞-stability). Let the flux f be a nonstrictly growing monotone
function. Then the numerical solution obtained by the implicit upwind scheme (2.1)
satisfies

||un||L∞
≤ ||u0||L∞

.

Proof. Let a sequence un ∈ L∞ be given. With ak := infj∈Z(uk
j ) and bk :=

supj∈Z(uk
j ) we define sequences an, an+1 and bn, bn+1 by akj := ak and bkj := bk for all

j ∈ Z. Since the method is conservative,

an+1 = un
j − λ {g(an+1, an+1) − g(an+1, an+1)} ≥ an(2.8)

and bn+1 = un
j − λ {g(bn+1, bn+1) − g(bn+1, bn+1)} ≤ bn(2.9)

holds for the sequences an+1 and bn+1, respectively. Consequently, by the monotonic-
ity of the method established in Theorem 2.1 follows (bn ≥ un) ⇒

(
bn+1 ≥ un+1

)
and
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(un ≥ an) ⇒
(
un+1 ≥ an+1

)
which implies the L∞-stability of the method by (2.8)

and (2.9).
Note that the proof given above is valid for general monotone 3-point schemes.
Concerning convergence of the scheme (2.1) to the entropy solution, the following

definition is useful.
Definition 2.4 (entropy consistency). The implicit upwind scheme (2.1) is

consistent with the entropy condition of Kružkov if there exists a continuous numerical
entropy flux G which satisfies for all l ∈ R the following assertions:

1. Consistency with the entropy flux of Kružkov

G(v; l) = sgn(v − l) [f(v) − f(l)] ∀v.(2.10)

2. Validity of a discrete entropy inequality

U(un+1
j ; l) − U(un

j ; l)

Δt
≤ −

G(un+1
j ; l) −G(un+1

j−1 ; l)

Δx
,(2.11)

where U(v; l) = |v − l| is chosen due to Kružkov.
For the sake of brevity, let

a ∨ b := max(a, b) and a ∧ b := min(a, b)(2.12)

hold. The important connection between the numerical entropy flux G and the nu-
merical flux function g of the scheme (2.1) can now be established.

Lemma 2.1. Consider the implicit upwind scheme (2.1) and nonstrictly growing
monotone fluxes. Then the numerical entropy flux defined by

G(v; l) := g(v ∨ l) − g(v ∧ l)(2.13)

is consistent with the entropy flux of Kružkov.
Proof. By use of g as in (2.3) we immediately obtain

G(v; l) = f(v ∨ l) − f(v ∧ l) = sgn(v − l)[f(v) − f(l)]

by use of (2.12) for all l ∈ R.
Now follow one of the main assertions described in this paper. The proceeding

within the proof is a variation of a procedure employed by Crandall and Majda [4].
Theorem 2.3. Consider the implicit upwind scheme (2.1) which is consis-

tent, conservative, and monotone for nonstrictly growing monotone fluxes. Then the
scheme is also consistent with the entropy condition of Kružkov.

Proof. By Lemma 2.1 a numerical entropy flux can be associated with the con-
sidered scheme. Thus, the consistency with the entropy flux of Kružkov is given. It
remains to show the validity of a discrete entropy inequality in the sense of (2.11).
Therefore, let l ∈ R be chosen arbitrarily but fixed. Using (2.12), one can derive

−λ
{
G(un+1

j ; l) −G(un+1
j−1 ; l)

}
=

H
(
un+1
j−1 ∨ l, un+1

j ∨ l;un
j ∨ l

)
−H

(
un+1
j−1 ∧ l, un+1

j ∧ l;un
j ∧ l

)
−
∣∣un

j − l
∣∣ .(2.14)

We now show the validity of

H
(
un+1
j−1 ∨ l, un+1

j ∨ l;un
j ∨ l

)
≥ un+1

j ∨ l(2.15)
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and

H(un+1
j−1 ∧ l, un+1

j ∧ l;un
j ∧ l) ≤ un+1

j ∧ l.(2.16)

As we will see, these relations follow straightforwardly by diversion of the cases un+1
j ≥

l and un+1
j < l using the monotonicity conditions (2.5) and (2.6).

For the validation of (2.15) we compute the following cases.
Case un+1

j ≥ l,

H
(
un+1
j−1 ∨ l, un+1

j ∨ l;un
j ∨ l

)
case
= H

(
un+1
j−1 ∨ l, un+1

j ;un
j ∨ l

)
(2.5)

≥ H
(
un+1
j−1 , u

n+1
j ;un

j ∨ l
)

(2.6)

≥ H
(
un+1
j−1 , u

n+1
j ;un

j

)
= un+1

j

case
= un+1

j ∨ l, and

Case un+1
j < l,

H
(
un+1
j−1 ∨ l, un+1

j ∨ l;un
j ∨ l

)
case
= H

(
un+1
j−1 ∨ l, l;un

j ∨ l
)

(2.5)

≥ H
(
l, l;un

j ∨ l
)

(2.6)

≥ H (l, l; l)

= l
case
= un+1

j ∨ l.

Analogously, we compute for the validation of (2.16).
Case un+1

j ≥ l,

H
(
un+1
j−1 ∧ l, un+1

j ∧ l;un
j ∧ l

)
case
= H

(
un+1
j−1 ∧ l, l;un

j ∧ l
)

(2.5)

≤ H
(
l, l;un

j ∧ l
)

(2.6)

≤ H (l, l; l)

= l
case
= un+1

j ∧ l, and

Case un+1
j < l,

H
(
un+1
j−1 ∧ l, un+1

j ∧ l;un
j ∧ l

)
case
= H

(
un+1
j−1 ∧ l, un+1

j ;un
j ∧ l

)
(2.5)

≤ H
(
un+1
j−1 , u

n+1
j ;un

j ∧ l
)
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(2.6)

≤ H
(
un+1
j−1 , u

n+1
j ;un

j

)
= un+1

j

case
= un+1

j ∧ l.

Using |a− b| = a∨ b−a∧ b, one can easily derive from (2.14) via the estimates (2.15)
and (2.16) the desired discrete entropy inequality.

2.2. Convergence. We now give the convergence proof for the method (2.1)
under the usual assumption of nonstrictly growing monotone fluxes.

Since the proof relies on the theorem of monotone convergence of Beppo Levi
which is not common in the conservation laws literature, we first state it for conve-
nience.

Theorem 2.4 (Beppo Levi). Let hk : R → R, k ∈ N, be a sequence of integrable
functions with hk ≤ hk+1 (in the sense of pointwise comparison a.e.) for all k ∈ N.
If

lim
k→∞

∫
hk(x) dx =: C < ∞

holds, then the function

h := lim
k→∞

hk

is integrable and it holds

∫
h(x) dx = lim

k→∞

∫
hk(x) dx.

The basic idea behind the convergence proof is the following: corresponding to a
sequence Δxk ↓ 0, we construct a monotonously growing sequence of initial data.
Then, by the monotonicity of the method, we obtain a monotonously growing sequence
of numerical solutions. Since we multiply the initial function u0 with an arbitrarily
chosen but fixed test function with compact support, we only have to consider u0

over a compact domain. Because of the assumption u0 ∈ L∞ and since we have L∞-
stability, the function sequence corresponding to the numerical solutions obtained in
the limit k → ∞ is integrable and bounded from above. Then we can use the theorem
of monotone convergence of Beppo Levi to show convergence (almost everywhere) to
a limit function. More formally, we state the following theorem.

Theorem 2.5 (Convergence of the implicit upwind method). Let u0(x) be in
Lloc
∞ (R). Let the flux function of a given conservation law grow in a nonstrictly

monotone fashion and be at least continuous. Consider a sequence of nested grids in-
dexed by k = 1, 2, . . ., with mesh parameters Δtk,Δxk → 0 as k → ∞, and let uk(x, t)
be the numerical approximation obtained via the implicit upwind scheme. Then uk

converges to the unique entropy solution of the given conservation law as k → ∞.
Proof. For brevity of the notation, we omit the arguments (x, t) when appropriate

in the following within this proof.
The most important technical detail is the special discretization of the initial

condition u0 ∈ Lloc
∞ (R). Therefore, we use nested grids in order to compare data sets

of values; i.e., refined grids always inherit cell borders.
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After a suitable manipulation of u0 on a set of Lebesgue measure zero if necessary,
the initial condition is discretized on cell j by

u0
j := inf

x∈(Δx0(j−1),jΔx0]
u0(x).(2.17)

Corresponding to the initial data we also define a piecewise constant function

uk(x, 0) := u0
j for (j − 1)Δxk < x ≤ jΔxk.(2.18)

It is a simple matter of classical analysis not described in this paper to verify that the
discretization (2.17) together with (2.18) gives on any compact interval on the x-axis
a monotonously growing function sequence with

lim
k→∞

uk(x, 0) = u0(x) almost everywhere(2.19)

by application of the theorem of monotone convergence.
Similarly, we extract discrete test elements φ0

j out of a given test function φ ∈
C∞

0 (R × R+), where φ ≥ 0 holds in a pointwise sense, by setting

φ0
j := φ(xj , 0) and

φk(x, 0) = φ0
j for xj − Δxk < x ≤ xj .(2.20)

Also, we define for n ≥ 1 the step function

uk(x, t) = un
j for xj − Δxk < x ≤ xj and tn−1 < t ≤ tn.

Analogously, the definition of the function φk(x, 0) can be extended to arguments
t > 0.

Let the test function φ be chosen arbitrarily but fixed. Multiplication of the
discrete entropy condition (2.11) corresponding to the implicit upwind scheme (2.1)
with ΔxkΔtk as well as with the discrete test element φn+1

j , summation over j ∈ Z
and n ≥ 0 and finally summation by parts yields

−Δx
∑
j∈Z

|u0
j − l|φ0

j ≤ ΔxΔt
∑
j∈Z

∑
n≥0

[
|un

j − l|
φn+1
j − φn

j

Δt

+sgn
(
un+1
j − l

) [
f(un+1

j ) − f(l)
] φn+1

j+1 − φn+1
j

Δx

]
.(2.21)

We now prove convergence of (2.21) towards the weak form of the entropy condition
due to Kružkov,∫ ∞

0

∫ ∞

−∞

[
|u− l|φt + sgn (u− l) [f(u) − f(l)]φx

]
dxdt ≥ −

∫ ∞

−∞
|u0 − l|φ0 dx.(2.22)

Therefore, we have to consider an arbitrarily chosen but fixed test element which
consists of a 2-tupel (φ, l) composed of a test function φ with φ ≥ 0, φ ∈ C∞

0 (R×R+),
and a test number l ∈ R.

By (2.18) and (2.20) as well as by the developed notions, the inequality (2.21) is
equivalent to

−
∫ ∞

−∞
|uk(x, 0) − l|φk(x, 0) dx ≤

∫ ∞

0

∫ ∞

−∞

[
|uk(x, t) − l|φ′

t

+sgn (uk(x, t + Δtk) − l) [f(uk(x, t + Δtk)) − f(l)]φ′
x

]
dxdt(2.23)
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with

φ′
t :=

φk(x, t + Δtk) − φk(x, t)

Δtk
(2.24)

and

φ′
x :=

φk(x + Δxk, t + Δtk) − φk(x, t + Δtk)

Δxk
.(2.25)

We first investigate the left-hand side of (2.23). Therefore, let

Kφ := support(φ) ∩ {(x, t) | t = 0} and

K := {x | ∃y ∈ Kφ : y − Δx0 ≤ x ≤ y + Δx0}.

By construction, K is compact and gives the largest possible interval on the x-axis
where nonzero discrete data may occur.

Adding zero, we now cast the problem in a first step into the form∫
K

|uk(x, 0) − l|φk(x, 0) dx

=

∫
K

|uk(x, 0) − l|
[
φk(x, 0) − φ(x, 0) + φ(x, 0)

]
dx

=

∫
K

|uk(x, 0) − l|
[
φk(x, 0) − φ(x, 0)

]
dx

︸ ︷︷ ︸
=:(a)

+

∫
K

|uk(x, 0) − l|φ(x, 0) dx

︸ ︷︷ ︸
=:(b)

.(2.26)

We now discuss the value of (2.26)(a) in the limit k → ∞. Because of u0 ∈ L∞(R)
and since l is chosen arbitrarily but fixed (i.e., l < ∞), we can estimate the term
|uk(x, 0) − l| in (2.26)(a) by the help of a constant Mu,l < ∞ as∣∣∣∣

∫
K

|uk(x, 0) − l|
[
φk(x, 0) − φ(x, 0)

]
dx

∣∣∣∣ ≤ Mu,l

∫
K

|φk(x, 0) − φ(x, 0)| dx.(2.27)

Since φ is a smooth test function, it is a simple but technical exercise of classical
analysis to prove

sup
x∈K

|φk(x, 0) − φ(x, 0)| k→∞−→ 0;

i.e., ||φk(x, 0) − φ(x, 0)||∞ → 0 for k → ∞. Using this, we receive from (2.27)

Mu,l

∫
K

|φk(x, 0) − φ(x, 0)| dx ≤ Mu,l |K| sup
x∈K

|φk(x, 0) − φ(x, 0)| .(2.28)

The estimations (2.27) and (2.28) imply that the Limes for k → ∞ of the investigated
term goes to zero. We now turn to (2.26)(b). It is useful to add zero again in order
to obtain ∫

K

|uk(x, 0) − l|φ(x, 0) dx

=

∫
K

∣∣uk(x, 0) − u(x, 0) + u(x, 0) − l
∣∣φ(x, 0) dx

≤
∫
K

|u(x, 0) − l|φ(x, 0) dx

︸ ︷︷ ︸
=:(b1)

+

∫
K

|uk(x, 0) − u(x, 0)|φ(x, 0) dx

︸ ︷︷ ︸
=:(b2)

.(2.29)
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Our aim is to prove that (2.29)(b2) vanishes in the limit for k → ∞. Since φ is
continuous, we can estimate the absolute of the term (2.29)(b2) with the help of a
constant Mφ < ∞ by

∣∣∣∣
∫
K

|uk(x, 0) − u(x, 0)|φ(x, 0) dx

∣∣∣∣ ≤ Mφ

∫
K

|uk(x, 0) − u0(x)| dx.

By our construction (2.17), (2.18), uk(x, 0) approaches u0(x) from below; i.e.,

Mφ

∫
K

|uk(x, 0) − u0(x)| dx = Mφ

∫
K

u0(x) − uk(x, 0) dx ∀k.

Using the theorem of monotone convergence, i.e., (2.19), implies that∫
K

u0(x) − uk(x, 0) dx

vanishes in the limit for k → ∞. Thus, the term (2.29)(b2) goes to zero for k → ∞.
To condense these results, we get by the described procedure and use of the identity
u(x, 0) ≡ u0(x)

lim
k→∞

∫
R

uk(x, 0)φk(x, 0) dx ≤
∫
R

u0(x)φ(x, 0) dx,

i.e.,

− lim
k→∞

∫
R

uk(x, 0)φk(x, 0) dx ≥ −
∫
R

u0(x)φ(x, 0) dx

which displays the appropriate order with respect to the underlying relation (2.21) and
the sought inequality (2.22). By analogously defining a compact domain S including
the support of φ in space and time and using the attributes of test functions, it remains
to be shown that∫

S

sgn (uk(x, t + Δtk) − l)
[
f(u(x, t)) − f(l)

]
φx(x, t) dxdt

k→∞−→
∫
S

sgn (u(x, t) − l)
[
f(u(x, t)) − f(l)

]
φx(x, t) dxdt(2.30)

as well as ∫
S

∣∣u(x, t) − uk(x, t)
∣∣ |φt(x, t)| dxdt

k→∞−→ 0(2.31)

whereby (2.31) was obtained after adding zeros in a similar fashion as within the
proceeding before.

Let us first discuss the latter expression (2.31). Since φt is continuous on S, we
can estimate |φt| in (2.31) by a constant Mt < ∞.

Since we obtain in the limit k → ∞ a monotonously growing sequence of numerical
approximations in the sense of pointwise comparison and since it is bounded from
above because of u0 ∈ L∞(S) and the monotonicity of the method, the function
sequence (uk(x, t))k∈N converges almost everywhere to an integrable limit function
on S by the theorem of monotone convergence due to Levi. We set

u(x, t) := lim
k→∞

uk(x, t).
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Introducing exactly this limit function as the function u(x, t) used up to now, the
expression on the left-hand side of (2.31) becomes zero in the limit

lim
k→∞

∫
S

∣∣u(x, t) − uk(x, t)
∣∣ |φt(x, t)| dxdt ≤ Mt

∫
S

u(x, t) − lim
k→∞

uk(x, t) dxdt = 0.

Note that the pointwise convergence uk → u almost everywhere is now established
and can be used in the following.

By definition of the symbols “∨” and “∧” from (2.12), it holds that

lim
k→∞

∣∣∣
∫
S

sgn (uk(x, t + Δtk) − l)
[
f(uk(x, t + Δtk)) − f(l)

]
φx(x, t) dxdt

−sgn (u(x, t) − l)
[
f(u(x, t)) − f(l)

]
φx(x, t) dxdt

∣∣∣
≤ lim

k→∞

∫
S

∣∣∣[sgn (uk(x, t + Δtk) − l)
[
f(uk(x, t + Δtk)) − f(l)

]

−sgn (u(x, t) − l)
[
f(u(x, t)) − f(l)

]]
φx(x, t)

∣∣∣ dxdt
= lim

k→∞

∫
S

∣∣∣[[f(uk(x, t + Δtk) ∨ l) − f(uk(x, t + Δtk) ∧ l)
]

−
[
f(u(x, t) ∨ l) − f(u(x, t) ∧ l)

]]
φx(x, t)

∣∣∣ dxdt.(2.32)

By adding zero, we obtain equivalently to (2.32) the expression

lim
k→∞

∫
S

∣∣∣[[f(uk(x, t + Δtk) ∨ l) − f(uk(x, t) ∨ l)
]

−
[
f(uk(x, t + Δtk) ∧ l) − f(uk(x, t) ∧ l)

]
−
[
f(u(x, t) ∨ l) − f(uk(x, t) ∨ l)

]
+
[
f(u(x, t) ∧ l) − f(uk(x, t) ∧ l)

]]
φx(x, t)

∣∣∣ dxdt.(2.33)

The latter expression (2.33) can be estimated from above using |φx(x, t)| < Mx < ∞
by

Mx lim
k→∞

∫
S

∣∣f(uk(x, t + Δtk) ∨ l) − f(uk(x, t) ∨ l)
∣∣ dxdt(2.34)

+Mx lim
k→∞

∫
S

∣∣f(uk(x, t + Δtk) ∧ l) − f(uk(x, t) ∧ l)
∣∣ dxdt(2.35)

+Mx lim
k→∞

∫
S

∣∣f(u(x, t) ∨ l) − f(uk(x, t) ∨ l)
∣∣ dxdt(2.36)

+Mx lim
k→∞

∫
S

∣∣f(u(x, t) ∧ l) − f(uk(x, t) ∧ l)
∣∣ dxdt.(2.37)

Let us discuss now the terms (2.34)–(2.37). The terms denoted via (2.34) and (2.35)
vanish because of the continuity in the mean of the combined function f ◦uk. Because
of Theorem 2.2 it holds that uk ∈ L∞, and since we have chosen an arbitrary but fixed
test number l (< ∞), we can find finite estimates from above for the integrands in
(2.36) and (2.37). Thus, these terms vanish when using the established pointwise con-
vergence uk → u almost everywhere and the theorem of Lebesgue. Thus, convergence
to the entropy solution is shown.
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Fig. 3.1. Numerical solution of the described example due to Kružkov, obtained by the implicit
upwind method.

3. Numerical tests. In order to show the usefulness of the developed notions,
we investigate the truly nonstandard conservation law developed by Kružkov and
Panov [12] we already mentioned in the introduction, i.e., we investigate exactly the
example given by (1.1), (1.2), and (1.3). For the numerical solution we use a grid of
1000 points with Δx = 0.005 and a time step size of Δt = 0.00075. We set α = 0.5
within the flux function described above.

The solution obtained by the use of the implicit upwind scheme is displayed in
Figure 3.1. The ansatz of the rarefaction wave is a bit smeared which can be explained
by the monotonicity property and the employed relatively coarse grid.

4. Conclusive remarks. We have described the fundament of a theory of im-
plicit methods for conservation laws, extending the rigorously verified range of ap-
plicability of numerical methods. The scheme we focused our attention on is the
upwind scheme, the monotonicity property of other implicit methods is the subject
of a forthcoming paper.
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ON THE CONVERGENCE OF A GENERAL CLASS OF FINITE
VOLUME METHODS∗
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Abstract. In this paper we investigate numerical methods for solving hyperbolic conservation
laws based on finite volumes and optimal recovery. These methods can, for example, be applied in
certain ENO schemes. Their approximation properties depend in particular on the reconstruction
from cell averages. Hence, this paper is devoted to prove convergence results for such reconstruction
processes from cell averages.
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1. Introduction. Finite volume methods are well-established tools for solving
hyperbolic conservation laws of the form

∂

∂t
u +

d∑
�=1

∂

∂x�
f�(u) = 0(1.1)

numerically. Here, u : R
d × [0,∞) → R

n is the vector-valued solution containing the
quantity to be conserved while f� : R

n → R
n denote the so-called flux functions.

For discretizing in space, finite volume methods use cell average information. To
be more precise, for a fixed time such cell averages are employed to reconstruct the
unknown function u approximately. For a good reconstruction in regions where the
solution of (1.1) is known or expected to be smooth, a higher order reconstruction
scheme is desirable. Hence, such high order schemes currently form a major research
direction in the theory of finite volumes.

The first higher order reconstruction schemes employed were based on polynomials
and suffered from the typical behavior of multivariate polynomials, such as oscillation
and ill-conditioning.

Sonar and Iske [4] and Sonar [9, 10, 11] proposed to employ optimal recovery based
on conditionally positive definite kernels instead. Sonar’s numerical examples indicate
that these recovery processes indeed lead to higher order schemes. Nonetheless, up
to now there has been no mathematical proof given for this observation. In [11], he
concluded with “[. . .] nearly nothing is known about approximation orders in the case
of recovery from cell average data. [. . .] At the moment, however, we are faced with
the fact that important theoretical results are missing in this area of research.”

It is the goal of this paper to fill this theoretical gap and to show that the recovery
process can lead to arbitrary high orders, provided the target function u is sufficiently
smooth and the correct (conditionally) positive definite kernel is employed.

However, since our analysis is based upon approximation properties of polynomi-
als, our proof will need slightly larger stencils than those proposed by Sonar. On the
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other hand, since the “correct” selection of stencils is still under investigation, our
results might also contribute to this problem.

Moreover, the results we will achieve are not restricted to (conditionally) positive
definite kernels at all. On the contrary, they will work for every interpolatory and
stable reconstruction process. Finally, our results are established for an arbitrary
space dimension.

This paper is organized as follows. In the rest of the section we will introduce some
general notations we will need to state our convergence results. Section 2 is devoted to
a short review on finite volume and ENO (essentially nonoscillatory) schemes. Section
3 describes how such schemes can be derived using optimal recovery. Sections 4 and
5 are the main sections where we provide our error analysis. In section 6 we take
a special look at thin-plate spline approximation, which is one of the most popular
reconstruction methods in this context. For numerical examples we refer the reader
to the previously mentioned papers by Sonar.

We will establish our error estimates using a variety of Sobolev spaces, which we
want to introduce now. Let Ω ⊆ R

d be a domain. For k ∈ N0 and 1 ≤ p < ∞, we
define the Sobolev spaces W k

p (Ω) to consist of all u with distributional derivatives
Dαu ∈ Lp(Ω), |α| ≤ k. Associated with these spaces are the (semi-)norms

|u|Wk
p (Ω) =

⎛
⎝ ∑

|α|=k

‖Dαu‖pLp(Ω)

⎞
⎠

1/p

and ‖u‖Wk
p (Ω) =

⎛
⎝ ∑

|α|≤k

‖Dαu‖pLp(Ω)

⎞
⎠

1/p

.

The case p = ∞ is defined in the following obvious way:

|u|Wk
p (Ω) = sup

|α|=k

‖Dαu‖L∞(Ω) and ‖u‖Wk
∞(Ω) = sup

|α|≤k

‖Dαu‖L∞(Ω).

We will also be dealing with fractional order Sobolev spaces. Let 1 ≤ p < ∞, k ∈ N0,
and 0 < s < 1. We define the fractional order Sobolev spaces W k+s

p (Ω) to be all u for
which the following (semi-)norms are finite:

|u|Wk+s
p (Ω) :=

⎛
⎝ ∑

|α|=k

∫
Ω

∫
Ω

|Dαu(x) −Dαu(y)|p

‖x− y‖d+ps
2

dxdy

⎞
⎠

1/p

,

‖u‖Wk+s
p (Ω) :=

(
‖u‖p

Wk
p (Ω)

+ |u|p
Wk+s

p (Ω)

)1/p

.

2. Finite volume and ENO schemes. Finite volume schemes introduce weak
solutions to (1.1) in the following sense. If V ⊆ R

d is an arbitrary compact, small re-
gion, called the control volume, then u has to satisfy the weak form of the conservation
law (1.1) in the form

d

dt

∫
V

u(x, t)dx = −
∫
∂V

d∑
�=1

f�(u(x, t))η�(x)dS,(2.1)

where η(x) denotes the outer normal vector to the boundary ∂V . This form of (1.1)
often directly results from the physical conservation law and is then in a certain sense
even more natural than (1.1).
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To convert (2.1) into a numerical procedure, the region Ω ⊆ R
d of interest is

subdivided into nonoverlapping subregions Th = {Vj}, i.e.,

Ω =

N⋃
j=1

Vj ,

where the Vj are simplices having size O(h). Then, (2.1) can obviously be rewritten
using the cell averages

λj(u)(t) := uj(t) =
1

|Vj |

∫
Vj

u(x, t)dx, 1 ≤ j ≤ N.

Moreover, if Nj denotes the set of the neighboring simplices to the simplex Vj ∈ Th,
we have

d

dt
λj(u)(t) = − 1

|Vj |
∑

V ∈Nj

∫
∂V ∩∂Vj

d∑
�=1

f�(u)η
(V )
� dS,

where η(V ) denotes the outer unit normal vector to the boundary face ∂V ∩∂Vj of V .
If the flux is replaced by a numerical flux function or an approximate Riemann

solver H : R
n × R

n × R
d → R

n, satisfying

H(u, u; η) =
d∑

�=1

f�(u)η�,

and if the integration on the boundary hyperplane ∂V ∩∂Vj is replaced by a quadrature
rule having weights wν and points xν(V ), 1 ≤ ν ≤ nQ, we derive

d

dt
λj(u)(t) = − 1

|Vj |
∑

V ∈Nj

nQ∑
ν=1

wνH(u(xν(V ), t), u(xν(V ), t); η
(V )
� ) + O(hmQ),

where mQ denotes the order of the employed quadrature rule.
Replacing the unknown values u(xν(V ), t) simply by the cell averages spoils the

approximation order and leads only to a first order scheme. However, if these values
are replaced by a more accurate reconstruction su(xν(V ), t), which satisfies

λj(su)(t) = λj(u)(t), 1 ≤ j ≤ N,(2.2)

‖u− su‖L∞(Ω) = O(hp), h → 0,(2.3)

for all sufficiently smooth functions u, then we get for smooth f� via

‖H(u, u;n) −H(su, su;n)‖2 ≤
d∑

�=1

‖[f�(u) − f�(su)]η�‖2 ≤
d∑

�=1

‖[f�(u) − f�(su)]‖2

≤ Cf‖u− su‖2

finally,

d

dt
λj(u)(t) = − 1

|Vj |
∑

V ∈Nj

nQ∑
ν=1

wνH(su(xν(V ), t), su(xν(V ), t); η
(V )
� ) + O(hmin{p,mQ}).
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Hence, it is crucial to have reconstruction processes satisfying (2.2) and (2.3).
In the next section, we will describe one possibility, which is based upon optimal
recovery. However, the error estimate (2.3) is actually intrinsic to the reconstruction
requirements (2.2), at least if the reconstruction process is stable in a sense which we
will soon make precise. This is a consequence of the following result, which we will
prove in this paper.

Theorem 2.1. Let k be a positive integer, 0 < s ≤ 1, 1 ≤ p < ∞, 1 ≤ q ≤ ∞
and let α be a multi-index satisfying k > |α| + d/p or, for p = 1, k ≥ |α| + d. Let
Ω be a bounded set satisfying an interior cone condition. Suppose Ω is decomposed
into finitely many, nonoverlapping subdomains Vj such that every ball B ⊆ Ω with
radius h contains at least one subdomain Vj. If the function u ∈ W k+s

p (Ω) satisfies
λj(u) = 0, 1 ≤ j ≤ N , then

|u|
W

|α|
q (Ω)

≤ chk+s−|α|−d(1/p−1/q)+ |u|Wk+s
p (Ω),

where c is a constant independent of u and h, and (x)+ = max{x, 0}.
The condition that every ball B ⊆ Ω of radius h contains at least one volume Vj

is automatically satisfied if the volumes form a uniform decomposition of Ω consisting
of volumes of size h.

From this theorem we can conclude that any reconstruction process in the sense
of (2.2) immediately satisfies

‖u− su‖L∞(Ω) ≤ Chk+s−d/p|u− su|Wk+s
p (Ω),

so that the stability assumption on the reconstruction process has to be something
like

|u− su|Wk+s
p (Ω) ≤ C|u|Wk+s

p (Ω).(2.4)

Of course, the (semi-)norm on the right-hand side might be replaced by a norm or
a stronger (semi-)norm; (2.2) and (2.4) together now yield the approximation error
(2.3).

However, in most applications it is not reasonable to build a reconstruction using
all cell averages. Instead, for each cell a local reconstruction is computed using all
the cell averages of cells in a neighborhood of the current cell. Moreover, to avoid
unwanted oscillations, the ENO approach chooses for each cell Vj different sets of
neighboring volumes, which are usually called stencils, computes for all theses sets a
local reconstruction and then chooses the reconstruction, where the oscillation of the
solution is least.

3. Optimal recovery. In this section we shortly review the idea of using optimal
recovery to solve the reconstruction problem (2.2). It has initially been introduced
by Sonar in [9]. It is based upon (conditionally) positive definite functions and has
the advantage of satisfying a stability condition such as (2.4) automatically. For
simplicity, we will from now on suppress the time variable and restrict ourselves to
functions u : R

d → R, i.e., we assume n = 1.
In what follows, we will denote the space of d-variate polynomials of degree less

than or equal to m by πm(Rd).
Definition 3.1. A function Φ : R

d → R is said to be conditionally positive
definite of order m, if for all N ∈ N0, all sets X = {x1 . . . , xN} of pairwise distinct
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points, and all α ∈ R
N \ {0} satisfying

∑N
j=1 αjp(xj) = 0 for all p ∈ πm−1(R

d), it is
satisfied that

N∑
i,j=1

αiαjΦ(xi − xj) > 0.

A function that is conditionally positive definite of order m = 0, where no constraints
on α are imposed, is called positive definite.

A positive definite function Φ gives rise to a reproducing kernel Hilbert space
H = HΦ, for which Φ is the reproducing kernel. In case of a conditionally positive
definite function this remains true modulo πm−1(R

d), which is the null space of the
semi-inner product defined by Φ. In this context, this space is also called the native
space associated to Φ.

Now suppose we are given functionals μ1, . . . , μN , which are continuous and lin-
early independent over H (modulo πm−1(R

d).) Suppose further these functionals are
πm−1(R

d)-unisolvent meaning that p = 0 is the only polynomial from πm−1(R
d) with

μj(p) = 0 for all 1 ≤ j ≤ N . Then, there exists exactly one function of the form

su(x) =

N∑
j=1

αjμ
y
jΦ(x− y) + p(x),

where p ∈ πm−1(R
d) and μy

j means acting with respect to the variable y, which
satisfies the interpolation conditions

μj(su) = μj(u), 1 ≤ j ≤ N,

together with

N∑
j=1

αjμj(q) = 0, q ∈ πm−1(R
d).

Moreover, the solution su satisfies the stability estimates

‖su‖H ≤ ‖u‖H, ‖u− su‖H ≤ ‖u‖H,

and the latter leads to (2.4), if H is either a Sobolev or a Beppo–Levi space. Examples
for (conditionally) positive definite functions are the compactly supported functions,
constructed and investigated in [12, 13] by this author, for Sobolev spaces, and the
thin-plate or surface splines, investigated in [2] by Duchon, for Beppo–Levi spaces.
We will come back to these examples later on.

For more details on optimal recovery and scattered data approximation, we refer
the reader to the recent book [14].

4. Local estimates. Let us describe the main idea for proving Theorem 2.1.
Our analysis is based upon the following approach. First of all, we consider u only
on small subregions Ω� of Ω and derive estimates in terms of the diameter of Ω�.
These subregions can, for example, be the stencils of the ENO schemes previously
described. For our matters, it is only important that Ω� itself is the union of some
of the volumes Vj . If interested in estimates on all of Ω, we have to glue these local
estimates together to retrieve our final error bound.
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In accordance with Theorem 2.1 we assume that the smooth function u satisfies

λj(u) =
1

|Vj |

∫
Vj

u(x)dx = 0, j ∈ M�,

where M� contains all indices j with Vj ⊆ Ω�.

On the local domain Ω� we approximate u by a polynomial P ∈ πk(R
d), i.e., we

write

u = u− P + P.

If u is smooth, the term u − P can locally be bounded in a sound way by using an
averaged Taylor polynomial to u as P . To bound this specific P we have to study the
action of the functionals λj on the space of polynomials πk(R

d) of degree k. Suppose
our functionals allow a reconstruction of the form

p(x) =
∑

j∈M�

aj(x)λj(p), x ∈ Ω�, p ∈ πk(R
d)

with certain numbers aj(x), j ∈ M�, having a uniformly bounded �1-norm. Then,
using λj(u) = 0, we can derive

|p(x)| ≤
∑

j∈M�

|aj(x)||λj(p− u)| =
∑

j∈M�

|aj(x)| 1

|Vj |

∫
Vj

|p(x) − u(x)|dx

≤ ‖p− u‖L∞(Ω�)

∑
j∈M�

|aj(x)|.

Hence, we can control the norm of P again by the norm of u − P . Moreover, this
shows that we first have to investigate polynomial approximation on local sets.

4.1. Polynomial approximation. To simplify notation in the rest of the sec-
tion, we denote our current local set Ω� by D and assume that M� = {1, . . . , N}.
This short section is meant to collect all necessary results on local polynomial ap-
proximation. It is based upon Brenner and Scott’s book [1, Chapter 4] and on the
recent article [7]. We start by introducing star-shaped regions.

Definition 4.1. A domain D is star-shaped with respect to a ball B(xc, r) :=
{x ∈ R

d: ‖x − xc‖2 < r} if for every x ∈ D, the closed convex hull of {x} ∪ B is
contained in D.

It should be apparent, that a bounded region which is star-shaped with respect
to a ball automatically satisfies a uniform interior cone condition. To be more precise,
the following result has been established in [7].

Lemma 4.2. If D is star-shaped with respect to a ball B(xc, r) and contained in
a ball B(xc, R), then it satisfies an interior cone condition with radius r and angle
θ = 2 arcsin

(
r

2R

)
.

Brenner and Scott [1, Chapter 4] discuss approximating a function u ∈ W k
p (D)

by averaged Taylor polynomials Qku ∈ πk−1(R
d). These results have been extended

and generalized to the case of fractional Sobolev spaces by Narcowich et al. [7]. In
this section, we briefly summarize these results.

The averaged Taylor polynomials are defined as follows. Let Br be a ball relative
to which D is star-shaped and having radius r ≥ 1

2rmax, where rmax is the largest
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radius of a ball relative to which D is star-shaped. The averaged Taylor polynomials
are then given by

Qku(x) :=
∑
|α|<k

1

α!

∫
Br

Dαu(y)(x− y)αφ(y)dy,

where φ is a nonnegative C∞ “bump” function supported on Br, satisfying both∫
Br

φ(y)dy = 1 and maxφ ≤ Cr−d, where C = Cd. The result we need is a gen-

eralization of [1, Proposition 4.3.2] and comes from [7]. It utilizes the chunkiness
parameter γ of a star-shaped domain D, which is defined to be γ = ρD/rmax, where
ρD is the diameter of D.

Lemma 4.3. Let 0 < s ≤ 1. Assume that 1 < p < ∞ and k > |α|+ d/p, or p = 1
and k ≥ |α| + d. Then, we have for u ∈ W k+s

p (D) the estimate

‖Dαu−DαQk+1u‖L∞(D) ≤ Ck,d,p(1 + γ)d(1+1/p)ρ
k+s−|α|−d/p
D |u|Wk+s

p (D),

where ρD denotes the diameter of D.
It is important to realize that the involved constant here depends on the domain

D only via its chunkiness parameter γ.

4.2. Norming sets. To reconstruct polynomials from cell averages in a con-
trolled way we employ norming sets. Norming sets have been introduced in the
context of scattered data approximation on spheres [5]. The idea behind them can be
described in a rather abstract setting; see [6, 14].

Let V be a finite dimensional vector space with norm ‖ · ‖V and let Z ⊆ V ∗ be a
finite set consisting of N functionals. Here, V ∗ denotes the dual space of V consisting
of all linear and continuous functionals defined on V .

Definition 4.4. We will say that Z is a norming set for V if the mapping
T : V → T (V ) ⊆ R

N defined by T (v) = (z(v))z∈Z is injective. We will call T the
sampling operator.

If Z is a norming set for V , the mapping T : V → T (V ) ⊆ R
|Z| is bijective and

the norm of its inverse is given by

‖T−1‖ = sup
v �=0

‖v‖
‖Tv‖ .

Theorem 4.5. Suppose V is a finite dimensional normed linear space and Z =
{z1, . . . , zN} is a norming set for V with T being the corresponding sampling operator.
For every ψ ∈ V ∗ there exists a vector a ∈ R

N depending only on ψ such that for
every v ∈ V ,

ψ(v) =

N∑
j=1

ajzj(v),

and

‖a‖RN∗ ≤ ‖ψ‖V ∗‖T−1‖.

We can apply Theorem 4.5 to our situation by choosing V = πk(R
d), ψ = δx,

or more generally ψ = δx ◦ Dα with x ∈ D and T : πk(R
d) → R

N defined by
T (p) := (λ1(p), . . . , λN (p))T , where λj denotes once again the cell average operator
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to the cell Vj . Thus, we have to find a bound on ‖T−1‖, which means we have to
determine a constant C > 0 with

‖p‖L∞(D) ≤ C‖T (p)‖∞, p ∈ πk(R
d).(4.1)

Before providing such a result in general, let us have a look at two examples.
Example 4.6. In the first case we consider the case of linear polynomials in the

univariate setting with equidistant points. Hence, our cell averages are given by

λj(u) =
1

h

∫ (j+1)h

jh

u(x)dx.

Now, let our local D be D = [0, 2h]. If p ∈ π1(R) satisfies ‖p‖L∞(D) = 1, then it
obviously attains its absolute maximum either in 0 or in 2h. In the first case (the
other one is dealt with in the same way) p satisfies (without restriction) p(0) = 1 and
p′(0) ≤ 0. Hence, we can express p as p(x) = 1− ax with a ≥ 0 and for this p we find

|λ1(p)| =

∣∣∣∣∣1 − 1

h

∫ h

0

axdx

∣∣∣∣∣ =

∣∣∣∣1 − a
h

2

∣∣∣∣ = 1 − a
h

2
≥ 1 − 1

2
=

1

2
,

since we can conclude from |p(2h)| ≤ 1 that |a| < 1/h. Hence, we can choose the
constant C in (4.1) as C = 2.

Example 4.7. Our second example deals still with linear polynomials but this time
on R

2. Again, we assume that our cells form an equidistant grid hZ
2. Suppose our

stencil consists of the four volumes V1 = [0, h]2, V2 = [h, 2h]×[0, h], V3 = [0, h]×[h, 2h],
and V4 = [h, 2h]2. Again, without restriction we can assume that p ∈ π1(R

2) attains
its maximum in (0, 0). Hence, we have p(x, y) = 1 − ax− by with a, b ≥ 0. A simple
computation shows that

λ1(p) = 1 − h

2
(a + b), λ2(p) = λ1(p) − ha, λ3(p) = λ1(p) − hb.

Now if |λ1(p)| ≤ 1/3, then we find 4/3 ≤ h(a + b) ≤ 8/3 giving

−10

3
≤ λ2(p) + λ3(p) = 2λ1(p) − h(a + b) ≤ −2

3
.

Hence, if we have in addition |λ2(p)| ≤ 1/3, we must have |λ3(p)| ≥ 1/3. Thus we
can choose the constant C in (4.1) to be C = 3.

From the second example it should already be clear that the multidimensional
case is in general harder to be dealt with. Moreover, if higher degree polynomials are
under investigation, we cannot expect the maximum to be attained in a vertex of our
simplices. Furthermore, we do not want to restrict ourselves to uniform grids. Hence,
we need a somewhat more general approach. The price we have to pay for this is to
use slightly larger stencils than probably really necessary.

Lemma 4.8. Suppose D is compact and satisfies a cone condition with angle θ and
radius r > 0. Suppose D is disjointly decomposed into D ⊆ ∪N

j=1Vj with subregions
Vj. Suppose every ball B(x0, h) ⊆ D with radius h contains at least one Vj. Then,
provided that

h ≤ r sin θ

4k2(1 + sin θ)
,(4.2)
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the mapping T : πk(R
d) → R

N , T (p) = (λ1(p), . . . , λN (p))T is injective with

‖T (p)‖∞ = max
1≤j≤N

|λj(p)| ≥
1

2
‖p‖L∞(D), p ∈ πk(R

d).

Proof. Suppose p ∈ πk(R
d) with ‖p‖L∞(D) = 1 is given. Then there exists a

point x0 ∈ D with |p(x0)| = 1. To point x0, we can choose a cone C(x0) with angle
θ and radius r which is completely contained in D. If ξ ∈ R

d with ‖ξ‖2 = 1 gives the
axis of the cone, it is easy to see that C(x0) completely contains the ball B(y, h) with
y = x0+(h/ sin θ)ξ, provided h ≤ r sin θ/(1+sin θ) is satisfied. Hence, by assumption,
we find a volume Vj with

Vj ⊆ B(y, h) ⊆ C(x0) ⊆ D.

Moreover, the line segment x0 + t(x − x0)/‖x − x0‖2, t ∈ [0, r], which joins x0 with
any x ∈ Vj and beyond is entirely contained in D. Hence, if we define the univariate
polynomial q(t) = p(x0 + t(x − x0)/‖x − x0‖2), t ∈ [0, r], we can apply Markov’s
inequality for univariate polynomials in the form

|q′(s)| ≤ 2k2

r
‖q‖L∞[0,r], s ∈ [0, r],

to derive

|p(x0) − p(x)| = |q(0) − q(‖x− x0‖2)| ≤
∫ ‖x−x0‖2

0

|q′(s)|ds ≤ 2k2

r
‖x− x0‖2

for every x ∈ Vj ⊆ B(y, h). For such an x we also have the bound

‖x− x0‖2 ≤ ‖x− y‖2 + ‖y − x0‖2 ≤ h +
h

sin θ
= h

(
1 + sin θ

sin θ

)
,

so that we can conclude

|p(x0) − λj(p)| ≤
1

|Vj |

∫
Vj

|p(x0) − p(x)|dx ≤ 2k2

r|Vj |

∫
Vj

‖x− x0‖2dx

≤ 2k2(1 + sin θ)

r sin θ
h ≤ 1

2
,

provided (4.2) is satisfied. This means λj(p) ≥ ‖p‖L∞(D)/2 for this particular j.
Note that for deriving our result only those volumes Vj were necessary with Vj ⊆

D, as long as all other assumptions are satisfied.
Now that we know the bound on the inverse of the sampling operator we still need

a bound on the norm of the evaluation functional ψ; this situation is again provided
in [7].

Lemma 4.9. Suppose D is bounded and satisfies an interior cone condition with
angle θ and radius r. Then, for every p ∈ πk(R

d) and every |α| ≤ k we have

‖Dαp‖L∞(D) ≤
(

2k2

r sin θ

)|α|
‖p‖L∞(D).

As a consequence, Theorem 4.5 guarantees for every x ∈ D and every α ∈ N
d
0

with |α| ≤ k the existence of numbers aα1 (x), . . . , aαN (x) such that

Dαp(x) =

N∑
j=1

λj(p)a
α
j (x), p ∈ πk(R

d),(4.3)
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and

N∑
j=1

|aαj (x)| ≤ 2

(
2k2

r sin θ

)|α|
.(4.4)

For our next result, we use the fact that a domain D ⊆ B(xc, R) which is star-
shaped with respect to a ball B(xc, r) ⊆ D satisfies an interior cone condition with
radius r and angle θ = 2 arcsin(r/(2R)).

Proposition 4.10. Let k be a positive integer, 1 ≤ p < ∞, 0 < s ≤ 1, and let α
be a multi-index satisfying k > |α| + d/p, or, for p = 1, k ≥ |α| + d. Let 1 ≤ q ≤ ∞.
Suppose D = ∪Vj ⊆ B(xc, R) is star-shaped with respect to B(xc, r) and covered with
volumes Vj such that every ball B ⊆ D with radius h contains at least one of these
volumes Vj. Let ρD denote the diameter of D. If h satisfies (4.2), then we have for
every u ∈ W k+s

p (D) satisfying λj(u) = 0, 1 ≤ j ≤ N , the error estimate

‖Dαu‖Lq(D) ≤ Cρ
k+s−|α|+d(1/q−1/p)
D |u|Wk+s

p (D),

and the constant C depends only on k, d, p, |α|, and θ = 2 arcsin(r/2R).
Proof. We use the decomposition Dαu = Dαu−DαQk+1 +DαQk+1 with Qk+1 ∈

πk(R
d) being the averaged Taylor polynomial to u.

Since the chunkiness parameter γ can be bounded by

1 ≤ γ ≤ ρD/r ≤ 2R/r = 1/ sin(θ/2),(4.5)

Lemma 4.3 yields a constant C depending only on k, d, |α|, θ with

‖Dαu−DαQk+1u‖L∞(D) ≤ Cρ
k+s−|α|−d/p
D |u|Wk+s

p (D).

On the other hand, since (4.2) is satisfied, Lemma 4.8 and Theorem 4.5 yield stable
polynomial reproduction in the sense of (4.3) and (4.4). Hence, because of λj(u) = 0
we have for any polynomial p ∈ πk(R

d),

|Dαp(x)| =

∣∣∣∣∣∣
N∑
j=1

λj(p)a
α
j (x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

aαj (x) [λj(p) − λj(u)]

∣∣∣∣∣∣
≤

N∑
j=1

|aαj (x)| 1

|Vj |

∫
Vj

|p(y) − u(y)|dy

≤ 2

(
2k2

r sin θ

)|α|
‖p− u‖L∞(D).

Specifying p = Qk+1 and using Lemma 4.3 and (4.5) yields

|DαQk+1(x)| ≤ 2Ck,d,p(1 + γ)d(1+1/p)

(
2k2ρD
r sin θ

)|α|
ρ
k+s−|α|−d/p
D |u|Wk+s

p (D)

≤ Cρ
k+s−|α|−d/p
D |u|Wk+s

p (D)

with a constant depending only on k, d, p, |α| and θ. Hence, we have established the
result

‖Dαu‖L∞(D) ≤ Cρ
k+s−|α|−d/p
D |u|Wk+s

p (D)
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for q = ∞. Next, integrating this inequality and using the fact that D has volume
O(ρdD), leads to

‖u‖Lq(D) ≤ Cρ
k+s−|α|+d(1/q−1/p)
D |u|Wk+s

p (D),

which finishes the proof.
Note that this result remains true even if D itself is not the union of its volumes.

More precisely, if D ⊆ ∪Vj it suffices that the collection {Vj : Vj ⊆ D} satisfies the
assumptions. In particular, in this situation the recovery function should only be
based upon these volumes.

Proposition 4.10 yields our first main result. It covers the situation of ENO
approximation whenever a sufficiently large stencil is chosen. Note, however, that the
assumption on the size of the stencil can even be improved in case of linear polynomials
and regular meshes, using the ideas of Examples 4.6 and 4.7.

Definition 4.11. We say that a stencil D = ∪M
j=1Vj with volumes Vj is admis-

sible if there exist constants C1 > 0 and L ≥ 1 such that
• D is star-shaped with respect to a ball B(xc, C1h),
• D is contained in the ball B(xc, LC1h),
• each ball of radius h contains at least one Vj.

If a stencil is admissible in this sense, it yields convergence of the reconstruction
process using cell averages.

Theorem 4.12. Suppose the assumption on k, p, s, |α|, and q from Proposition
4.10 hold. Suppose D = ∪M

j=1Vj ⊆ R
d is an admissible stencil with constants C1, L.

Set θ = 2 arcsin(1/(2L)). If

C1 ≥ 4k2(1 + sin θ)

sin θ
,

then for every u ∈ W k+s
p (D), which satisfies λj(u) = 0 for 1 ≤ j ≤ N , the error

estimate

‖Dαu‖Lq(D) ≤ Chk+s−|α|+d(1/q−1/p)|u|Wk+s
p (D)

is satisfied, where C is a constant independent of u and h.
Proof. From Lemma 4.2 we know that D satisfies a cone condition with radius

r = C1h and angle θ = 2 arcsin(1/(2L)). Our assumption on C1 assures that condition
(4.2) is satisfied, so that Proposition 4.10 yields the result.

It is important here to note that all involved constants depend on the region D
only by their cone condition. This will be of importance for deriving our general result
in the next section.

The assumptions k > |α|+d/p can be weakened in case of p = q using interpolation
theory to k > d/p.

Finally, note that for Proposition 4.10 it is not important for D to be the collection
of all local Vj . It suffices that every ball of radius h contained in D contains a Vj

itself.

5. Global estimates. Now we work our way towards proving Theorem 2.1. To
this end, we cover our region Ω by small regions D. The key ingredient is that the
involved constants depend on the local regions only via their cone condition. Hence,
if we fix r and R and use local domains D for which we can find an xc such that
D ⊆ B(xc, R) is star-shaped with respect to B(xc, r), the chunkiness parameter and
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thus the angle θ of the cone condition are all the same. This means in particular that
we can use the same constant C in Proposition 4.10 for any such domain.

Interestingly, the procedure which now follows is identical to the one employed
in the point evaluation case, which was studied in [7]. Hence, we will rely heavily on
that paper; see also [14].

Let us suppose our global region Ω is bounded and satisfies a cone condition with
radius r and angle θ. We introduce the following quantities. As usual, let h be the
typical size of our finite volumes. Let

ϑ := 2 arcsin

(
sin θ

4(1 + sin θ)

)
,

Q(k, θ) :=
sin θ sinϑ

8k2(1 + sin θ)(1 + sinϑ)

R := Q(k, θ)−1h,

r :=
sin θ

2(1 + sin θ)
R.

With these settings we define the sets Tr := {t ∈ 2r√
d
Z
d : B(t, r) ⊆ Ω} and

Dt = {x ∈ Ω : co({x} ∪B(t, r)) ⊆ Ω ∩B(t, R)}, t ∈ Tr,

where co(A) denotes the closed convex hull of the set A.
Lemma 5.1 (see [7]). With the just introduced quantities, suppose the number

h > 0 satisfies h ≤ Q(k, θ)r. Then, the following holds true:
1. Each Dt is star-shaped with respect to the ball B(t, r) and satisfies B(t, r) ⊆

Dt ⊆ Ω ∩B(t, R).
2. Each Dt satisfies a cone condition with angle ϑ and radius r.
3. Ω =

⋃
t∈Tr

Dt and ρDt ≤ 2R = 2h/Q(k, θ).
4. There is a constant M1 > 0 such that

∑
t∈Tr

χDt ≤ M1.

5. There is a constant M2 > 0 such that #Tr ≤ M2r
−d.

Here, χDt(x) is 1 if x ∈ Dt and 0 elsewhere and #Tr denotes the cardinality of Tr.
Now that we have the local sets we can formulate and prove our main result of

this section; Theorem 2.1.
Theorem 5.2. Suppose Ω is bounded and satisfies an interior cone condition

with radius r > 0 and angle θ. Let k be a positive integer, 0 < s ≤ 1, 1 ≤ p < ∞,
1 ≤ q ≤ ∞, and let m ∈ N0 satisfy k > m + d/p for p > 1, or k ≥ m + d for p = 1.
Also, let {V1, . . . , VN} ⊆ Ω such that each ball B ⊆ Ω of radius h ≤ Q(k, θ)r contains
at least one volume Vj. If u ∈ W k+s

p (Ω) satisfies λj(u) = 0, 1 ≤ j ≤ N , then

|u|Wm
q (Ω) ≤ Chk+s−m−d(1/p−1/q)+ |u|Wk+s

p (Ω),(5.1)

where (x)+ = max{x, 0}.
Proof. We use the notation introduced in the paragraph before Lemma 5.1. First

of all note that, since h ≤ Q(k, θ)r, Lemma 5.1 is applicable. Furthermore, our
definition of r, R, and Q(k, θ) establish h = r sinϑ

4k2(1+sinϑ) , which allows us to apply

Proposition 4.10 to the local sets Dt. The just mentioned lemma and proposition
immediately establish the result in the case q = ∞. On the other hand, for 1 ≤ q < ∞
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the decomposition of Ω implies that we have

|u|qWm
q (Ω) =

∑
|α|=m

∫
Ω

|Dαu(x)|qdx

≤
∑
t∈Tr

∑
|α|=m

∫
Dt

|Dαu(x)|qdx =
∑
t∈Tr

|u|qWm
q (Dt)

≤ (#Tr)
q( 1

q−
1
p )

+

(∑
t∈Tr

|u|pWm
q (Dt)

)q/p

,

where the last bound follows from standard inequalities relating p and q norms on
finite dimensional spaces. Proposition 4.10 together with ρDt ≤ 2R = 2Q(k, θ)−1h
gives the bound

(∑
t∈Tr

|u|pWm
q (Dt)

)1/p

≤ Chk+s−m+d( 1
q−

1
p )

(∑
t∈Tr

|u|p
Wk+s

p (Dt)

)1/p

.

Here, it has been essential that all involved constants depend only on the cone condi-
tion, which is the same for all Dt. Now, using Lemma 5.1 again yields

∑
t∈Tr

|u|p
Wk+s

p (Dt)
≤

∑
|α|=k

∫
Ω

∑
t∈Tr

χDt(x)

∫
Dt

|Dαu(x) −Dαu(y)|p

‖x− y‖d+sp
2

dydx

≤ M1

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x) −Dαu(y)|p

‖x− y‖d+sp
2

dydx

≤ M1|u|pWk+s
p (Ω)

.

A final application of Lemma 5.1 together with r = sin θ
2Q(k,θ)(1+sin θ)h shows #Tr ≤

Ch−d. Putting all these things together and taking

d

(
1

q
− 1

p

)
− d

(
1

q
− 1

p

)
+

= −d

(
1

p
− 1

q

)
+

into account establishes the desired result.

Let us apply this result to the compactly supported functions of minimal degree
[12, 13]. They are radial functions Φd,k(x) = φd,k(‖x‖2), x ∈ R

d, where each univari-
ate function φd,k consists of a univariate polynomial on its support. Moreover, the
d-variate function Φd,k is in C2k(Rd). The functions Φd,k generate Sobolev spaces
W σ

2 (Rd) with σ = d/2+ k+1/2 as their associated reproducing kernel Hilbert spaces

since their Fourier transforms Φ̂ = Φ̂d,k decay like

C1(1 + ‖ω‖2
2)

−σ ≤ Φ̂(ω) ≤ C2(1 + ‖ω‖2
2)

−σ.(5.2)

Corollary 5.3. Suppose Ω ⊆ R
d is bounded, satisfies a cone condition, and

has a Lipschitz boundary. Suppose Φ ∈ L1(R
d) is positive definite and has a Fourier

transform Φ̂ satisfying (5.2) with σ > d/2. Let 1 ≤ q ≤ ∞ and u ∈ W σ
2 (Ω). If Ω

is covered by volumes {Vj} such that every ball B ⊆ Ω of radius h contains at least
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one Vj, then the error between u and its optimal recovery su from cell averages can
be bounded by

‖u− su‖Lq(Ω) ≤ Chσ−d(1/2−1/q)+‖u‖Wσ
2 (Ω).

Proof. We need to extend u ∈ W σ
2 (Ω) to a function Eu ∈ W σ

2 (Rd). This is under
the assumptions on Ω continuously possible; see the discussion in [7]. Hence, there
exists a constant C > 0 such that ‖Eu‖Wσ

2 (Rd) ≤ C‖u‖Wσ
2 (Ω) and optimal recovery

leads to

‖u− su‖Wσ
2 (Ω) ≤ ‖Eu− sEu‖Wσ

2 (Rd) ≤ C‖Eu‖Wσ
2 (Rd) ≤ C‖u‖Wσ

2 (Ω).(5.3)

Since we have for the cell averages λj(u − su) = 0, we can apply Theorem 5.2 to
u− su, which yields, together with (5.3), the desired result.

For simplicity, we have stated the result only for the nonderivative case. The
reader should have no problems restating it, including estimates on the derivatives.

If the target function u is known to be analytic so that it belongs even to the
reproducing Hilbert space of Gaussians φ(r) = exp(−αr2), α > 0 or multiquadrics
φ(r) =

√
1 + r2, then any Sobolev norm can be used, giving arbitrary convergence

order. However, this is true only under rather restrictive assumptions on the target
function.

6. Improved estimates for thin-plate splines. In this section we will im-
prove the estimates derived in Theorem 5.2 in the particular situation of thin-plate
splines. The ideas employed can also be used for other basis functions. However, the
additional assumptions that have to be imposed on the target function are in other
cases often only implicitly given.

We start by applying Theorem 5.2 to thin-plate splines. To be more precise, for
x ∈ R

d, we let

Φd,k(x) := cd,k

{
‖x‖2k−d

2 for d odd,

‖x‖2k−d
2 log ‖x‖2 for d even,

where cd,k is a constant chosen so that Φd,k is a fundamental solution of the iterated
Laplacian. In terms of the distributional Fourier transform, this is equivalent to
requiring that Φ̂d,k(ω) = ‖ω‖−2k

2 , if ω = 0.
The reproducing kernel semi-Hilbert space associated with Φd,k is the Beppo–Levi

space,

BLk(R
d) := {f ∈ C(Rd) : Dαf ∈ L2(R

d) for all |α| = k},

which is equipped with the semi-inner product

(f, g)BLk(Rd) =
∑
|α|=k

k!

α!
(Dαf,Dαg)L2(Rd),

i.e., BLk is equipped with a semi-Hilbert norm comparable to | · |Wk
2 (Rd). In particular,

choosing k = 2 in case of d = 2 leads to the well-known thin-plate splines φ(r) =
r2 log r.

As in the case of the compactly supported functions, we need to extend the
function f ∈ W k

2 (Ω) to a function Ekf ∈ BLk(R
d). This is possible due to Duchon
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[2]. To be more precise there exists an extension operator Ek : W k
2 (Ω) → BLk(R

d)
with Eku|Ω = u and |Eku|BLk(Rd) ≤ ‖Ek‖|u|BLk(Ω).

Again, we state our result only for the nonderivative case.
Corollary 6.1. Suppose Ω ⊆ R

d is bounded and satisfies an interior cone
condition. Suppose further k > d/2 and 1 ≤ q ≤ ∞. If Ω is covered by volumes {Vj}
such that every ball B ⊆ Ω of radius h contains at least one volume Vj. Then, the
error between u ∈ W k

2 (Ω) and its optimal recovery su from cell averages using the
thin-plate spline Φd,k has the error estimate

‖u− su‖Lq(Ω) ≤ Chk−d(1/2−1/q)+ |u|BLk(Ω).

Proof. We extend u ∈ W k
2 (Ω) to a function u = Eku ∈ BLk(R

d). Since BLk(R
d)

is the associated reproducing kernel semi-Hilbert space, we have

|u− su|BLk(Rd) ≤ |u|BLk(Rd) ≤ Ce|u|BLk(Ω).

Since the function u − su satisfies λj(u) = 0 we can apply Theorem 5.2 to it, which
gives the desired result.

For here the mainly interesting case of q = ∞ gives

‖u− su‖L∞(Ω) ≤ Chk−d/2|u|BLk(Ω).

Hence, in the bivariate case d = 2 using classical thin-plate splines φ(r) = r2 log r this
leads only to a first order approximation scheme. This recovers an unpublished result
[3] by Gutzmer.

However, under additional assumptions on the target function u improved error
estimates can be established.

Theorem 6.2. Under the assumptions of Corollary 6.1, assume that u ∈ W 2k
2 (Ω)

has support in Ω. Then, the error between u and its optimal recovery su can be bounded
by

‖u− su‖Lq(Ω) ≤ Ch2k−d(1/2−1/q)+‖Δuk‖L2(Ω).

Proof. Since u is supported in Ω it is actually globally defined. Moreover, we
have the estimate

‖u− su‖Lq(Ω) ≤ Chk−d(1/2−1/q)+ |u− su|BLk(Ω)(6.1)

by Theorem 5.2. The improved estimate follows from bounding |u − su|BLk(Ω). To
this end, we use the fact that su is the best approximation to u from

span{λy
jΦd,k(· − y) : 1 ≤ j ≤ N}.

Hence, using also the compact support of u, we deduce

|u− su|2BLk(Ω) = (u− su, u)BLk(Ω) =
∑
|α|=k

k!

α!

∫
Ω

Dα(u− su)(x)Dαu(x)dx,

so that integration by parts results in

|u− su|2BLk(Ω) = (−1)k
∑
|α|=k

k!

α!

∫
Ω

(u− su)(x)D2αu(x)dx

= (−1)k
∫

Ω

(u− su)(x)Δku(x)dx,
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which can be bounded by

|u− su|2BLk(Ω) ≤ ‖u− su‖L2(Ω)‖Δku‖L2(Ω).

Applying Theorem 5.2 to ‖u− su‖L2(Ω) and inserting the result into (6.1) finishes the
proof.

This gives the estimate

‖u− su‖L∞(Ω) ≤ Ch2k−d/2‖Δku‖L2(Ω),

so that we have for thin-plate splines in R
2 now a third order scheme, provided the

target function is smooth enough and compactly supported.
This naturally raises the question of how good the approximation order can be-

come under the best possible conditions. As in the case of pure point evaluation
functionals (see [8]) it can be shown that any smooth function u with

‖u− su‖L∞(K) = o(h2k)

for every compact subset K ⊆ Ω must already satisfy Δku = 0 and is in this sense
trivial.
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A PIECEWISE CONSTANT ALGORITHM FOR
WEIGHTED L1 APPROXIMATION OVER

BOUNDED OR UNBOUNDED REGIONS IN R
s∗
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Abstract. Using Smolyak’s construction [S. A. Smolyak, Dokl. Akad. Nauk SSSR, 4 (1963),
pp. 240–243], we derive a new algorithm for approximating multivariate functions over bounded or
unbounded regions in Rs with the error measured in a weighted L1-norm. We provide upper bounds
for the algorithm’s cost and error for a class of functions whose mixed first order partial derivatives
are bounded in the L1-norm. In particular, we prove that the error and the cost (measured in terms
of the number of function evaluations) satisfy the relation

error ≤
s exp

(
1

12(s−1)

)
(s− 1)π

(
e ln(cost)

(s− 1)
√

2 ln(2)

)2(s−1)
1

cost

whenever the cost is sufficiently large relative to the number s of variables. More specifically, the
inequality holds when q ≥ 2(s − 1), where q is a special parameter defining the refinement level in
Smolyak’s algorithm, and hence the number of function evaluations used by the algorithm. We also
discuss extensions of the results to the spaces with the derivatives bounded in Lp-norms.

Key words. Banach spaces, mixed first order partial derivatives, multivariate functions, Smol-
yak’s construction
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1. Introduction. In this paper, we derive a simple-to-use, piecewise constant
algorithm for approximating functions in a weighted L1 sense. Function approxima-
tion has been studied quite extensively; see, e.g., [13, 17, 22, 24] and the papers cited
therein. However, such problems were considered mainly for functions with a bounded
domain D, say D = [0, 1]s.

The worst case complexity of weighted approximation over unbounded domains D
has recently been studied in, e.g., [11, 27], assuming that the corresponding function
classes F are isotropic. The analysis of the approximation problem for tensor product
spaces F is quite straightforward if F is a Hilbert space, since then desirable properties
of Smolyak’s construction could be used; see, e.g., [25].

In this paper, we study a weighted approximation problem with an emphasis on
unbounded domains D and tensor product function classes F in a non-Hilbert-space
setting. More specifically, we study a ρ-weighted L1 approximation problem with the
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error between f and the approximation A(f) measured in the following seminorm:

‖(f −A(f)) ρ‖L1(D) =

∫
D

ρ(x) |f(x) −A(f)(x)| dx.(1)

We have chosen the L1-norm here (as opposed to the Lr-norm for r > 1) since
then the approximation problem is related to weighted integration. This relation is
briefly discussed in section 6; here we only mention that any algorithm A for L1

approximation yields an integration algorithm with the error at least as small as the
error of A. Another reason for choosing r = 1 is the simplicity of analysis; for r �= 1, 2
the corresponding weighted Lr approximation problem is more difficult to analyze.

Throughout this article, it is assumed that ρ(x) =
∏s

k=1 ρk(xk) is a given inte-
grable weight function. The domain D of functions can be an arbitrary box, even
D = R

s. The class F is a space of functions whose dominating mixed first or-
der derivatives are bounded in the L1-norm. This seems to be about the minimum
amount of smoothness needed to get a convergence rate of essentially O(n−1). For
example, if only the functions have bounded L1-norm, then function values may not
even be finite, and algorithms depending on function values are not be to guaranteed
to converge. The case of derivatives bounded in Lp-norms seems to be harder than
the case with the L1-norm (especially for unbounded D), and is briefly addressed in
section 5.

We stress that classes F as defined here are commonly assumed in the context of
integration problems over D = [0, 1]s, especially when dealing with quasi-Monte Carlo
methods and discrepancy; see, e.g., [5, 12, 19] and papers cited therein. This point is
further discussed in section 2. These F have been used even for integration problems
with unbounded domains [9]. Moreover, for bounded D, these classes contain the
classes MW 1

p of periodic functions considered for approximation in [22, Chap. 4].
Instead of a condition on the dominating mixed derivatives, one sometimes as-

sumes that all derivatives of total order α are bounded in the L1-norm. Error analysis
using such conditions suffer from the “curse of dimensionality.” For example, to have
a convergence rate of O(n−1) requires all derivatives of total order s to be bounded
in the L1-norm. The condition assumed here is weaker.

The main result of the paper is the derivation and analysis of a family {Aq,s}∞q=s of
algorithms that provide approximations that are special piecewise constant functions.
They are obtained by applying Smolyak’s construction (see [21]) to scalar piecewise
constant interpolation methods. As we shall see, given a number s of variables and a
parameter q ≥ s, the algorithm has the worst case error bounded by

error(Aq,s) ≤
{
s 2−2q+2s−3

(
2q−2s+3
q−s+1

)
if q < 2(s− 1),

s 2−q
(

q
s−1

)
if q ≥ 2(s− 1).

Here q is the refinement parameter in Smolyak’s algorithm. Under an additional
symmetry assumption (4) that is stated later, we get

error(Aq,s) ≤ s 2−q+s−1−a

(
q − s

a

)
with a =

{
� q−s+1

3 � if q < 4(s− 1),
s− 1 otherwise.

Let n = card(Aq,s) denote the number of function evaluations used by Aq,s.
From [25, Lem. 7] we have n ≤ 2q−s+1

(
q−1
s−1

)
, and we conclude that for every s ≥ 2

and q ≥ 2(s− 1),

error(Aq,s) ≤
s

(s− 1)π

(
e ln(n)

(s− 1)
√

2 ln(2)

)2(s−1)
1

n
.
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This rate n−1 ln2(s−1)(n) of convergence is as good as the best known rate for L1

approximation of periodic functions from the class F = MW 1
1 ; see [22, Thm. 5.1 of

Chap. 4] and [23]. Recall that MW 1
1 is contained in F when Ds is bounded and the

approximation is with ρ ≡ 1. Hence Aq,s works for more general classes of problems
and spaces of functions. Moreover, the result above shows in an explicit way the
dependence of the errors on the dimension s.

We do not know whether n−1 ln2(s−1)(n) is the best possible rate. However,
because the Kolmogorov width for the corresponding problem over MW 1

1 equals

Θ(n−1 ln3(s−1)/2(n)) (see [22, Thm. 4.5 of Chap. 3]), the difference could only be
in the exponent of the ln(n)-term.

Since Aq,s(f) is a piecewise constant function, the algorithm is easy to implement.
Its only drawback is in exponential gaps between consecutive numbers card(Aq,s) of
function evaluations. However, we believe that it is of a practical interest, especially
for small to moderate values of s. Implementation of the algorithm and numerical
tests will be reported later.

We stress that Smolyak’s construction, also referred to as sparse grid, hyperbolic
cross, and Boolean blending, has been applied to many problems, including differential
and integral equations, integration and approximation of multivariate functions, and
to wavelets construction; see, e.g., [1, 2, 3, 4, 6, 7, 8, 10, 16, 18, 14, 22, 23, 25, 26]
and the papers cited therein. However, with only a few exceptions, the considered
functions are defined over bounded domains (e.g., D = [0, 1]s), and sometimes are
of a special form (e.g., f = g ∗ B for a fixed function B as in MWα

p classes). By
analyzing ρ-weighted L1 approximation, we are able to propose a simple algorithm
that works well for any probability density function ρ of a tensor product form and
even for D = R

s. The proposed algorithm uses a finite number n of function values
and approximates the function with error O(n−1 ln2(s−1)(n)). It is linear, simple, and
easy to implement.

We would like to contrast this to a possible wavelet approach with D = R
s as

proposed in [4]. There, the approximating algorithm is defined as the function from a
special linear subspace Hn that minimizes the Lp distance from f , and the space Hn

has infinite dimension. Hence, it is very difficult to implement. This should explain
our interest in ρ-weighted approximation. We have chosen the L1-norm since for
the Lr-norm (r > 1) the analysis would be much harder and getting sharp bounds
(including explicit constants) rather impossible.

We now explain the choice of low regularity α = 1. Recall that we assume
first order mixed derivatives to be bounded. As in the papers cited in the previous
paragraph that deal with classes of functions of arbitrary (but fixed) regularity and
bounded domains, it is possible to extend the results even to the case of D = R

s.
Indeed, using general properties of Smolyak’s construction (e.g., from [25]) and results
on the complexity of scalar (s = 1) weighted Lr approximation over R (see [27]), it

is possible to achieve a convergence rate O(n−(α+(1/r−1/p)−) ln(α+1)(s−1)(n)). This is
when the mixed partial derivatives of order α are bounded in the (weighted) Lp-norm.
However, this extension to general α would (i) hold only under special assumptions
on ρ (see [27, Thm. 1]), (ii) make explicit dependence on the dimension s very difficult
to obtain, and (iii) make the resulting algorithms more difficult to implement and less
applicable. In particular, the gaps between consecutive values of card(Aq,s) would
increase with increasing regularity α, making the algorithm applicable only for very
small values of s (say s ≤ 3). Moreover, by assuming α = 1 we make our algorithm
applicable to a larger class of functions also because the classes with α > 1 are
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contained in the class with α = 1. The explicitness of the results, as well as the
simplicity and applicability of the algorithm, were our primary reasons for choosing
α = 1.

We summarize the content of this paper. Section 2 provides some basic
definitions and assumptions, as well as an error bound for an arbitrary algorithm
A. Since Smolyak’s construction depends on the specific choice of scalar algorithms,
section 3 considers very special scalar algorithms based on a piecewise constant
interpolation. The corresponding algorithm and its properties are presented in
section 4. An extension to functions with derivatives bounded in Lp-norm is pro-
vided in section 5. Section 6 briefly explains why the error bounds obtained for the
ρ-weighted L1 approximation also hold for the corresponding ρ-weighted integration
problem.

2. Basic definitions. In this section, we briefly present some definitions and
basic facts concerning the worst case setting. A more detailed discussion can be
found, e.g., in [13, 24].

We consider a weighted L1 approximation of functions of s variables whose domain
D is a box,

D = (a1, b1) × · · · × (as, bs).

The values ai and bi might be infinite; this is why we write (ai, bi) instead of [ai, bi].
Let F be a Banach space of functions f : D → R that will be specified later. The

approximation problem depends on a weight function ρ which is assumed to have the
following properties:

ρ(x) =
s∏

k=1

ρk(xk) and ρk ≥ 0.(2)

For simplicity of presentation, we also assume that

∫ bk

ak

ρk(t) dt = 1 ∀ k = 1, . . . , s.

However, it is enough to assume that the integrals of ρk are finite; in such a case,
all error bounds derived in this paper should be multiplied by the constant c =∫
D
ρ(x) dx.
Functions from F are approximated by an algorithm A,

f ∼ A(f) =
n∑

i=1

f(xi) gi

for some points xi and functions gi, with the error between f and A(f) measured in
the ρ-weighted L1-norm; see (1). The worst case error (with respect to F) of A is
defined by

error(A) := sup
‖f‖≤1

‖(f −A(f)) ρ‖L1(D),

where ‖f‖ denotes the norm of f in the space F . The importance of this definition is
that due to linearity of A we have

‖(f −A(f)) ρ‖L1 ≤ ‖f‖ error(A) ∀ f ∈ F .
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Each algorithm uses a finite number n of function evaluations. That number is
called the cardinality and is denoted by card(A).

With the exception of sections 5 and 6, the following space F =F1,s is consid-

ered. Let Hk be the space of absolutely continuous functions on (ak, bk) whose first
derivative is in L1((ak, bk)). Let Hs =

⊗s
k=1 Hk be the space consisting of linear

combinations of functions f of the tensor product form

f : D → R and f(x) =
s∏

k=1

hk(xk) with hk ∈ Hk.

The space F1,s is the completion of Hs with respect to the following norm:

‖f‖1,s := |f(c)| +
∑
U �=∅

‖f ′
U‖L1(DU ).(3)

Here c = [c1, . . . , cs] ∈ D is a fixed point, called an anchor. The summation is with
respect to nonempty subsets U of {1, . . . , s}, and

f ′
U (xU ) :=

∂|U |∏
k∈U ∂xk

f(xU , c),

where (xU , c) denotes the s-dimensional vector whose kth component is xk if k ∈ U ,
and ck otherwise. By xU we mean the |U |-dimensional vector obtained from x by
removing all components xk with k /∈ U . This means that f ′

U is a function defined on

DU :=
∏

k∈U (ak, bk) and xU ∈ DU . To simplify the notation, we will also write f ′
∅

and ‖f ′
∅‖L1

to denote f(c) and |f(c)|, respectively; and we often drop DU by writing
‖ · ‖L1 instead of ‖ · ‖L1(DU ). This allows the more concise formula

‖f‖1,s =
∑
U

‖f ′
U‖L1

.

We illustrate this for s = 2:

‖f‖1,2 = |f(c1, c2)| +
∫ b1

a1

∣∣∣∣ ∂

∂x1
f(x1, c2)

∣∣∣∣ dx1 +

∫ b2

a2

∣∣∣∣ ∂

∂x2
f(c1, x2)

∣∣∣∣ dx2

+

∫ b1

a1

∫ b2

a2

∣∣∣∣ ∂2

∂x1∂x2
f(x1, x2)

∣∣∣∣ dx2 dx1.

Although in general the anchor c and the weight ρ are not related, we shall obtain
stronger results under the following symmetry condition:

∫ ck

ak

ρk(x) dx =
1

2
∀k = 1, . . . , s.(4)

Of course, this condition is satisfied if (ak, bk) and ρk are symmetric with respect to
ck (k = 1, . . . , s), e.g., if ak = −bk, ck = 0, and ρk(x) = ρk(−x). In general, for a
given ρk one may always choose ck to satisfy (4).

We now comment on the norm (3) and the role of the anchor c.
Remark 1. As already mentioned in the introduction, the norm (3) and the space

F1,s are frequently assumed/studied in the context of quasi-Monte Carlo integration
and discrepancies when the domain D is bounded, D = [0, 1]s. Then, classically, the
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anchor c = [1, . . . , 1]. Of course, when D = R
s such a choice of the anchor seems

unjustified and this is why we prefer to deal with arbitrary c; see [9] for additional
discussion.

There are a number of important results when, instead of the norm (3), a semi-
norm

|||f |||α,p,s := ‖f (α,...,α)‖Lp with f (α,...,α) =

(
s∏

k=1

∂α

∂xα
k

)
f

is assumed. Of course, for α = 1 and p = 1 this seminorm is very much related to
(3) since it is equivalent to ‖f ′

U‖L1
with U = {1, . . . , s}. In particular, for s = 1, the

complexities of problems with bounded ‖f‖1,s or |||f |||1,1,s are equivalent. The situation
changes drastically in the the multivariate case s ≥ 2. This is because the subspace
of functions with vanishing ||| · |||α,p,s-seminorm has infinite dimension. Therefore, to
guarantee finite errors, one has to add additional restrictions on the considered class
of functions. Examples of such restrictions include periodicity as in classes MWα

p ,
or boundary conditions such as the vanishing of f and its partial derivatives at the
points x with at least one component equal to zero. The presence of ‖f ′

U‖L1-terms
in the definition of (3) guarantees that it is a well-defined norm without additional
restrictions on the class of functions.

The following fact will play an important role. Let

Mk(x, t) :=

⎧⎨
⎩

1 if ck < t < x,
−1 if x < t < ck,

0 otherwise,

M(x, t) :=

s∏
k=1

Mk(xk, tk) and MU (xU , tU ) :=
∏
k∈U

Mk(xk, tk),

with the convention that M∅ ≡ 1. Then for every f ∈ F1,s and every x ∈ D,

f(x) =
∑
U

∫
DU

f ′
U (tU )MU (xU , tU ) dtU .(5)

The representation (5) has been used, at least implicitly, in a number of papers, and
its short proof can be found in [9]. From it we have

‖f ρ‖L1
≤
∑
U

∫
DU

|f ′
U (tU )|

∫
D

|ρ(x)MU (xU , tU )| dx dtU ≤ ‖f‖1,s.

This means that the approximation problem is well defined since the corresponding
embedding operator is bounded. Actually, the following theorem, when applied to the
zero algorithm A ≡ 0, implies that the norm of the embedding is equal to one, i.e.,

sup
f∈F

‖f ρ‖L1

‖f‖1,s
= 1.

Theorem 1. The error of any A is bounded by

error(A) ≤ sup
t∈D

max
U

∫
DU

hU (xU , tU ) dxU ,(6)
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where

hU (xU , tU ) = ρU (xU ) |MU (xU , tU ) −A(MU (·, tU ))(xU )|.

If A is based on piecewise constant interpolation then (6) holds with equality.
Proof. We defer the proof to section 5, where a more general result is proven.

3. Scalar functions. Since Smolyak’s construction depends on specific algo-
rithms for the scalar cases, we consider now approximating univariate functions whose
domain is (ak, bk) and whose weight function is ρk. To simplify the notation in this
section, we write a, b, and ω instead of ak, bk, and ρk.

For i = 1, 2, . . . , consider the set of points xk
i,j (j = 0, . . . , 2i) such that

a = xk
i,0 < xk

i,1 < · · · < xk
i,2i = b

and

∫ xk
i,j

xk
i,j−1

ω(t) dt = 2−i.(7)

For simplicity, we will write in this section xi,j instead xk
i,j .

Of course, xi−1,j = xi,2j . We take the following family of algorithms Ai (i =
1, 2, . . . ) based on piecewise constant interpolation:

Ai(f)(x) = f(xi,j) if ck ≤ xi,j ≤ x < xi,j+1 or xi,j−1 < x ≤ xi,j ≤ ck.

Moreover, when x, ck ∈ (xi,j , xi,j+1) then Ai(f)(x) equals f(xi,j) or f(xi,j+1) de-
pending on whether or not x ≤ ck. Note that under the symmetry condition (4),
x1,1 = xi,2i−1 = ck and Ai(f)(x) = f(ck) for x ∈ (xi,2i−1−1, xi,2i−1+1).

For given k, define

δk,1(x, t) := A1(Mk(·, t))(x)

and

δk,i(x, t) := Ai(Mk(·, t))(x) −Ai−1(Mk(·, t))(x), i ≥ 2.(8)

The following result is needed in section 4.
Proposition 1. For every t, we have

‖ω δk,i(·, t)‖L1 ≤ 2−i ∀ i ≥ 2.

Moreover, A1(Mk(·, t)) is a constant function equal to ±1 or zero, and if (4) holds,
then

A1(Mk(·, t)) = 0.

The second part of the proposition can be directly checked. The first part of the
proposition is an immediate consequence of the following lemma that will be used in
section 5. For simplicity of presentation, we state the lemma only for arguments x
and t greater than ck. The analogous result is true for arguments smaller than ck
with the only difference being that δi,k(x, t) ∈ {−1, 0}. Moreover, δk,i(x, t) = 0 when
ck is between x and t.
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Lemma 1. The following statements hold for any i ≥ 2 and x, t > ck.
(i) δk,i(x, t) ∈ {0, 1}.
(ii) If δk,i(x, t) = 1, then there exists j ≤ 2i−1 − 1 such that

t ∈ (xi,2j , xi,2j+1] and x ∈ (xi,2j+1, xi,2j+2].

(iii) There is at most one i ≥ 2 such that δk,i(x, t) = 1.
Proof. (i) follows immediately from the facts that Mk(x, t) ∈ {0, 1}, Mk(·, t) is

nondecreasing, and Ai uses the points used by Ai−1.
(ii) Let x ∈ (xi,�, xi,�+1] for some �. Then Ai(Mk(·, t))(x) = 1 only if t < xi,�.

However, for Ai−1(Mk(·, t))(x) = 0, xi,� has to be different than any point xi−1,j used
by Ai−1. This means that � has to be odd.

(iii) follows from (ii). Indeed, let (x, t) be fixed. If δk,i(x, t) = 1, then t and x
are in two neighboring subintervals with the evaluation point xi,� between them and
� = 2j + 1. Consider now δk,i+n(x, t) for positive n. Then the points xi,� = xi+n,m

with m = 2n� is between t and x, yet m is even. Hence, due to part (ii), δk,i+n(x, t)
cannot be equal to one. This completes the proof.

4. The algorithm. Let {Ak,i} be the families of algorithms from the previous
section, each for ω = ρk and (a, b) = (ak, bk), respectively. Recall that Ak,i uses
function values at points xk

i,1, . . . , x
k
i,2i−1. Define

Δk,1 := Ak,1, Δk,i := Ak,i −Ak,i−1 for i ≥ 2

and

Aq,s :=
∑
|i|≤q

s⊗
k=1

Δk,ik(9)

for q ≥ s. Here and elsewhere, i = [i1, . . . , is] ∈ N
s
+ is a multi-index with ik ≥ 1 and

|i| =
∑s

k=1 ik.
Theorem 2. Let s ≥ 2 and q ≥ s. Then

error(Aq,s) ≤

⎧⎨
⎩
s 2−q

( q


 q+1
2 �
)

if q < 2(s− 1),

s 2−q
(

q
s−1

)
if q ≥ 2(s− 1).

If, additionally, (4) holds, then

error(Aq,s) ≤ s 2−q+s−1−a

(
q − s

a

)
with a =

⎧⎨
⎩
� q−s+1

3 � if q < 4(s− 1),

s− 1 if q ≥ 4(s− 1).

To prove this theorem, we need the following lemma. We think it is known;
however, we have not found it in the literature. For q ≥ s− 1, define

B(q, s) :=
∑

|i|≥q+1

2−|i|.(10)

Lemma 2. For every q ≥ s− 1,

B(q, s) = 2−q
s−1∑
j=0

(
q

j

)
≤ B(q, s),(11)
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where

B(q, s) := s 2−q

⎧⎨
⎩
( q


 q+1
2 �
)

if 2s ≥ q + 3,

(
q

s−1

)
otherwise.

(12)

Proof of Lemma 2. Indeed,

B(q, s) =
∞∑

j=q+1

2−j

(
j − 1

s− 1

)

and

2−j

(
j − 1

s− 1

)
= 2−s · 2−(j−s) · (j − 1) · · · (j − s + 1)

(s− 1)!

=
xs

(s− 1)!
·
(
xj−1

)(s−1) ∣∣
x=1/2

.

Taking the summation with respect to j inside the differentiation, we get

B(q, s) =
xs

(s− 1)!

⎛
⎝ ∞∑

j=q+1

xj−1

⎞
⎠

(s−1)
∣∣∣∣∣∣∣
x=1/2

=
xs

(s− 1)!

(
xq

1 − x

)(s−1)
∣∣∣∣∣
x=1/2

=
xs

(s− 1)!

s−1∑
j=0

(
s− 1

j

)
(xq)

(j) (
(1 − x)−1

)(s−1−j)

∣∣∣∣∣∣
x=1/2

= xs
s−1∑
j=0

1

j!(s− 1 − j)!
· xq−j · q · · · (q − j + 1) · (s− 1 − j)!

(1 − x)s−j

∣∣∣∣∣∣
x=1/2

,

which, after some elementary manipulation, can be shown to be equal to 2−q
∑s−1

j=0

(
q
j

)
.

This completes the proof of (11). The upper bound B(q, s) follows from this and
the well-known fact that

(
q

j−1

)
≤
(
q
j

)
iff 2j ≤ q + 1. This completes the proof of

Lemma 2.
Proof of Theorem 2. Note that for any scalar function f ∈ Hk, Ak,n(f) converges

pointwise to f with n → ∞ and that
∑n

i=1 Δk,i = Ak,n. Therefore,

f(x) =
∑
i∈Ns

+

s⊗
k=1

Δk,ik(f)(x)

for any x and any f ∈ F1,s. Here and elsewhere, by
∑

i∈Ns we mean a double sum∑∞
�=s

∑
|i|=�. Hence

f −Aq,s(f) = Eq,s(f) with Eq,s(f) :=
∑

|i|≥q+1

s⊗
k=1

Δk,ik(f).

Due to (5) and the fact that Eq,s vanishes on constant functions,

Eq,s(f) =
∑
U �=∅

∫
DU

f ′
U (tU ) Eq,s(MU (·, tU )) dtU ,
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which yields

‖(f −Aq,s(f)) ρ‖L1
≤ ‖f‖1,s · sup

t∈D
max
U �=∅

‖ρ Eq,s(MU (·, tU ))‖L1
.

Hence, to complete the proof, we only need to estimate the above supremum. For
that purpose, note that

s⊗
k=1

Δk,ik(MU (·, tU )) ≡ 0 if ik ≥ 2 for some k /∈ U.

This follows from the fact that Δk,i(1) ≡ 0 for any i ≥ 2, which, in turn, is a
consequence of the fact that Ak,i(1) ≡ 1 for any i ≥ 1. Otherwise, i.e., when ik = 1
for all k /∈ U ,

∥∥∥∥∥ρ
s⊗

k=1

Δk,ik(MU (·, tU ))

∥∥∥∥∥
L1

=
∏
k∈U

‖ρk Δk,ik(Mk(·, tk))‖L1
≤
∏
k∈U

2−ik ,

independently of t, due to Proposition 1. Therefore

‖ρ Eq,s(MU (·, tU ))‖L1
≤
∑
i

2−|i| ≤ B(q − s + |U |, |U |) ≤ B(q − s + |U |, |U |)(13)

with the summation in (13) over i ∈ N
|U | such that |i| ≥ q + 1 − (s− |U |). The first

result in the theorem is proved by showing that B(q − s + |U |, |U |) is increasing with
|U |, i.e., maxU B(q − s + |U |, |U |) = B(q, s).

Consider first q ≥ 2(s− 1). To see that B(q − s+ |U |, |U |) is increasing with |U |,
note that

B(q − s + |U | + 1, |U | + 1)

B(q − s + |U |, |U |)
=

(|U | + 1)(q − s + |U | + 1)

2|U |2

≥ q − s + |U | + 1

2|U | ≥ 1

with the last inequality due to the fact that |U |+1 ≤ s and hence |U | ≤ s−1 ≤ q−s+1.
Suppose now q < 2(s−1). To show that B(q−s+ |U |, |U |) increases with |U | also

in this case, we need to consider three different cases. Consider first |U | > q − s + 3
(i.e., 2|U | > q − s + |U | + 3). Then

B(q − s + |U | + 1, |U | + 1)

B(q − s + |U |, |U |)
=

|U | + 1

2|U |

(
q − s + |U | + 1

� q−s+|U |+2
2 �

)/(
q − s + |U |
� q−s+|U |+1

2 �

)

=
|U | + 1

|U |
2� + 1

2� + 2
> 1

with the last equality due to an extra assumption that q− s+ |U | = 2� (the proof for
odd q − s + |U | is very similar).

Consider next the case of |U | = q − s + 2. Then

B(q − s + |U | + 1, |U | + 1)

B(q − s + |U |, |U |)
=

(q − s + 3)(2q − 2s + 3)

(q − s + 2)(2q − 2s + 4)
≥ 1.
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Consider now |U | + 1 < q − s + 3. Then

B(q − s + |U | + 1, |U | + 1)

B(q − s + |U |, |U |)
=

|U | + 1

2|U |

(
q − s + |U | + 1

|U |

)/(
q − s + |U |
|U | − 1

)

=
(|U | + 1)(q − s + |U | + 1)

2|U |2 ≥ 1.

This completes the proof of the first part of the theorem.
Assume now that (4) holds. Then

s⊗
k=1

Δk,ik(MU (·, tU )) ≡ 0 if ik = 1 for some k ∈ U

as follows directly from the second part of Proposition 1. This means that the sum
in (13) is now over i ∈ N

|U | such that |i| ≥ max{q + 1 − s + |U |, 2|U |} and i ≥ 2.
Replacing i by j = i − 1, the sum becomes

2−|U |
∑

|j|≥max{q+1−s,|U |}
2−|j| = 2−|U | · B(max{q − s, |U | − 1}, |U |).(14)

Therefore, for |U | < q − s + 1 we have

‖ρ Eq,s(MU (·, tU ))‖L1
≤ 2−q−|U |+s

|U |−1∑
j=0

(
q − s

j

)
(15)

and for |U | ≥ q − s + 1 we have

‖ρ Eq,s(MU (·, tU ))‖L1
≤ 2−|U | ≤ 2−q+s−1.(16)

Since |U | ≤ s, we have to have q ≤ 2s− 1 for the latter case to happen. To estimate
the maximum of the upper bound with respect to |U |, we consider the following cases.

Case q ≥ 3(s− 1). Then, because q − s ≥ 2|U | − 3, the right-hand side of (15) is
bounded from above by s 2−q−|U |+s

(
q−s

|U |−1

)
, which can be shown to increase with |U |

as long as |U | ≤ 1 + �(q − s + 1)/3�. Since |U | ≤ s, this yields the upper bounds

‖ρ Eq,s(MU (·, tU ))‖L1 ≤ s 2−q

(
q − s

s− 1

)
,

if q ≥ 4(s− 1), and

‖ρ Eq,s(MU (·, tU ))‖L1
≤ s 2−q+s−1−
 q−s+1

3 �
(

q − s

�(q − s + 1)/3�

)
,

if q/(s− 1) ∈ [3, 4).
Case 2(s−1) < q < 3(s−1). First note that the right-hand side of (15) decreases

with |U | when |U | > (q − s)/2. This follows from the fact that the value of the
right-hand side for |U | minus the value for |U | + 1 equals

2−q−|U |−1+s

⎛
⎝|U |−1∑

j=0

(
q − s

j

)
−
(
q − s

|U |

)⎞
⎠ ≥ 0
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as claimed. Moreover, for |U | ≤ (q − s)/2, the right-hand side of (15) is bounded by
s 2−q−|U |+s

(
q−s

|U |−1

)
, which attains its maximum for |U | = 1 + �(q − s + 1)/3�. Hence

again,

‖ρ Eq,s(MU (·, tU ))‖L1 ≤ s 2−q+s−1−
 q−s+1
3 �

(
q − s

�(q − s + 1)/3�

)
.

Case q ≤ 2(s − 1). Due to (16), we need only to estimate the right-hand side
of (15) for |U | < q − s + 1. However, as in the previous case, it is bounded by
s 2−q−|U∗|+s

(
q−s

|U∗|−1

)
with |U∗| = 1 + �(q − s + 1)/3�. Since

s 2−q+s−1−
 q−s+1
3 �

(
q − s

�(q − s + 1)/3�

)
≥ 2−q+s−1,

the left-hand side of the above inequality is an upper bound on ‖ρ Eq,s(MU (·U , tU ))‖L1

also in this case. This completes the proof.
We end this section by relating the error of Aq,s to its cardinality card(Aq,s).
Theorem 3. For every s ≥ 2 and q ≥ 2(s− 1),

error(Aq,s) ≤
s exp

(
1

12(s−1)

)
(s− 1)π

(
e ln(card(Aq,s))

(s− 1)
√

2 ln(2)

)2(s−1)
1

card(Aq,s)
.(17)

Proof. Since the information used by Aq,s is nested, we know from [25, Lem. 7]
that

2q−s

(
q − 1

s− 1

)
≤ card(Aq,s) ≤ 2q−s+1

(
q − 1

s− 1

)
.(18)

Let’s represent q as q = (t + 1)(s − 1) with t ≥ 1. We apply Stirling’s formula
(n! = (n/e)n

√
2πn exp(θ/(12n)) for θ ∈ (0, π)) to the error bound from Theorem 2;

one can show that

error(Aq,s) ≤ s 2−(t+1)(s−1)

(
(t + 1)(s− 1)

s− 1

)

≤ s 2−(t+1)(s−1) ((t + 1)e)s−1

√
t + 1

t2π(s− 1)
exp

(
1

12q

)

≤ s 2−(t+1)(s−1) ((t + 1)e)s−1

√
exp

(
1

12(s−1)

)
π(s− 1)

,

with the last inequality due to the fact that t ≥ 1. Similarly,

card(Aq,s) ≤ 2t(s−1) (e(t + 1))s−1

√
exp

(
1

12(s−1)

)
π(s− 1)

.

Since x/(ln(x))2(s−1) increases for x ≥ e2(s−1), and since card(Aq,s) ≥ e2(s−1) due to
(18), we can replace card(Aq,s) by the right-hand side of the above inequality in the
following estimation:

L :=
card(Aq,s) error(Aq,s)

(ln(card(Aq,s)))2(s−1)

≤
s exp

(
1

12(s−1)

)
π(s− 1)

2−(s−1)

(
e

s− 1
g(t)

)2(s−1)

,
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with

g(t) :=
t + 1

t ln(2) + ln(t + 1)

since s−1− ln(π(s−1))/2 is positive. It is easy to verify that maxt≥1 g(t) = 1/ ln(2).
This yields

L ≤
s exp

(
1

12(s−1)

)
(s− 1)π

2−(s−1)

(
e

(s− 1) ln(2)

)2(s−1)

=
s exp

(
1

12(s−1)

)
(s− 1)π

(
e

(s− 1)
√

2 ln(2)

)2(s−1)

,

which completes the proof.

5. Extensions. In this section, we extend some of the previous results assuming
now that the functions f are from the space F = Fp,s,γ , which is the completion of
Hs with respect to the norm

‖f‖p,s,γ :=

⎛
⎝|f(c)|p +

∑
U �=∅

γ−p
s,U ‖f ′

U‖
p
Lp

⎞
⎠

1/p

=

(∑
U

γ−p
s,u‖f ′

U‖
p
Lp

)1/p

,

where p ∈ [1,∞] and γ = {γs,u}s,U is a family of nonnegative numbers, called weights.
By a convention 0/0 = 0. Of course, for p = ∞ we have ‖f‖∞,s = maxU γ−1

s,U‖f ′
U‖L∞ .

This norm differs from ‖ · ‖1,s by using Lp instead of L1-norms and by adding the
weights γs,U .

The role of γs,U is that they model how important certain variables and their
groups are. For instance, the condition of small enough γs,U means that ‖f ′

U‖Lp

cannot be too large, and γs,U = 0 implies that ‖f ′
U‖Lp = 0. Since the introduction

of weighted norms in [20], high dimensional problems with such norms have been
investigated in a number of papers; see, e.g., [15] and papers cited there. It is often the
case that if the weights are small enough, then the error in solving a high dimensional
problem is essentially no worse than that for solving a one-dimensional problem.

To stress that now a different space from F1,s is being considered, we will write
error(A;Fp,s,γ) instead error(A). When all weights equal 1, we will simply write Fp,s.
For simplicity, we assume throughout this section that (4) is satisfied and that c = 0.
Hence, in particular ak < 0 < bk.

Note that for p > 1 and unbounded D it could happen that the approximation
problem is not well defined since the corresponding embedding operator could be
unbounded. As follows from [27, Thm. 1], the problem is well defined iff

(∫ bk

ak

ψp∗

k (x) dx

)1/p∗

< ∞ ∀k,(19)

with

ψk(t) =

⎧⎪⎨
⎪⎩
∫ bk
t

ρk(x) dx for t ≥ 0,

∫ t

ak
ρk(x) dx otherwise,

(20)
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where here and elsewhere p∗ denotes the conjugate to p, i.e.,

1

p
+

1

p∗
= 1.

This is why we assume (19) throughout the rest of this paper. Of course, (19) trivially
holds when D is bounded. It also holds for p = 1 since then p∗ = ∞ and the left-hand

side of (19) should formally be replaced by ess supt≥ck

∫ bk
t

ρk(x) dx, which obviously
is equal to 1/2.

Theorem 4. The error of any algorithm A is bounded by

error(A;Fp,s,γ) ≤
(∑

U

γp∗

s,U

∫
DU

(∫
DU

hU (xU , tU ) dxU

)p∗

dtU

)1/p∗

,(21)

where

hU (xU , tU ) = ρU (xU ) |MU (xU , tU ) −A(MU (·, tU ))(xU )|.

If A is based on piecewise constant interpolation, then we have equality in (21).
Proof. To simplify the notation, we write m(xU , tU ) to denote

m(xU , tU ) := M(xU , tU ) −A(M(·, tU ))(xU ).

Of course, hU (xU , tU ) = ρU (xU ) |mU (xU , tU )|.
Suppose that p > 1. We begin with the proof of (21). Using (5), we have by

Hölder’s inequality∫
D

ρ(x) |f(x) −A(f)(x)| dx

=

∫
D

ρ(x)

∣∣∣∣∣
∑
U

∫
DU

f ′
U (tU )mU (xU , tU ) dtU

∣∣∣∣∣ dxU

≤
∑
U

∫
DU

ρU (xU )

∫
DU

|f ′
U (tU )mU (xU , tU )| dtU dxU

=
∑
U

∫
DU

|f ′
U (tU )|

∫
DU

hU (xU , tU ) dxU dtU

≤
∑
U

‖f ′
U‖Lp γ

−1
s,U

(
γp∗

s,U

∫
DU

(∫
DU

hU (xU , tU ) dxU

)p∗

dtU

)1/p∗

≤ ‖f‖p,s,γ

(∑
U

γp∗

s,U

∫
DU

(∫
DU

hU (xU , tU ) dxU

)p∗

dtU

)1/p∗

.

This proves (21) for p > 1. We now show equality when A(mU (·, tU )) is a piecewise
constant function interpolating mU (·, tU ). To that end, define

gU (tU ) := sign(tU )

(∫
DU

h(xU , tU ) dxU

)p∗−1

with sign(tU ) :=
∏
k∈U

sign(tk),

and

f̃(y) :=
∑
U

γp∗

s,U

∫
DU

gU (tU )MU (yU , tU ) dtU .
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Of course, from (5), f̃ ∈ Fp,s,γ and f̃ ′
U = γp∗

s,U gU . Since p p∗ − p = p∗, it is easy to
check that

‖f̃‖p,s,γ ,=
(∑

U

γp∗

s,U

∫
DU

(∫
DU

hU (xU , tU ) dxU

)p∗

dtU

)1/p

.

Moreover,

‖(f̃ −A(f̃)) ρ‖L1
=

∫
D

ρ(y) |f̃(y) −A(f̃)(y)| dy

=

∫
D

ρ(y)

∣∣∣∣∣
∑
U

γp∗

s,U

∫
DU

gU (tU )m(yU , tU ) dtU

∣∣∣∣∣ dy

=

∫
D

ρ(y)

∣∣∣∣∣
∑
U

γp∗

s,U

∫
DU

(∫
DU

h(xU , tU ) dxU

)p∗−1

sign(tU )m(yU , tU ) dtU

∣∣∣∣∣ dy

=
∑
U

γp∗

s,U

∫
DU

(∫
DU

h(xU , tU ) dxU

)p∗−1 ∫
DU

h(yU , tU ) dyU dtU

=
∑
U

γp∗

s,U

∫
DU

(∫
DU

hU (xU , tU ) dxU

)p∗

dtU = ‖f̃‖pp,s,γ ,

with the third-to-last equality due to the fact that

sign(tU )m(yU , tU ) = |m(yU , tU )| ≥ 0 ∀y, t.

Dividing ‖(f̃ −A(f̃)) ρ‖L1 by ‖f̃‖p,s,γ to obtain ‖f̃‖p−1
p,s,γ = ‖f̃‖p/p

∗

p,s,γ on the right com-
pletes the proof of the equality for p > 1.

For p = 1 the proof technique is the same with obvious modifications.
Let Aq,s be the algorithm from section 4 and denote

δU,iU (xU , tU ) := ΔU,iU (MU (·, tU ))(xU ) =
∏
k∈U

δk,ik(xik , tik).

From Lemma 1, we have the following proposition.
Proposition 2. Let U �= ∅ and tU ∈ DU . Then the following hold.
(i) For every xU ∈ DU , δU,iU (xU , tU ) ∈ {−1, 0, 1}.
(ii) For every x ∈ DU there exists at most one iU such that |δU,iU (xU , tU )| = 1.
(iii) For every i, the ρU -probability of the set of xU ’s with |δU,iU (xU , tU )| = 1 is

at most 2−|iU |.
(iv) If δU,iU (xU , tU ) �= 0 for some x and i, then tk ∈ [xk

ik,1
, xk

ik,2
ik−1

] for every

k ∈ U.
As in the proof of Theorem 2, let Eq,s(f) =

∑
|i|≥q+1

⊗s
k=1 Δk,ik(f). Recall that

Δi(MU (·, tU )) ≡ 0 if either ik = 1 for some k ∈ U , or ik ≥ 2 for some k /∈ U . Hence

Eq,s(MU (·, tU ))(xU ) =
∑

iU∈P (q,s,U)

δU,iU (xU , tU )

with

P (q, s, U) =
{
j ∈ N

|U |
+ : j ≥ 2, |j| ≥ q + 1 − s + |U |

}
.
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From Theorem 4, this yields

error(Aq,s,F) =

⎛
⎝∑

U �=∅
γp∗

s,U

∫
DU

bp
∗

U (tU ) dtU

⎞
⎠

1/p∗

,

where

bU (tU ) :=

∣∣∣∣∣∣
∫
DU

ρU (xU )
∑

iU∈P (q,s,U)

δU,iU (xU , tU ) dxU

∣∣∣∣∣∣ .(22)

Due to its definition (20), ψk(t) converges to zero with t → bk and/or t → ak.
Moreover, from (iv) of Proposition 2, we know that

δU,iU (xU , tU ) �= 0 implies ψk(tk) ≥ 2−ik for every k ∈ U.

This means that we can replace the set P (q, s, U) by the even smaller set

P (q, s, U, tU ) =
{
j ∈ N

|U |
+ : j ≥ 2, |j| ≥ q + 1 − s + |U |, and 2−jk ≤ ψk(tk), ∀ k ∈ U

}
.

This leads to

bU (tU ) ≤
∑

j∈P (q,s,U,tU )

2−j

≤ min
{

2|U | ψU (tU ) , 2−|U | B(max{q − s, |U | − 1}, |U |)
}
,

where, as always, ψU (tU ) =
∏

k∈U ψk(tk). We summarize this in the following propo-
sition.

Proposition 3. Let (4) hold. Then for any s ≥ 2 and any q ≥ s,

error(Aq,s,γ ;Fp,s,γ) =

⎛
⎝∑

U �=∅
γp∗

s,U

∫
DU

bp
∗

U (tU ) dtU

⎞
⎠

1/p∗

.

Moreover,

bU (tU ) ≤ min

{
2|U | ψU (tU ) ,

B(max{q − s, |U | − 1}, |U |)
2|U |

}
.

For p > 1 and unbounded D, the above error bound is quite complicated, due to

the presence of integrals of bp
∗

U . Suppose now that D is bounded, say

D = [0, 1]s.

Then the integrals of b∗U can be replaced by B(max{q − s, |U | − 1}, |U |) 2−|U | leading
to the following upper bound:

error(Aq,s;Fp,s,γ) ≤

⎛
⎝∑

U �=∅

(
2−|U | γs,U B(max{q − s, |U | − 1}, |U |)

)p∗
⎞
⎠

1/p∗

.(23)
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Of course, if p = 1, then p∗ = ∞ and the bound (23) takes the form

error(Aq,s;F1,s) ≤ max
U �=∅

2−|U | γs,U B(max{q − s, |U | − 1}, |U |),

which coincides with the bound from section 4 for the case when (3) holds. For p > 1,
(23) can be further estimated from above, leading to

error(Aq,s;Fp,s,γ) ≤ 2s/p
∗

max
U �=∅

2−|U | γs,U B(max{q − s, |U | − 1}, |U |).

This means that error upper bounds from section 4 also hold for p > 1 modulo
the multiplicative factor 2s/p

∗
. In particular, we have the following consequence of

Theorem 3.
Theorem 5. Let p > 1, γs,U ≡ 1, and D = [0, 1]s. Then for every s ≥ 2 and

q ≥ 2(s− 1),

error(Aq,s;Fp,s) ≤
s exp

(
1

12(s−1)

)
, 21/p∗

(s− 1)π

(
e ln(card(Aq,s))

(s− 1) 21/(2p∗) ln(2)

)2(s−1)
1

card(Aq,s)
.

6. Integration problem. In this section, we briefly discuss the problem of ap-
proximating weighted integrals

Iρ(f) =

∫
D

f(x) ρ(x) dx

by algorithms (often called quadratures) Q of the form Q(f) =
∑n

i=1 f(xi) gi. The
worst case error of Q (with respect to Fp,s) is defined by

error(Q;Fp,s, Int) := sup
‖f‖p,s≤1

|Iρ(f) −Q(f)|.

Consider now the following quadrature

Qq,s(f) := Iρ(Aq,s(f)).(24)

It is easy to see that

Qq,s =
∑
|i|≤q

s⊗
k=1

(Qk,ik −Qk,ik−1) , where Qk,i(f) = 2−i

⎛
⎝f(ck) +

2i−1∑
j=1

f(xk
i,j)

⎞
⎠

xk
i,j defined by (7). Clearly,

error(Qq,s;Fp,s, Int) ≤ error(Aq,s;Fp,s).

Hence all error bounds for Aq,s obtained in the previous sections also hold for Qq,s.
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Abstract. Several a posteriori error estimators for mortar mixed finite element discretizations of
elliptic equations are derived. A residual-based estimator provides optimal upper and lower bounds
for the pressure error. An efficient and reliable estimator for the velocity and mortar pressure error
is also derived, which is based on solving local (element) problems in a higher-order space. The
interface flux-jump term that appears in the estimators can be used as an indicator for driving an
adaptive process for the mortar grids only.

Key words. mixed finite element, mortar finite element, nonmatching grids, a posteriori error
estimates, adaptive mesh refinement
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1. Introduction. We consider the second order elliptic problem written as a
system of two first order equations

u = −K∇p in Ω,(1.1)

∇ · u = f in Ω,(1.2)

p = g on ΓD,(1.3)

u · ν = 0 on ΓN ,(1.4)

where Ω ⊂ Rd, d = 2 or 3, is a multiblock domain with a boundary ∂Ω = ΓD ∪ ΓN ,
ΓD ∩ ΓN = ∅, measure (ΓD) > 0, ν is the outward unit normal on ∂Ω, and K is a
symmetric, uniformly positive definite tensor satisfying, for some 0 < k0 ≤ k1 < ∞,

(1.5) k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ ∀x ∈ Ω ∀ξ ∈ Rd.

In flow in porous media the above system models single-phase flow where p is the
pressure, u is the Darcy velocity, and K represents the permeability divided by the
viscosity.

A number of papers in recent years have studied the numerical solution of the
above and related problems on multiblock domains with nonmatching grids across the
interfaces. This growing interest is driven by the flexibility provided by the multiblock
paradigm. Complicated geometries can be modeled as unions of relatively simple
subdomains with locally constructed grids. Local features of the solution such as
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corner singularities or large gradients can be resolved by finer grids in the local region.
Large scale features such as geological faults and layers in subsurface flow can be
modeled with nonmatching grids. Moreover, the resulting algebraic problem can be
efficiently solved via parallel domain decomposition algorithms.

In a multiblock formulation, the equations are imposed locally on each subdomain
and appropriate interface matching conditions are enforced on the interfaces. The use
of mortar finite elements to impose the interface conditions is a popular approach due
to its excellent stability and accuracy. For the use of mortars, the reader is referred
to [10, 8, 20] and references therein for Galerkin finite element and finite volume
methods, and to [40, 3, 9] in the context of mixed finite element methods.

An integral part of any successful computational method is the development of a
posteriori error estimators and adaptive mesh refinement strategies. Although there
is an enormous amount of literature on a posteriori error estimation and adaptivity
on conforming grids (seminal works include [5, 7, 2, 35]), few papers deal with this
issue for mortar finite element methods. In the case of Galerkin finite elements, error
estimators have been developed in [37, 38, 30]. Even fewer results are available for
the mortar mixed finite element method. Goal-oriented estimates and adaptivity are
developed in [6]. Computational results from [36, 29] indicate that a judicious choice
of mortar grids can lead to an accurate solution at low computational cost, but no
rigorous justification is given. The goal of this paper is to develop a posteriori error
estimators and an adaptive mesh refinement strategy for the mortar mixed finite
element method.

Previous works on error estimation for mixed finite element methods on conform-
ing grids include [11, 12, 17, 24, 39, 25]. In [11], mesh-dependent norms are utilized to
obtain optimal residual-based error estimators. Estimators based on superconvergence
error estimates are developed in [12, 24]. In [17, 39], the Helmholtz decomposition
is used to derive optimal residual-based error estimators in the natural pressure and
velocity norms. Hierarchical estimates and implicit estimates based on solving local
problems are also investigated in [39]. Only the three-dimensional results are given in
[25], where a duality argument is employed to obtain residual-based estimates. How-
ever, the velocity bounds derived there depend on a saturation assumption that may
not hold in general.

In this paper we derive a posteriori error estimates that provide lower and upper
bounds for the pressure, velocity, and mortar error in two and three dimensions.
According to the widely accepted terminology, an estimator is referred to as reliable if
it provides an upper bound of the error, whereas it is called efficient if it gives a lower
bound. We employ a duality-type argument to obtain an efficient and reliable residual-
based estimator for the pressure error. In addition to the usual element residual
terms, the estimator involves a flux-jump term and a mortar pressure difference term
on subdomain interfaces. A closely related estimator of the velocity and mortar error
is also derived, which provides an optimal upper bound, but suboptimal (yet sharp)
lower bound. We then proceed to derive an optimal efficient and reliable implicit
estimator for the velocity based on solving local (element) problems in a higher-order
space. Throughout the paper we make several reasonable saturation assumptions
which are motivated by known a priori error estimates.

It was observed in [36, 29] that varying the mortar degrees of freedom while
keeping the subdomain grids fixed has a substantial effect on the convergence of
the interface algorithm employed to solve the algebraic system. At the same time
mortar grids that are too coarse lead to deterioration of the accuracy of the method.
Therefore, finding “optimal” mortar grids for given subdomain grids is an important
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question. The flux-jump term that appears in all estimators provides a stand-alone
indicator of the nonconformity error in the mortar discretization. It can be used to
drive an adaptive mesh refinement process for the mortar grids.

The rest of the paper is organized as follows. In the next section the mortar
mixed finite element method is defined along with its equivalent interface formula-
tion. In section 3, the residual-based error estimators are derived and analyzed. The
implicit estimator for the velocity is developed in section 4. Computational results
are presented in section 5, followed by some remarks and conclusions in section 6.

2. Formulation of the method and preliminaries. We will make use of the
following standard notation. For a subdomain G ⊂ Rd, the L2(G) inner product (or
duality pairing) and norm are denoted by (·, ·)G and ‖·‖G, respectively, for scalar and
vector valued functions. The Sobolev spaces W k

p (G), k ∈ R, 1 ≤ p ≤ ∞, are defined
in the usual way [1] with the usual norm ‖ · ‖k,p,G. Let ‖ · ‖k,G be the norm of the
Hilbert space Hk(G) = W k

2 (G). We omit G in the subscript if G = Ω. For a section
of a subdomain boundary S ⊂ ∪n

i=1∂Ωi we write 〈·, ·〉S and ‖ · ‖S for the L2(S) inner
product (or duality pairing) and norm, respectively.

We assume that problem (1.1)–(1.4) is H2-regular, i.e., there exists a positive
constant C depending only on K and Ω such that

(2.1) ‖p‖2 ≤ C(‖f‖ + ‖g‖3/2,ΓD
).

We refer the reader to [23, 26, 21] for sufficient conditions for H2-regularity.
To give the weak formulation of (1.1)–(1.4) we recall the usual velocity space [16]

H(div; Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)}

with a norm

‖v‖H(div) = (‖v‖2 + ‖∇ · v‖2)1/2

and define

V̄ = {v ∈ H(div; Ω) : v · ν = 0 on ΓN}.

A weak solution of (1.1)–(1.4) is u ∈ V̄, p ∈ L2(Ω) such that

(K−1u,v) = (p,∇ · v) − 〈g,v · ν〉ΓD
, v ∈ V̄,(2.2)

(∇ · u, w) = (f, w), w ∈ L2(Ω).(2.3)

It is well known (see, e.g., [16, 32]) that (2.2) and (2.3) have a unique solution.
Let Ω = ∪n

i=1Ωi be a union of nonoverlapping subdomains. Let

Γi,j = ∂Ωi ∩ ∂Ωj , Γ = ∪n
i,j=1Γi,j , Γi = ∂Ωi ∩ Γ = ∂Ωi\∂Ω.

Let

Vi = {v ∈ H(div; Ωi) : v · νi ∈ L2(∂Ωi) and v · νi = 0 on ∂Ωi ∩ ΓN}, V =

n⊕
i=1

Vi,

Wi = L2(Ωi), W =

n⊕
i=1

Wi = L2(Ω), M = L2(Γ).
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It is easy to see that if the solution of (2.2) and (2.3) satisfies u · ν|Γ ∈ L2(Γ) and
p ∈ H1(Ω), then for 1 ≤ i ≤ n

(K−1u,v)Ωi
= (p,∇ · v)Ωi

− 〈λ,v · νi〉Γi
− 〈g,v · ν〉∂Ωi∩ΓD

, v ∈ Vi,(2.4)

(∇ · u, w)Ωi = (f, w)Ωi , w ∈ Wi,(2.5)
n∑

i=1

〈u · νi, μ〉Γi = 0, μ ∈ M,(2.6)

where λ = p|Γ. (2.4)–(2.6) imply that (u, p, λ) ∈ V ×W ×M satisfy

(2.7) A(u, p, λ;v, w, μ) = L(v, w, μ) ∀ (v, w, μ) ∈ V ×W ×M,

where

A(u, p, λ;v, w, μ)

=

n∑
i=1

(
(K−1u,v)Ωi − (p,∇ · v)Ωi + 〈λ,v · νi〉Γi + σ(∇ · u, w)Ωi − σ〈u · νi, μ〉Γi

)

and

L(v, w, μ) = σ(f, w) − 〈g,v · ν〉ΓD
.

Here σ = 1 or σ = −1. If σ = −1, A(·; ·) is a symmetric bilinear form, which we
denote by As(·; ·). If σ = 1, we denote A(·; ·) by Ac(·; ·) and note that

Ac(v, w, μ;v, w, μ) = (K−1v,v);

thus Ac(·; ·) is nonsymmetric, but coercive. Note that the solution does not depend
on the choice of σ.

Let {Th,i}h be a family of finite element partitions of Ωi, 1 ≤ i ≤ n. Let, for any
E ∈ Th,i, hE = diam(E) and let

hi = max
E∈Th,i

hE , h = max
1≤i≤n

hi.

Define ρE to be the largest diameter of a ball contained in E. We require that each
subdomain grid satisfies the nondegeneracy condition

max
E∈Th,i

hE

ρE
≤ c0,

where the constant c0 is independent of hi. The partitions Th,i and Th,j may be
nonmatching along Γi,j . Let Th = ∪n

i=1Th,i and let Eh be the union of all interior
edges (faces) not including the interfaces and the outer boundary. Let

Vh,i ×Wh,i ⊂ Vi ×Wi

be any of the usual mixed finite element spaces (i.e., the RTN spaces [34, 31, 27],
BDM spaces [15], BDFM spaces [14], BDDF spaces [13], or CD spaces [18]). The
order of the spaces is assumed to be the same on every subdomain. Let

Vh =

n⊕
i=1

Vh,i, Wh =

n⊕
i=1

Wh,i.
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Note that this choice leads to a nonconforming approximation since the normal com-
ponents of vectors in Vh do not have to be continuous across Γ. Throughout the paper
we will abuse notation when using the H(div)-norm. In particular, for v ∈ H(div; Ωi),
i = 1, . . . , n,

‖v‖H(div) =

(
‖v‖2 +

n∑
i=1

‖∇ · v‖2
Ωi

)1/2

,

and for v ∈ H(div;E), E ∈ Th,

‖v‖H(div) =

(
‖v‖2 +

∑
E∈Th

‖∇ · v‖2
E

)1/2

.

For all of the above spaces

∇ · Vh,i = Wh,i

and there exists a projection operator Πh,i of (H1(Ωi))
d onto Vh,i satisfying for any

q ∈ (H1(Ωi))
d

(∇ · (Πh,iq − q), w)Ωi
= 0, w ∈ Wh,i,(2.8)

〈(q − Πh,iq) · νi,v · νi〉∂Ωi = 0, v ∈ Vh,i.(2.9)

Let Πh :
⊕

(H1(Ωi))
d → Vh be such that Πhq|Ωi

= Πh,iq for all q ∈
⊕

(H1(Ωi))
d.

Let the mortar interface mesh Th,i,j be a quasi-uniform finite element partition
of Γi,j and let T Γ,h = ∪1≤i<j≤nTh,i,j . For any τ ∈ Th,i,j , let

Eτ = ∪(E ∈ Th : ∂E ∩ τ �= ∅).

We will assume that there exist constants c1 and c2 such that

(2.10) c1hE ≤ hτ ≤ c2hE ∀E ∈ Eτ ,

where the notation hS = diam(S) is used. Denote by Mh,i,j ⊂ L2(Γi,j) the mortar
space on Γi,j containing at least either the continuous or discontinuous piecewise
polynomials of degree k + 1 on Th,i,j , where k is associated with the degree of the
polynomials in Vh · ν. More precisely, if d = 3 and e is a triangle of the mesh, we
take Mh,i,j |e = Pk+1(e), the set of polynomials of degree less than or equal to k + 1
on e. If e is a rectangle, we take Mh,i,j |e = Qk+1(e), the set of polynomials on e for
which the degree in each variable separately is less than or equal to k + 1. Now let

Mh =
⊕

1≤i<j≤n

Mh,i,j

be the mortar finite element space on Γ.
In the mortar mixed finite element method for approximating (2.4)–(2.6) we seek

uh ∈ Vh, ph ∈ Wh, and λh ∈ Mh such that, for 1 ≤ i ≤ n,

(K−1uh,v)Ωi = (ph,∇ · v)Ωi − 〈λh,v · νi〉Γi − 〈g,v · νi〉∂Ωi∩ΓD
, v ∈ Vh,i,(2.11)

(∇ · uh, w)Ωi = (f, w)Ωi , w ∈ Wh,i,(2.12)
n∑

i=1

〈uh · νi, μ〉Γi = 0, μ ∈ Mh.(2.13)
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(2.13) enforces weak (with respect to the mortar space Mh) continuity of the flux
across the block interfaces. Existence and uniqueness of a solution of (2.11)–(2.13)
are shown in [40, 3] along with optimal convergence and superconvergence for both
pressure and velocity under the assumption that for all μ ∈ Mh,i,j there exists a
constant C independent of h such that

(2.14) ‖μ‖Γi,j
≤ C(‖Qh,iμ‖Γi,j + ‖Qh,jμ‖Γi,j ),

where Qh,i : L2(∂Ωi) → Vh,i ·νi|∂Ωi is the L2-orthogonal projection satisfying for any
φ ∈ L2(∂Ωi)

(2.15) 〈φ−Qh,iφ,v · νi〉Γi
= 0 ∀v ∈ Vh,i.

Remark 2.1. Condition (2.14) imposes a limit on the number of mortar degrees
of freedom and is easily satisfied in practice [40, 28].

We recall some a priori error estimates from [3] which will later motivate some
of the saturation assumptions needed in the a posteriori error analysis. Herein l is
associated with the degree of the polynomials in Wh and ‖·‖dh

is a mortar space norm
defined in the next subsection. Throughout the paper C denotes a generic constant
independent of h.

Theorem 2.1. For the solution of (2.11)–(2.13) if (2.14) holds, then

‖∇ · (u − uh)‖ ≤ C

n∑
i=1

‖∇ · u‖r,Ωih
r, 1 ≤ r ≤ l + 1,

‖u − uh‖ ≤ C

n∑
i=1

(‖p‖r+1,Ωi
+ ‖u‖r,Ωi)h

r, 1 ≤ r ≤ k + 1,

‖p− ph‖ ≤ C

n∑
i=1

(‖p‖r+1,Ωi + ‖u‖r,Ωi + ‖∇ · u‖r,Ωi)h
r, 1 ≤ r ≤ min(k + 1, l + 1),

‖λ− λh‖dh
≤ C

n∑
i=1

(‖p‖r+1,Ωi + ‖u‖r,Ωi)h
r, 1 ≤ r ≤ k + 1.

2.1. Interface formulation. Method (2.11)–(2.13) can be reduced to an equiv-
alent interface (mortar) problem. We recall this interface formulation from [22, 40, 3],
as it will be used in estimating the mortar error.

Define dh : L2(Γ) × L2(Γ) → R for ϕ, μ ∈ L2(Γ) by

(2.16) dh(ϕ, μ) =

n∑
i=1

dh,i(ϕ, μ) = −
n∑

i=1

〈u∗
h(ϕ) · νi, μ〉Γi

,

where (u∗
h(ϕ), p∗h(ϕ)) ∈ Vh ×Wh solve, for 1 ≤ i ≤ n,

(K−1u∗
h(ϕ),v)Ωi = (p∗h(ϕ),∇ · v)Ωi − 〈ϕ,v · νi〉Γi , v ∈ Vh,i,(2.17)

(∇ · u∗
h(ϕ), w)Ωi

= 0, w ∈ Wh,i.(2.18)

Define gh : L2(Γ) → R by

gh(μ) =

n∑
i=1

gh,i(μ) =

n∑
i=1

〈ūh · νi, μ〉Γi ,
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where (ūh, p̄h) ∈ Vh ×Wh solve, for 1 ≤ i ≤ n,

(K−1ūh,v)Ωi = (p̄h,∇ · v)Ωi − 〈g,v · νi〉∂Ωi∩ΓD
, v ∈ Vh,i,

(∇ · ūh, w)Ωi
= (f, w)Ωi

, w ∈ Wh,i.

Then (uh, ph, λh) satisfies

dh(λh, μ) = gh(μ) ∀μ ∈ Mh, uh = u∗
h(λh) + ūh, ph = p∗h(λh) + p̄h.

It is easy to see from (2.16) and (2.17) that

(2.19) dh,i(ϕ,ϕ) = (K−1u∗
h(ϕ),u∗

h(ϕ))Ωi
,

which implies that dh(·, ·) is positive semidefinite in M × M and, assuming (2.14),
positive definite in Mh ×Mh. We define the norm in Mh:

‖μ‖dh
:= dh(μ, μ)1/2.

It is shown in [40, 28] for RT0 rectangular elements and very general hanging interface
nodes and mortar grid configurations satisfying (2.14) that

(2.20)
∑

τ∈T Γ,h

‖μ‖2
1/2,τ ≤ Cdh(μ, μ) ∀μ ∈ Mh.

The proofs in [40, 28] can be generalized in a relatively straightforward way to the
other mixed finite element spaces under consideration and to higher-order elements.

The following construction will also be useful in the analysis of the mortar error.
Define, for ϕ ∈ L2(Γ),

uh(ϕ) = u∗
h(ϕ) + ūh, ph(ϕ) = p∗h(ϕ) + p̄h.

We note that (uh(ϕ), ph(ϕ)) ∈ Vh ×Wh satisfy, for 1 ≤ i ≤ n,

(K−1uh(ϕ),v)Ωi
= (ph(ϕ),∇ · v)Ωi

− 〈ϕ,v · ν〉Γi

− 〈g,v · ν〉∂Ωi∩ΓD
, v ∈ Vh,i,(2.21)

(∇ · uh(ϕ), w)Ωi
= (f, w)Ωi

, w ∈ Wh,i.(2.22)

In particular, uh(λh) = uh and ph(λh) = ph.
The a priori error bounds from Theorem 2.1 motivate the following assumption

on the mortar error.
Saturation assumption. There exists a constant γ such that

(2.23) |||λ− λh||| :=

( ∑
τ∈T Γ,h

h−1
τ ‖λ− λh‖2

τ

)1/2

≤ γ‖u − uh‖.

For further justification of (2.23), note that |||λ−λh||| is closely related to the discrete
H1/2(Γ) norm and, by (2.20), to ‖λ− λh‖dh

. Now, assuming that

‖u − uh(λ)‖ ≤ γ1‖u − uh‖,

which is reasonable, since uh(λ) is the numerical solution based on the true interface
data, we have, using (2.19),

C‖λ− λh‖dh
≤ ‖u∗

h(λ) − u∗
h(λh)‖ = ‖uh(λ) − uh(λh)‖ = ‖uh(λ) − uh‖

≤ ‖u − uh(λ)‖ + ‖u − uh‖ ≤ (1 + γ1)‖u − uh‖.
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Remark 2.2. Condition (2.14) is necessary for the solvability and accuracy of
the method and for the validity of (2.23). See [40, 28] for examples of grids that
satisfy (2.14). Note that (2.14) excludes the case of matching subdomain grids and
a mortar grid that coincides with them. In the case of matching subdomain grids,
the mortar grid has to be at least twice as coarse as their trace on the interface.
Another possibility in the case of matching grids is to use the standard Lagrange
multipliers from the hybrid mixed method [4], in which case the conforming mixed
method solution is recovered. This trivial case is not a special case of the mortar
mixed finite element method, since the mortar spaces consist of polynomials of one
degree higher than the Lagrange multipliers.

2.2. Residual representation and orthogonality of error. Using the nota-
tion from (2.7), the solution of (2.11)–(2.13) (uh, ph, λh) ∈ Vh ×Wh ×Mh satisfies

(2.24) A(uh, ph, λh;v, w, μ) = L(v, w, μ) ∀ (v, w, μ) ∈ Vh ×Wh ×Mh.

Our goal is to derive a posteriori estimates of the error functions

ξ = u − uh, η = p− ph, and δ = λ− λh.

Using (2.7), (ξ, η, δ) ∈ V ×W ×M satisfies the residual equation

(2.25)

A(ξ, η, δ;v, w, μ) = L(v, w, μ) −A(uh, ph, λh;v, w, μ) ∀ (v, w, μ) ∈ V ×W ×M,

which, together with (2.24), implies the orthogonality condition

(2.26) A(ξ, η, δ;v, w, μ) = 0 ∀ (v, w, μ) ∈ Vh ×Wh ×Mh.

2.3. Approximation properties. We present below some of the approximation
properties of the finite element spaces. In addition to the operators defined above, we
will make use of the interpolant Ih in the mortar space Mh, and the L2-projection
onto Wh, defined as

(w − ŵ, wh) = 0 ∀wh ∈ Wh.

The following approximation properties hold true. For all E ∈ Th, τ ∈ T Γ,h, e ∈
Th,i|∂Ωi , and smooth enough functions v, w, and μ,

‖v − Πhv‖E ≤ ChE‖v‖1,E ,(2.27)

‖(v − Πhv) · νE‖∂E ≤ Chs
E‖v · νE‖s,∂E , s = 0, 1/2,(2.28)

‖w − ŵ‖E ≤ ChE‖w‖1,E ,(2.29)

‖μ− Ihμ‖τ ≤ Ch3/2
τ ‖μ‖3/2,τ ,(2.30)

‖μ−Qh,iμ‖e ≤ Che‖μ‖1,e.(2.31)

Bound (2.27) can be found in [16, 33]; bounds (2.28)–(2.31) are standard interpolation
and L2-projection approximation results [19].

2.4. Some useful inequalities. In the analysis below we will make use of the
trace inequalities

(2.32) ∀E ∈ Th, e ∈ ∂E, ‖φ‖e ≤ C(h
−1/2
E ‖φ‖E + h

1/2
E ‖∇φ‖E) ∀φ ∈ H1(E),



A POSTERIORI ESTIMATES FOR MORTAR MIXED METHODS 1029

(2.33) ∀E ∈ Th, e ∈ ∂E, ‖φ‖1/2,e ≤ C‖φ‖1,E ∀φ ∈ H1(E),

(2.34) ∀E ∈ Th, e ∈ ∂E, ‖v · ν‖e ≤ Ch
−1/2
E ‖v‖E ∀v ∈ Vh,

and the well-known inequality

(2.35) ab ≤ εa2 +
1

4ε
b2 ∀ε > 0.

3. Residual-based error estimators. In this section we derive upper and
lower bounds on the error in terms of local residuals. The resulting estimators are often
called explicit estimators as they involve only residual terms that depend explicitly on
the input data and the computed solution and do not require the solution of additional
finite element problems.

3.1. Upper bounds. Let, for all E ∈ Th, τ ∈ T Γ,h,

ω2
E = ‖K−1uh + ∇ph‖2

Eh
2
E + ‖f −∇ · uh‖2

Eh
2
E + ‖λh − ph‖2

∂E∩ΓhE ,(3.1)

ω2
τ = ‖[uh · ν]‖2

τh
3
τ ,(3.2)

where for any v ∈ V, v|Ωi
= vi,

[v · ν]|Γi,j
= vi · νi + vj · νj

is the jump operator. We first derive an upper bound on the pressure error η.
Theorem 3.1. There exists a constant C independent of h such that

‖η‖2 ≤ C

{ ∑
E∈Th

ω2
E +

∑
τ∈T Γ,h

ω2
τ +

∑
e∈Th|ΓD

‖g −Qhg‖2
ehe

}
.

Proof. The proof is based on a duality argument. Consider the auxiliary problem

−∇ ·K∇w = η in Ω,

w = 0 on ΓD,

K∇w · ν = 0 on ΓN .

The elliptic regularity assumption (2.1) implies that

(3.3) ‖w‖2 ≤ C‖η‖.

Let v = −K∇w and μ = w|Γ. With (2.7), (v, w, μ) satisfy

As(v, w, μ; ṽ, w̃, μ̃) = −(η, w̃) ∀ (ṽ, w̃, μ̃) ∈ V ×W ×M.

Then, using (2.26) and (2.26),

‖η‖2 = −As(v, w, μ; ξ, η, δ) = −As(ξ, η, δ;v, w, μ)

= −As(ξ, η, δ;v − Πhv, w − ŵ, μ− Ihμ)

= As(uh, ph, λh;v − Πhv, w − ŵ, μ− μ̂) + (f, w − ŵ) + 〈g, (v − Πhv) · ν〉ΓD

=
∑
E∈Th

(
(K−1uh,v − Πhv)E − (ph,∇ · (v − Πhv))E − (∇ · uh, w − ŵ)E

)

+

n∑
i=1

(
〈λh, (v − Πhv) · νi〉Γi

+ 〈uh · νi, μ− Ihμ〉Γi

)

+ (f, w − ŵ) + 〈g, (v − Πhv) · ν〉ΓD
.
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Applying Green’s formula and using (2.9),

‖η‖2 =
∑
E∈Th

(
(K−1uh + ∇ph,v − Πhv)E + (f −∇ · uh, w − ŵ)E

)

+
n∑

i=1

(
〈λh − ph, (v − Πhv) · νi〉Γi + 〈uh · νi, μ− Ihμ〉Γi

)

+ 〈g −Qhg, (v − Πhv) · ν〉ΓD
.

Using the Cauchy–Schwartz inequality and the approximation properties (2.27)–(2.31),

‖η‖2 ≤ C

{ ∑
E∈Th

(
‖K−1uh + ∇ph‖EhE‖v‖1,E + ‖f −∇ · uh‖EhE‖w‖1,E

+ ‖λh − ph‖∂E∩Γh
1/2
E ‖v‖1,E

)
+

∑
τ∈T Γ,h

‖[uh · ν]‖τh3/2
τ ‖μ‖3/2,τ

+
∑

e∈Th|ΓD

‖g −Qhg‖eh1/2
e ‖v‖1/2,e

}
.

An application of the discrete Cauchy–Schwartz inequality, the trace inequality (2.33),
and (3.3) completes the proof.

Remark 3.1. Because of the approximation property (2.31) of Qh the last term
in the bound of Theorem 3.1 is of higher order than the other terms. Therefore, its
effect becomes negligible for small h.

To derive a bound on ξ = u − uh we need a saturation assumption. Let V′
h,

W ′
h, and M ′

h be the finite element spaces of one order higher than Vh, Wh, and Mh,
respectively. Let u′

h ∈ V′
h, p′h ∈ W ′

h, and λ′
h ∈ M ′

h be the mortar mixed finite element
solution in these higher-order spaces (see (2.11)–(2.13)). The a priori error estimates
from Theorem 2.1 motivate the following.

Saturation assumption. There exist constants β < 1, βdiv < 1, and βp < ∞ such
that

‖u − u′
h‖ ≤ β‖u − uh‖,(3.4)

‖∇ · (u − u′
h)‖ ≤ βdiv‖∇ · (u − uh)‖,(3.5)

‖p− p′h‖ ≤ βp‖p− ph‖.(3.6)

Let

ξ′ = u′
h − uh, η′ = p′h − ph, and δ′ = λ′

h − λh.

Similar to (2.26) and (2.26), we have that (ξ′, η′, δ′) ∈ V′
h × W ′

h × M ′
h satisfy the

residual equation

A(ξ′, η′, δ′;v′
h, w

′
h, μ

′
h) = L(v′

h, w
′
h, μ

′
h)−A(uh, ph, λh;v′

h, w
′
h, μ

′
h)

∀ (v′
h, w

′
h, μ

′
h) ∈ V′

h ×W ′
h ×M ′

h

(3.7)

and the orthogonality condition

(3.8) A(ξ′, η′, δ′;v, w, μ) = 0 ∀ (v, w, μ) ∈ Vh ×Wh ×Mh.

The bounds on ξ and δ will be expressed in terms of weighted local residuals, for
all E ∈ Th, τ ∈ T Γ,h,

ω̃2
E = h−2

E ω2
E = ‖K−1uh + ∇ph‖2

E + ‖f −∇ · uh‖2
E + ‖λh − ph‖2

∂E∩Γh
−1
E ,

ω̃2
τ = h−2

τ ω2
τ = ‖[uh · ν]‖2

τhτ .
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Theorem 3.2. Assume that the saturation assumptions (2.23) and (3.4) hold.
Then there exists a constant C independent of β such that

‖ξ‖2
H(div) ≤

C

(1 − β)2

{ ∑
E∈Th

ω̃2
E +

∑
τ∈T Γ,h

ω̃2
τ +

∑
e∈Th|ΓD

‖g −Qhg‖2
eh

−1
e

}
.

Proof. The bound on ‖∇ · ξ‖ is trivial. Indeed, for all E ∈ Th,

‖∇ · ξ‖E = ‖f −∇ · uh‖E ≤ ω̃E .

To bound ‖ξ‖, since (3.4) implies that

(3.9) ‖ξ‖ ≤ 1

1 − β
‖ξ′‖,

it is enough to bound ‖ξ′‖. Using (3.8) and (3.7),

‖K−1/2ξ′‖2 = Ac(ξ′, η′, δ′; ξ′, η′, δ′) = Ac(ξ′, η′, δ′; ξ′ − Πhξ
′, η′, δ′)

= Lc(ξ′ − Πhξ
′, η′, δ′) −Ac(uh, ph, λh; ξ′ − Πhξ

′, η′, δ′)

= −
∑
E∈Th

(
(K−1uh, ξ

′ − Πhξ
′)E − (ph,∇ · (ξ′ − Πhξ

′))E + (∇ · uh, η
′)E

)

−
n∑

i=1

(
〈λh, (ξ

′ − Πhξ
′) · νi〉Γi − 〈uh · νi, δ′〉Γi

)

+ (f, η′) − 〈g, (ξ′ − Πhξ
′) · ν〉ΓD

.

The use of Green’s formula and (2.9) gives

‖K−1/2ξ′‖2 = −
∑
E∈Th

(
(K−1uh + ∇ph, ξ

′ − Πhξ
′)E + (∇ · uh − f, η′)E

)

−
n∑

i=1

(
〈λh − ph, (ξ

′ − Πhξ
′) · νi〉Γi − 〈uh · νi, δ′〉Γi

)

− 〈g −Qhg, (ξ
′ − Πhξ

′) · ν〉ΓD
= T1 + · · · + T5.

(3.10)

For T1, using the Cauchy–Schwartz inequality, (2.27), the inverse inequality, and
(2.35), we have

(3.11) |(K−1uh + ∇ph, ξ
′ − Πhξ

′)E | ≤ C

(
1

4ε1
‖K−1uh + ∇ph‖2

E + ε1‖ξ′‖2
E

)
.

Similarly for T2,

(3.12) |(∇ · uh − f, η′)E | ≤
1

2
‖∇ · uh − f‖2

E +
1

2
‖η′‖2

E .

To bound T3, the use of (2.28) with s = 0 gives, for e ∈ Γi, e ∈ ∂E,

(3.13) |〈λh − ph, (ξ
′ − Πhξ

′) · νi〉e| ≤ C

(
1

4ε3
‖λh − ph‖2

eh
−1
E + ε3‖ξ′‖2

E

)
.

Similarly for T5,

(3.14) |〈g −Qhg, (ξ
′ − Πhξ

′) · ν〉e| ≤ C

(
1

4ε5
‖g −Qhg‖2

eh
−1
e + ε5‖ξ′‖2

E

)
.
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Finally for T4, using (2.35),

∣∣∣∣∣
n∑

i=1

〈uh · νi, δ′〉Γi

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

τ∈T Γ,h

〈[uh · ν], δ′〉τ

∣∣∣∣∣∣ ≤
∑

τ∈T Γ,h

h1/2
τ ‖[uh · ν]‖τh−1/2

τ ‖δ′‖τ

≤
∑

τ∈T Γ,h

(
1

4ε4
‖[uh · ν]‖2

τhτ + ε4‖δ′‖2
τh

−1
τ

)
.

(3.15)

Combining (1.5) with (3.10)–(3.15) for small enough ε1, ε3, and ε5,

‖ξ′‖2 ≤ C

{ ∑
E∈Th

(‖K−1uh + ∇ph‖2
E + ‖f −∇ · uh‖2

E + ‖λh − ph‖2
∂E∩Γh

−1
E + ‖η′‖2

E)

+
∑

τ∈T Γ,h

(
1

4ε4
‖[uh · ν]‖2

τhτ + ε4‖δ′‖2
τh

−1
τ

)
+

∑
e∈Th|ΓD

‖g −Qhg‖2
eh

−1
e

}
.

(3.16)

Because of (3.6), the bound on ‖η‖ from Theorem 3.1 applies to ‖η′‖ as well. It
remains to estimate |||δ′|||2 =

∑
τ∈T Γ,h ‖δ′‖2

τh
−1
τ . Using (2.23) (with a constant γ′ in

the case of the higher-order spaces) and (3.4), we have

|||δ′||| ≤ |||λ− λh||| + |||λ− λ′
h||| ≤ γ‖u − uh‖ + γ′‖u − u′

h‖
≤ (γ + γ′β)‖u − uh‖.

(3.17)

Using (3.17), (3.9) and taking ε4 in (3.16) small enough completes the proof.

3.2. Lower bounds. Next, we establish lower bounds on the error, which in-
dicate that the residual error estimators can be used effectively in an adaptive mesh
refinement algorithm.

Theorem 3.3. There exists a constant C independent of h such that

(3.18)
∑
E∈Th

ω2
E +

∑
τ∈T Γ,h

ω2
τ ≤ C

(
‖η‖2 +

∑
E∈Th

h2
E‖ξ‖2

H(div;E) +
∑

τ∈T Γ,h

hτ‖δ‖2
τ

)

and, assuming that the saturation assumption (2.23) holds,

(3.19)
∑
E∈Th

ω̃2
E +

∑
τ∈T Γ,h

ω̃2
τ ≤ C

( ∑
E∈Th

h−2
E ‖η‖2

E + ‖ξ‖2
H(div)

)
.

Moreover, the following local bounds hold for any E ∈ Th, e ∈ ∂E, and τ ∈ T Γ,h:

(3.20) ‖K−1uh + ∇ph‖2
Eh

2
E + ‖f −∇ · uh‖2

Eh
2
E ≤ C(‖η‖2

E + ‖ξ‖2
H(div;E)h

2
E),

(3.21) ‖[uh · ν]‖2
τh

3
τ ≤ C‖ξ‖2

H(div;Eτ )h
2
τ ,

(3.22) ‖λh − ph‖2
ehE ≤ C(‖η‖2

E + ‖ξ‖2
H(div;E)h

2
E + ‖δ‖2

ehE).
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E1
τ1

E1
τ3

E1
τ5

Γ

E2
τ1

E2
τ3

E2
τ5

τ5τ1 τ3

Fig. 3.1. Construction of Eτk .

Proof. It has been shown in [17], using a bubble function argument, that

‖K−1uh + ∇ph‖EhE ≤ C(‖η‖E + ‖ξ‖EhE),

which, combined with

‖f −∇ · uh‖EhE = ‖∇ · ξ‖EhE ,

gives (3.20). To prove (3.21), consider any τ ∈ T Γ,h. Let τ be divided by the
intersection of the two traces of Th on Γ into elements τ1, . . . , τl. Because of (2.10)
there exists c > 0 such that

(3.23) hτk ≥ chτ , k = 1, . . . , l.

Next, let us translate any point in τk in both directions orthogonal to Γ until an
interior edge (face) of an element of Th is reached. Let Eτk be the union of all such
trajectories. Figure 3.1 illustrates this construction in the case of triangular grids in
R2, where the neighboring domains are Ω1 and Ω2. Note that

Eτk = E1
τk

∪ E2
τk
,

where Ei
τk

, i = 1, 2, is a subset of an element of Th,i. Let ϕk be a continuous piecewise
linear bubble function such that 0 ≤ ϕk(x) ≤ 1 in Eτk , ϕk = 1 at the gravity center
of τk and ϕk = 0 on ∂Eτk . Such a function can be easily constructed by decomposing
Eτk into triangles if d = 2 or tetrahedra if d = 3. We also need an extension of
[uh ·ν]τk to Eτk . Given ψ ∈ H1/2(τk), define Rψ ∈ H1(Eτk) such that Rψ is constant
along lines perpendicular to Γ. Let

φk = ϕkR[uh · ν]τk ∈ H1(Eτk).

Note that φk = 0 on ∂Eτk . Using a scaling argument similar to the one in [35] it can
be shown that

‖φk‖τk ≤ ‖[uh · ν]‖τk ,(3.24)

‖∇φk‖Eτk
≤ Ch−1

τk
‖φk‖Eτk

,(3.25)

‖φk‖Eτk
≤ Ch1/2

τk
‖φk‖τk ,(3.26)

C‖[uh · ν]‖2
τk

≤ 〈φk, [uh · ν]〉τk .(3.27)
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Using (3.27) and that [u · ν] = 0,

C‖[uh · ν]‖2
τk

≤ 〈uh,1 · ν1 + uh,2 · ν2, φk〉τk
= 〈(uh,1 − u) · ν1, φk〉τk + 〈(uh,2 − u) · ν2, φk〉τk .

(3.28)

Using Green’s formula for the first term on the right-hand side, we have

∣∣〈ξ1 · ν1, φk〉τk
∣∣ =

∣∣(∇φk, ξ1)E1
τk

+ (φk,∇ · ξ1)E1
τk

∣∣
≤ ‖∇φk‖E1

τk
‖ξ1‖E1

τk
+ ‖φk‖E1

τk
‖∇ · ξ1‖E1

τk

≤ Ch−1
τk

‖φk‖E1
τk
‖ξ1‖E1

τk
+ ‖φk‖E1

τk
‖∇ · ξ1‖E1

τk

≤ C(h−1/2
τk

‖ξ1‖E1
τk

+ h1/2
τk

‖∇ · ξ1‖E1
τk

)‖[uh · ν]‖τk ,

(3.29)

where we have used (3.25) for the second inequality and (3.26), (3.24) for the third
inequality. The second term on the right-hand side of (3.28) can be bounded similarly
in terms of ‖ξ2‖H(div;E2

τk
). A combination of (3.28), (3.29), and (3.23) gives (3.21).

It remains to show (3.22). By the triangle inequality,

(3.30) ‖λh − ph‖e ≤ ‖λh − λ‖e + ‖p− ph‖e.

For the second term on the right-hand side we employ the trace inequality (2.32)

‖p− ph‖e ≤ C
(
h
−1/2
E ‖p− ph‖E + h

1/2
E ‖∇(p− ph)‖E

)
≤ C

(
h
−1/2
E ‖p− ph‖E + h

1/2
E ‖K−1uh + ∇ph‖E + h

1/2
E ‖K−1(u − uh)‖E

)
≤ C

(
h
−1/2
E ‖η‖E + h

1/2
E ‖ξ‖H(div;E)

)
,

(3.31)

using (3.20) for the last inequality. A combination of (3.30), (3.31), and (2.10) com-
pletes the proof of (3.22). The global bound (3.18) follows immediately from (3.20)
to (3.22), using (2.10), and so does (3.19), using (2.23).

Remark 3.2. The last two terms in (3.18) are of higher order, so ‖η‖ dominates
for small enough h. Therefore, this bound, combined with Theorem 3.1, implies that∑

E∈Th
ω2
E +

∑
τ∈T Γ,h ω2

τ is an efficient and reliable estimator for the pressure error.
Because of the negative power of h in the first term on the right-hand side of (3.19),
the estimator

∑
E∈Th

ω̃2
E +

∑
τ∈T Γ,h ω̃2

τ provides only a suboptimal bound for the
velocity error.

4. Error estimators based on solving local problems. In this section we
derive an implicit error estimator which requires solving local (element) boundary
value problems. These problems approximate the local residual equations satisfied
by the true error. The motivation for considering implicit estimators comes from
the unknown generic constants that appear in the explicit estimators, as well as the
suboptimality in the lower bound for the velocity error. We show that the implicit
estimator provides both optimal upper and lower bounds of the error.

4.1. Global approximation to the error. Similar to the approach in [39],
we first construct a global approximation to the error based on higher-order finite
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element spaces. Using (2.4)–(2.6), the true error satisfies the residual equations:

(K−1ξ,v)Ωi
− (η,∇ · v)Ωi

+ 〈δ,v · νi〉Γi
= −〈g,v · ν〉∂Ωi∩ΓD

− (K−1uh,v)Ωi + (ph,∇ · v)Ωi − 〈λh,v · νi〉Γi ≡ r(v), v ∈ Vi,(4.1)

(∇ · ξ, w)Ωi = (f −∇ · uh, w)Ωi , w ∈ Wi,(4.2)
n∑

i=1

〈ξ · νi, μ〉Γi
= −

n∑
i=1

〈uh · νi, μ〉Γi
, μ ∈ M.(4.3)

Recall from the previous section that V′
h × W ′

h × M ′
h are the mortar mixed finite

element spaces of one order higher than Vh×Wh×Mh and (ξ′, η′, δ′) ∈ V′
h×W ′

h×M ′
h

is the finite element approximation to (ξ, η, δ) satisfying

(K−1ξ′,v)Ωi − (η′,∇ · v)Ωi + 〈δ′,v · νi〉Γi = r(v), v ∈ V′
h,i,(4.4)

(∇ · ξ′, w)Ωi = (f −∇ · uh, w)Ωi , w ∈ W ′
h,i,(4.5)

n∑
i=1

〈ξ′ · νi, μ〉Γi = −
n∑

i=1

〈uh · νi, μ〉Γi , μ ∈ M ′
h.(4.6)

Note that (4.4)–(4.6) implies that (u′
h = uh + ξ′, p′h = ph + η′, λ′

h = λh + δ′) is the
finite element approximation to (u, p, λ) in V′

h ×W ′
h ×M ′

h satisfying

(K−1u′
h,v)Ωi

= (p′h,∇ · v)Ωi
− 〈λ′

h,v · νi〉Γi
− 〈g,v · νi〉∂Ωi∩ΓD

, v ∈ V′
h,i,(4.7)

(∇ · u′
h, w)Ωi

= (f, w)Ωi , w ∈ W ′
h,i,(4.8)

n∑
i=1

〈u′
h · νi, μ〉Γi

= 0, μ ∈ M ′
h.(4.9)

The saturation assumptions (3.4) and (3.5) imply

(1 − β)‖ξ‖ ≤ ‖ξ′‖ ≤ (1 + β)‖ξ‖,(4.10)

(1 − βdiv)‖∇ · ξ‖ ≤ ‖∇ · ξ′‖ ≤ (1 + βdiv)‖∇ · ξ‖,(4.11)

so it is enough to estimate ξ′.

4.2. Local (element) approximation to the error. For any E ∈ Th, the true
error satisfies the local equations:

(K−1ξ,v)E − (η,∇ · v)E = rE(v) − 〈p,v · νE〉∂E , v ∈ V(E),(4.12)

(∇ · ξ, w)E = (f −∇ · uh, w)E , w ∈ W (E),(4.13)

where

rE(v) = −(K−1uh,v)E + (ph,∇ · v)E .

We construct a higher-order local approximation of the error by solving element sub-
problems: find ψ′ ∈ V′

h(E) and θ′ ∈ W ′
h(E) such that

(K−1ψ′,v)E − (θ′,∇ · v)E = rE(v) − 〈pA,v · νE〉∂E , v ∈ V′
h(E),(4.14)

(∇ · ψ′, w)E = (f −∇ · uh, w)E , w ∈ W ′
h(E),(4.15)
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where pA = g on ΓD, pA = λh on ∂E ∩ Γ, and pA = p̃h on ∂E ∩ Eh, where p̃h is the
Lagrange multiplier for Vh and Wh defined as

(4.16) 〈p̃h,v · νE〉∂E = −(K−1uh,v)E + (ph,∇ · v)E , v ∈ Vh(E).

Let p̃′ be the Lagrange multiplier for the higher-order spaces V′
h and W ′

h satisfying

(4.17) 〈p̃′,v · νE〉∂E = −(K−1u′
h,v)E + (p′h,∇ · v)E , v ∈ V ′

h(E).

We make the following.
Saturation assumption. There exists a constant σ such that

(4.18)

( ∑
e∈Eh

h−1
e ‖p̃′ − p̃h‖2

e

)1/2

≤ σ‖u − uh‖.

Assumption (4.18) is motivated by the a priori error estimate for the Lagrange mul-
tiplier [16]

( ∑
e∈Eh

h−1
e ‖p̄− p̃h‖2

e

)1/2

≤ Chk+1,

where p̄ is the L2-projection of p onto Vh · ν|Eh
.

Theorem 4.1. Assume that the saturation assumptions (2.23), (3.4), (3.5), and
(4.18) hold. Then there exist constants C1 and C2 independent of β and βdiv such
that

C1

(
‖ψ′‖H(div) +

∑
τ∈T Γ,h

‖[uh · ν]‖τh1/2
τ

)
≤ ‖ξ‖H(div)

≤ C2

1 − βmax

(
‖ψ′‖H(div) +

∑
τ∈T Γ,h

‖[uh · ν]‖τh1/2
τ

)
,

(4.19)

where βmax = max{β, βdiv}.
Proof. We first note that (4.5) and (4.15) imply that on every E ∈ Th,

(4.20) ∇ · ψ′ = ∇ · ξ′.

Taking v = ψ′ − ξ′ in (4.14) and summing over all elements, we have

∑
E∈Th

(
(K−1(ψ′ − ξ′), ψ′ − ξ′)E − (θ′ − η′,∇ · (ψ′ − ξ′))E

)

=
∑
E∈Th

(
− (K−1ξ′, ψ′ − ξ′)E + (η′,∇ · (ψ′ − ξ′))E

+ rE(ψ′ − ξ′) − 〈pA, (ψ′ − ξ′) · νE〉∂E
)

=
∑
E∈Th

(
− (K−1u′

h, ψ
′ − ξ′)E + (p′h,∇ · (ψ′ − ξ′))E − 〈p̃h, (ψ′ − ξ′) · νE〉∂E∩Eh

− 〈g, (ψ′ − ξ′) · ν〉∂E∩ΓD
− 〈λh, (ψ

′ − ξ′) · νE〉∂E∩Γ

)
=

∑
E∈Th

(
〈p̃′ − p̃h, (ψ

′ − ξ′) · νE〉∂E∩Eh
+ 〈λ′

h − λh, (ψ
′ − ξ′) · νE〉∂E∩Γ

)
,

(4.21)
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using (4.7) and (4.17) for the last equality. For the first term on the right-hand side,
using the saturation assumption (4.18) and (2.34), we have

∣∣∣∣
∑
E∈Th

〈p̃′ − p̃h, (ψ
′ − ξ′) · νE〉∂E∩Eh

∣∣∣∣ ≤
∑
e∈Eh

h−1/2
e ‖p̃′ − p̃h‖eh1/2

e ‖(ψ′ − ξ′) · νe‖e

≤ C‖ξ‖‖ψ′ − ξ′‖.

(4.22)

For the second term on the right-hand side of (4.21) we write, using (2.34), (2.23),
and (3.17),

∣∣∣∣
∑
E∈Th

〈λ′
h − λh, (ψ

′ − ξ′) · νE〉∂E∩Γ

∣∣∣∣ =

∣∣∣∣
n∑

i=1

〈δ′, (ψ′ − ξ′) · νi〉Γi

∣∣∣∣
≤

∑
τ∈T Γ,h

h−1/2
τ ‖δ′‖τh1/2

τ ‖[(ψ′ − ξ′) · ν]‖τ

≤ |||δ′||| ‖ψ′ − ξ′‖ ≤ C‖ξ‖‖ψ′ − ξ′‖.

(4.23)

Combining (4.21)–(4.23) and using (4.20), we obtain

‖ψ′ − ξ′‖ ≤ C‖ξ‖,
which implies, using the triangle inequality and (4.10),

(4.24) ‖ψ′‖ ≤ C‖ξ‖.
Taking w = ∇ · ψ′ in (4.15) immediately gives

‖∇ · ψ′‖ ≤ ‖∇ · ξ‖,
which, combined with (4.24), implies

‖ψ′‖H(div) ≤ C‖ξ‖H(div).

Combining the above bound with (3.21) completes the proof of the left inequality in
(4.19). To show the right inequality in (4.19), taking v = ξ′ in (4.4), and using (4.14),
we have

(4.25) (K−1(ξ′ − ψ′), ξ′) =

n∑
i=1

(
(η′ − θ′,∇ · ξ′)Ωi

− 〈δ′, ξ′ · νi〉Γi

)
.

For the first term on the right-hand side of (4.25) we use (4.20) and the argument
from (4.21) to obtain

n∑
i=1

(η′ − θ′,∇ · ξ′)Ωi =
∑
E∈Th

(η′ − θ′,∇ · ψ′)E

=
(
K−1(ξ′ − ψ′), ψ′)− ∑

E∈Th

(
〈p̃′ − p̃h, ψ

′ · νE〉∂E∩Eh

+ 〈λ′
h − λh, ψ

′ · νE〉∂E∩Γ

)
,

(4.26)

which, combined with (4.25), implies(
K−1(ξ′ − ψ′), ξ′ − ψ′) = −〈δ′, ξ′ · νi〉Γi

−
∑
E∈Th

(
〈p̃′ − p̃h, ψ

′ · νE〉∂E∩Eh
+ 〈λ′

h − λh, ψ
′ · νE〉∂E∩Γ

)
.(4.27)
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For the first term on the right-hand side we have, using (4.6),

(4.28)

∣∣∣∣
n∑

i=1

〈δ′, ξ′ · νi〉Γi

∣∣∣∣ =

∣∣∣∣
n∑

i=1

〈δ′,uh · νi〉Γi

∣∣∣∣ ≤ ε1‖ξ‖2 +
∑

τ∈T Γ,h

1

4ε1
‖[uh · ν]‖2

τhτ ,

where the inequality is obtained using the argument in (3.15) and (3.17). The
last two terms on the right-hand side of (4.27) can be bounded similarly to (4.22)
and (4.23):

(4.29)∣∣∣∣
∑
E∈Th

(〈p̃′ − p̃h, ψ
′ · νE〉∂E∩Eh

+ 〈λ′
h − λh, ψ

′ · νE〉∂E∩Γ)

∣∣∣∣ ≤ C

(
ε2‖ξ‖2 +

1

4ε2
‖ψ′‖2

)
.

Combining (4.27)–(4.29),

‖ξ′ − ψ′‖2 ≤ C

(
(ε1 + ε2)‖ξ‖2 +

∑
τ∈T Γ,h

1

4ε1
‖[uh · ν]‖2

τhτ +
1

4ε2
‖ψ′‖2

)
,

which implies, using the triangle inequality, (4.10), and taking ε1 and ε2 small enough,

‖ξ‖ ≤ C

1 − β

(
‖ψ′‖ +

∑
τ∈T Γ,h

‖[uh · ν]‖τh1/2
τ

)
.

An application of (4.11) and (4.20) completes the proof.

5. Numerical results. In this section we test the performance of the residual-
based error estimator. The estimator is used as a local error indicator that drives
an adaptive mesh refinement process. The following algorithm describes the adaptive
procedure.

Algorithm.

1. Solve the problem on a coarse (both subdomain and mortar) grid.
2. For each subdomain Ωi

(a) Compute

ωi =

( ∑
E∈Th,i

ω2
E +

∑
τ∈T Γi,h

ω2
τ

)1/2

.

(b) If ωi > 0.5 max1≤j≤n ωj , refine Th,i.
(c) If any neighboring subdomain grid has been refined two times more than

Ωi, refine Th,i.
3. For each interface Γi,j , if either Ωi or Ωj has been refined, refine Th,i,j .
4. Solve the problem on the refined grid. If either the desired error tolerance or

the maximum refinement level has been reached, exit; otherwise go to step 2.
Several comments are in order. First, we employ the pressure error estimator

based on ωE and ωτ , defined in (3.1) and (3.2), since it provides an efficient and
reliable estimate of the L2 pressure error, due to Theorems 3.1 and 3.3. Second,
the refinement rule 2(c) is needed to reduce the effect of discretization error due to
large ratios between grid sizes in neighboring subdomains. Third, according to rule 3,
mortar grids are refined if either adjacent subdomain grid is refined.

In the examples below, the subdomains are discretized by the lowest-order
Raviart–Thomas spaces. Discontinuous piecewise linear mortar spaces are used on
the interfaces.



A POSTERIORI ESTIMATES FOR MORTAR MIXED METHODS 1039

pres
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1.142
1.0278
0.9136
0.7994
0.6852
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0.3426
0.2284
0.1142

pres
17.1968
16.0504
14.9039
13.7575
12.611
11.4646
10.3181
9.1717
8.02525
6.8788
5.73235
4.5859
3.43945
2.293
1.14655

Fig. 5.1. Computed pressure on the fourth grid level for examples 1 and 2.
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Fig. 5.2. Convergence of pressure and velocity error for example 1.

We first illustrate the above algorithm for several two-dimensional problems. In
all examples the domain is the unit square, decomposed into 6 × 6 subdomains. The
coarse grid in each subdomain is 2×2 with a single mortar element on each interface.
In the first two examples we test problems with boundary layers. The true pressure
solution is

p(x, y) = 1000x y e−k(x2+y2),

where k = 100 in example 1 and k = 10 in example 2. In both cases K = I. The
computed pressure after three refinements is shown in Figure 5.1. We note that in
both cases the grids are appropriately refined along the boundary layers. In the
second example the exponential drop is less steep. This causes an extended boundary
layer, which is resolved by a strip of fine subdomain grids along the boundary. In
Figure 5.2, the pressure and velocity errors in example 1 are plotted as functions
of the total number of finite elements. The convergence of the error for all other
examples is similar and is not shown. We observe that the adaptive solution needs
about 20 times fewer elements to provide the same accuracy.
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Fig. 5.3. Computed solution on the fourth grid level for example 3. Left: pressure on the full
grid. Right: pressure and velocity near the singularity.
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Fig. 5.4. Computed solution on the fourth grid level for example 4. Left: pressure on the full
grid. Right: pressure and velocity zoom.

In the next example, motivated by the modeling flow in heterogeneous porous
media, we test a problem with a discontinuous permeability tensor K. The domain
is divided into four subregions by the lines x = 0.5 and y = 0.5. The permeability
is K = 100I in the lower-left and upper-right regions and K = I in the other two
regions. Dirichlet boundary conditions p = 1 on the left and p = 0 on the right and
no-flow boundary conditions on the top and bottom force the flow from left to right.
It is known for the true solution that p ∈ H1+α for some 0 < α < 1 with singularity
occurring at the cross-point. The computed solution after three refinements is shown
in Figure 5.3. As expected the grids are finest near the singularity and are also refined
in the low permeability region to resolve the high pressure gradient. Some of the grids
in the high permeability region are refined as well, due to the refinement rule 2(c).

Finally, a three-dimensional example is presented. The unit cube is divided into
4 × 4 × 3 subdomains. The true pressure

p = 1000 e−10(x2+y2+z2)
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exhibits a steep exponential decay near the origin. The computed pressure and
velocity on the fourth grid level are given in Figure 5.4. The steep pressure gradient
and large velocity are well resolved by the fine computational grids near the origin.

6. Conclusions. In this paper, several two- and three-dimensional a posteriori
error estimators for mortar mixed finite element methods for elliptic equations have
been derived. A residual-based error estimator provides optimal upper and lower
bounds for the pressure error. A closely related error estimator for the velocity gives
an optimal upper bound, but suboptimal lower bound. The negative power of h
that appears is due to the different order of derivatives involved in the L2-norm and
the H(div)-norm. An efficient and reliable implicit estimator for the velocity is also
derived, which is based on solving local (element) problems. All estimators include a
term that measures the jump of flux across subdomain interfaces. This term provides a
measure of nonconformity in the mortar discretization. In cases where the subdomain
grids are fixed and optimal mortar grids need to be obtained, this flux-jump term
can be used to drive an adaptive process for the mortar grids independently of the
subdomain grids.

Acknowledgment. The authors thank Wolfgang Bangerth for his useful
comments.
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Abstract. The gauge–Uzawa FEM is a new first order fully discrete projection method which
combines advantages of both the gauge and Uzawa methods within a variational framework. A
time step consists of a sequence of d + 1 Poisson problems, d being the space dimension, thereby
avoiding both the incompressibility constraint as well as dealing with boundary tangential derivatives
as in the gauge method. This allows for a simple finite element discretization in space of any order
in both two and three dimensions. This first part introduces the method for the Navier–Stokes
equations of incompressible fluids and shows unconditional stability and error estimates for both
velocity and pressure via a variational approach under realistic regularity assumptions. Several
numerical experiments document performance of the gauge–Uzawa FEM and compare it with other
projection methods.
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1. Introduction. Given an open bounded polygon (or polyhedron) Ω in R
d with

d = 2 (or 3), we consider the time-dependent Navier–Stokes equations

ut + (u · ∇)u + ∇p− μ�u = f in Ω,

div u = 0 in Ω,

u(x, 0) = u0 in Ω

(1.1)

with a vanishing Dirichlet boundary condition u = 0 on ∂Ω and a pressure mean-value∫
Ω
p = 0. This system models the dynamics of an incompressible viscous Newtonian

fluid. The viscosity μ = Re−1 is the reciprocal of the Reynolds number. The un-
knowns are a vector function u (velocity) and a scalar function p (pressure).

The incompressibility condition div u = 0 in (1.1) leads to a saddle point struc-
ture, which requires compatibility between the discrete spaces for u and p [1, 2, 10]
(inf-sup condition). To circumvent this difficulty, projection methods have been stud-
ied since the late 1960s which exploit the time dependence in (1.1) [4, 9, 11, 18, 21,
24, 25]. However, such methods

• yield momentum equations inconsistent with the first equation in (1.1);
• impose artificial boundary conditions on pressure (or related variables), which are

responsible for boundary layers and reduced accuracy [4, 9];
• require sometimes knowing a suitable initial pressure which is incompatible with

the elliptic nature of the Lagrange multiplier p and equation div u = 0 [11, 18];
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• are often studied without space discretization [3, 4, 18, 20, 21, 25], and the ensuing
analysis may not apply to full discretizations;

• often require unrealistic regularity assumptions in their analysis, particularly so for
fully discrete schemes; for instance, utt ∈ L∞(H2), uttt ∈ L∞(H1), ptt ∈ L∞(H2),
pttt ∈ L∞(L2) are required in [11] for a Chorin finite element method, and similar
strong assumptions are made in [27] for a gauge finite difference method.

The gauge method is a projection method, due to Osedelets [17] and E and Liu [7],
meant to circumvent these difficulties. It introduces new variables a and φ (gauge)
such that u = a + ∇φ and couple them via the boundary condition u = 0. The
method has been studied in [27] using asymptotic methods and in [16] employing
variational techniques. The boundary coupling is responsible for accuracy degradation
in problems with singular solutions (due to reentrant corners), as will be illustrated
below. It also makes the use of finite element methods (FEM) problematic for space
discretization. In this paper, we construct a gauge–Uzawa FEM (GU-FEM) which
inherits some beneficial properties of both the gauge method and the Uzawa method
and which avoids dealing with boundary derivatives. We also prove that the fully
discrete method is unconditionally stable and derive error estimates for both velocity
and pressure under realistic regularity requirements.

1.1. The gauge–Uzawa finite element method. To motivate the new method
we start from the gauge method of Oseledets [17] and E and Liu [7]; see also [16, 19].
Let φ be an auxiliary scalar variable, the so-called gauge variable, and a be an unknown
vector such that u = a + ∇φ. If φ and p satisfy the heat equation ∂tφ− μΔφ = −p,
then the momentum and incompressibility equations become

∂ta + (u · ∇)u − μ�a = f in Ω,

−�φ = div a in Ω.

This formulation is equivalent to (1.1) at the PDE level. We are now free to choose
boundary conditions for the nonphysical variables a and φ for as long as u = 0
is enforced. Hereafter, we employ a Neumann condition on φ which, according to
[7, 16, 19, 27], is the most advantageous:

∂νννφ = 0, a · ννν = 0, a · τττ = −∂τττφ;

ννν and τττ are the unit vectors in the normal and tangential directions, respectively.
Upon discretizing in time via the backward Euler method [7, 27] and a semi-implicit
treatment of the convection term, we end up with the following unconditionally stable
method [16, 19].

Algorithm 1 (gauge method). Start with φ0 = 0 and a0 =u0. Repeat the steps.
Step 1: Find an+1 as the solution of

an+1 − an

τ
+ (un · ∇)(an+1 + ∇φn) − μ�an+1 = f(tn+1) in Ω,

an+1 · ννν = 0, an+1 · τττ = −∂τττφ
n on ∂Ω.

(1.2)

Step 2: Find φn+1 as the solution of

−�φn+1 = div an+1 in Ω,

∂νννφ
n+1 = 0 on ∂Ω.
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Step 3: Update un+1 according to

un+1 = an+1 + ∇φn+1.(1.3)

We point out that the momentum equation is linear in an+1, and that the explicit
boundary condition an+1 · τττ = −∂τττφ

n is crucial to decouple the equations for an+1

and φn+1. Since this formulation is consistent with (1.1), except for un+1 · τττ =
∂τττ (φ

n+1 − φn), normal mode analysis can be used to show full accuracy for smooth
solutions [3, 20]. However, several deficiencies of this algorithm are now apparent.
• The boundary term ∂τττφ

n is nonvariational and thus difficult to implement within
a finite element context, especially in three dimensions.

• The computation of ∂τττφ
n, which involves numerical differentiation, yields loss of

accuracy and is problematic at corners of ∂Ω where τττ is not well defined. This is
remarkably important for reentrant corners as illustrated in the comparisons below.

• The computation of pn+1 = μΔφn+1 − τ−1(φn+1 −φn) is also unstable. This yields
a reduced rate of convergence or lack of convergence altogether [16, 19, 27].

• Numerical experiments indicate that the polynomial degree for φ must be of higher
order than that for p [19]. A suitable combination of finite element spaces for
(a,u, φ, p) is continuous piecewise polynomials (P2,P2,P3,P1), which is consistent
with (1.3) and the previous expression for pn+1. This computation is, however,
rather costly since φ is just an auxiliary variable without intrinsic interest [19].

The purpose of this paper is to construct and study the gauge–Uzawa FEM, which
overcomes these shortcomings without losing advantages of the gauge method. We
start by introducing a new vector variable ûn+1 having zero boundary values

ûn+1 = an+1 + ∇φn.

Inserting this into (1.2), we readily get

ûn+1 − un

τ
+ (un · ∇)ûn+1 − μ�ûn+1 + μ∇�φn = f(tn+1) in Ω.(1.4)

To deal with the third order term ∇�φn, which is a source of trouble due to lack
of commutativity of the differential operators at the discrete level, we introduce the
variable sn+1 = �φn+1 and note the connection with the Uzawa iteration:

sn+1 = �φn+1 = −div an+1 = �φn − div ûn+1 = sn − div ûn+1.(1.5)

If we also set ρn+1 = φn+1 − φn, then

−�ρn+1 = −�(φn+1 − φn) = div ûn+1.(1.6)

Combining (1.4), (1.5), and (1.6) we arrive at the discrete-time gauge–Uzawa method.
In order to introduce the finite element discretization we need further notation.

Let Hs(Ω) be the Sobolev space with s derivatives in L2(Ω), set L2(Ω) = (L2(Ω))d

and Hs(Ω) = (Hs(Ω))d, where d = 2 or 3, and denote by L2
0(Ω) the subspace of

L2(Ω) of functions with vanishing mean value. We indicate with ‖·‖s the norm in
Hs(Ω) and with 〈· , ·〉 the inner product in L2(Ω). Let T = {K} be a shape-regular
quasi-uniform partition of Ω of mesh size h into closed elements K [1, 2, 10]. The
vector and scalar finite element spaces are

Wh := {vh ∈ L2(Ω) : vh|K ∈ P(K) ∀K ∈ T}, Vh := Wh ∩ H1
0(Ω),

Ph := {qh ∈ L2
0(Ω) ∩ C 0(Ω) : qh|K ∈ Q(K) ∀K ∈ T},
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where P(K) and Q(K) are spaces of polynomials with degree bounded uniformly
with respect to K ∈ T [2, 10]. We stress that the space Ph is composed of continuous
functions for (1.6) to make sense. This implies the crucial equality

〈div vh , qh〉 = −〈vh , ∇qh〉 ∀vh ∈ Vh, qh ∈ Ph.

Using the following discrete counterpart of the form N(u,v,w) = 〈(u · ∇)v , w〉:

Nh(uh,vh,wh) =
1

2
〈(uh · ∇)vh , wh〉 −

1

2
〈(uh · ∇)wh , vh〉,(1.7)

we are ready to write the gauge–Uzawa finite element method.

Algorithm 2 (gauge–Uzawa FEM). Start with s0
h = 0 and u0

h as a solution of〈
u0
h , wh

〉
=

〈
u0 , wh

〉
for all wh ∈ Vh.

Step 1: Find ûn+1
h ∈ Vh as the solution of

τ−1
〈
ûn+1
h − un

h , wh

〉
+ Nh(un

h, û
n+1
h ,wh) + μ

〈
∇ûn+1

h , ∇wh

〉
− μ 〈snh , div wh〉 =

〈
f(tn+1) , wh

〉
∀wh ∈ Vh.

(1.8)

Step 2: Find ρn+1
h ∈ Ph as the solution of

〈
∇ρn+1

h , ∇ψh

〉
=

〈
div ûn+1

h , ψh

〉
∀ψh ∈ Ph.(1.9)

Step 3: Update sn+1
h ∈ Ph according to

〈
sn+1
h , qh

〉
= 〈snh , qh〉 −

〈
div ûn+1

h , qh
〉

∀qh ∈ Ph.(1.10)

Step 4: Update un+1
h ∈ Vh + ∇Ph according to

un+1
h = ûn+1

h + ∇ρn+1
h .(1.11)

We note that un+1
h is a discontinuous function across interelement boundaries and

that, in light of (1.9), un+1
h is discrete divergence free in the sense that

〈
un+1
h , ∇ψh

〉
= 0 ∀ψh ∈ Ph.(1.12)

In addition, the discrete pressure pn+1
h ∈ Ph can be computed via

pn+1
h = μsn+1

h − τ−1ρn+1
h .(1.13)

Consequently, the ensuing momentum equations for either (ûn+1, pn) or (un+1, pn+1)
are fully consistent with (1.1), a distinctive feature of this new formulation:

τ−1
〈
ûn+1
h − ûn

h , wh

〉
+ Nh(un

h, û
n+1
h ,wh) + μ

〈
∇ûn+1

h , ∇wh

〉
− 〈pnh , div wh〉 =

〈
f(tn+1) , wh

〉
∀wh ∈ Vh.

(1.14)

1.2. Comparison with other projection methods. We now compare the
gauge–Uzawa FEM of Algorithm 2 with the original Chorin method [4, 25], the
Chorin–Uzawa method [18], and the gauge method of Algorithm 1 [7, 16, 19] us-
ing finite elements of degree 2 for u, û,a, of degree 1 for p, s, ρ, and of degree 3 for φ.
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Fig. 1.1. Error decay vs. number of degrees of freedom for four projection methods; the errors
are measured in L2(L2) and L2(H1) for velocity and L2(L2) for pressure. Velocity and pressure do
not always converge for the gauge method, even though we use the best finite element combination
(P2,P1,P3) for (u, p, φ). The gauge–Uzawa FEM exhibits a superior performance overall. Numbers
in parentheses are the experimental orders of convergence.

We consider the L-shaped domain Ω = ((−1, 1) × (−1, 1)) − ([0, 1) × (−1, 0]) and the
corresponding time-dependent singular solution of the Stokes equation (Nh = 0) [26]

u(r, θ) =
3 − cos(5t)

4
rα

[
cos(θ)ψ′(θ) + (1 + α) sin(θ)ψ(θ)
sin(θ)ψ′(θ) − (1 + α) cos(θ)ψ(θ)

]
,

p(r, θ) = −3 − cos(5t)

4
rα−1 (1 + α)2ψ′(θ) + ψ′′′(θ)

1 − α
,

where ω = 3π
2 , α = 0.544,

ψ(θ) =
sin((1 + α)θ) cos(αω)

1 + α
− cos((1 + α)θ) +

sin((α− 1)θ) cos(αω)

1 − α
+ cos((α− 1)θ),

and T = 5. This example is not covered by theory because (u, p)(·, t) /∈ H2(Ω)×H1(Ω)
due to α < 1 (see Lemma 2.1); it provides, however, quite strong computational
support to GU-FEM and hints at the need for further analysis. The initial mesh and
time steps are τ = h = 1/8 and are subsequently halved for every experiment.

Figure 1.1 clearly shows the superior performance of the gauge–Uzawa FEM,
particularly so in regard to pressure approximation for which the gauge method fails
to converge. These experiments, as well as those in section 7, were carried out within
the software platform ALBERT of Schmidt and Siebert [22].

1.3. The main results. We now summarize our theoretical results of the rest
of this paper for the gauge–Uzawa FEM. In section 3 we prove stability.
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Theorem 1.1 (stability). The gauge–Uzawa FEM is unconditionally stable in
the sense that, for all τ > 0, the following a priori bound holds:

∥∥uN+1
h

∥∥2

0
+

N∑
n=0

∥∥un+1
h − un

h

∥∥2

0
+

μτ

2

N∑
n=0

∥∥∇ûn+1
h

∥∥2

0

+ 2

N∑
n=0

∥∥∇ρn+1
h

∥∥2

0
+ μτ

∥∥sN+1
h

∥∥2

0
≤

∥∥u0
h

∥∥2

0
+ Cτ

N∑
n=0

∥∥f(tn+1)
∥∥2

−1
.

(1.15)

We then study the rate of convergence of various unknowns under appropriate
assumptions A1–A6 described in section 2. In section 4 we prove error estimates for
velocity.

Theorem 1.2 (error estimates for velocity). If A1–A6 hold and h2 ≤ Cτ , with
C > 0 arbitrary, then we have the error estimates

τ
N∑

n=0

∥∥∇ (
u(tn+1) − ûn+1

h

)∥∥2

0
≤ C(τ + h2),

τ

N∑
n=0

(∥∥u(tn+1) − un+1
h

∥∥2

0
+
∥∥u(tn+1) − ûn+1

h

∥∥2

0

)
≤ C(τ + h2)2.

Given a sequence {Wn}Nn=0, we define its discrete time derivative to be

δWn+1 :=
Wn+1 −Wn

τ
.

We also define the discrete weight σn := min(tn, 1) for 1 ≤ n ≤ N . In section 5 we
derive an error estimate for time derivative of velocity and utilize it in section 6 to
prove and error estimate for pressure.

Theorem 1.3 (error estimates for time derivative of velocity and pressure). Let

A1–A6 hold and C1h
2 ≤ τ ≤ C2h

d
3 (1+ε) be valid with arbitrary constants C1 > 0 and

C2 > 0, where d is the space dimension. Then the following weighted estimates hold:

τ

N∑
n=0

σn+1
(∥∥δ(u(tn+1) − un+1

h )
∥∥2

0
+
∥∥p(tn+1) − pn+1

h

∥∥2

0

)
≤ C(τ + h2).

If NLC of section 2 is also satisfied, then the following uniform error estimates are
valid:

τ

N∑
n=0

(∥∥δ(u(tn+1) − un+1
h )

∥∥2

0
+
∥∥p(tn+1) − pn+1

h

∥∥2

0

)
≤ C(τ + h2).

Proofs of Theorems 1.1–1.3 follow the variational approach of [16, 19]. These
error estimates are similar to those known for the Chorin method [11, 18, 21], but
require realistic and thus provable regularity when t ↓ 0. They do not explain, though,
the rates observed in practice for smooth solutions, as reported in section 7.1, which
remains an open question. We also show in section 7.2 how to accommodate other
boundary conditions.
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2. Basic assumptions and regularity. This section is mainly devoted to stat-
ing assumptions and basic regularity results. We refer the reader to Constantin and
Foias [5], Heywood and Rannacher [12], and Prohl [18] for details.

2.1. Regularity. We start with three basic assumptions about data Ω, u0, f ,
and u. We consider first the stationary Stokes equations which will be used in a
duality argument:

−�v + ∇q = g in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω.

(2.1)

Assumption A1 (regularity of (v, q)). The unique solution (v, q) ∈ H1
0 (Ω)×L2

0(Ω)
of the stationary Stokes equations (2.1) satisfies

‖v‖2 + ‖q‖1 ≤ C‖g‖0.

We notice that A1 is valid provided ∂Ω is of class C 2 [5], or if Ω is a convex
two-dimensional polygon [13] or three-dimensional polyhedron [6].

Assumption A2 (data regularity). The initial velocity u0 and the forcing term f
in (1.1) satisfy

u0 ∈ H2(Ω) ∩ Z(Ω) and f , ft ∈ L∞(0, T ;L2(Ω)),

where Z(Ω) := {z ∈ H1
0(Ω) : div z = 0}.

Assumption A3 (regularity of the solution u). There exists M > 0 such that

sup
t∈[0,T ]

‖∇u(t)‖0 ≤ M.

We note that A3 is always satisfied in two dimensions, whereas it is valid in three
dimensions provided

∥∥u0
∥∥

1
and ‖f‖L∞(0,T ;L2(Ω)) are sufficiently small [12].

Lemma 2.1 (uniform and weighted a priori estimates [12]). Let σ(t) = min{t, 1}
be a weight function and 0 < T ≤ ∞. If A1–A3 holds, the solution (u, p) of (1.1)

sup
0<t<T

(
‖u‖2 + ‖ut‖0 + ‖p‖1

)
≤ M,

∫ T

0

‖ut‖2
1 dt ≤ M,(2.2)

sup
0<t<T

(
σ(t)‖ut‖2

1

)
≤ M,

∫ T

0

σ(t)
(
‖ut‖2

2 + ‖utt‖2
0 + ‖pt‖2

1

)
dt ≤ M.(2.3)

Consequently, (u, p) ∈ L∞(0, T ;H2(Ω) ×H1(Ω)) provided A1–A3 are valid.
The following nonlocal assumption is used to remove the weight σ(t) for the error

estimates for ut in section 5 and pressure in section 6.
Assumption NLC (nonlocal compatibility). The data u0 and f0 = f(0, ·) are such

that ‖∇ut(0)‖0 ≤ M .
In view of [12, Corollary 2.1], we realize that NLC is equivalent to the initial data

u0, p0 = p(0, ·), f0 satisfying the overdetermined system

Δp0 = div(f0 − (u0 · ∇)u0) in Ω, ∇p0 = Δu0 + f0 − (u0 · ∇)u0 on ∂Ω.
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This is true if u0 = f0 = 0, in which case also p0 = 0 and ‖∇ut(0)‖0 = 0. However,
‖∇ut(t)‖0 blows-up in general as t ↓ 0, thereby uncovering the practical limitations
of results based on higher regularity than (2.2) and (2.3) uniformly for t ↓ 0 [11, 27].

Lemma 2.2 (uniform a priori estimates [12, Corollary 2.1]). Suppose A1–A3 hold
and let 0 < T ≤ ∞. Then NLC is valid if and only if

∫ T

0

‖utt(t)‖2
0 dt + sup

0<t<T
‖∇ut(t)‖2

0 ≤ M.(2.4)

Furthermore, if NLC holds, then
∫ T

0
(‖pt(t)‖2

1 + ‖ut(t)‖2
2) dt ≤ M .

Lemma 2.3 (a priori estimates on Z(Ω)∗ [16, 19]). If A1–A3 hold, then we have

∫ T

0

‖utt(t)‖2
∗ dt ≤ M,(2.5)

where Z(Ω)∗ is a dual space of Z(Ω). If NLC also holds, then sup0<t<T ‖utt(t)‖2
∗ ≤

M .
Lemma 2.4 (div-grad relation [15, 16, 19, 24]). If v ∈ H1

0(Ω), then

‖div v‖0 ≤ ‖∇v‖0.

2.2. Properties of FEM. We impose the following properties on Vh,Ph.
Assumption A4 (discrete inf-sup). There exists a constant β > 0 such that

inf
qh∈Ph

sup
vh∈Vh

〈div vh , qh〉
‖vh‖1‖qh‖0

≥ β.

Assumption A5 (shape regularity and quasi-uniformity [1, 2, 10]). There exists
a constant C > 0 such that the ratio between the diameter hK of an element K ∈ T

and the diameter of the largest ball contained in K is bounded uniformly by C, and
hK is comparable with the mesh size h for all K ∈ T.

Assumption A6 (approximability [1, 2, 10]). For each (v, q) ∈ H2(Ω) ×H1(Ω),
there exist approximations (vh, qh) ∈ Vh × Ph such that

‖v − vh‖0 + h‖v − vh‖1 ≤ Ch2‖v‖2 and ‖q − qh‖0 ≤ Ch‖q‖1.

The low order accuracy of A6 is consistent with the regularity setting of A1–A3.
A higher order FEM could be used as well, particularly so if (u, p) is sufficiently
smooth, and in this case the space error estimates below would accordingly be of a
higher order.

Now let (vh, qh) ∈ Vh × Ph indicate the finite element solution of (2.1), namely,

〈∇vh , ∇wh〉 − 〈qh , div wh〉 = 〈g , wh〉 ∀wh ∈ Vh,

〈rh , div vh〉 = 0 ∀rh ∈ Ph.
(2.6)

Lemma 2.5 (error estimates for mixed FEM [1, 2, 10]). Let (v, q) ∈ H1
0(Ω) ×

L2
0(Ω) be the solutions of (2.1) and (vh, qh) = Sh(v, q) ∈ Vh × Ph be the Stokes

projections defined by (2.6), respectively. If A4–A6 hold, then

‖v − vh‖0 + h‖v − vh‖1 + h‖q − qh‖0 ≤ Ch2 (‖v‖2 + ‖q‖1) .(2.7)
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If A1 also holds, then the right-hand side is bounded by Ch2‖g‖0 and

‖g‖∗ ≤ C‖∇v‖0 ≤ Ch‖g‖0 + C‖∇vh‖0,(2.8)

|||v − vh||| := ‖v − vh‖L∞(Ω) + ‖∇(v − vh)‖L3(Ω) ≤ C‖g‖0.(2.9)

Proof. Inequality (2.7) is standard [1, 2, 10]. To prove (2.8) we simply test (2.1)
with an arbitrary z ∈ Z(Ω) for the first inequality, and next use (2.7) for the second
one. To establish (2.9) we just deal with the L∞-norm since the other can be treated
similarly. If Ih denotes the Clement interpolant, then ‖v − Ihv‖L∞(Ω) ≤ C‖v‖2 and

‖Ihv − vh‖L∞(Ω) ≤ Ch−d/2‖Ihv − vh‖L2(Ω) ≤ C‖v‖2

as a consequence of an inverse estimate and (2.7). This completes the proof.
Remark 2.6 (H1 stability of qh). The bound ‖∇qh‖0 ≤ C(‖v‖2 + ‖q‖1) is a

simple by-product of (2.7). To see this, we add and subtract Ihq, use the stability of
Ih in H1, and observe that (2.7) implies ‖∇(qh − Ihq)‖0 ≤ Ch−1‖qh − Ihq‖ ≤ C.

We finally state without proof several properties of the nonlinear form Nh. In
view of (1.7), we have the following properties of Nh for all uh,vhwh ∈ Vh:

Nh(uh,vh,wh) = −Nh(uh,wh,vh), Nh(uh,vh,vh) = 0(2.10)

and

div u = 0 ⇒ Nh(u,vh,wh) = N(u,vh,wh) = −N(u,wh,vh).

Applying Sobolev imbedding lemma yields the following useful results.
Lemma 2.7 (bounds on nonlinear convection [11, 12]). Let u,v ∈ H2(Ω) with

div u = 0, and let uh,vh,wh ∈ Vh. Then

Nh(u,vh,wh) ≤ C

⎧⎪⎨
⎪⎩
‖u‖1‖vh‖1‖wh‖1,

‖u‖2‖∇vh‖0‖wh‖0,

‖u‖2‖vh‖0‖∇wh‖0,

(2.11)

Nh(uh,v,wh) ≤ ‖uh‖0‖v‖2‖∇wh‖0.(2.12)

In addition,

Nh(uh,vh,wh) ≤ C

{
‖uh‖0|||vh|||‖∇wh‖0,

‖uh‖L3(Ω)‖vh‖1‖∇wh‖0.
(2.13)

3. Theorem 1.1: Stability. In this section, we show that the gauge–Uzawa
FEM is unconditionally stable via a standard energy method. We choose wh =
2τ ûn+1

h in (1.8) and observe the following relation for the first term in (1.8):〈
ûn+1
h − un

h , ûn+1
h

〉
=

〈
un+1
h − un

h , un+1
h

〉
+
〈
∇ρn+1

h , ∇ρn+1
h

〉
because of (1.11). Since the convection term vanishes from (2.10), we then obtain

∥∥un+1
h

∥∥2

0
− ‖un

h‖
2
0 +

∥∥un+1
h − un

h

∥∥2

0
+ 2

∥∥∇ρn+1
h

∥∥2

0
+ 2μτ

∥∥∇ûn+1
h

∥∥2

0

= 2μτ
〈
snh , div ûn+1

h

〉
+ 2τ

〈
f(tn+1) , ûn+1

h

〉
.
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According to (1.10), we can write

2
〈
snh , div ûn+1

h

〉
= 2

〈
snh , s

n
h − sn+1

h

〉
= ‖snh‖

2
0 −

∥∥sn+1
h

∥∥2

0
+
∥∥snh − sn+1

h

∥∥2

0
.

Combining now (1.10) with Lemma 2.4, we infer that
∥∥sn+1

h − snh
∥∥

0
≤

∥∥div ûn+1
h

∥∥
0
≤∥∥∇ûn+1

h

∥∥, whence

∥∥un+1
h

∥∥2

0
− ‖un

h‖
2
0 +

∥∥un+1
h − un

h

∥∥2

0
+ 2

∥∥∇ρn+1
h

∥∥2

0
+ 2μτ

∥∥∇ûn+1
h

∥∥2

0

+ μτ
∥∥sn+1

h

∥∥2

0
− μτ‖snh‖

2
0 ≤ τ

2

∥∥f(tn+1)
∥∥2

−1
+

3μτ

2

∥∥∇ûn+1
h

∥∥2

0
.

Adding over n from 0 to N , we obtain (1.15) and complete the proof of Theorem 1.1.
It is important to notice that it is the semi-implicit treatment of convection in (1.8)
that is responsible for unconditional stability.

4. Theorem 1.2: Error analysis for velocity. In this section, we prove weak
and strong error estimates for velocity for the gauge–Uzawa FEM of Algorithm 2. The
proof is rather intricate because of the limited regularity of section 2.1, particularly
that utt /∈ L2(0, T ;L2(Ω)), and consists of three steps as follows.
• Time-discrete Stokes. We first consider a sequence of Stokes equations with the

exact forcing and convection, namely, Un+1 ∈ H1
0(Ω), Pn+1 ∈ L2

0(Ω) satisfy U0 =
u0 and

δUn+1 − μΔUn+1 + ∇Pn+1 = f(tn+1) −
(
(u · ∇)u

)
(tn+1), div Un+1 = 0.

(4.1)

In Lemma 4.1, we derive estimates for the errors

Gn+1 := u(tn+1) − Un+1, gn+1 := p(tn+1) − Pn+1,

which rely solely on the regularity utt ∈ L2([0 : T ] : Z(Ω)∗) of Lemma 2.3. This is
possible because the test function w = u(tn+1)−Un+1 is divergence free and thus
allows us to work on the spaces Z(Ω) and Z(Ω)∗.

• Stokes projection. We define (Un+1
h , Pn+1

h ) := Sh(u(tn+1), p(tn+1)) ∈ Vh × Ph to
be the Stokes projection of the true solution at time tn+1, and derive error estimates
in Lemma 4.3 for the errors

Gn+1
h := u(tn+1) − Un+1

h , gn+1
h := p(tn+1) − Pn+1

h .

We point out that this choice of space discretization is more handy than discretizing
(4.1) by finite elements, and still gives estimates for the errors Fn+1 := Un+1−Un+1

h

and fn+1 := Pn+1 − Pn+1
h by combining the first two steps.

• Comparing (4.1) with (1.8)–(1.11). We derive strong estimates of order 1/2 and
use then to prove weak estimates of order 1 for the errors

En+1 := Un+1 − un+1
h , Ên+1 := Un+1 − ûn+1

h , en+1 := Pn+1 − pn+1
h .(4.2)

This is the most technical step; therefore, we now must deal with the fact that ûn+1
h

is not divergence free, whereas un+1
h does not vanish on ∂Ω; this is carried out in

section 4.3. Upon combining the estimates of these three steps, we readily obtain
Theorem 1.2.
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4.1. Time-discrete Stokes problem. We now show error bounds for (4.1).
Lemma 4.1 (uniform estimates). Let A1–A3 hold. Then

∥∥GN+1
∥∥2

0
+

N∑
n=0

∥∥Gn+1 − Gn
∥∥2

0
+ μτ

N∑
n=0

∥∥∇Gn+1
∥∥2

0
≤ Cτ2,(4.3)

τ
N∑

n=0

∥∥gn+1
∥∥2

0
≤ Cτ.(4.4)

Proof. We subtract (4.1) from (1.1) at t = tn+1 and thereby write

δGn+1 − μΔGn+1 + ∇gn+1 = Rn+1 :=
1

τ

∫ tn+1

tn
(t− tn)utt(·, t) dt,(4.5)

where Rn+1 is the truncation error. We multiply this elliptic PDE by the admissible
test function 2τGn+1 ∈ Z(Ω) to arrive at

∥∥Gn+1
∥∥2

0
− ‖Gn‖2

0 +
∥∥Gn+1 − Gn

∥∥2

0
+ 2μτ

∥∥∇Gn+1
∥∥2

0
≤ 2τ

∥∥Rn+1
∥∥
∗
∥∥∇Gn+1

∥∥
0
.

Adding over n and using (2.5) yield (4.3). To prove (4.4) we use the error equation
(4.5) to obtain any w ∈ H1

0(Ω)

〈
gn+1 , div w

〉
≤ 1

τ

∥∥Gn+1 − Gn
∥∥

0
‖w‖0 + μ

∥∥∇Gn+1
∥∥

0
‖∇w‖0 +

∥∥Rn+1
∥∥

0
‖w‖0.

Since
∥∥Rn+1

∥∥2

0
≤ 1

2

∫ tn+1

tn
σ‖utt‖2

0, (2.3) and (4.3) together with the continuous inf-sup
condition imply (4.4).

Lemma 4.2 (weighted estimates). Let A1–A3 hold. Then

σN+1
∥∥δGN+1

∥∥2

0
+

N∑
n=1

σn+1
∥∥δGn+1 − δGn

∥∥2

0
+

μτ

2

N∑
n=1

σn+1
∥∥∇δGn+1

∥∥2

0
≤ Cτ,

(4.6)

sup
0≤n≤N+1

σn‖gn‖2
0 +

N∑
n=0

σn+1
(∥∥gn+1

∥∥2

0
+
∥∥δgn+1

∥∥2

0

)
≤ Cτ.(4.7)

If NLC is also valid, then (4.6) and (4.7) become uniform, namely, without weights.
Proof. To prove (4.6) we subtract two consecutive equations (4.5) and thus derive

an equation for δGn+1. We next multiply this equation by 2σn+1δGn+1 and pro-
ceed as in Lemma 4.1 to discover that In+1 := 2σn+1

〈
δ(Gn+1 − Gn) , δGn+1

〉
and

IIn+1 := 2τσn+1
〈
δRn+1 , δGn+1

〉
must be estimated. We see that

In+1 = σn+1
∥∥δGn+1

∥∥2

0
− σn‖δGn‖2

0 + σn+1
∥∥δGn+1 − δGn

∥∥2

0
− (σn+1 − σn)‖δGn‖2

0

and realize that, upon summation over n, the first two terms on the right-hand side

telescope, whereas the last one leads to 1
τ

∑N
n=1

∥∥Gn+1 − Gn
∥∥2

0
≤ Cτ in view of (4.3).

On the other hand, IIn+1 can be written equivalently as follows:

IIn+1 = 2σn+1
〈
Rn+1 , δGn+1

〉
− 2σn 〈Rn , δGn〉

+ 2σn
〈
Rn , δGn − δGn+1

〉
+ 2(σn − σn+1)

〈
Rn , δGn+1

〉
.
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We now add on n and observe that the first two terms telescope. The third term can be

handled via the estimate
∑N

n=1 σ
n‖Rn‖2

0 ≤ Cτ
∫ T

0
σ‖utt‖2

0 ≤ Cτ , which results from

(2.3), together with the bound for
∑N

n=1 I
n+1. Using again

∑N
n=1 σ

n‖Rn‖2
0 ≤ Cτ ,

now coupled with
∑N

n=1 ‖δGn‖2
0 ≤ C from (4.3), takes care of the last term in IIn+1.

We finally observe that the presence of weights allows us to employ regularity (2.3)
for utt. If we further assume NLC, then we could omit weights and instead resort to
regularity (2.4) to establish uniform bounds. This completes the proof.

4.2. Stokes projection. We now establish simple estimates for (Gn+1
h , gn+1

h ).
Lemma 4.3 (Stokes projection). Let A1–A6 hold. Then∥∥Gn+1

h

∥∥
0

+ h
∥∥Gn+1

h

∥∥
1

+ h
∥∥gn+1

h

∥∥
0
≤ Ch2,(4.8)

τ
N∑

n=0

σn+1
(∥∥δGn+1

h

∥∥2

0
+ h2

∥∥δGn+1
h

∥∥2

1
+ h2

∥∥δgn+1
h

∥∥2

0

)
≤ Ch4.(4.9)

If NLC also holds, then (4.9) becomes uniform, namely, without weights.
Proof. Estimate (4.8) is a direct consequence of Lemma 2.5 and (2.2). Since the

Stokes operator Sh is linear, we readily have (δUn
h, δP

n
h ) = Sh(δu(tn), δp(tn)), and

Lemma 2.5 applies again. Upon multiplying by τσn+1, the square of the right-hand
side of (2.7) can be bounded by

h4τ−1
N∑

n=0

σn+1
(∥∥u(tn+1) − u(tn)

∥∥2

2
+
∥∥p(tn+1) − p(tn)

∥∥2

1

)
.

We examine the velocity term only since the other one is similar. For n = 0 we recall

(2.2), along with σ1 = τ , to write σ1
∥∥u(t1) − u(t0)

∥∥2

2
≤ Cτ . For n ≥ 1, instead, we

use that σn+1 ≤ 2σ(t) for tn ≤ t ≤ tn+1, whence

N∑
n=1

σn+1
∥∥u(tn+1) − u(tn)

∥∥2

2
≤ Cτ

∫ T

0

σ‖ut‖2
2 ≤ Cτ

because of (2.3). This completes the proof.

4.3. Comparing (4.1) with (1.8)–(1.11). We derive strong estimates of order
1/2 and use them to prove weak estimates of order 1 for the errors in (4.2), namely,

En+1 = Un+1 − un+1
h , Ên+1 = Un+1 − ûn+1

h , en+1 = Pn+1 − pn+1
h .

Before embarking on this discussion, we mention several useful properties of the error
functions. If En+1

h := Un+1
h −un+1

h , Ên+1
h := Un+1

h −ûn+1
h , and Fn+1 = Un+1−Un+1

h ,
then

Ên+1 = En+1 + ∇ρn+1
h , Ên+1

h = En+1
h + ∇ρn+1

h ,

Ên+1 = Fn+1 + Ên+1
h , En+1 = Fn+1 + En+1

h ,

as well as 〈
En+1 , ∇qh

〉
=

〈
En+1

h , ∇qh
〉

=
〈
Fn+1 , ∇qh

〉
= 0 ∀qh ∈ Ph,(4.10)

whence we deduce crucial orthogonality properties:

‖Ên+1‖2
0 = ‖En+1‖2

0 + ‖∇ρn+1
h ‖2

0, ‖Ên+1
h ‖2

0 = ‖En+1
h ‖2

0 + ‖∇ρn+1
h ‖2

0.(4.11)
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Since Fn+1 = Gn+1
h − Gn+1, fn+1 = gn+1

h − gn+1, Lemmas 4.1 and 4.3 give rise to
the following estimates provided A1–A6 hold:

‖Fn+1‖2
0 ≤ C(τ2 + h4), μτ

N∑
n=1

‖∇Fn+1‖2
0 ≤ C(τ2 + h2),

τ

N∑
n=1

‖fn+1‖2
0 ≤ C(τ + h2).

(4.12)

We also point out that, owing to Lemma 2.4, sn+1
h ∈ Ph defined in (1.10) satisfies∥∥sn+1

h − snh
∥∥

0
≤ ‖∇Ên+1‖0.(4.13)

Lemma 4.4 (reduced rate of convergence for velocity). Let A1–A6 and h2 ≤ Cτ
be valid with an arbitrary constant C > 0. Then the velocity error functions satisfy

‖EN+1‖2

0 + ‖ÊN+1‖
2

0 + μτ
∥∥sN+1

h

∥∥2

0
+

1

2

N∑
n=0

∥∥En+1 − En
∥∥2

0
(4.14)

+

N∑
n=0

∥∥∇ρn+1
h

∥∥2

0
+

μτ

2

N∑
n=0

‖∇Ên+1‖
2

0 ≤ C(τ + h2).

Proof. Subtracting (1.8) from (4.1) yields, for all wh ∈ Vh,

τ−1
〈
Ên+1 − En , wh

〉
+ μ

〈
∇Ên+1 , ∇wh

〉
=

〈
Pn+1 , div wh

〉
(4.15)

−μ 〈snh , div wh〉 − Nh(u(tn+1),u(tn+1),wh) + Nh(un
h, û

n+1
h ,wh).

Choosing wh = 2τÊn+1
h = 2τ(Ên+1 −Fn+1) in (4.15) and using (4.10), we easily get

∥∥En+1
∥∥2

0
− ‖En‖2

0 +
∥∥En+1 − En

∥∥2

0
+ 2μτ‖∇Ên+1‖

2

0 + 2
∥∥∇ρn+1

h

∥∥2

0
=

4∑
i=1

Ai(4.16)

with

A1 := 2
〈
En+1 − En , Fn+1

〉
+ 2μτ

〈
∇Ên+1 , ∇Fn+1

〉
,

A2 := 2τ
〈
Pn+1 , div Ên+1

h

〉
,

A3 := −2τ
(
Nh(u(tn+1),u(tn+1), Ên+1

h ) − Nh(un
h, û

n+1
h , Ên+1

h )
)
,

A4 := −2μτ
〈
snh , div Ên+1

h

〉
.

We now estimate each term Ai separately. Applying the Hölder inequality, we find a
bound of the first term

A1 ≤ 1

2

∥∥En+1 − En
∥∥2

0
+ C

∥∥Fn+1
∥∥2

0
+

μτ

4
‖∇Ên+1‖

2

0 + Cμτ
∥∥∇Fn+1

∥∥2

0
.(4.17)

Since Un+1
h is discrete divergence free, but not so ûn+1

h , we add and subtract Pn+1
h

and p(tn+1), and recall (1.9) and Remark 2.6 to derive

A2 = 2τ
〈
fn+1 , div Ên+1

h

〉
+ 2τ

〈
∇gn+1

h , ∇ρn+1
h

〉
− 2τ

〈
∇p(tn+1) , ∇ρn+1

h

〉
(4.18)

≤ Cτ2Bn+1 +
Cτ

μ

∥∥fn+1
∥∥2

0
+

μτ

8

(
‖∇Ên+1‖

2

0 +
∥∥∇Fn+1

∥∥2

0

)
+
∥∥∇ρn+1

h

∥∥2

0
,
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where Bn+1 :=
∥∥u(tn+1)

∥∥2

2
+

∥∥∇p(tn+1)
∥∥2

0
. To tackle A3 we first add and subtract

u(tn+1),un
h, and realize that Nh(un

h, Ê
n+1
h , Ên+1

h ) = 0 according to (2.10). This yields

A3 = − 2τNh(u(tn+1) − u(tn),u(tn+1), Ên+1
h )

− 2τNh(u(tn) − un
h,u(tn+1), Ên+1

h ) − 2τNh(un
h,G

n+1
h , Ên+1

h ).

Since
∥∥u(tn+1)

∥∥
2
+
∣∣∣∣∣∣Gn+1

h

∣∣∣∣∣∣ ≤ C in view of (2.2) and (2.9), and Ên+1
h = Ên+1−Fn+1,

(2.11) and (2.13) give

A3 ≤ Cτ2

μ
Dn+1 +

Cτ

μ

(
‖En‖2

0 + ‖Gn‖2
0 +

∥∥Gn+1
h

∥∥2

0

)
+

μτ

8
‖∇F̂n+1‖

2

0 +
μτ

8
‖∇Ên+1‖

2

0

with Dn+1 :=
∫ tn+1

tn
‖ut(t)‖2

0 dt. Next, making use of (1.10) and (4.13), we arrive at

A4 = 2μτ
〈
snh , div ûn+1

h

〉
= 2μτ

〈
snh − sn+1

h , snh
〉

≤ μτ
(
‖snh‖

2
0 −

∥∥sn+1
h

∥∥2

0

)
+ μτ‖∇Ên+1‖

2

0.

Inserting the above estimates into (4.16), summing over n from 0 to N gives

∥∥EN+1
∥∥2

0
+

1

2

N∑
n=0

∥∥En+1 − En
∥∥2

0
+

μτ

2

N∑
n=0

‖∇Ên+1‖
2

0(4.19)

+μτ
∥∥sN+1

h

∥∥2

0
+

N∑
n=0

∥∥∇ρn+1
h

∥∥2

0
≤ C(τ + h2) +

Cτ

μ

N∑
n=0

‖En‖2
0,

where we have used (2.2) to bound Bn+1, Dn+1, together with (4.3) and (4.8) to
estimate ‖Gn‖0 and ‖Gn+1

h ‖0, respectively, and (4.12) as well as h2 ≤ Cτ to bound
‖Fn+1‖0, ‖Fn+1‖0, and ‖fn+1‖0. The discrete Gronwall lemma finally yields (4.14)

except for ‖Ên+1‖2
0. The latter results from (4.11) and completes the proof.

Remark 4.5 (initial errors). If N = 0 in (4.19), then Lemmas 4.1 and 4.3 give

∥∥E1
∥∥2

0
+

1

2

∥∥E1 − E0
∥∥2

0
+

μτ

2
‖∇Ê1‖

2

0 + μτ
∥∥s1

h

∥∥2

0
+
∥∥∇ρ1

h

∥∥2

0

≤ C(τ2 + τh2 + h4) +
Cτ

μ

∥∥f1
∥∥2

0
≤ C(τ + τh2 + h4)

or ≤ C(τ2 + τh2 + h4) provided NLC holds in conjunction with (4.7).
Remark 4.6 (suboptimal order). The suboptimal order O(τ + h2) of Lemma 4.4

is due to terms ‖Fn+1‖2
0 + τ‖∇Fn+1‖2

0 in (4.17) and the fact that Ên+1
h in (4.18) is

not discrete divergence free. To improve upon this we must get rid of both terms.
Lemma 4.7 (full rate of convergence for velocity). Let A1–A6 hold and h2 ≤ Cτ

be valid with an arbitrary constant C > 0. Then we have

∥∥EN+1
∥∥2

∗ +

N∑
n=0

∥∥En+1 − En
∥∥2

∗ +
(
μτ

∥∥En+1
∥∥2

0
+ ‖Ên+1‖

2

0

)
≤ C(τ2 + h4).(4.20)
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Proof. Let (vn, qn) and (vn
h , q

n
h) be solutions of the Stokes equations (2.1) and

(2.6) with g = En. Then Lemma 2.5 and A1 yield a crucial inequality

‖vn − vn
h‖0 + h‖vn − vn

h‖1 + h‖qn − qnh‖0 ≤ Ch2‖En‖0.(4.21)

Since vn+1
h is discrete divergence free, then

〈
∇ρn+1

h , vn+1
h

〉
= 0 and

〈
Ên+1 − En , vn+1

h

〉
=

〈
En+1 − En , vn+1

h

〉
=

〈
∇(vn+1

h − vn
h) , ∇vn+1

h

〉
.

Choosing wh = 2τvn+1
h in (4.15) yields

∥∥∇vn+1
h

∥∥2

0
− ‖∇vn

h‖
2
0 +

∥∥∇(vn+1
h − vn

h)
∥∥2

0
+ 2μτ

∥∥En+1
∥∥2

0
=

4∑
i=1

Ai(4.22)

with

A1 := −2μτ〈∇Fn+1 , ∇vn+1
h 〉,

A2 := 2μτ(〈Fn+1 , En+1〉 +
〈
∇ρn+1

h , ∇qn+1
h

〉
),

A3 := 2τ〈Pn+1 , div vn+1
h 〉,

A4 := −2τ(Nh(u(tn+1),u(tn+1),vn+1
h ) − Nh(un

h, û
n+1
h ,vn+1

h )).

We now estimate A1–A4 separately. We use inequality (4.21) to get

A1 = 2μτ
〈
∇Fn+1 , ∇

(
vn+1 − vn+1

h

)
−∇vn+1

〉
≤ Cμτ

(
h2

∥∥∇Fn+1
∥∥2

0
+
∥∥Fn+1

∥∥2

0

)
+

μτ

6

∥∥En+1
∥∥2

0

as well as

A2 ≤ Cμτ
(∥∥Fn+1

∥∥2

0
+
∥∥∇ρn+1

h

∥∥2

0

)
+

μτ

6

∥∥En+1
∥∥2

0
.

We next use the fact that vn+1
h is discrete divergence free and vn+1 is divergence free.

Hence

A3 = 2τ
〈
Pn+1 − Pn+1

h , div (vn+1
h − vn+1)

〉

≤ Cτh
∥∥fn+1

∥∥
0

∥∥vn+1
∥∥

2
≤ Cτh2

μ

∥∥fn+1
∥∥2

0
+

μτ

6

∥∥En+1
∥∥2

0
.

At the same time, the convection term A4 can be rewritten as A4 =
∑3

i=1 A4,i with

A4,1 := −2τNh((u(tn+1) − u(tn)) + (u(tn) − un
h),u(tn+1),vn+1

h ),

A4,2 := 2τNh(u(tn) − un
h,u(tn+1) − ûn+1

h , (vn+1
h − vn+1) + vn+1),

A4,3 := −2τNh(u(tn),u(tn+1) − ûn+1
h ,vn+1

h ).

Since u(tn) − un
h = En + Gn, (2.2) in conjunction with (2.12) yields

A4,1 ≤ Cτ2μ

∫ tn+1

tn
‖ut(t)‖2

0 dt +
μτ

6

(
‖En‖2

0 + ‖Gn‖2
0

)
+

Cτ

μ

∥∥∇vn+1
h

∥∥2

0
.
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Before tacking A4,2 we observe that (4.3) and (4.14) imply ‖u(tn)−un
h‖0 ≤ C(h+τ1/2),

and that (2.9) and (4.21) yield

∣∣∣∣∣∣vn+1
h − vn+1

∣∣∣∣∣∣ ≤ C‖vn+1‖2 ≤ C‖En+1‖0.

Therefore, (2.12) and (2.13) lead to

A4,2 ≤ Cτ

μ

(
τ + h2

) (∥∥∇Gn+1
∥∥2

0
+ ‖∇Ên+1‖

2

0

)
+

μτ

6

∥∥En+1
∥∥2

0
.

Since u(tn) is divergence free, we can resort to (2.11) and (4.11) to obtain

A4,3 ≤ μτ

6

(∥∥En+1
∥∥2

0
+
∥∥∇ρn+1

h

∥∥2

0
+
∥∥Gn+1

∥∥2

0

)
+

Cτ

μ

∥∥∇vn+1
h

∥∥2

0
.

Inserting the above estimates into (4.22) and summing over n from 0 to N , we deduce

∥∥∇vN+1
h

∥∥2

0
+

N∑
n=0

∥∥∇(vn+1
h − vn

h)
∥∥2

0
+ μτ

N∑
n=0

∥∥En+1
∥∥2

0
(4.23)

≤ C
(
τ2 + h4

)
+

Cτ

μ

N∑
n=0

∥∥∇vn+1
h

∥∥2

0

because of (4.3), (4.12), and (4.14) bound the remaining terms. The discrete Gronwall
lemma and (2.8) allow us to remove the rightmost term in (4.23), and thereby arrive

at (4.20) upon invoking (2.8). However, this does not give a bound for ‖Ên+1‖0,
which comes from (4.11) and (4.14) instead. The proof is thus complete.

Proof of Theorem 1.2. This is a consequence of Lemmas 4.1, 4.4, and 4.7.
Remark 4.8 (estimates for

∥∥∇v1
h

∥∥
0
). These estimates will be crucial in section

5 and can be extracted from (4.23) upon invoking Remark 4.5 and choosing N = 0.
Since v0

h = 0 because E0 is orthogonal to Vh, (4.23) reduces to

∥∥∇v1
h

∥∥2

0
≤ Cτ(τ2 + h4) +

Cτh2

μ

∥∥f1
∥∥2

0
≤ Cτ(τ2 + h2).

On the other hand, if NLC is also valid, then ‖f1‖2
0 ≤ Cτ and

∥∥∇v1
h

∥∥2

0
≤ Cτ(τ2+h4).

5. Theorem 1.3: Error analysis for time derivative of velocity. In this
section we embark on an error analysis for the time derivative of velocity.

Lemma 5.1 (stability of time-derivative of velocity). Let A1–A6 hold and h2 ≤
C1h

2 ≤ τ ≤ C2h
d
3 (1+ε) be valid with arbitrary constants C1, C2 > 0. Then the error

functions satisfy the weighted estimates

σN+1
∥∥δEN+1

∥∥2

0
+

N∑
n=1

σn+1
∥∥δEn+1 − δEn

∥∥2

0
+

N∑
n=1

σn+1
∥∥∇δρn+1

h

∥∥2

0
(5.1)

+μτσN+1
∥∥δsN+1

h

∥∥2

0
+ μτ

N∑
n=1

σn+1‖∇δÊn+1‖
2

0 ≤ C.

If NLC is also valid, then (5.1) becomes uniform, namely, without weights.
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Proof. Subtracting two consecutive expressions (4.15) yields〈
δÊn+1 − δEn , wh

〉
+ μτ

〈
∇δÊn+1 , ∇wh

〉
(5.2)

= τ
〈
δPn+1 , div wh

〉
− μτ 〈δsnh , div wh〉

−Nh(u(tn+1),u(tn+1),wh) + Nh(un
h, û

n+1
h ,wh)

+ Nh(u(tn),u(tn),wh) − Nh(un−1
h , ûn

h,wh).

Choosing wh = 2δÊn+1
h = 2δ(Ên+1 − Fn+1) in (5.2) and using (4.10) implies

∥∥δEn+1
∥∥2

0
− ‖δEn‖2

0 +
∥∥δEn+1 − δEn

∥∥2

0
(5.3)

+ 2
∥∥∇δρn+1

h

∥∥2

0
+ 2μτ‖∇δÊn+1‖

2

0 =

4∑
i=1

Ai

with

A1 := 2〈δEn+1 − δEn , δFn+1〉 + 2μτ〈∇δÊn+1 , ∇δFn+1〉,
A2 := 2τ

〈
δPn+1 , div δÊn+1

h

〉
,

A3 := −2μτ
〈
δsnh , div δÊn+1

h

〉
,

A4 := −2Nh(u(tn+1),u(tn+1), δÊn+1
h ) + 2Nh(un

h, û
n+1
h , δÊn+1

h ),

+ 2Nh(u(tn),u(tn), δÊn+1
h ) − 2Nh(un−1

h , ûn
h, δÊ

n+1
h ).

We now estimate each term Ai separately. First, we easily find out that

A1 ≤ μτ

14

∥∥∥∇δÊn+1
∥∥∥2

0
+ Cμτ

∥∥∇δFn+1
∥∥2

0
+

1

2

∥∥δEn+1 − δEn
∥∥2

0
+ C

∥∥δFn+1
∥∥2

0
,

A2 = 2τ
〈
δp(tn+1) − δgn+1 , div δÊn+1

h

〉

≤ C

μ

∫ tn+1

tn
‖pt(t)‖2

0 dt +
Cτ

μ

∥∥δgn+1
∥∥2

0
+

μτ

14

∥∥∥∇δÊn+1
∥∥∥2

0
+

μτ

14

∥∥∇δFn+1
∥∥2

0
.

Since Un+1
h is discrete divergence free, A3 = 2μτ

〈
δsnh , div δûn+1

h

〉
. Consequently,

making use of (1.10) and (4.13), we arrive at

A3 = 2μτ
〈
δsnh , δs

n
h − δsn+1

h

〉
≤ μτ

(
‖δsnh‖

2
0 −

∥∥δsn+1
h

∥∥2

0

)
+ μτ‖∇δÊn+1‖

2

0.

At the same time, we further split A4 to read A4 = A4,1 + A4,2 with

A4,1 := − 2τ
(
Nh

(
δu(tn+1),u(tn+1), δÊn+1

h

)
− Nh

(
δu(tn),u(tn), δÊn+1

h

)
− Nh

(
u(tn) − un

h,u(tn+1), δÊn+1
h

)
+ Nh

(
u(tn−1) − un−1

h ,u(tn), δÊn+1
h

))
,

A4,2 := − 2
(
Nh(un

h,u(tn+1) − ûn+1
h , δÊn+1

h ) − Nh

(
un−1
h ,u(tn) − ûn

h, δÊ
n+1
h

))
.

In light of (2.2) and definitions of Gi and Ei, (2.12) produces

A4,1 ≤ C

μ
Dn+1 +

μτ

14

∥∥∥∇δÊn+1
∥∥∥2

0
+

μτ

14

∥∥∇δFn+1
∥∥2

0
+

C

μτ

n∑
i=n−1

(∥∥Gi
∥∥2

0
+
∥∥Ei

∥∥2

0

)
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with Dn+1 :=
∫ tn+1

tn−1 ‖ut(t)‖2
0 dt. To bound A4,2 we rewrite as A4,2 =

∑3
i=1 Bi with

B1 := −2Nh

(
un
h,G

n+1
h , δÊn+1

h

)
,

B2 := 2Nh

(
un−1
h ,Gn

h, δÊ
n+1
h

)
,

B3 := −2Nh

(
un
h, Ê

n+1
h , δÊn+1

h

)
+ 2Nh(un−1

h , Ên
h, δÊ

n+1
h ).

Since
∣∣∣∣∣∣Gn+1

h

∣∣∣∣∣∣ ≤ C
(
‖u(tn+1)‖2 + ‖p(tn+1)‖1

)
≤ C, (2.11) and (2.13) give

B1 = 2Nh

(
(u(tn) − un

h) − u(tn),Gn+1
h , δÊn+1

h

)

≤ C

μτ

(
‖En‖2

0 + ‖Gn‖2
0 +

∥∥Gn+1
h

∥∥2

0

)
+

μτ

14
‖∇δÊn+1‖

2

0 +
μτ

14

∥∥∇δFn+1
∥∥2

0
,

as well as

B2 ≤ C

μτ

(∥∥En−1
∥∥2

0
+
∥∥Gn−1

∥∥2

0
+ ‖Gn

h‖
2
0

)
+

μτ

14
‖∇δÊn+1‖

2

0 +
μτ

14

∥∥∇δFn+1
∥∥2

0
.

Invoking crucial properties of Nh, written in (2.10), we infer that

B3 =
2

τ

(
Nh

(
un
h, Ê

n+1
h , Ên

h

)
+ Nh

(
un−1
h , Ên

h, Ê
n+1
h

))
= 2τNh

(
δun

h, δÊ
n+1
h , Ên

h

)
.

Hence

B3 = −2τNh

(
δGn

h − δu(tn), δÊn+1
h , Ên

h

)
− 2τNh

(
δEn

h, δÊ
n+1
h , Ên

h

)
= B4 + B5.

Since ‖Ên
h‖1 ≤ C according to (4.12) and (4.14), (2.11) yields

B4 ≤ Cτ (‖δGn
h‖1 + ‖δu(tn)‖1)

∥∥δÊn+1
h

∥∥
1

∥∥Ên
h

∥∥
1

≤ Cτ

μ
‖∇δGn

h‖
2
0 +

C

μ

∫ tn+1

tn
‖ut(t)‖2

1 dt +
μτ

14
‖∇δÊn+1‖

2

0 +
μτ

14

∥∥∇δFn+1
∥∥2

0
.

We now deal with B5 via (2.13), namely, B5 ≤ Cτ‖δEn
h‖L3(Ω)‖δÊ

n+1
h ‖1‖Ên

h‖1. In

contrast to [16], here we no longer have En+1
h ∈ H1

0 and we have to resort to the

inverse inequality ‖δEn
h‖L3(Ω) ≤ Ch− d

6 ‖δEn
h‖0, whence

B5 ≤ Cτh− d
3

μ
‖δEn

h‖
2
0

∥∥∇Ên
h

∥∥2

0︸ ︷︷ ︸
=:Λn

+
μτ

14

∥∥∇δÊn+1
∥∥2

0
+

μτ

14

∥∥∇δFn+1
∥∥2

0
.

We postpone the discussion of Λn until the end since it is rather delicate. We now
insert the above estimates into (5.3), multiply by the weight σn+1, and add over n
from 1 to N . Arguing as in Lemma 4.4, we see that the first two terms in (5.3) become

σN+1
∥∥δEN+1

∥∥2

0
− σ1

∥∥δE1
∥∥2

0
− τ

N∑
n=1

‖δEn‖2
0 ≥ −C + σN+1

∥∥δEn+1
∥∥2

0
.(5.4)
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On the other hand, we resort to the property σn+1

σn ≤ 2 for n ≥ 1 to write

N∑
n=1

σn+1A2 ≤ Cτ

μ

N∑
n=1

σn+1
∥∥δgn+1

∥∥2

0
+

C

μ

∫ tN+1

t1
σ(t)‖pt(t)‖2

0 dt(5.5)

+
μτ

14

N∑
n=1

σn+1
(
‖∇δÊn+1‖

2

0 + ‖∇δFn+1‖2

0

)
.

Collecting these estimates, and using Lemmas 4.1–4.4 and 4.7, we get, for D1, D2 > 0,

σN+1
∥∥δEN+1

∥∥2

0
+

1

2

N∑
n=1

σn+1
∥∥δEn+1 − δEn

∥∥2

0
+

μτ

2

N∑
n=1

σn+1‖∇δÊn+1‖
2

0

+

N∑
n=1

σn+1
∥∥∇δρn+1

h

∥∥2

0
+ μτσN+1

∥∥δsN+1
h

∥∥2

0
≤ D1 + D2

N∑
n=1

σn+1Λn.

To complete this proof, it suffices to show
∑N

n=1 σ
n+1Bn

6 ≤ C. To do so, we start
with a simpler form of the above estimate, namely,

σN+1
∥∥δEN+1

∥∥2

0
≤ D1 + D2τh

− d
3

N∑
n=1

σn+1‖δEn
h‖

2
0

∥∥∇Ên
h

∥∥2

0
.(5.6)

Since τ2
∑N

n=1 ‖δEn‖2
0 =

∑N
n=1

∥∥En − En−1
∥∥2

0
≤ Cτ and ‖∇Ên

h‖
2

0 ≤ C according to
Lemma 4.4, we readily obtain the rough estimate

σN+1
∥∥δEN+1

∥∥2

0
≤ Ch− d

3 .

To improve upon this, we utilize
∑N

n=1 ‖∇Ên
h‖2

0 ≤ C, a by-product of (4.12) and
(4.14). Hence

σN+1
∥∥δEN+1

∥∥2

0
≤ D1 + D2τh

− 2d
3

N∑
n=1

∥∥∇Ên
h

∥∥2

0
≤ Cτh− 2d

3 .

We realize that the net effect is a an additional factor Cτh−d/3 in (5.6). After m
iterations, we obtain

σN+1
∥∥δEN+1

∥∥2

0
≤ M(m)

(
τh− d

3

)m
h− d

3 ,

where M(m) > 0 possibly grows with m. Since τh− d
3 ≤ C2h

dε
3 for m > ε−1 we obtain∑N

n=1 σ
n+1Λn ≤ C. This shows our assertion (5.1).

If NLC is valid, so is Lemma 2.2, thereby making unnecessary the use of weight
σn+1 in (5.4) and (5.5). This yields an inequality similar to (5.1) without weights,
and implies the asserted uniform estimate.

Lemma 5.2 (rate of convergence for time-derivative of velocity). Let A1–A6 hold

and C1h
2 ≤ τ ≤ C2h

d
3 (1+ε) be valid with arbitrary constants C1, C2 > 0. Then the

error function En satisfies the weighted estimates

σN+1
∥∥δEN+1

∥∥2

∗ +

N∑
n=1

σn+1
(∥∥δEn+1 − δEn

∥∥2

∗ + μτ
∥∥δEn+1

∥∥2

0

)
≤ C(τ + h2).(5.7)
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If NLC is also valid, then the following uniform error estimates hold:

∥∥δEN+1
∥∥2

∗ +
1

2

N∑
n=1

∥∥δEn+1 − δEn
∥∥2

∗ + μτ

N∑
n=1

∥∥δEn+1
∥∥2

0
≤ C(τ + h2).(5.8)

Proof. Let (vn, qn) and (vn
h , q

n
h) be solutions of the Stokes equations (2.1) and

(2.6) with g = En+1. Choosing wh = 2δvn+1
h in (5.2), we arrive at

∥∥∇δvn+1
h

∥∥2

0
− ‖∇δvn

h‖
2
0 +

∥∥∇(δvn+1
h − δvn

h)
∥∥2

0
+ 2μτ

∥∥δEn+1
∥∥2

0
=

4∑
i=1

Ai(5.9)

with

A1 := −2μτ
〈
∇δFn+1 , ∇δvn+1

h

〉
,

A2 := 2μτ
(
〈δEn+1 , δFn+1〉 +

〈
∇δqn+1

h , ∇δρn+1
h

〉)
,

A3 := 2τ〈δPn+1 , div δvn+1
h 〉,

A4 := 2Nh

(
un
h, û

n+1
h , δvn+1

h

)
− 2Nh

(
un−1
h , ûn

h, δv
n+1
h

)
− 2Nh

(
u(tn+1),u(tn+1), δvn+1

h

)
+ 2Nh

(
u(tn),u(tn), δvn+1

h

)
.

Except for A4, we can proceed as in Lemma 4.7 to estimate A1–A3, whence

A1 ≤ Cμτ
(
h2

∥∥∇δFn+1
∥∥2

0
+
∥∥δFn+1

∥∥2

0

)
+

μτ

6

∥∥δEn+1
∥∥2

0
,

A2 ≤ Cμτ
(∥∥δFn+1

∥∥2

0
+
∥∥∇δρn+1

h

∥∥2

0

)
+

μτ

6

∥∥δEn+1
∥∥2

0
,

A3 ≤ Cτh2

μ

∥∥δfn+1
∥∥2

0
+

μτ

6

∥∥δEn+1
∥∥2

0
.

The remaining term A4 gives rise to rather technical calculations. A tedious but simple
rearrangement yields A4 =

∑6
i=1 A4,i with each term Ai to be examined separately:

A4,1 := −2Nh(u(tn+1) − 2u(tn) + u(tn−1),u(tn+1), δvn+1
h ),

A4,2 := −2Nh((u(tn) − un
h) − (u(tn−1) − un−1

h ),u(tn+1), δvn+1
h ),

A4,3 := −2Nh(un
h − un−1

h ,u(tn+1) − ûn+1
h , δvn+1

h ),

A4,4 := −2Nh(u(tn) − u(tn−1),u(tn+1) − u(tn), δvn+1
h ),

A4,5 := −2Nh(u(tn−1) − un−1
h ,u(tn+1) − u(tn), δvn+1

h ),

A4,6 := −2Nh(un−1
h , (u(tn+1) − u(tn)) − (ûn+1

h − ûn
h), δvn+1

h ).

Since
∥∥u(tn+1) − 2u(tn) + u(tn−1)

∥∥2

0
≤ Cτ2

∫ tn+1

tn−1 σ‖utt‖2
0 dt, (2.2) and (2.12) yield

A4,1 ≤ Cτ

∫ tn+1

tn−1

σ(t)‖utt(t)‖2
0 dt + Cτ

∥∥∇δvn+1
h

∥∥2

0
,

as well as

A4,2 ≤ μτ

8

(
‖δGn‖2

0 + ‖δEn‖
)

+
Cτ

μ

∥∥∇δvn+1
h

∥∥2

0
.
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Dealing with A4,3 entails further rearrangement as follows:

A4,3 = 2τNh

(
δu(tn) − δun

h,u(tn+1) − ûn+1
h , δvn+1

h − δvn+1
)

+ 2τNh

(
δu(tn) − δun

h,u(tn+1) − ûn+1
h , δvn+1

)
− 2τNh

(
δu(tn),u(tn+1) − ûn+1

h , δvn+1
h − δvn+1

)
− 2τNh

(
δu(tn),u(tn+1) − ûn+1

h , δvn+1
)
.

In view of (2.12) and (2.13), we can thus write

A4,3 ≤ Cτ‖δu(tn) − δun
h‖L3(Ω)

∥∥u(tn+1) − ûn+1
h

∥∥
1

∥∥δvn+1 − δvn+1
h

∥∥
1

+ Cτ‖δu(tn) − δun
h‖0

∥∥u(tn+1) − ûn+1
h

∥∥
1

∥∥δvn+1
∥∥

2

+ Cτ‖δu(tn)‖1

∥∥u(tn+1) − ûn+1
h

∥∥
1

∥∥δvn+1 − δvn+1
h

∥∥
1

+ Cτ‖δu(tn)‖1

∥∥u(tn+1) − ûn+1
h

∥∥
0

∥∥δvn+1
∥∥

2
.

Since ‖δ(vn+1−vn+1
h )‖1 ≤ Ch‖En+1‖0, because of (2.7), we see that the problematic

term with L3 norm can be easily handled. In fact, invoking Lemma 5.1 together with
an inverse inequality from L3 to L2 gives

σn‖δu(tn) − δun
h‖

2
0 + σnh2‖δu(tn) − δun

h‖
2
L3(Ω) ≤ C.

We note that this inequality also holds without weight σn if NLC is valid. Since,

according to (2.2), we have ‖δu(tn)‖2
0 ≤ M and ‖δu(tn)‖2

1 ≤ τ−1
∫ tn+1

tn
‖ut(t)‖2

1 dt≤
Mτ−1, after a simple calculation we get

A4,3 ≤ C

μ
(τ + h2)Dn +

Cτ

σnμ

(
‖∇Ên+1‖

2

0 +
∥∥∇Gn+1

∥∥2

0

)
+

μτ

8

∥∥δEn+1
∥∥2

0
,

where Dn :=
∫ tn

tn−1 ‖∇ut(t)‖2
0 dt. We again use the bound for ‖δu(tn)‖1 to get

A4,4 ≤ Cτ2‖δu(tn)‖1

∥∥δu(tn+1)
∥∥

1

∥∥δvn+1
h

∥∥
1
≤ CτDn + Cτ

∥∥∇δvn+1
h

∥∥2

0
.

To estimate A4,5, A4,6 we again have to handle an L3 norm, this time for u(tn)−un
h.

Combining once again Lemma 5.1 with an inverse estimate yields h‖u(tn) − un
h‖L3(Ω)

≤ C‖u(tn) − un
h‖0 ≤ C(τ + h2)

1
2 . Consequently,

A4,5 ≤ Cτ
∥∥u(tn−1) − un−1

h

∥∥
L3(Ω)

∥∥δu(tn+1)
∥∥

1

∥∥δvn+1 − δvn+1
h

∥∥
1

+ Cτ
∥∥u(tn−1) − un−1

h

∥∥
0

∥∥δu(tn+1)
∥∥

1

∥∥δvn+1
∥∥

2

≤ C

μ
(τ + h2)Dn+1 +

μτ

8

∥∥δEn+1
∥∥2

0
.

In addition, since

A4,6 = 2τNh(u(tn−1) − un−1
h , δu(tn+1) − δûn+1

h , δvn+1
h − δvn+1)

+ 2τNh(u(tn−1) − un−1
h , δu(tn+1) − δûn+1

h , δvn+1)

− 2τNh(u(tn−1), δu(tn+1) − δûn+1
h , δvn+1

h ),

a similar argument leads to

A4,6 ≤ Cτ

μ

(
‖δÊn+1 + δGn+1‖

2

0 + (τ + h2)‖δÊn+1 + δGn+1‖
2

1

)
+

μτ

8
‖δEn+1‖2

0.
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We now multiply both sides of (5.9) by the weight σn+1 and sum over n for
1 ≤ n ≤ N . We first examine the ensuing first two terms on the left-hand side
of (5.9). In light of σ1 = τ , h2 ≤ Cτ ,

∑N
n=1 ‖∇δvn

h‖
2
0 ≤ C (see Lemma 4.7) and

σ1
∥∥∇δv1

h

∥∥2

0
≤ Cτ (see Remark 4.8), we deduce

N∑
n=1

(
σn+1

∥∥∇δvn+1
∥∥2

0
− σn

∥∥∇δvn
h

∥∥2

0
− (σn+1 − σn)

∥∥∇δvn
h

∥∥2

0

)

≥ σN+1
∥∥∇δvN+1

h

∥∥2

0
− σ1

∥∥∇δv1
h

∥∥2

0
− τ

N∑
n=1

‖∇δvn
h‖

2
0 ≥ σN+1

∥∥∇δvN+1
h

∥∥2

0
− Cτ.

Since σn+1

σn ≤ 2 for n ≥ 1, we can replace σ/σn in A4,3 by a constant. Therefore, we

can achieve an estimate for σn+1‖∇δvn+1
h ‖2

0 with the aid of Lemmas 4.1, 4.7, and 5.1,
as well as the discrete Gronwall lemma. The asserted weighted error estimate follows
from (2.8).

If NLC is valid, we do not need to multiply (5.9) by σn+1 to derive the uniform
error estimate (5.8). In this case, we have, instead, ‖δGn‖0 + ‖δEn‖0 ≤ C (see
Lemmas 4.2 and 5.1). We finally proceed as before to obtain (5.8).

6. Theorem 1.3: Error analysis for pressure. We derive here the error of
pressure of Theorem 1.3 by exploiting all previous results.

Lemma 6.1 (rate of convergence for pressure). Let A1–A6 hold and C1h
2 ≤

τ ≤ C2h
d
3 (1+ε) be valid with arbitrary constants C1, C2 > 0. Then the pressure error

function satisfies the weighted estimates

τ

N∑
n=0

σn+1
∥∥en+1

h

∥∥2

0
≤ C

(
τ + h2

)
.(6.1)

If NLC is also valid, then the following uniform error estimate holds:

τ
N∑

n=0

∥∥en+1
h

∥∥2

0
≤ C(τ + h2).(6.2)

Proof. Since pn+1
h = μsn+1

h − τ−1ρn+1
h and Ên+1

h = En+1
h + ∇ρn+1

h according to
(1.11) and (1.13), we can rearrange (4.15) to read

〈
en+1
h , div wh

〉
= A1 + A2 with

A1 := 〈δEn+1 , wh〉 + μ〈∇Ên+1 , ∇wh〉 − 〈μ(sn+1
h − snh) + fn+1 , div wh〉,

A2 := Nh

(
u(tn+1),u(tn+1),wh

)
− Nh

(
un
h, û

n+1
h ,wh

)
.

In view of (4.13), A1 can be bounded as follows:

sup
wh∈Vh

|A1|
‖∇wh‖0

≤ C‖δEn+1‖0 + Cμ‖∇Ên+1‖0 + C
∥∥fn+1

∥∥
0
.

The remaining term A2 can be further split as follows:

A2 = − Nh

(
u(tn+1) − u(tn),u(tn+1), zn+1

h

)
− Nh

(
u(tn) − un

h,u(tn+1), zn+1
h

)
− Nh

(
u(tn),u(tn+1) − ûn+1

h , zn+1
h

)
− Nh

(
un
h − u(tn),u(tn+1) − ûn+1

h , zn+1
h

)
.
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The only problematic term is the last one because it requires use of (2.13). To this

end, note that ‖u(tn) − un
h‖L3(Ω) ≤ C + Ch− d

6 (τ
1
2 + h) ≤ C, as results from adding

and subtracting Ihu(tn), and employing an inverse inequality together with (4.14).

Therefore, since (2.2) implies
∫ tn+1

tn
‖ut(t)‖0 dt ≤ Cτ ,

sup
wh∈Vh

|A2|
‖∇wh‖0

≤ Cτ + C
(
‖En‖0 + ‖Gn‖0 + ‖Ên+1‖1 + ‖Gn+1‖1

)
.

Altogether, invoking the inf-sup condition A4 in conjunction with (4.3) and (4.14),
we obtain

β‖en+1
h ‖0 ≤ sup

wh∈Vh

〈
en+1
h , div wh

〉
‖∇wh‖0

≤ C
(
τ

1
2 + h

)
+ C

(
‖δEn+1‖0 + ‖Ên+1‖1 + ‖Gn+1‖1 + ‖fn+1‖0

)
.

What remains now is to square, multiply by τσn+1 (resp., τ in case NLC is valid),
and sum over n from 0 to N . Recalling (4.3), (4.12), (4.14), and (5.7), assertion (6.1)
(resp., (6.2)) follows immediately. This concludes the proof.

7. Numerical experiments. In this section, we document the computational
performance of the gauge–Uzawa FEM with two relevant examples. They were both
computed within the finite element toolbox ALBERT of Schmidt and Siebert [22].

7.1. Example 1: Smooth solution. We first test the performance of GU-FEM
with a smooth solution. Let Ω = [0, 1] × [0, 1] and the solution be given by

⎧⎪⎪⎨
⎪⎪⎩

u(x, y, t) = cos(t)(x2 − 2x3 + x4)(2y − 6y2 + 4y3),
v(x, y, t) = − cos(t)(y2 − 2y3 + y4)(2x− 6x2 + 4x3),

p(x, y, t) = cos(t)

(
x2 + y2 − 2

3

)
.

The forcing term f(t) is determined accordingly for any μ; here μ = 1. Compu-
tations are carried out with the Taylor–Hood (P2,P1) finite element pair on quasi-
uniform meshes of size h. However, the coarsest mesh is quite distorted to avoid
superconvergence effects. In view of the error estimates of Theorems 1.2 and 1.3, we
adopt the parabolic relation τ = h2 to avoid dominance of either space or time error
over the other. Table 7.1 shows second order accuracy for both velocity and pressure
in L2(H1(Ω)×L2(Ω)). This is better than predicted by the theory for solutions with
minimal regularity, especially when t ↓ 0, and hints at the need for further analysis
beyond the present techniques, perhaps involving also other norms as suggested in
Table 7.1.

7.2. Example 2: Backward step and do-nothing boundary condition.
In order to explore the applicability of the gauge–Uzawa FEM beyond the theory, we
consider the backward step flow problem with do-nothing boundary condition; this is
a natural boundary condition for the stress, namely,

(−∇u + Ip) · ννν = 0 on Γout,(7.1)

where Γout ⊂ ∂Ω. This condition can be imposed on fluid problems with an open
outlet without forcing. Conditions involving the stress and geometric quantities such
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Table 7.1

Example 7.1: The error decay of the gauge–Uzawa FEM for a smooth solution and several norms
for velocity and pressure. The computations are performed with the Taylor–Hood (P2,P1) finite
element pair on quasi-uniform meshes. The meshes are distorted though to prevent superconvergence
effects. The table shows second order accuracy for both velocity and pressure for the relation τ = h2.

h
u(tn) − un

h p(tn) − pnh

L∞(L2) L∞(L∞) L2(L2) L2(H1) L∞(L2) L∞(L∞) L2(L2)

1/8 6.21e-4 1.61e-3 1.57e-3 2.21e-2 1.05e-2 8.95e-2 2.71e-2
1/16 1.57e-4 4.06e-4 4.31e-4 6.44e-3 2.75e-3 2.93e-2 8.37e-3
1/32 3.94e-5 9.99e-5 1.11e-4 1.72e-3 6.94e-4 8.87e-3 2.33e-3
1/64 9.84e-6 2.47e-5 2.80e-5 4.42e-4 1.74e-4 2.59e-3 6.20e-4
1/128 2.46e-6 6.14e-6 7.02e-6 1.12e-4 4.35e-5 7.37e-4 1.61e-4

Order 1.99 2.01 1.99 1.98 1.99 1.81 1.94

as mean curvature are ubiquitous in dealing with free boundary problems for fluids.
The mere fact that projection methods decouple velocity and pressure computations,
and that both u and p appear together in (7.1) makes its implementation a challenge.
This is the case for several projections methods such as the Chorin method [4, 21, 18]
and the gauge method [7, 8, 27].

Since the momentum equation (1.8) is consistent for the pair (ûn+1
h , pnh), as written

in (1.14), to impose (7.1) on the gauge–Uzawa method, we use the modified form
(−∇un+1 + Ipn) · ννν = 0. This amounts to solving (1.14), namely,

τ−1
〈
ûn+1
h − ûn

h , wh

〉
+ Nh(un

h, û
n+1
h ,wh) + μ

〈
∇ûn+1

h , ∇wh

〉
− μ〈pnh , div wh〉 = 〈f(tn+1) , wh〉,

but with test function wh free on Γout. This leads, however, to an incompatible
Poisson problem (1.9) if we insist on a homogeneous Neumann condition; note that
now it is plausible that

∫
∂Ω

ûn+1
h · ννν �= 0.

To circumvent this issue, we consider a space-continuous gauge–Uzawa formula-
tion. In view of (1.9) and (1.12), we can write

〈
∇ρn+1 , ∇ψ

〉
= −

〈
ûn+1 , ∇ψ

〉
=

〈
un+1 − ûn+1 , ∇ψ

〉
∀ψ ∈ P.

This amounts to the natural boundary condition ∂νννρ
n+1 = (un+1− ûn+1) ·ννν, which is

not computable since we do not yet know un+1. We now decompose ∂Ω into an inflow
part Γin, where we prescribe velocity, an outflow part Γout, where we impose (7.1),
and the rest where ûn+1 · ννν = un+1 · ννν = 0. Since

∫
∂Ω

un+1 · ννν =
∫
Ω

div un+1 = 0,

∫
Γout

un+1 · ννν = −
∫

Γin

un+1 · ννν = −
∫

Γin

ûn+1 · ννν,

whence
∫
Γout

(un+1 − ûn+1) · ννν = −
∫
∂Ω

ûn+1 · ννν. We thus solve (1.9) with a constant
flux condition, namely,

∂νννρ
n+1 = −|Γout|−1

∫
∂Ω

ûn+1 · ννν on Γout.

We consider a simple geometry consisting of a backward step flow with do-nothing
boundary condition. This example has been studied extensively and our results are
consistent with those in the literature [14, 23]. The computational domain Ω is [0, 6]×



THE GAUGE–UZAWA FINITE ELEMENT METHOD I 1067

[0, 1] with an obstacle [1.2, 1.6]× [0, 0.4] (see Figure 7.1). No slip boundary condition
is imposed except on the inflow boundary Γin and on the outflow boundary Γout. We
assign u = (1, 0) on Γin and (7.1) on Γout for all time t. The viscosity is μ = 0.005
and the discretization parameters are τ = 0.05 and h = 1/32.

(0,0)

(0,1)

1.2 1.6 (6,0)

��
��
�

u = 0

u = 0

ΓoutΓin

Fig. 7.1. Example 7.2: The computational domain and boundary values. The viscosity is
μ = 0.005 and the discretization parameters are τ = 0.05 and h = 1/32.

Figure 7.2 is a time sequence of streamlines and velocity vector fields for t = 1,
2, 5, and 50. For t = 50 the evolution already became stationary. Figure 7.3 displays
zooms of the recirculation zone behind the step.
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1

0 2 4 6
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0.2 0.4 0.6
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1

0 2 4 6
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0.5

1

0 2 4 6
0

0.5

1

0.2 0.4
0.6 0.8

1

0 2 4 6
0

0.5

1

Fig. 7.2. Example 7.2: The streamlines and velocity vector fields at times t = 1, 2, 5, and 50.

1.6 1.8 2 2.2 2.4
0

0.2

0.4

2 2.5 3
0

0.2

0.4

2 2.5 3 3.5 4
0

0.2

0.4

2 3 4 5
0

0.2

0.4

Fig. 7.3. Example 7.2: Zooms of a velocity vector field in the recirculation zone behind the step
at times t = 1, 2, 5, and 50.
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EXPLICIT EXPONENTIAL RUNGE–KUTTA METHODS FOR
SEMILINEAR PARABOLIC PROBLEMS∗

MARLIS HOCHBRUCK† AND ALEXANDER OSTERMANN‡

Abstract. The aim of this paper is to analyze explicit exponential Runge–Kutta methods for the
time integration of semilinear parabolic problems. The analysis is performed in an abstract Banach
space framework of sectorial operators and locally Lipschitz continuous nonlinearities. We commence
by giving a new and short derivation of the classical (nonstiff) order conditions for exponential Runge–
Kutta methods, but the main interest of our paper lies in the stiff case. By expanding the errors of
the numerical method in terms of the solution, we derive new order conditions that form the basis of
our error bounds for parabolic problems. We show convergence for methods up to order four, and we
analyze methods that were recently presented in the literature. These methods have classical order
four, but they do not satisfy some of the new conditions. Therefore, an order reduction is expected.
We present numerical experiments which show that this order reduction in fact arises in practical
examples. Based on our new conditions, we finally construct methods that do not suffer from order
reduction.

Key words. exponential integrators, Runge–Kutta methods, semilinear parabolic problems,
stiff order conditions, explicit high-order methods, convergence, order reduction
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1. Introduction. Motivated by recent interest in exponential integrators for
stiff problems [3, 9, 11, 12] and inspired by the promising numerical experiments
reported in those papers, we present error bounds for a class of explicit exponential
Runge–Kutta methods for semilinear parabolic problems

u′(t) + Au(t) = g(t, u(t)), u(t0) = u0.(1.1)

The idea behind exponential integrators is an old one and dates back to the 1960s.
The early literature on exponential one-step methods comprises [4, 6, 14, 23, 24, 25].
In most of those papers, the methods were constructed by making use of the variation-
of-constants formula for the solution of (1.1). All of them use the exponential function
of the matrix −hA in order to step from time t to time t+h, or some rational approxi-
mations thereof. Exponential multistep methods have been considered in [13, 21, 26].

Although the first exponential integrators were proposed many years ago, such
methods have not been regarded as practical for a long time. This view, however, has
changed recently as new methods for computing or approximating the product of a
matrix exponential function with a vector have been developed; see the review [19] and
references therein. For large problems, polynomial approximations have to be applied,
in general, either based on Chebyshev polynomials or using variants of the Lanczos
process or the Arnoldi method. (These techniques are also reviewed in [19].) For
parabolic problems it has been shown recently that one can achieve grid independent
convergence of the Lanczos process by working with a shifted and inverted matrix
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[5, 20]. The linear systems arising in each step of the Lanczos process can either be
solved directly (if fast direct solvers are available) or with a preconditioned iterative
method. Details can be found in [5].

The numerical comparisons presented in [11, 12, 18] reveal a number of examples
where explicit exponential integrators outperform standard integrators. However,
while the convergence behavior of implicit or linearly implicit Runge–Kutta or multi-
step methods for parabolic problems is nowadays well understood [15, 16], no analysis
is known so far for explicit exponential integrators. In our paper [10] we analyzed
implicit exponential Runge–Kutta methods. There, a crucial step in the convergence
proofs was to show that all stages have a sufficiently small defect when the true solu-
tion is inserted in place of the numerical solution. This is no longer true for explicit
schemes of order at least three. Therefore, new techniques have to be used for proving
error bounds in this case. Our aim with this paper is to derive new order conditions for
stiff problems and, based on these, to give error bounds for parabolic problems. The
new conditions will then enable us to analyze the methods presented in the literature
and, further, to construct new methods that do not suffer from order reduction.

The outline of the paper is as follows. In section 2, we define a general class of
exponential Runge–Kutta methods and give conditions under which these methods
preserve equilibria. We further give a simple and short derivation of the classical order
conditions for arbitrary order. Our convergence analysis of (1.1) will be performed
in the standard framework of analytic semigroups and locally Lipschitz continuous
nonlinearities in a Banach space. This abstract framework is recalled in section 3.
Our main results are contained in section 4, where we derive new order conditions
for explicit exponential Runge–Kutta methods applied to parabolic problems. These
conditions, which comprise the classical order conditions, are given in Table 2 up to or-
der four. Based on them, we show convergence for explicit exponential Runge–Kutta
methods up to order four, under appropriate temporal smoothness of the exact solu-
tion. The convergence results for the exponential Euler method and for second-order
methods are given in Theorems 4.2 and 4.3, respectively, and our main result is The-
orem 4.7. The new order conditions are further used in section 5 to analyze methods
from the literature and to construct new methods. In particular, we will show that nei-
ther of the exponential classical Runge–Kutta methods from [3, 12] is of order four, in
general, when applied to parabolic problems. Our order conditions enable us, however,
to construct a new exponential variant of the classical Runge–Kutta method which is
of full order four. In section 6 we present numerical experiments which show that the
order reductions predicted by our theory may in fact arise in practical examples.

2. Order conditions and general properties. We consider the following gen-
eral class of one-step methods for solving (1.1):

un+1 = χ(−hA)un + h

s∑
i=1

bi(−hA)Gni,(2.1a)

Uni = χi(−hA)un + h

s∑
j=1

aij(−hA)Gnj ,(2.1b)

Gnj = g(tn + cjh, Unj).(2.1c)

Here, the method coefficients χ, χi, aij , and bi are constructed from exponential func-
tions, or rational approximations of such functions evaluated at the matrix or operator
−hA.
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For consistency reasons, we always assume that χ(0) = χi(0) = 1. It seems worth
mentioning that (2.1) reduces to a Runge–Kutta method with coefficients bi = bi(0)
and aij = aij(0) if we consider the limit A→ 0. The latter method will be called
the underlying Runge–Kutta method henceforth, while (2.1) will be referred to as an
exponential Runge–Kutta method in the following. We suppose throughout the paper
that the underlying Runge–Kutta method satisfies

s∑
j=1

bj(0) = 1,

s∑
j=1

aij(0) = ci, i = 1, . . . , s,

which makes it invariant under the transformation of (1.1) to autonomous form.
A desirable property of numerical methods is that they preserve equilibria u� of

the autonomous problem u′(t) + Au(t) = g(u(t)). Requiring Uni = un = u� for all
i and n ≥ 0 immediately yields the necessary and sufficient conditions. It turns out
that the coefficients of the method have to satisfy

s∑
j=1

bj(z) =
χ(z) − 1

z
,

s∑
j=1

aij(z) =
χi(z) − 1

z
, i = 1, . . . , s.(2.2)

Without further mention, we will assume throughout the paper that these conditions
are fulfilled.

With the help of (2.2), the functions χ and χi can be eliminated in (2.1). The
numerical scheme then takes the form

un+1 = un + h

s∑
i=1

bi(−hA)
(
Gni −Aun

)
,(2.3a)

Uni = un + h

s∑
j=1

aij(−hA)
(
Gnj −Aun

)
.(2.3b)

Conditions (2.2) also imply that we can restrict ourselves to autonomous problems

u′(t) + Au(t) = g(u(t)), u(t0) = u0,(2.4)

since all methods satisfying (2.2) are invariant under the transformation of (1.1) to
autonomous form.

For A = 0, the methods reduce to classical Runge–Kutta methods, for which the
order conditions are well known. In the case of A �= 0, nonstiff order conditions of
order up to 5 have been presented by Friedli [6] using Taylor series expansion of the
exact and the numerical solutions; see also [25] and references therein. Our approach
below is based on trees, which allows us to extract the order conditions for arbitrary
orders in a systematic and simple way, very similar to classical Runge–Kutta methods.
A more technical approach based on the theory of B-series is chosen in [1].

Writing (2.4) in the form

u′ = g(u) −Au = F (u)

shows that the Taylor expansion of the exact solution contains the elementary differ-
entials of F which are represented by the usual trees. Note that these differentials
coincide with those of g except for F ′ = g′ − A and F itself. Splitting the trees that
contain F ′, we obtain trees with two kinds of nodes. The nodes corresponding to A
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are represented by open (white) circles in Table 1, whereas the evaluation of F and
of derivatives of g is represented by filled (black) circles. This gives the subclass of
bicolored trees with black branching nodes and black leaves.

For the numerical scheme written in the form (2.3), we define F̃ (u) = g(u)−Aun.
Then, (2.3) can be formally interpreted as an ordinary Runge–Kutta method with the

usual trees corresponding to the elementary differentials of F̃ . The differentials of F̃
coincide with those of g except for the evaluation of the functions themselves where
F (un) = F̃ (un). Moreover, taking the series expansion of the coefficients aij and bi
into account leads to the same bicolored trees as for the exact solution.

The derivation of the order conditions from the trees proceeds as follows. For
sake of simplicity in presentation, we formally define

aij(z) =
∑
k≥0

α
(k)
ij zk, bi(z) =

∑
k≥0

β
(k)
i zk.(2.5)

A black node preceded by another black node is interpreted as α
(0)
ij , whereas a black

root is interpreted as β
(0)
i . This is exactly the same interpretation as for the underlying

Runge–Kutta method. Moreover, k subsequent white nodes followed by a black node

are interpreted as β
(k)
i or α

(k)
ij , respectively, depending on whether they appear at the

root or not, respectively. This is seen directly from (2.5) with z = −hA. The order
conditions up to order four are displayed in Table 1.

3. Analytical framework. Our analysis below will be based on an abstract
formulation of (1.1) as an evolution equation in a Banach space (X, ‖ · ‖). Let D(A)
denote the domain of A in X. Our basic assumptions on the operator A are those of [8].

Assumption 1. Let A : D(A) → X be sectorial; i.e., A is a densely defined and
closed linear operator on X satisfying the resolvent condition

‖(λI −A)−1‖X←X ≤ M

|λ− a|(3.1)

on the sector {λ ∈ C : ϑ ≤ | arg(λ − a)| ≤ π, λ �= a} for M ≥ 1, a ∈ R, and 0 < ϑ
< π/2.

Under this assumption, the operator −A is the infinitesimal generator of an an-
alytic semigroup {e−tA}t≥0. For ω > −a, the fractional powers of Ã = A + ωI are
well defined. The following stability bounds are proved in [10]. They are crucial in
our analysis.

Lemma 3.1. Under Assumption 1 and for fixed ω > −a, the following bounds
hold uniformly on 0 ≤ t ≤ T :

‖e−tA‖X←X + ‖tγÃγe−tA‖X←X ≤ C, γ ≥ 0,(3.2a) ∥∥∥∥∥∥hA
n−1∑
j=1

e−jhA

∥∥∥∥∥∥
X←X

≤ C.(3.2b)

The next lemma (often called Abel’s partial summation) is a discrete version of
the integration-by-parts formula. Its proof is straightforward.

Lemma 3.2. For Wk =
∑k

j=0 wj the following summation-by-parts formula holds:

n−1∑
j=0

wjvn−j = Wn−1v1 −
n−2∑
j=0

Wj(vn−j−1 − vn−j).(3.3)
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Table 1

Order trees and nonstiff order conditions for exponential Runge–Kutta methods.

No. Tree Order Differential Order condition

1 1 F
∑

β
(0)
i = 1

2 2 g′F
∑

β
(0)
i α

(0)
ij = 1

2

3 2 AF
∑

β
(1)
i = 1

2

4 3 g′′(F, F )
∑

β
(0)
i α

(0)
ij α

(0)
ik = 1

3

5 3 g′g′F
∑

β
(0)
i α

(0)
ij α

(0)
jk = 1

6

6 3 g′AF
∑

β
(0)
i α

(1)
ij = 1

6

7 3 Ag′F
∑

β
(1)
i α

(0)
ij = 1

6

8 3 AAF
∑

β
(2)
i = 1

6

9 4 g′′′(F, F, F )
∑

β
(0)
i α

(0)
ij α

(0)
ik α

(0)
il = 1

4

10 4 g′′(g′F, F )
∑

β
(0)
i α

(0)
ij α

(0)
ik α

(0)
kl = 1

8

11 4 g′′(AF,F )
∑

β
(0)
i α

(0)
ij α

(1)
ik = 1

8

12 4 g′g′′(F, F )
∑

β
(0)
i α

(0)
ij α

(0)
jk α

(0)
jl = 1

12

13 4 Ag′′(F, F )
∑

β
(1)
i α

(0)
ij α

(0)
ik = 1

12

14 4 g′g′g′F
∑

β
(0)
i α

(0)
ij α

(0)
jk α

(0)
kl = 1

24

15 4 g′g′AF
∑

β
(0)
i α

(0)
ij α

(1)
jk = 1

24

16 4 g′Ag′F
∑

β
(0)
i α

(1)
ij α

(0)
jk = 1

24

17 4 Ag′g′F
∑

β
(1)
i α

(0)
ij α

(0)
jk = 1

24

18 4 g′AAF
∑

β
(0)
i α

(2)
ij = 1

24

19 4 Ag′AF
∑

β
(1)
i α

(1)
ij = 1

24

20 4 AAg′F
∑

β
(2)
i α

(0)
ij = 1

24

21 4 AAAF
∑

β
(3)
i = 1

24
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The stability estimate (3.2a) enables us to define the bounded operators

ϕj(−tA) =
1

tj

∫ t

0

e−(t−τ)A τ j−1

(j − 1)!
dτ, j ≥ 1.(3.4)

We note for later use that ϕ0(z) = ez and

ϕk+1(z) =
ϕk(z) − 1/k!

z
, ϕk(0) =

1

k!
, k ≥ 0.(3.5)

Our basic assumptions on g are those of [8] and [22]. We thus choose 0 ≤ α < 1

and define V = D(Ãα) ⊂ X, where Ã denotes the shifted operator Ã = A + ωI with

ω > −a. The linear space V is a Banach space with norm ‖v‖V = ‖Ãαv‖. Note that
V does not depend on ω, since different choices of ω lead to equivalent norms. Our
main hypothesis on the nonlinearity g is the following.

Assumption 2. Let g : [0, T ] × V → X be locally Lipschitz-continuous in a strip
along the exact solution u. Thus there exists a real number L(R, T ) such that

‖g(t, v) − g(t, w)‖ ≤ L‖v − w‖V(3.6)

for all t ∈ [0, T ] and max(‖v − u(t)‖V , ‖w − u(t)‖V ) ≤ R.
Example. It is well known that reaction-diffusion equations fit into this abstract

framework, as well as the incompressible Navier–Stokes equations in two and three
space dimensions; see, e.g., [8, Chapter 3] and [17, section 7.3].

For high-order convergence results, we have to assume more regularity.
Assumption 3. We suppose that (1.1) possesses a sufficiently smooth solution

u : [0, T ] → V with derivatives in V , and that g : [0, T ] × V → X is sufficiently often
Fréchet differentiable in a strip along the exact solution. All occurring derivatives are
supposed to be uniformly bounded.

Note that, under the above assumption, the composition

f : [0, T ] → X : t 	→ f(t) = g(t, u(t))

is a smooth mapping, too. This will be used frequently.

4. Convergence results for exponential methods. In this section, we dis-
cuss the exponential counterparts of classical Runge–Kutta methods and study their
convergence properties for the semilinear problem (1.1). More precisely, we consider
methods with

χ(z) = ez and χi(z) = eciz, 1 ≤ i ≤ s.(4.1)

Our main interest lies in explicit methods for which, due to c1 = 0,

χ1(z) = 1 and aij(z) = 0, 1 ≤ i ≤ j ≤ s.(4.2)

Implicit methods have been analyzed in detail in our recent paper [10]. The
scheme (2.1) satisfying (4.1) and (4.2) is called an explicit exponential Runge–Kutta
method henceforth. For the coefficients of the exponential Runge–Kutta method (2.1)
we assume stability assumptions similar to (3.2a)

‖φ(−tA)‖X←X +
∥∥tγÃγφ(−tA)

∥∥
X←X

≤ C, 0 ≤ γ ≤ 1,(4.3)

for φ = bi or φ = aij , i, j = 1, . . . , s. This assumption is satisfied by all methods
considered below, since bi(z) and aij(z) are (linear) combinations of the functions
ϕk(z) and ϕk(clz), respectively.
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4.1. Error recursion and representation of the defects. In order to sim-
plify the notation, we again set f(t) = g(t, u(t)). Our proofs are heavily based on the
representation of the exact solution by the variation-of-constants formula

u(tn + θh) = e−θhAu(tn) +

∫ θh

0

e−(θh−τ)Af(tn + τ) dτ.(4.4)

We expand f into a Taylor series with remainder in integral form to get

f(tn + τ) =

q∑
j=1

τ j−1

(j − 1)!
f (j−1)(tn) +

∫ τ

0

(τ − σ)q−1

(q − 1)!
f (q)(tn + σ) dσ.(4.5)

On the one hand, inserting this into the right-hand side of (4.4) yields

u(tn + cih) = e−cihAu(tn) +

qi∑
j=1

(cih)jϕj(−cihA)f (j−1)(tn)

+

∫ cih

0

e−(cih−τ)A

∫ τ

0

(τ − σ)qi−1

(qi − 1)!
f (qi)(tn + σ) dσ dτ.

(4.6)

On the other hand, inserting the exact solution into the numerical scheme gives

u(tn + cih) = e−cihAu(tn) + h

i−1∑
j=1

aij(−hA)f(tn + cjh) + Δni,(4.7a)

u(tn+1) = e−hAu(tn) + h

s∑
i=1

bi(−hA)f(tn + cih) + δn+1(4.7b)

with defects Δni and δn+1. Substituting (4.5) into (4.7a), we obtain

u(tn + cih) = e−cihAu(tn) + h

i−1∑
k=1

aik(−hA)

qi∑
j=1

(ckh)j−1

(j − 1)!
f (j−1)(tn)

+ h
i−1∑
k=1

aik(−hA)

∫ ckh

0

(ckh− σ)qi−1

(qi − 1)!
f (qi)(tn + σ) dσ + Δni.

(4.8)

Subtracting (4.6) from (4.8) gives the following explicit representation of the defects,

Δni =

qi∑
j=1

hjψj,i(−hA)f (j−1)(tn) + Δ
[qi]
ni ,(4.9)

with remainders Δ
[qi]
ni and with

ψj,i(−hA) = ϕj(−cihA)cji −
i−1∑
k=1

aik(−hA)
cj−1
k

(j − 1)!
.(4.10)

Similarly, we get for the defects at time tn+1

δn+1 =

q∑
j=1

hjψj(−hA)f (j−1)(tn) + δ
[q]
n+1,(4.11)
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where

ψj(−hA) = ϕj(−hA) −
s∑

k=1

bk(−hA)
cj−1
k

(j − 1)!
.(4.12)

For the remainders in (4.9) and (4.11), we have the following estimate.

Lemma 4.1. Let 0 < ν ≤ 1 and Ãν−1f (r) ∈ L∞(0, T ;V ). Then,

h1−ν‖Δ[r]
ni‖V + ‖Ãν−1Δ

[r]
ni‖V ≤ Chr+1 sup

0≤τ≤1
‖Ãν−1f (r)(tn + τh)‖V ,(4.13a)

∥∥∥∥∥∥
n−1∑
j=0

e−jhAδ
[r]
n−j

∥∥∥∥∥∥
V

≤ Chr sup
0≤t≤tn

‖Ãν−1f (r)(t)‖V(4.13b)

holds with a constant C, uniformly in 0 ≤ tn ≤ T .
Proof. Both estimates follow at once from the stability bound

∥∥tγÃγe−tA
∥∥
V←V

+
∥∥tγÃγφ(−tA)

∥∥
V←V

≤ C, 0 ≤ γ ≤ 1,

for φ = bi or φ = aij , i, j = 1, . . . , s. The latter is a consequence of (3.2a) and (4.3),
respectively.

Let en = un − u(tn) and Eni = Uni − u(tn + cih) denote the differences between
the numerical and the exact solutions. Subtracting (4.7) from the numerical method
(2.1) satisfying (4.1) and (4.2) gives the error recursion

Eni = e−cihAen + h

i−1∑
j=1

aij(−hA)
(
g(tn + cjh, Unj) − f(tn + cjh)

)
− Δni,(4.14a)

en+1 = e−hAen + h

s∑
i=1

bi(−hA)
(
g(tn + cih, Uni) − f(tn + cih)

)
− δn+1.(4.14b)

We will derive bounds for these errors.

4.2. Convergence of the exponential Euler method. For s = 1, the only
reasonable choice is the exponential form of Euler’s method. Applied to (1.1), it is

un+1 = e−hAun + hϕ1(−hA)g(tn, un).(4.15)

For this method, we have the following convergence result.
Theorem 4.2. Let the initial value problem (1.1) satisfy Assumptions 1– 2

and consider for its numerical solution the exponential Euler method (4.15). Fur-
ther assume that f : [0, T ] → X is differentiable and that β ∈ (0, 1] is such that

Ãβ−1f ′ ∈ L∞(0, T ;V ). Then, the error bound

‖un − u(tn)‖V ≤ C · h sup
0≤t≤tn

‖Ãβ−1f ′(t)‖V

holds uniformly in 0 ≤ nh ≤ T . The constant C depends on T , but it is independent
of n and h.

Proof. The exponential Euler method satisfies the error recursion

en+1 = e−hAen + hϕ1(−hA)
(
g(tn, un) − f(tn)

)
− δn+1(4.16)
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with defects δn+1 = δ
[1]
n+1 given by (4.7b) and (4.11). Solving recursion (4.16) gives

en = h

n−1∑
j=0

e−(n−j−1)hAϕ1(−hA)
(
g(tj , uj) − f(tj)

)
−

n−1∑
j=0

e−jhAδn−j .

Using (3.2a), Assumption 2, and Lemma 4.1, we may estimate this in V by

‖en‖V ≤ Ch

n−2∑
j=0

t−α
n−j−1‖ej‖V + Ch1−α‖en−1‖V + Ch sup

0≤t≤tn

‖Ãβ−1f ′(t)‖V .

The application of a discrete Gronwall lemma [10, Lemma 4] now concludes the
proof.

Remark. The above theorem can also be deduced from [10], since the exponential
Euler method is a collocation method with s = 1 and c1 = 0.

4.3. Convergence results for second-order methods. We first derive a
bound for the errors of the internal stages. Due to (2.2) and (4.1), we always have
ψ1,j = 0. From (4.9) and (4.14a) we thus get, with the help of Assumption 2,

‖Eni‖V ≤ C ‖en‖V + Ch1−α max
2≤j≤i−1

‖Enj‖V + ‖Δ[1]
ni‖V .

Applying Lemma 4.1 then shows the a priori bound

‖Eni‖V ≤ C ‖en‖V + Ch1+ν sup
0≤τ≤1

‖Ãν−1f ′(tn + τh)‖V .(4.17)

For second-order methods, we will satisfy the order conditions

ψ1(−hA) = 0, ψ2(−hA) = 0(4.18)

and take q = 2 in (4.11). We are now in the position to state the convergence theorem.
Theorem 4.3. Let the initial value problem (1.1) satisfy Assumptions 1 and 2,

and consider for its solution an exponential Runge–Kutta method (2.1) satisfying
(4.1), (4.2), and (4.18). Further assume that f : [0, T ] → X is twice differentiable

and that β, κ ∈ (0, 1] are such that Ãβ−1f ′ ∈ L∞(0, T ;V ) and Ãκ−1f ′′ ∈ L∞(0, T ;V ).
Then, the error bound

‖un − u(tn)‖V ≤ C · h1+β sup
0≤t≤tn

‖Ãβ−1f ′(t)‖V + C · h2 sup
0≤t≤tn

‖Ãκ−1f ′′(t)‖V

holds uniformly in 0 ≤ nh ≤ T . The constant C depends on T , but it is independent
of n and h.

Remark. If f ′, f ′′ ∈ L∞(0, T ;X), the above theorem is applicable with β = κ =
1 − α. For β = 1, the theorem yields order 2. Under the slightly weaker regularity
assumptions f ′(0) ∈ V and f ′′ ∈ L1(0, T ;V ), we obtain an alternative second-order
error bound

‖un − u(tn)‖V ≤ C · h2

(
‖f ′(0)‖V +

∫ tn

0

‖f ′′(τ)‖V dτ

)
.

This follows easily from the proof of Theorem 4.3.
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Proof. Solving the error recursion (4.14b) in the same way as in the proof of
Theorem 4.2 gives

‖en‖V ≤ Ch1−α‖En−1‖V + Ch

n−2∑
j=0

t−α
n−j−1‖Ej‖V +

∥∥∥∥∥
n−1∑
j=0

e−jhAδn−j

∥∥∥∥∥
V

with ‖Ej‖V = max2≤k≤s ‖Ejk‖V . After inserting the bounds (4.17) and (4.13b), the
proof is concluded by applying a discrete Gronwall lemma.

If g : [0, T ] × V → X is twice differentiable, its derivatives

Jn =
∂g

∂u

(
tn, u(tn)

)
, Kn =

∂2g

∂t∂u

(
tn, u(tn)

)

are bounded operators from V to X.
Lemma 4.4. Under Assumption 3, we have

g(tn + cih, Uni) − f(tn + cih) = JnEni + cihKnEni + Qni,(4.19a)

g(tn, un) − f(tn) = Jnen + Qn(4.19b)

with remainders Qni and Qn satisfying the bounds

‖Qni‖ ≤ C ·
(
h2 + ‖Eni‖V

)
‖Eni‖V , ‖Qn‖ ≤ C · ‖en‖2

V ,

as long as the errors Eni and en remain in a sufficiently small neighborhood of 0.
Proof. Using Taylor series expansion, we get

g(tn + cih, Uni) − f(tn + cih) =
∂g

∂u

(
tn + cih, u(tn + cih)

)
Eni

+

∫ 1

0

(1 − τ)
∂2g

∂u2

(
tn + cih, u(tn + cih) + τEni

)
(Eni, Eni) dτ.

Expanding the first term on the right-hand side at tn yields the desired result.
Inserting (4.19a) into the recursion (4.14b) shows that the main contribution of

the defects to the global error is given by the term

h

n−1∑
j=0

e−jhA
s∑

i=1

bi(−hA)JnΔ
[1]
n−j−1,i.(4.20)

Let γ < 1 and 0 ≤ μ ≤ 1 − β be such that

∥∥Ã−γJn Ã
μ
∥∥
V←V

≤ C.(4.21)

This estimate holds trivially for γ = α and μ = 0. But there are more favorable
situations in which μ > 0. Then, the expression (4.20) is bounded by

C · h1+β+μ sup
0≤t≤tn

‖Ãβ−1f ′(t)‖V ,(4.22)

which slightly improves the error bound of the theorem. We do not elaborate this
point here further.
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4.4. Convergence results for higher-order methods. An explicit expansion
of Eni in terms of Δni and en is easily obtained with the help of Lemma 4.4 by inserting
the expressions of the lemma recursively into (4.14a). Depending on the size of s and
α, however, this expansion will consist of a great number of terms that all give rise
to order conditions for the method. For example, the arising term

h
+2
i−1∑
j1=1

aij1(−hA)Jn · · ·
j�−1∑
j�=1

aj�−1j�(−hA)Jn · ψ2,j�(−hA)f ′(tn)(4.23)

has classical order � + 2 and can be neglected for � ≥ 2 in a fourth-order method. In
our context, however, it has only order 1 + (� + 1)(1 − α), and this might be a small
number, even for large �. In that case, the term can no longer be neglected.

To keep our presentation simple, we will consider in the remainder of this section
only the case α = 0. It is therefore no longer necessary to distinguish between the
spaces V and X.

Lemma 4.5. Under the assumptions of Lemma 4.4 and α = 0, there exist bounded
operators Nni(en) on X such that

Eni = Nni(en)en − h2ψ2,i(−hA)f ′(tn) − h3ψ3,i(−hA)f ′′(tn)

− h3
i−1∑
j=2

aij(−hA)Jnψ2,j(−hA)f ′(tn) + h4Rni,

with uniformly bounded remainders ‖Rni‖ ≤ C.
Proof. The formula follows easily from recursion (4.14a), the representation of

the defects (4.9), and from Lemma 4.4 by an induction argument.
An important consequence of the above lemma is the following representation of

the errors en. It is the key result for obtaining the stiff order conditions.
Lemma 4.6. Under the assumptions of Lemma 4.4 and α = 0, there exist uni-

formly bounded operators Nn(en) on X such that the global errors en satisfy the re-
cursion

en+1 = e−hAen + hNn(en)en − h2ψ2(−hA)f ′(tn)

− h3ψ3(−hA)f ′′(tn) − h3
s∑

i=1

bi(−hA)Jnψ2,i(−hA)f ′(tn)

− h4ψ4(−hA)f ′′′(tn) − h4
s∑

i=1

bi(−hA)Jnψ3,i(−hA)f ′′(tn)

− h4
s∑

i=1

bi(−hA)Jn

i−1∑
j=2

aij(−hA)Jnψ2,j(−hA)f ′(tn)

− h4
s∑

i=1

bi(−hA)ciKnψ2,j(−hA)f ′(tn) + h5Rn,

(4.24)

with uniformly bounded remainders ‖Rn‖ ≤ C.
Proof. The formula follows easily from recursion (4.14b), the representation of

the defects (4.11), and Lemma 4.5.
The stiff order conditions can easily be identified in (4.24). For clarity, we have

collected them in Table 2. With these preparations, we are now in the position to
formulate a more general convergence result.



1080 MARLIS HOCHBRUCK AND ALEXANDER OSTERMANN

Table 2

Stiff order conditions for explicit exponential Runge–Kutta methods for α = 0. Here J and K
denote arbitrary bounded operators on X. The functions ψi and ψk,� are defined in (4.12) and (4.10),
respectively.

No. Order Order condition

1 1 ψ1(−hA) = 0

2 2 ψ2(−hA) = 0

3 2 ψ1,i(−hA) = 0

4 3 ψ3(−hA) = 0

5 3
s∑

i=1

bi(−hA)Jψ2,i(−hA) = 0

6 4 ψ4(−hA) = 0

7 4
s∑

i=1

bi(−hA)Jψ3,i(−hA) = 0

8 4
s∑

i=1

bi(−hA)J

i−1∑

j=2

aij(−hA)Jψ2,j(−hA) = 0

9 4
s∑

i=1

bi(−hA)ciKψ2,i(−hA) = 0

Theorem 4.7. Let the initial value problem (1.1) satisfy Assumptions 1– 3 with
α = 0, and consider for its numerical solution an explicit exponential Runge–Kutta
method (2.1) satisfying (4.1) and (4.2). For 2 ≤ p ≤ 4, assume that the order
conditions of Table 2 hold up to order p − 1 and that ψp(0) = 0. Further assume
that the remaining conditions of order p hold in a weaker form with bi(0) instead of
bi(−hA) for 2 ≤ i ≤ s. Then, the numerical solution un satisfies the error bound

‖un − u(tn)‖ ≤ C · hp,

uniformly in 0 ≤ nh ≤ T . The constant C depends on T , but it is independent of n
and h.

Proof. Inserting the order conditions into the recursion of Lemma 4.6 yields

en+1 = e−hAen + hNn(en)en + hpTn + hp+1Rn

with bounded remainders Rn depending on p. Here, Tn denotes the terms multiplying
hp in Lemma 4.6. Solving the above error recursion gives

en = h

n−1∑
j=0

e−(n−j)hANj(ej)ej + hp
n−1∑
j=0

e−jhATn−j−1 + hp+1
n−1∑
j=0

e−jhARn−j−1.

In order to bound the second term on the right-hand side, we use the assumptions
on the conditions of order p and apply Lemma 4.8 below. Using further the stability
estimate (3.2a) and the bounds for Rj and for Nj(ej) finally yields

‖en‖ ≤ Ch

n−1∑
j=0

‖ej‖ + Chp.

Thus, an application of the classical Gronwall lemma concludes the proof.
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The following lemma was used in the above proof.
Lemma 4.8. Under the above assumptions, let �i : [0, T ] → X for 1 ≤ i ≤ s

denote differentiable functions with bounded derivatives. Then

∥∥∥∥∥
n−1∑
j=0

e−jhA
s∑

i=1

(
bi(−hA) − bi(0)

)
�i(tn−j−1)

∥∥∥∥∥ ≤ C.(4.25)

Proof. We first note that there exist bounded operators b̃i(−hA) with

bi(−hA) − bi(0) = hA · b̃i(−hA).

The bound (4.25) now follows at once from Lemma 3.2 with wj = e−jhAhA · b̃i(−hA)
and vj = �i(tj−1) by using the stability bound (3.2b).

Remark. The proof of Theorem 4.7 does not extend immediately to variable step
sizes. The reason for this lies in the use of the summation-by-parts formula (3.3).
Assuming, however, that the method satisfies the conditions of order p in the strong
sense of Table 2, then Lemma 4.8 is no longer needed. In that case, the theorem
obviously holds for variable step sizes, too.

4.5. Existence of explicit methods of arbitrarily high order. In our recent
paper [10] we have shown that, under the above assumptions, an s-stage exponential

Runge–Kutta method of collocation type with coefficients âij(−hA) and b̂i(−hA)
satisfies the error bound

‖ûn − u(tn)‖V ≤ C hs sup
0≤t≤T

‖f (s)(t)‖,

uniformly on 0 ≤ tn ≤ T . It is further shown there that the equations for the internal
stages can be solved by fixed-point iteration,

Û
(k)
ni = e−cihAûn + h

s∑
i=1

âij(−hA) g
(
tn + cjh, Û

(k−1)
nj

)
, Û

(0)
nj = ûn.

For α = 0, we obviously gain one power of h in each iteration. Performing s iterations

and setting Uni = Û
(s)
ni , 1 ≤ i ≤ s, and

un+1 = e−hAun + h

s∑
i=1

b̂i(−hA) g
(
tn + cjh, Unj

)

thus defines an explicit exponential Runge–Kutta method of order s with s2 stages.
The construction shows that there exist explicit exponential Runge–Kutta methods
of arbitrarily high order. For general α, however, we gain only h1−α in each iteration.
Therefore, a lot of explicit stages might be necessary for obtaining order s.

5. A discussion of explicit methods of orders up to four. In this section,
we consider some examples of methods up to order four. Since the first-order expo-
nential Euler method has already been analyzed in section 4.2, we commence here
with second-order methods. In the Butcher tableaus below, we use the abbreviations

ϕi,j = ϕi,j(−hA) = ϕi(−cjhA), 2 ≤ j ≤ s.(5.1)
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5.1. Second-order methods. Second-order methods require two internal
stages at least. For two stages, the order conditions are

b1(−hA) + b2(−hA) = ϕ1(−hA),(5.2a)

b2(−hA)c2 = ϕ2(−hA),(5.2b)

a21(−hA) = c2ϕ1(−c2hA).(5.2c)

A straightforward elimination leads to the following one-parameter family of expo-
nential Runge–Kutta methods

0
c2 c2 ϕ1,2

ϕ1 − 1
c2
ϕ2

1
c2
ϕ2

.(5.3)

The coefficients are displayed as usual in a Butcher tableau. It is also possible to omit
the function ϕ2 by weakening condition (5.2b) to b2(0)c2 = ϕ2(0) = 1

2 . This yields
another one-parameter family of methods

0
c2 c2 ϕ1,2

(1 − 1
2c2

)ϕ1
1

2c2
ϕ1

.(5.4)

Note that the choice c2 = 1
2 yields b1 = 0.

Methods (5.3) and (5.4) have been proposed already by Strehmel and Weiner
[25, Example 4.2.2] in the context of adaptive Runge–Kutta methods, where the
functions ϕj are usually approximated by certain rational functions. It is shown in
[25, Section 4.5.3] that both methods are B-consistent of order one.

Method (5.3) satisfies the assumptions of Theorem 4.3 and thus converges with
order 1 + β, in general. Method (5.4) can be analyzed in a similar way, as it differs
from (5.3) in the choice of the quadrature rule for un+1 only. The defects at the grid
points now have the form

δn+1 =
h2

2

(
2ϕ2(−hA) − ϕ1(−hA)

)
f ′

(
tn +

h

2

)

+

∫ h

0

e−(h−τ)A

∫ τ

h/2

(τ − ξ)f ′′ (tn + ξ) dξ.

(5.5)

Since 2ϕ2(0) − ϕ1(0) = 0, the first term of (5.5) contributes with

C · h1+β

(
‖Ãβ−1f ′(0)‖V +

∫ tn

0

‖Ãβ−1f ′′(t)‖V dt

)
(5.6)

to the global error. This is seen with the help of Lemma 3.2. Thus, Theorem 4.3
holds with the additional error term (5.6) for the modified method (5.4), too. In
particular, we get a second-order error bound for β = 1. Note, however, that (5.6)
cannot be improved under a condition of the type (4.21). For situations in which
f ′(t), f ′′(t) �∈ V , method (5.3) is therefore preferable to method (5.4), which can be
affected by an order reduction; see also Figure 6.3 below.
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5.2. Third-order methods. We will continue with 3-stage methods. In the
following, we assume α = 0. The order conditions for 3-stage methods are

b1(−hA) + b2(−hA) + b3(−hA) = ϕ1(−hA),(5.7a)

b2(−hA)c2 + b3(−hA)c3 = ϕ2(−hA),(5.7b)

a21(−hA) = c2ϕ1(−c2hA),(5.7c)

a31(−hA) + a32(−hA) = c3ϕ1(−c3hA),(5.7d)

b2(−hA)c22 + b3(−hA)c23 = 2ϕ3(−hA),(5.7e)

b2(−hA)Jc22ϕ2(−c2hA) + b3(−hA)Jψ2,3 = 0,(5.7f)

where

ψ2,3 = c23ϕ2(−c3hA) − c2a32(−hA).

Condition (5.7f) can be satisfied by b2 = 0 and ψ2,3 = 0 or b2 = γb3 and c22ϕ2,2 +
γψ2,3 = 0. However, both choices contradict conditions (5.7b) and (5.7e). We thus
weaken (5.7e) to

b2(0)c22 + b3(0)c23 = 2ϕ3(0) =
1

3
.(5.7g)

The choice b2 = 0 leads to the following one-parameter family of third-order methods:

0
c2 c2ϕ1,2

2
3

2
3ϕ1,3 − 4

9c2
ϕ2,3

4
9c2

ϕ2,3

ϕ1 − 3
2ϕ2 0 3

2ϕ2

.(5.8)

The other choice b2 = γb3 leads to the two-parameter family of methods of order three

0
c2 c2ϕ1,2

c3 c3ϕ1,3 − a32 γc2ϕ2,2 +
c23
c2
ϕ23

ϕ1 − b2 − b3
γ

γc2+c3
ϕ2

1
γc2+c3

ϕ2

,(5.9)

where γ, c2, and c3 have to satisfy the restriction

2(γc2 + c3) = 3(γc22 + c23).(5.10)

Another possibility is to weaken (5.7f) to

b2(0)c22ϕ2(−c2hA) + b3(0)
(
c23ϕ2(−c3hA) − c2a32(−hA)

)
= 0.(5.11)

The order conditions of the underlying Runge–Kutta method of order three show that

b2(0) =
2 − 3c3

6c2(c2 − c3)
, b3(0) =

2 − 3c2
6c3(c3 − c2)

;

see [7, Exercise II.1.4]. Here, we have to choose c2 �= 2/3 and c2 �= c3 except for
c2 = c3 = 2/3 where b2(0) + b3(0) = 3/4.
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A three-parameter family of methods that involve ϕ1 and ϕ2 only is given by

0
c2 c2ϕ1,2

c3 c3ϕ1,3 − a32
c23
c2
ϕ2,3 − 2−3c3

2−3c2
c3ϕ2,2

ϕ1 − b2 − b3 α2ϕ1 + β2ϕ2 α3ϕ1 + β3ϕ2

.(5.12)

In addition to c2 and c3, one of the coefficients αi, βi can be chosen arbitrarily, and
the remaining ones are determined by the linear system

c2α2 + c3α3 = 0, α3 +
1

2
β3 = b3(0), c2β2 + c3β3 = 1.

Note that for α2 = 0 and β2 = γβ3 we recover condition (5.10) and obtain the scheme
(5.9). Setting α2 = β2 = 0 leads to b2(−hA) = 0 and the condition c3 = 2/3, which
results in the scheme (5.8).

We next discuss some related methods which can be found in the literature.
Strehmel and Weiner [25, Example 4.5.4] proved that for a 3-stage adaptive

Runge–Kutta method with second-order B-consistency, the condition b2 = 0 is nec-
essary. They proposed the following family of such methods:

0
c2 c2ϕ1,2

1 ϕ1,3 − 1
c2
ϕ2,3

1
c2
ϕ2,3

ϕ1 − ϕ2 0 ϕ2

.

These methods satisfy conditions (5.7a), (5.7b), (5.7c), and (5.7d), i.e., all conditions
of Table 2 up to order two. However, the conditions (5.7f) and (5.7g) of order three
are not satisfied, not even in a weak form. Therefore, these methods are of second
order only. Since they are more expensive than the 2-stage methods proposed in the
previous section, the latter should be preferred for semilinear parabolic problems.

Cox and Matthews [3] constructed a method called ETD3RK, which reads

0
1
2

1
2ϕ1,2

1 −ϕ1,3 2ϕ1,3

4ϕ3 − 3ϕ2 + ϕ1 −8ϕ3 + 4ϕ2 4ϕ3 − ϕ2

.(5.13)

This method uses ϕ3 and satisfies conditions (5.7a), (5.7b), (5.7c), (5.7d), and (5.7g).
However, condition (5.7f) is satisfied only in a very weak form (where all arguments
are evaluated for A = 0). This leads to an order reduction to order two in the worst
case. The same conditions are satisfied by ETD2RK3 from [3].

The method ETD2CF3 is a variant of the commutator-free Lie group method
CF3 due to Celledoni, Marthinsen, and Owren [2]. It is given by

0
1
3

1
3ϕ1,2

2
3

2
3ϕ1,3 − 4

3ϕ2,3
4
3ϕ2,3

ϕ1 − 9
2ϕ2 + 9ϕ3 6ϕ2 − 18ϕ3 − 3

2ϕ2 + 9ϕ3

.

This method satisfies (5.7a)–(5.7c) and weak forms of (5.7d) and (5.7f), where bi(−hA)
is evaluated for A = 0. Therefore this method is of order three for α = 0.
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5.3. Fourth-order methods. Again we assume α = 0. The order conditions
for s-stage methods up to order four are

s∑
i=1

bi(−hA) = ϕ1(−hA),(5.14a)

s∑
i=2

bi(−hA)ci = ϕ2(−hA),(5.14b)

i−1∑
j=1

aij(−hA) = ciϕ1(−cihA),(5.14c)

s∑
i=2

bi(−hA)c2i = 2ϕ3(−hA),(5.14d)

s∑
i=2

bi(−hA)J

(
ϕ2(−cihA)c2i −

i−1∑
j=2

aij(−hA)cj

)
= 0,(5.14e)

s∑
i=2

bi(−hA)c3i = 6ϕ4(−hA),(5.14f)

s∑
i=2

bi(−hA)J

(
ϕ3(−cihA)c3i −

1

2

i−1∑
j=2

aij(−hA)c2j

)
= 0,(5.14g)

s∑
i=2

bi(−hA)J

i−1∑
j=2

aij(−hA)J

(
ϕ2(−cjhA)c2j −

j−1∑
k=2

ajk(−hA)ck

)
= 0,(5.14h)

s∑
i=2

bi(−hA)ciK

(
ϕ2(−cihA)c2i −

i−1∑
j=2

aij(−hA)cj

)
= 0.(5.14i)

From (5.14a), (5.14b), and (5.14d) we deduce that any fourth-order method has to
involve ϕ1, ϕ2, and ϕ3. By Theorem 4.7 it is sufficient to satisfy condition 6 of Table 2
in the weakened form ψ4(0) = 0, i.e., to replace (5.14f) by

s∑
i=2

bi(0)c3i =
1

4
.(5.14j)

Cox and Matthews [3] proposed the following exponential variant of the classical
Runge–Kutta method:

0
1
2

1
2ϕ1,2

1
2 0 1

2ϕ1,3

1 1
2ϕ1,3

(
ϕ0,3 − 1

)
0 ϕ1,3

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 4ϕ3 − ϕ2

.(5.15)
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This method satisfies conditions 1– 4 of Table 2, the weakened but sufficient condi-
tion 6 (ψ4(0) = 0), but not conditions 5, 7, 8, and 9. However, it satisfies a weakened
form of conditions 5 and 9 (because ψ2,2(0) + ψ2,3(0) = 0 and ψ2,4(0) = 0), and a
very weak form of conditions 7 and 8 (where all arguments are evaluated for A = 0).
In the worst case, this leads to an order reduction to order two only.

Krogstad’s method [12] for (1.1) is given by

0
1
2

1
2ϕ1,2

1
2

1
2ϕ1,3 − ϕ2,3 ϕ2,3

1 ϕ1,4 − 2ϕ2,4 0 2ϕ2,4

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 −ϕ2 + 4ϕ3

.(5.16)

This method satisfies conditions 1– 5 and 9 of Table 2, the weakened but sufficient
condition 6 (ψ4(0) = 0), but not conditions 7 and 8, which are only satisfied in a very
weak form (where all arguments are evaluated for A = 0). In the worst case, this
leads to an order reduction to order three.

Strehmel and Weiner’s method [25, Example 4.5.5] can be written as

0
1
2

1
2ϕ1,2

1
2

1
2ϕ1,3 − 1

2ϕ2,3
1
2ϕ2,3

1 ϕ1,4 − 2ϕ2,4 −2ϕ2,4 4ϕ2,4

ϕ1 − 3ϕ2 + 4ϕ3 0 4ϕ2 − 8ϕ3 −ϕ2 + 4ϕ3

.(5.17)

This method satisfies the conditions of Table 2 in exactly the same way as Krogstad’s
method. It thus converges in our situation with order three in the worst case. Strehmel
and Weiner proved that the method is B-consistent of order two.

Remark. Under favorable circumstances, each of the above methods can show a
higher order of convergence (generically up to order four). We will shortly discuss a
typical situation when this happens. For instance, the method of Cox and Matthews
satisfies condition 5 of Table 2 only in the very weak form

s∑
i=1

bi(0)Jnψ2,i(0) = 0.

According to Theorem 4.7, this may result in an order reduction down to order two.
The term corresponding to condition 5 contributes to the global error via

h3
n−1∑
j=0

e−(n−j−1)hA
s∑

i=1

bi(−hA)Jjψ2,i(−hA)f ′′(tj)

= h3
n−1∑
j=0

e−(n−j−1)hA
s∑

i=1

(
bi(−hA) − bi(0)

)
Jjψ2,i(0)f ′′(tj)(5.18a)

+ h3
n−1∑
j=0

e−(n−j−1)hA
s∑

i=1

bi(−hA)Jj

(
ψ2,i(−hA) − ψ2,i(0)

)
f ′′(tj).(5.18b)
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The first part (5.18a) has order three by Lemma 4.8. In order to improve the second

term, we assume that the operators A and Jj are such that A−1JjÃ
μ is bounded on

X for some 0 ≤ μ ≤ 1. Then, due to

∥∥A−1Jj
(
ψ2,i(−hA) − ψ2,i(0)

)∥∥
X←X

=
∥∥A−1Jj(hÃ)μ · (hÃ)−μ

(
ψ2,i(−hA) − ψ2,i(0)

)∥∥
X←X

≤ Chμ,

one gains (by applying Lemma 4.8 once more) an additional order μ in the term
(5.18b). Exactly this happens in the numerical examples of section 6.

One might ask whether it is possible to modify the above methods in such a
way that they have order four for semilinear parabolic problems. In fact this cannot
be done without adding further stages, which is seen as follows. Assume s = 4,
c2 = c3 = 1/2, and c4 = 1. Due to the order conditions of the underlying method, we
have b4(0) �= 0 and |b2(0)| + |b3(0)| > 0. Condition 5 of Table 2 immediately yields
ψ2,4 = 0. Moreover, b3 �= 0 since ψ2,2 �= 0. Hence, condition 5 can be satisfied only if
b2 = γb3. This leads to γψ2,2 + ψ2,3 = 0, which gives a32 = (1 + γ) 1

2ϕ2,3. This choice
of a32 contradicts condition 8 even in the weakened form, where bi(−hA) is replaced
by bi(0).

Thus we consider the case s = 5 and add the node c5 = 1/2. In order to avoid
the difficulty encountered above, we have to choose b2 = b3 = 0. This requires
b4b5 �= 0, and therefore we have to enforce ψ2,4 = ψ2,5 = 0 by condition 5 for a
method of order three. Thus condition 9 is satisfied automatically. Condition 8
shows that a42 = γa43 and a52 = γa53. For simplicity, we choose γ = 1. This gives
ψ2,2 + ψ2,3 = 0, which leads to a32 = ϕ2,3. Unfortunately, condition 7 cannot be
satisfied in a strong form, because ψ3,4 = ψ3,5 = 0 contradicts ψ2,4 = ψ2,5 = 0. Hence
we require only the weak form with bi(0) instead of bi(−hA). This yields the following
fourth-order scheme:

0
1
2

1
2ϕ1,2

1
2

1
2ϕ1,3 − ϕ2,3 ϕ2,3

1 ϕ1,4 − 2ϕ2,4 ϕ2,4 ϕ2,4
1
2

1
2ϕ1,5 − 2a5,2 − a5,4 a5,2 a5,2

1
4ϕ2,5 − a5,2

ϕ1 − 3ϕ2 + 4ϕ3 0 0 −ϕ2 + 4ϕ3 4ϕ2 − 8ϕ3

(5.19)

with

a5,2 =
1

2
ϕ2,5 − ϕ3,4 +

1

4
ϕ2,4 −

1

2
ϕ3,5.

6. Numerical experiments. In this section we present some numerical exper-
iments in order to verify the sharpness of our error bounds.

As a first example we consider the semilinear parabolic problem

∂U

∂t
(x, t) − ∂2U

∂x2
(x, t) =

1

1 + U(x, t)2
+ Φ(x, t)(6.1)

for x ∈ [0, 1] and t ∈ [0, 1], subject to homogeneous Dirichlet boundary conditions.
The source function Φ is chosen in such a way that the exact solution of the problem
is U(x, t) = x(1 − x) et.
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Fig. 6.1. The errors of various explicit exponential Runge–Kutta methods of orders two to
four when applied to (6.1). The errors are measured in the maximum norm at t = 1 and plotted
as functions of the step size. For comparison, we added lines with slope two (dashed), three (dash-
dotted), and four (dotted).

We discretize this problem in space by standard finite differences with 200 grid
points. Due to our theory, we expect to see order two for the two variants (5.3)
and (5.4) with c2 = 1

2 of the exponential Runge method, and order three for the
two variants (5.8) and (5.9) of the exponential Heun method with c2 = 1/3 and
γ = 1.52. Note that for this example ‖A−1JA‖ is bounded. This gives us order
four for Krogstad’s method and order three for the Cox and Matthews method. All
these orders are confirmed by the results illustrated in Figure 6.1, where the errors
are measured in the maximum norm.

Next we consider the semilinear parabolic problem

∂U

∂t
(x, t) − ∂2U

∂x2
(x, t) =

∫ 1

0

U(x, t) dx + Φ(x, t)(6.2)

for x ∈ [0, 1] and t ∈ [0, 1], subject to homogeneous Dirichlet boundary conditions.
The source function Φ is again chosen such that U(x, t) = x(1 − x) et is the exact
solution.

We discretize this problem in space as in the first example, with the trapezoidal
rule for the approximation of the integral. The numerical results are displayed in
Figure 6.2. Again we can see order two for the two variants of the exponential Runge
method and order three for the two variants of the exponential Heun method. How-
ever, since in this example only ‖A−1JA1/2‖ is bounded, Krogstad’s method and the
Cox and Matthews method suffer from an order reduction. For Krogstad’s method,
we thus obtain order 3.5, while for the Cox–Matthews method we have order 2.5 only.
The new exponential variant of the classical Runge–Kutta method is of full order four
in this example.

In Figure 6.3 we present the errors of the 2- and 3-stage methods in the V -norm
for the choice X = L2 and α = 1/2. It can be seen that method (5.3) is of order two,
while method (5.4) only is of order 1.75. The order reduction for (5.4) is perfectly
explained by Theorem 4.3 with β = 3/4 − ε for arbitrary ε > 0, since the derivatives
of f are smooth functions that do not satisfy the boundary conditions. Method (5.3),
however, has full order two, since condition (4.21) holds with γ = 1 and μ = 1/2.
See also our detailed discussion on this topic at the end of section 4.3. By similar
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Fig. 6.2. The errors of various explicit exponential Runge–Kutta methods of orders two to four
when applied to (6.2). The errors are measured in the maximum norm at t = 1 and plotted as
functions of the step size. For comparison, we added lines with different slopes. In the left panel,
slope two is represented by a dashed line and slope three by a dash-dotted line. In the right panel,
slope 2.5 is represented by a dashed line, slope 3.5 by a dash-dotted line, and slope 4 by a dotted line.
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Fig. 6.3. The errors of various explicit exponential Runge–Kutta methods up to order three
when applied to (6.2). The errors are measured at t = 1 in a discrete V -norm for X = L2 and
α = 1/2. They are plotted as a function of the step size. For comparison, we added lines with
different slopes: slope 1.75 is represented by a dashed line, slope 2 by a dash-dotted line, and slope
2.75 by a dotted line.

considerations it can be explained why the 3-stage methods show order 2.75 instead
of order three in this norm.

It is beyond the scope of this paper to discuss implementation details and to
compare the efficiency of exponential methods with standard implicit schemes. Such
comparisons have been presented in [3, 11, 12]. Our aim here was to understand the
convergence behavior of explicit methods and to present new order conditions which
allow us to construct methods up to order four in a systematic way.
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Abstract. A postprocessing technique for mixed finite-element methods for the incompressible
Navier–Stokes equations is studied. The technique was earlier developed for spectral and standard
finite-element methods for dissipative partial differential equations. The postprocessing amounts to
solving a Stokes problem on a finer grid (or higher-order space) once the time integration on the
coarser mesh is completed. The analysis presented here shows that this technique increases the
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1. Introduction. This paper in a sense culminates the development of a post-
processing technique to increase the accuracy and computational efficiency of Galerkin
methods for dissipative partial differential equations introduced in [18]. We turn to
the equations which gave rise to this postprocessing technique, the incompressible
Navier–Stokes equations, and we address those Galerkin methods for these equations
which, when complex-shaped bodies are present, are acknowledged to be of wider
applicability, mixed finite-element (MFE) methods.

The postprocessing technique we study here was originally developed for spec-
tral methods [18], [19]. At that moment, either its analysis and understanding or
its development seemed to depend heavily on the properties of the Fourier modes,
although this was not a shortcoming to prove its usefulness in the study of nonlinear
shell vibrations [27]. In later works [13], [14], the dependence on the Fourier modes
was overcome. Of particular importance to the present work, besides [14], has been
the development of the postprocessing technique for finite-element methods in [20],
[15]. In [20], it was devised how to carry out the postprocessing without the help of
an approximate inertial manifold [11], [12], a concept more suited to spectral methods
and eigenfunction expansion. In [15], it is shown what gains can be expected when
postprocessing low-order elements.

As is usually the case with MFE methods, it is the experience and understanding
gained in previous works (see [14], [15], [16], [17], [18], [19], [20], and the references
cited therein) with simpler equations and methods which has allowed the present one
to be written. Furthermore, although for simplicity we focus on Hood–Taylor [26]
elements, the postprocessing technique can be easily adapted to other kinds of mixed
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elements. In fact, in [3] (see also [5]) the so-called mini-element is shown to render
similar gains as Hood–Taylor elements when postprocessed if the provisions in [15]
are taken into account.

Let us describe what this postprocessing technique is. We consider the incom-
pressible Navier–Stokes equations, which, in appropriate dimensionless variables, can
be written as

ut − νΔu + (u · ∇)u + ∇p = f,(1.1)

div(u) = 0

in a bounded domain Ω ⊂ R
d (d = 2, 3) with smooth boundary subject to homoge-

neous Dirichlet boundary conditions u = 0 on ∂Ω. In (1.1), u is the velocity field,
p the pressure, and f a given force field. Suppose that for the solution u and p
corresponding to a given initial condition

u(·, 0) = u0;(1.2)

we are interested in its value at a certain time T > 0. We first compute MFE
approximations uh and ph to the velocity and pressure, respectively, by integrating in
time the corresponding discretization of (1.1)–(1.2) from t = 0 to t = T . Then, in the
postprocessing step, we obtain an approximation to the solution ũ, p̃ of the Stokes
problem

−νΔũ + ∇p̃ = f − d
dtuh(T ) − (uh(T ) · ∇)uh(T )

div(ũ) = 0

}
in Ω,

ũ = 0 on ∂Ω.
(1.3)

The MFE of this last step is either the same-order Hood–Taylor element over a finer
grid or a higher-order Hood–Taylor element over the same grid. The rate of conver-
gence of the discrete velocity and pressure in the resulting method is proved to be
the same as the rate of convergence of the MFE used in the postprocessed step. The
overcost of the postprocessed procedure is nearly negligible since the Stokes problem
using the enhanced MFE is solved only once, when the time integration has been
completed. In this respect, it radically differs from some other research [2], [32], with
low-order MFEs for the Navier–Stokes equations that also developed from the ideas
in [11] and [12], since in [2] and [32] computations with the enhanced element or on
the finer grid are carried out all the way through the interval (0, T ].

Some superconvergence results are obtained in the paper and are used as a tool
to get the rate of convergence of the postprocessed method. In particular, we derive a
superconvergence result for the error between the MFE approximation to the velocity
and the discrete Stokes projection introduced in [24]. For simplicity of analysis, we
derive these results under the strong regularity hypotheses in (2.2), which, as pointed
out in [24], are unrealistic in practical situations. In a more practical setting, assump-
tions (2.2) should be assumed from some positive time t0 > 0 onwards, and, as we
comment in section 2, computations (and their analysis) up to this time should take
into account the lower regularity at t = 0.

Finally, we remark that recent research [16], [17] has shown the usefulness of the
postprocessing technique in obtaining efficient a posteriori error estimators in partial
differential equations of evolution, a field much less developed than in the case of
steady problems. The application of the postprocessing technique to get a posteriori
error estimates for Navier–Stokes equations using the results obtained in this paper
will be the subject of future work.
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The rest of the paper is as follows. In section 2 we recall some properties of MFE
methods and collect some inequalities to be used later. In section 3 we first specify
the postprocessing technique and then carry out the convergence analysis. Finally,
in section 4 numerical experiments are presented to assess the capabilities of the new
technique.

2. Preliminaries and notations. Let Ω be a bounded domain in R
d, d = 2, 3,

not necessarily convex, but of class Cm, m ≥ 3, and let H and V be the Hilbert spaces
H = {u ∈

(
L2(Ω))d, |div(u) = 0, u · n|∂Ω

= 0}, V = {u ∈
(
H1

0 (Ω))d, |div(u) = 0},
endowed with the inner product of L2(Ω)d and H1

0 (Ω)d, respectively. For 1 ≤ q ≤ ∞
and l ≥ 0, we consider the standard Sobolev spaces, W l,q(Ω)d, of functions with
derivatives up to order l in Lq(Ω), and H l(Ω)d = W l,2(Ω)d. The norm in H l(Ω)d will
be denoted by ‖ ·‖l while ‖ ·‖−l will represent the norm of its dual space. We consider
also the quotient spaces H l(Ω)/R with norm ‖p‖Hl/R

= inf{‖p + c‖l | c ∈ R}.
We shall frequently use the following Sobolev’s imbeddings [1]. There exists a

constant C = C(Ω, q) such that for q ∈ [1,∞), q′ < ∞, it holds that

‖v‖Lq′ (Ω)d ≤ C‖v‖W s,q(Ω)d ,
1

q
≥ 1

q′
≥ 1

q
− s

d
> 0, v ∈ W s,q(Ω)d.(2.1)

For q′ = ∞, (2.1) holds with 1
q < s

d .

Let Π : L2(Ω)d −→ H be the Leray projector that maps each function in L2(Ω)d

onto its divergence-free part. We denote by A the Stokes operator in Ω:

A : D(A) ⊂ H −→ H, A = −ΠΔ, D(A) = H2(Ω)d ∩ V.

Applying Leray’s projector to (1.1), the equations can be written in the form

ut + νAu + B(u, u) = Πf in Ω,

where B(u, u) = Π((u · ∇)u).
In what follows we will assume that the solution (u, p) of (1.1)–(1.2) satisfies

max
0≤t≤T

(
‖u(t)‖r + ‖p(t)‖Hr−1/R

)
< ∞, max

0≤t≤T

(
‖ut(t)‖r + ‖pt(t)‖Hr−1/R

)
< ∞.(2.2)

We refer the reader to [30] for a study about the regularity of the solutions of the
Navier–Stokes equations. Notice, however, that, as pointed out in [24], it is unrealistic
to assume such a strong regularity up to time t = 0. The assumption in (2.2) is for
simplicity in the analysis. In a more realistic setting, t = 0 should be replaced by
some positive time t0, and error bounds requiring less regularity such as those in [24]
and [25] should be considered from t = 0 to t = t0. In order to maintain the accuracy
levels that a higher regularity would allow from t0 onwards, computations up to t = t0
should be carried out on an adequate finer grid. Notice also that among the conditions
to ensure (2.2) (see, e.g., Theorem 4 in [23]) is that Ω is of class Cr.

Let Th = (τhi , φ
h
i )i∈Ih , h > 0, be a family of partitions of suitable domains Ωh,

where the parameter h is the maximum diameter of the elements τhi ∈ Th and φh
i

are the mappings of the reference simplex τ0 onto τhi . We restrict ourselves to quasi-
uniform and regular meshes Th.

Let r ≥ 2, we consider the finite-element spaces

Ŝh,r =
{
χh ∈ C0(Ωh) |χh|

τh
i

◦ φh
i ∈ P r−1(τ0)

}
⊂ H1(Ωh),

◦
Sh,r =

{
χh ∈ C0(Ωh) |χh|

τh
i

◦ φh
i ∈ P r−1(τ0), χh(x) = 0 ∀x ∈ ∂Ωh

}
⊂ H1

0 (Ωh),
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where P r−1(τ0) denotes the space of polynomials of degree at most r− 1 on τ0. As a
consequence of restricting our study to quasi-uniform partitions, the following inverse
inequality holds (see, e.g., [9, Theorem 3.2.6]) ∀τ = τhi ∈ Th, with diam(τ) = hτ ≤ h,
vh ∈ (

◦
Sh,r)

d:

(2.3)

‖vh‖Wm,q(τ)d ≤ Ch
l−m−d( 1

q′ −
1
q )‖vh‖W l,q′ (τ)d , 0 ≤ l ≤ m ≤ 2, 1 ≤ q′ ≤ q ≤ ∞.

In order to guarantee convergence of the MFE approximation, we choose a stable
combination of two finite-element spaces (see [7]). We introduce the finite-element
spaces in which our MFE approximation to (u, p) will be carried out. We shall denote
by (Xh,r, Qh,r−1) the so-called Hood–Taylor element, where

Xh,r =
(◦
Sh,r

)d

, Qh,r−1 = Ŝh,r−1 ∩ L2(Ωh)/R, r ≥ 3.

For this mixed element a uniform inf-sup condition is satisfied (see [26], [6]), that is,
there exists a constant β > 0 independent of the mesh grid size h such that

inf
qh∈Qh,r−1

sup
vh∈Xh,r

(qh,∇ · vh)

‖vh‖1‖qh‖L2/R

≥ β.(2.4)

The approximate velocity solution belongs to the discretely divergence-free space

Vh,r = Xh,r ∩
{
χh ∈ H1

0 (Ωh) :

∫
Ωh

qh div(χh) = 0 ∀qh ∈ Qh,r−1

}
.

We observe that for the Hood–Taylor element, Vh,r is not a subspace of V .
For any v ∈ C0(Ω)d, we consider the standard interpolant operator Ih : C0(Ω)d −→

Xh,r. Let v ∈ Hr(Ω)d ∩H1
0 (Ω)d; it is well known that Ih satisfies

‖v − Ih(v)‖L2(Ω∩Ωh)d + h‖v − Ih(v)‖H1(Ω∩Ωh)d ≤ Chr‖v‖Hr(Ω)d .(2.5)

We briefly discuss next under what circumstances (2.5) can be extended to a global
estimate (i.e., to an estimate in Ω and not just in Ω∩Ωh). The interpolation operator
Ih(v) is extended by zero in Ω \ Ωh, and defining δ(h) = maxx∈∂Ωh

dist(x, ∂Ω), one
obtains

‖v − Ih(v)‖L2(Ω)d + h‖v − Ih(v)‖H1(Ω∩Ωh)d ≤ C(hr + δ(h))‖v‖Hr(Ω)d .(2.6)

For x ∈ Ω ∩ Ωh, (2.5) (and so (2.6)) follows from standard theory of interpolation
and the Bramble–Hilbert lemma (see, e.g., [9, p. 192]). For x ∈ Ω \ Ωh, v(x) can be
bounded by means of the mean-value theorem,

‖v − Ih(v)‖L2(Ω\Ωh)d = ‖v‖L2(Ω\Ωh)d ≤ δ(h)‖∇v‖L2(Ω)d .

We observe that using isoparametric elements δ(h) ≤ Chr, and so in (2.6) the right-
hand side is further bounded by Chr‖v‖W r,q(Ω)d (see [9, section 4.4]). As regards the
global estimate for the gradient, isoparametric modification is not enough to preserve
the optimal approximability properties of the finite-element space. Following [3], we
shall assume in what follows the use of superparametric elements at the boundary. By
this type of approximation we mean that δ(h) ≤ Ch2r−2 so that the outside effects will
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not pollute the optimal estimate. Under these assumptions [3], [4], the interpolant Ih
satisfies

‖v − Ih(v)‖L2(Ω)d + h‖v − Ih(v)‖H1(Ω)d ≤ Chr‖v‖Hr(Ω)d .(2.7)

Notice then that the condition δ(h) ≤ Ch2r−2 allows us to forget about the discrep-
ancies between Ω and Ωh in most of the arguments that follow. Observe, however,
that one must then assume that Ω is piecewise of class C2r−2.

For each fixed time t ∈ [0, T ] the solution (u, p) of (1.1)–(1.2) is also the solution
of a Stokes problem with right-hand side f − ut − (u · ∇)u. We will denote by
(sh, qh) ∈ (Xh,r, Qh,r−1), its MFE approximation satisfying

ν(∇sh,∇φh) − (qh,∇ · φh) = ν(∇u,∇φh) − (p,∇ · φh)

= (f − ut − (u · ∇u), φh) ∀φh ∈ Xh,r,(2.8)

(∇ · sh, ψh) = 0 ∀ψh ∈ Qh,r−1.

We observe that sh = Sh(u) : V −→ Vh,r is the so-called discrete Stokes projection of
the solution (u, p) of (1.1)–(1.2) (see [24]) and satisfies

(∇Sh(u),∇χh) = (∇u,∇χh) − (p,∇ · χh) = (f − ut − (u · ∇)u, χh) ∀ χh ∈ Vh,r.

The following bound holds for 2 ≤ l ≤ r:

‖u− sh‖0 + h‖u− sh‖1 ≤ Chl
(
‖u‖l + ‖p‖Hl−1/R

)
.(2.9)

The proof of (2.9) for Ω = Ωh can be found in [25]. For the general case super-
parametric approximation at the boundary is assumed; see [3], [4]. Under the same
conditions, the bound for the pressure is [21]

‖p− qh‖L2/R ≤ Cβh
l−1

(
‖u‖l + ‖p‖Hl−1/R

)
,(2.10)

where the constant Cβ depends on the constant β in the inf-sup condition (2.4).
Since we are assuming that Ω is of class Cm with m ≥ 3 (and that δ(h) ≤ Ch2r−2)

using standard duality arguments and (2.9), one obtains [3], [4]

‖u− sh‖−s ≤ Chr+s(‖u‖r + ‖p‖Hr−1/R), 0 ≤ s ≤ min(r − 2, 1).(2.11)

Let Πh,r : L2(Ω)d −→ Vh,r be the discrete Leray’s projection defined by demand-
ing that (Πh,r(u), χh) = (u, χh) ∀χh ∈ Vh,r. By definition, the projection is stable in
the L2 norm. For divergence-free functions, by writing Πh,ru = (Πh,ru−Sh(u))+Sh(u)
and using the quasi-uniformity of the meshes, one easily shows that

‖Πh,ru‖1 ≤ C‖u‖1 ∀u ∈ V.(2.12)

We will denote by Ah the discrete Stokes operator defined by

(∇vh,∇φh) = (Ahvh, φh) =
(
A1/2

h vh,A1/2
h φh

)
∀vh, φh ∈ Vh,r.

Since Ah is a discrete self-adjoint operator, it is easy to show that, for each 0 ≤ α < 1,
there exists a positive constant Cα, which is independent of h, such that

‖Aα
he

−tAh‖0 ≤ Cαt
−α ∀ 0 ≤ α < 1.(2.13)
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In our analysis we shall frequently use the following relations for f ∈ L2(Ω)d:

‖A−s/2
h Πh,rf‖0 ≤ Chs‖f‖0 + ‖A−s/2Πf‖0, s = 1, 2,(2.14)

‖A−s/2Πf‖0 ≤ Chs‖f‖0 + ‖A−s/2
h Πh,rf‖0, s = 1, 2.(2.15)

These inequalities are readily deduced from the estimates ‖A−s/2 − A−s/2
h Πh,r‖0 ≤

Chs for s = 1, 2 [29]. Similarly, since ∀vh ∈ Vh,r, (A−1/2
h Πh,rf, vh) = (f,A−1/2

h vh), it
follows that

‖A−1/2
h Πh,rf‖0 ≤ C‖f‖−1,(2.16)

and since ∀v ∈ V , we have (A−1/2Π(Πh,rf), v) = (Πh,rf,A−1/2v) = (f,Πh,rA−1/2v),
from (2.12) it follows that

‖A−1/2Π(Πh,rf)‖0 ≤ C‖f‖−1, f ∈ L2(Ω)2.(2.17)

2.1. The suggested method. Let us suppose that we want to approximate the
solution of (1.1)–(1.2) at time T . For d = 3, the final time T is assumed to satisfy
0 < T < T ∗, where T ∗ is the critical time until which the existence and uniqueness
of a strong solution of (1.1)–(1.2) has been proven. The postprocessing technique
can be seen as a two-level method. We first compute the MFE approximation to
(1.1)–(1.2) at time T . Given uh(0) an initial approximation to u(0), we find that
uh : [0, T ] −→ Xh,r and ph : [0, T ] −→ Qh,r−1 satisfy

(u̇h, φh) + ν(∇uh,∇φh) + bh(uh, uh, φh) + (∇ph, φh) = (f, φh) ∀φh ∈ Xh,r,(2.18)

(∇ · uh, ψh) = 0 ∀ψh ∈ Qh,r−1,(2.19)

where bh(·, ·, ·) is a suitable discrete approximation to its continuous counterpart. As
an initial condition we will take uh(0) = Sh(u0), although other choices are possible.

In the second step, the discrete velocity and pressure (uh(T ), ph(T )) are postpro-
cessed. Basically, we enhance this approximation by solving a single discrete Stokes
problem, via MFE. The MFE in this step, denoted by (X̃, Q̃), is either

• the same-order Hood–Taylor element over a finer grid (X̃, Q̃) = (Xh̃,r, Qh̃,r−1),

r ≥ 3, h̃ < h, or
• a higher-order Hood–Taylor element over the same grid (X̃, Q̃)=(Xh̃,r+1, Qh̃,r),

r ≥ 3, h̃ = h.
That is, we shall search for (ũh, p̃h) ∈ (X̃, Q̃) satisfying

ν
(
∇ũh̃,∇φ̃

)
+
(
∇p̃h̃, φ̃

)
= (f, φ̃)− bh̃(uh(T ), uh(T ), φ̃)− (u̇h(T ), φ̃) ∀ φ̃ ∈ X̃,(2.20) (

∇ · ũh̃, ψ̃
)

= 0 ∀ ψ̃ ∈ Q̃.(2.21)

We will denote by Ṽ the corresponding discretely divergence-free space that can be
either Ṽ = Vh̃,r or Ṽ = Vh,r+1 depending on the selection of the postprocessed space.

The discrete Leray’s projection into Ṽ will be denoted by Π̃h̃, and we will represent

by Ãh̃ the discrete Stokes operator acting on functions in Ṽ .
The postprocessed Hood–Taylor approximation to the velocity, ũh̃, is the solution

of the pressure-free formulation

ν
(
∇ũh̃,∇χ̃h

)
=

(
f, χ̃h

)
− bh̃

(
uh(T ), uh(T ), χ̃h

)
−
(
u̇h(T ), χ̃h

)
∀ χ̃h ∈ Ṽ .(2.22)



POSTPROCESSED MFE METHOD FOR NAVIER–STOKES EQUATIONS 1097

In the next section, we show that the solution (ũh, p̃h) of (2.20)–(2.21) is a more
accurate approximation to the solution of (1.1)–(1.2) than the Galerkin MFE approx-
imation (uh, ph) that solves (2.18)–(2.19).

For the discrete approximation to the nonlinear term, following [24], we define bh
in the following way:

bh(uh, vh, φh) = ((uh · ∇)vh, φh) +
1

2
(div(uh)vh, φh) ∀uh, vh, φh ∈ Xh,r ⊂ H1

0 (Ω)d.

For all u, v ∈ H1
0 (Ω)d, the corresponding continuous operator will be denoted by

F (u, v) = (u · ∇)v + (1/2) div(u)v. Extending the definition of bh to functions in
H1

0 (Ω)d (not necessarily in Xh,r), we observe that ∀u, v, w ∈ H1
0 (Ω)d, bh(u, v, w) =

(F (u, v), w). It is straightforward to verify that bh enjoys the skew-symmetry property

bh(u, v, w) = −bh(u,w, v) ∀u, v, w ∈ H1
0 (Ω)d.(2.23)

Let us observe that B(u, v) = ΠF (u, v) if u ∈ V . Finally, we shall denote by

Bh(u, v) = Πh,rF (u, v) ∀u, v ∈ H1
0 (Ω)d.

3. Analysis of the postprocessed method. This section is devoted to the
analysis of convergence of the postprocessed MFE method. Our first aim will be to
show a superconvergence result for the error between the MFE approximation to the
velocity uh and the Stokes projection of the velocity field u, sh. This superconvergence
behavior occurs for both the L2 and H1 norms, as will be shown in Theorem 3.7 and
Corollary 3.8, respectively. In the first part of the section, we shall concentrate our
efforts in Theorem 3.7. It will be achieved by a stability plus consistency argument
(Propositions 3.2 and 3.6, respectively). For the purpose of analysis, we shall mainly
be concerned with the pressure-free formulation associated with (2.18)–(2.19). If
(uh, ph) is the MFE approximation to the solution (u, p) of (1.1)–(1.2), then uh ∈ Vh,r

is the solution of

(u̇h, χh) + ν(∇uh,∇χh) + bh(uh, uh, χh) = (f, χh) ∀χh ∈ Vh,r,(3.1)

which can also be expressed in abstract operator form as

u̇h + νAhuh + Bh(uh, uh) = Πh,rf.(3.2)

The Stokes projection sh satisfies the abstract equation

ṡh + νAhsh + Bh(sh, sh) = Πh,rf + Th,(3.3)

where Th(t) is the truncation error, defined as

Th(t) = ṡh − Πh,r(ut) + Bh(sh, sh) −Bh(u, u).(3.4)

Let us now consider mappings vh : [0, T ] −→ Vh,r satisfying the following threshold
condition:

‖sh(t) − vh(t)‖0 ≤ cτh
2 ∀ t ∈ [0, t1], 0 < t1 ≤ T.(3.5)

We define their truncation error as

T̂h = v̇h + νAhvh + Bh(vh, vh) − Πh,rf.(3.6)
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Prior to establishing the stability restricted to the threshold (3.5) (Proposition 3.2),
we prove a lemma which provides some estimates for the convective term.

Lemma 3.1. Let (u, p) be the solution of the Navier–Stokes problem (1.1)–(1.2).
Let sh = Sh(u) be the discrete Stokes projection of the velocity field u and let vh :
[0, T ] −→ Vh,r satisfy the threshold condition (3.5). Then, there exists a constant
K > 0, independent of t1 in (3.5), such that ∀ t ∈ [0, t1],

‖F (sh(t), sh(t)) − F (vh(t), vh(t))‖0 ≤ K‖sh(t) − vh(t)‖1,(3.7)

‖F (sh(t), sh(t)) − F (vh(t), vh(t))]‖−1 ≤ K‖sh(t) − vh(t)‖0,(3.8)

where the constant K = K
(
cτ ,max0≤t≤T (‖u(t)‖2 + ‖p(t)‖H1/R)

)
.

Proof. In order to simplify the notation, we shall omit the dependence on t in the
proof. Denote by eh = vh−sh. We proceed by standard duality arguments, using the
splitting

F (vh, vh) − F (sh, sh) = F (vh, eh) + F (eh, sh).(3.9)

We start by showing (3.7). We first observe that

‖F (eh, sh)‖0 = sup
‖φ‖0=1

∣∣∣∣(eh · ∇sh, φ) +
1

2
((∇ · eh)sh, φ)

∣∣∣∣
≤ C‖eh‖L2d/(d−1)(Ω)d‖∇sh‖L2d(Ω)d + C‖eh‖1‖sh‖∞.

Let us show that both ‖sh‖∞, ‖∇sh‖L2d(Ω)d are bounded. Since, by virtue of Sobolev’s
imbeddings (2.1), we have ‖sh‖∞ ≤ C‖∇sh‖L2d(Ω)d , we only need to bound the second
term. Application of the inverse inequality (2.3) and the error estimates (2.9) and
(2.7) together with (2.1) give

‖∇sh‖L2d(Ω)d ≤ Ch
−(1+d)

2 (‖sh − u‖0 + ‖u− Ihu‖0) + ‖∇Ihu‖L2d(Ω)d(3.10)

≤ Ch(3−d)/2(‖u‖2 + ‖p‖H1/R) + C‖u‖W 1,2d(Ω)d ≤ K.

Using again (2.1) we obtain

‖eh‖L2d/(d−1)(Ω)d ≤ C‖eh‖1/2 ≤ C‖eh‖1,

and so ‖F (eh, sh)‖0 ≤ K‖eh‖1. As regards the other term in (3.9), the same arguments
lead to

‖F (vh, eh)‖0 = sup
‖φ‖0=1

∣∣∣∣(vh · ∇eh, φ) +
1

2
((∇ · vh)eh, φ)

∣∣∣∣
≤ C‖vh‖∞‖eh‖1 + C‖∇vh‖L2d(Ω)d‖eh‖L2d/(d−1)(Ω)d .

As before, to conclude we must show that the above norms of vh are bounded. We
only need to handle ‖∇vh‖L2d(Ω)d . Using the inverse inequality (2.3) and the threshold
conditions (3.5) and (3.10), we find

‖∇vh‖L2d(Ω)d ≤ h
−(1+d)

2 ‖vh − sh‖0 + ‖∇sh‖L2d(Ω)d ≤ cτh
(3−d)/2 + K ≤ K.

Therefore, (3.7) follows. We now show (3.8). Applying (3.9), we find

‖F (vh, vh) − F (sh, sh)‖−1 ≤ ‖F (vh, eh)‖−1 + ‖F (eh, sh)‖−1,(3.11)
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so that the proof is reduced to estimate each of the above negative norms on the
right-hand side. Using the skew-symmetry property (2.23), one gets for the first
term:

‖F (vh, eh)‖−1 = sup
‖φ‖1=1

∣∣∣∣−((vh · ∇)φ, eh) − 1

2
((∇ · vh)φ, eh)

∣∣∣∣
≤ sup

‖φ‖1=1

(
‖eh‖0‖vh‖∞‖φ‖1 + ‖eh‖0‖∇ · vh‖L2d/(d−1)‖φ‖L2d(Ω)d) ≤ K‖eh‖0.

Regarding the other term in (3.11), integrating by parts, we obtain

‖F (eh, sh)‖−1 = sup
‖φ‖1=1

∣∣∣∣ 1

2

(
(eh · ∇)sh, φ

)
− 1

2

(
(eh · ∇)φ, sh

)∣∣∣∣
≤ sup

‖φ‖1=1

(‖eh‖0‖∇sh‖L2d/(d−1)(Ω)d‖φ‖L2d(Ω)d + ‖eh‖0‖φ‖1‖sh‖∞) ≤ K‖eh‖0.

This finishes the proof of (3.8).
Proposition 3.2 (stability). Let T > 0 be fixed; let sh = Sh(u) be the discrete

Stokes projection of the velocity field u solution of (1.1)–(1.2) and let vh : [0, T ] −→
Vh,r satisfy the threshold condition (3.5). Then, there exists a positive constant Ks > 0
such that ∀ t1 ≤ T , the following estimate holds:

max
0≤t≤t1

‖sh(t) − vh(t)‖0 ≤ eKst1

(
‖sh(0) − vh(0)‖0(3.12)

+ max
0≤t≤t1

∥∥∥∥
∫ t

0

e−ν(t−s)Ah [Th(s) − T̂h(s)]ds

∥∥∥∥
0

)
,

where Th(s) and T̂h(s) are the truncation errors given in (3.4) and (3.6), respectively.
Proof. We denote by eh = sh − vh. Subtracting (3.6) from (3.3), it follows that

eh satisfies the error equation

ėh(t) + νAheh(t) = Bh(vh(t), vh(t)) −Bh(sh(t), sh(t)) + Th(t) − T̂h(t).

Then, by integrating the above error equation from time 0 up to time t, we find that

eh(t) = e−νtAhΠh,reh(0) +

∫ t

0

e−ν(t−s)AhΠh,r[Bh(vh, vh) −Bh(sh, sh)]ds

+

∫ t

0

e−ν(t−s)AhΠh,r[Th(s) − T̂h(s)]ds.

Since {e−νtAhΠh,r}t>0 is a contraction ‖e−νtAhΠh,reh(0)‖0 ≤ ‖eh(0)‖0. As regards
the second term, estimates (2.13), (2.16), and (3.8) from Lemma 3.1 lead to

∥∥∥∥
∫ t

0

e−ν(t−s)Ah [Bh(sh, sh) −Bh(vh, vh)]ds

∥∥∥∥
0

≤
C1/2√

ν

∫ t

0

∥∥A−1/2
h

(
Πh,rF (sh, sh) − Πh,rF (vh, vh)

)∥∥
0√

t− s
ds ≤

KC1/2√
ν

∫ t

0

‖eh(s)‖0√
t− s

ds.

Then,

‖eh(t)‖0 ≤ ‖eh(0)‖0 +
KC1/2√

ν

∫ t

0

‖eh(s)‖0√
t− s

ds +

∫ t

0

e−ν(t−s)Ah [Th(s) − T̂h(s)]ds.
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And now, a standard application of the generalized Gronwall lemma (see [22, pp. 188–
189]) allows us to conclude the proof.

Proposition 3.2 is an example of stability restricted to h-dependent thresholds.
This kind of stability is an alternative to establishing the a priori bounds for the
approximate solution uh required in order to handle the nonlinear term [28].

The following lemmas will be required in the proof of Proposition 3.6.
Lemma 3.3. For any f ∈ C([0, T ];L2(Ω)d), the following estimate holds ∀ t ∈

[0, T ]:

∫ t

0

∥∥Ahe
−ν(t−s)AhΠh,rf(s)

∥∥
0
ds ≤ C

ν
| log(h)| max

0≤t≤T
‖f(t)‖0.

Proof. The proof follows essentially the same steps as in [14] and [20].
Lemma 3.4. Let v ∈ (H2(Ω))d ∩ V . Then, there exists a constant K = K(‖v‖2)

such that ∀w ∈ H1
0 (Ω)d, we have that

‖A−1Π[F (v, v) − F (w,w)]‖0 ≤ K
(
‖v − w‖−1 + ‖v − w‖1‖v − w‖0

)
.(3.13)

Proof. Throughout the proof, we shall designate e = v − w. We rewrite the
difference of the nonlinear terms as

A−1Π (F (v, v) − F (w,w)) = A−1ΠF (v, e) + A−1ΠF (e, v) −A−1ΠF (e, e).(3.14)

Let us first estimate the last term in (3.14). Using (2.23) and (2.1), we have

‖A−1ΠF (e, e)‖0 ≤ sup
‖φ‖0=1

∣∣∣∣− (
(e · ∇)A−1Πφ, e

)
− 1

2

(
(∇ · e)(A−1Πφ), e

)∣∣∣∣
≤ sup

‖φ‖0=1

(
‖e‖L2d/(d−1)(Ω)d‖∇A−1Πφ‖L2d(Ω)d + ‖e‖1‖A−1Πφ‖∞

)
‖e‖0

≤ sup
‖φ‖0=1

(
C‖e‖1/2‖A−1Πφ‖2 + C‖e‖1‖A−1Πφ‖2

)
‖e‖0 ≤ C‖e‖1‖e‖0.

For the first term in the splitting (3.14), taking into account that div(v) = 0, we find

‖A−1ΠF (v, e)‖0 = sup
‖φ‖0=1

∣∣((v · ∇)A−1Πφ, e
)∣∣ ≤ ‖e‖−1 sup

‖φ‖0=1

‖∇((v · ∇)A−1Πφ)‖0.

Therefore, we must show that the last supremum above is bounded. Using again
Sobolev’s imbeddings (2.1) for φ ∈ L2(Ω) with ‖φ‖0 = 1, we obtain

‖∇
(
(v · ∇)A−1Πφ

)
‖2
0 ≤

d∑
k=1

‖
(
∂kv · ∇

)
(A−1Πφ) + (v · ∇)

(
∂k(A−1Πφ)

)
‖2
0

≤
d∑

k=1

‖∂kv‖2
L2d/(d−1)(Ω)d‖∇A−1Πφ‖2

L2d(Ω)d + ‖v‖2
∞‖∂k(∇A−1Πφ)‖2

0

≤ C
[
‖∇v‖2

1/2‖A−1Πφ‖2
2 + ‖v‖2

2‖A−1Πφ‖2
2

]
≤ C‖v‖2

2,

so that ‖A−1ΠF (v, e)‖0 ≤ K‖e‖−1. Finally, we deal with the second term in (3.14).
Integrating by parts, we get

‖A−1ΠF (e, v)‖0 = sup
‖φ‖0=1

∣∣∣∣12((e · ∇)v,A−1Πφ) − 1

2
((e · ∇)A−1Πφ, v)

∣∣∣∣.
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We shall estimate each supremum in the above equation separately. For the first term,
we have

∣∣(e · ∇)v,A−1Πφ)
∣∣ ≤ ‖e‖−1‖

(
(A−1Πφ) · ∇

)
v‖1

≤ ‖e‖−1

(
‖∇v‖1‖A−1Πφ‖∞ + ‖∇v‖L2d/(d−1)(Ω)d‖∇A−1Πφ‖L2d(Ω)d

)

≤ C‖e‖−1

(
‖v‖2‖A−1Πφ‖2 + ‖v‖2‖A−1Πφ‖2

)
≤ C‖v‖2‖e‖−1 ≤ K‖e‖−1.

As regards the other supremum, we note that

∣∣(e · ∇)A−1Πφ, v)
∣∣ ≤

d∑
k=1

‖ek‖−1

(
‖∇(∂kA−1Πφ) · v‖0 + ‖∂k(A−1Πφ) · (∇v)‖0

)

≤ ‖e‖−1

(
‖A−1Πφ‖2‖v‖∞ + ‖∂k(A−1Πφ)‖L2d(Ω)d‖∇v‖L2d/(d−1)(Ω)d

)

≤ ‖e‖−1

(
‖A−1Πφ‖2‖v‖2 + ‖A−1Πφ)‖2‖v‖2

)
≤ C‖v‖2‖e‖−1 ≤ K‖e‖−1,

which concludes the proof.

Lemma 3.5. Let (u, p) be the solution of (1.1)–(1.2). Then, there exists a positive
constant K = K(u, p) such that, ∀ t ∈ [0, T ], the truncation error defined in (3.4)
satisfies the following bound:

‖A−1
h Th(t)‖0 ≤ Khr+1.(3.15)

Proof. In view of definition (3.4), we observe that

‖A−1
h Th(t)‖0 ≤ ‖A−1

h Πh,r(ṡh − ut)‖0 + ‖A−1
h Πh,r(F (sh, sh) − F (u, u))‖0.

We will use (2.14) with s = 2 to bound both terms on the right-hand side. For the
first, we obtain

‖A−1
h Πh,r(ṡh − ut)‖0 ≤ Ch2‖ṡh − ut‖0 + ‖A−1Π(ṡh − ut)‖0

≤ Ch2‖ṡh − ut‖0 + ‖ṡh − ut‖−2 ≤ Chr+1(‖ut‖r + ‖pt‖Hr−1/R),

where in the last inequality we have used that ‖·‖−2 ≤ ‖·‖−1 and applied (2.11). As
regards the second term, applying (3.7) from Lemma 3.1 and (3.13) from Lemma 3.4,
we get

‖A−1
h Πh,r (F (sh, sh) − F (u, u)) ‖0

≤ Ch2‖F (sh, sh) − F (u, u)‖0 + ‖A−1Π(F (sh, sh) − F (u, u))‖0

≤ Kh2‖sh − u‖1 + K(‖sh − u‖−1 + ‖sh − u‖1‖sh − u‖0).

We observe that although Lemma 3.1 has been stated for functions vh ∈ Vh,r satisfying
(3.5) can equally be applied for vh = u. To conclude, we apply estimates (2.9) and
(2.11) to get

‖A−1
h Πh,r (F (sh, sh) − F (u, u)) ‖0 ≤ Khr+1

(
‖u‖r + ‖p‖Hr−1/R

)
.
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Proposition 3.6 (consistency). Let (u, p) be the solution of (1.1)–(1.2). Then,
there exists a positive constant K = K(u, p, ν) such that

max
0≤t≤T

∥∥∥∥
∫ t

0

e−ν(t−s)AhTh(s)ds

∥∥∥∥
0

≤ Khr+1| log (h)|.(3.16)

Proof. Let us start by noticing that

∥∥∥∥
∫ t

0

e−ν(t−s)AhTh(s)ds

∥∥∥∥
0

≤
∫ t

0

∥∥Ahe
−ν(t−s)AhA−1

h Th(s)
∥∥

0
ds.

By virtue of Lemma 3.3, the last integral reduces to

∫ t

0

∥∥Ahe
−ν(t−s)AhΠh,rA−1

h Th(s)
∥∥

0
ds ≤ C

ν
| log(h)| max

0≤t≤T

∥∥A−1
h Th(t)

∥∥
0
,

and then, since Lemma 3.5 provides the required estimate for the truncation error,
we reach (3.16).

Theorem 3.7 (superconvergence for the velocity). Let (u, p) be the solution of
(1.1)–(1.2), let sh be the Stokes projection of u, and let uh be the Hood–Taylor element
approximation to u. Then, there exist positive constants K(u, p, ν) and h0 such that,
for every h ∈ (0, h0],

max
0≤t≤T

‖sh(t) − uh(t)‖0 ≤ K(u, p, ν)hr+1| log (h)|.(3.17)

Proof. Since uh(0) = sh(0), the proof follows from Proposition 3.2 (applied to
vh = uh) and Proposition 3.6. The threshold condition (3.5) needed for Proposi-
tion 3.2 to be valid is easily proved by a standard bootstrap argument (see, e.g., [20]
and [3]).

Next, we derive the superconvergence result for the error between the MFE
approximation uh to the velocity and the Stokes projection sh in the H1 norm.

Corollary 3.8. Let (u, p) be the solution of the Navier–Stokes problem (1.1)–
(1.2), let sh be the discrete Stokes projection of u, and let uh be the Hood–Taylor
element approximation to u. Then, there exist positive constants K(u, p, ν) and h0

such that, for every h ∈ (0, h0], the following bound holds:

max
0≤t≤T

‖sh(t) − uh(t)‖1 ≤ K(u, p, ν)hr| log(h)|.(3.18)

Proof. The result follows from Theorem 3.7 and the inverse inequality (2.3).
As a consequence of Theorem 3.7 and Corollary 3.8, the optimal rate of conver-

gence for uh is obtained.
Corollary 3.9. Let (u, p) be the solution of the Navier–Stokes problem (1.1)–

(1.2), and let the conditions of Theorem 3.7 be satisfied. Then, for s = 0, 1,

(3.19)

max
0≤t≤T

‖u(t) − uh(t)‖s ≤ Chr−s
(

max
0≤t≤T

(‖u‖r + ‖p‖Hr−1/R) + K(u, p, ν)h| log(h)|
)
.

Proof. By rewriting u− uh = (u− sh) + (sh − uh), and appealing to Theorem 3.7
and Corollary 3.8 together with estimate (2.9), we reach (3.19).
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The following lemma provides several estimations (in different norms) for the time
derivative of the error in the MFE approximation to the velocity.

Lemma 3.10. Let (u, p) be the solution of (1.1)–(1.2), and let uh : [0, T ] → Vh,r

be the Hood–Taylor approximation to the velocity. Then, the following estimates hold:

max
0<t≤T

∥∥ut(t) − u̇h(t)
∥∥

0
≤ K(u, p, ν)hr−1| log(h)|,(3.20)

max
0<t≤T

∥∥A−1Π(ut(t) − u̇h(t))
∥∥

0
≤ K(u, p, ν)hr+1| log(h)|,(3.21)

max
0<t≤T

∥∥ut(t) − u̇h(t)
∥∥
−1

≤ K(u, p, ν)hr| log(h)|.(3.22)

Proof. For simplicity, we shall drop the explicit dependence on the time t in the
proof. We consider the splitting

ut − u̇h = (ut − ṡh) + (ṡh − u̇h).

Since the first term can be readily estimated in the different norms by means of (2.9)
and (2.11), we will concentrate only on the second one in the rest of the proof. Let
us denote eh = sh − uh. The time derivative of eh satisfies the equation

ėh = −νAheh + Bh(uh, uh) −Bh(u, u) + Πh,r(ṡh − ut).

We shall start by proving (3.20). Applying the inverse inequality (2.3), the stability
of Πh,r in the L2 norm, (3.7) from Lemma 3.1 and (2.9), we get

‖ėh‖0 ≤ ν
∥∥A1/2

h A1/2
h eh

∥∥
0

+ ‖Bh(uh, uh) −Bh(u, u)‖0 + ‖Πh,r(ṡh − ut)‖0

≤ Cνh−1
∥∥A1/2

h eh
∥∥

0
+ K‖eh‖1 + Chr(‖ut‖r + ‖pt‖Hr−1/R)

≤ (Cνh−1 + K)‖eh‖1 + O(hr) ≤ (Cνh−1 + K)K(u, p, ν)hr| log(h)| + O(hr)

after applying Corollary 3.8 in the last inequality, and so (3.20) is shown. Notice that
Lemma 3.1 has been applied for vh = uh and taking u instead of sh. It is immediate
to check that the proof of the lemma remains valid in this case.

We deal next with (3.21). We first observe that

‖A−1Πėh‖0 ≤ ν‖A−1ΠAheh‖0 + ‖A−1Π(Bh(uh, uh) −Bh(u, u))‖0(3.23)

+‖A−1Π(ṡh − Πh,rut)‖0.

Let us now bound each term on the right-hand side of (3.23). For the first, taking into
account the relation (2.15), and applying the inverse inequality (2.3) and Theorem 3.7,
we obtain

‖A−1ΠAheh‖0 ≤ Ch2‖Aheh‖0 +
∥∥A−1

h Aheh
∥∥

0
≤ C‖eh‖0 ≤ K(u, p, ν)hr+1| log(h)|.

As regards the second term, by writing A−1ΠΠh,r = (A−1Π − A−1
h Πh,r)Πh,r +

(A−1
h Πh,r −A−1Π) + A−1Π, then (3.7) and Lemma 3.4 give

∥∥A−1Π(Bh(uh, uh) −Bh(u, u))
∥∥

0
=

∥∥A−1Π[Πh,r(F (uh, uh) − F (u, u))]
∥∥

0

≤ Ch2
∥∥F (uh, uh) − F (u, u)

∥∥
0

+ K(‖uh − u‖−1 + ‖uh − u‖1‖uh − u‖0)

≤ Kh2‖uh − u‖1 + K(‖eh‖0 + ‖sh − u‖−1 + ‖uh − u‖1‖uh − u‖0),
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so that applying Theorem 3.7, (2.11), and (3.19) the desired bound for this term is
reached. Finally, for the last term on the right-hand side of (3.23), we use (2.17) and
(2.11) to get

‖A−1Π(ṡh − Πh,rut)‖0 ≤
∥∥A−1/2Π(ṡh − Πh,rut)

∥∥
0
≤ C‖sh − ut‖−1

≤ Chr+1(‖ut‖r + ‖pt‖Hr−1/R).

To conclude, we now show (3.22). As we show in Lemma 3.11

‖ėh‖−1 ≤ Ch‖ėh‖0 + C
∥∥A−1/2Πėh

∥∥
0
.

We have already proved that ‖ėh‖0 ≤ Khr−1| log(h)|. Reasoning exactly as we did
with ‖A−1Πėh‖0, we also get ‖A−1/2Πėh‖0 ≤ Khr|log(h)|, and then the proof is
complete.

Lemma 3.11. There exists a positive constant independent of h such that

‖fh‖−1 ≤ Ch‖fh‖0 + C
∥∥A−1/2Πfh

∥∥
0

∀f ∈ Vh,r.

Proof. For φ ∈ H1
0 (Ω) we have the (L2-orthogonal) decomposition φ = Πφ +

(I − Π)φ, for which we have that (I − Π)φ = ∇χ for some χ ∈ H2(Ω) and, for some
constant C > 0,

‖Πφ‖1 ≤ C ‖φ‖1 , ‖∇χ‖1 ≤ C ‖φ‖1(3.24)

(see, e.g., [10]). Thus, (fh, φ) = (fh,Πφ)+(fh,∇χ). But, on the one hand, (fh,Πφ) =
(Πfh,Πφ) = (A−1/2Πfh,A1/2Πφ); on the other hand, since fh ∈ Vh,r, we may

write (fh,∇(χ− Ih(χ)), where Ih(χ) is the standard interpolant of χ in Ŝh,r−1. Now,
standard interpolation bounds and (3.24) finish the proof.

Theorem 3.12 (superconvergence for the pressure). Let (u, p) be the solution of
the Navier–Stokes equations (1.1)–(1.2); let ph be the Hood–Taylor approximation to
the pressure p, and let qh be the MFE approximation to p in the Stokes problem (2.8).
Then, there exist positive constants K(u, p, ν) and h0 such that, for every h ∈ (0, h0],

max
0≤t≤T

‖ph(t) − qh(t)‖L2/R ≤ 1

β
K(u, p, ν)hr| log(h)|,(3.25)

where β is the constant in the inf-sup condition (2.4).
Proof. Subtracting (2.8) from (2.18), we obtain for the difference ph − qh

(ph − qh,∇ · φh) = ν(∇(uh − sh),∇φh) + (F (uh, uh) − F (u, u), φh) + (u̇h − ut, φh)

∀φh ∈ Xh,r. Using the inf-sup condition (2.4),

β‖ph − qh‖L2/R ≤ ν‖uh − sh‖1 + ‖F (uh, uh) − F (u, u)‖−1 + ‖u̇h − ut‖−1.

Applying Corollary 3.8, (3.8) from Lemma 3.1, and (3.20) from Lemma 3.10, we get

β‖ph − qh‖L2/R ≤ νKhr| log(h)| + ‖u− uh‖0 + Khr| log(h)|.

Finally, thanks to Corollary 3.9, (3.25) is reached.
As a consequence of Theorem 3.12 and (2.10), and by writing p−ph = (p−qh)+

(qh − ph), we also obtain the optimal rate of convergence for of the pressure.
Corollary 3.13. Let (u, p) be the solution of the Navier–Stokes equations (1.1)–

(1.2), and let the conditions of Theorem 3.12 be satisfied. Then,

max
0≤t≤T

‖p(t) − ph(t)‖L2/R ≤ Chr−1 max
0≤t≤T

(
‖u‖r + ‖p‖Hr−1/R

)
+ K(u, p, ν)hr.(3.26)
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Next, we state the rate of convergence of the postprocessed MFE approximation
(ũh̃, p̃h̃) ∈ (X̃, Q̃) that solves (2.20)–(2.21).

Theorem 3.14. Let T > 0 be fixed. Let (uh, ph) be the MFE approximation to the
solution (u, p) of (1.1)–(1.2), and let (ũh̃, p̃h̃) be the postprocessed MFE approximation
at time T . Then, there exist constants K1(u, p, ν), K0(u, p, ν) such that

(i) if the postprocessing element is (X̃, Q̃) = (Xh̃,r, Qh̃,r−1), then

‖u(T ) − ũh̃‖1 ≤ C(h̃)r−1
(
‖u(T )‖r + ‖p(T )‖Hr−1/R

)
+ K1(u, p, ν)hr| log (h)|,(3.27)

‖u(T ) − ũh̃‖0 ≤ C(h̃)r
(
‖u(T )‖r + ‖p(T )‖Hr−1/R

)
+ K0(u, p, ν)hr+1| log (h)|;(3.28)

(ii) if at time T the solution (u(T ), p(T )) belongs to (Hr+1(Ω)d ∩ V )×Hr(Ω)/R,

and the postprocessing element is (X̃, Q̃) = (Xh,r+1, Qh,r), then

‖u(T ) − ũh̃‖1 ≤ Chr
(
‖u(T )‖r+1 + ‖p(T )‖Hr/R

)
+ K1(u, p, ν)hr| log (h)|,(3.29)

‖u(T ) − ũh̃‖0 ≤ Chr+1
(
‖u(T )‖r+1 + ‖p(T )‖Hr/R

)
+ K0(u, p, ν)hr+1| log (h)|.(3.30)

Proof. Let S̃h̃(u) ∈ Ṽ be the Stokes projection of the solution of (1.1)–(1.2) at
time T that satisfies(

∇S̃h̃(u),∇χ̃h

)
=

(
∇u(T ),∇χ̃h

)
− (p(T ),∇ · χ̃h)(3.31)

=
(
f(T ) − ut(T ) − F (u(T ), u(T )), χ̃h

)
∀χ̃h ∈ Ṽ .

Then, we consider the splitting ‖u(T ) − ũh̃‖l ≤ ‖u(T ) − S̃h̃(u)‖l + ‖S̃h̃(u) − ũh̃‖l,
l = 0, 1. The first term can be readily estimated by using (2.9), so that, for l = 0, 1,

‖u(T ) − S̃h̃(u)‖l ≤
{
C(h̃)r−l(‖u(T )‖r + ‖p(T )‖Hr−1/R), Ṽ = Ṽh̃,r,

Chr+1−l(‖u(T )‖r+1 + ‖p(T )‖Hr/R), Ṽ = Ṽh,r+1.

We will concentrate now on the second term. Subtracting (3.31) from (2.22), one
finds

ν(∇(ũh̃ − S̃h̃(u)),∇χ̃h) = bh̃(u(T ), u(T ), χ̃h) − bh̃(uh(T ), uh(T ), χ̃h)(3.32)

+ (ut(T ) − u̇h(T ), χ̃h) ∀χ̃h ∈ Ṽ .

Then, by setting χ̃h = ũh̃ − S̃h̃(u) ∈ Ṽ , we find

ν‖∇(ũh̃ − S̃h̃(u))‖0 ≤
∥∥F (u(T ), u(T )) − F (uh(T ), uh(T ))

∥∥
−1

+ ‖ut(T ) − u̇h(T )‖−1.

For the first term above, applying (3.8) from Lemma 3.1 and Corollary 3.9, we get∥∥F (u(T ), u(T )) − F (uh(T ), uh(T ))
∥∥
−1

≤ K‖u(T ) − uh(T )‖0

≤ Khr(‖u(T )‖r + ‖p(T )‖Hr−1/R).

For the second term, (3.22) from Lemma 3.10 gives ‖ut− u̇h‖−1 ≤ Khr| log(h)|. Then

‖ũh̃ − S̃h̃(u)‖1 ≤ K1(u, p, ν)hr| log(h)|,(3.33)

and the proof for the H1 norm is complete. We next deal with the estimate in the L2

norm. Writing (3.32) in abstract operator form, we find that

νÃh̃(ũh̃ − S̃h̃(u)) = Π̃h̃[F (u(T ), u(T )) − F (uh(T ), uh(T ))] + Π̃h̃[ut(T ) − u̇h(T )].
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Then, applying Ã−1

h̃
to both sides of the above equation, we obtain

‖ũh̃ − S̃h̃(u)‖0 ≤ 1

ν

(∥∥Ã−1

h̃
Π̃h̃[F (u(T ), u(T )) − F (uh(T ), uh(T ))]

∥∥
0

+
∥∥Ã−1

h̃
Π̃h̃[ut(T ) − u̇h(T )]

∥∥
0

)
.

Thus, our aim is reduced to estimate each of the above norms. As regards the nonlinear
term, taking into account (2.14), with s = 2, we find

∥∥Ã−1

h̃
Π̃h̃[F (u, u) − F (uh, uh)]

∥∥
0
≤ Ch̃2

∥∥F (u, u) − F (uh, uh)
∥∥

0

+
∥∥A−1Π[F (u, u) − F (uh, uh)]

∥∥
0
.

Now, using estimates (3.7) from Lemma 3.1 and (3.13) from Lemma 3.4, we get

‖Ã−1

h̃
Π̃h̃[F (u, u)−F (uh, uh)]

∥∥
0
≤ Ch̃2‖u−uh‖1+C(‖u−uh‖−1+‖u−uh‖0‖u−uh‖1).

To conclude, we shall estimate each term in both sums. The required estimates in the
L2 and H1 norms are granted by Corollary 3.9. As regards the estimate in the H−1

norm, note that by means of (2.11) and (3.17), one readily finds

‖u− uh‖−1 ≤ ‖u− sh‖−1 + ‖sh − uh‖−1 ≤ ‖u− sh‖−1 + ‖sh − uh‖0

≤ Chr+1(‖u‖r + ‖p‖Hr−1/R) + Khr+1| log(h)|.

Then, we finally get
∥∥Ã−1

h̃
Π̃h̃[F (u, u) − F (uh, uh)]

∥∥
0
≤ Khr+1| log(h)|. We next deal

with the estimate for the time derivative. Applying again (2.14) with s = 2 together
with estimates (3.20) and (3.21) from Lemma 3.10, we reach

∥∥Ã−1

h̃
Π̃h̃ [ut(T ) − u̇h(T )]

∥∥
0
≤ h̃2 ‖ut(T ) − u̇h(T )‖0 + ‖A−1Π[ut(T ) − u̇h(T )]‖0

≤ Kh̃2hr−1| log(h)| + Khr+1| log(h)| ≤ Khr+1| log(h)|.

Hence the proof for the L2 norm is also finished.
Theorem 3.15. Let T > 0 be fixed. Let (uh, ph) be the MFE approximation to

the solution (u, p) of (1.1)–(1.2). Let (ũh̃, p̃h̃) be the postprocessed MFE approximation
at time T . Then, there exists a constant K(u, p, ν) such that

(i) if the postprocessing element is (X̃, Q̃) = (Xh̃,r, Qh̃,r−1), then

‖p(T ) − p̃h̃‖L2/R ≤ Cβ(h̃)r−1
(
‖u(T )‖r + ‖p(T )‖Hr−1/R

)
(3.34)

+ K(u, p, ν, β)hr| log (h)|;

(ii) if at time T the solution (u(T ), p(T )) belongs to (Hr+1(Ω)d ∩ V )×Hr(Ω)/R,

and the postprocessing element is (X̃, Q̃) = (Xh,r+1, Qh,r), then

‖p(T ) − p̃h̃‖L2/R ≤ Cβh
r
(
‖u(T )‖r+1 + ‖p(T )‖Hr/R

)
+ K(u, p, ν, β)hr| log (h)|.(3.35)

Proof. Let us denote by q̃h̃ the MFE approximation to the pressure p(T ) obtained

by solving the Stokes problem (2.8) at time T in the postprocessed space (X̃, Q̃).
Adding and subtracting q̃h̃, we get

‖p(T ) − p̃h̃‖L2/R ≤ ‖p(T ) − q̃h̃‖L2/R + ‖q̃h̃ − p̃h̃‖L2/R.



POSTPROCESSED MFE METHOD FOR NAVIER–STOKES EQUATIONS 1107

The first term can easily be estimated applying (2.10):

‖p(T ) − q̃h̃‖L2/R ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cβ(h̃)r−1
(
‖u(T )‖r

+ ‖p(T )‖Hr−1/R

)
,

(
X̃, Q̃

)
= (Xh̃,r, Qh̃,r−1),

Cβh
r
(
‖u(T )‖r+1

+ ‖p(T )‖Hr/R

)
,

(
X̃, Q̃

)
= (Xh,r+1, Qh̃,r).

Let us now bound the second term. Using the equations that satisfy p̃h̃ and q̃h̃ ((2.20),
(2.8), respectively), we deduce

(
p̃h̃ − q̃h̃,∇ · φ̃

)
= ν

(
∇
(
ũh̃ − S̃h̃(u)

)
,∇φ̃

)
+
(
F (uh, uh)

−F (u, u), φ̃
)

+
(
u̇h − ut, φ̃

)
∀φ̃ ∈ X̃.

Using the inf-sup condition (2.4), we obtain

β‖p̃h̃ − q̃h̃‖L2/R ≤ ν‖ũh̃ − S̃h̃‖1 + ‖F (uh, uh) − F (u, u)‖−1 + ‖uh − ut‖−1.

Taking into account (3.33), (3.8) from Lemma 3.1, and (3.22) from Lemma 3.10, we
reach

‖p̃h̃ − q̃h̃‖L2/R ≤ 1

β
(Khr| log(h)| + ‖u− uh‖0 + Khr| log(h)|) ,

so that, applying Corollary 3.8, we have completed the proof.
Remark 3.1. Observe that for the velocity we used piecewise polynomials of

degree at least 2. In general, the postprocessed method does not increase the rate of
convergence in the L2 norm in the linear case although an improvement in the energy
norm is obtained. The application of the postprocessing technique to the mini-element
approximation to Navier–Stokes equations is studied in [3], [5].

4. Numerical experiments. In this section, we present some numerical exper-
iments in order to support the analysis developed in the paper and to assess the merit
of the postprocessed method when compared with the standard MFE method. We
consider the Navier–Stokes equations (1.1) over the domain Ω = [0, 1]× [0, 1] subject
to homogeneous Dirichlet boundary conditions. The value of the viscosity in the ex-
periments is ν = 1, and the final time is T = 1.2. We set to zero the initial velocity
field u0 (1.2) and choose the external force f so that the exact solution is

u1(x, y, t) = −6 · [1 − cos(πt)]
(
sin3(πx) sin2(πy) cos(πy)

)
, (x, y, t) ∈ Ω × [0, T ],

u2(x, y, t) = 6 ·
(
1 − cos(πt)

)(
sin2(πx) sin3(πy) cos(πx)

)
, (x, y, t) ∈ Ω × [0, T ],

p(x, y, t) = (sin(2πt)/2)
(
sin4(πx) + sin3(πy)

)
− p0, (x, y, t) ∈ Ω × [0, T ],

where p0 denotes the mean of the pressure. In spite of the simplicity of this solution
and its lack of physical meaning, we remark that our main interest has been to check
the improvement in the rate of convergence achieved with the postprocessing technique
and whether this also increases the efficiency of the standard MFE approximation.

In our calculations we take the so-called regular pattern triangulations of Ω, which
are induced by the set of nodes (i/N, j/N), 0 ≤ i, j ≤ N , where N = |Ω|/h is an
integer. The MFE approximation to (1.1)–(1.2) is carried out using the Hood–Taylor
element (Xh,3, Qh,2) that we will denote by P2P1. That is, we use Lagrange quadratic
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Fig. 4.1. Convergence diagrams for the first component of the velocity with P2P1 (continuous
line), P3P2 (dashed-dotted line), and the postprocessed method with P3P2 (dashed line). On the left
the errors are measured in the L2 norm (circles ◦) and on the right in the H1 norm (diamonds ♦).

elements for the approximation to the velocity and linear elements to approximate
the pressure. For the postprocessing step, due to the smoothness of the solution
(u, p), we perform the experiments not only with the same MFE over a finer grid,
(Xh′,3, Qh′,2), h

′ < h, but also with the higher-order Hood–Taylor element over the
same grid, (Xh,4, Qh,3); i.e., Lagrange cubic for the velocity and Lagrange quadratic
for the pressure. This element will be denoted by P3P2.

For the time integration we use the well-known semi-implicit method where lin-
ear terms are approximated by the implicit midpoint rule (i.e., the Crank–Nicolson
method) and nonlinear terms by the two-step explicit Adams formula (see, e.g., [8,
p. 105]). The modified Stokes problems that arise at each step are solved by means
of a standard projection method [31, pp. 27–28] (see also [3, section 4.6]).

For each h used in the triangulations of Ω, every experiment was carried out with
different values of the time step dt. There is always a point, depending on h, at which
further reduction of the time step dt does not reduce the errors anymore. This means
that the error arising from the time discretization is smaller than the error arising
from the MFE discretization. To avoid wrong conclusions from our numerical experi-
ments, we have been careful to ensure that the dominant error in all the computations
presented here is the spatial discretization error. For the computational cost in the
efficiency diagrams shown here, we use the largest time step among those in which
the spatial discretization error is dominant.

In what follows, we use the same symbols in all the plots to represent the relative
errors. For the velocity we plot the errors in the first component. Similar errors are
obtained for the second. The different methods are distinguished by the line used to
join the symbols. For the MFE-P2P1 approximation, we use continuous line, and for
the MFE-P3P2 dashed-dotted line. The MFE-P2P1 has been postprocessed in two
different ways: using P3P2 (dashed line) and refining the mesh (dotted line).

In Figure 4.1 we present two convergence diagrams showing the errors committed
by the methods when used with h = |Ω|/N, N = 8, 16, 32, 64, both in the L2 norm
(left) and the H1 norm (right). We have plotted the errors of the MFE-P2P1 and
P3P2 methods and the postprocessed errors with P3P2. One can observe that the
postprocessing technique with P3P2 provides an approximate velocity with about the
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Fig. 4.2. Left: convergence diagram for the pressure approximation with P2P1 (continuous
line), P3P2 (dashed-dotted lines), and the postprocessed method with P3P2 (dashed lines). Right:
convergence diagram for the first component of the velocity approximation with P2P1 (continuous
line) and the postprocessed P2P1 over finer grids.

same accuracy as that corresponding to the MFE-P3P2 method. This is especially
true for the H1 norm, in which the two methods produce virtually the same errors.
Measures of the slopes of the plots confirm the rates predicted by the theory (i.e., the
errors in the plots decrease like N slope = const.h−slope).

Similar conclusions can be reached from the errors of the approximations to the
pressure in Figure 4.2 (left). Except for the first point, which correspond to h = 1/8,
the postprocessed errors lies on a line (almost) parallel to the one joining the MFE-
P3P2 errors. The rate of convergence of these two methods is one unit larger than
that of the MFE-P2P1 in agreement with what the theory predicts.

In Figure 4.2 (right), we plot the errors obtained postprocessing the MFE-P2P1
refining the grid. We have represented the errors measured in the H1 norm; similar
results have been obtained for the L2 norm. In view of Theorem 3.14, in order to
get a gain of one order of convergence in the H1 norm, we should use a mesh of size
h′ ≈ h3/2. The improvement in the rate of convergence of the postprocessed method
can be observed in the figure. We can also observe in the plot that using a refined mesh
of size h′ = h/2 (only one regular refinement), the errors are considerably reduced. In
fact, observe that the postprocessed error with h′ = h/2 is almost the same as that
of the standard MFE-P2P1 carried out using a mesh of size h/2 over the full interval
[0, T ]. This fact can be of interest when the cost of the postprocessing step with a
refined mesh of size a power of h is not affordable for computational reasons.

The relevant question now is whether the improvement in the rate of convergence
also implies improved efficiency. In Figure 4.3, we have represented the same errors as
in Figure 4.1 (right) and Figure 4.2 (left) against the smallest amount of time needed
to achieve them. We have also plotted the errors of the postprocessed method refining
the mesh (Figure 4.2 (right)). In the plot we observe that the efficiency of the two
postprocessing procedures is very similar. We can conclude that the postprocessed
method really improves the efficiency of the standard MFE method for both approx-
imations to the velocity and to the pressure. For any error that we may demand, the
postprocessed method achieves that error in less computing time than the standard
P2P1 and P3P2-MFE methods. The reason for this improvement is that the error of
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Fig. 4.3. Efficiency diagrams for the first component of the velocity in the H1 norm (left) and

the pressure (right) with P2P1 (continuous line), P3P2 (dashed-dotted line) and the postprocessed
method with P3P2 (dashed line) and refining the grid (dotted line).

the MFE-P2P1 method is reduced when the postprocessing is done, but this is done
at very little cost: that of solving a single discrete Stokes problem at the final time.

All numerical experiments were carried out on a Pentium IV, with 1 GB of Rimm
memory, under the Solaris8 (Intel) operating system, with SUN Workshop 5 compilers.
The programs were written in Fortran 77.
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[20] B. Garćıa-Archilla and E. S. Titi, Postprocessing the Galerkin method: The finite-element
case, SIAM J. Numer. Anal., 37 (2000), pp. 470-499.

[21] V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes Equations,
Springer-Verlag, Berlin, 1986.

[22] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1991.
[23] J. G. Heywood, The Navier–Stokes equations: On the existence, regularity and decay of

solutions, Indiana Univ. Math. J., 29 (1980), pp. 639–681.
[24] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary

Navier–Stokes problem. Part I: Regularity of solutions and second-order error estimates
for spatial discretization, SIAM J. Numer. Anal., 19 (1982), pp. 275–311.

[25] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary
Navier–Stokes problem. Part III: Smoothing property and higher order error estimates
for spatial discretization, SIAM J. Numer. Anal., 25 (1988), pp. 489–512.

[26] P. Hood and C. Taylor, A numerical solution of the Navier–Stokes equations using the finite
element technique, Comput. Fluids, 1 (1973), pp. 73–100.

[27] C. R. Laing, A. McRobie, and J. M. T. Thompson, The post-processed Galerkin method
applied to non-linear shell vibrations, Dynam. Stability Systems, 14 (1999), pp. 163–181.

[28] J. C. López Marcos and J. M. Sanz-Serna, Stability and convergence in numerical analysis,
III. Linear investigation of nonlinear stability, IMA J. Numer. Anal., 8 (1988), pp. 71–84.

[29] H. Okamoto, On the semidiscrete finite element approximation for the nonstationary Stokes
equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), pp. 241–260.

[30] R. Temam, Navier Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional
Conf. Ser. in Appl. Math. 41, SIAM, Philadelphia, PA, 1983.

[31] S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computa-
tional Approach, Springer-Verlag, Berlin, 1999.

[32] O. Walsh, On Approximate Inertial Manifolds for the Navier–Stokes Equations Using Finite
Elements, Ph.D. thesis, University of British Columbia, Vancouver, BC, Canada, 1994.



SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 43, No. 3, pp. 1112–1138

FULLY DISCRETE FINITE ELEMENT APPROXIMATION FOR
ANISOTROPIC SURFACE DIFFUSION OF GRAPHS∗

KLAUS DECKELNICK† , GERHARD DZIUK‡ , AND CHARLES M. ELLIOTT§
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1. Introduction. This article is concerned with the geometric problem of de-
termining an evolving surface Γ(t) whose motion is governed by the highly nonlinear
fourth order geometric anisotropic surface diffusion equation

V = ΔΓHγ on Γ(t),(1.1)

where V and ΔΓ denote, respectively, the normal velocity and the Laplace–Beltrami
(surface Laplacian) operator for Γ(t). Furthermore, Hγ denotes the anisotropic mean
curvature of the surface with respect to the positive, convex, and 1-homogeneous
surface energy density γ : R

n+1\{0} → R. We can introduce Hγ formally as the first
variation of the surface energy

Aγ(Γ) =

∫
Γ

γ(ν),(1.2)

where ν denotes the unit normal to Γ.
Modelling morphological surface evolution and growth is fundamental in materials

science and the study of microstructure. The surface evolution law (1.1) is referred
to as surface diffusion because it models the diffusion of mass within the bounding
surface of a solid body. At the atomistic level atoms on the surface move along the
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surface due to a driving force consisting of a chemical potential difference. For a
surface with surface energy density γ(ν) the appropriate chemical potential in this
setting is the anisotropic curvature Hγ . This leads to the flux law

ρV = −divΓ j,

where ρ is the mass density and j is the mass flux in the surface, with the constitutive
flux law [19], [21]

j = −D∇ΓHγ .

Here, D is the diffusion constant. From these equations we obtain the law (1.1)
after an appropriate nondimensionalization. The notion of surface diffusion is due to
Mullins [21] and for a review we refer the reader to [5].

Our sign convention is that Hγ with respect to the outer normal is positive for
the Wulff shape W := {p ∈ R

n+1 | 〈p, q〉 ≤ γ(q) ∀q ∈ R
n+1}.

This evolution has interesting geometrical properties: if Γ(t) is a closed surface
bounding a domain Ω(t), then the volume of Ω(t) is preserved and the surface energy
(or weighted surface area) of Γ(t) decreases. The corresponding result in the graph
case is given in Lemma 2.2. At present, the existence and uniqueness theory for surface
diffusion is limited to the isotropic case γ(q) := |q|, q ∈ R

n+1. For example, it is known
that for closed curves in the plane or closed surfaces in R

3 balls are asymptotically
stable subject to small perturbations; see [15], [17]. However, topological changes such
as pinch-off are possible [18], [20], and a one-dimensional graph may lose its graph
property in finite time whilst the surface evolves smoothly [16].

In what follows we shall study evolving surfaces Γ(t) which can be described, for
each t ≥ 0, as the graph of a height function u(·, t) over some base domain Ω ⊂ R

n,
i.e., Γ(t) = {(x, u(x, t)) ∈ R

n+1 | x ∈ Ω}. The area element and a unit normal,
denoted by Q(u) and ν(u), are then given by

Q(u) =
√

1 + |∇u|2, ν(u) =
(∇u,−1)√
1 + |∇u|2

=
(∇u,−1)

Q(u)

so that we can calculate the surface energy or weighted area for a graph Γ given by
the height function u as

Aγ(Γ) = Iγ(u) :=

∫
Ω

γ(ν(u))Q(u) =

∫
Ω

γ(∇u,−1)

in view of the homogeneity of γ. Thus the first variation of Aγ in the direction of a
function φ ∈ C∞

0 (Ω) is

d

dε
Iγ(u + εφ)|ε=0 =

n∑
i=1

∫
Ω

γpi(∇u,−1)φxi = −
n∑

i,j=1

∫
Ω

γpipj (∇u,−1)uxixjφ

= −
∫

Ω

Hγφ =

∫
Ω

wφ,

where we use −w to denote the anisotropic or weighted mean curvature of the surface
in the graph case so that

w := −
n∑

i,j=1

γpipj (∇u,−1)uxixj .(1.3)
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In order to translate (1.1) into a differential equation for u = u(x, t), we observe that
the normal velocity V of Γ(t) is given by V = − ut

Q(u) . Furthermore, if v : Ω → R,

then the Laplace–Beltrami operator on Γ(t) is given by (see (2.5) below)

ΔΓv =
1

Q(u)
∇ ·

((
Q(u)I − ∇u⊗∇u

Q(u)

)
∇v

)
,

where ⊗ denotes the usual tensor product of two vectors in R
n. Thus, anisotropic

surface diffusion for graphs is defined by the following highly nonlinear fourth order
evolutionary equation:

ut = −∇ ·
((

Q(u)I − ∇u⊗∇u

Q(u)

)
∇
(

n∑
i,j=1

γpipj
(∇u,−1)uxixj

))
.(1.4)

The aim of this paper is to analyze a fully discrete finite element approximation
of the initial-boundary value problem in the case of graphs. We use the second order
splitting method for fourth order problems proposed by Elliott, French, and Mil-
ner [14] for the fourth order Cahn–Hilliard equation and subsequently employed for
surface diffusion by Deckelnick, Dziuk, and Elliott [12]. Thus the space discretization
is accomplished using H1 conforming finite element spaces. For example, continu-
ous piecewise linear elements on triangulations are sufficient. On the other hand,
in time we use a novel semi-implicit discretization which requires only the solution
of linear algebraic equations but which preserves the Liapunov structure. This en-
sures the natural stability properties of the scheme with a time step independent of
the spatial mesh size. The scheme involves stabilizing the explicit Euler scheme by
adding a semi-implicit linear form which involves the discrete time derivative. This
stabilizing form has two terms. One involves the anisotropy and is designed to yield
a stable linearization. The second term is of higher order with respect to the time
step and is based on the Laplace–Beltrami form. It is designed to yield the L2 sta-
bility bound, (3.11), on the discrete solution similar to that enjoyed by the solution
of the partial differential equation. A similar idea was previously used in [11] for
the anisotropic mean curvature flow of graphs and in [23] for surface diffusion. The
main achievement of the paper is the derivation of a priori geometric error bounds.
We prove optimal order bounds for the difference of the normals measured in the L2

norm over either the continuous surface Γ(t) or the discrete surface Γh(t) and the
L2 norm on the discrete surface of the difference of the tangential gradients of the
anisotropic mean curvature. This latter bound is equivalent to an H−1 bound on the
difference in normal velocities. Some numerical computations are presented which
confirm the analysis and which illustrate the effect of anisotropy.

A second order splitting finite element scheme for axially symmetric surfaces was
presented by Coleman, Falk, and Moakher [7], [8] together with some stability results
and interesting numerical computations illustrating pinch-off and the formation of
beads. A first finite element error analysis for the second order splitting method for
surface diffusion in the axially symmetric case was presented by Deckelnick, Dziuk,
and Elliott [12]. Subsequently, Bänsch, Morin, and Nochetto [1] developed an optimal
order continuous in time finite element error analysis for the second order splitting
method in the case of multidimensional graphs. Our work has the distinctive feature
of analyzing a fully discrete second order splitting finite element method for nonlinear
surface anisotropy using a stable semi-implicit time stepping scheme.
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Remark 1.1. The analysis is easily extended to the more general evolution law

V = ΔΓ(Hγ − f) + g,(1.5)

where f is a force arising from an extra term in the energy and g is a surface growth
term. For example, including mechanical energy leads to the appearance of f and in
epitaxial growth g models the deposition of atoms.

Remark 1.2. Our results are presented for zero Neumann boundary conditions
with exact quadrature. The results and arguments also hold without change for
the case of Ω being a box and periodic boundary conditions. Minor modifications
are required for homogeneous Dirichlet boundary conditions. These three sets of
conditions have the property of being variationally separated and allow the second
order splitting method to work.

Remark 1.3. The approach to surface diffusion in this paper is entirely analogous
to the work of Elliott, French, and Milner [14] for the Cahn–Hilliard equation where
u is an order or phase field variable and w is the chemical potential. The variational
gradient flow structure is identical in each setting. Indeed the degenerate Cahn–
Hilliard equation yields a diffuse interface approximation to surface diffusion [4].

The paper is organized as follows. In section 2 we introduce some notation and
assumptions. We set up the numerical scheme and derive some preliminary estimates
in section 3, whilst section 4 contains the proof of the error bounds. Finally, section 5
contains some numerical results.

2. Notation and assumptions.

2.1. Differential geometry. Let Γ be a C2 hypersurface in R
n+1 with unit

normal ν. For any function η̄ = η̄(x1, . . . , xn+1) defined in a neighborhood N ⊂ R
n+1

of Γ we define its tangential gradient on Γ by

∇Γη̄ := Dη̄ − 〈Dη̄, ν〉ν,

where on R
n+1 〈·, ·〉 denotes the usual scalar product and Dη̄ denotes the usual

gradient. The tangential gradient ∇Γη̄ depends only on the values of η̄ on Γ and
〈∇Γη̄, ν〉 = 0. The Laplace–Beltrami operator on Γ is defined as the tangential diver-
gence of the tangential gradient, i.e.,

ΔΓη̄ = 〈∇Γ,∇Γη̄〉.

Let Γ have a boundary ∂Γ whose intrinsic unit outer normal, tangential to Γ, is
denoted by μ. Then the surface Green’s formula is

∫
Γ

〈∇Γξ̄,∇Γη̄〉 =

∫
∂Γ

ξ̄〈∇Γη̄, μ〉 −
∫

Γ

ξ̄ΔΓη̄.(2.1)

We now turn to the situation in hand where Γ(t) = {(x, u(x, t)) ∈ R
n+1 | x ∈ Ω}.

For functions v = v(x), x ∈ Ω, we use the extension v̄(x, xn+1) = v(x) and define

∇Γv := ∇Γv̄ = Dv̄ − 〈Dv̄, ν(u)〉ν(u) = P (ν(u))Dv̄,

where we observe that Dv̄ = (∇v, 0), ν(u) = (∇u,−1)/Q(u) and P (ν(u)) is given by

P (ν(u)) := I − ν(u) ⊗ ν(u).



1116 K. DECKELNICK, G. DZIUK, AND C. M. ELLIOTT

Here, we have used the tensor product notation y ⊗ y := yyT . It follows that

〈∇Γv,∇Γη〉 = ∇v · ∇η − 1

Q(u)2
∇v · ∇u∇η · ∇u =

1

Q(u)
(∇v)tE(∇u)∇η,(2.2)

where

E(∇u) := Q(u)I − ∇u⊗∇u

Q(u)
.

For later use we note that

〈P (ν(u))Dv̄,Dw̄〉Q(u) = (∇v)tE(∇u)∇w,(2.3)

(∇v)tE(∇u)∇v ≥ |∇v|2
Q(u)

.(2.4)

Integrating (2.2) over Γ we derive∫
Γ

〈∇Γv̄,∇Γη̄〉 =

∫
Ω

〈∇Γv,∇Γη〉Q(u) =

∫
Ω

(∇v)tE(∇u)∇η.

If we combine this relation with (2.1) we obtain for test functions η, which vanish
on ∂Ω ∫

Γ

η̄ΔΓv̄ =

∫
Ω

η∇ · (E(∇u)∇v) =

∫
Ω

η
1

Q(u)
∇ · (E(∇u)∇v)Q(u),

so that

ΔΓv := ΔΓv̄ =
1

Q(u)
∇ · (E(∇u)∇v).(2.5)

2.2. The anisotropy. We suppose that γ : R
n+1 \ {0} → R is smooth with

γ(p) > 0 for p ∈ R
n+1 \ {0} and that γ is positively homogeneous of degree one, i.e.,

γ(λp) = |λ|γ(p) ∀λ �= 0, p �= 0.(2.6)

Here, | · | denotes the Euclidean norm. It is not difficult to verify that (2.6) implies

〈γ′(p), p〉 = γ(p), 〈γ′′(p)p, q〉 = 0,(2.7)

γpi
(λp) =

λ

|λ|γpi
(p), γpipj

(λp) =
1

|λ|γpipj
(p)(2.8)

for all p ∈ R
n+1 \ {0}, q ∈ R

n+1, λ �= 0, and i, j ∈ {1, . . . , n+ 1}. Finally, we assume
that there exists γ0 > 0 such that

〈D2γ(p)q, q〉 ≥ γ0|q|2 ∀ p, q ∈ R
n+1, |p| = 1, 〈p, q〉 = 0.(2.9)

Further information about the geometric properties and physical relevance of aniso-
tropic energy functionals can be found, respectively, in [2] and [24].

2.3. Function spaces. By (·, ·) we denote the L2(Ω) inner product (v, η) :=∫
Ω
v(x)η(x)dx for v, η ∈ L2(Ω) with norm ‖v‖ := (v, v)

1
2 . Also Hm,p(Ω) denotes

the usual Sobolev space with the corresponding norm being given by ‖u‖Hm,p(Ω) =

(
∑m

k=0 ‖Dku‖pLp(Ω))
1
p with the usual modification for p = ∞. For p = 2 we simply

write Hm(Ω) = Hm,2(Ω) with norm ‖ · ‖Hm(Ω).
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2.4. The variational formulation and initial-boundary value problem.
Rather than discretizing the fourth order equation (1.4) we use the height u of the
graph and the anisotropic curvature of the graph w as variables and consider the two
second order equations (1.1), (1.3),

ut = ∇ · (E(∇u)∇w),(2.10)

w = −
n∑

i,j=1

γpipj (∇u,−1)uxixj .(2.11)

The system is closed using Neumann boundary conditions and an initial condition
for u.

E(∇u)∇w · ν∂Ω = 0,(2.12)

〈γ′(ν(u)), (ν∂Ω, 0)〉 = 0,(2.13)

u(·, 0) = u0.(2.14)

The first equation, (2.12), is the zero mass flux condition whereas the second equa-
tion, (2.13), is the natural variational boundary condition which defines w as the
variational derivative or chemical potential for the surface energy functional. Note
that an initial condition on w is not required.

In order to write down the variational formulation it is convenient to introduce
the following forms:

Laplace–Beltrami (LB) form,

E(u;w, η) :=

∫
Ω

(∇w)tE(∇u)∇ηdx

Anisotropic mean curvature (AMC) form,

A(u, η) :=
n∑

i=1

∫
Ω

γpi(ν(u))ηxidx.

Then it is straightforward to show the following equivalence between the classical
form of the initial-boundary value problem and the variational formulation.

Lemma 2.1. Let u ∈ C1([0, T ];C4(Ω̄)), u(·, 0) = u0, and w ∈ C0([0, T ];C2(Ω̄)).
Then (u,w) is a solution of (2.10)–(2.13) iff u(·, 0) = u0 and the following variational
equations are satisfied:

(∂tu, η) + E(u;w, η) = 0 ∀ η ∈ H1(Ω),(2.15)

(w, η) −A(u, η) = 0 ∀ η ∈ H1(Ω).(2.16)

Lemma 2.2. The solution (u,w) satisfies for each t ∈ [0, T ] the surface energy
equation

Iγ(u) +

∫ t

0

E(u;w,w) ds = Iγ(u0)(2.17)

and the conservation laws

(u, 1) = (u0, 1), (w, 1) = 0.(2.18)
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Furthermore, for each t ∈ [0, T ] we have the bound

‖u(t)‖2 +

∫ t

0

‖w‖2 ds ≤ C(γ, u0, T ).(2.19)

Proof. Taking η = w in (2.15) and η = ∂tu in (2.16) and subtracting the resulting
equations yields (2.17). Taking η = 1 in (2.15) and (2.16) yields (2.18).

In order to prove the first part of (2.19), we use η = u in (2.15) and apply (2.29)
which gives

1

2

d

dt
‖u‖2 = −E(u;w, u) ≤ E(u;w,w)

1
2 E(u;u, u)

1
2 ≤ 1

2
E(u;w,w) +

1

2

∫
Ω

Q(u).

Integrating this inequality with respect to time we obtain with the help of (2.17),

‖u(t)‖2 ≤ ‖u0‖2 +

∫ t

0

E(u;w,w)ds +
1

inf |p|=1 γ(p)

∫ t

0

Iγ(u) ds ≤ C(γ, u0, T ).

Using η = w in (2.16) we deduce

‖w‖2 = A(u,w) ≤ sup
|p|=1

|γ′(p)|
∫

Ω

|∇w| ≤ C

(∫
Ω

|∇w|2
Q(u)

) 1
2
(∫

Ω

Q(u)

) 1
2

,

so that (2.4) and similar arguments as above yield

∫ t

0

‖w‖2ds ≤ C

∫ t

0

E(u;w,w)ds + C

∫ t

0

Q(u) ds ≤ C(γ, u0, T ).

Remark 2.3. The surface energy equation (2.17) can be written as

∫
Γ(t)

γ(ν) +

∫ T

0

∫
Γ(t)

|∇ΓHγ |2 =

∫
Γ(0)

γ(ν).(2.20)

The conservation of u is equivalent to the conservation of the volume lying below the
graph of the surface. That the integral over Ω of the anisotropic mean curvature is
zero is a consequence of the fact that constant vertical variations in the height of the
graph do not change the anisotropic surface area.

2.5. Geometric lemmas. The following algebraic relations are elementary.
Lemma 2.4.

|∇(u− v)|2 = (Q(u) −Q(v))2 + |ν(u) − ν(v)|2Q(u)Q(v),(2.21)
∣∣∣∣ 1

Q(u)
− 1

Q(v)

∣∣∣∣ ≤ |ν(u) − ν(v)|,(2.22)

|Q(u) −Q(v)| ≤ Q(u)Q(v)|ν(u) − ν(v)|.(2.23)

Lemma 2.5 (properties of the anisotropy and the AMC form A). Let u, v ∈
H1,∞(Ω). Then

A(v, u− v) ≥ Iγ(u) − Iγ(v) − γ̄

∫
Ω

|ν(u) − ν(v)|2Q(u),(2.24)
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where

γ̄ :=
1√

5 − 1
max

{
sup
|p|=1

|γ′(p)|, sup
|p|=1

|γ′′(p)|
}
.(2.25)

If in addition |∇u| ≤ K a.e. in Ω, then

|A(u, η) −A(v, η)| ≤ C(γ,K)

∫
Ω

|ν(u) − ν(v)||∇η|.(2.26)

Proof. The first inequality follows from the estimate

n∑
i=1

γpi(ν(v))(u− v)xi
≥ γ(ν(u))Q(u) − γ(ν(v))Q(v) − γ̄|ν(u) − ν(v)|2Q(u)(2.27)

which is contained in the proof of Theorem 3.1 in [11, p. 430]. Let us next turn
to (2.26). Lemma 6.1 in [11] implies that there exists c0 = c0(K) > 0 such that

|sν(u) + (1 − s)ν(v)| ≥ c0 a.e. in Ω ∀ s ∈ [0, 1].(2.28)

Note that c0 is independent of v. As a consequence,

|γpi
(ν(u)) − γpi

(ν(v))| =

∣∣∣∣∣∣
n+1∑
j=1

∫ 1

0

γpipj (sν(u) + (1 − s)ν(v))ds(νj(u) − νj(v))

∣∣∣∣∣∣
≤ 1

c0
max
|p|=1

|D2γ(p)||ν(u) − ν(v)| ≤ C(γ,K)|ν(u) − ν(v)|,

since D2γ is positively homogeneous of degree −1. This yields (2.26).
Lemma 2.6 (properties of the LB form E). Let u, v ∈ H1,∞(Ω). Then

|E(u;w, η)| ≤ E(u;w,w)
1
2 E(u; η, η)

1
2 .(2.29)

If in addition |∇u| ≤ K a.e. in Ω, then

E(v;u− v, u− v) ≤ C(K)

∫
Ω

|ν(u) − ν(v)|2Q(v),(2.30)

|E(u; η1, η2) − E(v; η1, η2)| ≤ C(K)‖∇η1‖∞
∫

Ω

|ν(u) − ν(v)||∇η2|Q(v),(2.31)

|E(u; η1, η2) − E(v; η1, η2)| ≤ εE(v; η1, η1)
(2.32)

+
C(K)

ε
‖∇η2‖2

∞

∫
Ω

|ν(u) − ν(v)|2Q(v).

Proof. Using (2.3) together with Young’s inequality we have

|E(u;w, η)| =

∣∣∣∣
∫

Ω

〈P (ν(u))Dw̄,Dη̄〉Q(u)

∣∣∣∣
≤

∫
Ω

〈P (ν(u))Dw̄,Dw̄〉 1
2 〈P (ν(u))Dη̄,Dη̄〉 1

2Q(u)

≤ E(u;w,w)
1
2 E(u; η, η)

1
2 .
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Next, observing that (∇(u− v), 0) = Q(u)ν(u) −Q(v)ν(v) we obtain

〈P (ν(v))(∇(u− v), 0), (∇(u− v), 0)〉
= 〈(I − (ν(v) ⊗ ν(v)))(Q(u)ν(u) −Q(v)ν(v)), (Q(u)ν(u) −Q(v)ν(v))〉
= Q(u)2(1 − 〈ν(u), ν(v)〉2) = Q(u)2(1 − 〈ν(u), ν(v)〉)(1 + 〈ν(u), ν(v)〉)
≤ Q(u)2|ν(u) − ν(v)|2,

since 1 − 〈ν(u), ν(v)〉 = 1
2 |ν(u) − ν(v)|2. Multiplication of the above inequality by

Q(v) followed by integration over Ω yields (2.30). From the definition of P (ν(u))
and (2.23) we infer

|P (ν(u))Q(u) − P (ν(v))Q(v)| ≤ C(K)|ν(u) − ν(v)|Q(v),

which implies (2.31). Finally, writing Dη̄ = (∇η, 0) and using (2.23) as well as (2.4)
we have

|E(u; η1, η2) − E(v; η1, η2)| ≤
∫

Ω

|〈P (ν(v))Dη̄1, Dη̄2〉||Q(v) −Q(u)|

+

∫
Ω

|〈(P (ν(v)) − P (ν(u)))Dη̄1, Dη̄2〉|Q(u)

≤
∫

Ω

〈P (ν(v))Dη̄1, Dη̄1〉
1
2 〈P (ν(v))Dη̄2, Dη̄2〉

1
2 |ν(u) − ν(v)|Q(u)Q(v)

+C(K)

∫
Ω

|ν(u) − ν(v)|
√

Q(v)
|∇η1|√
Q(v)

|∇η2|

≤ εE(v; η1, η1) +
C(K)

ε
‖∇η2‖2

∞

∫
Ω

|ν(u) − ν(v)|2Q(v).

This concludes the proof of (2.32).
Remark 2.7. We note that inequalities (2.30) and (2.32) were proved in [1] as

Lemmas 4.7 and 4.5, respectively. The argument used above, employing the projection
P , is more direct and slightly simpler than the one used in [1] in that it avoids the
splitting of Ω into subsets.

Lemma 2.8. Let u, v ∈ H1,∞(Ω) with |∇u| ≤ K a.e. in Ω. There exists a
constant c1 > 0 which depends only on K and γ0 from (2.9) such that for

D :=

∫
Ω

(γ(ν(v)) − 〈γ′(ν(u)), ν(v)〉)Q(v)

we have

D ≥ c1

∫
Ω

|ν(u) − ν(v)|2Q(v).

Proof. This is just a reformulation of Lemma 3.2 in [9].

3. Discretization.

3.1. The finite element approximation. We now turn to the discretization
of (2.15), (2.16). Let Th be a family of triangulations of Ω with maximum mesh size
h := maxτ∈Th

diam(τ). We suppose that Ω̄ is the union of the elements of Th so
that element edges lying on the boundary are curved. Furthermore, we suppose that

the triangulation is nondegenerate in the sense that maxτ∈Th

diam(τ)
ρτ

≤ κ, where the
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constant κ > 0 is independent of h and ρτ denotes the radius of the largest ball which
is contained in τ̄ . The discrete space is defined by

Sh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each τ ∈ Th}.

There exists an interpolation operator Πh : H2(Ω) → Sh such that

‖v − Πhv‖ + h‖∇(v − Πhv)‖ ≤ ch2‖v‖H2(Ω) ∀ v ∈ H2(Ω).(3.1)

We are now in position to give a precise formulation of our numerical scheme. Let
Δt := T

N for an integer N and tm := mΔt, m = 0, . . . , N . We denote by Um, Wm

the approximations to u(·, tm) and w(·, tm), respectively. Furthermore, let

δtv
m :=

vm+1 − vm

Δt
.

In order to formulate a semi-implicit scheme requiring just the solution of linear
equations we introduce the following form.

Stabilizing Anisotropic (SA) form,

B(u; v, η) := λB0(u; v, η) + ΔtE(u; v, η),(3.2)

where

B0(u; v, η) :=

∫
Ω

γ(ν(u))

Q(u)
∇v · ∇wdx.(3.3)

Remark 3.1. The purpose of the form B0 is to stabilize A, which will be evaluated
at the old time step. The second part in B is introduced in order to gain control on
‖Um‖ (see the proof of Lemma 3.4 below, in particular (3.14) and (3.15)) and the
corresponding error in the convergence analysis.

Scheme 3.2. We seek for each m ∈ [1, N ] a pair {Um,Wm} ∈ Sh ×Sh satisfying
for m ≥ 0

(δtU
m, η) + E(Um;Wm+1, η) = 0 ∀ η ∈ Sh,(3.4)

(Wm+1, η) −A(Um, η) − ΔtB(Um; δtU
m, η) = 0 ∀ η ∈ Sh.(3.5)

For simplicity we impose the initial condition,

U0 := Πhu0.(3.6)

The scheme does not require W 0. The constant λ is chosen to satisfy

λγmin > γ̄, where γmin = inf
|p|=1

γ(p) > 0(3.7)

in order to ensure stability (see Lemma 3.4 below).
Lemma 3.3 (properties of the SA form B). Suppose that u, v ∈ H1,∞(Ω). Then

B(u; v, v) ≤
(
λ sup

|p|=1

γ(p) + Δt

)
E(u; v, v).(3.8)

If in addition |∇u| ≤ K a.e. in Ω, then

|B(u; η1, η2) − B(v; η1, η2)|
(3.9)

≤ C‖∇η1‖L∞

(∫
Ω

|ν(u) − ν(v)||∇η2| + Δt

∫
Ω

|ν(u) − ν(v)||∇η2|Q(v)

)
.
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Proof. The inequality (3.8) follows immediately from (2.4). Next, if |∇u| ≤ K
a.e. in Ω, we deduce from (2.28) that

∣∣∣∣γ(ν(u))

Q(u)
− γ(ν(v))

Q(v)

∣∣∣∣
≤ 1

Q(u)

∣∣∣∣
∫ 1

0

〈γ′(sν(u) + (1 − s)ν(v))ds, ν(u) − ν(v)〉
∣∣∣∣ + C

∣∣∣∣ 1

Q(u)
− 1

Q(v)

∣∣∣∣
≤ C|ν(u) − ν(v)|.

Combining this inequality with (2.31) implies (3.9).

3.2. Stability.

Lemma 3.4. Suppose that (3.7) holds. Then the unique discrete solution satisfies

max
m∈[0,N ]

Iγ(Um) + Δt

N∑
k=1

E(Uk−1;W k,W k) ≤ C(γ, U0),(3.10)

max
m∈[0,N ]

‖Um‖2 + Δt

N∑
k=1

‖W k‖2 ≤ C(λ, γ, U0, T ).(3.11)

Proof. Taking η = ΔtWm+1 in (3.4), η = ΔtδtU
m in (3.5) and adding yields

ΔtE(Um;Wm+1,Wm+1) + A(Um, Um+1 − Um)
(3.12)

+(Δt)2B(Um; δtU
m, δtU

m) = 0.

Lemma 2.5 implies

A(Um, Um+1 − Um) ≥ Iγ(Um+1) − Iγ(Um) − γ̄

∫
Ω

|ν(Um+1) − ν(Um)|2Q(Um+1)

≥ Iγ(Um+1) − Iγ(Um) − (Δt)2
γ̄

γmin
B0(U

m; δtU
m, δtU

m),

where we have used (2.21). Inserting the above inequality into (3.12) and recalling
the definition of B we infer

Iγ(Um+1) − Iγ(Um) + ΔtE(Um;Wm+1,Wm+1)
(3.13)

+

(
λ− γ̄

γmin

)
(Δt)2B0(U

m; δtU
m, δtU

m) + (Δt)3E(Um, δtU
m, δtU

m) ≤ 0.

Summation over m yields (3.10) as well as

(Δt)2
N−1∑
m=0

B0(U
m; δtU

m, δtU
m)

(3.14)

+(Δt)3
N−1∑
m=0

E(Um; δtU
m, δtU

m) ≤ C(λ, γ, U0).
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Next, using η = ΔtUm+1 in (3.4) we deduce

1

2
‖Um+1‖2 − 1

2
‖Um‖2 +

1

2
‖Um+1 − Um‖2 = ΔtE(Um;Wm+1, Um+1)

≤ ΔtE(Um;Wm+1,Wm+1)
1
2 E(Um;Um+1, Um+1)

1
2

(3.15)
≤ ΔtE(Um;Wm+1,Wm+1)

1
2

(
E(Um;Um, Um)

1
2 + ΔtE(Um; δtU

m, δtU
m)

1
2

)
≤ ΔtE(Um;Wm+1,Wm+1) + Δt

∫
Ω

Q(Um) + (Δt)3E(Um; δtU
m, δtU

m).

Finally, using η = ΔtWm+1 in (3.5) we obtain with the help of (2.4) and (3.8) that

Δt‖Wm+1‖2 = ΔtA(Um,Wm+1) + (Δt)2B(Um; δtU
m,Wm+1)

≤ Δt sup
|p|=1

|γ′(p)|
(∫

Ω

|∇Wm+1|2
Q(Um)

) 1
2
(∫

Ω

Q(Um)

) 1
2

(3.16)

+ (Δt)2B(Um; δtU
m, δtU

m)
1
2B(Um;Wm+1,Wm+1)

1
2

≤ ΔtE(Um;Wm+1,Wm+1) + C(γ)Δt

∫
Ω

Q(Um)(3.17)

+C(Δt)2B(Um; δtU
m, δtU

m).

Now (3.11) follows from summing (3.15), (3.16) over m, the inequality
∫
Ω
Q(Um) ≤

C(γ)Iγ(Um), and (3.10), (3.14).
Remark 3.5. It follows in particular that

max
m∈[0,N ]

∫
Ω

Q(Um) ≤ C(γ, U0).(3.18)

3.3. Boundary conditions, domain perturbation, and quadrature. For
Neumann boundary conditions it is sufficient for the union of the elements to contain
Ω, provided exact quadrature is used. The above analysis can be easily extended to
higher order elements. On the other hand, when using piecewise linear elements it is
convenient to use a quadrature rule based on mass lumping for the L2 inner products.
The other integrals require just the measure of the regions of integration. In the case
of Dirichlet boundary conditions it is necessary either to analyze the effect of domain
perturbation in the case of linear finite elements with a polygonal interpolation of Ω
or to analyze isoparametric approximations for higher order elements.

4. Error bounds. We set

um := u(·, tm), wm := w(·, tm), Sm := δtu
m − ∂tu(·, tm+1).

Then we have for the continuous problem the analogue of the discrete scheme,

(δtu
m, η) + E(um+1;wm+1, η) = (Sm, η) ∀ η ∈ H1(Ω),(4.1)

(wm, η) −A(um, η) = 0 ∀ η ∈ H1(Ω).(4.2)

It is convenient to introduce the errors

emu := um − Um =: ρmu + θmu , emw := wm −Wm := ρmw + θmw ,

where

ρmu := um − Πhum, ρmw := wm − Πhwm

are the interpolation errors. It is our goal to prove the following error bounds.
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Theorem 4.1. Let (u,w) solve (2.10)–(2.14) and satisfy the regularity u ∈
H1,∞(0, T ;H2,∞(Ω)), utt ∈ L∞(0, T ;H1,∞(Ω)), w ∈ H1,∞(0, T ;H2,∞(Ω)), wtt ∈
L2(0, T ;L2(Ω)). Suppose also that (3.7) holds. Then there exists δ > 0 such that for
0 < Δt ≤ δ

max
m∈[0,N ]

(
‖emu ‖2 +

∫
Ω

|ν(um) − ν(Um)|2Q(Um)

)

+ Δt

N∑
k=1

(‖ekw‖2 + E(Uk−1; ekw, e
k
w)) ≤ C(h2 + (Δt)2),

where C and δ depend on γ, Ω, T , λ and the solution u.
The rest of this section will be devoted to the proof of Theorem 4.1. Subtract-

ing (3.4), (3.5) and (4.1), (4.2) yields, for all η ∈ Sh, the error equations

(δte
m
u , η) + E(um+1;wm+1, η) − E(Um;Wm+1, η) = (Sm, η),(4.3)

(em+1
w , η) −A(um, η) + A(Um, η) + ΔtB(Um; δtU

m, η) = (wm+1 − wm, η).(4.4)

4.1. An a priori estimate in the energy norm. The first step is to emulate
the energy bounds obtained for the continuous and discrete solutions by testing (4.3)
and (4.4) with em+1

w − ρm+1
w ∈ Sh and δte

m
u − δtρ

m
u ∈ Sh yielding

(δte
m
u , em+1

w ) + E(um+1;wm+1, em+1
w ) − E(Um;Wm+1, em+1

w )(4.5)

= (δte
m
u , ρm+1

w ) + E(um+1;wm+1, ρm+1
w )

−E(Um;Wm+1, ρm+1
w ) + (Sm, em+1

w − ρm+1
w ),

(em+1
w , δte

m
u ) −A(um, δte

m
u ) + A(Um, δte

m
u ) + ΔtB(Um; δtU

m, δte
m
u )(4.6)

= (em+1
w , δtρ

m
u ) −A(um, δtρ

m
u ) + A(Um, δtρ

m
u ) + ΔtB(Um; δtU

m, δtρ
m
u )

+ Δt(δtw
m, δte

m
u − δtρ

m
u ).

Combining these equations and multiplying by Δt yields

Δt(A(um, δte
m
u ) −A(Um, δte

m
u ))

+ Δt(E(um+1;wm+1, em+1
w ) − E(Um;Wm+1, em+1

w ))

+ (Δt)2B(Um; δte
m
u , δte

m
u ) = Δt(A(um, δtρ

m
u ) −A(Um, δtρ

m
u ))

+ Δt(E(um+1;wm+1, ρm+1
w ) − E(Um;Wm+1, ρm+1

w ))(4.7)

+ Δt(Sm, em+1
w − ρm+1

w ) − Δt(em+1
w , δtρ

m
u )

+ Δt(δte
m
u , ρm+1

w ) − (Δt)2(δtw
m, δte

m
u − δtρ

m
u )

+ (Δt)2(B(Um; δtu
m, δte

m
u ) − B(Um; δtU

m, δtρ
m
u )) :=

7∑
j=1

Rm
j .

The proof of the error bounds is based on estimating the terms on both sides of
the above equation. We begin with the left-hand side of (4.7) which we denote by
Lm. First we recall the following lemma.

Lemma 4.2. Let

Dm :=

∫
Ω

(γ(ν(Um)) − 〈γ′(ν(um)), ν(Um)〉)Q(Um).
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Then we have for m ∈ [0, N − 1] and small Δt

Δt(A(um, δte
m
u ) −A(Um, δte

m
u )) ≥ Dm+1 −Dm

− (γ̄ + CΔt)

∫
Ω

|∇(em+1
u − emu )|2
Q(Um)

−CΔt

(
(Δt)2 +

∫
Ω

|ν(um+1) − ν(Um+1)|2Q(Um+1)

)
.

Proof. See [11, Lemma 4.2].

Lemma 4.2 and the definition of B0 now imply

Δt(A(um, δte
m
u ) −A(Um, δte

m
u ))

≥ Dm+1 −Dm − (Δt)2
(

γ̄

γmin
+ CΔt

)
B0(U

m; δte
m
u , δte

m
u )(4.8)

−CΔt

(
(Δt)2 +

∫
Ω

|ν(um+1) − ν(Um+1)|2Q(Um+1)

)
.

Next we examine

Δt(E(um+1;wm+1, em+1
w ) − E(Um;Wm+1, em+1

w ))

= ΔtE(Um; em+1
w , em+1

w ) + Δt(E(um+1;wm+1, em+1
w ) − E(um;wm+1, em+1

w ))

+ Δt(E(um;wm+1, em+1
w ) − E(Um;wm+1, em+1

w ))

=: αm
1 + αm

2 + αm
3 .

We infer from (3.18) and (2.4) that

|αm
2 | ≤ C(Δt)2‖∇wm+1‖L∞

∫
Ω

|∇em+1
w | ≤ C(Δt)2

(∫
Ω

Q(Um)

) 1
2
(∫

Ω

|∇em+1
w |2

Q(Um)

) 1
2

≤ εΔtE(Um, em+1
w , em+1

w ) +
C

ε
(Δt)3.

Furthermore, (2.32) yields

|αm
3 | ≤ εΔtE(Um, em+1

w , em+1
w ) +

C

ε
‖∇wm+1‖2

L∞

∫
Ω

|ν(um) − ν(Um)|2Q(Um).

Combining (4.8) and the estimates for αm
2 , αm

3 we derive

Lm ≥ Dm+1 −Dm + (1 − 2ε)ΔtE(Um; em+1
w , em+1

w )

+ (Δt)2
(
λ− γ̄

γmin
− CΔt

)
B0(U

m; δte
m
u , δte

m
u ) + (Δt)3E(Um; δte

m
u , δte

m
u )

(4.9)

− C

ε
Δt

(
(Δt)2 +

∫
Ω

|ν(um) − ν(Um)|2Q(Um)

+

∫
Ω

|ν(um+1) − ν(Um+1)|2Q(Um+1)

)
.
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4.2. L2-estimates. In order to proceed and estimate the terms Rm
j on the right-

hand side of (4.7), we need to derive bounds on the L2-norms of ek+1
w and ek+1

u .
Lemma 4.3. We have for m ∈ [0, N − 1]

‖em+1
w ‖2 ≤ E(Um; em+1

w , em+1
w ) + C(Δt)2B(Um; δte

m
u , δte

m
u )

+ C

∫
Ω

|ν(um) − ν(Um)|2Q(Um) + C(h2 + (Δt)2).

Proof. Inserting η = em+1
w − ρm+1

w into (4.4) and using (2.26) we infer

‖em+1
w ‖2

= (em+1
w , em+1

w − ρm+1
w ) + (em+1

w , ρm+1
w )

= A(um, em+1
w − ρm+1

w ) −A(Um, em+1
w − ρm+1

w )

−ΔtB(Um; δtU
m, em+1

w − ρm+1
w ) + Δt(δtw

m, em+1
w − ρm+1

w )

+ (em+1
w , ρm+1

w ) ≤ C

∫
Ω

|ν(um) − ν(Um)|(|∇em+1
w | + |∇ρm+1

w |)

+ Δt|B(Um; δtU
m, em+1

w − ρm+1
w )| + CΔt(‖em+1

w ‖ + ‖ρm+1
w ‖)

+ ‖em+1
w ‖‖ρm+1

w ‖ ≤ 1

2
‖em+1

w ‖2 + Δt|B(Um; δtU
m, em+1

w − ρm+1
w )|

+C((Δt)2 + h2) +
1

4

∫
Ω

|∇em+1
w |2

Q(Um)
+ C

∫
Ω

|ν(um) − ν(Um)|2Q(Um).

It remains to bound the term involving B. Clearly,

|B(Um; δtU
m, em+1

w )|
≤ B(Um; δtU

m, δtU
m)

1
2B(Um; em+1

w , em+1
w )

1
2

≤
(
B(Um; δtu

m, δtu
m)

1
2 + B(Um; δte

m
u , δte

m
u )

1
2

)
B(Um; em+1

w , em+1
w )

1
2

≤ C

((∫
Ω

Q(Um)

) 1
2

+ B(Um; δte
m
u , δte

m
u )

1
2

)
E(Um; em+1

w , em+1
w )

1
2 ,

by (3.8). Recalling (3.18) we deduce

Δt|B(Um; δtU
m, em+1

w )|

≤ 1

4
E(Um; em+1

w , em+1
w ) + C((Δt)2 + (Δt)2B(Um; δte

m
u , δte

m
u )).

Similarly,

Δt|B(Um; δtU
m, ρm+1

w )| ≤ C((Δt)2 + h2) + C(Δt)2B(Um; δte
m
u , δte

m
u ).

If we insert these inequalities into the estimate for ‖em+1
w ‖ and use (2.4) we arrive at

the desired bound.
Lemma 4.4. We have for 0 ≤ m ≤ N

max
k∈[0,m]

‖eku‖2 ≤ C

(
Δt

m−1∑
k=0

E(Uk; ek+1
w , ek+1

w ) + (Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u)

)

+ C((Δt)2 + h2) + CΔt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).
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Proof. Clearly,

1

2
‖ek+1

u ‖2 − 1

2
‖eku‖2 +

1

2
‖ek+1

u − eku‖2

= Δt(δte
k
u, e

k+1
u ) = Δt(δte

k
u, θ

k+1
u ) + Δt(δte

k
u, ρ

k+1
u )

(4.10)
= Δt(E(Uk;W k+1, θk+1

u ) − E(uk+1;wk+1, θk+1
u ))

+ Δt(Sk, θk+1
u ) + Δt(δte

k
u, ρ

k+1
u ),

where the last inequality follows from (4.3) with the choice η = Δtθk+1
u . To begin,

|E(Uk;W k+1, θk+1
u ) − E(uk+1;wk+1, θk+1

u )|

≤ |E(Uk; ek+1
w , θk+1

u )| + |E(Uk;wk+1, θk+1
u ) − E(uk;wk+1, θk+1

u )|

+ |E(uk;wk+1, θk+1
u ) − E(uk+1;wk+1, θk+1

u )|

= I + II + III.

Before we estimate these terms we first note that (2.30) and (3.18) imply

E(Uk; θk+1
u , θk+1

u )

≤ 2E(Uk; ek+1
u , ek+1

u ) + 2E(Uk; ρk+1
u , ρk+1

u )
(4.11)

≤ 4E(Uk; eku, e
k
u) + 4(Δt)2E(Uk; δte

k
u, δte

k
u) + C‖∇ρk+1

u ‖2
L∞

∫
Ω

Q(Uk)

≤ C

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk) + 4(Δt)2E(Uk; δte
k
u, δte

k
u) + Ch2.

We then infer from (2.29) and (4.11)

I ≤ E(Uk; ek+1
w , ek+1

w )
1
2 E(Uk; θk+1

u , θk+1
u )

1
2 ≤ E(Uk; ek+1

w , ek+1
w )

+C

(
(Δt)2E(Uk; δte

k
u, δte

k
u) + h2 +

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

)
.

Next, (2.32) together with (4.11) implies

II ≤ E(Uk; θk+1
u , θk+1

u ) + C‖∇wk+1‖2
L∞

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

≤ C

(
(Δt)2E(Uk; δte

k
u, δte

k
u) + h2 +

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

)
,

as well as

III ≤ E(Uk; θk+1
u , θk+1

u ) + C‖∇wk+1‖2
L∞

∫
Ω

|ν(uk+1) − ν(uk)|2Q(uk)

≤ C

(
(Δt)2E(Uk; δte

k
u, δte

k
u) + (Δt)2 + h2 +

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

)
.

Collecting the above estimates we derive

Δt|E(Uk;W k+1, θk+1
u ) − E(uk+1;wk+1, θk+1

u )| ≤ ΔtE(Uk; ek+1
w , ek+1

w )

+CΔt

(
(Δt)2E(Uk; δte

k
u, δte

k
u) + (Δt)2 + h2 +

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

)
.
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Next,

Δt|(Sk, θk+1
u )| ≤ C(Δt)2(‖eku‖ + ‖ek+1

u − eku‖ + ‖ρk+1
u ‖)

≤ 1

4
‖ek+1

u − eku‖2 + CΔt‖eku‖2 + CΔt((Δt)2 + h4).

If we insert the above estimates into (4.10), sum from k = 0 to m− 1, and rearrange
terms, we obtain

1

2
‖emu ‖2 ≤ 1

2
‖e0

u‖2 + Δt

m−1∑
k=0

E(Uk; ek+1
w , ek+1

w ) + C(Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u)

+C((Δt)2 + h2) + CΔt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

+CΔt

m−1∑
k=0

‖eku‖2 + Δt

m−1∑
k=0

(δte
k
u, ρ

k+1
u ).

Integrating by parts discretely in time we infer

∣∣∣∣∣Δt
m−1∑
k=0

(δte
k
u, ρ

k+1
u )

∣∣∣∣∣ =

∣∣∣∣∣−Δt

m−1∑
k=0

(eku, δtρ
k
u) + (emu , ρmu ) − (e0

u, ρ
0
u)

∣∣∣∣∣ ≤ Ch2,

since maxk∈[0,N ] ‖eku‖2 ≤ C by Lemma 3.4. Thus,

‖emu ‖2 ≤ 2Δt

m−1∑
k=0

E(Uk; ek+1
w , ek+1

w ) + C(Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u) + C((Δt)2 + h2)

+CΔt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk) + CΔt

m−1∑
k=0

‖eku‖2.

The result now follows with the help of a discrete Gronwall argument.

4.3. Estimating the right-hand side of (4.7). Invoking (2.26) we obtain

|Rk
1 | = Δt|A(uk, δtρ

k
u) −A(Uk, δtρ

k
u)|

≤ CΔt

∫
Ω

|ν(uk) − ν(Uk)||∇δtρ
k
u| ≤ CΔth

(∫
Ω

|ν(uk) − ν(Uk)|2
) 1

2

(4.12)

≤ CΔth2 + CΔt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).
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Lemma 2.6 and (3.18) imply

|Rk
2 | ≤ Δt|E(uk+1;wk+1, ρk+1

w ) − E(uk;wk+1, ρk+1
w )|

+ Δt|E(uk;wk+1, ρk+1
w ) − E(Uk;wk+1, ρk+1

w )|

+ Δt|E(Uk; ek+1
w , ρk+1

w )| ≤ CΔt‖∇wk+1‖L∞

×
(∫

Ω

|ν(uk+1) − ν(uk)||∇ρk+1
w |Q(uk)

(4.13)

+

∫
Ω

|ν(uk) − ν(Uk)||∇ρk+1
w |Q(Uk)

)

+ ΔtE(Uk; ek+1
w , ek+1

w )
1
2 E(Uk; ρk+1

w , ρk+1
w )

1
2

≤ εΔtE(Uk; ek+1
w , ek+1

w ) +
C

ε
Δt((Δt)2 + h2)

+CΔt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).

Next, Lemma 4.3 gives

|Rk
3 + Rk

4 | ≤ C(Δt)2(‖ek+1
w ‖ + ‖ρk+1

w ‖) + Δt‖ek+1
w ‖‖δtρku‖

≤ εΔt‖ek+1
w ‖2 +

C

ε
Δt((Δt)2 + h4)

(4.14)
≤ εΔtE(Uk; ek+1

w , ek+1
w ) + ε(Δt)3B(Uk; δte

k
u, δte

k
u)

+ εΔt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk) +
C

ε
Δt((Δt)2 + h2).

Integrating by parts discretely in time yields∣∣∣∣∣
m−1∑
k=0

Rk
5

∣∣∣∣∣ =

∣∣∣∣∣−Δt

m−1∑
k=0

(eku, δtρ
k
w) + (emu , ρmw ) − (e0

u, ρ
0
w)

∣∣∣∣∣
(4.15)

≤ ε max
k∈[0,m]

‖eku‖2 +
C

ε
h4.

Similarly,∣∣∣∣∣
m−1∑
k=0

Rk
6

∣∣∣∣∣ ≤
∣∣∣∣∣−(Δt)2

m−1∑
k=0

(δtw
k, δte

k
u)

∣∣∣∣∣ + (Δt)2

∣∣∣∣∣
m−1∑
k=0

(δtw
k, δtρ

k
u)

∣∣∣∣∣
≤ (Δt)2

∣∣∣∣∣
m−1∑
k=1

(
wk+1 − 2wk + wk−1

(Δt)2
, eku

)

(4.16)

− Δt(δtw
m−1, emu ) + Δt(δtw

0, e0
u)

∣∣∣∣∣ + Ch2Δt

≤ CΔt max
k∈[0,m]

‖eku‖ + Ch2Δt ≤ ε max
k∈[0,m]

‖eku‖2 +
C

ε
((Δt)2 + h4).

Finally, let us write

Rk
7 = (Δt)2(B(Uk; δtu

k, δte
k
u) − B(Uk; δtu

k, δtρ
k
u) + B(Uk; δte

k
u, δtρ

k
u))

= I + II + III.
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In view of the definition of B we have

I = (Δt)2λ

∫
Ω

γ(ν(uk))

Q(uk)
∇δtu

k · ∇δte
k
u

+ (Δt)2λ

∫
Ω

(
γ(ν(Uk))

Q(Uk)
− γ(ν(uk))

Q(uk)

)
∇δtu

k · ∇δte
k
u

+ (Δt)3E(Uk; δtu
k, δte

k
u) = (Δt)2λ(Gk,∇δte

k
u) + I2 + I3,

where we have written Gk := γ(ν(uk))
Q(uk)

∇δtu
k. We infer from (2.28) and (2.4) that

|I2| ≤ C(Δt)2
∫

Ω

|ν(uk) − ν(Uk)||∇δte
k
u|

≤ ε(Δt)3
∫

Ω

|∇δte
k
u|2

Q(Uk)
+

C

ε
Δt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

≤ ε(Δt)3E(Uk; δte
k
u, δte

k
u) +

C

ε
Δt

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).

Furthermore, (2.29) and (3.18) yield

|I3| ≤ ε(Δt)3E(Uk; δte
k
u, δte

k
u) +

C

ε
(Δt)3.

Observing that B(Uk; δtρ
k
u, δtρ

k
u) ≤ Ch2 we finally have

|II| ≤ (Δt)2B(Uk; δtu
k, δtu

k)
1
2B(Uk; δtρ

k
u, δtρ

k
u)

1
2 ≤ CΔt((Δt)2 + h2),

|III| ≤ (Δt)2B(Uk; δte
k
u, δte

k
u)

1
2B(Uk; δtρ

k
u, δtρ

k
u)

1
2

≤ ε(Δt)2B(Uk; δte
k
u, δte

k
u) +

C

ε
Δt((Δt)2 + h2).

Summing the above estimates, integrating the first term in I by parts in time, and
taking into account the estimate (which follows from (2.21) and (2.23))

‖∇eku‖L1 ≤
(∫

Ω

|∇eku|2
Q(Uk)

) 1
2
(∫

Ω

Q(Uk)

) 1
2

≤ C

(∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)

) 1
2

,

we derive ∣∣∣∣∣
m−1∑
k=0

Rk
7

∣∣∣∣∣ ≤ λ

∣∣∣∣∣−(Δt)2
m−1∑
k=0

(δtG
k,∇eku) + Δt(Gm,∇emu ) − Δt(G0,∇e0

u)

∣∣∣∣∣
+
C

ε
((Δt)2 + h2) + ε(Δt)2

m−1∑
k=0

B(Uk, δte
k
u, δte

k
u)

+
C

ε
Δt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk)(4.17)

≤ ε

∫
Ω

|ν(um) − ν(Um)|2Q(Um) + ε(Δt)2
m−1∑
k=0

B(Uk, δte
k
u, δte

k
u)

+
C

ε
((Δt)2 + h2) +

C

ε
Δt

m−1∑
k=0

∫
Ω

|ν(uk) − ν(Uk)|2Q(Uk).
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Collecting (4.12)–(4.17) and recalling Lemma 2.8 finally yields

∣∣∣∣∣∣
m−1∑
k=0

7∑
j=1

Rk
j

∣∣∣∣∣∣ ≤ εΔt
m−1∑
k=0

E(Uk; ek+1
w , ek+1

w )

+ ε(Δt)2
m−1∑
k=0

B0(U
k; δte

k
u, δte

k
u) + ε max

k∈[0,N ]
‖eku‖2

(4.18)

+ ε(Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u) +

C

ε
((Δt)2 + h2)

+CΔt

m∑
k=0

Dk + εDm.

4.4. Completion of the proof of the error bound. We are now in position
to complete the proof of the error estimate. Starting from the relation

∑m−1
k=0 Lk =∑m−1

k=0

∑7
j=1 R

k
j and using (4.9) together with (4.18) and Lemma 4.4 we deduce

(1 − ε)Dm + (Δt)2
(
λ− γ̄

γmin
− ε− CΔt

)m−1∑
k=0

B0(U
k; δte

k
u, δte

k
u)

+ (1 − Cε)Δt

m−1∑
k=0

E(Uk; ek+1
w , ek+1

w ) + (1 − Cε)(Δt)3
m−1∑
k=0

E(Uk; δte
k
u, δte

k
u)

≤ D0 +
C

ε
((Δt)2 + h2) +

C

ε
Δt

m∑
k=0

Dk.

It follows from (2.7) that D0 =
∫
Ω
(γ(ν(U0))−γ(ν(u0))−〈γ′(ν(u0)), (ν(U0)−ν(u0))〉)Q(U0)

so that by Taylor expansion and (2.28) D0 ≤ Ch2. After choosing ε and Δt sufficiently
small we obtain

Dm +
Δt

2

m∑
k=1

E(Uk, ek+1
w , ek+1

w ) + c0(Δt)2
m−1∑
k=0

B(Uk; δte
k
u, δte

k
u)

≤ C((Δt)2 + h2) + CΔt

m−1∑
k=0

Dk.

Gronwall’s lemma together with Lemma 2.8 implies that

max
m∈[0,N ]

∫
Ω

|ν(um) − ν(Um)|2Q(Um) + Δt

N∑
k=1

E(Uk−1, ekw, e
k
w)

+ (Δt)2
N−1∑
k=0

B(Uk; δte
k
u, δte

k
u) ≤ C((Δt)2 + h2)

and the remainder of the proof of Theorem 4.1 now follows from Lemmas 4.3 and 4.4.
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5. Numerical results.

5.1. The algebraic problem. Let {χj} denote the usual nodal basis functions
for Sh. Set

Mi,j = (χi, χj), Em
i,j = E(Um;χi, χj), Bm

i,j = B(Um;χi, χj)

and

Fm
j = −A(Um, χj) + B(Um;Um, χj).

It follows that the nodal values Um+1, Wm+1 solve the linear algebraic system

1

Δt
MUm+1 + EmWm+1 =

1

Δt
MUm,

BmUm+1 −MWm+1 = Fm.

Note that the structure of this system is of the same form as that arising in discretiza-
tions of the Cahn–Hilliard equation. Eliminating Wm+1 by inverting the mass matrix
in the second equation leads to the “fourth order” system

1

Δt
MUm+1 + EmM−1BmUm+1 =

1

Δt
MUm + EmM−1Fm.(5.1)

In our practical computations we have used mass lumping, so that M becomes a
diagonal matrix. Although the system is unsymmetric, both the biconjugate gradient
(BICG) and conjugate gradient (CG) methods were used to solve the linear equations.
Remarkably, it was discovered that CG converged.

5.2. Convergence tests. We measured the actual error in different norms for
several quantities for test problems, for which we know the continuous solutions. For
this we have to extend our method to include right-hand sides f and g as indicated
in (1.5). The tables contain the errors for the graph u = u(x, t),

E∞,2,u = max
m∈[0,N ]

‖um − Um‖,

E∞,2,ν = max
m∈[0,N ]

(∫
Ω

|ν(um) − ν(Um)|2Q(Um)

) 1
2

,

and for the curvature w = w(x, t),

E2,2,w =

(
Δt

N∑
m=0

‖wm −Wm‖2

) 1
2

,

E2,E,∇w =

(
Δt

M−1∑
m=0

E(Um;wm −Wm, wm −Wm)

) 1
2

.

These are the errors which were estimated in Theorem 4.1. Additionally we provide
the errors

E∞,∞,u = max
m∈[0,N ]

‖um − Um‖L∞ , E∞,2,∇u = max
m∈[0,N ]

‖∇um −∇Um‖.
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Table 5.1

Errors for the isotropic test problem with Δt = 0.1h.

h E∞,2,u eoc E∞,2,ν eoc E2,2,w eoc E2,E,∇w eoc
1.0 8.495 - 0.4538 - 0.2264 - 5.534 -
0.7368 3.299 3.10 0.1702 3.21 0.6294 −3.35 2.965 2.04
0.4203 0.6255 2.96 0.06580 1.69 0.2343 1.76 1.097 1.77
0.2219 0.1564 2.17 0.03241 1.11 0.06291 2.06 0.4664 1.34
0.1137 0.04360 1.91 0.01622 1.04 0.01597 2.05 0.2234 1.10
0.05754 0.01306 1.77 0.008113 1.02 0.003942 2.05 0.1109 1.03

We also measure the error

E2,2,∇w =

(
Δt

M−1∑
m=0

∫
Ω

|∇wm −∇Wm|2
Q(Um)

) 1
2

,

which is bounded from above by E2,E,∇w. The error in the normal velocity is given by

E2,2,V =

(
Δt

N∑
m=1

∫
Ω

(V (um) − V (Um))2Q(Um)

) 1
2

,

where

V (um) = −ut(·, tm)

Q(um)
, V (Um) = −Um − Um−1

ΔtQ(Um)
.

Between two spatial discretization levels with grid sizes h1 and h2 we compute the
experimental order of convergence

eoc(h1, h2) = log
E(h1)

E(h2)

(
log

h1

h2

)−1

for the errors E(h1) and E(h2) for each of the error norms.
For isotropic surface diffusion we used the function

u(x, t) =
1

2
cos(t)

(
1 + |x|2 − 3

4
|x|4 +

1

6
|x|6

)

as continuous solution on the domain Ω = {x ∈ R
2 | |x| < 1} and on the time interval

[0, T ] = [0, 1]. We calculated the right-hand side g from the equation

g = V − ΔΓHγ ,

and used this function as a right-hand side in our algorithm to compute Um and Wm.
We have chosen λ = 1. In Tables 5.1 and 5.2 we show the results for the time step size
Δt = 0.1h and Tables 5.3 and 5.4 contain the results for Δt = h2. The results confirm
the theoretical estimates from Theorem 4.1. Obviously the errors E∞,2,ν and E∞,2,∇u

as well as the errors E2,E,∇w and E2,2,∇w exhibit the same orders of convergence.
The anisotropic case was tested, see Tables 5.5 and 5.6, with the exact solution

u(x, t) =
√

1 − 4t− 4x2
1 − x2

2
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Table 5.2

Errors for the isotropic test problem with Δt = 0.1h.

h E∞,∞,u eoc E2,2,V eoc E∞,2,∇u eoc E2,2,∇w eoc
1.0 5.027 - 9.113 - 0.4676 - 5.529 -
0.7368 1.848 3.28 3.548 3.09 0.1767 3.19 2.952 2.06
0.4203 0.3365 3.03 0.6565 3.01 0.06754 1.71 1.090 1.78
0.2219 0.07905 2.27 0.2053 1.82 0.03305 1.12 0.4636 1.34
0.1137 0.01990 2.06 0.1093 0.94 0.01654 1.04 0.2221 1.10
0.05754 0.004986 2.03 0.07361 0.58 0.008272 1.02 0.1102 1.03

Table 5.3

Absolute errors for the isotropic test problem with Δt = h2.

h E∞,2,u eoc E∞,2,ν eoc E2,2,w eoc E2,E,∇w eoc
1. 1.523 - 0.5929 - 0.1119 - 3.135 -
0.7368 0.5954 3.08 0.1827 3.85 0.4998 −4.90 2.203 1.16
0.4203 0.5108 0.27 0.06818 1.76 0.1906 1.72 0.9358 1.53
0.2219 0.1661 1.76 0.03228 1.17 0.06028 1.80 0.4549 1.13
0.1137 0.04476 1.96 0.01622 1.03 0.01591 1.99 0.2234 1.06
0.05754 0.01146 2.00 0.008113 1.02 0.004031 2.02 0.1112 1.02

Table 5.4

Absolute errors for the isotropic test problem with Δt = h2.

h E∞,∞,u eoc E2,2,V eoc E∞,2,∇u eoc E2,2,∇w eoc
1. 1.003 - 0.9711 - 0.5960 - 3.116 -
0.7368 0.3781 3.19 0.7349 0.91 0.1854 3.82 2.189 1.16
0.4203 0.2202 0.96 0.6887 0.12 0.06911 1.76 0.9296 1.53
0.2219 0.07354 1.72 0.2628 1.51 0.03292 1.16 0.4522 1.13
0.1137 0.01989 1.96 0.1163 1.22 0.01654 1.03 0.2221 1.06
0.05754 0.005087 2.00 0.05621 1.07 0.008271 1.02 0.1105 1.03

Table 5.5

Absolute errors for the anisotropic test problem with Δt = h2.

h E∞,2,u eoc E∞,2,ν eoc E2,2,w eoc E2,E,∇w eoc
0.1250 0.1475e-1 - 0.1354e-1 - 0.1409e-1 - 0.1207e-3 -
0.7138e-1 0.4999e-2 1.93 0.8346e-2 0.86 0.3483e-2 2.50 0.5734e-4 1.33
0.3807e-1 0.1458e-2 1.96 0.4399e-2 1.02 0.8862e-3 2.18 0.1997e-4 1.68
0.1964e-1 0.3937e-3 1.98 0.2216e-2 1.04 0.2221e-3 2.09 0.6971e-5 1.59
0.9969e-2 0.1032e-3 1.98 0.1110e-2 1.02 0.5553e-4 2.05 0.3079e-5 1.21

Table 5.6

Absolute errors for the anisotropic test problem with Δt = h2.

h E∞,∞,u eoc E2,2,V eoc E∞,2,∇u eoc E2,2,∇w eoc
0.1250 0.8037e-1 - 0.7644e-1 - 0.1547e-1 - 0.1200e-3 -
0.7138e-1 0.2658e-1 1.98 0.4285e-1 1.03 0.9390e-2 0.89 0.5710e-4 1.33
0.3807e-1 0.7753e-2 1.96 0.2293e-1 0.99 0.4894e-2 1.04 0.1988e-4 1.68
0.1964e-1 0.2093e-2 1.98 0.1182e-1 1.00 0.2453e-2 1.04 0.6921e-5 1.59
0.9969e-2 0.5481e-3 1.98 0.5997e-2 1.00 0.1227e-2 1.02 0.3080e-5 1.22

on the domain Ω = {x ∈ R
2 | |x| < 0.125} and for t ∈ [0, 0.125]. Domain and

time interval have to be relatively small in order to remain in the setting of a graph.
As in the isotropic case we have used a right-hand side g, and since u does not
satisfy the natural boundary condition, we have extended the concept to include the
inhomogeneous Neumann boundary condition 〈γ′(∇u,−1), (ν∂Ω, 0)〉 = c for a given
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Fig. 5.1. Initial function which leads to loss of the graph property after short time and solution
becoming vertical (cut along the x1-x3 plane of symmetry).
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Fig. 5.2. Lipschitz-norm of the discrete solution (vertical axis) plotted as a function of time
t ∈ [0, 0.0005] for the initial function from (5.1) for different spatial discretization levels.

function c on ∂Ω. As anisotropy we have used

γ(p) =
√

0.25p2
1 + p2

2 + p2
3

and the stabilizing parameter was λ = 1.
We add an example of a surface which moves under isotropic surface diffusion and

which loses its graph property in finite time. Nevertheless the discrete solution exists
for all times. In Figure 5.1 two steps of the evolution are shown. In Figure 5.2 the
maxima of the moduli of the gradients of the discrete solution is plotted as a function
of time. The computational domain is Ω = (−1, 1)2 and the time interval is [0, 0.0005].
The graph of the solution becomes vertical after a short time, but the discrete solution
continues to exist. We show the maximal gradient for the discretization levels 9, 10,
11, and 12. Observe that the number 1/h is 8.0, 11.32, 16.0, and 22.63 for these levels
and by comparison with peaks in the graph of Figure 5.2 we see the suggestion of
“infinite” gradients.

5.3. Numerical experiments. We end this section with two illustrative com-
putations. First, we demonstrate the smoothing property of isotropic surface diffusion
by choosing a highly oscillatory initial function u0,

u0(x) = 1 + 0.1
(
sin(2(m + 1)πx1)

(5.2)
+ sin(2mπx1)(sin(2(m + 1)πx2) + sin(2mπx2))

)
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Fig. 5.3. Solution u for the initial data (5.2) at times 0.0, 3.5 × 10−6, and 6.3 × 10−6.

Fig. 5.4. Level lines of the solution from Figure 5.3.

with m = 4. The computational domain is the unit disk Ω = {x ∈ R
2 | |x| < 1},

and we have used natural boundary conditions. The grid has to be fine in order to
capture the frequency of the initial function. In order to show the rapid smoothing
of u0 we have chosen an extremely small time step proportional to h4. In Figure 5.3
we show the solution at the times 0.0, 7.0 × 10−6 and 1.4 × 10−5. Figure 5.4 shows
level lines of the solution for these time steps. The level lines are equally distributed
between the values 0.65 and 1.35 and are the same in all three cases.

Second, we computed an example for anisotropic surface diffusion with an ex-
tremely strong anisotropy. The anisotropy is chosen to be a regularized l1 norm,

γ(p) =

3∑
j=1

√
p2
j + ε2|p|2,(5.3)

where we have chosen ε = 10−3. Thus the Frank diagram is a smoothed octahedron
and the Wulff shape is a smoothed cube. The initial data were taken to depend on
three random numbers r1, r2, r3 ∈ (0, 1),

u0(x) =
1

4

(
sin(2πr1x1) +

1

4
sin(3πr2x2)

)
(0.1 sin(2πr3x1) + sin(5πr1x2))

(5.4)
× sin(2πr2x1x2).

We used Neumann boundary conditions and the right-hand side (for the curvature
equation) f = 1 − x2

1 − x2
2. The domain is given as Ω = (−1, 1) × (−1, 1), and the

triangulation contains 16641 vertices and 32768 triangles. We chose λ = 4. In Figure
5.5 we show the graph of the solution u in the direction of the x1-axis. Figure 5.6
shows the graph for the time steps 0, 50, and 200. The Wulff shape (a smooth cube)
appears in the solution as a consequence of the right-hand side f .
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Fig. 5.5. Anisotropic surface diffusion for the initial function (5.4) with anisotropy (5.3),
viewed from the x1-axis. Time steps 0, 50, 200.

Fig. 5.6. The solution from Figure 5.5 shown as graph.
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Abstract. We propose a new concept which allows us to apply any numerical method of weak
approximation to a very broad class of stochastic differential equations (SDEs) with nonglobally
Lipschitz coefficients. Following this concept, we discard the approximate trajectories which leave
a sufficiently large sphere. We prove that accuracy of any method of weak order p is estimated by
ε + O(hp), where ε can be made arbitrarily small with increasing radius of the sphere. The results
obtained are supported by numerical experiments.
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1. Introduction. Stochastic differential equations (SDEs) with nonglobally Lip-
schitz coefficients possessing unique solutions make up a very important class in ap-
plications. For instance, Langevin-type equations and gradient systems with noise
belong to this class [10, 9, 1, 5, 11]. At the same time, most numerical methods
for SDEs are derived under the global Lipschitz condition [3, 7]. If this condition is
violated, the behavior of many standard numerical methods in the whole space can
lead to incorrect conclusions (see, for instance, [9, 1, 5, 11, 4]). This situation is very
alarming since we are forced to refuse many effective methods and/or to resort to
some comparatively complicated and inefficient numerical procedures. In [6] (see also
Example 3.3 here), applying an explicit quasi-symplectic method of weak approxima-
tion to a Langevin equation with nonglobally Lipschitz coefficients for calculating an
ergodic limit, the authors found an explosive behavior of some approximate trajec-
tories. The explosions are observed outside of a comparatively large sphere after a
relatively large time and very rarely. Clearly, the exploding approximate trajectories
badly reproduce the actual behavior of the considered system. We have also found
that if these rare trajectories are discarded, then the explicit quasi-symplectic method
gives much better results than the implicit Euler method, which does not have any ex-
ploding trajectories. From the heuristic point of view, this is rather natural. Roughly
speaking, the value of an ergodic limit depends, on the whole, on the behavior of
trajectories in a bounded (though large) domain on a finite (though large) time in-
terval. Consequently, any method that is effective for systems with globally Lipschitz
coefficients has to work well for systems with nonglobally Lipschitz coefficients as well
if one rejects a small number of “bad” trajectories.

In this paper, we propose a new concept which allows us to apply any method of
weak approximation to a very broad class of SDEs with nonglobally Lipschitz coef-
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ficients. Roughly speaking, we require for SDEs from this class just to have regular
solutions on a time interval [t0, T ] and to have sufficiently smooth coefficients; i.e.,
the assumptions made (which are given in terms of Lyapunov functions in section 2)
usually hold for SDEs of applicable interest. (We note that convergence of the explicit
Euler method is proved under more restrictive assumptions in [1].) Following the con-
cept proposed here, we discard the approximate trajectories which leave a sufficiently
large sphere SR := {x : |x| < R}. The theoretical justification of the concept is given
in section 2. We prove that accuracy of any method of weak order p is estimated by
ε+O(hp), where ε can be made arbitrarily small with growing R, and |O(hp)| ≤ Khp

can be made arbitrarily small with decreasing h (of course, K depends on R). Thus,
we obtain that the violation of the global Lipschitz condition is not fatal for applying
any method of numerical integration. Since the Monte Carlo technique is used for
simulation of a mean Ef(X(T )), the error estimation ε + O(hp) should be increased
by the Monte Carlo error. It turns out that in practice the error given by ε is much
smaller than the joint numerical integration and Monte Carlo error. Furthermore, in
principle, due to the concept of rejecting “bad” trajectories, we can choose a suitable
method for solving a system of SDEs with nonglobally Lipschitz coefficients, taking
into account all the known methods of numerical integration [3, 7]. The application of
the concept is discussed in section 3, where some numerical experiments are presented.

An implication of the concept proposed here for the calculation of ergodic limits
will be considered in a separate publication.

2. Integration via paths in a bounded domain. Consider the system of Ito
SDEs

dX = a(t,X)dt +

q∑
l=1

σl(t,X)dwl(t), X(t0) = x,(2.1)

where X, a, σl are d-dimensional column-vectors and wl(t), l = 1, . . . , q, are indepen-
dent standard Wiener processes.

We suppose the coefficients of (2.1) to be sufficiently smooth functions in [t0, T ]×
Rd, and any solution X(t; t0, x) of (2.1) to be regular on [t0, T ]. We recall that a
process is called regular if it is defined for all t0 ≤ t ≤ T. Denote by C2 the class of
functions defined on [t0, T ]×Rd and twice continuously differentiable with respect to
x and once with respect to t. A sufficient condition of regularity (see [2]) consists of
the existence of a Lyapunov function V ∈ C2, V ≥ 0, which satisfies the inequality

LV (t, x) ≤ c0V (t, x) + c1, (t, x) ∈ [t0, T ] × Rd,(2.2)

and

VR := min
t0≤t≤T, |x|≥R

V (t, x), lim
R→∞

VR = ∞,(2.3)

where c0 and c1 are some constants and L is the following generating operator:

LV (t, x) =
∂V

∂t
(t, x) +

d∑
i=1

ai(t, x)
∂V

∂xi
(t, x) +

1

2

d∑
i,j=1

aij(t, x)
∂2V

∂xi∂xj
(t, x),(2.4)

aij :=

q∑
l=1

σi
lσ

j
l .
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Moreover, if (2.2) and (2.3) are fulfilled and if an initial distribution for x (x can be
random) is such that EV (t0, x) exists, then EV (t,X(t; t0, x)) exists for all t0 ≤ t ≤
T. For instance, if V has an m-polynomial growth at infinity, then there exist the
moments of order m for X. We note that it is not required that c0 be negative. For
definiteness, we consider c0 > 0 and c1 > 0.

Let SR := {x : |x| < R} be an open sphere in Rd, QR = [t0, T )×SR be a cylinder
in Rd+1, ΓR = Q̄R\QR, where Q̄R is the closure of QR. The set ΓR is a part of the
boundary of cylinder QR consisting of the upper base and the lateral surface. Let
τR be the first-passage time of the process (t,X(t; t0, x)), t0 ≤ t ≤ T, to ΓR. Clearly,
t0 ≤ τR ≤ T. We introduce the following events:

ΩR : = {ω : |X(s; t0, x)| < R, t0 ≤ s < T} = {ω : τR = T},(2.5)

ΛR : = {ω : ∃ s ∈ [t0, T ) such that |X(s; t0, x)| ≥ R} = {ω : τR < T}.

Let us obtain an upper bound for the probability

pR := P (τR < T ) = P (ΛR),(2.6)

assuming (2.2) and (2.3) (see [2]). Introduce the nonnegative function

U(t, x) = (c1 + 1)(T − t) + exp(c0(t0 − t))V (t, x),(2.7)

where V (t, x) is a function satisfying (2.2)–(2.3). We get

LU(t, x) = −(c1 + 1) − c0 exp(c0(t0 − t))V (t, x) + exp(c0(t0 − t))LV (t, x) ≤ −1.
(2.8)

Due to the Ito formula, we have

dU(t,X(t; t0, x)) = LU(t,X(t; t0, x))dt(2.9)

+ exp(c0(t0 − t))

d∑
i=1

∂V

∂xi
(t,X(t; t0, x))

q∑
l=1

σi
l(X(t; t0, x))dwl(t).

Hence

U(τR, X(τR; t0, x)) − U(t0, x) =

∫ τR

0

LUdt +

∫ τR

0

exp(c0(t0 − t))

d∑
i=1

∂V

∂xi

q∑
l=1

σi
l dwl(t).

(2.10)

The expectation of the second integral on the right-hand side of (2.10) is equal to zero
according to the martingale property. Therefore, due to (2.8), we get

EU(τR, X(τR; t0, x)) ≤ U(t0, x) = (c1 + 1)(T − t0) + V (t0, x).(2.11)

By Chebyshev’s inequality, we obtain from (2.11)

pR exp(c0(t0 − T )) min
t0≤t≤T, |x|≥R

V (t, x) ≤ pR min
t0≤t≤T, |x|≥R

U(t, x)(2.12)

≤ (c1 + 1)(T − t0) + V (t0, x),
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whence

pR ≤ exp(c0(T − t0))
(c1 + 1)(T − t0) + V (t0, x)

mint0≤t≤T, |x|≥R V (t, x)
,(2.13)

and therefore

lim
R→∞

pR = 0.

Proposition 2.1. Let (2.2) and (2.3) be fulfilled. Let f(x) be a function such
that

|f(x)| ≤ V (t, x), t0 ≤ t ≤ T, x ∈ Rd.(2.14)

Then for any x ∈ Rd and ε > 0 there exists R(x, ε) > 0 such that for any R > R(x, ε)

|Ef(X(T ; t0, x)) − E[f(X(T ; t0, x))χΩR
(ω)]| < ε.(2.15)

Proof. Clearly,

lim
R→∞

f(X(T ; t0, x))χΩR
(ω) = f(X(T ; t0, x)), a.s.

Now the conclusion of this proposition follows from the existence of EV (T,X(T ; t0, x))
and the Lebesgue theorem on majorized convergence.

The significance of this proposition consists of the capability to disregard the
trajectories running off too far. We are about to show that when systems under
consideration are numerically integrated, the approximating trajectories running off
too far can also be discarded. Due to this possibility, we are able, in principle,
to use any known method of numerical integration for calculating means. In this
respect we shall rest on the developed theory of weak approximation for SDEs with
globally Lipschitz coefficients [3, 7]. To this aim we introduce an auxiliary system with
globally Lipschitz coefficients, which coincides with the original system in a sphere
SR′ somewhat wider than SR: SR′ ⊃ SR, where R′ = R + r and r > 0 is a constant.

Let the coefficients ai, σi
l and the function f have continuous derivatives up

to some order. The requirement on smoothness depends on a particular numerical
method used; in general, the higher the order of the method, the more derivatives are
needed. We construct coefficients aiR, (σ

i
l)R and function fR so that in [t0, T ] × SR′

they coincide with ai, σi
l and f, respectively, and, in addition, they are bounded in

[t0, T ] × Rd together with their derivatives up to the same order. This can be done
in the following way. Introduce the function ϕ(z) of one variable z:

ϕ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z, −R′ ≤ z ≤ R′,

R′ +

∫ z

R′

dz′

1 + (z′ −R′)k
, z > R′,

−R′ −
∫ −R′

z

dz′

1 + (−R′ − z′)k
, z < −R′,

(2.16)

where k ≥ 2 is a natural number. Clearly, ϕ(z) is bounded on R1 together with
its derivatives up to order k. Let g(t, x1, . . . , xd) be a function with some continuous
derivatives defined in [t0, T ] × Rd. It is easily seen that

gR(t, x1, . . . , xd) := g(t, ϕ(x1), . . . , ϕ(xd))
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satisfies the above-mentioned conditions. Moreover, there exists a constant ρ > r
(which does not depend on R) such that for any x = (x1, . . . , xd) ∈ Rd the point
(ϕ(x1), . . . , ϕ(xd)) ∈ SR+ρ. Therefore

sup
x∈Rd

|fR(x)| ≤ max
|x|≤R+ρ

|f(x)| .(2.17)

Introduce the auxiliary system of SDEs

dXR = aR(XR)dt +

q∑
l=1

(σi
l)R(XR)dwl(t) .(2.18)

We emphasize that this system is used in our theoretical proofs only; it is not used in
simulation.

Proposition 2.2. Assume that V (t, x) satisfies (2.2), (2.3), and

mint0≤t≤T, |x|≥R+ρ V (t, x)

mint0≤t≤T, |x|≥R V (t, x)
≤ c,(2.19)

where c is a constant which is independent of R. Let f(x) be a function such that

lim
R→∞

max|x|≤R |f(x)|
mint0≤t≤T, |x|≥R V (t, x)

= 0.(2.20)

Then for any x ∈ Rd and ε > 0 there exists R(x, ε) > 0 such that for any R > R(x, ε)

|EfR(XR(T ; t0, x)) − Ef(X(T ; t0, x))| < ε.(2.21)

Proof. Since the solutions X(t; t0, x) and XR(t; t0, x) and also the functions
f(X(t; t0, x)) and fR(XR(t; t0, x)) coincide on the interval t ∈ [t0, τR], we have

E[fR(XR(T ; t0, x))χΩR
(ω)] = E[f(X(T ; t0, x))χΩR

(ω)].(2.22)

Hence

|EfR(XR(T ; t0, x)) − Ef(X(T ; t0, x))|(2.23)

≤ |E[fR(XR(T ; t0, x))χΛR
(ω)]| + |E[f(X(T ; t0, x))χΛR

(ω)]|.

Proposition 2.1 implies

lim
R→∞

|E[f(X(T ; t0, x))χΛR
(ω)]| = 0.(2.24)

Further, due to (2.17) and (2.13), we obtain

E|fR(XR(T ; t0, x))χτR<T (ω)| ≤ sup
x∈Rd

|fR(x)|pR ≤ max
|x|≤R+ρ

|f(x)|pR(2.25)

≤
max|x|≤R+ρ |f(x)|

mint0≤t≤T, |x|≥R+ρ V (t, x)
×

mint0≤t≤T, |x|≥R+ρ V (t, x)

mint0≤t≤T, |x|≥R V (t, x)

× exp(c0(T − t0))[(c1 + 1)(T − t0) + V (t0, x)].

Now, by using the conditions (2.19) and (2.20), we complete the proof.
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Our next step is to show that approximating paths obtained by a numerical
method applied to the system (2.1) belong to the bounded domain with a large prob-
ability and that averaging via these paths gives a good approximation for the mean
Ef(X(T ; t0, x)).

Let us start with some necessary auxiliary knowledge of the Markov chains gen-
erated by numerical methods. Consider the system of SDEs in the sense of Ito:

dY = b(t, Y )dt +

q∑
l=1

γl(t, Y )dwl(t).(2.26)

We assume that the functions b(t, y) and γl(t, y), (t, y) ∈ [t0, T ] × Rd, have bounded
derivatives with respect to t, y up to some order. In particular, the system (2.18)
satisfies this assumption. In most cases a method (both mean-square and weak) can
be defined by a one-step approximation of the form

Ȳ (t + h; t, y) = y + A(t, y, h; ξ), t0 ≤ t < t + h ≤ T,(2.27)

where ξ is a random vector having moments of a sufficiently high order and A is a
vector function of dimension d.

Partition the interval [t0, T ] into N equal parts with the step h = (T − t0)/N :
t0 < t1 < · · · < tN = T , tk+1− tk = h. According to (2.27), we construct the sequence

Ȳ0 = Y (t0) = y, Ȳk+1 = Ȳk + A(tk, Ȳk, h; ξk), k = 0, . . . , N − 1,(2.28)

where ξ0 is independent of Ȳ0, while ξk for k > 0 are independent of Ȳ0, . . . , Ȳk,
ξ0, . . . , ξk−1. The sequence Ȳk is a Markov chain. Its transition probability function
is defined by

P (t, y, s,D) = P (Ȳ (s; t, y) ∈ D), s ≥ t, t, s = t0, t0 + h, . . . , T,(2.29)

where Ȳ (s; t, y) is the process with discrete time starting at the moment t from y and
defined by (2.28). The generating operator of the Markov chain is defined by

LhU(t, y) =
1

h

∫
P (t, y, t + h, dz)[U(t + h, z) − U(t, y)](2.30)

=
1

h
[EU(t + h, Ȳ (t + h; t, y)) − U(t, y)].

Denote by τ̄R the first exit time of the process (tk, Ȳ (tk; t0, y)), k = 0, . . . , N, from
[t0, T ) × SR. Due to (2.30), we have (see [8])

EU(τ̄R, Ȳ (τ̄R; t0, y)) − U(t0, y) = E

κ−1∑
k=0

LhU(tk, Ȳ (tk; t0, y))h,(2.31)

where κ is defined by tκ = τ̄R.

In what follows we use the following assumption.

(A1) The one-step approximation (2.27) is at least of order two in the weak sense,
and the method defined by this approximation converges at least with order
one.
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By the definition of weak approximation

|EU(t + h, Ȳ (t + h; t, y)) − EU(t + h, Y (t + h; t, y))| ≤ Kh2,(2.32)

where K is a positive constant, provided that y belongs to a compact set. At the
same time (see [7])

EU(t + h, Y (t + h; t, y)) = U(t, y) + hLU(t, y) + O(h2),(2.33)

where |O(h2)| ≤ Kh2 and K is again independent of y belonging to a compact set.
Using (2.32) and (2.33), we get

|EU(t + h, Ȳ (t + h; t, y)) − U(t, y) − hLU(t, y)| ≤ Kh2,

and then we obtain from (2.30)

|LhU(t, y) − LU(t, y)| ≤ Kh.(2.34)

Let us proceed to the system (2.18). Apply a numerical method of weak order
p ≥ 1 to the systems (2.1) and (2.18). As a result, we obtain two Markov chains
X̄k and (X̄R)k. For the Markov chain (X̄R)k (but not for X̄k) we have for (t, x) ∈
[t0, T ] × SR (see [7])

|Ef(XR(T ; t0, x)) − Ef(X̄R(T ; t0, x))| ≤ Khp.(2.35)

Let LR be the generating operator for (2.18), and (LR)h for X̄R. According to (2.34),
we get

|(LR)hU(t, x) − LRU(t, x)| ≤ Kh, (t, x) ∈ [t0, T ] × SR.(2.36)

If (t, x) ∈ [t0, T ] × SR, then

LRU(t, x) = LU(t, x).(2.37)

Due to (2.8), we obtain that LU ≤ −1. It follows from this inequality together with
(2.36) and (2.37) that for all h small enough

(LR)hU(t, x) ≤ 0, (t, x) ∈ [t0, T ] × SR.(2.38)

In future we need the following assumption.
(A2) If (X̄R)i ∈ SR, i = 0, . . . , k, then X̄k = (X̄R)k, k ≤ N . (Of course, the

approximating trajectories are starting from the same point: X̄0 = (X̄R)0 =
x.)

The assumption is evidently true, for instance, for the explicit Euler method.
Moreover, for this method even X̄k+1 = (X̄R)k+1 if only X̄k = (X̄R)k ∈ SR, though
X̄k+1 may not belong to SR. The definition of ϕ (see (2.16)) ensures coincidence of
the coefficients of (2.1) and (2.18) in the wider domain SR+r. Due to this fact, (A2) is
fulfilled for h small enough if ξk are bounded. This is the most typical case for weak
methods, while, applying mean-square methods, we can use random variables such
that ξkh

1/2 are small if h is small (see [7]). Thus, the condition (A2) is fulfilled for
typical mean-square methods as well. Nevertheless, we should pay attention that a
method of the type (2.27) with initial data from [t0, T ]×SR may depend on behavior of
a system’s coefficients not only in [t0, T ]×SR+r but, generally speaking, in [t0, T ]×Rd.
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Let us take h ensuring (2.38). Denote by τ̄R the first exit time of the chain
(tk, X̄R(tk; t0, x)) from [t0, T ) × SR, i.e., X̄R(tk; t0, x) ∈ SR, k = 0, 1, . . . , κ − 1, and
either X̄R(tκ; t0, x) = X̄R(τ̄R; t0, x) /∈ SR, where τ̄R = tκ, or tκ = T. Applying (2.31)
to X̄R and using (2.38), we obtain

EU(τ̄R, X̄R(τ̄R; t0, x)) ≤ U(t0, x) = (c1 + 1)(T − t0) + V (t0, x).(2.39)

Introduce the events

Ω̃R : = {ω : |X̄R(tk; t0, x)| < R, k = 0, . . . , N − 1, and |X̄R(T ; t0, x)| ≤ R}(2.40)

= {ω : (τ̄R = T ) �
(
(τ̄R = T ) ∩

(
|X̄R(T ; t0, x)| > R

))
},

Λ̃R : = {ω : (∃ tk, k = 0, . . . , N − 1, such that

|X̄R(tk; t0, x)| ≥ R) ∪ (|X̄R(T ; t0, x)| > R)}
= {ω : (τ̄R < T ) ∪

(
(τ̄R = T ) ∩

(
|X̄R(T ; t0, x)| > R

))
}.

The event Λ̃R consists of leaving SR by X̄R at one of the moments t0, . . . , tN−1

or leaving S̄R at tN = T. We note that in the continuous case (see (2.5)) the set
(τR = T ) ∩ (|XR(T ; t0, x)| > R) is empty.

Let

p̄R = P (Λ̃R).

Analogously to (2.12) and (2.13), we apply Chebyshev’s inequality and obtain from
(2.39)

p̄R ≤ exp(c0(T − t0))
(c1 + 1)(T − t0) + V (t0, x)

mint0≤t≤T, |x|≥R V (t, x)
.(2.41)

Further, analogously to (2.25), we obtain

E|fR(X̄R(T ; t0, x))χΛ̃R
(ω)| ≤ max

|x|≤R+ρ
|f(x)|p̄R.(2.42)

We see from the two last inequalities that the expectation E|fR(X̄R(T ; t0, x))χΛ̃R
(ω)|

is as small as E|fR(XR(T ; t0, x))χΛ̃R
(ω)| (cf. (2.25)) if only h ensures (2.38).

Theorem 2.3. Consider any method satisfying (A1) which is weakly convergent
with order p for systems with sufficiently smooth and bounded derivatives up to some
order. Let the conditions of Propositions 2.1 and 2.2 and the assumption (A2) be
fulfilled. Then for any x ∈ Rd and ε > 0 there exists R(x, ε) > 0 such that for all
R ≥ R(x, ε) and sufficiently small h

|Ef(X(T ; t0, x)) − E[f(X̄(T ; t0, x))χΩ̃R
(ω)]| ≤ Khp + ε,(2.43)

where K > 0 depends on x and R.
Proof. It has been proved (see Proposition 2.2) that for any ε > 0

|Ef(X(T ; t0, x)) − EfR(XR(T ; t0, x))| ≤ ε

2
(2.44)

if R is sufficiently large.
Since the coefficients of system (2.18) and the function fR can be taken so that

they have bounded derivatives up to a sufficiently high order, the mentioned method
gives for sufficiently small h (see [7])

|EfR(XR(T ; t0, x)) − EfR(X̄R(T ; t0, x))| ≤ Khp.(2.45)
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Let us choose R(x, ε) so that for R ≥ R(x, ε) and sufficiently small h both inequality
(2.44) and inequality

E|fR(X̄R(T ; t0, x))χΛ̃R
(ω)| ≤ ε

2
(2.46)

(see (2.41) and (2.42)) are fulfilled.
Since the assumption (A2) holds, fR(x) = f(x) for x ∈ SR, and X̄R = X̄ for

ω ∈ Ω̃R, we get

EfR(X̄R(T ; t0, x)) = E[fR(X̄R(T ; t0, x))χΩ̃R
(ω)] + E[fR(X̄R(T ; t0, x))χΛ̃R

(ω)]

= E[f(X̄(T ; t0, x))χΩ̃R
(ω)] + E[fR(X̄R(T ; t0, x))χΛ̃R

(ω)].(2.47)

Inequality (2.43) follows from (2.44)–(2.47). Theorem 2.3 is proved.
Remark 2.1. If a method for a particular stochastic system converges, then K in

(2.43) is bounded for all R (and ε). However, as was discussed in the Introduction,
a method applied to SDEs with nonglobally Lipschitz coefficients can be divergent.
It is obvious that in this case K goes to infinity as R → ∞ (ε → 0). In practice
(see, e.g., our experiments and also a comment on the choice of R in section 3), for
a not too big R (and, consequently, not large K) the ε is negligibly small since the
divergence is usually due to rare exploding approximate trajectories which have to be
discarded. This concept of rejecting exploding trajectories is very practical; it allows
us, in particular, to guarantee the accuracy of numerical results obtained even by
“divergent” methods. We emphasize that the value of K depends on the choice of
a numerical method, as is usual in the global Lipschitz case. Thanks to the above
concept, we can exploit the whole arsenal of methods [3, 7] and choose an appropriate
scheme depending on the system we are solving.

Remark 2.2. It is possible to prove that the proposed concept is also applicable
in the case of the Talay–Tubaro extrapolation [12, 7]; i.e., for a sufficiently large R
and all sufficiently small h the error can be expanded in powers of h:

Ef(X(T ; t0, x)) − E[f(X̄(T ; t0, x))χΩ̃R
(ω)]

= ρ(R, h) + C0h
p + · · · + Cnh

p+n + O(hp+n+1) ,
(2.48)

where the constants C0, . . . , Cn are independent of h and ρ(R, h) → 0 as R → ∞
uniformly with respect to h.

Due to Remark 2.1, ρ is negligibly small for a fixed R in comparison with the term
O(hp+n+1) (for realistic, not too small h, of course). Therefore it can be supposed
that |ρ| ≤ Chp+n+1, where C is a positive constant. Then we can use (2.48) in
practice to estimate the global error as well as to improve the accuracy of the method
[12, 7]. For example, simulating u = Ef(X(T ; t0, x)) twice by a first-order scheme
(i.e., p = 1) with two different time steps h1 = h, h2 = αh, α > 0, α �= 1, we obtain
ūh1 = E[f(X̄h1(T ; t0, x))χΩ̃R

(ω)] and ūh2 = E[f(X̄h2(T ; t0, x))χΩ̃R
(ω)], respectively.

We can expand (see (2.48) with p = 1, n = 0):

u = ūh1 + C0h1 + δ1 , u = ūh2 + C0h2 + δ2 ,

where |δi| ≤ Ch2, i = 1, 2. Hence C0 can be estimated as C0 � − ūh2−ūh1

h2−h1
, and we get

the improved value

ūimp = ūh1
h2

h2 − h1
− ūh2

h1

h2 − h1
, u = ūimp + δ,
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where |δ| ≤ Ch2.
Example 2.1. Consider the following system:

dP = −∇F (Q)dt− νPdt +

n∑
l=1

σldwl(t),(2.49)

dQ = Pdt,

where ν is a positive constant and σl, l = 1, . . . , n, are n-dimensional constant linearly
independent vectors. The authors of [5] prove exponential ergodicity of (2.49) assum-
ing that F ∈ C∞(Rn,R), F (q) ≥ 0 for all q ∈ Rn and that there exist an α > 0 and
0 < β < 1 such that

1

2
(∇F (q), q) ≥ βF (q) + ν2 β(2 − β)

8(1 − β)
|q|2 − α.(2.50)

The Lyapunov function

V (x) = V (p, q) =
1

2
|p|2 + F (q) +

ν

2
(p, q) +

ν2

4
|q|2 + 1(2.51)

≥ 1 +
1

8
|p|2 +

ν2

12
|q|2

is used to prove that for any m ≥ 1 there exist positive cm, dm such that

L[V (x)]m ≤ −cm[V (x)]m + dm.(2.52)

The exponential ergodicity means that for any function f with a polynomial growth
the following inequality holds:

∣∣∣∣Ef(X(t; 0, x)) −
∫

f(z)dμ(z)

∣∣∣∣ ≤ Ce−λt,(2.53)

where C > 0 and λ > 0 are some constants. In (2.51)–(2.53), x := (p, q), X := (P,Q),
and μ is an invariant measure for the Markov process defined by (2.49).

Resting on (2.52), it is not difficult to verify all the assumptions of Theorem 2.3
that concern the system under consideration. Due to (2.53), application of this theo-
rem to calculation of Ef(X(t; 0, x)) gives an approximate value of the ergodic limit.
In [6] (see also Example 3.3 below) a numerical example connected with calculation
of an ergodic limit is given.

3. Numerical experiments. Theorem 2.3 has the following practical implica-
tion for evaluating expectations of functionals of solutions to SDEs. We pick up a
numerical method suitable for a stochastic system under consideration. We choose
R > 0 such that the solution of the stochastic system equipped with some initial data
leaves the sphere SR of the radius R during a fixed time interval with a relatively
small probability. In a lot of cases interesting from the applicable point of view (e.g.,
Langevin-type equations and gradient systems with noise) it is usually not difficult
to guess this value of R by physical reasoning. Anyway, we can test the choice of
R in practice as explained below. For the chosen R, we select a time step h for the
numerical method, which ensures an accuracy appropriate for our purposes. As usual,
the choice of time step h∗ is appropriate if, by further decrease of the time step, we
obtain a result which is close enough to the one obtained with h∗. The expectation of



SDEs WITH NONGLOBALLY LIPSCHITZ COEFFICIENTS 1149

a functional which we are aiming to find is evaluated according to the Monte Carlo
technique by running M independent realizations of the numerical solution to the
considered system. According to the concept proposed in this paper, the value of the
functional corresponding to sample trajectories that left the sphere SR is set to be
zero when counted to the expectation. Finally, we say that the choice of R is appro-
priate if its increase does not essentially affect the result. We also note that there
is Monte Carlo error in this procedure, which is controlled in the standard way by
choosing an appropriate M. In practice, the procedure can be modified by assigning a
certain value (not zero as we do here) for the trajectories which leave the sphere SR.
This value can be chosen/adjusted in response to experimental results or by physical
reasoning.

As we will see in the numerical experiments presented below, the numerical inte-
gration and Monte Carlo errors affect accuracy of simulation much more than error
due to canceling “bad” trajectories (ε in (2.43)), which is usually negligibly small.

Example 3.1. Consider the stochastic differential equation

dX = −X3dt + σdw(t), X(0) = X0.(3.1)

It is demonstrated in [5] (see also [9, 11]) that the explicit Euler method for (3.1),

Xk+1 = Xk −X3
kh + σΔkw, Δkw := w(tk+1) − w(tk),(3.2)

can explode.
For test purposes, we evaluate the functional

F =
1

2
EX2(T ) + E

∫ T

0

X4(t)dt.(3.3)

It can be shown that

F =
1

2
σ2T.

To simulate this functional, we introduce the additional equation

dZ = X4(t)dt, Z(0) = 0.(3.4)

Then

F = E

(
1

2
X2(T ) + Z(T )

)
.(3.5)

The solution of (3.4) is approximated as

Zk+1 = Zk + X4
kh.(3.6)

By taking V (x, z) = x6 + z2, it is not difficult to check that the conditions of
Propositions 2.1 and 2.2 are satisfied for the system (3.1), (3.4). Also, the condition
(A2) holds for the explicit Euler method (3.2). Then Theorem 2.3 is applicable here;
i.e., we can evaluate F from (3.3) by using approximate trajectories (X̄(t), Z̄(t)),
0 ≤ t ≤ T, which belong to the ball {(x, z) : x2 + z2 < R2}. In fact, in the case
of functionals like that in (3.3) it is enough to control the paths X̄(t) only; i.e., the
following estimate takes place (cf. (2.43)):∣∣∣∣E

(
1

2
X2(T ) + Z(T )

)
− E

(
1

2
X̄2(T ) + Z̄(T )

)
χΩ̃R

(ω)

∣∣∣∣ ≤ Kh + ε,(3.7)



1150 G. N. MILSTEIN AND M. V. TRETYAKOV

where Ω̃R is defined by τ̄R being the first exit time of (t, X̄(t)) from the rectangle
[0, T ) × (−R,R). This result is valid thanks to the fact that the right-hand sides of
(3.1), (3.4) do not depend on Z. The proof is almost a word-by-word repetition of the
proof of Theorem 2.3.

We also consider the weak Euler method:

Xk+1 = Xk −X3
kh + σξk

√
h,(3.8)

where ξk are i.i.d. (independently and identically distributed) random variables with
the law P (ξ = ±1) = 1/2.

Let us choose a time step h > 0 for (3.8) such that

|X0| ≤
1√
h

and h <
1

σ

(
1 − 2

3
√

3

)
.

Then one can directly show that |X1| ≤ 1√
h

and therefore |Xk| ≤ 1√
h

for all k. Thus,

trajectories of (3.8) do not explode, provided that the above conditions on the step h
hold. The authors do not exclude a possibility that methods using bounded random
variables (like the weak Euler method (3.8)) can weakly converge in some nonglobally
Lipschitz cases. In general this question concerning convergence is rather complicated
(see, e.g., the third example below and also [6]) and requires further investigation. We
should stress that convergence of methods does not undermine the concept proposed
in this paper. Indeed, suppose that a weak method converges but for a not very small
time step it may have exploding trajectories; then results obtained with this time
step should be disregarded unless this concept is applied. This is well illustrated in
our examples. Further, the concept is universal. It allows us to use any numerical
method in the nonglobally Lipschitz case straightaway for a very broad class of SDEs,
without any additional analysis at all.

In our experiments we simulate F from (3.5) as follows:

F̄ =
1

M

M∑
m=1

(
1

2

[
X̄(m)(T )

]2

+ Z̄(m)(T )

)
χΩ̃R

(ω) + ρmc,(3.9)

where M is the number of independent realizations X̄(m)(T ), Z̄(m)(T ) of X̄(T ), Z̄(T )
that are found due to a numerical method of our choice. The Monte Carlo error ρmc

has zero bias, and its variance equals

V ar(ρmc) =
V ar

((
1
2X̄

2(T ) + Z̄(T )
)
χΩ̃R

(ω)
)

M
;(3.10)

i.e., the simulated

F̂ :=
1

M

M∑
m=1

(
1

2

[
X̄(m)(T )

]2

+ Z̄(m)(T )

)
χΩ̃R

(ω)

belongs to the confidence interval

F̂ ∈ (EF̄ − c
√
V ar(ρmc), EF̄ + c

√
V ar(ρmc))(3.11)

with the fiducial probability, for example, 0.997 for c = 3 and 0.95 for c = 2. For
definiteness, we set c = 2 here.
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Table 1

Simulation of (3.1), (3.4) by the Euler methods (3.2), (3.6) and (3.8), (3.6) with various time
steps h. See the other parameters in the text. The exact value F = 5. The “±” reflects the Monte
Carlo error only; it does not reflect the error of the methods.

h
(3.2), (3.6)

F̄ Trajectories left (−R,R)
(3.8), (3.6)

F̄
0.25 6.640 ± 0.010 0.03% 5.962 ± 0.006
0.1 5.409 ± 0.007 0% 5.371 ± 0.007
0.02 5.069 ± 0.007 0% 5.073 ± 0.007
0.01 5.032 ± 0.007 0% 5.037 ± 0.007

In Table 1 some results of our numerical experiments are presented. We take
σ = 1, X0 = 0, M = 400000, T = 10, and R = 50. The “±” reflects the Monte Carlo
error only; it gives the confidence interval with c = 2 (see (3.11)). If our concept
were not applied in the case of the Euler method (3.2), (3.6) with h = 0.25, then
there would be an overflow in computer calculations. We also note in passing that
both Euler methods produce quite similar results. Of course, the Euler method (3.2)
is computationally more expensive than (3.8) due to the need to simulate Gaussian
random variables instead of very simple random variables for (3.8).

Example 3.2. As the second test model, we choose the equation

dX = −X exp(X2)dt + dw(t), X(0) = X0,(3.12)

and evaluate EX2(t). See also some experiments and discussion concerning (3.12) in
[5].

By taking V (x) = x4, it is easy to check that the conditions of Propositions 2.1
and 2.2 are satisfied for this equation. Therefore Theorem 2.3 is applicable again for
methods satisfying the condition (A2). Further, (3.12) is exponentially ergodic, and
the second moment evaluated with respect to the invariant measure is equal to 0.2539
up to 4 decimal points (d.p.).

We simulate (3.12) by the explicit Euler method

Xk+1 = Xk −Xk exp(X2
k)h + Δkw(3.13)

on the time interval [0, 100] with X0 = 0. In our numerical experiments we choose
R = 5 (we note that the force −x exp(x2) produces a very sharp “barrier”); the
number of independent realizations M = 400000, and as the result the Monte Carlo
error 2

√
V ar(ρmc) ≤ 0.001. Figure 1 gives the averaged trajectories of EX2(t) for

various time steps h. For h = 0.2, there are 356390 trajectories (i.e., 89%) that leave
the interval (−5, 5). Obviously, the obtained result cannot be considered reliable, and
it is not presented in Figure 1. For h = 0.1, we have 36676 trajectories (i.e., 9%)
that leave the interval (−5, 5); for h = 0.05, 130 trajectories (i.e., 0.03%); and for
h = 0.02, there are no trajectories out of 400000 that leave the interval (−5, 5). An
increase of R has almost no effect on the results. This indicates that our choice of
R is appropriate. We see from Figure 1 that for h = 0.05 and h = 0.02 we obtain a
quite good approximation of the ergodic limit. At the same time, we note that if our
concept were not applied in this experiment, then the average trajectories for h = 0.1
and h = 0.05 would blow up. In the case of h = 0.02 we have not observed exploding
trajectories, but this does not mean that if we continued the experiment further,
we would not observe any exploding trajectories that lead to blow-up of the average
trajectories. Further, we should note that the weak Euler method (cf. (3.8)) applied
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0.1

0.15

0.2

0.2539

0 20 40 60 80 t

EX (t)   2

h=0.1

h=0.05

h=0.02

Fig. 1. Result of simulations of (3.12) by the Euler method (3.13) with various time steps h.
We take R = 5; see the other parameters in the text.

to (3.12) does not explode even for h = 0.2. This can be explained by arguments
similar to those used in the first example.

Example 3.3. Consider the oscillator with cubic restoring force and additive noise

dQ = Pdt,(3.14)

dP =
(
Q−Q3

)
dt− νPdt + σdw(t),

where w(t) is a standard Wiener process and ν and σ are positive constants. This
system is exponentially ergodic, and the second moment EQ2 evaluated with respect
to the invariant measure is equal to 2.435 up to 3 d.p.

The system (3.14) belongs to the class of Langevin equations, for which quasi-
symplectic methods are the most effective [6] (see also [7]). We apply an explicit
quasi-symplectic method of weak order one to (3.14):

Pk+1 = (1 − νh)
(
Pk + h

(
Qk −Q3

k

)
+ h1/2σξk

)
,(3.15)

Qk+1 = Qk + h
(
Pk + h

(
Qk −Q3

k

))
,

where ξk are i.i.d. random variables with the law P (ξ = ±1) = 1/2.
The results of simulating EQ2(t) by this method are presented in Figure 2. We

take the parameters of (3.14) as follows: Q(0) = P (0) = 0, ν = 0.05, and σ = 1. For
realization of the proposed concept, we choose R = 50. The number of independent
realizations M used to produce the picture is equal to 400000, which ensures the
Monte Carlo error 2

√
V ar(ρmc) ≤ 0.008. For h = 0.2, there are 28 trajectories (i.e.,

0.007%) that leave the ball of radius 50. We see that, applying the proposed concept
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0
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1.5

2

2.435

0 20 40 60 80 t

EQ  (t)     2
h=0.2

h=0.1

Fig. 2. Result of simulations of (3.14) by the quasi-symplectic method (3.15) with various time
steps h. We take R = 50; see the other parameters in the text.

(i.e., not taking into account these 28 “bad” trajectories), we obtain a quite accurate
approximation of the ergodic limit. If one did not exploit the concept here, then the
results obtained with h = 0.2 could not be used, since the exploding trajectories lead to
numerical overflow in computing the average. For h = 0.1, there are no trajectories out
of 400000 that leave the ball of radius 50, but this does not exclude the possibility of
having exploding trajectories in another series of Monte Carlo runs. Such uncertainty
made it uncomfortable to use the results of such experiments before the concept
developed in this paper. This concept gives us a rigorous basis for making use of any
numerical method to solve nonlinear SDEs and for interpreting experiments in which
occurrence of exploding trajectories is not excluded. Some other experiments with
the model (3.14) are available in [6] and [5]. We also note that a further development
of the concept of rejecting exploding trajectories specifically for calculation of ergodic
limits will be addressed in a separate publication.
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IN PROJECTION METHODS FOR EIGENCOMPUTATION∗
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Abstract. We analyze the behavior of projection-type schemes, such as the Arnoldi and Lanczos
methods, for the approximation of a few eigenvalues and eigenvectors of a matrix A, when A cannot
be applied exactly but only with a possibly large perturbation. This occurs, for instance, in shift-
and-invert procedures or when dealing with large generalized eigenvalue problems. We theoretically
show that the accuracy with which A is applied at each iteration can be relaxed, as convergence to
specific eigenpairs takes place. We show that the size of the perturbation is allowed to be inversely
proportional to the current residual norm, in a way that also depends on the sensitivity of the matrix
A. This result provides a complete understanding of reported experimental evidence in the recent
literature. Moreover, we adapt our theoretical results to devise a practical relaxation criterion to
achieve convergence of the inexact procedure. Numerical experiments validate our analysis.
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1. Introduction. We are interested in the behavior of projection-type proce-
dures, such as the Arnoldi or Lanczos methods (see, e.g., [18, 2]), for the approxi-
mation of a few of the eigenvalues and corresponding eigenvectors in the eigenvalue
problem

Ax = λx, ‖x‖ = 1,(1.1)

where A is an n× n non-Hermitian matrix and ‖ · ‖ is the Euclidean norm.We focus
on the case in which A cannot be applied exactly, but only with a perturbation; that
is, at each iteration the operation y = Av is replaced by

y = Av + f,(1.2)

where f can change at each iteration and ‖f‖ can be monitored. In general, we
expect ‖f‖ to be much larger than machine precision, so that the standard techniques
of round-off error analysis are not appropriate. This is indeed the case when, for
instance, shift-and-invert procedures are used to find interior eigenvalues of the given
matrix, or when a generalized eigenvalue problem is considered. On large problems,
both these procedures require the (approximate) solution of a linear system before
applying the matrix A. Finally, inaccurate products occur when the matrix itself is an
operator that needs to be estimated each time it is applied. As an alternative to a fixed
perturbation tolerance, methods based on shift-and-invert power iterations have for a
long time focused on increasing the accuracy as convergence was taking place; see, e.g.,
[9, 27] and [2, section 11.2] and references therein; see also [29] for a recent analysis
of perturbed power iterations. On the other hand, in the context of projection-
type methods, more recently the case of decreasing accuracy has been considered
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[5, 21, 7, 15]. We notice that an analogous problem has received considerable attention
in the linear system setting; see, e.g., [4, 6, 32, 22, 25].

An approximate matrix-vector multiplication significantly perturbs the method,
but in a way that is apparently far less dramatic than the norm of the perturbation
would suggest. A large number of experiments in [5] showed that in many cases con-
vergence towards eigenpairs of A can be achieved despite the fact that ‖f‖ is allowed
to grow as the iteration progresses. In other words, it was shown in [5] that the ac-
curacy with which A is applied at each iteration can be relaxed as convergence takes
place. It was argued that the size of the perturbation can be related to the inverse
of the residual norm of the current eigenvalue approximation. However, these argu-
ments were not supported by theoretical justifications in [5]; the not always consistent
behavior of the methods under the analyzed perturbations did not allow the authors
to make conclusive statements as to the reliability of using variable accuracy. We aim
to fill this gap in this paper.

The aim of this paper is twofold. First, we provide a theoretical understanding
of the experimental evidence reported in [5], together with an analysis of the spectral
properties that may influence the inexact process. Then, we adapt our theoretical
results to devise a practical relaxation criterion to achieve convergence of the inexact
procedure. Assuming that the unperturbed process converges, given an approximate
eigenpair (θ, z) obtained by the perturbed process, we will show that the deviation of
the computable residual from the true (unobservable) residual Az − θz can be kept
below a fixed small tolerance. This result will imply that the final attainable true
residual will also fall below the required tolerance.

Our analysis of variable accuracy in the matrix-vector products includes both
Ritz and harmonic Ritz approximations obtained with the Arnoldi method, as well
as Ritz spectral information computed by the Lanczos procedure. Although these
methods usually provide different approximation quantities and satisfy different opti-
mality properties (see, e.g., [2]), the analysis of their performance under matrix-vector
perturbations can be unified within the presented framework.

In this paper we restrict our analysis to the case when the considered method
is not restarted. In practice, projection-type schemes require possibly sophisticated
restarting procedures such as implicit restarting (see [28] and also [10]), to limit mem-
ory requirements while improving the current available approximation. The problem
of handling inexactness when some form of restarting is included will be the topic of
future research.

The key idea beyond the success of inexact processes is related to an intrinsic
property of Krylov subspace methods. Approximations are generated as Vmu, where
the m columns of the matrix Vm span the Krylov subspace of dimension m, and u is
the approximate solution of the projected problem. The perturbations f ’s affecting
the matrix-vector operation in (1.2) at each iteration may be collected as subsequent
columns of a “perturbation matrix” Fm. It turns out that the fundamental relation
associated with the inexact process formally differs from the unperturbed one by an
additional term Fmu. Ideally, if one is able to show that the components of u decrease
with m—that is, for instance, that the ith component of u goes towards zero as ρim for
some 0 < ρm < 1—then the norm of the corresponding columns of Fm is allowed to
grow, that is, larger perturbations are allowed in later iterations, while still yielding
a small perturbation term Fmu in norm. As a result, the perturbed fundamental
relation remains significantly close to the unperturbed one, and the approximation
process does not appear to be influenced. Therefore, given a problem to be solved
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by means of projection onto a Krylov subspace, the inexact matrix-vector product
in (1.2) can be conveniently exploited if one can show that the approximation vec-
tor u has a decreasing pattern. Intuitively, a decreasing pattern is associated with a
“marginal approximation” property, as the Krylov subspace grows. However, a rigor-
ous treatment of this step is far from obvious. As one may suspect, both the difficulty
in proving the existence of this pattern, as well as the constraints under which this
pattern does settle down, depend on the possible complexity and nonlinearity of the
problem. In the linear system setting, the decreasing pattern of u (in this case the
projected system approximate solution) was proved in [22, 32]. In this paper, we solve
this problem within eigenvalue computation. We will show that the matrix sensitivity
and the nonlinearity of the problem play a crucial role: the conditions under which
the pattern arises are different and significantly more stringent than in the linear sys-
tem setting. Moreover, the analysis becomes even more complex when more than one
eigenpair, or more generally an invariant subspace, is sought. Finally, deep results
from matrix perturbation theory need to be employed, making the approach and the
conclusions of this paper significantly different from what has been done in [22, 32]
for linear systems.

In section 2 we show that some of the eigenvectors of the representation matrix
of A in the approximation subspace have a decreasing pattern. This key result will
be used in section 3 to show that, in the inexact Arnoldi method, the matrix-vector
multiplication can be perturbed in a way that is inversely proportional to this pattern.
A practical relaxation strategy for the Arnoldi method is proposed in section 3.1 and
numerically tested in section 4. Our theoretical results are subsequently applied to
related methods that are currently used as alternatives to general Arnoldi and that
are based on the same key relations [2]. In particular, we will discuss the inexact har-
monic Ritz approximations in section 5, and the inexact Lanczos method in section 6.
Finally, section 7 summarizes our results and discusses some related issues.

The following notation will be used throughout. For a vector u, ū denotes its
conjugate, u∗ its conjugate transpose, and ‖u‖ its 2-norm. For a given k × k matrix
T , an eigenpair (λ, u) consists of λ ∈ C and u ∈ C

k such that Tu = λu, ‖u‖ = 1. An
eigentriple (λ, u, v) of T is such that Tu = λu and v∗T = λv∗ such that ‖u‖ = 1 and
v∗u = 1. Here u indicates a right eigenvector and v a left eigenvector. Moreover, Ik
denotes the identity matrix of size k (the subscript is omitted if clear from the context),
while ej is the jth column of the identity matrix of given dimension not smaller than j.
Finally, Range(X) is the space generated by the columns of X, while Λ(H) is the set of
eigenvalues of a square matrix H. Exact precision arithmetic is assumed throughout
the paper, and the term inexact refers to an inaccurate computation, whose error is
significantly larger than the finite precision arithmetic unit. All experiments were run
using MATLAB [11].

2. Bounds for the eigenvector components of the Arnoldi matrix.

2.1. Notation. Starting with a unit norm vector v1, the Arnoldi method builds
a basis Vm for the Krylov subspace Km(A, v1) = span{v1, Av1, . . . , A

m−1v1} satisfying
the following Arnoldi relation:

AVm = VmHm + vm+1hm+1,me∗m = Vm+1

[
Hm

hm+1,me∗m

]
, V ∗

m+1Vm+1 = I.(2.1)

Matrix Hm is an m×m upper Hessenberg matrix, and it is the orthogonal projection
and restriction of the matrix A onto the Krylov subspace. An eigenpair (θ, u) of Hm
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defines the Ritz value, θ, and Ritz vector, Vmu, which may be used to approximate
some of the eigenpairs of A [2, 18]. The accuracy in the approximation is usually
monitored by means of some relative quantity involving the residual rm = AVmu −
θVmu; we refer to [2] and its references for a detailed discussion on stopping criteria
for eigenvalue solvers. It is also important to recall that for ill-conditioned problems,
small residuals do not necessarily imply small errors in the approximate eigenpair [8];
additional care should be taken in this case.

Given the eigenpair (θ, u) and using (2.1), the residual rm and its norm can be
cheaply computed as

rm = vm+1hm+1,m e∗mu, ‖rm‖ = |hm+1,m| |e∗mu|.(2.2)

This relation emphasizes that for the residual to be small, at least one of hm+1,m or
|e∗mu| have to be small. In the former case, the Krylov subspace is close to an invariant
subspace. On the other hand, a small |e∗mu| indicates that the mth component of the
eigenvector u of Hm is small. No other knowledge of the eigenvector components
is commonly employed in the convergence test, although it can be experimentally
observed that the absolute values of the components of u tend to exhibit a decreasing
pattern if (θ, Vmu) is a good approximation to an eigenpair of A; see, e.g., [17, 19].

In Proposition 2.2 we will show that there exists a strong relation between the
magnitude of the (k + 1)st component of u and the residual of some Ritz pair after
k Arnoldi iterations, with k < m. This relation can be derived as a consequence
of a general approximation theorem for nonnormal matrices; cf., e.g., [30]. Below we
report the result with our notation. To this end, we introduce some definitions. Given
an orthogonal basis U for an invariant subspace of a matrix H, and given Y so that
[U, Y ] is unitary, Range(U) is called a simple invariant subspace of H if the spectra
of U∗HU and of Y ∗HY do not intersect; cf. [30, Definition V.1.2]. Moreover, for two
square matrices L1, L2 with disjoint spectra, the function sep(L1, L2) is defined as
(see, e.g., [30, p. 231])

sep(L1, L2) := inf
‖P‖=1

‖PL1 − L2P‖.

The definition holds for ‖ · ‖ being any consistent family of norms; in the following
we shall use the 2-norm for vectors and the induced 2-norm for matrices. If L1 is a
scalar, then sep(L1, L2) = σmin(L2 − L1I). An analogous relation holds whenever L2

is a scalar.
Theorem 2.1 (see [30, Theorem V.2.1, p. 230]). Let X = [U, Y ] be a unitary

matrix and let

X ∗HmX =

[
L1 K
G L2

]
.

Set γ = ‖G‖, η = ‖K‖. Assume that L1 and L2 have distinct spectra, so that
δ := sep(L1, L2) > 0. Then if γη/δ2 < 1

4 , there is a unique matrix P satisfying

‖P‖ < 2γ
δ such that the columns of Ũ = (U +Y P )(I +P ∗P )−

1
2 form an orthonormal

basis of a simple right invariant subspace of Hm. The representation of the matrix
Hm with respect to Ũ is given by L̃1 = (I + P ∗P )

1
2 (L1 + KP )(I + P ∗P )−

1
2 .

2.2. Spectral properties of the Arnoldi matrix. We first use the result of
Theorem 2.1 in the case of the approximation of one eigenpair, and then generalize it
to the approximation of an invariant subspace.
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Consider the principal submatrix of Hm of size k, Hk, i.e.,

Hm =

[
Hk H�

hk+1,ke1e
∗
k ∗

]
, Hk ∈ C

k×k,(2.3)

and let u(k) be an eigenvector of Hk. Let Y be a matrix such that the matrix

X =

[[
u(k)

0

]
, Y

]
∈ C

m×m

is unitary, where here and in the following, 0 pads with zeros the bottom part of a
vector with a total of m components. Then

Hm := Y ∗HmY ∈ C
(m−1)×(m−1)(2.4)

is the orthogonal projection and restriction of Hm onto the range of Y , the space

orthogonal to the space spanned by [u
(k)

0 ].

Proposition 2.2. Let (θ(k), u(k)) be an eigenpair of Hk, rk = vk+1hk+1,ke
∗
ku

(k),
δm,k = σmin(Hm − θ(k)I) > 0 with Hm defined in (2.4), and s∗m = [(u(k))∗, 0∗]Hm −
θ(k)[(u(k))∗, 0∗]. If

‖rk‖ <
δ2
m,k

4‖sm‖ ,(2.5)

then there exists a unit norm eigenvector u = [u1

u2
] of Hm with u1 ∈ C

k such that

‖u2‖ ≤ τ√
1 + τ2

, with τ ∈ R, 0 ≤ τ < 2
‖rk‖
δm,k

.(2.6)

Moreover, if θ is the eigenvalue associated with u, we have

|θ − θ(k)| ≤ ‖sm‖τ.(2.7)

Proof. Let Y = [Y1

Y2
] be such that the matrix X = [[u

(k)

0 ], Y ] ∈ C
m×m is unitary.

Note that this implies Y ∗
1 u

(k) = 0 and Y2Y
∗
2 = I. Using (2.3) gives

X ∗HmX =

[
θ(k) K
G Hm

]
,

G = Y ∗
2 hk+1,ke1e

∗
ku

(k),
K = (u(k))∗ [Hk, H�]Y.

Since Y2 has orthonormal rows,

γ := ‖G‖ = ‖Y ∗
2 hk+1,ke1e

∗
ku

(k)‖ = |hk+1,ke
∗
ku

(k)| = ‖rk‖.(2.8)

Moreover, since [(u(k))∗, 0∗]Y = 0, ‖K‖ = ‖[(u(k))∗, 0∗]HmY ‖ = ‖s∗mY ‖ ≤ ‖sm‖.
Using Theorem 2.1, if γ‖sm‖

δ2
m,k

< 1
4 , i.e., if (2.5) holds, then there exists a vector

p ∈ C
m−1 satisfying

τ := ‖p‖ < 2
γ

δm,k

such that the unit norm vector

u =

[
u1

u2

]
=

1√
1 + ‖p‖2

([
u(k)

0

]
+

[
Y1

Y2

]
p

)
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is an eigenvector of Hm. To complete the proof, we notice that

‖u2‖ =
1√

1 + ‖p‖2
‖Y2p‖ ≤ 1√

1 + ‖p‖2
‖p‖.

The bound for |θ − θ(k)| follows from the representation of Hm with respect to u in
Theorem 2.1, that is, |θ − θ(k)| = ‖Kp‖ ≤ ‖K‖ ‖p‖ ≤ ‖sm‖ τ .

Proposition 2.2 shows that if the residual rk is sufficiently small, then there exists
an eigenvector u of Hm whose last m− k components can be bounded by a quantity
involving ‖rk‖, and thus they are also small. Each of the last m− k components of u
is bounded by τ/

√
1 + τ2, and hence

|e∗ju| ≤
τ√

1 + τ2
≤ τ ≤ 2

‖rk‖
δm,k

, j = k + 1, . . . ,m.(2.9)

The bound (2.9) is most interesting for j = k+ 1. Indeed, Proposition 2.2 can be
applied to other principal submatrices of Hm, of size k1 larger than k. In this case,
and if a more accurate Ritz pair is computed with Hk1 , the last m−k1 components of
the corresponding eigenvector are smaller than those for Hk. In practice, this implies
that for k sufficiently large, so that ‖rk‖ satisfies (2.5), the last m− k components of
u have an almost monotonically decreasing pattern.

It is remarkable that, in our setting, ‖rk‖ has a double role. On the one hand,
‖rk‖ = ‖G‖ (cf. (2.8)), which measures the accuracy of

(
θ(k),

[
u(k)

0

])
(2.10)

as an approximate eigenpair of Hm in connection with the general approximation
theorem. On the other hand,

rk = vk+1hk+1,ke
∗
ku

(k) = AVku
(k) − θ(k)Vku

(k)

is the residual of (θ(k), Vku
(k)) as approximate eigenpair of A. This double role is

what makes our eigenvector component analysis possible.
In Proposition 2.2, sm is the left residual vector of the approximate pair (2.10)

of Hm. For nonnormal problems, ‖sm‖ is bound not to be small, and in general the
estimate ‖sm‖ ≈ ‖A‖ can be used.

Remark 2.3. The function δm,k provides a condition number of the eigenvector
problem [30, p. 241], and it reflects the proximity of θ(k) to Hm, although it may be

much smaller than the distance between the spectrum of Hm and θ(k) for nonnormal
matrices [30, Example 2.4, p. 234]. We notice that if (2.10) is a good approximation
to the eigenpair (θ, u) of Hm, then δm,k is close to the norm of the reduced resolvent
of Hm. These comments will be used when we derive a practical relaxation criterion
for the matrix-vector product with A.

Remark 2.4. Proposition 2.2 states the existence of an eigenvector u of Hm sat-
isfying (2.6). On the other hand, we are interested in the characterization of the
components of a specific eigenvector u of Hm. To be able to correctly identify the
eigenvector determined by Proposition 2.2 as the analyzed vector u, we will need some
further hypotheses. In particular, we will require that after k iterations, θ(k) and u(k)

provide sufficiently good approximations to an eigenpair of Hm and of A. Unfor-
tunately this apparently restrictive condition is observed to be required in practice.
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In particular, eigenvector components do not exhibit a decreasing pattern until the
Ritz pair reaches its final, possibly superlinear, asymptotic convergence rate; see [3]
for a discussion on the occurrence of superlinear convergence rates.

We next generalize our result to the case of an invariant subspace.
Proposition 2.5. Let the columns of U (k) be an orthonormal basis for a sim-

ple invariant subspace of Hk of dimension 
, with representation matrix L(k) =
(U (k))∗HkU

(k). Let δm,k = sep(L(k), L2) > 0, Rk = vk+1hk+1,ke
∗
kU

(k), and Sm =
[(U (k))∗, O∗]Hm − L(k)[(U (k))∗, O∗], where O is the (m − k) × 
 zero matrix. If

‖Rk‖ <
δ2
k,m

4‖Sm‖ , then there exists a matrix U = [U1

U2
], U∗U = I, with U1 ∈ C

k×�

and whose columns span a simple invariant subspace of Hm, such that

‖U2‖ ≤ τ√
1 + τ2

, with τ ∈ R, 0 ≤ τ < 2
‖Rk‖
δk,m

.(2.11)

Proof. The proof follows the lines of that of Proposition 2.2.
The setting of Proposition 2.5 is most appropriate whenever the sought-after

eigenvalues form a cluster separated from the rest of the spectrum. Indeed, ‖Rk‖ is
required to be less than δ2

m,k/‖Sm‖, and δm,k may be very small if the whole cluster is

not sufficiently well captured by Range(U (k)). The result of Proposition 2.5 is particu-
larly helpful when dealing with close to defective eigenvalues, whose eigenvector bases
can be very ill-conditioned. The use of invariant subspaces considerably simplifies the
analysis [30].

We would also like to comment on the case when Hm, and thus Hk, is tridiagonal.
Whenever Hm is tridiagonal, e.g., for Hermitian problems and in the non-Hermitian
Lanczos process, the relation between the (k + 1)st component of an eigenvector of
Hm and the residual at step k can be derived directly [20]. However, in the context of
inexact matrix-vector multiplication, the resulting matrix Hm is not tridiagonal but
upper Hessenberg, even in the inexact Lanczos recurrence (cf. section 6); therefore
the more general result is required.

As an alternative to Proposition 2.2, van den Eshof [31] noticed that a related
result could be obtained as follows. Let (θ(k), u(k))) be as before, with associated
residual rk, and let û(k) = [u(k); 0]. If Hm = QTQ∗ is the Schur decomposition of
Hm, with Q = [u,Q2] unitary and

T =

[
θ a∗

0 T22

]
,

then we have (cf. [2, formula (7.107), p. 230])

sin θ(û(k), u) ≤ ‖rk‖
σmin(T22 − θ(k)I)

.

Therefore, using u = [u1;u2], we can write u = û(k)(û(k))∗u + (I − û(k)(û(k))∗)u so

that u2 = [0, I](I − û(k)(̂u(k))∗)u, from which we obtain

‖u2‖ ≤ ‖(I − û(k)(û(k))∗)u‖ = sin θ(û(k), u) ≤ ‖rk‖
σmin(T22 − θ(k)I)

.

This relation is very similar to that in (2.6); however, σmin(T22 − θ(k)I) is not the
same quantity as δm,k, as in the former the matrix T22 is completely specified by
the spectral properties of the target matrix Hm and does not take into account the
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approximate eigenvector. Nonetheless, it is not clear whether the bound in (2.6),
which also includes a condition on the residual, is sharper than the one above. Other
characterizations using perturbation theorems can be found, e.g., in [30, section V.2.2].
We would also like to stress that, as shown in Proposition 2.5, the result we have used
can be naturally generalized to the case of a simple invariant subspace.

3. Inexact Arnoldi method. When A is not applied exactly, at each iteration
the operation y = Av is replaced by (1.2). Letting Fm = [f1, . . . , fm] be the matrix
whose columns collect all perturbations, we obtain the following inexact (perturbed)
Arnoldi relation:

AVm + Fm = VmHm + hm+1,mvm+1e
∗
m.(3.1)

As in the exact case, matrix Vm has orthonormal columns; however, the space gener-
ated by its columns is no longer a Krylov subspace associated with A. Moreover, both
Vm and the upper Hessenberg matrix Hm are different from those one would obtain
with the exact process, and Fm measures the inexactness of the perturbed Arnoldi
relation. When looking for specific eigenpairs, large perturbations may be allowed
and still maintain the convergence of the eigenvalue residual to a low final accuracy.
Let (θ, u) be an eigenpair of Hm. We have

AVmu− θVmu = VmHmu− θVmu + hm+1,mvm+1e
∗
mu− Fmu

= hm+1,mvm+1e
∗
mu− Fmu.

We call the quantity AVmu − θVmu the true residual, whereas we call the vector
rm = hm+1,mvm+1e

∗
mu the computed residual, which can be monitored during the

recurrence. Note that the true residual cannot be computed when A is not applied
exactly. In particular, in the inexact case, the true and computed residuals differ by
the vector Fmu. We have

‖(AVmu− θVmu) − rm‖ = ‖Fmu‖ = ‖[f1, . . . , fm]u‖

=

∥∥∥∥∥
m∑

k=1

fk(e
∗
ku)

∥∥∥∥∥ ≤
m∑

k=1

‖fk‖ |e∗ku|.(3.2)

The distance between the true and the computed residuals is small when each addend
‖fk‖ |e∗ku|, k = 1, . . . ,m, in the last sum is small. This occurs when either of the two
terms ‖fk‖ and |e∗ku| is small, and not necessarily both, as long as the other term
remains bounded by some O(1), say, constant. Therefore, if |e∗ku| is small, ‖fk‖ is
allowed to be large and still provide a small gap between true and computed residuals.
We next make this statement more precise.

Assume that a maximum of m iterations of inexact Arnoldi can be carried out,
and let (θ, Vmu) be the best Ritz approximation with Hm to the sought-after eigenpair
of A. Relaxation in the matrix-vector product at step k < m is possible if there exists
an eigenpair of Hk−1, denoted by (θ(k−1), u(k−1)), that is sufficiently close to the
eigenpair (θ, u) of Hm or to an eigenpair of A. More precisely, using the notation
introduced in Proposition 2.2, for relaxation to take place at step k, it must hold that

‖rk−1‖ <
δ2
m,k−1

4‖sm‖ ,(3.3)

∀θj ∈ Λ(Hm), θj 	= θ, |θ(k−1) − θj | > 2
‖sm‖ ‖rk−1‖

δm,k−1
.(3.4)
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Condition (3.4) ensures that the eigenpair (θ(k−1), u(k−1)) in Proposition 2.2 is indeed
a perturbation of the analyzed eigenpair (θ, u) of Hm; cf. Remark 2.4. This requires
that θ(k−1) be closer to θ than to other eigenvalues of Hm. This closeness is measured
in terms of the quantities ‖rk−1‖ and δm,k−1, associated with θ(k−1). If both (3.3)
and (3.4) hold, then (θ, u) is the only eigenpair of Hm such that (2.6) and (2.7) hold
at iteration k − 1. When

θ(k−1) ≈ θ,

[
u(k−1)

0

]
≈ u,

we can write

δm,k−1 ≤ min
θi∈Λ(Hm)

|θi − θ(k−1)| ≈ min
θj∈Λ(Hm)\{θ}

|θj − θ(k−1)|,

in which case (3.4) follows from (3.3). For simplicity, here and below we assume that
θ is a simple eigenvalue of Hm. A generalization of the result of Theorem 3.1 can be
obtained by using Proposition 2.5.

Theorem 3.1. Assume that m inexact Arnoldi iterations have been carried out,
and let (θ, u) be an eigenpair of Hm with θ simple Ritz value and ‖u‖ = 1. Given any
ε ∈ R, ε > 0, assume that for k = 1, . . . ,m,

‖fk‖ ≤

⎧⎪⎪⎨
⎪⎪⎩

δm,k−1

2m‖rk−1‖ε
if k > 1 and there exists (θ(k−1), u(k−1)) of Hk−1

satisfying (3.3) and (3.4),

1
mε otherwise.

(3.5)

Then

‖(AVmu− θVmu) − rm‖ ≤ ε.

Proof. If at step k−1 there exists an eigenpair (θ(k−1), u(k−1)) of Hk−1 satisfying
(3.3), (3.4), then θ is the only eigenvalue of Hm such that

|θ − θ(k−1)| ≤ 2
‖sm‖ ‖rk−1‖

δm,k−1
.

Hence, Proposition 2.2 ensures that θ(k−1) is a perturbation of the considered eigen-
value θ of Hm.

Let K be the subset of {2, . . . ,m} such that for each k ∈ K there exists an
eigenpair (θ(k−1), u(k−1)) of Hk−1 satisfying (3.3) and (3.4). Then, using (3.2),

‖(AVmu− θVmu) − rm‖ = ‖Fmu‖ ≤
m∑

k=1

‖fk‖ |e∗ku|

=
∑
k∈K

‖fk‖ |e∗ku| +
∑

k �∈K,k≤m

‖fk‖ |e∗ku|

≤
∑
k∈K

δm,k−1

2m‖rk−1‖
ε |e∗ku| +

∑
k �∈K,k≤m

1

m
ε |e∗ku|

≤
∑
k∈K

δm,k−1

2m‖rk−1‖
ε 2

‖rk−1‖
δm,k−1

+
∑

k �∈K,k≤m

1

m
ε (see (2.9))

=
|K|
m

ε +
m− |K|

m
ε = ε.
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If the conditions of Theorem 3.1 hold, then the difference between the two resid-
uals is less than some fixed value ε. For a sufficiently good starting vector, the norm
of the computed residual tends to zero as m goes to infinity; therefore, ε also provides
a bound for the final attainable accuracy of the true residual. For this reason, it is
natural to relate the value of ε to the threshold in the eigenvalue problem stopping
criterion.

Note that δm,k−1 may dramatically influence the size of the perturbation. For
a sensitive matrix Hm, δm,k−1 may be very small and thus force high accuracy in
the matrix-vector product to maintain convergence. On the other hand, it is also
important to realize that δm,k−1 is related to the sensitivity of Hm and not of the
original matrix A. Since Hm is a projection of A onto a possibly much smaller space,
in general we expect Hm to be less sensitive to perturbations than A.

3.1. A practical relaxation strategy. The result of Theorem 3.1 suggests
that we could derive a practical criterion for relaxing the accuracy with which A
is applied at each iteration. Unfortunately, the criterion in (3.5) requires crucial
information that is not available at iteration k, namely δm,k−1 = σmin(Hm−θ(k−1)I).
This quantity emphasizes the sensitivity of the eigenproblem with Hm and cannot
cheaply be replaced. We therefore suggest a relaxation strategy that mimics (3.5),
while sacrificing some accuracy in δm,k−1.

Assume that a maximum of m inexact iterations are to be carried out. At the
first iteration, we require that ‖f1‖ be less than or equal to 1

mε. At iteration k > 1
we require that the perturbation satisfy

‖fk‖ ≤ min{α, δ(k−1)}
2m‖rk−1‖

ε, δ(k−1) := min
θj∈Λ(Hk−1)\{θ(k−1)}

|θ(k−1) − θj |,(3.6)

where α is an estimate of ‖A‖ and is included to make the condition invariant1

with respect to a scaling of A. The quantity δ(k−1) is related to the distance of
the Ritz value θ(k−1) from the rest of the spectrum of Hk−1. Clearly, δ(k−1) may
in general be very different from δm,k−1 (cf. also Remark 2.3). On the other hand,
δm,k−1 will not be too overestimated when θ(k−1) and its nearby eigenvalues have
stabilized to the corresponding eigenvalues of a matrix Hm that is not very sensitive to
perturbations.

We should add that, in our numerical experiments, we assume that conditions
(3.3) and (3.4) are always satisfied. We require only that the residual be less than
one; otherwise the unit value is used instead of the residual in the test.

In (3.6), ε is some fixed constant, naturally related to the final stopping tolerance
for the eigenvalue computation. In the numerical experiments of section 4, we require
that the final residual be less than ε in norm. In general, ε may include some infor-
mation about the eigenproblem; one could, for instance, let ε depend on the current
approximation, that is, εk−1 = |θ(k−1)|ε, with ε fixed. This choice of εk−1 is associated
with the following stopping criterion for the eigenvalue solver,

‖rk−1‖
|θ(k−1)| ≤ ε,

which is commonly employed in practical implementations; see, e.g., Example 4.2.

1We thank Julien Langou, University of Tennessee, for pointing this out.
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Remark 3.2. The proposed dynamic perturbation criterion is tailored to the
sought-after invariant subspace of A. Assuming that convergence is achieved in the
unperturbed case, our analysis shows that specific Ritz pairs obtained by the inexact
procedure can still converge to the wanted eigenpairs of A, up to a certain toler-
ance. Other Ritz pairs may be significantly perturbed, if in the exact scheme they
approximate eigenpairs of A with a slower convergence rate. In Example 4.1 we re-
port an experiment where eigenvalues do converge at different rates and the inexact
method delivers significantly different results from the exact process (cf. Table 4.1).
Our theory formalizes a similar consideration stated in [22, section 11].

4. Numerical experiments. In this section we report on some numerical ex-
periments that support our theoretical results for the inexact Arnoldi method using
Ritz pairs.

Extensive computational experiments were carried out in [5], where the family of
relaxation criteria

‖fk‖ ≤ 10−α0

‖rk−1‖
ε(4.1)

was introduced, with α0 = 0, 1, 2, while ε = ‖A‖ε, with ε equal to the required final
residual accuracy. The authors reported the number of times the inexact procedure
successfully achieved the required accuracy in approximating the selected eigenpairs
of a wide range of matrices. They showed that in 42% of the tests the criterion (4.1)
was fulfilled for α0 = 0, up to 81% for α0 = 2. In the following we shall report
experiments for α0 = 0. We remark that our theory provides an understanding of the
role of the numerator 10−α0 , and it explains the reason why for α0 = 0 the effect of
the perturbation may be severely underestimated.

Example 4.1. We consider the 900 × 900 matrix stemming from the centered
finite difference discretization of the operator

Lu = −Δu + 100((x + y)u)x + 100((x + y)u)y

on the unit square, and we seek the eigenvalue with largest real part, λ ≈ 7.5127;
cf. Figure 4.1(left). In Figure 4.1(right) we report the convergence history for the
exact Arnoldi method for m = 130 (dash-dotted line), the inexact method with the
flexible accuracy criterion in (3.6) with α = 10 (solid line), and the flexible accuracy
criterion adopted by Bouras and Frayssé (dashed line); cf. (4.1). The two increasing
curves report the values of ‖fk‖ for the two inexact methods, with ε = 10−8. The
starting vector for the iterative process was taken to be the normalized vector of all
ones. Inexactness of A was simulated by adding a random perturbation vector fk,
whose norm was equal to the right-hand side of (3.5) and (4.1) (with α0 = 0), for our
criterion and for that of Bouras and Frayssé, respectively.

Both inexact approaches replicate the exact convergence curve until they reach
their final attainable accuracy. Note that the original Bouras and Frayssé criterion
does not allow the method to fall below the required final residual accuracy, while
this is achieved by the criterion in (3.6).

In Table 4.1 we report the last seven computed Ritz values after m = 100 itera-
tions, with the exact Arnoldi method and with the inexact method, when either the
new relaxation strategy or strategy (4.1) is employed. The first column reports the
corresponding eigenvalues of A. We notice that for the two inexact procedures most
Ritz values differ from those computed by the exact Arnoldi method, and only the
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Fig. 4.1. Example 4.1. Left: spectrum of A. Right: convergence curves of the exact method
(dash-dotted), inexact Arnoldi with (3.6) (solid), and inexact Arnoldi with (4.1) (dashed). The
increasing curves report the values of the perturbation norms, ‖fk‖, in (3.6) and (4.1) (labeled BF).

Table 4.1

Example 4.1. Ritz values of exact and inexact Arnoldi methods at iteration m = 100. Both
flexible strategies (3.6) and (4.1) are considered. The underlined digits are as accurate as those
obtained with the exact Arnoldi method.

Exact Arnoldi Flexible accuracy Flexible accuracy BF
eigenvalues Ritz values ||f100|| = 9.38 10−5 ‖f100‖ = 4.91 10−2

6.528963528 6.5012 + 0.7235i 6.5010 + 0.7208i 6.5012 + 0.7238i
6.553808631 6.5012 – 0.7235i 6.5010 – 0.7208i 6.5012 – 0.7238i
6.714551208 6.6933 + 0.3818i 6.6949 + 0.3793i 6.6929 + 0.3821i
6.825884813 6.6933 – 0.3818i 6.6949 – 0.3793i 6.6929 – 0.3821i
6.863220504 6.8832 + 0.1068i 6.8846 + 0.1070i 6.8828 + 0.1066i
7.122198478 6.8832 – 0.1068i 6.8846 – 0.1070i 6.8828 – 0.1066i
7.185702959 7.123532521 7.123544655 7.123521753
7.512696262 7.512695900 7.512695904 7.512695912

first 3–4 digits remain unaltered. This is not the case for the sought-after eigenvalue
λ ≈ 7.5126, for which the exact and inexact Ritz values coincide with several digits
of accuracy. We can thus confirm that the perturbation does affect the convergence
of Ritz values that do not converge with the same rate as those that guided the
perturbation magnitude; see Remark 3.2.

We next report the results obtained when looking for a group of eigenvalues,
namely the three largest eigenvalues of A, with both the exact and inexact methods.
We considered a starting vector with random entries normally distributed (MATLAB
function randn, with initial state random number generator), since the previously
chosen constant vector had small components onto the second largest eigenvalue.
In the table below we display the four largest Ritz values obtained after m = 150
iterations of the exact Arnoldi and inexact Arnoldi methods, with ε = 10−8.

Method θ4 θ3 θ2 θ1
Exact Arnoldi 6.856543090 7.12220153908 7.18570250215 7.51269626278988
Inexact Arnoldi 6.856516751 7.12220154236 7.18570250124 7.51269626278483

In the inexact process, the perturbation was monitored by using the Frobenius
norm of the residual matrix of the three largest Ritz values. The final perturbation
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norm was equal to ‖f150‖ = 2 · 10−4. We observe in the table that these three Ritz
values deviate from those of the exact process of at most O(10−9). On the other
hand, the fourth Ritz value matches only that of the exact Arnoldi process, to five
decimal digits. Therefore, the accuracy in the inexact recurrence is again lost for the
approximate eigenpairs that are not involved in the perturbation tolerance. We also
note that the largest eigenvalue has more accurate digits with respect to the exact
process than the other eigenvalues. In particular, it has almost full accuracy, in spite
of a 2 ·10−4 perturbation in norm. This phenomenon confirms the fact that for groups
of eigenvalues, it is the slowest one converging that drives the allowed perturbation.

Example 4.2. We next present a typical setting where the flexible accuracy in
the matrix-vector product can be fully appreciated. We consider the matrix sher-

man5 from the Matrix Market repository [12]. This is a non-Hermitian indefinite real
matrix of size n = 3312, and was also employed in [14] to analyze the performance
of Arnoldi-type methods. The spectrum of the matrix is reported in the left plot of
Figure 4.2. We approximate the (real) eigenvalue closest to zero, λ ≈ 4.6925 · 10−2,
by means of an inverted Arnoldi process. The generating vector v1 was the normalized
vector of all ones. At each inverted Arnoldi iteration, the operation y = A−1v should
be carried out. At each (outer) inexact iteration, a system with A, namely Ay = v,
is approximately solved with preconditioned GMRES with zero starting guess. The
MATLAB incomplete LU factorization with tol = 10−3 was used as right precondi-
tioner. The GMRES iteration terminated as soon as the system residual norm reached
a certain tolerance tol. The inner stopping criterion that we used to approximately
solve Ay = vk at step k is

‖vk −Ay‖ ≤ min{α, δ(k−1)}
2m‖rk−1‖/|θ(k−1)|ε, ε = 10−10, α = 400.

In the exact case, we assume that we cannot afford to solve with A exactly; therefore
we approximately solve the inner system with a fixed tolerance, tol = 10−10. A total
of m = 12 outer iterations was carried out. The results of our experiment are reported
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Fig. 4.2. Example 4.2. Left: spectrum of A. Right: convergence curves for inverted Arnoldi
(dash-dotted curve) and inexact inverted Arnoldi (solid curve). The right panel also reports the fixed
tolerance ε = 10−10 (dotted line).
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in the right plot of Figure 4.2, where the magnitude of the final inner residual at each
iteration is also plotted. The eigenvalue convergence curves cannot be distinguished
until the final accuracy is reached. Note that in the case of variable inner tolerance,
preconditioned GMRES took 22 iterations to solve the first inner system at the re-
quired accuracy, whereas only 5 iterations were needed at the 8th inverted Arnoldi
iteration, to reach a residual of the order of 10−2.

5. Harmonic Ritz approximation. It has been shown [13, 16, 24] that when
looking for interior eigenvalues of Hermitian as well as of non-Hermitian matrices,
harmonic Ritz values may be preferred to Ritz values. Harmonic Ritz pairs are pairs
(θ, Vmu), where θ and u are the eigenvalues and corresponding eigenvectors of the
generalized eigenvalue problem

(H∗
mHm + |hm+1,m|2eme∗m)u = θH∗

mu, ‖u‖ = 1,

or, equivalently, of the standard eigenvalue problem

(Hm + |hm+1,m|2(H∗
m)−1eme∗m)u = θu, ‖u‖ = 1.(5.1)

In the following, we let

H̃m = Hm + |hm+1,m|2(H∗
m)−1eme∗m.(5.2)

It was observed in [14] that a better choice as approximation to eigenpairs of A is
the pair (ρ, Vmu), where ρ is the Rayleigh quotient of u, that is, ρ = u∗Hmu. Using
(5.1), for the associated residual we have

AVmu− ρVmu = VmHmu + hm+1,mvm+1e
∗
mu− ρVmu

= Vm+1

(
Hmu− ρu
hm+1,me∗mu

)
.(5.3)

In the following we will use the computed residual in (5.3); namely, we define

rm := Vm+1

(
Hmu− ρu
hm+1,me∗mu

)
,(5.4)

which differs from the true residual AVmu− ρVmu in the inexact case.
A result similar to that of Proposition 2.2 can be derived in terms of the matrix

H̃m in (5.2).
Proposition 5.1. For k < m, let Vku

(k) be a harmonic Ritz vector associated

with Hk, with ‖u(k)‖ = 1, and let ρ(k) = (u(k))∗Hku
(k). Moreover, let X = [[u

(k)

0 ], Y ]

be a unitary matrix and H̃m = Y ∗H̃mY . Let δm,k = σmin(H̃m − ρ(k)I),

rk = Vk+1

(
Hku

(k) − ρ(k)u(k)

hk+1,ke
∗
ku

(k)

)
, s∗m = [(u(k))∗, 0∗]H̃m − ρ(k)[(u(k))∗, 0∗].



VARIABLE ACCURACY IN INEXACT EIGENCOMPUTATION 1169

If δm,k > 0 and

‖rk‖ <
δ2
m,k

4‖sm‖ ,(5.5)

then there exists a unit norm eigenvector u = [u1

u2
] of H̃m with u1 ∈ C

k such that

‖u2‖ ≤ τ√
1 + τ2

≤ τ, where τ ∈ R, 0 ≤ τ < 2
‖rk‖
δm,k

.

Proof. Let Y be such that X = [[u
(k)

0 ], Y ] ∈ C
m×m is unitary. Recalling that

e∗m[(u(k)); 0] = 0 so that [(u(k))∗, 0∗]H̃m[(u(k)); 0] = ρ(k), and following the proof of
Proposition 2.2, we can write

X ∗H̃mX =

[
ρ(k) K

G H̃m

]
,

G = Y ∗H̃m

[
u(k)

0

]
,

K = [(u(k))∗, 0∗]H̃m Y.

Once again, we use [(u(k))∗, 0∗]em = 0 and, in addition, [(u(k))∗, 0∗]Y = 0, to obtain

γ := ‖G‖ =

∥∥∥∥Y ∗H̃m

[
u(k)

0

]∥∥∥∥ =

∥∥∥∥Y ∗
[

Hku
(k)

hk+1,ke1e
∗
ku

(k)

]∥∥∥∥
=

∥∥∥∥Y ∗
[
Hku

(k) − ρ(k)u(k)

hk+1,ke1e
∗
ku

(k)

]∥∥∥∥ ≤ ‖rk‖.

Moreover, ‖K‖ = ‖s∗mY ‖ ≤ ‖sm‖. Using Theorem 2.1, if (5.5) holds, so that γ‖sm‖
δ2
m,k

<

1
4 , then there exists p ∈ C

m−1 satisfying τ := ‖p‖ < 2 γ
δm,k

such that the vector

u =

[
u1

u2

]
=

1√
1 + ‖p‖2

([
u(k)

0

]
+

[
Y1

Y2

]
p

)

is an eigenvector of H̃m with unit norm, so that ‖u2‖ ≤ ‖p‖√
1+‖p‖2

.

Using Proposition 5.1, we can provide a flexible criterion for the accuracy with
which the matrix A is applied in the case of harmonic Ritz approximation. We first
notice that, in the inexact case, (5.3) becomes

AVmu− ρVmu = Vm+1

(
Hmu− ρu
hm+1,me∗mu

)
− Fmu = rm − Fmu.

With the notation of Proposition 5.1, to bound the distance between the true and com-
puted residuals, we require that the best harmonic Ritz approximation (ρ(k−1), u(k−1))
after k − 1 iterations satisfies

‖rk−1‖ <
δ2
m,k−1

4‖sm‖ ,(5.6)

{
∀ρj Rayleigh quotient of eigenvectors of H̃m, ρj 	= ρ,

|ρ(k−1) − ρj | > 2‖sm‖ ‖rk−1‖
δm,k−1

.
(5.7)
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Fig. 5.1. Matrix in Example 4.1 and harmonic Ritz approximation of the largest eigenvalue in
modulo. Convergence curves of the exact method (dash-dotted) and inexact Harmonic approximation
with (5.9) (solid). The increasing curve reports the values of the perturbation norms, ‖fk‖, in (5.9).

The following result is similar to Theorem 3.1, and its proof is therefore omitted.
Theorem 5.2. Assume that m inexact Arnoldi iterations have been carried out,

and let Vmu be a harmonic Ritz vector associated with Hm, with ‖u‖ = 1, and let ρ
be the Rayleigh quotient of u, ρ = u∗Hmu. Given any ε ∈ R, ε > 0, assume that for
k = 1, . . . ,m,

‖fk‖ ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δm,k−1

2m‖rk−1‖
ε

if k > 1 and there exists Vk−1u
(k−1) harmonic Ritz

vector of Hk−1 satisfying (5.6) and (5.7) with
ρ(k−1) = (u(k−1))∗Hk−1u

(k−1),

1

m
ε otherwise.

(5.8)

Then ‖(AVmu− ρVmu) − rm‖ ≤ ε.
The deviation of the inexact harmonic process from its unperturbed counterpart

does not significantly differ from that of inexact and exact Arnoldi. As an example,
we report the convergence behavior of the exact and inexact harmonic Ritz approxi-
mations for the matrix in Example 4.1. In Figure 5.1 the convergence to the largest
eigenvalue in modulo is depicted. The matrix-vector product was perturbed by using
the following variant of (3.6):

‖fk‖ ≤ min{α, δ(k−1)}
2m‖rk−1‖

ε, δ(k−1) := min
all ρj �=ρ(k−1)

|ρ(k−1) − ρj |,(5.9)

where each ρj is the Rayleigh quotient associated with the jth unit norm harmonic
Ritz vector u(j) of Hk−1.

We also report the results after m = 150 iterations with the same matrix, when
looking for the first three eigenvalues. Similar strategies as in Example 4.1 were used.

Method ρ4 ρ3 ρ2 ρ1

Exact harmonic 6.8572788458 7.1222009509 7.18570255184 7.5126962627829
Inexact harmonic 6.8571791230 7.1222009690 7.18570254871 7.5126962627823
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The same considerations as for the Arnoldi process apply here. The magnitude of the
perturbation at the last iteration was 9 · 10−5.

6. Exact and inexact Lanczos methods. In this section we show that our
analysis carries over to the case of the inexact Lanczos method. In the standard
nonsymmetric Lanczos method the following relations hold:

AQk = QkTk + tk+1,kqk+1e
∗
k, A∗Pk = PkT

∗
k + t̄k,k+1pk+1e

∗
k, P ∗

kQk = Ik.(6.1)

Writing Qk+1 = [q1, q2, . . . , qk+1], we assume ‖qi‖ = 1, i = 1, . . . , k+1. This condition,
together with the biorthogonality of Pk, Qk, completely defines the column vectors
in Pk, Qk. Different normalizations would be possible, such as ‖qi‖ = 1 = ‖pi‖,
i = 1, . . . , k. In (6.1), Tk is a k × k nonsymmetric tridiagonal matrix; see, e.g., [2].

When the matrix-vector products with A and A∗ are performed inexactly, that
is,

q = Aqi + fi, p = A∗pi + gi, i = 1, . . . , k,

the original Lanczos relations (6.1) transform as follows:

AQk = QkHk + hk+1,kqk+1e
∗
k + Fk,(6.2)

A∗Pk = PkKk + h̄k,k+1pk+1e
∗
k + Gk, P ∗

kQk = Ik,(6.3)

where we used Fk = [f1, . . . , fk] and Gk = [g1, . . . , gk]. Here matrices Hk and K∗
k

are upper Hessenberg and no longer tridiagonal. Their diagonal and near-diagonal
elements are the same, whereas the remaining upper parts of the two matrices differ.
Clearly, the special properties of the Lanczos iteration are lost. Indeed, the inexact
Lanczos iteration is a paired long-term recurrence, as opposed to the paired three-term
recurrence of the Lanczos iteration (6.1). Moreover, while in the exact recurrence the
matrix Tk provides approximations to both right and left eigenvectors of A, this is
no longer the case in the inexact method. Since Hk and K∗

k differ, both eigenvalue
problems with Hk and K∗

k need to be solved to obtain right and left Ritz vectors.
Another property not inherited by the inexact process concerns convergence. Under
certain conditions, the exact Lanczos recurrence determines quadratically converging
Ritz values [1, 20].2 Since neither Hk nor Kk alone provides right and left eigenvector
approximations, convergence is only linear in the inexact case.

Proposition 2.2 can be applied to each of the two matrices Hk and K∗
k , to show

that the components of converging Ritz vectors have a decreasing pattern. Owing
to the similarity between the inexact relations of (6.2), (6.3) with (3.1), we can thus
apply the result on dynamic accuracy stated in Theorem 3.1 to each of the two inexact
Lanczos recurrences. This provides us with a way to monitor the gap ‖(AQku −
θQku) − rk‖, where (θ, u) is a right eigenpair of Hk in (6.2) and rk is the associated
computed residual. An analogous result holds for left Ritz pairs.

Example 6.1. We consider the 900×900 matrix arising from the centered finite
difference approximation of the operator Lu = −uxx − uyy + (x + y)ux on the unit
square. The starting vector is the normalized vector of all ones, for both the Qk

and Pk sequences. We are interested in the approximation of the smallest (real)
eigenvalue, λ ≈ 2.0276 · 10−2, with a final residual tolerance of ε = 10−8. The whole
spectrum is depicted in the left plot of Figure 6.1. The convergence of the exact and

2We thank David Day, Sandia National Laboratories, for pointing us to [1].
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Fig. 6.1. Example 6.1. Left: spectrum of A. Right: convergence curves of right residual
norms of exact and inexact Lanczos. The increasing (solid) curve represents the norm of the right
matrix-vector perturbation at each iteration.

inexact Lanczos right residual norms is reported in the right plot of Figure 6.1. The
perturbations in the matrix-vector products were enforced by adding random vectors
fi, gi, i = 1, . . . , k. Their norms were monitored by means of (3.6), applied distinctly
to the eigenpairs of the matrices Hi−1, Ki−1. The convergence curve in the inexact
case agrees with that of the exact procedure until final accuracy is reached.

7. Further comments. It was empirically observed in the literature that when
approximating the eigenpairs of a matrix by means of the Arnoldi method, the accu-
racy in the application of the operator may in some cases be relaxed while maintaining
the convergence to the sought-after eigenpairs. In this paper we have presented the
theoretical foundation for the justification of this phenomenon, and provided a more
robust relaxation criterion. Our results indicate that flexible accuracy can be safely
employed when the approximate eigenpair is sufficiently close to the target eigenpair,
depending on the sensitivity of the given matrix.

Our analysis highlights that reasonably accurate results can be obtained in spite
of large perturbations. The inexact Arnoldi relation (3.1) could be written as follows:

(A + Em)Vm = VmHm + hm+1,mvm+1e
∗
m, Em =

m∑
k=1

fkv
∗
k.

A backward error analysis would suggest the rather pessimistic picture that a Ritz
pair (θ, Vmu) would be an approximation to an eigenpair of A+ Em but not of A. We
have shown that the perturbation is performed in such a way that the approximation
to the target eigenpairs of A is not affected. However, other inexact Ritz pairs may
be perturbed by a quantity fully influenced by ‖Em‖.

A related question that we have not answered is whether the rate of convergence
could be affected by the perturbation. More precisely, even though our theory ensures
that the norm of the true residual of some selected Ritz pairs still converges to a small
quantity, it is not clear whether it does so with the same convergence rate as in the
unperturbed process. A similar problem is encountered in the inexact linear system
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setting [22, 32, 25]. In [23] it was shown that no convergence delay is observed in the
inexact linear system case, unless the coefficient matrix and the right-hand side are
very sensitive to perturbations. Although we expect these conclusions to carry over
to the eigenvalue setting, an ad hoc analysis remains to be done.

Practical implementations require (implicit) restarting and locking of converged
eigenpairs [10]. As already mentioned in the introduction, we have not addressed
these important issues, which need special attention, since our theory predicts that
flexible accuracy should take into account the occurrence of Ritz pairs converging to
target eigenpairs of A at different rates. In the linear system setting, the problem of
restarting has been recently addressed in [26].

Acknowledgments. We thank Jasper van den Eshof for his insightful remarks,
and the two anonymous referees for their comments.
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CONVERGENCE OF THE SUPERCELL METHOD FOR DEFECT
MODES CALCULATIONS IN PHOTONIC CRYSTALS∗

SOFIANE SOUSSI†

Abstract. We present a rigorous study of the convergence of the supercell method used for
determing defect modes in photonic crystals with compactly supported perturbations. Transverse
electric and transverse magnetic polarized waves are investigated in 2-D structures. We prove an
exponential convergence of the defect frequencies with the supercell size and give a justification of
the quasi-independence of the corresponding eigenfunctions on the wave vector. We also give a
characterization of the supercell eigenvalues corresponding to the background photonic crystal.

Key words. photonic crystal, supercell, Helmholtz equation, defect modes

AMS subject classifications. 45C05, 45L05

DOI. 10.1137/040616875

1. Introduction. Photonic crystals are periodic structures composed of dielec-
tric materials and designed to exhibit interesting properties, such as spectral band
gaps, in the propagation of classical electromagnetic waves. In other words, monochro-
matic electromagnetic waves of certain frequencies do not exist in these structures.
Media with band gaps have many potential applications, for example, in optical com-
munications, filters, lasers, and microwaves; see [18], [19], [23], [29] for an introduction
to photonic crystals. While necessary conditions under which band gaps exist in gen-
eral are not known, Figotin and Kuchment have produced an example of high-contrast
periodic medium where band gaps exist and can be characterized [16], [17]. Other
band gap structures have been found through computational and physical experi-
ments; see [2], [8], [9], [10], [12].

In order to achieve lasers, filters, fibers, or waveguides, allowed modes are required
in the band gaps. These modes are obtained by creating localized defects in the
periodicity and correspond to isolated eigenvalues with finite multiplicity inside the
gaps. The defect mode frequency strongly depends on the defect nature. Figotin and
Klein rigorously proved that when a defect is introduced into the periodic structure,
i.e., a perturbation with compact support, it is possible to create a defect mode, which
is an exponentially confined standing wave whose frequency lies in the band gap [13],
[14], [15]; see also Ammari and Santosa [1] and Kuchment and Ong [24] for the issue of
existence of exponentially confined modes guided by line defects in photonic crystals.

The defect modes as well as the guided modes associated with compact and line
defects, respectively, are computed via the supercell technique. This technique con-
sists of restricting the computation on a domain surrounding the defect with suffi-
cient bulk crystal, called the supercell, with periodic conditions on its boundary. The
boundary conditions on the supercell are, in principle, irrelevant if the mode is suf-
ficiently confined. Since one would like to compute only the defect or the guided
modes in the band gap, without the waste of computation and memory of finding all
the eigenvalues associated with the supercell belonging to the continuous spectrum,
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2005; published electronically September 23, 2005.
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one states the problem as one of finding the eigenvalues and eigenvectors closest to
the mid-gap frequency.

The supercell method demonstrates very good concordance with experimental
results and seems to be very accurate. However, analytic studies and rigorous proofs
of convergence of this technique are essentially absent.

In this paper we address some of the basic issues of the supercell method and prove
the convergence of this technique. Although one can obtain analogous results for the
case of full Maxwell equations, we only address the cases of transverse electric (TE)
and transverse magnetic (TM) polarized electromagnetic waves in two-dimensional
photonic structures.

The outline of this paper is as follows. In the next section we review some ba-
sic facts on the spectra of periodic elliptic operators, emphasizing the Floquet–Bloch
theory. We then describe in section 3 the supercell method and investigate its math-
ematical foundations in the TM case. Section 4 is devoted to the TE case. Finally,
in section 5 the results of numerical experiments are presented to illustrate our main
findings.

2. Notation and preliminary results. Consider a photonic crystal character-
ized by its dielectric permittivity εp, which is a real valued, piecewise constant and
periodic function belonging to the set {εp ∈ L∞(R2/Z

2) : 0 < ε1 ≤ εp ≤ ε2 a.e.},
where ε1 and ε2 are constants. The magnetic permeability is supposed constant and
equal to unity throughout this paper.

We assume that the crystal is periodic with period [0, 1]2, i.e., that εp(x+n) = ε(x)
for almost all x ∈ R

2 and all n ∈ Z
2.

The propagation of electromagnetic waves is governed by the Maxwell’s equa-
tions. It is common to reduce these equations in a 2-D medium to two sets of scalar
equations in the TM and TE cases. Each one can be solved by solving one scalar
partial differential equation and the other scalar functions follow immediately from
that solution.

These equations are the Helmholtz equation

Δu + ω2εpu = 0,(2.1)

for the TM polarization, and the acoustic equation

∇ · 1

εp
∇u + ω2u = 0,(2.2)

for the TE polarization.
We now recall some well-known results on the spectrum of the TM and TE op-

erators in the periodic medium. Since we deal with a partial differential equation
with periodic coefficients, it is natural to make a Floquet transform and apply the
Floquet–Bloch theory.

First we briefly present the Floquet–Bloch theory applied to the TM and TE
operators in periodic media.

Let A(x,D) denote the TM or TE operator on L2(R2) in a periodic medium
characterized by εp, where D = −i∇. This operator is invariant with respect to the
discrete group of translations Z

2 acting on R
2. It is then natural to apply the Fourier

transform on Z
2, that is the transform assigning to a sufficiently decaying function

h(n) on Z
2, the Fourier series

ĥ(ξ) =
∑
j∈Z2

h(j)eiξ·j ,
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where ξ ∈ R
2. However, since we deal with functions defined on R

2, we use the
Floquet transform which is the appropriate transform in this case.

Consider a function v defined on R
2, sufficiently decaying at infinity. We can then

define its Floquet transform by

Fv(x, ξ) =
∑
j∈Z2

v(x− j)eiξ·j = ̂v(x− ·).(2.3)

It is easy to check that Fv(·, ξ) is ξ-quasi-periodic with respect to the first variable,
that is

(Fv)(x + n, ξ) = (Fv)(x, ξ)eiξ·n ∀x ∈ R
2, n ∈ Z

2.

Moreover, it is periodic with respect to the variable ξ, called quasi-momentum, with
period lattice [0, 2π]2. It is then sufficient to know the function Fv for (x, ξ) ∈ Y ×B,
where Y = [0, 1[2 and B = [−π, π[2 (called in the literature the first Brillouin zone),
to recover it on R

2 × R
2.

It turns out that the Floquet transform commutes with partial differential oper-
ators with periodic coefficients. In particular, we notice that

F(A(x,D)u) = A(x,D)(Fu).

The Floquet transform allows us to represent a function on L2(R2) as a continuous
sum of quasi-periodic functions. In fact, the Floquet theory defines an isometric map-
ping between L2(R2) and L2(B, L2

ξ(R
2)), L2

ξ(R
2) being the space of ξ-quasi-periodic

L2- functions. The inverse of the Floquet transform is given by the following formula:

(F−1v)(x) =
1

|B|

∫
B

v(x, ξ)dξ,(2.4)

for any v in L2(B, L2
ξ(R

2)).
The isometric character of the Floquet transform, together with its commutation

properties on partial differential operators with periodic coefficients, make it very
useful to study spectral problems. Indeed, the spectral problem for the operator
A(x,D) becomes a family of spectral problems for operators Aξ(x,D) (having formally
the same expression but with domains depending on ξ), acting on functions defined
on a bounded set (the period lattice of the photonic crystal), with ξ-quasi-periodicity.

An alternative version to the Floquet transform is the transform Φ defined as

Φv(x, ξ) =
∑
j∈Z2

v(x− j)e−iξ·(x−j) = e−iξ·xFv(x, ξ).

The function Φv is periodic with respect to x and (−x)-quasi-periodic with respect
to ξ with 2π-quasi-period,

{
Φv(x + n, ξ) = Φv(x, ξ), n ∈ Z

2,
Φv(x, ξ + ζ) = e−iζ·xΦv(x, ξ), ζ ∈ 2πZ

2.
(2.5)

With this transform, we now deal with functions defined on a fixed space L2(B, L2

(R2/Z
2)), while the operator A(x,D) is split into a sum of operators A(x,D − ξ),

depending on ξ,

Φ(A(x.D)u)(x, ξ) = A(x,D − ξ)(Φu)(x, ξ).
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The transform Φ is still an isometric mapping between L2(R2) and L2(B, L2(R2/Z
2)),

and its inverse transform is

(Φ−1v)(x) =
1

|B|

∫
B
eix·ξv(x, ξ)dξ.

Let Σ be the spectrum of A(x,D) on L2(R2) and Σξ the spectrum of A(x,D− ξ)
on L2(R2/Z

2), then we can deduce immediately the following identity:

Σ = ∪ξ∈BΣξ.(2.6)

Now, with these tools, we are in the position to explore the spectrum of the TM
and TE operators in periodic media.

In the case of the TE polarization, the operator we are studying is

A(x,D) = −∇ · 1

εp
∇.

After the transform Φ, we get the following spectral problem:

−(∇x − iξ) · 1

εp
(∇x − iξ)v(x, ξ) = ω2v(x, ξ), v(·, ξ) ∈ L2(R2/Z

2).(2.7)

We remark that A(x,D−ξ) is an elliptic self-adjoint operator on L2(R2/Z
2) with com-

pact resolvent. It follows that its spectrum is discrete with countably many positive
eigenvalues denoted λn(ξ) and ordered increasingly. It is easy to prove the continuity
of λn(ξ) on ξ ∈ B. Finally, defining the intervals In by

In =

[
min
ξ∈B

λn(ξ),max
ξ∈B

λn(ξ)

]
,

we deduce the spectrum of the TE operator

ΣTE = ∪n∈NIn.

We then see clearly the band structure of the spectrum since it is a union of the
intervals formed by the values of each eigenvalue when the quasi-momentum varies in
the Brillouin zone. In fact, if two successive intervals are disjoint, which means that
the maximal value of an eigenvalue is smaller than the minimal value of the following
one, then there is a gap in the spectrum ΣTE and no propagation is possible for
TE waves at the corresponding frequencies. This makes all the interest of photonic
crystals.

In what follows, we make the following assumption: the spectrum of the TM
operator and the TE operator in the periodic medium are absolutely continuous. This is
always assumed in photonic crystal studies. There exists a proof of absolute continuity
of Maxwell operator spectrum in periodic media with smooth coefficients in [25].

Another important property of photonic crystals is a consequence of the char-
acterization of the decay of functions in L2(R2) in terms of the smoothness of their
Floquet transform in the same spirit as the Paley–Wiener theorem. Suppose that the
spectrum contains some gaps, that is ΣTE �= R

2 and let ω be a frequency lying in a
band gap. Let Gp be the Green’s function of the TE operator defined by

∇ · 1

εp
∇Gp(ω;x, y) + ω2Gp(ω;x, y) = δ(x− y), x ∈ R

2.(2.8)
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It has been established in [3], [7] that the Floquet transform of Gp is analytic with
respect to ω in a complex neighborhood of the real axis. In view of Paley–Wiener-type
theorems, the analyticity of FGp is the key ingredient of the proof of the following
result [13], [14], [15].

Lemma 2.1. For any ω2
0 > 0, there exist two positive constants C1 and C2

depending only on ω2
0 such that for any ω2 �∈ ΣTE ∩ (0, ω2

0),

|Gp(ω;x, y)| ≤ C1e
−C2dist(ω2,ΣTE)|x−y|, for |x− y| → +∞.(2.9)

Remark 2.1. The behavior of the Green’s function at infinity is the essential
feature of PBG materials: it explains why localized defects in photonic crystals may
act as perfect cavities, when the frequency lies in a band gap. Electromagnetic waves
can be represented in terms of Gp and thus inherit the exponential decay property.

In the case of the TM polarization, the operator we are studying is

A(x,D) = − 1

εp
Δ.

Taking the transform Φ, we get the following spectral problem:

− 1

εp
(∇x − iξ) · (∇x − iξ)v(x, ξ) = ω2v(x, ξ), v(·, ξ) ∈ L2(R2/Z

2).(2.10)

The difference with the TE case is that this operator is elliptic, self-adjoint with
compact resolvent on the space of square measurable functions provided with the
measure εp(x) dx instead of dx.

The results are therefore the same as for the TE case, and we get a spectrum
with band structure

ΣTM = ∪n∈NIn,

where (In)n∈N are defined in the same way as for the TE case.
Analogous properties to the TE case hold. In particular, Lemma 2.1 holds with

the Green’s function associated with the TM polarization.
From now on and until otherwise mentioned, we deal with TM-polarized electro-

magnetic waves. We consider a background medium characterized by its dielectric
permittivity εp.

First, we introduce some simplified notations. For any domain D ⊂ R
2 and any

measurable positive function ρ ∈ L∞(D) bounded and away from 0 (i.e., ∃ρ−, ρ+ ∈ R+

s.t. 0 < ρ− ≤ ρ(x) ≤ ρ+ < ∞, a.e. x ∈ D) we define the weighted L2 space
denoted by L2

ρ(D) and corresponding to square mesurable functions on D provided
with the scalar product (f, g)L2

ρ(D) =
∫
D
f(x)ḡ(x)ρ(x)dx and the norm ‖f‖L2

ρ(D) =∫
D
|f(x)|2ρ(x) dx.
Definition 2.1. We define the self-adjoint operator Ap by

Ap = − 1

εp
Δ, on L2

εp(R2),

and denote by Σp its spectrum.
For ξ ∈ [0, 2π[2 we define Aξ

p on L2
εp(R2/Z

2) by

Aξ
p = − 1

εp
(∇x − iξ) · (∇x − iξ),
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and denote by Σξ
p its spectrum.

We create a perturbation of the background medium by modifying its dielectric
permittivity into ε as follows:

ε(x) = εp(x) − (δε)χΩ(x),(2.11)

where (δε) is a real constant and Ω is a bounded domain in R
2.

The perturbation of the dielectric permittivity induces a modification of the TM
operator into

A = −1

ε
Δ,(2.12)

and, consequently, the spectrum Σ of A is different from the spectrum Σp of Ap.
However, it has been proved that the perturbation of the TM operator is relatively
compact and therefore it keeps the essential spectrum of Ap unchanged; see [14]. Since
the spectrum Σp is purely continuous, the perturbation will result in the addition of
eigenvalues of finite multiplicity to Σp.

The following theorem from [14] is of importance to us.
Theorem 2.1. Suppose that, for some ω2

0 > 0, the spectrum Σp ∩ (0, ω2
0) of the

operator Ap has a gap and suppose that the defect (Ω, (δε)) has created an isolated
eigenvalue ω2 in the gap. Let u be an associated eigenvector. Then, there exists two
constants C1 and C2, depending only on ω2

0, such that

‖u‖L2(Bx) ≤ C1e
−C2dist(ω2,Σp)dist(x,Ω)‖u‖L2(Ω),

where Bx is the ball of center x and radius one.
Proof. The eigenmode u is solution of the following equation:

Δu + ω2ε(x)u = 0.(2.13)

It is easy then to see that u is solution of the following integral equation:

u(x) = (δε)ω2

∫
Ω

Gp(ω;x, y)u(y) dy.(2.14)

The proof of the theorem is then a direct consequence of the exponential decay of the
Green’s function in Lemma 2.1.

Remark 2.2. This theorem has very important consequences. It explains why
we can confine electromagnetic waves in defects or guide them along a defect. The
use of dielectric material that has very low loss and the exponential decrease of the
electromagnetic field away from the defect ensures a very efficient confinement with
a cladding of few periods of the photonic crystal.

3. The supercell method. We start this section by giving a mathematical
description of the supercell method.

3.1. Definitions and preliminary results. We consider the background and
perturbed media introduced in the previous section with their corresponding TM
operators and spectra. Since the perturbed medium is not periodic, the Floquet’s
theory does not apply.

To recover a periodic medium, we define an artificial medium in the following way.
Without loss of generalization, we can suppose that the defect support Ω is centered
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at 0. For N ∈ N large enough to have Ω ∈] − N,N [2, we define the (2N)-periodic
L∞-function εN by

{
εN (x) = ε(x) ∀x ∈] −N,N [2,
εN (x + 2Nj) = εN (x) ∀x ∈ R

2 ∀j ∈ N
2.

(3.1)

Definition 3.1. We define the self-adjoint operator AN on L2
εN (R2) by

AN = − 1

εN
Δ,(3.2)

and let ΣN be its spectrum.
For ξ ∈ BN = [− π

2N , π
2N [2, we define the self-adjoint operator Aξ

N on L2
εN R

2/
2NZ

2) by:

Aξ
N = − 1

εN
(∇− iξ) · (∇− iξ),

and denote by Σξ
N its spectrum.

The function εN defines a photonic crystal formed by the defect repeated with
a 2N -period inside the original photonic crystal. It is therefore obvious that the
spectrum ΣN is an absolutely continuous spectrum. The question is: what happens
when N goes to infinity?

A natural answer is that since the repeated defects will be away from each other,
they will not interact and, in the neighborhood of one defect, the operator will see
almost an infinite crystal. We expect then a kind of convergence of ΣN to the spectrum
Σ corresponding to one defect in the infinite photonic crystal. So for N large enough,
after taking the Floquet transform in the supercell and computing the spectrum,
we will find a spectrum divided into wide bands very close to those corresponding
to the background medium and very narrow bands (almost a horizontal line when
plotted against the quasi-momentum) that should correspond to the defect modes of
the perturbed crystal. This is what will be proved in the following subsections.

To give a characterization of the convergence of the spectrum of the supercell, we
will use the Hausdorff distance denoted distH, that is a measure of the resemblance
of two (fixed) sets.

Definition 3.2. Let E and F be two nonempty subsets of a metric set. We
define the Hausdorff distance denoted distH between E and F as

distH(E,F ) = inf {d ≥ 0 ∀(x, y) ∈ E × F, dist(x, F ) < d and dist(y,E) < d} .

This means that if distH(E,F ) = d, then any point of one of the two sets is within
distance d from some point of the other set.

Finally, we give in the following proposition an important result from the spectral
theory, see [28], that will be useful for the convergence results.

Proposition 3.1. Let A be a self-adjoint operator with a domain D(A) and a
spectrum σ(A), then, for μ ∈ R,

dist(μ, σ(A)) = min
φ∈D(A)

‖(A− μI)φ‖
‖φ‖ .(3.3)



1182 SOFIANE SOUSSI

3.2. Convergence of the “continuous spectrum.” Here we give a char-
acterization of the convergence of the part corresponding to the spectrum of the
unperturbed crystal.

Theorem 3.1. For any ω0 > 0 and N0 ∈ N, there exists C > 0, depending only
on ω0, N0 and Ω, such that

max
ω2∈∪k∈[−N+1,N−1[2∩N2Σ

ξ+kπ/N
p ∩[0,ω2

0 ]

dist(ω2,Σξ
N ) ≤ C

N2
,(3.4)

for any N ≥ N0 and any ξ ∈ BN .

Proof. Let k ∈ [−N + 1, N − 1[2∩N
2 and ξ ∈ BN . Let ω2 be in Σ

ξ+kπ/N
p ∩ [0, ω2

0 ].
Since ξ + kπ/N ∈ B, there exists φ ∈ L2

εp(R2/Z
2) with unit norm such that

(
∇− i

(
ξ +

kπ

N

))
·
(
∇− i

(
ξ +

kπ

N

))
φ + ω2εpφ = 0.(3.5)

Let φ̃ be defined in L2
εN (R2/2NZ

2) as

φ̃(x) = φ(x)e−i π
N k·x.(3.6)

There exists a constant 0 < C0 < 4 such that for some integer N0 > 0,

‖φ̃‖L2
εN

(R2/2NZ2) > C0N
2

for any N ≥ N0, where C0 and N0 are independent of φ̃. The function φ̃ satisfies the
following equation:

(∇− iξ) · (∇− iξ)φ̃ + ω2εpφ̃ = 0,(3.7)

which can be rewritten as follows:

(∇− iξ) · (∇− iξ)φ̃ + ω2εN φ̃ = −χΩ(δε)ω2φ̃.(3.8)

Let C1 be the minimal number of unit squares in which Ω can be strictly included.
Since the L2

εp -norm of φ̃ in a unit square is 1, we have

‖φ̃‖L2(Ω) ≤
C1√

min(εp)
.

Thus

‖ 1
εN

(∇− iξ) · (∇− iξ)φ̃ + ω2φ̃‖L2
εN

(R2/(2N)Z2)

‖φ̃‖L2
εN

(R2/2NZ2)

= (δε)ω2
(
∫
Ω
|φ̃|2 1

εN
dx)1/2

‖φ̃‖L2
εN

(R2/2NZ2)

≤ C2

N2
,

where C2 = |(δε)|ω2
0

C1

C0

√
min(εp) min(εN )

.
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It follows from Proposition 3.1 that there exists an eigenvalue ω2
ξ belonging to

the spectrum Σξ
N of the operator Aξ

N such that

|ω2 − ω2
ξ | ≤

C2

N2
,

which ends the proof.
Remark 3.1. This theorem tells us that card

(
Σξ

N ∩ [0, ω2
0 ]
)

for ξ ∈ BN will grow

at least as fast as N2card
(
Σξ′

p ∩ [0, ω2
0 ]
)

for any ξ′ ∈ B. So when we use the supercell
method to determine the defect modes, we are in front of a dilemma; larger is the
size of the supercell, better is the approximation of the defect eigenvalues. But this
will take much more time and need much more memory size because of the size of
the computational domain and the growing number of useless (in the sense that they
do not correspond to the defect) eigenvalues. It is important then to determine the
convergence rate of the eigenvalues corresponding to the defect.

Since we know that the spectrum ΣN = ∪ξ∈BN Σξ
N is absolutely continuous, we

deduce that each connected component of (R2 \ΣN )∩Σp∩ [0, ω0] has a width smaller
than 2C

N2 .
In practice, because of the growth of degeneracy of the eigenvalues located in Σp

with N , there will be almost no visible gap inside the bands of ΣN but the remark
remains useful for the perturbation brought to the edges of the bands. In particular, it
is useful to check if a perturbation of the edges of a band in Σp is due to the presence
of a defect eigenvalue in Σ close to the band or not.

3.3. Convergence of the defect eigenvalues. Here we are concerned with
the behavior of the part of the spectrum ΣN that will give us an approximation of
the defect modes (eigenvalues with finite multiplicity in Σ). Let us first try to give a
characterization of this part.

Definition 3.3. For η > 0, we define Ση
d,N as the union of the connected

components of ΣN that are at least η-distant from Σp.
We also define Σd as the set of the defect eigenvalues of the perturbed photonic

crystal

Σd = Σ \ Σp.

Finally, we introduce Σξ,η
d,N and Ση

d as

Σξ,η
d,N = {ω2 ∈ Σξ

N : dist(ω2,Σp) ≥ η}.
Ση

d = {ω2
d ∈ Σd : dist(ω2

d,Σp) ≥ η}.

The following proposition holds.
Proposition 3.2. For every gap ]a, b[ in Σp (0 < a < b) satisfying ]a, b[∩Σ = ∅,

there exists N1 ∈ N such that, for N ≥ N1, ΣN∩]a, b[= ∅.
Proof. Suppose that the proposition is false. Then for any N0 ∈ N there exists

N ≥ N0 and ω2
N ∈]a, b[∩ΣN . This means that there exist ξN ∈ BN and φN ∈

L2
εN (R2/2NZ

2) with unit norm such that

(∇− iξN ) · (∇− iξN )φN + ω2
NεNφN = 0 in L2

εN (R2/2NZ
2).(3.9)
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Now, we define φ̃N in L2
ε(R

2) by

φ̃N (x) =

∫
Ω

G(ω2
N ;x, y)e−iξN ·yφN (y) dy.(3.10)

The following lemma is needed.
Lemma 3.1. There exist N0 > 0 depending only on a, b and Σp, such that for

N ≥ N0, we have

‖φ̃N‖L2
ε(R

2) ≥
1

2
.

Proof. From the expression of φ̃N we deduce that

(δε)ω2
N φ̃N (x) = (δε)ω2

N

∫
Ω

G(ω2
N ;x, y)e−iξN ·yφN (y) dy

=

∫
R2

G(ω2
N ;x, y)(Δ + ω2

Nεp)
(
e−iξN ·yφN (y)

)
dy

−
∫

R2

G(ω2
N ;x, y)(Δ + ω2

Nε)
(
e−iξN ·yφN (y)

)
dy

=

∫
R2

(Δ + ω2
Nεp)G(ω2

N ;x, y)e−iξN ·yφN (y) dy

−
∫

R2

G(ω2
N ;x, y)e−iξN ·y((∇− iξN ) · (∇− iξN ) + ω2

Nε)φN (y) dy

= e−iξN ·xφN (x)

−
∫

Ω

∑
j∈Z2,j 	=0

(G(ω2
N ;x, y + Nj)e−iNξN ·j)e−iξN ·yφN (y)dy.

Let us now prove that the L2-norm of the last term in ] − N,N [2 converges
to 0. From the exponential decay of the Green’s function, we deduce that there exist
positive constants C1 and C2 depending only on the distance of a and b to Σp such
that, for any ω2 ∈]a, b[, we have [1]

∑
j∈Z2,j 	=0

∣∣G(ω2;x, y + Nj)
∣∣ ≤ C1e

−C2N ∀x ∈] −N,N [2 ∀y ∈ Ω.(3.11)

It follows then, since ‖φN‖L2
εN

(]−N,N [2) = 1, that for any x ∈] −N,N [2, we have

∣∣∣∣
∫

Ω

∑
j∈Z2,j 	=0

(G(ω2
N ;x, y + Nj)e−iNξN ·j)e−iξN ·yφN (y)dy

∣∣∣∣
≤ C1e

−C2N

∫
Ω

|φN (y)| dy

≤ C1e
−C2N

|Ω| 12√
min(εN )

||φN ||L2
εN

(Ω)

≤ C1e
−C2N

|Ω| 12√
min(εN )

.
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We then deduce that:

∥∥∥∥
∫

Ω

∑
j∈Z2,j 	=0

(G(ω2
N ;x, y + Nj)e−iNξN ·j)e−iξN ·yφN (y)dy

∥∥∥∥
L2

ε(]−N,N [2)

≤
√

max(ε)|Ω| 12√
min(εN )

2NC1e
−C2N .

Hence, recalling that ‖e−iξN ·xφN (x)‖L2
εN

(]−N,N [2) = 1, there exists N0 > 0 such that

for any N ≥ N0, we have

‖φ̃N‖L2
ε(R

2) ≥ ‖φ̃N‖L2
ε(]−N,N [2) ≥

1

2
.(3.12)

Lemma 3.1 is then proved.
We now turn to the proof of Proposition 3.2. We have

Δφ̃N + ω2
Nεφ̃N =

∫
Ω

(Δx + ω2
Nε)G(ω2

N ;x, y)e−iξN ·yφN (y) dy

=

∫
Ω

(Δx + ω2
Nεp)G(ω2

N ;x, y)e−iξN ·yφN (y) dy

−(δε)χΩ(x)ω2
N

∫
Ω

G(ω2
N ;x, y)e−iξN ·yφN (y) dy

= χΩ(x)e−iξN ·xφN (x)

−χΩ(x)

∫
R2

G(ω2
N ;x, y)(Δy + ω2

Nεp)(e−iξN ·yφN (y)) dy

+χΩ(x)

∫
R2

G(ω2
N ;x, y)(Δy + ω2

Nε)(e−iξN ·yφN (y)) dy

= χΩ(x)e−iξN ·xφN (x)

−χΩ(x)

∫
R2

(Δy + ω2
Nεp)G(ω2

N ;x, y)e−iξN ·yφN (y) dy

+χΩ(x)

∫
R2

G(ω2
N ;x, y)e−iξN ·y((∇− iξN )·(∇− iξN ) + ω2

Nε)φN (y)dy

= (δε)ω2
NχΩ(x)

∫
Ω

( ∑
j∈Z2,j 	=0

G(ω2
N ;x, y + Nj)e−iξN ·(y+Nj)

)
φN (y) dy.

Using estimate (3.11), we deduce the existence of positive constants C1 and C2 de-
pending only on the distance of a and b to Σp such that

∣∣∣∣∣∣
∑

j∈Z2,j 	=0

G(ω2
N ;x, y + Nj)e−iξN ·(y+Nj)

∣∣∣∣∣∣ ≤ C1e
−C2N ,(3.13)
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for any x, y ∈ Ω. We then obtain that

∣∣∣∣∣
∫

Ω

( ∑
j∈Z2,j 	=0

G(ω2
N ;x, y + Nj)e−iξN ·(y+Nj)

)
φN (y) dy

∣∣∣∣∣
≤ C1e

−C2N |Ω| 12 ‖φN‖L2(Ω)

≤ C1e
−C2N |Ω| 12 .

This yields the following result:∥∥∥∥1

ε
Δφ̃N + ω2

N φ̃N

∥∥∥∥
L2

ε(R
2)

≤ |(δε)|ω2
N |Ω|√

min(ε)
C1e

−C2N .(3.14)

Lemma 3.1 yields the estimate

dist(ω2
N ,Σ) ≤ 2|(δε)| b |Ω|√

min(ε)
C1e

−C2N ,

from which we conclude that dist(]a, b[,Σ) = 0. This is a contradiction with the
assumption. The proof of the proposition is complete.

Now we can prove the following result concerning the convergence to the defect
modes.

Theorem 3.2. Suppose that the perturbation has created defect eigenvalues.
Then, there exist η0 > 0 and N0 ∈ N such that for any η ≤ η0 and N ≥ N0,

Σξ,η
d,N �= ∅ ∀ξ ∈ BN .

Moreover, for any ω2
0 > 0 and η ≤ η0, there exist two positive constants C1 and

C2, depending only on ω2
0, such that for any ξ ∈ BN ,

distH(Σξ,η
d,N ∩ [0, ω2

0 ],Ση
d ∩ [0, ω2

0 ]) ≤ C1e
−C2ηN .(3.15)

Proof. Let ω2
d be a defect eigenvalue in Σd. It follows that there exists a function

u in L2
ε(R

2) with unit norm such that

Δu + ω2
dεu = 0 in R

2.(3.16)

Let ξ be in BN . We define uξ in L2
εN (R2/2NZ

2) by

uξ(x) =
∑
j∈Z2

u(x + Nj)eiξ·(x+Nj).

Then for x ∈] −N,N [2, we have

((∇− iξ) · (∇− iξ) + ω2
dεN )uξ(x)

=
∑
j∈Z2

eiξ·(x+Nj)(Δ + ω2
dεN )u(x + Nj)

=
∑
j∈Z2

eiξ·(x+Nj)(Δ + ω2
dε(x + Nj))u(x + Nj)

+(δε)ω2
d

∑
j∈Z2

eiξ·(x+Nj)(εN (x) − ε(x + Nj))u(x + Nj)

= −(δε)ω2
dχΩ(x)

∑
j∈Z2,j 	=0

eiξ·(x+Nj)u(x + Nj).
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On the other hand, for x ∈ R
2,

u(x) =

∫
R2

δ(x− y)u(y) dy

=

∫
R2

(Δ + εpω
2
d)G(ω2

d;x, y)u(y) dy

=

∫
R2

G(ω2
d;x, y)(Δ + εpω

2
d)u(y) dy

= (δε)ω2
d

∫
Ω

G(ω2
d;x, y)u(y) dy.

Therefore

((∇− iξ) · (∇− iξ) + ω2
dεN )uξ(x)

−(δε)2ω4
dχΩ(x)

∫
Ω

( ∑
j∈Z2,j 	=0

G(ω2
d;x + Nj, y)eiξ·(x+Nj)

)
u(y) dy.

From (3.11), it follows that there exist two positive constants C1 and C2, depending
only on ω2

0 , such that

∣∣∣∣
∫

Ω

( ∑
j∈Z2,j 	=0

G(ω2
d;x + Nj, y)eiξ·(x+Nj)

)
u(y) dy

∣∣∣∣ ≤ C1e
−C2dist(ω2

d,Σp)N

∫
Ω

|u(y)| dy

≤ C1e
−C2dist(ω2

d,Σp)N |Ω| 12 ‖u‖L2(Ω)

≤ |Ω| 12C1e
−C2dist(ω2

d,Σp)N .

Therefore

∥∥∥∥ 1

εN
(∇− iξ) · (∇− iξ)uξ(x) + ω2

du
ξ(x)

∥∥∥∥
L2

εN
(]−N,N [2)

≤ (δε)2ω4
d|Ω|√

min(εN )
C1e

−C2dist(ω2
d,Σp)N ,

(3.17)

since

uξ(x) = u(x)eiξ·x +
∑

j∈Z2,j 	=0

u(x + Nj)eiξ·(x+Nj), x ∈] −N,N [2,

lim
N→+∞

‖u(x)eiξ·x‖L2
εN

(]−N,N [2) = 1,

and ∥∥∥∥∥
∑

j∈Z2,j 	=0

u(x + Nj)eiξ·(x+Nj)

∥∥∥∥∥
L2

εN
(]−N,N [2)

≤ |Ω| 12NC1e
−C2dist(ω2

d,Σp)N ,

we deduce that for N large enough,

‖uξ‖L2
εN

(]−N,N [2) ≥
1

2
.
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Thus, we conclude that

dist(ω2
d,Σ

ξ
N ) ≤ C1e

−C2dist(ω2
d,Σp)N ,

for two positive constants C1 and C2, depending only on ω2
0 .

It follows that

max
ωd∈Ση

d∩[0,ω2
0 ]

dist(ω2
d,Σ

ξ
N ) ≤ C1e

−C2ηN ,(3.18)

uniformly for ξ ∈ BN . Hence, any defect eigenvalue ω2
d ∈ Σd is a limit point of

(Σξ
N )N∈N.

Let η > 0 be small enough to get Ση
d �= ∅. Applying Proposition 3.2, we may

see that there exists N0 ∈ N, depending only on ω2
0 and η, such that Σξ,η

d,N ∩ [0, ω2
0 ]

has at least as many connected components as card(Ση
d ∩ [0, ω2

0 ]) for N ≥ N0. To
prove this, we take a neighborhood of Ση

d ∩ [0, ω2
0 ] formed by disjoint intervals and

away from Σp, each one of them containing exactly one defect eigenvalue. Then from
Proposition 3.2, we deduce that for N large enough, the edges of these intervals will
be strictly distant from ΣN . On the other hand, we have proved here that for N large
enough, the intersection of every interval with Σξ

N is not empty. This means that

Σξ,η
d,N is not empty if we take η small enough and then let N be large enough. By the

same manner, (3.18) can be written as

max
ωd∈Ση

d∩[0,ω2
0 ]

dist(ω2
d,Σ

ξ,η
d,N ) ≤ C1e

−C2ηN ,(3.19)

uniformly for ξ ∈ BN . The proof of the first part of the theorem is then done.
Now, let ξ ∈ BN and let ω2 ∈ Σξ,η

d,N . There exists φ ∈ L2
εN (R2/2NZ

2) with unit
norm such that

(∇− iξ) · (∇− iξ)φ + ω2εNφ = 0.

Then, we define u in L2
ε(R

2) by

u(x) =

∫
Ω

G(ω2;x, y)φ(y)e−iξ·y dy.

Let us now find a lower bound for ‖u‖L2
ε(R

2). We compute

(δε)ω2u(x) =

∫
R2

G(ω2;x, y)
(
Δ + ω2εp

)(
φ(y)e−iξ·y) dy

−
∫

R2

G(ω2;x, y)
(
Δ + ω2ε

)(
φ(y)e−iξ·y) dy

= φ(x)e−iξ·x

−
∫

R2

G(ω2;x, y)e−iξ·y((∇− iξ) · (∇− iξ) + ω2ε
)
φ(y) dy

= φ(x)e−iξ·x

−(δε)ω2

∫
Ω

∑
j∈Z2,j 	=0

(G(ω2;x, y + Nj)e−iξ·(y+Nj))φ(y) dy.
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Since there exist positive constants C1 and C2, depending only on ω2
0 , such that∣∣∣∣

∑
j∈Z2,j 	=0

(G(ω2;x, y + Nj)e−iξ·(y+Nj))

∣∣∣∣ ≤ C1e
−C2ηN ∀x ∈] −N,N [2 ∀y ∈ Ω,(3.20)

for any ω2 ∈ [0, ω2
0 ] such that dist(ω2,Σp) ≥ η, we deduce that

∥∥∥∥
∫

Ω

∑
j∈Z2,j 	=0

(G(ω2;x, y + Nj)e−iξ·(y+Nj))φ(y) dy

∥∥∥∥
L2

ε(]−N,N [2)

≤ NC1e
−C2ηN ,

(3.21)

where the constants C1 and C2 are different from the previous ones but have the same
dependence. Recalling that ‖φ‖L2

εN
(]−N,N [2) = 1, we deduce the existence of N0 > 0

such that

‖φ‖L2
ε(R

2) ≥ ‖φ‖L2
ε(]−N,N [2) ≥

1

2
.(3.22)

On the other hand,

(Δ + ω2ε)u(x) =

∫
Ω

(Δx + ω2ε)G(ω2;x, y)φ(y)e−iξ·y dy

= χΩ(x)φ(x)e−iξ·x − (εp(x) − ε(x))ω2

∫
Ω

G(ω2;x, y)φ(y)e−iξ·y dy

= χΩ(x)φ(x)e−iξ·x − χΩ(x)(δε)ω2

∫
Ω

G(ω2;x, y)φ(y)e−iξ·y dy

= χΩ(x)φ(x)e−iξ·x

−χΩ(x)

∫
R2

G(ω2;x, y)
(
Δ + ω2εp

) (
φ(y)e−iξ·y) dy

+χΩ(x)

∫
R2

G(ω2;x, y)
(
Δ + ω2ε

) (
φ(y)e−iξ·y) dy

= χΩ(x)φ(x)e−iξ·x

−χΩ(x)

∫
R2

(
Δy + ω2εp

)
G(ω2;x, y)φ(y)e−iξ·y dy

+χΩ(x)

∫
R2

G(ω2;x, y)e−iξ·y ((∇− iξ) · (∇− iξ) + ω2ε
)
φ(y) dy

= χΩ(x)(δε)ω2

∫
R2

G(ω2;x, y)e−iξ·yφ(y)

⎛
⎝ ∑

j∈Z2,j 	=0

χΩ(y −Nj)

⎞
⎠ dy

= χΩ(x)(δε)ω2

∫
Ω

∑
j∈Z2,j 	=0

(G(ω2;x, y + Nj)e−iξ·(y+Nj))φ(y) dy.

Therefore, it follows from (3.20) that

∣∣Δu(x) + ω2εu(x)
∣∣ ≤ |(δε)|ω2

0 |Ω| 12C1e
−C2ηN ,

for any x ∈ Ω. Consequently,∥∥∥∥1

ε
Δu + ω2u

∥∥∥∥
L2

ε(R
2)

≤ |(δε)|ω2
0 |Ω|√

min(ε)
C1e

−C2ηN .(3.23)
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From (3.22), we readily get

dist(ω2,Σ) ≤ C1e
−C2ηN ,

where C1 and C2 are different from the previous ones but have the same dependence.
Since dist(ω2,Σp) ≥ η, we easily arrive at

dist(ω2,Ση
d) ≤ C1e

−C2ηN ,

which ends the proof of the theorem.
An immediate consequence of this theorem is the following corollary.
Corollary 3.1. Suppose that the perturbation has created defect eigenvalues.

Then, there exists η0 > 0 and N0 ∈ N such that Ση
d,N �= ∅ for η ≤ η0 and N ≥ N0.

Moreover, there exists N1 ∈ N depending only on η such that the number of
connected components of Ση

d,N ∩ [0, ω2
0 ] is at least equal to card

(
Ση

d ∩ [0, ω2
0 ]
)

and the
width of each component decays exponentially with N .

Proof. The proof follows immediately from the fact that each eigenvalue in Σξ,η
d,N

is continuous with respect to ξ, and

ΣN = ∪ξ∈BN Σξ
N .

Remark 3.2. These results are very important and practical for determining
the defect modes of 2-D photonic crystals. Indeed, after identifying the background
continuous spectrum by computing numerically Σξ

p for ξ ∈ B, we have the gaps and
we can have constants C1 and C2 such that

∣∣G(ω2;x, y)
∣∣ ≤ C1e

−C2dist(ω2,Σp)N .

Then we compute Σξ
N for some ξ ∈ BN , and from the eigenvalues that are not located

in Σp we deduce an approximation of the defect eigenvalues.

4. The TE polarization. In this section we deal with the TE polarization.
The same results hold, but the proofs are slightly different. This is a consequence of
the dependence of the domain of the acoustic operator on the inverse of the dielectric
function. So when we perturb εp into ε, the operator −∇. 1

εp
∇ is transformed into

−∇. 1ε∇ and we see clearly that, in general, these operators do not have the same
domain. So the proofs have to be adjusted.

4.1. Definition and preliminary results. First, we introduce some analogous
notations to those in Definition 2.1.

Definition 4.1. Let Ap be the self-adjoint operator defined by

Ap = −∇.
1

εp
∇, on L2(R2),

and let Σp denote its spectrum.
For ξ ∈ [0, 2π[2, we define Aξ

p on L2(R2/Z
2) by

Aξ
p = −(∇x − iξ) · 1

εp
(∇x − iξ),

and denote by Σξ
p its spectrum.
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We perturb the background periodic medium on a bounded domain as done in
(2.11).

It has been proved that the spectrum of Ap is absolutely continuous and that the
perturbation is relatively compact and so does not affect the essential spectrum of Ap.
The perturbation will then result in the addition of eigenvalues of finite multiplicity
to Σp.

We define εN , AN , Aξ
N , ΣN , and Σξ

N in the same manner as in section 3.1. To
avoid the problem of the dependence of the domain on ε, we introduce a new operator
that will have the same spectral properties as those of Ap.

Definition 4.2. Let Bp be the self-adjoint operator defined on L2
εp(R2)2 by

Bp = − 1

εp
∇∇·

For ξ ∈ [0, 2π[2, we define Bξ
p on L2

εp(R2/Z
2)2 by

Bξ
p = − 1

εp
(∇− iξ)(∇− iξ)·

We also define BN and Bξ
N analogously as done for Ap.

The operator Bp is a self-adjoint periodic differential operator on L2
εp(R2/Z

2)2

but is not elliptic since its kernel has infinite dimension. Actually, the kernel is the
subspace of divergence free vectors. We cannot apply the same technique as for Ap

to prove that the spectrum of Bξ
p is a set of positive eigenvalues that accumulate

at infinity and that the spectrum of Bp is an absolutely continuous spectrum with
band structure located in R

+. It is, however, possible to extend this operator into
a larger elliptic self-adjoint operator that will coincide with Bp on a subspace that
is complementary with the kernel of Bp (see [23]). We can deduce then that the
spectrum of Bp in R

+ \ {0} is absolutely continuous and that 0 is an eigenvalue with
infinite multiplicity. This technique is used to prove the band structure of the Maxwell
operator. Another way to characterize the structure of the spectrum of Bp is to relate
it to the spectrum of Ap. This is given by the following theorem.

Theorem 4.1. For any ξ ∈ [0, 2π[2, the spectra of Bξ
p, Bp, B

ξ
N , BN , and B are

Σξ
p ∪ {0}, Σp, Σξ

N ∪ {0}, ΣN , and Σ, respectively. Moreover,

(i) The operators Bξ
p and Bξ

N have exactly the same eigenvalues as Aξ
p and Aξ

N ,
respectively, except for 0 which is an eigenvalue of A0

p and A0
N of multiplicity 1 and

is not an eigenvalue of Aξ
p and Aξ

N when ξ �= 0 while it is an eigenvalue of Bξ
p and

Bξ
N for any ξ with infinite multiplicity.

(ii) The spectra of Bp and BN are absolutely continuous spectra in R
+ \ {0} and

0 is an eigenvalue of infinite multiplicity.
(iii) The operators A and B have the same absolutely continuous spectrum and

the eigenvalues have exactly the same multiplicity for A and B except for 0 that is an
eigenvalue of B with infinite multiplicity.

Proof. Let ξ ∈ [0, 2π[2 and ω2 ≥ 0. Suppose that either ξ �= 0 or ω2 �= 0 and that
ω2 is in the spectrum of Aξ

p. Then there exists φ ∈ L2(R2/Z
2) such that φ �= 0 and

(∇− iξ) · 1

εp
(∇− iξ)φ + ω2φ = 0.

We can easily see that since ξ and ω2 are not simultaneously equal to 0, (∇−iξ)φ �= 0.
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Let ψ =
1

εp
(∇− iξ)φ ∈ L2

εp(R2/Z
2)2. Then

(∇− iξ)(∇− iξ) · ψ + ω2εpψ = 0,

which means that ω2 is an eigenvalue of Bξ
p. Moreover, if φ1 and φ2 are two linearly

independent eigenvectors related to the same eigenvalue ω2 �= 0, then ψ1 = 1
εp

(∇ −
iξ)φ1 and ψ2 = 1

εp
(∇− iξ)φ2 are linearly independent.

We conclude that all the eigenvalues of Aξ
p except for the eigenvalue 0 of A0

p are

eigenvalues of Bξ
p. We will see that 0 is an infinite multiplicity eigenvalue of A0

p.

Conversely, let ω2 be an eigenvalue of Bξ
p and let ψ ∈ L2

εp(R2/Z
2)2 be such that

ψ �= 0 and satisfies

(∇− iξ)(∇− iξ) · ψ + ω2εpψ = 0.

Suppose that (∇ − iξ) · ψ = 0. Then, since ψ �= 0, we have ω2 = 0. We also obtain
that ∇ · (e−iξ·xψ) = 0, or, equivalently, that there exists α ∈ L2(R2/Z

2) such that

e−iξ·xψ = ∇× (αe−iξ·x),

where ∇× α = (∂2α,−∂1α). It follows that

ψ = ∇× α− i

(
ξ2
−ξ1

)
α.

Hence, 0 is an eigenvalue of Bξ
p with infinite multiplicity.

In the case where (∇− iξ) · ψ �= 0, let φ = (∇− iξ) · ψ ∈ L2(R2/Z
2). Then,

(∇− iξ) · 1

εp
(∇− iξ)φ + ω2φ = 0,

which means that ω2 is an eigenvalue of Aξ
p. We can also show that if ψ1 and ψ2 are

two linearly independent eigenvectors of Bξ
p related to the same eigenvalue ω2 �= 0,

then φ1 = (∇− iξ) · ψ1 and φ2 = (∇− iξ) · ψ2 are linearly independent.

The same proof holds for Aξ
N and Bξ

N and for the eigenvalues of A and B.
As a consequence of the above theorem, we can recover the properties of the

spectra of Aξ
N and AN by studying those of Bξ

N and BN to which we can apply
mainly the same technique as in the TM case since their domain does not depend
on ε.

To this end we need to give an analogous result to Lemma 2.1 for the operator
Bp.

Lemma 4.1. For any z �∈ Σp and l > 0 we have

‖χx,lR(z)χy,l‖ ≤
(

9

η

)
e(

√
2l/4)e−mz|x−y| ∀x, y ∈ R

2,(4.1)

with

mz =
η

4(2ε−1
− + |z| + η)

,(4.2)

where η = dist(z,Σp), ε− = minx∈R2 εp(x), and χx,l is the characteristic function of
the cube {y = (y1, y2) ∈ R

2 : |y1 − x1| < l
2 and |y2 − x2| < l

2}.
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Proof. The proof is exactly the same as the one for the Helmholtz operator which
uses a Combe–Thomas argument and can be found in [13], [14], [15].

Let Ba denote the operators formally given by

Ba = ea·xBpe
−a·x, a ∈ R

2,(4.3)

as the closed densely defined operators (uniquely) introduced by the corresponding
quadratic forms defined on C1

0 (R2) by

Ba[ψ] =

〈
∇ · (ea·xψ),

1

εp(x)
∇ · (e−a·xψ)

〉
=

〈
(∇ + a) · ψ, 1

εp(x)
(∇− a) · ψ

〉
.(4.4)

We also introduce the quadratic form Qa as

Qa[ψ] = Ba[ψ] − B0[ψ]

=

〈
a · ψ, 1

εp(x)
∇ · ψ

〉
−
〈
∇ · ψ, 1

εp(x)
a · ψ

〉

−
〈
a · ψ, 1

εp(x)
a · ψ

〉
.

Since ∣∣∣∣
〈
a · ψ, 1

εp(x)
∇ · ψ

〉∣∣∣∣ ≤ 1

2
|a|

(〈
ψ,

1

εp(x)
ψ

〉
+

〈
∇ · ψ, 1

εp(x)
∇ · ψ

〉)
,(4.5)

we have

|Qa[ψ]| ≤ |a|B0[ψ] + |a|(1 + |a|)ε−1
− ‖ψ‖2 ∀ψ ∈ C1

0 (R2).(4.6)

Then we require |a| < 1 and use Theorem VI.3.9 in [21] to conclude that Ba is a
closable sectorial form and define Ba as the unique m-sectorial operator associated
with it. If, in addition, z �∈ Σp and

Λ ≡ 2
∥∥(|a|(1 + |a|)ε−1

− + |a|Bp)(Bp − zI)−1
∥∥ < 1,(4.7)

we can conclude that z �∈ Σa (the spectrum of Ba) and

‖Ra(z) −R0(z)‖ ≤ 4Λ

(1 − Λ)2
‖R0(z)‖,(4.8)

where Ra(z) = (Ba − zI)−1.
Since

Λ = 2
∥∥(|a|(1 + |a|)ε−1

− + |a|z)(Bp − zI)−1 + |a|
∥∥

≤ 2|a|(((1 + |a|)ε−1
− + |z|)η−1 + 1)

≤ 2|a|((2ε−1
− + |z|)η−1 + 1),

it is sufficient to take

|a| < η

2(2ε−1
− + |z| + η)

,(4.9)
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to ensure Λ < 1. In fact, we take

|a| < mz =
η

4(2ε−1
− + |z| + η)

,(4.10)

so that we get Λ < 1
2 . It follows that

‖Ra(z)‖ ≤
(

1 +
4Λ

(1 − Λ)2

)
‖R0(z)‖ ≤ 9

η
.(4.11)

Now, let x0, y0 ∈ R
2, l > 0, and take

a =
mz

|x0 − y0|
(x0 − y0).

We have

‖χx0,lR0(z)χy0,l‖ = ‖χx0,le
−a·xRa(z)e

a·xχy0,l‖
= e−mz·|x0−y0|‖χx0,le

−a·(x−x0)Ra(z)e
a·(x−y0)χy0,l‖

≤ 9

η
e−mz·|x0−y0|‖χx0,le

−a·(x−x0)‖∞‖χy0,le
−a·(x−y0)‖∞.

We also notice that

‖χx0,le
±a·(x−x0)‖∞ ≤ e

l√
2
mz ,

and since mz ≤ 1
4 , the theorem is proved.

As a consequence, the matricial Green’s kernel of Bp has a similar exponential
decay as the Green’s kernel of Ap. Let ω2 �∈ Σp, we define the matricial Green’s kernel
K(ω2;x, y) as the solution to

∇∇ ·K(ω2;x, y) + ω2εpK(ω2;x, y) = δ(x− y)

(
1 0
0 1

)
.(4.12)

Here we shall impose an outgoing radiation condition on ∇ · K in order to ensure
uniqueness. As a direct consequence of the previous lemma the following result holds.

Corollary 4.1. For any ω2
0 > 0, there exist two positive constants C1 and C2,

depending only on ω2
0 > 0, such that for any ω2 �∈ Σp ∩ (0, ω2

0),

|K(ω2;x, y)| ≤ C1e
−C2dist(ω2,Σp)|x−y|, for |x− y| → +∞.(4.13)

Now we are ready to prove the analogous results to those concerning the TM
polarization.

4.2. Convergence of the “continuous spectrum.” As done for the TM po-
larization, we give an estimate of the perturbation brought to the continuous spectrum
of Ap by the supercell method.

Theorem 4.2. For any ω0 > 0 and N0 ∈ N, there exists C > 0, depending only
on ω0, N0 and Ω, such that

max
ω2∈∪k∈]−N+1,N−1[2∩N2Σ

ξ+kπ/N
p ∩[0,ω2

0 ]

dist(ω2,Σξ
N ) ≤ C

N2
,(4.14)
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for any N ≥ N0 and any ξ ∈ BN .

Proof. Let k ∈]−N + 1, N − 1[2∩N
2 and ξ ∈ BN . Let ω2 be in Σ

ξ+kπ/N
p ∩ [0, ω2

0 ].

If ω2 = 0, then necessarily ξ = 0 and k = 0 and in that case we know that 0 ∈ Σξ
N .

Let us consider now ω2 �= 0. From Theorem 4.1, we deduce that ω2 is in the

spectrum of B
ξ+kπ/N
p .

Since ξ + kπ/N ∈ B, there exists φ ∈ L2
εp(R2/Z

2)2 with unit norm such that

(
∇− i

(
ξ +

kπ

N

))(
∇− i

(
ξ +

kπ

N

))
· φ + ω2εpφ = 0.(4.15)

Let φ̃ be defined in L2
ε(R

2/2NZ
2)2 as

φ̃(x) = φ(x)e−i π
N k·x.(4.16)

For any 0 < C0 < 4, there exits an integer N0 independent of φ̃, such that for any
N > N0, we have ‖φ̃‖L2

ε(R
2/2NZ2)2 > C0N

2, and it satisfies the following equation:

(∇− iξ)(∇− iξ) · φ̃ + ω2εpφ̃ = 0,(4.17)

which can be written as

(∇− iξ)(∇− iξ) · φ̃ + ω2εφ̃ = −χΩ(δε)ω2φ̃.(4.18)

We prove then in the same way as done for the TM case that there exists an eigenvalue
ω2
ξ belonging to the spectrum of Bξ

N , that is Σξ
N ∪ {0}, satisfying

|ω2 − ω2
ξ | ≤

C

N2
,

since we considered ω2 �= 0, for N large enough ω2
ξ �= 0 and then ω2

ξ ∈ Σξ
N . This

means that

dist(ω2,Σξ
N ) ≤ C

N2
.

The theorem is then proved.

4.3. Convergence of the defect eigenvalues. Analogously to the TM polar-
ization, we give a characterization of the part of the spectrum ΣN corresponding to
the defect eigenvalues of Σ. We use the notations introduced in Definition 3.3. The
following proposition holds.

Proposition 4.1. For every gap ]a, b[ in Σp (0 < a < b) satisfying ]a, b[∩Σ = ∅,
there exists N1 ∈ N such that, for N ≥ N1, ΣN∩]a, b[= ∅.

Proof. Suppose that the proposition is false. Then for any N0 ∈ N there exists
N ≥ N0 and ω2

N ∈]a, b[∩ΣN . This means that ω2
N is in the spectrum of BN . Then

there exist ξN ∈ BN and φN ∈ L2
εN (R2/2NZ

2)2 with unit norm such that

(∇− iξN )(∇− iξN ) · φN + ω2
NεNφN = 0, in L2

εN (R2/2NZ
2)2.(4.19)

Now, define φ̃N in L2
ε(R

2) as

φ̃N (x) =

∫
Ω

K(ω2
N ;x, y)e−iξN ·yφN (y) dy.(4.20)
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Using φ̃N , we prove in a similar way as for Proposition 3.2 that

‖ 1
ε∇∇ · φ̃N + ω2

N φ̃N‖L2
ε(R

2)2

‖φ̃N‖L2
ε(R

2)2
≤ C1e

−C2N ,(4.21)

for some positive constants C1 and C2. Since ω2
N is away from 0, then

dist(ω2
N ,Σ) ≤ C1e

−C2N ,(4.22)

which leads to a contradiction.
Now we give the main result for the TE case about the convergence of the eigen-

values of the supercell corresponding to the defect.
Theorem 4.3. Suppose that the perturbation has created defect eigenvalues.

Then, there exists η0 > 0 and N0 ∈ N such that for any η ≤ η0 and N ≥ N0,

Σξ,η
d,N �= ∅ ∀ξ ∈ BN .

Moreover, for any ω2
0 > 0 and η ≤ η0, there exists two positive constants C1 and

C2 depending only on ω2
0 such that for any ξ ∈ BN ,

distH(Σξ,η
d,N ∩ [0, ω2

0 ],Ση
d ∩ [0, ω2

0 ]) ≤ C1e
−C2ηN .(4.23)

Proof. Since we deal with a part of the spectrum that is away from 0, the state-
ments are exactly the same when considering the spectra related to Bp instead of Ap.
The proof then becomes similar to the one of Theorem 3.2.

Note that the Corollary 3.1 holds for the TE polarization.

5. Numerical experiments. The numerical simulations presented in this sec-
tion are computed with the MIT Photonic-Bands (MPB) package [20]. We consider a
2-D photonic crystal in which the dielectric permittivity takes the values of 1 and 12.
The structure of the crystal is shown in Figure 5.1 where the dark area corresponds
to dielectric permittivity 12.

We investigate only the TE polarization. We compute the TE-spectrum of this
structure for the first 8 bands. This is shown in Figure 5.2 where we notice the
presence of two gaps between the first and the second bands and between the second
and the third bands. The singularities of the last band come from the fact that it
crosses the following band, which is not represented on the diagram.

Then we introduce a defect to this periodic structure by changing the dielectric
permittivity in one disc from 1 into 12. The corresponding 7×7 supercell is represented
in Figure 5.3. We compute the TE-spectrum in the supercell for a fixed wave number

Fig. 5.1. The periodic structure.
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Fig. 5.2. TE-spectrum of the periodic structure.

Fig. 5.3. The 7 × 7 supercell.

Table 5.1

Defect frequencies and relative difference with the 7 × 7 supercell.

Supercell size 3 × 3 5 × 5 7 × 7

Defect frequency 1 0.3706 0.6% 0.3687 0.05% 0.3685

Defect frequency 2 0.3574 0.3% 0.3563 ≤00.3% 0.3563

and for different sizes of the supercell (3,5,7). The results are shown in Figure 5.4.
The horizontal dashed lines delimit the gaps of the periodic medium.

We notice clearly the presence of two defect eigenvalues in the second gap. The
values of the defect frequencies and the relative difference with the 7 × 7 supercell
results are shown in Table 5.1.

The convergence of the continuous spectrum is in 1/N but the multiplicative
constant depends on the dispersion of the band considered (the differential of the
frequency with respect to the wave vector). This explains why the convergence in the
first band (the most dispersive) is the lowest.

In Figure 5.5 we plotted the defect frequencies against the wave number. In the
3× 3 supercell, the defect frequencies oscillate with an amplitude about 1% while the
oscillation is about 0.1% in the 5×5 supercell and about 0.05% in the 7×7 supercell.
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Fig. 5.4. TE-spectrum of the supercell.
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Fig. 5.5. Dependence of the defect frequencies on the wave number.
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Fig. 5.6. Energy distribution in the first defect mode.
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Fig. 5.7. Energy distribution in the second defect mode.

Fig. 5.8. Magnetic field distribution in the first defect mode.

Fig. 5.9. Magnetic field distribution in the second defect mode.

Finally, in Figures 5.6–5.9 we represent the energy distribution and the magnetic
field for the defect modes in the case of the 7 × 7 supercell.

6. Conclusion. In this paper we presented a rigorous proof of the convergence
of the supercell method. The convergence speed is related to the exponential decay
of the Green’s function. If (ω2

a, ω
2
b ) is a gap of the photonic crystal (ω2

a, ω
2
b belong

to the spectrum), then it was proved that for ω2 ∈ (ω2
a, ω

2
b ), the exponential decay of

the Green’s function is of the form

O
(

exp
(
− C

√
|ω2 − ω2

a||ω2 − ω2
b | |x|

))
.(6.1)

It follows that the convergence of the defect eigenvalues will be slower when they are
closer to the edges of the gap. This is not an important problem since these modes are
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useless. Actually, we are interested in the localization property of the defect modes
which is weak for such eigenvalues.

Finally, we remark that this method becomes very costly when looking for defects
lying over few bands. For example, if we look for a defect eigenvalue lying in a gap
between the fourth and the fifth band, when computing the spectrum of the 5 × 5
supercell, every band will contribute with 52 eigenvalues and the defect eigenvalue will
be the 101st eigenvalue which requires many calculations. We believe that it should be
possible to determine such eigenvalues in a faster way with integral operator methods.

REFERENCES

[1] H. Ammari and F. Santosa, Guided waves in a photonic bandgap structure with a line defect,
SIAM J. Appl. Math., 64 (2004), pp. 2018–2033.

[2] W. Axmann and P. Kuchment, An efficient finite element method for computing spectra of
photonic and acoustic band-gap materials. I. Scalar case, J. Comput. Phys., 150 (1999),
pp. 468–481.

[3] J. M. Barbaroux, J. M. Combes, and P. D. Hislop, Localization near bad edges for random
Schrödinger operators, Helv. Phys. Acta, 70 (1997), pp. 16–43.

[4] A. Bjarklev, Optical Fiber Amplifiers: Design and System Application, Artech House, Boston,
1993.

[5] J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Photonic crystals fibers: a
new class of optical waveguides, Optical Fiber Technol., 5 (1999), pp. 305–330.

[6] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley, New
York, 1983.

[7] J. M. Combes and L. Thomas, Asymptotic behavior of eigenfunctions for multiparticle
Schrödinger operators, Comm. Math. Phys., 34 (1973), pp. 251–270.

[8] S. J. Cox and D. C. Dobson, Band structure optimization of two-dimensional photonic crys-
tals in H-polarization, J. Comput. Phys., 158 (2000), pp. 214–224.

[9] D. C. Dobson, An efficient method for band structure calculations in 2D photonic crystals, J.
Comput. Phys., 149 (1999), pp. 363–376.

[10] D. C. Dobson, J. Gopalakrishnan, and J. E. Pasciak, An efficient method for band structure
calculations in 3D photonic crystals, J. Comput. Phys., 161 (2000), pp. 668–679.

[11] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,
Springer-Verlag, Berlin, 1983.

[12] A. Figotin and Y. A. Godin, The computation of spectra of some 2D photonic crystals, J.
Comput. Phys., 136 (1997), pp. 585–598.

[13] A. Figotin and A. Klein, Localization of light in lossless inhomogeneous dielectrics, J. Opt.
Soc. Amer. A, 15 (1998), pp. 1423–1435.

[14] A. Figotin and A. Klein, Localized classical waves created by defects, J. Statist. Phys., 86
(1997), pp. 165–177.

[15] A. Figotin and A. Klein, Midgap defect modes in dielectric and acoustic media, SIAM J.
Appl. Math., 58 (1998), pp. 1748–1773.

[16] A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic
media. I: Scalar model, SIAM J. Appl. Math., 56 (1996), pp. 68–88.

[17] A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic
media. II: 2D photonic crystals, SIAM J. Appl. Math., 56 (1996), pp. 1561–1620.

[18] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. Molding the Flow
of Light, Princeton University Press, Princeton, NJ, 1995.

[19] S. G. Johnson and J. D. Joannopoulos, Photonic Crystals. The Road from Theory to Prac-
tice, Kluwer Acad. Publ., Dordrecht, The Netherlands, 2002.

[20] S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for
Maxwell’s equations in a planewave basis, Optics Express, 8 (2001), pp. 173–190.

[21] T. Kato, Perturbation Theory for Linear Operators, Die Gundlehren der Math. Wis-
senschoften, Band 132, Springer-Verlag, New York, 1966.

[22] J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russel, Photonic band gap guidance
in optical fibers, Science, 282 (1998), pp. 1476–1478.

[23] P. Kuchment, The mathematics of photonic crystals, in Mathematical Modelling in Optical
Science, Bao, Cowsar, and Masters, eds., Frontiers Appl. Math. 22, SIAM, Philadelphia,
2001, pp. 207–272.



CONVERGENCE OF THE SUPERCELL METHOD 1201

[24] P. Kuchment and B. S. Ong, On guided waves in photonic crystal waveguides, Contemp.
Math., 3391 (2003), pp. 105–115.

[25] A. Morame, The absolute continuity of the spectrum of Maxwell operator in a periodic media,
J. Math. Phys., 41 (2000), pp. 7099–7108.

[26] N. A. Mortensen, Effective area of photonic crystal fibers, Optics Express, 10 (2002), pp. 341–
348.
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THE COMPUTATION OF CONICAL DIFFRACTION
COEFFICIENTS IN HIGH-FREQUENCY

ACOUSTIC WAVE SCATTERING∗

B. D. BONNER† , I. G. GRAHAM† , AND V. P. SMYSHLYAEV†

Abstract. When a high-frequency acoustic or electromagnetic wave is scattered by a surface
with a conical point, the component of the asymptotics of the scattered wave corresponding to
diffraction by the conical point can be represented as an asymptotic expansion, valid as the wave
number k → ∞. The diffraction coefficient is the coefficient of the principal term in this expansion
and is of fundamental interest in high-frequency scattering. It can be computed by solving a family of
homogeneous boundary value problems for the Laplace–Beltrami–Helmholtz equation (parametrized
by a complex wave number–like parameter ν) on a portion of the unit sphere bounded by a simple
closed contour �, and then integrating the resulting solutions with respect to ν. In this paper we
give the numerical analysis of a method for carrying out this computation (in the case of acoustic
waves) via the boundary integral method applied on �, emphasizing the practically important case
when the conical scatterer has lateral edges. The theory depends on an analysis of the integral
equation on �, which shows its relation to the corresponding integral equation for the planar Helmholtz
equation. This allows us to prove optimal convergence for piecewise polynomial collocation methods
of arbitrary order. We also discuss efficient quadrature techniques for assembling the boundary
element matrices. We illustrate the theory with computations on the classical canonical open problem
of a trihedral cone.

Key words. acoustic wave scattering, high-frequency asymptotics, diffraction coefficients, con-
ical points, lateral edges, boundary integral method, collocation, mesh grading, convergence
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1. Introduction. When an incident plane acoustic or electromagnetic wave is
scattered by a bounded impenetrable (three-dimensional) obstacle, the asymptotic
behavior of the scattered wave when the frequency is large is described by the classical
geometric theory of diffraction (GTD) [28]. The asymptotics of the scattered field
when the wave number k → ∞ is known from the GTD to be composed of a number
of components corresponding to “reflections” or “diffractions” by particular parts
of the boundary. Along with the component corresponding to simple reflection of
nongrazing incident waves at smooth parts of the obstacle, or a more complicated
grazing incidence which leads to asymptotics in the shadow [27] and special boundary-
layer asymptotics in the “penumbra” (see, e.g., [7] and the references therein), the
scattered wave’s asymptotics may also contain components arising from diffraction
by nonsmooth “singular” points of the scattering surface, such as edges or conical
points. From the GTD [28] (and its further developments), the principal parts of
those components are known to be described by the (diffracted component of the) far
field of waves scattered by the tangent cone at the singular point(s). This is due to the
so-called principle of localization (which is the essence of the GTD). Many authors
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have considered the problem of describing the asymptotics of the diffracted wave for
various “canonical” cones (see, e.g., [12, 15, 16, 11, 6] and the references therein).

This problem has been studied in detail when the obstacle is a cone with a smooth
lateral surface, and ideal boundary conditions are applied; see, e.g., [12, 6] and the ref-
erences therein, where explicit formulae for the principal asymptotics of the diffracted
wave were derived. (By “ideal” we mean pure Dirichlet or Neumann boundary con-
ditions in the acoustic case and perfectly conducting boundary conditions in the elec-
tromagnetic case. See [9, 2, 10] for some results on nonideal boundary conditions.)

For example, consider the scalar (acoustic) case, with an incident plane wave
U inc(x) = exp(−ikω0 ·x), with the point ω0 ∈ S2 (the unit sphere in R

3), describing
the direction of incidence. Then both the scattered wave Usc and the total wave
U := U inc +Usc satisfy the three-dimensional Helmholtz equation, (Δ+ k2)U = 0, in
the domain of propagation, and Usc satisfies an appropriate version of the radiation
conditions. The theory in [33, 4, 6] describes the behavior of the diffracted component
Udiff (x) of Usc(x) at any point x in the domain of propagation. Using spherical
coordinates centered at the conical point—x = rω with ω ∈ S2 and r > 0 denoting
the distance of x from the conical point—it follows from the general recipes of the
GTD that (with either Dirichlet or Neumann conditions imposed on the surface of
the scatterer) Udiff has the asymptotic representation

Udiff (x, k,ω0) = 2π
exp(ikr)

kr
f(ω,ω0) + O((kr)−2), k → ∞.(1.1)

Here the distribution f(ω,ω0), which is infinitely smooth everywhere except at the
so-called singular directions (where it is typically infinite), is the important diffrac-
tion coefficient (also known as the kernel of the scattering matrix) and describes the
intensity of the diffracted wave in the particular direction ω. (See, e.g., [6, 13] and
the references therein for precise descriptions of the distributional spaces.)

This paper deals with the numerical analysis and implementation of methods for
computing f(ω,ω0). Following [4] and [6], to obtain a formula for f , we take O to be
the vertex of the conical obstacle, Ξ (which is indicated by dotted lines in Figure 1),
and let M denote the portion of the unit sphere S2 which is exterior to Ξ. M is a
submanifold of S2 with boundary, which we denote by � (see Figure 1 again). Let
Δ∗ denote the Laplace–Beltrami operator on S2 and introduce the spherical Green’s
function g(ω,ω0, ν) on M (also known as a “spectral function”), satisfying

(Δ∗ + ν2 − 1/4)g(ω,ω0, ν) = δ(ω − ω0), ω,ω0 ∈ M and ν ∈ C ,(1.2)

where δ denotes the Dirac delta function and the differentiation on the left-hand side
is with respect to ω. As a function of ω, g is also required to satisfy a Dirichlet
or Neumann boundary condition on � (whichever is given in the original scattering
problem). Once g is known, the diffraction coefficient in (1.1) is then given by the
formula (see [33, 6])

f(ω,ω0) = lim
s→0+

i

π

∫
γ

exp(−iνπ − sν)g(ω,ω0, ν)νdν.(1.3)

The integrals in (1.3) are known to converge uniformly as s → 0+ away from the
singular directions; cf. [8]. The infinite integration contour γ in (1.3) has to be chosen
in the complex plane, so that the (positive) numbers

√
λj (where λj ranges over all

eigenvalues of the self-adjoint operator −Δ∗ + 1/4 on M , subject to the appropriate
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Fig. 2. Contour of integration.

boundary condition on �) lie on its right and also so that when Re(ν) → ∞, along
γ, Im(ν) → ±a for some constant a > 0 (see [6]). The function g(ω,ω0, ν) is known
from spectral theory to be analytic in ν, except for poles at ν =

√
λj , provided

ω �= ω0—see Figure 2.

Thus the computational procedure for realizing the asymptotic formula (1.1) re-
quires the following: (i) the computation of the Green’s function g(ω,ω0, ν) for all
required incidence directions ω0 and observation directions ω ∈ M and (ii) the com-
putation of the integral in (1.3) for sufficiently small positive s, by quadrature. Note
that (ii) in turn implies that g(ω,ω0, ν) must be evaluated for sufficiently many ν ∈ γ
to ensure an accurate answer.

The Green’s function g in (1.3) can be replaced (see [33, 4]) by its regular part
gr := g−g0, where g0 is the (known) fundamental solution for the operator (Δ∗+ν2−
1/4) on all of S2 (see section 2). Moreover, for certain configurations of ω,ω0 (which,
say, in the case of a smooth, fully illuminated, and convex cone corresponds to the



COMPUTATION OF CONICAL DIFFRACTION COEFFICIENTS 1205

direction of observation ω with no reflected wave [33, 4, 25]—see (2.1) for a precise
statement), the right-hand side of (1.3) can be transformed by deforming the contour
of integration γ onto the imaginary axis and then interchanging the limit with the
integral. These modifications yield the simpler formula

f(ω,ω0) = − i

π

∫ ∞

−∞
exp(τπ)gr(ω,ω0, iτ)τdτ,(1.4)

with the integral convergent absolutely. In fact it can be shown (see [13, section 6.4]
and the references therein) that

exp(τπ)gr(ω,ω0, iτ) ∼
{

exp(α1τ) , τ → −∞ ,
exp(−α2τ) , τ → ∞ ,

(1.5)

where α1, α2 are positive numbers depending on the location of ω and ω0, provided
ω and ω0 satisfy the technical condition (2.1) below.

The configurations of ω and ω0 for which the formulation (1.4) is possible are
described by a geometrical condition (see [6, section 2.3]). All our computations in
this paper are for cases in which (1.4) is valid. In other cases one must compute the
limit (1.3) as it stands, leading to a more complicated approximation problem directly
employing (1.3) with sufficiently small s [6].

In [4] and [6] a numerical method was proposed for the computation of (1.4)
and (1.3). The boundary integral method was used to compute gr. (gr satisfies the
homogeneous PDE (Δ∗ + ν2 − 1/4)gr(ω,ω0, ν) = 0, on the manifold M , subject to
an inhomogeneous boundary condition on its boundary �.) This was implemented in
[4] and [6] in the case when Ξ is a smooth cone (i.e., � is a smooth contour) using,
in effect, a simple trapezoidal-Nyström-type integral equation solver combined with
the trapezoidal rule for computing (1.3) or (1.4). The approach of [33, 4, 6] was also
extended to the electromagnetic case [34], which was implemented numerically in [5].

The papers [4] and [6] contained no convergence analysis of the method and,
moreover, dealt only with the case of a smooth cone Ξ. The case of a cone with lateral
edges is of fundamental importance in both the high-frequency theory of diffraction
(where it is one of the unsolved canonical problems [28]) and in practice, where high-
frequency scattering by antennas or corners of buildings is a key problem in microwave
engineering. In such cases � contains corners.

Although the integral equation method reduces the computation of g(ω,ω0, ν) to
a computation on the (one-dimensional) contour � on the surface of the unit sphere S2,
this equation has to be solved many times for different values of ν (and also more times
if different ω and ω0 are to be considered). Moreover, as we shall see, the evaluation
of the kernel in the integral equation arising from the spherical PDE (1.2) is much
more costly than for typical boundary integral equations in planar scattering theory.
Thus there is strong practical demand for the development of an efficient algorithm,
in particular one which solves the integral equation with the highest accuracy and the
minimal number of kernel evaluations. Thus the purposes of this paper are as follows:

(i) To propose an efficient method for computing diffraction coefficients which is
robust even when the cone Ξ has lateral edges and to analyze its convergence.

(ii) To minimize the number of kernel evaluations required in the implementation.
(iii) To demonstrate its use in the computation of diffraction coefficients in several

sample cases.
The plan of the paper is as follows. In section 2 we describe briefly the boundary

integral method for computing gr. This leads to nonstandard integral equations posed
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on the spherical contour �, which possibly contains corners. In section 3 we obtain
the important properties of the integral operators which arise, including the case
when the cone Ξ has lateral edges. In section 4 we describe a flexible numerical
method based on collocation with piecewise polynomials and prove its convergence as
a means of approximating gr(ω,ω0, ν). Finally in section 5 we provide computations
of diffraction coefficients for several sample problems. We also give in section 5 outline
descriptions of various technical issues such as the computation of the contour integral
in (1.3) and the evaluation of the kernel which appears in the integral operator.
In particular, we note that because of the exponential decay (1.5), the domain of
integration in (1.4) can be replaced by [−N1, N2] with Ni = O(r log(n)) at the cost of
an error of O(1/nr). Therefore very large values of Ni (equivalently very large values
of |τ |) are not required in our computations.

Although this paper considers only diffraction coefficients for acoustic scatter-
ing, the related and more difficult electromagnetic case is described in [13] and the
references therein.

2. Formulae for the conical diffraction coefficients. Throughout the paper
we shall assume that the cone Ξ has a finite number of smooth (analytic) faces, joined
at lateral edges, and that the angle between pairs of adjacent faces lies in (0, 2π) (i.e.,
cuspoid edges are excluded). As in [13], we also assume that M and S2\M are simply
connected subsets of S2 and that the contour � is a simple closed curve, consisting of a
finite number of analytic arcs, also joined at noncuspoid corners. (For much of what
we are going to do below, weaker smoothness assumptions away from edges would
suffice, but we suppress this extra generality in the interest of readability.)

For ω,ω′ ∈ S2 we define θ(ω,ω′) to be the geodesic distance between two points
ω and ω′ on the sphere S2 (i.e., cos θ(ω,ω′) = ω · ω′, 0 ≤ θ(ω,ω′) ≤ π). The
configurations of ω and ω0 which ensure that (1.3) can be rewritten as (1.4) can now
be described (for a convex fully illuminated cone) by the following condition (see also
[33]):

θ1(ω,ω0) := min
ω′∈�

{θ(ω,ω′) + θ(ω′,ω0)} > π.(2.1)

When θ1(ω,ω0) ≤ π the formula (1.3) may either be undefined on the so-called
singular directions or have to be interpreted in an appropriate distributional sense;
for more details see [6, 25, 8]. We will not discuss this here, but the reader may refer to
[6] and [13] for more detail, including the case when the cone is not fully illuminated.

As mentioned in section 1, the regular part gr of the Green’s function g in (1.2)
is defined by

gr(ω,ω0, ν) = g(ω,ω0, ν) − g0(ω,ω0, ν),(2.2)

where g0 is given by

g0(ω,ω′, ν) = − 1

4 cos(πν)
Pν− 1

2
(− cos θ(ω,ω′)),(2.3)

with Pk denoting the Legendre special function of the first kind of index k (see, e.g.,
[1, p. 332]). It is well known (see, e.g., [33, 4, 6]) that g0 satisfies

(Δ∗ + ν2 − 1/4)g0(ω,ω′, ν) = δ(ω − ω′) , ω,ω′ ∈ S2(2.4)

(where the differentiation is with respect to ω); i.e., it is the fundamental solution for
the operator Δ∗ + ν2 − 1/4 on all of the sphere S2. Comparing (2.4) and (1.2), we
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see that for each ω0 ∈ M and ν ∈ C, the function gr, as a function of ω, satisfies the
homogeneous PDE (see [4, 6])

(Δ∗ + ν2 − 1/4)gr(ω,ω0, ν) = 0, ω ∈ M ,(2.5)

subject to the boundary condition on �,

either gr(ω,ω0, ν) = −g0(ω,ω0, ν), the Dirichlet case
or (∂gr/∂m)(ω,ω0, ν) = −(∂g0/∂m)(ω,ω0, ν), the Neumann case

}
for all ω ∈ � .

(2.6)
The boundary condition to be imposed on gr is inherited from the boundary condition
imposed on the original scattering problem. In (2.6) and throughout the paper, we
make use of the following notational convention.

Notation 2.1. With each ω ∈ �, not a corner point, we associate a unit normal
m = m(ω) to � at ω which lies in the plane tangent to the unit sphere S2 at ω
and is oriented outward from M . We also associate with ω the unit tangent to � at ω
denoted by t = t(ω), oriented so that t(ω), m(ω), ω form an orthogonal right-handed
triple (see Figure 3). (We usually suppress the dependence on ω from the notation
for simplicity.) Then ∂/∂m denotes the (outward) normal derivative with respect to
ω ∈ �. For any other point ω′ in �, we analogously define the unit normal and tangent
vectors m′ and t′ and normal derivative ∂/∂m′.

The problem (2.5), (2.6) can now be solved by an integral equation method on
�. Here we follow the classical indirect approach, e.g., [3], adapted to the present
problem in [4] and [6], although we note that a direct approach based on Green’s
formula would also be possible.

In the Dirichlet case, we seek the solution in the form of a double layer potential,

gr(ω,ω0, ν) =

∫
�

∂g0

∂m′ (ω,ω′, ν)u(ω′, ν)dω′, ω ∈ M .(2.7)

Taking limits as ω tends to the contour � in (2.7) and using the jump conditions of
the double layer potential and the Dirichlet boundary condition from (2.6), we obtain
the second-kind integral equation:

1

2
u(ω, ν) +

∫
�

∂g0

∂m′ (ω,ω′, ν)u(ω′, ν)dω′ = −g0(ω,ω0, ν)(2.8)

for all smooth points ω ∈ l. This equation is given in [4]. A rigorous justification
for potential theory on manifolds with smooth boundaries is given in a very general
context in [19]. For corner points the factor 1/2 has to be replaced by a factor related
to the corner angle; cf. [14]. However, since we will estimate errors for our boundary
integral equations in L2-type spaces, these points are unimportant. Notice that since
ω ∈ � and ω0 ∈ M , the right-hand side (2.8) is never singular.

Analogously, the Neumann problem is solved with the single layer potential:

gr(ω,ω0, ν) =

∫
�

g0(ω,ω′, ν)u(ω′, ν)dω′, ω ∈ M .(2.9)

Taking the normal derivative and fitting the boundary condition leads to

−1

2
u(ω, ν) +

∫
�

∂g0

∂m
(ω,ω′, ν)u(ω′, ν)dω′ = −∂g0

∂m
(ω,ω0, ν) .(2.10)
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We can write (2.8), (2.10) (almost everywhere) in operator form as

(
I + LB

)
u = bB , with (LBu)(ω) =

∫
�

LB(ω,ω′)u(ω′)dω′ , B = D,N,(2.11)

with solution u(ω, ν) abbreviated by u(ω). In the Dirichlet case the data are

bD(ω) := −2g0(ω,ω0, ν) , LD(ω,ω′) := 2
∂g0

∂m′ (ω,ω′, ν) ,(2.12)

and in the Neumann case,

bN (ω) := 2
∂g0

∂m
(ω,ω0, ν), LN (ω,ω′) := −2

∂g0

∂m
(ω,ω′, ν) .(2.13)

Although the operators in (2.11), with the kernels from (2.12) or (2.13), are not
classical, we will show that their properties are analogous to those of the standard
layer potentials for the Helmholtz equation on the boundary of a planar domain.

3. Integral operators.

3.1. Preliminary results. The aim of this subsection is to identify the principal
parts of the kernels LD and LN . This is done in Theorem 3.3. To prove this we need
two technical lemmas.

Lemma 3.1. Using Notation 2.1, we have

LD(ω,ω′) =
1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ω,ω′)) t′.(ω ∧ ω′) ,(3.1)

LN (ω,ω′) = − 1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ω,ω′)) t.(ω′ ∧ ω) .(3.2)

Proof. By employing spherical polar coordinates ω′=(sin θ′cosφ′, sin θ′sinφ′, cos θ′)T,
for any v : S2 → R, we have the representation

∂v

∂m′ (ω
′) = ∇ω′ {v ◦ ω′} · m′ ,

where ∇ω′ is the spherical gradient

∇ω′ =
1

sin θ′
eφ′

∂

∂φ′ + eθ′
∂

∂θ′
,

with

eφ′ = (− sinφ′, cosφ′, 0)T and eθ′ = (cos θ′ cosφ′, cos θ′ sinφ′,− sin θ′)T .

Since cos θ(ω,ω′) = ω · ω′, we have

∂

∂m′Pν− 1
2
(− cos θ(ω,ω′)) = −P ′

ν− 1
2
(− cos θ(ω,ω′)) ∇ω′ {ω · ω′} · m′.(3.3)

Now an easy calculation shows that

∇ω′

{
ω · ω′

}
· m′ =

{
(ω · eφ′) eφ′ + (ω · eθ′) eθ′

}
· m′ = ω · m′.
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Thus from (3.3), (2.3), and (2.12), we have

LD(ω,ω′) =
1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ω,ω′)) ω · m′ .(3.4)

Since t′, m′, and ω′ form a right-handed triple, we have m′ = ω′ ∧ t′, and so

LD(ω,ω′) =
1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ω,ω′)) ω · (ω′ ∧ t′) ,

which is equivalent to (3.1) by cyclic permutation. Since LN (ω,ω′) = −LD(ω′,ω),
(3.2) follows easily.

The next lemma identifies the asymptotic behavior of P ′
ν+ 1

2

(x) for x close to −1.

In Theorem 3.3, we will combine this with (3.1), (3.2) to identify the behavior of LD

and LN near ω = ω′.
Lemma 3.2. For all k ∈ C, Pk(x) is an analytic function of x ∈ (−1, 3). More-

over, for x ∈ (−3, 1),

Pk(x) = ak(x) log

(
1 + x

2

)
+ bk(x),

where ak(x) and bk(x) are both analytic on (−3, 1), with

ak(−1) =
sin(πk)

π
and bk(−1) =

sin(πk)

π
{ψ(k) + ψ(−k − 1) + 2γ},

where ψ(k) = −γ −
∑∞

r=1(1/(k + r) − 1/r) and γ is the Euler constant [1, p. 255].
Proof. From [1, equation (8.1.2)] we get the following representation of Pk:

Pk(x) = F

(
−k, k + 1; 1;

1 − x

2

)
,(3.5)

where F is the hypergeometric function. It follows from [1, p. 556] that F (−k, k +
1; 1; z) is a convergent power series for −1 ≤ z < 1. Therefore, by (3.5), Pk(x)
is analytic for x ∈ (−1, 3) and in particular for x ∈ (−1, 1). This proves the first
statement in the theorem.

Furthermore, from [24, Chapter V, equation (53)] we have that

Pk(x) = ak(x) log

(
1 + x

2

)
+ bk(x),

where

ak(x) =
sin(πk)

π
F (−k, k + 1; 1; (1 + x)/2)(3.6)

and

bk(x) =
sin(πk)

π

{
[ψ(k) + ψ(−k − 1) + 2γ]F (−k, k + 1; 1; (1 + x)/2)

+
∞∑
r=1

B(k, r)φ(k, r)

(
1 + x

2

)r}
.(3.7)
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Here

B(k, r) =
(−k) . . . (−k + r − 1)(k + 1) . . . (k + r)

(r!)2

and

φ(k, r) =

r∑
j=1

{
2k(k + 1) + j

(j2 − k2 − k − j)j

}
.

As remarked above, F (−k, k + 1; 1; (1 + x)/2) is a convergent power series for
−1 ≤ (1+x)/2 < 1, so ak(x) is analytic for x ∈ (−3, 1). Moreover ak(−1) = sin(πk)/π
follows from [1, p. 556]).

Turning to bk, it is clear that the first term on the right-hand side of (3.7) is also
analytic for x ∈ (−3, 1) and that the assertions about bk will then follow, provided
the domain of convergence of the power series

∞∑
r=1

B(k, r)φ(k, r)

(
1 + x

2

)r

(3.8)

can be shown to be (−3, 1). To obtain this result, note that limr→∞ φ(k, r) is clearly
finite. If limr→∞ φ(k, r) �= 0, then it follows that |φ(k, r + 1)/φ(k, r)| → 1 as r → ∞.
Then

lim
r→∞

|B(k, r + 1) φ(k, r + 1)((1 + x)/2)r+1|
|B(k, r) φ(k, r)((1 + x)/2)r|

=
∣∣∣1 + x

2

∣∣∣ lim
r→∞

∣∣∣ (−k + r)(k + r + 1)

(r + 1)2
φ(k, r + 1)

φ(k, r)

∣∣∣ =
∣∣∣1 + x

2

∣∣∣,(3.9)

and (3.8) is convergent for x ∈ (−3, 1) by the ratio test. However, if limr→∞ φ(k, r) =
0, then, for large enough r, |φ(k, r)| < 1. Since (3.9) also shows that the power series∑∞

r=1 B(k, r)((1 + x)/2)r converges for x ∈ (−3, 1), the comparison test then ensures
that (3.8) also converges for x ∈ (−3, 1).

We now combine Lemmas 3.1 and 3.2 to obtain the following theorem.
Theorem 3.3. Recall Notation 2.1.
(i) For ω,ω′ ∈ �,

LD(ω,ω′) = −t′ · (ω ∧ ω′)

π|ω − ω′|2 + FD(ω,ω′),(3.10)

LN (ω,ω′) =
t · (ω′ ∧ ω)

π|ω − ω′|2 + FN (ω,ω′),(3.11)

where FD and FN are bounded functions on �× �.
(ii) When ω is not a corner point of �,

t′ · (ω ∧ ω′)

π|ω − ω′|2 and
t · (ω′ ∧ ω)

π|ω − ω′|2(3.12)

are both C∞ functions of ω′ in a neighborhood of ω and, for B = D or N ,

FB(ω,ω′) = O(|ω − ω′|2 log |ω − ω′|) as ω′ → ω .(3.13)
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Proof. We give the proof for LD; the argument for LN is analogous.
(i) From Lemma 3.2 with k = ν − 1/2, we have, for x ∈ (−1, 1),

P ′
ν− 1

2
(x) =

− cos(πν)

π

{
1

x + 1

}
+ r(x),(3.14)

where

r(x) =

[
aν− 1

2
(x) − aν− 1

2
(−1)

x− (−1)
+ a′ν− 1

2
(x) log

(
x + 1

2

)
+ b′ν− 1

2
(x)

]
.(3.15)

Also note that since ω,ω′ ∈ S2, we have

− cos θ(ω,ω′) + 1 = −ω.ω′ + 1 =
1

2
|ω − ω′|2 .(3.16)

Hence

P ′
ν− 1

2
(− cos θ(ω,ω′)) = − 2 cos(πν)

π|ω − ω′|2 + r(−1 + |ω − ω′|2/2).(3.17)

Therefore combining (3.1) with (3.15) and (3.17), we obtain the formula (3.10),
where

FD(ω,ω′) =
1

2 cos(πν)
r(−1 + |ω − ω′|2/2) t′ · (ω ∧ ω′) .(3.18)

To complete the proof of (i) we now show that FD is bounded on � × �. To do
this, choose a fixed δ satisfying 0 < δ < π/2 and first consider ω,ω′ in the range

0 ≤ θ(ω,ω′) ≤ π − δ .(3.19)

Then there exists ε > 0 such that −1 ≤ − cos θ(ω,ω′) ≤ 1 − ε, and hence it follows
from (3.16) that

−1 ≤ −1 + |ω − ω|2/2 ≤ 1 − ε.(3.20)

Substituting (3.15) into (3.18) we obtain

2 cos(πν)FD(ω,ω′)

= t′ · (ω ∧ ω′)

{
aν− 1

2
(−1+|ω − ω′|2/2)− aν− 1

2
(−1)

|ω − ω′|2/2 + b′ν− 1
2
(−1+|ω − ω′|2/2)

}
(3.21)

+ a′ν− 1
2
(−1 + |ω − ω′|2/2)

{
t′ · (ω ∧ ω′) log(|ω − ω′|2/4)

}
.(3.22)

Recall from Lemma 3.2 that aν− 1
2

and b′
ν− 1

2

are both analytic on (−3, 1). Since

|ω − ω′|2 is a smooth function of ω,ω′, it follows that the terms inside the braces in
(3.21) are smooth functions of ω,ω′ ∈ �. Moreover

|t′ · (ω ∧ ω′)| ≤ |t′||ω ∧ ω′| = sin θ(ω,ω′) = {1 − cos2 θ(ω,ω′)}1/2

= {1 − (ω · ω′)2}1/2 = {(1 − ω · ω′)(1 + ω · ω′)}1/2

=
1

2
|ω − ω′||ω + ω′|,(3.23)
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which ensures the boundedness of (3.21). The boundedness of (3.22) follows in a
similar way, using (3.23) and the analyticity of a′

ν− 1
2

on (−3, 1).

To complete the proof, consider the case when (3.19) fails, i.e., π−δ ≤ θ(ω,ω′) ≤
π. For this case recall from (3.5) that Pν−1/2(x) is analytic for x ∈ (−1, 3). Therefore
(3.1) implies that LD(ω,ω′) is bounded for π − δ ≤ θ(ω,ω′) ≤ π. Thus setting

FD(ω,ω) = LD(ω,ω′) +
t′ · (ω ∧ ω′)

π|ω − ω′|2

ensures that (3.10) holds, with FD(ω,ω) bounded for π − δ ≤ θ(ω,ω′) ≤ π.
(ii) Now suppose that ω is not a corner point and that ω′ is sufficiently close to ω

so as to ensure that there is no corner point between ω and ω′ on �. Let ρ denote an
arclength parameterization of � from any fixed reference point; then setting ω = ρ(s),
the unit tangent t at ω is given by t = ρs(s), the derivative of ρ(s). Then for ω′ near
ω with ω′ = ρ(σ), we have

|ω − ω′|/|s− σ| = O(1) and |s− σ|/|ω − ω′| = O(1) as σ → s.(3.24)

Also,

ω ∧ ω′ = ρ(s) ∧ ρ(σ) = (ρ(s) − ρ(σ)) ∧ ρ(σ).

Hence

t′ · (ω ∧ ω′) = ρs(σ) · ((ρ(s) − ρ(σ) − (s− σ)ρs(σ)) ∧ ρ(σ)).(3.25)

Since |ω−ω′|2 = (ρ(s)−ρ(σ))·(ρ(s)−ρ(σ)), it follows that (3.12) are smooth functions
as σ → s (i.e., ω′ → ω). Moreover (3.24) and (3.25) imply that |t′ · (ω ∧ ω′)| =
O(|ω − ω′|2) and so (3.13) follows from (3.21) and (3.22).

We see from Theorem 3.3 that if there are no corner points on �, then LD and
LN are bounded (in fact continuous), so in both the Dirichlet and Neumann cases
the integral operator LB will be compact on most standard spaces, e.g., C(�), L2(�).
Then standard stability proofs for the numerical method will follow. However, if �
does contain a corner, compactness is lost and so another approach is needed to show
stability of a numerical method. The approach we will use is to compare the integral
operator LB with a corresponding plane Laplace integral operator KB and then use
stability results which are known for the planar Laplace problem. This is done in the
following subsection.

3.2. Relation to planar Laplace case. To simplify the presentation, we as-
sume that the contour � has one corner which we will denote by the point ωc ∈ S2.
The case of several corners is obtained analogously. Without loss of generality, we
assume ωc = (0, 0, 1)T . Suppose that ρ(s) travels around � with M on the right-hand
side (as indicated by the arrow in Figure 3), as s travels from −Λ to Λ, where 2Λ is
the length of �. Then we can introduce the wedge w in the tangent plane to S2 at ωc

as follows.
Definition 3.4. The wedge w is defined to be the union of two straight line

segments: w = w− ∪ w+, where

w− = {(0, 0, 1)T + st−c : s ∈ [−Λ, 0]}, w+ = {(0, 0, 1)T + st+
c : s ∈ [0,Λ]},

and t±c = lims→0± ρs(s) (see Figure 3). The angle between the tangents t+
c and −t−c

is measured “counterclockwise” about the z axis (when viewed from outside the sphere)
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λπ
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ω
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n m

t

ωc

Fig. 3. Wedge w and contour �.

from w+ to w− and is denoted λπ, where λ ∈ (0, 2)\{1}. Without loss of generality
we choose our coordinate system so that t+

c is in the direction of the x axis. Each
x = st±c ∈ w± can be associated with a unique ω = ρ(s) ∈ �, and with a unit normal
m at ω ∈ � orientated outward from M . To x we associate a unit normal n to w in
the plane tangent to S2 at ωc, orientated so that n ·m → 1 as s → 0. (See Figure 3.)

The fundamental solution of Laplace’s equation on the plane is (1/2π) log |x−x′|.
Using this we introduce the operators

(KBu)(x) =

∫
w

KB(x,x′)u(x′)dx′ , B = D,N .

Analogously to (2.12), (2.13), the Dirichlet and Neumann kernels are

KD(x,x′) :=
1

π

∂

∂n′ {log |x − x′|} = − (x − x′) · n′

π|x − x′|2 ,(3.26)

KN (x,x′) := − 1

π

∂

∂n
{log |x − x′|} = − (x − x′) · n

π|x − x′|2 .(3.27)

Here n,n′ are unit normals to ω at x,x′ ∈ w, as described in Definition 3.4.
Theorem 3.5 will show that the principal singularity of LB near ω = ω′ = ωc

is the same as KB near x = x′ = ωc. This is useful because the properties of the
integral operator KB with kernel KB are well understood [17, 14, 20, 22, 31].

To prepare for Theorem 3.5, we use the arclength parameterization, ρ(σ), of �,
introduced above, to rewrite (2.11) on [−Λ,Λ]. Putting ω = ρ(s) and ω′ = ρ(σ) we
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obtain

(I + L̂B)û = b̂B , with (L̂Bû)(s) =

∫ Λ

−Λ

L̂B(s, σ)û(σ)dσ, s ∈ [−Λ,Λ],(3.28)

where û(s) = u(ρ(s)). In the case of Dirichlet boundary data, using (2.12) and Lemma
3.1 we have

b̂D(s) := −2g0(ρ(s),ω0, ν) and

L̂D(s, σ) :=
1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ρ(s),ρ(σ))) ρs(σ) · (ρ(s) ∧ ρ(σ)).(3.29)

(Note that since ρ is the arclength parameterization, the Jacobian satisfies |ρs(σ)| = 1
and therefore does not appear explicitly in the kernel.) For Neumann boundary data,
using (2.13) and Lemma 3.1 we obtain

b̂N (s) := 2
∂g0

∂m(s)
(ρ(s),ω0, ν) and

L̂N (s, σ) := − 1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ρ(s),ρ(σ))) ρs(s) · (ρ(σ) ∧ ρ(s)),(3.30)

where m(s) is the corresponding normal to � at ρ(s).
If we now denote the arclength parameterization of w by r, with r(−Λ) =

(0, 0, 1)T −Λt−c , r(0) = ωc, and r(Λ) = (0, 0, 1)T +Λt+
c , then we can also rewrite KB

as an operator:

(K̂Bû)(s) =

∫ Λ

−Λ

K̂B(s, σ)û(σ)dσ, s ∈ [−Λ,Λ] , B = D,N ,

where, from (3.26), (3.27),

K̂D(s, σ):= − (r(s) − r(σ)) · n(σ)

π|r(s) − r(σ)|2 ,(3.31)

K̂N (s, σ):= − (r(s) − r(σ)) · n(s)

π|r(s) − r(σ)|2(3.32)

for the Dirichlet and Neumann problems, respectively. Here n(σ) is the normal to w

at x = r(σ). The following theorem shows that K̂B contains the principal singularity

of L̂B near the corner point s = σ = 0 in both the Dirichlet and Neumann cases,
B = D,N .

Theorem 3.5. Let B = D or N . Then for (s, σ) ∈ [−Λ,Λ]× [−Λ,Λ], L̂B(s, σ)−
K̂B(s, σ) is a bounded function.

Proof. We give the proof for the case B = D. The case B = N is analogous.
First we consider the kernel K̂D. From Definition 3.4 the parametric equation, r, for
w is given by

r(σ) =

{
(−σ cos(λπ),−σ sin(λπ), 1)T , σ ∈ [−Λ, 0],
(σ, 0, 1)T , σ ∈ [0,Λ].

(3.33)

Notice that if −Λ ≤ s, σ ≤ 0 or 0 ≤ s, σ ≤ Λ, then r(s) and r(σ) lie on the same

arm of w, and so it follows from (3.31) that K̂D(s, σ) = 0 and, by Theorem 3.3(ii),
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L̂D(s, σ) is bounded. So we have to consider only the case when s and σ are on
different sides of 0.

First consider the case −Λ ≤ s ≤ 0 ≤ σ ≤ Λ. Then (3.33) implies that r(s) −
r(σ) = (−s cos(λπ)−σ,−s sin(λπ), 0)T and n(σ) = (0, 1, 0)T . Therefore (r(s)−r(σ))·
n(σ)= −s sin(λπ) and |r(s) − r(σ)|2= s2 + 2sσ cos(λπ) + σ2. So from (3.31),

K̂D(s, σ) =
1

π

s sin(λπ)

(s2 + 2sσ cos(λπ) + σ2)
, −Λ ≤ s ≤ 0 ≤ σ ≤ Λ.(3.34)

A similar calculation shows analogously that

K̂D(s, σ) = − 1

π

s sin(λπ)

(s2 + 2sσ cos(λπ) + σ2)
, −Λ ≤ σ ≤ 0 ≤ s ≤ Λ.(3.35)

Now we turn our attention to the kernel, L̂D(s, σ). Using Taylor’s theorem we
can write the parameterization ρ as

ρ(σ) =

{
r(σ) + σ2(α1(−σ), β1(−σ), γ1(−σ))T , σ ∈ [−Λ, 0],
r(σ) + σ2(α2(σ), β2(σ), γ2(σ))T , σ ∈ [0,Λ],

(3.36)

where αi(s), βi(s), and γi(s) are smooth functions on [0,Λ] for i = 1, 2. Thus, for
−Λ ≤ s ≤ 0 ≤ σ ≤ Λ, we have, from (3.36),

ρ(s) ∧ ρ(σ) = (−s sin(λπ), s cos(λπ) + σ, 0)T + O(max{|s|, |σ|}2)

as max{|s|, |σ|} → 0. Hence with ω = ρ(s) and ω′ = ρ(σ), we have

t′ = ρs(σ) = (1, 0, 0)T + O(|σ|) ,(3.37)

−t′ · (ω ∧ ω′) = s sin(λπ) + O(max{|s|, |σ|}2) ,

and |ω − ω′|2 = s2 + 2sσ cos(λπ) + σ2 + O(max{|s|, |σ|}3)(3.38)

as max{|s|, |σ|} → 0. Therefore we have, from (3.10),

L̂D(s, σ) =
sin(λπ)

π

s + η2(s, σ)

s2 + 2sσ cos(λπ) + σ2 + η3(s, σ)
+ F̂D(s, σ),

where F̂D(s, σ) = FD(ρ(s),ρ(σ)) and

ηi(s, σ) = O(max{|s|, |σ|}i), i = 2, 3.(3.39)

Hence, for −Λ ≤ s ≤ 0 ≤ σ ≤ Λ,

(L̂D − K̂D)(s, σ) =
sin(λπ)

π

{
s + η2(s, σ)

s2 + 2sσ cos(λπ) + σ2 + η3(s, σ)

− s

s2 + 2sσ cos(λπ) + σ2

}
+ F̂D(s, σ),(3.40)

which is clearly continuous for (s, σ) �= (0, 0).

In order to show that (L̂D − K̂D)(s, σ) is bounded near (s, σ) = (0, 0) we need
to show that the limit (as (s, σ) → (0, 0)) of the first term on the right-hand side of
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(3.40) is bounded. We do this for 0 < −s ≤ σ. The case 0 < σ ≤ −s is analogous. To
obtain the result, write

s + η2(s, σ)

s2 + 2sσ cos(λπ) + σ2 + η3(s, σ)
− s

s2 + 2sσ sin(λπ) + σ2

=
η2(s, σ)(s2 + 2sσ cos(λπ) + σ2) − η3(s, σ)s

(s2 + 2sσ cos(λπ) + σ2)(s2 + 2sσ cos(λπ) + σ2 + η3(s, σ))

=
η2(s,σ)

σ2 (( s
σ )2 + 2 s

σ cos(λπ) + 1) − η3(s,σ)
σ3

s
σ

(( s
σ )2 + 2 s

σ cos(λπ) + 1)(( s
σ )2 + 2 s

σ cos(λπ) + 1 + η3(s,σ)
σ2 )

.(3.41)

Now, when 0 < −s ≤ σ we have 0 < |s| ≤ |σ| and from (3.39) it follows that
η2(s, σ)/σ2 = O(1), η3(s, σ)/σ3 = O(1), and η3(s, σ)/σ2 → 0 as (s, σ) → (0, 0).
Moreover, since λ ∈ (0, 2)\{1}, we have

x2 + 2x cos(λπ) + 1 ≥ sin2(λπ) > 0 for all x ∈ R .

Combining all these facts with (3.41) shows that the first term in (3.40) is bounded

as (s, σ) → (0, 0). Since F̂D is a bounded function, it follows that L̂D(s, σ)− K̂D(s, σ)
is bounded for −Λ ≤ s ≤ 0 ≤ σ ≤ Λ.

For −Λ ≤ σ ≤ 0 ≤ s ≤ Λ the result follows analogously.
We shall analyze (3.28) in the space L2[−Λ,Λ], equipped with the norm ‖v‖L2[−Λ,Λ]

= {
∫ Λ

−Λ
|v(σ)|2dσ}1/2. This allows us to cover the Neumann and Dirichlet problems

in a unified setting. (There is a corresponding theory in the space L∞[−Λ,Λ] which
applies to the Dirichlet problem but not to the Neumann problem.) The next result
follows directly from Theorem 3.5, using, e.g., [26, p. 326].

Corollary 3.6. For B = D or N , L̂B−K̂B is a compact operator on L2[−Λ,Λ].
The remainder of this section is devoted to proving the well-posedness of (3.28)

in L2[−Λ,Λ]. This is done in Corollary 3.8. Since L̂B is a compact perturbation of

K̂B, the key part of the proof of Corollary 3.8 is contained in the following theorem,
which is of key importance also when we come to the numerical analysis in section 4.

Theorem 3.7. For B = D or N , (I+K̂B)−1 exists and is bounded on L2[−Λ,Λ].
Proof. Since the proof follows standard procedures for dealing with Mellin convo-

lution operators, we will be brief. More detail is in [13]. The first step is to write the

operator v �→ (I + K̂B)v on L2[−Λ,Λ] as two coupled convolution operators on [0,Λ].
For (w1, w2) ∈ L2[0,Λ]×L2[0,Λ] we introduce the norm ‖(w1, w2)‖ = {‖w1‖2

L2[0,Λ] +

‖w2‖2
L2[0,Λ]}1/2. Also we define the map Π : L2[−Λ,Λ] → L2[0,Λ] × L2[0,Λ] by

Πv := (v1, v2), where v1(s) = v(−s) + v(s) and v2(s) = v(−s) − v(s), s ∈ [0,Λ].

Clearly Π is a bijection and ‖Πv‖2 = 2‖v‖2
L2[−Λ,Λ]. Moreover, an elementary calcula-

tion using (3.34) and (3.35) and the analogous kernels for B = N (see [13] for details)
shows that

ΠK̂B = K̃BΠ, B = D or N.(3.42)

Here K̃B is the matrix operator

K̃B =

(
K̃B 0

0 −K̃B

)
,
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and K̃B is the Mellin convolution operator on L2[0,Λ] defined by

(K̃Bv)(s) =

∫ Λ

0

κ̃B(s/σ)v(σ)
dσ

σ
,

with kernels

κ̃D(s) = − sin(λπ)

π

s

1 − 2s cosλπ + s2
, κ̃N (s) =

sin(λπ)

π

1

1 − 2s cosλπ + s2
.

Hence, for all v ∈ L2[−Λ,Λ], we have

(I + K̂B)v = Π−1(I + K̃B)Πv.(3.43)

It can be shown, using Mellin integral transform techniques [20], that ‖K̃B‖L2[0,Λ] < 1

(see [13] for further details). Hence by Banach’s lemma I± K̃B has a bounded inverse
on L2[0,Λ] and the result follows from (3.43).

Corollary 3.6 and Theorem 3.7 can now be combined to obtain the well-posedness
of (2.11) via the Fredholm alternative. The proof requires the injectiveness of (I+L̂B);
i.e., we need to show that for all ν on the contour γ (see Figure 2), the implication

(I + L̂B)û = 0 ⇒ û = 0 for û ∈ L2[−Λ,Λ](3.44)

holds.
This implication is established in a standard way using uniqueness results for

boundary-value problems for the PDE Δ∗+ν2−1/4 on the manifolds M and S2\{M∪
�} and the jump relations for the corresponding layer potentials on �. The uniqueness
can be easily established because the contour γ is constructed to avoid the eigenvalues
of −Δ∗ + 1/4, while the jump relations may be found in [19] or [4] for the case of
smooth �, and a standard local analysis at corners will provide the extension of the
jump relations to corner domains.

Corollary 3.8. For B = D or N , (I + L̂B)−1 exists and is bounded on
L2[−Λ,Λ].

Proof. Using Theorem 3.7, the left-hand equation in (3.28) can be rewritten as

(I + (I + K̂B)−1(L̂B − K̂B))û = (I + K̂B)−1b̂B .(3.45)

Since, by Corollary 3.6, (I + K̂B)−1(L̂B − K̂B) is a compact operator, it follows
from the Fredholm alternative and the injectiveness property (3.44) that (3.45) has a
unique solution. It also follows that the operator on the left-hand side of (3.45) has a
bounded inverse. Therefore,

‖û‖L2[−Λ,Λ] ≤ C‖(I + K̂B)−1b̂‖L2[−Λ,Λ] ≤ C ′‖b̂B‖L2[−Λ,Λ]

for some constants C and C ′, and the result follows.
Remark 3.9. If the cone Ξ contains more than one lateral edge, then the contour

� will contain several corners. All the results of this subsection remain true in this
case. In particular the analogue of Corollary 3.8 ensures the well-posedness of (3.28),
or equivalently (2.11) in the multiple corner case. The proof is entirely analogous to
the proof above, except that a pair of coupled Mellin convolution equations local to
each corner has to be considered. Such systems are standard—see, e.g., [14].
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Remark 3.10. The operator L̂B depends on the parameter ν, and further anal-
ysis will be required if one wishes to obtain a “stability bound” (i.e., a bound on

‖(I − L̂B)−1‖L2[−Λ,Λ] as a function of ν). However, we note that for the case ν = iτ
the corresponding Helmholtz operator on the plane was analyzed in [30], where a sta-
bility bound independent of τ was proved. The case ν = iτ is particularly important
in our computations—see section 5.

4. Numerical method. In this section we shall discuss the piecewise polyno-
mial collocation method for (3.28) and obtain its convergence, using the results of
section 3. We also describe briefly its efficient implementation. The performance of
this scheme will be illustrated in section 5.

The basic collocation scheme is entirely standard, so we will be brief. First intro-
duce a mesh:

−Λ = x0 < x1 < · · · < xm < xm+1 < · · · < xn = Λ .(4.1)

We assume here that � has a single corner situated at xm = 0 in parameter space and
that n = 2m. The case of several corners is similar (see Remark 3.9 and the remarks
below (4.5)), and that of a smooth boundary is straightforward (see [13]). We define
Ii = [xi−1, xi] and hi = xi − xi−1 for i = 1, . . . , n. We assume that for each integer
r ≥ 1, we have chosen, a priori, r points: 0 < ξr1 < ξr2 < · · · < ξrr < 1. Then we
introduce the approximation space

Sr
n[−Λ,Λ] = {v ∈ L∞[−Λ,Λ] : v|Ii ∈ Pr} ,(4.2)

where Pr denotes the set of polynomials of order r ≥ 1 (i.e., of degree r−1). Also, on
each Ii, we define the r collocation points xr

ij = xi−1 + hiξ
r
j , and we define the basis

functions of Sr
n[−Λ,Λ] by

φij(x) =

⎧⎪⎨
⎪⎩

∏
1≤k≤r

k �=j

x− xr
ik

xr
ij − xr

ik

χi(x) when r > 1

χi(x) when r = 1

for j = 1, . . . , r and i = 1, . . . , n, where χi is the characteristic function on Ii. Clearly
φij |Ii ∈ Pr and φij(xi′j′) = δii′δjj′ .

In the collocation method for (3.28), we seek an approximate solution

ûn(s) :=

n∑
i=1

r∑
j=1

μijφij(s),

where μij are chosen so that the residual vanishes at the collocation points:

μi′j′+

n∑
i=1

r∑
j=1

μij

∫
Ii

L̂B(xr
i′j′ , σ)φij(σ)dσ = b̂B(xr

i′j′) for i′ = 1, . . . , n , j′ = 1, . . . , r .

(4.3)
Equivalently,

(I + P̂nL̂B)ûn = P̂nb̂B ,(4.4)

where P̂n denotes the operator onto Sr
n[−Λ,Λ] defined by interpolation at the points

{xi,j}. Because the ξrj are chosen interior to [0, 1], none of the points xij are corner

points, and so P̂nL̂Bûn and P̂nb̂B are well-defined in (4.3).
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In the h version of the collocation method (with r fixed and n → ∞), we adopt
the usual a priori mesh grading:

xm±i = ±(i/m)qΛ for i = 0, . . . ,m,(4.5)

where q ≥ 1 is the grading exponent. Note that the corner point in parameter space
(xm = 0) is a mesh point. This is important. If � has several corners, we would
simply use meshes like (4.5) local to each corner, joined together with quasi-uniform
refinement away from the corners in an obvious way.

To obtain the stability of the collocation scheme, we need the concept of a mod-
ification parameter i∗ ≥ 0 (first introduced in [14]). The modified collocation scheme
is exactly the same as (4.3) when i∗ = 0. But when i∗ ≥ 1, ûn is set to 0 on each
of the subintervals Ii, i = m− i ∗ +1, . . . ,m + i∗, and equations (4.3) are required to
hold only for i′ �∈ {m − i ∗ +1, . . .m + i∗}. (In other words, the collocation solution
is set to 0 on each of the 2i∗ subintervals nearest the corner and (4.3) is not required
to hold on those subintervals.) For notational convenience we shall continue to write
the collocation equations as (4.4), thus suppressing i∗ from the notation.

Theorem 4.1. Let r and q be fixed and let B = D or N . Then there exists a
modification parameter i∗ ≥ 1 independent of n, and a constant C which may depend
on r, q, and i∗ but not on n such that ‖(I + P̂nL̂B)−1|Sr

n[−Λ,Λ]‖L2[−Λ,Λ] ≤ C for all
sufficiently large n; i.e., the collocation method (4.4) is stable in L2[−Λ,Λ].

Proof. We shall show that, for each ε > 0, there exists a modification such that,
for n sufficiently large,

‖(I − P̂n)L̂Bvn‖L2[−Λ,Λ] ≤ ε‖vn‖L2[−Λ,Λ](4.6)

for all vn ∈ Sr
n[−Λ,Λ]. Then, since

I + P̂nL̂B = (I + L̂B) − (I − P̂n)L̂B ,

existence and stability of (I + P̂nL̂B)−1 on Sr
n[−Λ,Λ] follow from Corollary 3.8.

To obtain (4.6), note that by the triangle inequality,

‖(I − P̂n)L̂Bvn‖L2[−Λ,Λ] ≤ ‖(I − P̂n)K̂Bvn‖L2[−Λ,Λ](4.7)

+‖(I − P̂n)(L̂B − K̂B)vn‖L2[−Λ,Λ].

Now recall that P̂n projects to zero on the 2i∗ intervals nearest 0. Thus

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2[−Λ,Λ] ≤ ‖(L̂B − K̂B)vn‖2

L2[xm−i∗,xm+i∗]

+‖(I − P̂n)(L̂B − K̂B)vn‖2
L2([−Λ,Λ]\[xm−i∗,xm+i∗]).

(4.8)

By Theorem 3.5, L̂B − K̂B is a bounded function, and this implies that (L̂B − K̂B)
is compact from L2[−Λ,Λ] to L∞[−Λ,Λ] (see [26, pp. 534–535]). Thus the first term
on the right-hand side of (4.8) may be estimated by

‖(L̂B − K̂B)vn‖2
L2[xm−i∗,xm+i∗] ≤ 2xm+i∗‖(L̂B − K̂B)vn‖2

L∞[xm−i∗,xm+i∗]

≤ Cn−q‖vn‖2
L2[−Λ,Λ].(4.9)

(Throughout the proof, C denotes a generic constant which is independent of n but
may depend on the other parameters.)
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We now consider the second term on the right-hand side of (4.8). First we write

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2([−Λ,Λ]\[xm−i∗,xm+i∗]) =

∑
i≤m−i∗

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

+
∑

i≥m+i∗+1

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

.

(4.10)

We will estimate the second sum in (4.10). (The first sum can be dealt with in
a similar way.) To do this we recall the standard results for piecewise polynomial
interpolation and write

∑
i≥m+i∗+1

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

≤ C
∑

i≥m+i∗+1

h2
i ‖D(L̂B − K̂B)vn‖2

L2(Ii)

≤ C
∑

i≥m+i∗+1

h3
i ‖s−1sD(L̂B − K̂B)vn‖2

L∞(Ii)
.

It can be shown, using the same argument as in the proof of Theorem 3.5, that the
operator sD(L̂B − K̂B) has a bounded kernel. Hence, noting that hi ≤ Cn−1, we
obtain

∑
i≥m+i∗+1

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

≤ Cn−1
∑

i≥m+i∗+1

(hix
−1
i−1)

2‖vn‖2
L2[−Λ,Λ]

≤ C max
i≥m+i∗+1

(hix
−1
i−1)

2‖vn‖2
L2[−Λ,Λ].(4.11)

Now for i ≥ i ∗ +1, (4.5) implies

hm+i =
( i

m

)q

Λ −
( i− 1

m

)q

Λ ≤ qΛ
1

m

( i

m

)q−1

.

Hence, since i∗ satisfies i∗ ≥ 1,

hm+ix
−1
m+i−1 ≤ q

1

m

( i

m

)q−1( m

i− 1

)q

≤ Cq
1

i− 1
≤ Cq

1

i∗ .(4.12)

By substituting (4.12) into (4.11) it follows that

∑
i≥m+i∗+1

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

≤ C
( 1

i∗

)2

‖vn‖2
L2[−Λ,Λ].

A similar estimate holds for the first sum in (4.10) and so

‖(I − P̂n)(L̂B − K̂B)vn‖L2([−Λ,Λ]\[xm−i∗,xm+i∗]) ≤ C
1

i∗‖vn‖L2[−Λ,Λ]

≤ ε

2
‖vn‖L2[−Λ,Λ](4.13)

for sufficiently large i∗.
By (4.7), (4.8), (4.9), and (4.13), we see that to prove (4.6) it is sufficient to

prove it with L̂B replaced by K̂B. However, this follows from now-classical results
about numerical methods for Mellin convolution equations. To explain briefly, we first
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employ the operators Π and K̃B defined in the proof of Theorem 3.7, as well as the
fact that the mesh (4.1) is symmetric about 0, to obtain ΠP̂nK̂B = P̃nK̃BΠ, where

P̃n =

(
P̃n 0

0 P̃n

)
,

with P̃n defined as the restriction of P̂n to functions on [0,Λ]. Since (I − P̂n)K̂B =

Π−1(I − P̃n)K̃BΠ, the result follows if, for all ε > 0, there exists a modification i∗
such that

‖(I − P̃n)K̃Bvn‖L2[0,Λ] ≤ ε‖vn‖L2[0,Λ](4.14)

for all vn ∈ Sr
n[0,Λ] and for sufficiently large n. However, result (4.14) follows (even

for all n) from the general results in the survey [22]. (See Theorem 3.1 there, and the
remarks following it. Note that κ̃B and κ̃N both satisfy conditions (A1) and (A2) of
[22], with p = 2.) See [23, 14, 20] and also [13] for more details.

Remark 4.2. The introduction of the parameter i∗ is solely a device to prove
stability of the collocation method for (2.11) when � contains a corner. No unmod-
ified practical collocation method has ever been observed to be unstable. However,
the proof that these methods are stable without modification has eluded researchers
for 15 years. For this reason, and to simplify the presentation, we assume that The-
orem 4.1 holds for i∗ = 0 (i.e., no modification) for the remainder of this section.
All the following results also hold for i∗ ≥ 1, but the proofs require slightly different
technicalities.

Theorem 4.1 implies that the collocation equation (4.4) is uniquely solvable for
all n sufficiently large. An easy manipulation using (3.28) and (4.4) shows that (I +

P̂nL̂B)(P̂nû− ûn) = −P̂nL̂B(I − P̂n)û. Theorem 4.1 then implies

‖P̂nû− ûn‖L2[−Λ,Λ] ≤ C‖P̂nL̂B(I − P̂n)û‖L2[−Λ,Λ].(4.15)

After some technical manipulations using properties of L̂B = K̂B + (L̂B − K̂B) it can
be shown that the right-hand side of (4.15) can be bounded by a constant multiple of

‖(I − P̂n)û‖L2[−Λ,Λ] (see [13]). Then the triangle inequality implies

(4.16)

‖û− ûn‖L2[−Λ,Λ] ≤ ‖û− P̂nû‖L2[−Λ,Λ] + ‖P̂nû− ûn‖L2[−Λ,Λ] ≤ C‖(I − P̂n)û‖L2[−Λ,Λ].

Therefore to obtain convergence rates we need estimates for ‖(I − P̂n)û‖L2[−Λ,Λ].
These of course depend on the regularity of the solution. To describe this regularity
we introduce the weighted Sobolev space for an interval J ⊂ R and for k ∈ N and
α ∈ R,

L2,k
α (J) = {v : |x|j−αDjv ∈ L2(J), j = 0, 1, . . . , k},

equipped with the norm ‖v‖L2,k
α (J) =

∑k
j=0 ‖xj−αDjv‖L2(J) (see [20]).

Examples 4.3.

(i) The function

û(x) = C ′ + C ′′|x|θ, where 1/2 < θ < 1,(4.17)

satisfies û(x) − C ′ ∈ L2,k
α [−Λ,Λ] for all k ≥ 0 and α < θ + 1/2.
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(ii) The function

û(x) = C|x|θ−1, where 1/2 < θ < 1,(4.18)

satisfies û(x) ∈ L2,k
α [−Λ,Λ] for all k ≥ 0 and α < θ − 1/2.

Remark 4.4. When we solve the Dirichlet problem for the Laplace equation in
the region interior to a planar polygon using the indirect boundary integral method,
the solution of the resulting integral equation has its principal singularity in the form
(4.17), where the corner is at x = 0 and θ = 1/(1 + |χ|), where(1 − χ)π is the angle
between the tangents at the corner (χ ∈ (−1, 1)\{0}). When we solve the Neumann
problem with the same geometry again using the indirect boundary integral method,
the density has its principal singularity in the form (4.18), again with θ = 1/(1 + |χ|)
(see, e.g, [17, 23, 20]). It can be shown by standard local analysis (see, e.g., [32]) that
the solutions of our integral equations have the same principal singularity as identified
in Examples 4.3.

Estimates for ‖(I − P̂n)û‖L2[−Λ,Λ] under assumptions which encapsulate Exam-
ples 4.3(i) and (ii) are well known (see, e.g., [22]). Combining these with (4.16), we
obtain the final result given below (see also [13] for more details).

Theorem 4.5. Consider the collocation method (4.4) and assume that stability
holds in the sense of Theorem 4.1.

(i) Suppose that B = D and that the exact solution to (3.28) satisfies û − C ′ ∈
L2,r
α [−Λ,Λ] with 1 < α < 3/2. Then for sufficiently large n the collocation method

described by (4.4) converges with error

‖û− ûn‖L2[−Λ,Λ] ≤ Cn−r‖û− C ′‖L2,r
α [−Λ,Λ] as n → ∞,(4.19)

provided the grading parameter q ≥ max{r/α, 1}.
(ii) Suppose that B = N and that the exact solution to (3.28) satisfies û ∈

L2,r
α [−Λ,Λ] for some 0 < α < 1/2. Then for sufficiently large n the collocation

method described by (4.4) converges with error

‖û− ûn‖L2[−Λ,Λ] ≤ Cn−r‖û‖L2,r
α [−Λ,Λ] as n → ∞,(4.20)

provided the grading parameter q ≥ r/α.
The implementation of the collocation method (4.3) requires the efficient calcu-

lation of the stiffness matrix entries

L̂i′j′,ij :=

∫
Ii

L̂B(xr
i′j′ , σ)φij(σ)dσ.(4.21)

Each evaluation of the kernel L̂B in (4.21) requires an evaluation of (the derivative)
of the Legendre function with complex index (see (3.29), (3.30)). We do this by
integrating Legendre’s differential equation using a Runge–Kutta method (cf. [4, 5,
6, 18]—details are in [13]). Thus efficient quadrature methods for (4.21) are of the
utmost importance. This is especially true when we remember that (2.11) needs to
be solved many times over (for different values of ν on the imaginary axis) in order to
allow the approximate integration of (1.4). The main difficulty in evaluating (4.21)
is the singularity which arises when i′ = i. (This is strongest when Ii contains the
origin in parameter space, corresponding to the corner on �.) In [13] a detailed study
of quadrature for (4.21) is carried out. Here we have room to mention only the most
useful result from [13], as follows.
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Theorem 4.6. Suppose the collocation points xr
ij , j = 1, . . . , r, are chosen to be

the r Gauss–Legendre points on [0, 1], shifted to Ii. Suppose that (4.21) is approxi-
mated by the Gauss–Legendre rule based at these points for all i, i′ satisfying

dist(I ′i, Ii) ≥ h
1/(r+2)
i ,(4.22)

and the remaining entries of (4.21) are computed exactly. Then the O(n−r) conver-
gence rate reported in Theorem 4.5 continues to hold.

Since φij vanishes at all the points xr
ik, except k = j, the implementation of the

rule in Theorem 4.6 requires only one kernel evaluation, and (4.22) shows that this can
be done for most of the matrix as the mesh is refined. It also turns out that even when
(4.22) is not satisfied, rules with O(log(n)) kernel evaluations can be employed and
the O(n−r) rate in Theorem 4.5 remains unperturbed—for more details see section 5
and also [13].

5. Numerical results. We shall illustrate the performance of the numerical
method described above in the case of the diffraction of acoustic waves by a trihedral
cone. In the diffraction literature this is an unsolved canonical problem; i.e., it is a
relatively simple geometry which often occurs in applications, but there is no known
closed form expression for the diffraction coefficients.

Our trihedral cone is determined by three edges which emanate from the origin
and pass through the points ωci ∈ S2, i = 1, 2, 3, which are specified by spherical
polar coordinates (θ∗, 0), (θ∗, 2π/3), and (θ∗, 4π/3), respectively, where cos θ∗ = 1/

√
3.

Hence the edges are mutually perpendicular. The conical scatterer Ξ therefore has
its surface composed of three mutually perpendicular planar segments determined by
each pair of edges, and the contour � is made up of three smooth geodesic curves in
S2, with each pair of smooth curves meeting at an angle of π/2 at one of the points
ωci . The geometry is depicted in Figure 4. The contour � is drawn in bold. (This
corresponds to the practically important case of the corner of a rectangular building.)

Throughout the computations we used collocation at the Gauss points of subin-
tervals. For the evaluation of the boundary integrals (4.21), we used Gauss quadrature
at the collocation points in the “far field,” i.e., when i, i′ satisfy (4.22). When (4.22)
does not hold we increase the number of quadrature points, d, logarithmically. More
precisely, we choose d to be the smallest integer satisfying

d ≥ (r + 1) log(n)

2 log(2)
.

This heuristic is motivated by an analysis in [13]. Note that for this geometry, when
ω,ω′ lie on the same edge of the geodesic triangle �, then LB(ω,ω′) = 0. Hence one-
third of the matrix entries are zero. Included in these zero entries are the integrals
that occur when the collocation point lies in the interval of integration. Note that
our procedure uses only one kernel evaluation for most matrix entries, as mentioned
in section 4. We shall see that our numerical results coincide with the theoretical
predictions of Theorem 4.5.

Our first set of results illustrate the accuracy of methods for solving the integral
equation (2.11) (equivalently (3.28)) arising from the boundary value problem (2.5),
(2.6). For these tests we set ω0 = −ωc1 and set the parameter ν = i.

The density û in (3.28) is not smooth near the corner. In fact, in the case of the
Dirichlet problem, we expect from Remark 4.4 that there exists a constant C ′ such
that û − C ′ ∈ L2,r

α , with α < 7/6. (This is because for the corners in this example
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Fig. 4. The contour � associated with a trihedral cone.

Table 1

Estimated errors for densities û using the piecewise constant collocation method for (3.28) on
a uniform mesh, q = 1.

Dirichlet problem Neumann problem

n err1n Ratio err1n Ratio
24 9.957E-2 1.609E-3
48 5.285E-2 1.88 1.530E-3 1.05
96 2.472E-2 2.14 1.229E-3 1.24
192 1.074E-2 2.30 1.077E-3 1.14
384 4.992E-3 2.15 9.589E-4 1.12

χ = 1/2, so θ = 2/3 and hence θ + 1/2 = 7/6.) When Neumann boundary conditions
are prescribed, we expect û ∈ L2,r

α , α < 1/6. So, for the Dirichlet problem, piecewise
constant approximation (r = 1) should (by Theorem 4.5) yield optimal convergence
(i.e., O(n−1) in the L2 norm) on a uniform mesh (q = 1 in (4.5)). On the other hand
for the Neumann problem we expect (by a generalization of Theorem 4.5) a rate of
convergence close to O(n−1/6) on a uniform mesh.

To illustrate convergence, for each case we have computed an “exact” solution û∗

by using piecewise linear collocation on a mesh with 498 nodes. (To obtain the “exact”
Dirichlet solution we grade the mesh towards the corners with q = 2, and for the
“exact” Neumann solution, since the grading required to obtain optimal convergence
is rather severe, we use here a grading exponent q = 3.) We computed the approximate
L2 error err1n := ‖û∗−ûn‖2 using midpoint quadrature with respect to the mesh with n
subintervals. The results are given in Table 1. As expected, a convergence rate of close
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Table 2

Estimated errors for densities û, using the piecewise constant collocation method for (3.28) on
a graded mesh, q = 3.

Dirichlet problem Neumann problem

n err1n Ratio err1n Ratio
24 1.257E-2 6.307E-3
48 4.948E-3 2.54 6.106E-3 1.03
96 2.147E-3 2.30 4.744E-3 1.29
192 7.842E-4 2.74 3.553E-3 1.34
384 2.442E-4 3.21 2.738E-3 1.30

to O(n−1) is observed for the Dirichlet problem and close to O(n−1/6) for the Neumann
problem. (In Tables 1–4, “ratio” is defined to be errin/err

i
n−1 for i = 1 or 2.) As we

have shown, mesh grading will improve suboptimal rates of convergence. Consider the
integral equation arising from the Neumann problem. Because its solution satisfies
û ∈ L2,r

α , with α < 1/6, it can be shown (by the methods of Theorem 4.5) that with
q′ ≤ 6r a rate of convergence of O(n−q′/6) in the L2 norm can be attained when
a graded mesh is used with grading exponent q > q′ for collocation onto piecewise
polynomials of order r. We illustrate the correctness of this result with q = 3. The
results are in Table 2. Here we find that the Neumann problem now converges with
rate close to O(n−1/2), as expected. The Dirichlet problem now appears to converge
with a superoptimal rate, but this could be expected to subside back to O(n−1)
asymptotically. These results indicate that our integral equation solver is working as
predicted by the theory.

Our next set of results illustrates the convergence of the approximate solutions
to the spherical boundary-value problem (2.5), (2.6). We consider the same problem
as above with ω0 = −ωc1 and ν = i. In Tables 3 and 4, we tabulate the errors in
approximate solutions to (2.5), (2.6) obtained by substituting un(ρ(s), ν) = ûn(s)
into (2.7) (in the Dirichlet case) and (2.9) (in the Neumann case) and computing
the resulting integrals by the Gauss quadrature rule based at the points used in
the computation of ûn. For illustration we have chosen to observe the solution at
the particular observation direction ω = (0, 0,−1). The error err2n is computed by
|grn(ω,ω0, ν)− g̃r(ω,ω0, ν)|, where g̃r is computed with a large n (= 330) and q = 3.

The results illustrate the superconvergence of the method (well documented in
the case of planar problems; see, e.g., [14, 3, 22]), with close to O(n−2) convergence
attained for q = 3. The extreme gradings needed for optimal convergence of the den-
sity may not be needed for the potential, and in fact better than optimal convergence
may be obtained because of the smoothness of the fundamental solution away from
the boundary �.

We emphasize that the results in Tables 1–4 illustrate not only the convergence
theory in section 4, but also show that the algorithm used to compute the Legendre
functions with complex index (by applying a Runge–Kutta method to Legendre’s dif-
ferential equation), which is described in detail in [13], is working in a stable manner.

The results given here involve approximation with piecewise constant basis func-
tions. Results for piecewise linears are given in [13]. An important point is that, since
only one kernel evaluation is needed for most matrix entries independent of the order
of the basis functions, the cost of implementation does not increase much as the order
of the basis functions is increased. This suggests that the h-p version of the boundary
element method should be very competitive for this application, and our next set of
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Table 3

Estimated errors for the potential (2.7) using the piecewise constant collocation method (Dirich-
let boundary conditions).

Uniform mesh, q = 1 Graded mesh, q = 2 Graded mesh, q = 3

n err2n Ratio err2n Ratio err2n Ratio
12 3.12E-4 3.16E-4 4.70E-4
24 1.36E-4 2.3 1.35E-4 2.4 1.62E-4 2.9
48 5.43E-5 2.5 4.21E-5 3.2 6.12E-5 2.7
96 2.13E-5 2.6 1.34E-5 3.2 2.02E-5 3.0
192 8.84E-6 2.4 4.09E-6 3.3 5.91E-6 3.4

Table 4

Estimated errors for the potential (2.9) using the piecewise constant collocation method (Neu-
mann boundary conditions).

Uniform mesh, q = 1 Graded mesh, q = 2 Graded mesh, q = 3

n err2n Ratio err2n Ratio err2n Ratio
12 6.25E-5 3.74E-5 4.45E-5
24 2.68E-5 2.3 1.02E-5 3.7 8.07E-6 5.5
48 1.11E-5 2.4 2.93E-6 3.5 3.08E-6 2.6
96 4.54E-6 2.5 7.72E-7 3.8 8.73E-7 3.5
192 1.82E-6 2.5 2.05E-7 3.8 2.35E-7 3.7

results concern this method.
For fixed σ ∈ (0, 1) we define a geometrically graded mesh on [−Λ,Λ] by

xm+i = σm−iΛ, −xm−i = σm−iΛ, i = 1, . . . ,m, xm = 0.(5.1)

Instead of seeking an approximate solution in the space Sr
n of piecewise polynomials

of fixed order r on each subinterval, we allow a variable order ri on each subinterval
Ii (see (4.1) and the remarks following). A typical distribution of orders would be

r = �(m + 1 − i)β� for i < m, r = �(i−m)β� for i > m + 1

for some fixed parameter β > 0, where, for x ∈ R, �x� denotes the smallest integer
which is strictly greater that x. On the intervals Ii, i = m,m + 1, the approximate
solution is set to zero. Thus, on intervals close to the corner we approximate the
solution on small subintervals, using low order methods, while further away we use
higher orders on larger subintervals. The maximum order increases linearly with m
and hence also with n. This is a standard prescription (e.g., [21]).

By making use of the fundamental results of Elschner [21] for the Laplace case,
and combining these with our results in section 3, it can be shown [13] that the h-p
method is stable. By making further assumptions about the regularity of the solution
to (3.28), it can be shown that the h-p method converges exponentially. In Figure 5 we
illustrate the convergence of the h-p method, compared with the piecewise constant
and piecewise linear cases for the potentials (2.7) arising from the Dirichlet problem
with ω0 = −ωc1 , ω = (0, 0,−1), and ν = i.

In these computations, the parameter values σ = 0.25 and β = 0.5 were employed
in the h-p method. For these results we naively used the r-point Gauss–Legendre rule
to calculate the matrix entries L̂i′j′,ij ; i.e., in this case all of the matrix entries were
computed using one kernel evaluation. Observe the exponential convergence of the
h-p method in Figure 5. (For another way to obtain exponential convergence for this
type of integral equation, see [29].)
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Fig. 5. Errors for the potential (2.7) for the h version and h-p version of collocation.

Finally, in order to illustrate the computations of the diffraction coefficients for
this geometry, we shall show graphically how the computed f(ω,ω0) in (1.4) varies
for three different incidence directions ω0, and many observation directions ω ranging
over a subdomain of M . In this illustration we restrict ourselves to the Dirichlet
problem, and we consider the incident directions given in spherical polar coordinates
(θ, φ) by

ω0 = (π, 0), (11π/12, 0), and (5π/6, 0),(5.2)

and a range of observation directions

ω = ((π − θ), φ), with 0 ≤ θ ≤ π/3, 0 ≤ φ ≤ 2π.(5.3)

In Figure 6 we illustrate how |f(ω,ω0)| varies as a function of θ and φ for each
of the three different incident angles. The quantity |f(ω,ω0)| is plotted on the x3

axis against the projection of ω onto the x1x2-plane given by ω = (π − θ, φ) �→
(θ cosφ, θ sinφ).

Observe in the first row of Figure 6 that when ω0 = (π, 0), i.e., the incident wave
propagates in an “axial” direction, then the magnitude of the diffraction coefficients is
smallest in the backscattering direction. This is in qualitative agreement with results
for the circular cone [4]. Also note when ω0 = (π, 0) that if we fix θ > 0, then the
distance between ω = (π − θ, φ) and the boundary of the nonsingular region, given
by θ1(ω,ω0) = π—see (2.1)—is smallest when φ = 0, 2π/3, 4π/3. At the singular
directions f is infinitely large; hence the three peaks appear in the first row of Figure 6.

As expected, the results are symmetric with respect to rotations by ±2π/3 about
the axis. As we vary the angle of incidence, the symmetry breaks and the position
of the singular directions will vary. In particular it can be shown from (2.1) that
for ω0 = (11π/12, 0) and (5π/6, 0) and fixed θ > 0, the distance between ω and the
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Fig. 6. Diffraction coefficients for a trihedral cone.

singular directions is smallest when φ = 0. This explains the faster growth, as θ
increases, of |f(ω,ω0)| along φ = 0 (i.e., along the line x2 = 0)—see the second and
third rows of Figure 6.

The numerical method used for these computations was the piecewise constant
collocation method with n = 48 subintervals on a uniform mesh (cf. Theorem 4.5).
To produce each picture in Figure 6 the density in the integral equation (3.28) was
approximated for 80 values of ν. Then using these densities we computed the solution
to the boundary-value problem (2.5), (2.6) for the same 80 values of ν at ∼ 800
observation points ω. Therefore ∼ 64,000 evaluations of the double layer potential
were required. The diffraction coefficient f was computed from formula (1.4) by
truncation to a finite domain of integration with respect to ν = iτ and then applying
the trapezoidal rule. The truncation points are chosen according to an analysis of
the asymptotics of the integrand in (1.4) for large |τ | and are designed to yield an
overall method which converges at the same rate as the method for computing gr (see
[13]). Clearly this is a very computationally intensive problem and the efficiency of
our algorithm is of prime importance.
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on this work.
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Abstract. In this article we propose a general procedure that allows us to determine both the
number and type of boundary conditions for time dependent partial differential equations. With
those, well-posedness can be proven for a general initial-boundary value problem. The procedure is
exemplified on the linearized Navier–Stokes equations in two and three space dimensions on a general
domain.
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1. Introduction. The problem of well-posed boundary conditions is an essen-
tial question in many areas of physics. In fluid dynamics, characteristic boundary
conditions for the Euler equations have long been accepted as one way to impose
boundary conditions since the specification of the ingoing variable at a boundary im-
plies well-posedness. Often the Euler boundary conditions are used as a guidance
when boundary conditions are chosen for the Navier–Stokes equations as well (see
[1, 2, 3, 4, 5]). In [6] characteristic boundary conditions for the one-dimensional
linearized Navier–Stokes equations were derived.

For the two- and three-dimensional Navier–Stokes equations, the number of bound-
ary conditions implying well-posedness can be obtained using the Laplace transform
technique. (See [7] for an introduction of the Laplace transform technique.) Although
possible to use, the Laplace transform technique is usually a very complicated proce-
dure for systems of partial differential equations such as the Navier–Stokes equations.
However, the exact form of the boundary conditions that lead to a well-posed problem
is still an open question and will be the issue addressed in this article.

In this paper we assume that we have unlimited access to accurate boundary data.
We do not engage in the elaborate, difficult, and stimulating procedure of deriving
artificial (or radiation or absorbing) boundary conditions. Examples of extensive
research on these matters are given in [8, 9].

We propose a self-contained procedure to obtain both the number and type of
boundary conditions for a general time dependent partial differential equation. The
procedure is based on the energy method and has substantial similarities to the deriva-
tion of characteristic boundary conditions, since it involves a splitting of the boundary
terms into ingoing and outgoing parts by a diagonalization. Compared to the Laplace
transform technique, our procedure yields a much simpler analysis.
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As was already mentioned, boundary conditions for the Navier–Stokes equations
have been the subject of many investigations, and still there is no theory for the
general case. Hence, the linearized and symmetrized Navier–Stokes equations derived
in [10] will serve as an example to which our proposed procedure is applied. Since the
procedure involves a significant amount of work, we will not treat other equations in
this article.

Well-posedness of the continuous problem is a necessary requirement for all nu-
merical methods. Even for well-posed boundary conditions, numerous difficulties
arise, and virtually all numerical schemes have their own way of handling bound-
ary conditions. Hence, we will refrain from numerical calculations for a particular
discretization technique and focus on the mathematical groundwork.

The contents of this article are divided as follows. In section 2 a general procedure
for determining well-posed boundary conditions is presented. Section 3 applies the
procedure to the three-dimensional Navier–Stokes equations on a general domain. In
section 4 conclusions are drawn.

2. Well-posed boundary conditions. Throughout this paper, the analysis
will deal with linear constant coefficient equations. Frequently, the equations of in-
terest are not linear constant coefficient equations but rather variable coefficient or
even nonlinear equations (such as the Navier–Stokes equations). We will start with a
brief discussion on the relevance of analyzing the constant coefficient case.

Consider a nonlinear initial-boundary value problem on a domain D with bound-
ary ∂D. By linearizing around a solution u and freezing the coefficients, we obtain

w̃t = P (u)w̃ + δF (x, t), x ∈ D, t ≥ 0,

w̃ = δf(x), x ∈ D, t = 0,(1)

Lw̃ = δg(t), x ∈ ∂D, t ≥ 0,

where P is the (nonlinear) differential operator and L a boundary operator. Here
δF, δf , and δg are perturbations of the forcing, initial, and boundary functions. w̃ is
the perturbation from the exact solution.

Definition 2.1. The linear problem (1) is well posed if there exists a unique
solution bounded by the data δF, δf , and δg.

Remark 1. There are many definitions of well-posedness. Our choice is sometimes
referred to as strongly well-posed since it involves all types of data (see, for example,
[7]).

Both existence and uniqueness are strongly coupled to the boundedness of the
solution. In fact, it suffices to prove that a solution is bounded using a minimal
number of boundary conditions; then both existence and uniqueness follow. (See, for
example, [11].)

In short, the following principle holds: If (1) is well posed for all values of u, then
the original nonlinear problem is well posed (see [12] for more details).

Before considering well-posedness of a problem of the type (1), we will briefly state
some additional mathematical theory that is the basis of the forthcoming analysis.
First we give a definition from [13].

Definition 2.2. Let A be a Hermitian matrix. The inertia of A is the ordered
triple

i(A) = (i+(A), i−(A), i0(A)),(2)

where i+(A) is the number of positive eigenvalues of A, i−(A) is the number of neg-
ative eigenvalues of A, and i0(A) is the number of zero eigenvalues of A, counting
multiplicities.
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We will also need the following theorem from [13], and we refer to that textbook
for the proof. The theorem is also known as Sylvester’s law of inertia.

Theorem 2.3. Let A,B be Hermitian matrices. There is a nonsingular matrix
S such that A = SBS∗ if and only if A and B have the same inertia.

S∗ denotes the Hermitian adjoint of S. The following corollary is merely a rephras-
ing of Theorem 2.3.

Corollary 2.4. Suppose that R is a nonsingular matrix and that A is a real
symmetric matrix. Then the number of positive/negative eigenvalues of RTAR is the
same as the number of positive/negative eigenvalues of A.

Proof. The claim follows immediately from Theorem 2.3 with B = RTAR.
Finally, we state another definition from [13].
Definition 2.5. If A is a real m-by-n matrix, we set I(A) = [μij ], where μij = 1

if aij �= 0 and μij = 0 if aij = 0. The matrix I(A) is called the indicator matrix
of A.

Now we turn to the main theory of this article. We will give general principles
of how to determine boundary conditions such that the constant coefficient problem
is well posed. Thus, assuming that linearization and freezing of coefficients have
already been carried out, we consider a linear constant coefficient problem with n
space dimensions and x̄ = (x1, . . . , xn),

ũt +

n∑
i=1

Aiũxi
=

n∑
i=1

n∑
j=1

Bij ũxixj
+ F (x̄, t), x̄ ∈ D, t ≥ 0,

ũ(x̄, 0) = f(x̄), x̄ ∈ D,(3)

Lũ(x̄, t) = g(t), x̄ ∈ ∂D, t ≥ 0.

The definition (3) of an initial-boundary value problem covers hyperbolic, parabolic,
and incompletely parabolic partial differential equations depending on the rank of the
matrices. Let ‖ · ‖ denote some norm for functions on D. Our approach of analyzing
the well-posedness of (3) comprises the following steps.

(i) Symmetrize (3).
(ii) Apply the energy method. The energy estimate will have the structure

‖ũ‖2
t + ci

n∑
i=1

‖ũxi
‖2 +

∮
∂D

ṽTAṽds ≤ 0,(4)

where ci ≥ 0, i = 1, . . . , n, are constants and ṽ a vector formed by combinations of
ũ and ũxi

. Further, A is reduced to a full rank matrix. The boundedness of ũ now
depends on the boundedness of ṽTAṽ in boundary data.

(iii) Find a diagonalizing matrix, M , such that MTAM = Λ is diagonal. (A
is symmetric due to step (i) above.) Then we also have the variable transformation
M−1ṽ = w̃.

(iv) Split Λ = Λ+ +Λ− such that Λ+ is positive semidefinite and Λ− is negative
semidefinite. Also, split w̃ into w̃ = w̃+ + w̃− corresponding to the nonzero entries of
Λ+,−. More precisely, let w̃− = I(Λ−)w̃ and w̃+ = w̃ − w̃−.

(v) Supply boundary data to the negative part. That is, specify w̃− by g.
Remark 2. In step (iv) the number of boundary conditions is given as the number

of negative eigenvalues of A or Λ. Further, the type of boundary conditions is given
by the matrix M , derived in step (iii).

This implies boundedness of ‖ũ‖t and hence of ‖ũ‖. The difficult part of this
scheme is step (iii). However, we know that A is symmetric, and we can prove the
following proposition regarding steps (iii)–(v).
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Proposition 2.6. Assume that steps (i) and (ii) are fulfilled; then the matrix A
and the vector ṽ can be split such that ṽTAṽ = w̃+TΛ+w̃+ + w̃−TΛ−w̃−, where Λ+

is positive semidefinite, Λ− is negative semidefinite, and M−1ṽ = w̃ = w̃+ + w̃− for
some matrix M−1. Further, by specifying w̃− = I(Λ−)w at the boundary, we find that
(3) is well posed.

Proof. Since A is symmetric, the eigenvalues are real and there exists a full set
of eigenvectors. If Z contains the eigenvectors, we have

ṽTAṽ = ṽTZZTAZZT ṽ = w̃TΛZw̃ = w̃+TΛ+
Z w̃

+ + w̃−TΛ−
Z w̃

−,(5)

where Λ
−/+
Z are diagonal negative/positive semidefinite. We define w̃− = I(Λ−)w̃

and w̃+ = w̃ − w̃−. This proves the first part of Proposition 2.6.
Another way to prove the first part of Proposition 2.6 is to apply Corollary 2.4, to

conclude that any nonsingular matrix R can be used as a transformation, B = RTAR,
such that A and B have the same inertia. By construction, B is symmetric. Then B
may be diagonalized by its eigenvectors, and we have another diagonalization of A.
Denote by X the matrix containing the eigenvectors of B as columns such that

ṽTAṽ = ṽTR−1,TRTARR−1ṽ = ṽTR−1,TBR−1ṽ

= ṽTR−1,TXΛMXTR−1ṽ = w̃TΛ+
Mw̃ + w̃TΛ−

Mw̃

or

ṽTM−1,TMTAMM−1ṽ = w̃TΛMw̃ = w̃+TΛ+
Mw̃+ + w̃−TΛ−

Mw̃−,(6)

where w̃ = M−1ṽ, M = RX, and Λ
−/+
M are diagonal negative/positive semidefinite.

Further, w̃− = I(Λ−
M)w̃ and w̃+ = w̃ − w̃−. We conclude that there are several

different ways of diagonalizing A, but in all cases ΛZ and ΛM have the same inertia.
The fundamental difference between Z and another diagonalizing matrix, M , is that
M is not orthogonal. We may regard Z as a specific M .

Next, we turn to the proof of the second part of the proposition. Specify w̃− = g
at the boundary. Equation (4) can be rewritten as

‖ũ‖2
t +

∮
∂D

w̃+TΛ+
Mw̃+ds + ci

n∑
i=1

‖ũxi‖2 = −
∮
∂D

gTΛ−
Mg ds.(7)

All the terms on the left-hand side of (7) are positive, implying that ‖ũ‖t, and hence
‖ũ‖, are bounded.

Remark 3. The assumption that steps (i) and (ii) in Proposition 2.6 can be
fulfilled is true for many important partial differential equations. For example, it is
true for the Euler, Navier–Stokes, and Maxwell equations.

Remark 4. The procedure that diagonalizes A, with its eigenvectors and bounds
the negative part, is what we mean by characteristic boundary conditions.

For Proposition 2.6 to be practically useful, a crucial point is to find a diago-
nalizing matrix. That is why we gave two examples of diagonalizing matrices. In
the first example we used the eigenvalues and eigenvectors directly. For a system of
equations, the matrix A can be large (9-by-9 for the Navier–Stokes equations in three
dimensions). The eigenvalues of A are given as the roots of a polynomial of high
degree, for which in general there do not exist roots in closed form.

In the second example, we can proceed in a different way. We will seek a di-
agonalizing matrix to A that is not orthogonal. By choosing R such that B has a
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simpler structure than A, we may be able to find the eigenvalues and eigenvectors to
B. In fact, we will show that this is possible for the three-dimensional Navier–Stokes
equations on general domains.

Certainly, not all of the points are novel in the above procedure. For example,
in [10] a symmetrization of the linearized Navier–Stokes equations is presented. For
the Euler equations, the whole procedure has been carried out when deriving the
well-known characteristic boundary conditions. However, the idea of diagonalizing
the boundary terms with a nonorthogonal matrix is, to the knowledge of the present
authors, new. Furthermore, it is important to formalize the whole procedure since it
should be possible to find well-posed boundary conditions to any problem of type (3).

3. The Navier–Stokes equations.

3.1. Step (i): Symmetrize the equations. We will consider the Navier–
Stokes equations as an example of how to use the procedure presented above to derive
well-posed boundary conditions. We begin by rescaling the three-dimensional Navier–
Stokes equations to nondimensional form. Consider the Navier–Stokes equations in
primitive variables Ṽ = [ρ̃, ũ1, ũ2, ũ3, p̃] as stated in [10],

Ṽt + Ãp
1Ṽx + Ãp

2Ṽy + Ãp
3Ṽz

= B̃p
11Ṽxx + B̃p

22Ṽyy + B̃p
33Ṽzz + B̃p

xyṼxy + B̃p
yzṼyz + B̃p

zxṼzx,(8)

where the tilde sign emphasizes that the entity depends on the solution. Further, ρ̃
is the density; ũ1, ũ2, ũ3 are the velocities in the x, y, and z directions, respectively;
and p̃ is the pressure. We will also use the ratio between the specific heat capacities,
γ = cp/cv, and the speed of sound, c; μ the dynamic viscosity, λ the bulk viscosity,
and ν = μ

ρ the kinematic viscosity; Pr = ν
α denoting the Prandtl number, where α is

the thermal diffusivity. Let Re = ρ∞U∞L
μ∞

denote the Reynolds number. The infinity
subscript denotes free stream conditions, and L is some characteristic length scale.

The equations (8) are nondimensionalized and the coefficients are frozen, which
corresponds to the linearization of the Navier–Stokes equations. The tilde signs are
dropped on the matrices as they no longer depend on the solution. Using the parabolic
symmetrizer Sp derived in [10] and letting ε = 1

Re yields

ũt + A1ũx + A2ũy + A3ũz

= ε(B11ũxx + B22ũyy + B33ũzz + Bxyũxy + Byzũuz + Bzxũzx).(9)

The transformed nondimensionalized variables are

S−1
p Ṽ =

⎛
⎜⎜⎜⎜⎜⎝

c√
γρ 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

− c
ρ
√
γ
√
γ−1

0 0 0
√

γ
γ−1

1
ρc

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ̃
ũ1

ũ2

ũ3

p̃

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

c√
γρ ρ̃

ũ1

ũ2

ũ3

− c√
γ
√
γ−1

ρ̃
ρ +

√
γ

γ−1
1
ρc p̃

⎞
⎟⎟⎟⎟⎟⎠

= ũ.(10)
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The symmetrized matrices are derived in [10] and are repeated here for conve-

nience. Let a =
√

γ−1
γ c and b = c√

γ . Then

A1 =

⎛
⎜⎜⎜⎜⎝

u1 b 0 0 0
b u1 0 0 a
0 0 u1 0 0
0 0 0 u1 0
0 a 0 0 u1

⎞
⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎝

u2 0 b 0 0
0 u2 0 0 0
b 0 u2 0 a
0 0 0 u2 0
0 0 a 0 u2

⎞
⎟⎟⎟⎟⎠ ,(11)

A3 =

⎛
⎜⎜⎜⎜⎝

u3 0 0 b 0
0 u3 0 0 0
0 0 u3 0 0
b 0 0 u3 a
0 0 0 a u3

⎞
⎟⎟⎟⎟⎠ , Bxy =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 λ+μ
ρ 0 0

0 λ+μ
ρ 0 0 0

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,(12)

Byz =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0

0 0 0 λ+μ
ρ 0

0 0 λ+μ
ρ 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , Bzx =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 λ+μ
ρ 0

0 0 0 0 0

0 λ+μ
ρ 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,(13)

B11 = diag

(
0,

λ + 2μ

ρ
,
μ

ρ
,
μ

ρ
,
γμ

Prρ

)
,(14)

B22 = diag

(
0,

μ

ρ
,
λ + 2μ

ρ
,
μ

ρ
,
γμ

Prρ

)
,(15)

B33 = diag

(
0,

μ

ρ
,
μ

ρ
,
λ + 2μ

ρ
,
γμ

Prρ

)
.(16)

3.2. Step (ii): Apply the energy method. Next, we turn to the analysis
of boundary conditions for the Navier–Stokes equations. Consider a general domain
D with boundary ∂D in three space dimensions. From (9), the symmetrized and
nondimensionalized Navier–Stokes equations are

ũt + (A1ũ− εF̃v)x + (A2ũ− εG̃v)y + (A3ũ− εH̃v)z,(17)

where

F̃v = B11ũx + B21ũy + B31ũz,(18)

G̃v = B22ũy + B32ũz + B12ũx,(19)

H̃v = B33ũz + B23ũy + B13ũx,(20)

and

B21 = B12 =
Bxy

2
, B32 = B23 =

Byz

2
, B31 = B13 =

Bzx

2
.



WELL-POSED BOUNDARY CONDITIONS 1237

Applying the energy method (step (ii)),

∫
D

ũT ũtdxdydz +

∫
D

∂

∂x

(
1

2
ũTA1ũ− εũT F̃v

)

+
∂

∂y

(
1

2
ũTA2ũ− εũT G̃v

)
+

∂

∂z

(
1

2
ũTA3ũ− εũT H̃v

)
dxdydz(21)

= − ε

∫
D

(ũT
x F̃v + ũT

y G̃v + ũT
z H̃v)dxdydz.

The right-hand side in (21) is negative definite and denoted by −DI.
Remark 5. It is easily verified that the last term in (21) is dissipation,

DI = ε

∫
D

(
ũT
x ũT

y ũT
z

)
⎛
⎝ B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎠

⎛
⎝ ũx

ũy

ũz

⎞
⎠ dxdydz.

The matrix is symmetric with positive or zero diagonal entries. With λ ≤ μ, the
matrix is diagonally dominant. Thus, it is positive semidefinite.

Denote by ‖ũ‖2 the integral
∫
D
ũT ũdxdydz. Using Gauss’ theorem, we obtain

‖ũ‖2
t +

∮
∂D

(
ũT (A1ũ− 2εF̃v), ũ

T (A2ũ− 2εG̃v), ũ
T (A3ũ− 2εH̃v)

)
· n̂ ds(22)

= −2DI,

where n̂ = (n1, n2, n3) is the outward-pointing unit normal on the surface ∂D and

ds =
√
dx2 + dy2 + dz2. Equation (22) can be rewritten as

‖ũ‖2
t +

∮
∂D

(
ũ

F̃V

)T (
A1n1 + A2n2 + A3n3 −εI5

−εI5 05

)(
ũ

F̃V

)
ds(23)

= −2DI,

where In denotes the n-by-n identity matrix, and similarly 0n the n-by-n zero matrix
and F̃V = F̃vn1 + G̃vn2 + H̃vn3.

To prove well-posedness we have to split the matrix in the boundary integral into
positive definite and negative definite parts. The negative part of the boundary term
in (23) caused by

A1 =

(
A1n1 + A2n2 + A3n3 −εI5

−εI5 05

)
(24)

has to be supplied with boundary conditions, which in turn bounds the growth of
‖ũ‖2

t in (21).
We note that the first component of F̃V is zero, and hence we can reduce the

system by omitting that component and denoting the resulting vector by G̃V . By this
procedure A1 is also reduced from a 10-by-10 matrix to a 9-by-9 matrix by deleting
the sixth row and column. With u = (u1, u2, u3), we have

(
ũ

F̃V

)T (
A1n1 + A2n2 + A3n3 −εI5

−εI5 05

)(
ũ

F̃V

)
=

(
ũ

G̃V

)T

A

(
ũ

G̃V

)
,
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where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u · n̂ bn1 bn2 bn3 0 0 0 0 0
bn1 u · n̂ 0 0 an1 −ε 0 0 0
bn2 0 u · n̂ 0 an2 0 −ε 0 0
bn3 0 0 u · n̂ an3 0 0 −ε 0
0 an1 an2 an3 u · n̂ 0 0 0 −ε
0 −ε 0 0 0 0 0 0 0
0 0 −ε 0 0 0 0 0 0
0 0 0 −ε 0 0 0 0 0
0 0 0 0 −ε 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

=

⎛
⎝ A11 A12 014

A21 A22 −εI4
041 −εI4 04

⎞
⎠ ,

using the notation 0nm for the n-by-m zero matrix. We will also use the notation
un = u · n̂. Since n̂ is the outward-pointing normal, un < 0 implies inflow. Further,
note that A11 in (25) is a scalar.

3.3. Step (iii): Find a diagonalizing matrix. Next, we state and prove the
following proposition, where Mn = un/c is the Mach number.

Proposition 3.1. If |Mn| �= 1, 0 and un < 0, there are four positive and five
negative eigenvalues of A. If |Mn| �= 1, 0 and un > 0, there are five positive and four
negative eigenvalues of A.

Proposition 3.1 states that an inflow demands five and an outflow four boundary
conditions. The number of boundary conditions can also be derived using the Laplace
transform technique, which is shown in [14, 15]. However, to prove well-posedness of
specific boundary conditions using the Laplace transform technique is algebraically
very complex, as shown in [15]. In the proof of Proposition 3.1 we will continue with
the procedure outlined in section 2 and find a diagonalizing matrix to A (step (iii)).
However, finding the eigenvalues of A corresponds to solving a ninth degree polyno-
mial. Besides the algebraic difficulty of finding roots to ninth degree polynomials, it
is probable that the roots in this particular case do not exist in closed form. Instead,
we will derive another diagonalizing matrix. That matrix gives the explicit form of
the well-posed boundary conditions.

Proof of Proposition 3.1. Rotate A by

RTAR =

⎛
⎝ 1 014 014

ᾱT I4 04

β̄T γ̄T I4

⎞
⎠

⎛
⎝ A11 A12 014

A21 A22 −εI4
041 −εI4 04

⎞
⎠

⎛
⎝ 1 ᾱ β̄

041 I4 γ̄
041 04 I4

⎞
⎠

=

⎛
⎝ E11 E12 E13

E21 E22 E23

E31 E32 E33

⎞
⎠ = E,(26)

where

E11 = A11,

E12 = A11ᾱ + A12,

E13 = A11β̄ + A12γ̄,

E21 = ᾱTA11 + A21,

E22 = ᾱT (A11ᾱ + A12) + (A21ᾱ + A22),
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E23 = ᾱT (A11β̄ + A12γ̄) + A21β̄ + A22γ̄ − εI3,

E31 = β̄TA11 + γ̄TA21,

E32 = β̄T (A11ᾱ + A12) + γ̄T (A21ᾱ + A22) − εI3,

E33 = β̄T (A11β̄ + A12γ̄) + γ̄T (A21β̄ + A22γ̄ − εI3) − εI3γ̄.

Using AT
12 = A21, we cancel the off-diagonal blocks and solve for ᾱ, β̄, and γ̄. We

obtain

ᾱ = −A−1
11 A12, β̄ = εA−1

11 A12E
−1
22 , γ̄ = −εE−1

22 ,(27)

E =

⎛
⎝ A11 014 014

041 E22 04

041 04 −ε2E−1
22

⎞
⎠ , E22 = A22 −A21A

−1
11 A12.(28)

The conditions for this procedure to hold are that det(A11) �= 0 and det(E22) �= 0.
We know from Corollary 2.4 that i(A) = i(E). Thus, we can instead determine

the sign of the eigenvalues of E. Note that the upper-left entry of E is a scalar and
hence an eigenvalue. We denote that by

λ1 = A11 = un.(29)

If det(E22) �= 0, we know that E22 has four real nonzero eigenvalues, since E22 is
symmetric by construction. The signs of those do not change as E22 is inverted such
that from the second and third block there are always four negative and four positive
eigenvalues of E. Including λ1, we have for un > 0 four negative and five positive
eigenvalues, and for un < 0, five negative and four positive eigenvalues of E, as stated
in the proposition (assuming that det(A11) �= 0 and det(E22) �= 0).

We will now show that det(A11) �= 0 and det(E22) �= 0 for Mn �= ±1, 0. Since
A11 = un, we have det(A11) �= 0 for Mn �= 0. To evaluate the second condition, we
compute the eigenvalues of E22 explicitly. From (25) and (28) we have

E22 =

⎛
⎜⎜⎜⎜⎜⎝

− b2n2
1

un
+ un − b2n1n2

un
− b2n1n3

un
an1

− b2n1n2

un
− b2n2

2

un
+ un − b2n2n3

un
an2

− b2n1n3

un
− b2n2n3

un
− b2n2

3

un
+ un an3

an1 an2 an3 un

⎞
⎟⎟⎟⎟⎟⎠

,(30)

and the eigenvalues are

λ2,3 =
−b2 + 2u2

n ±
√
b4 + 4a2u2

n

2un
,(31)

λ4 = λ5 = un,(32)

where n2
1 +n2

2 +n2
3 = 1 has been used to simplify the expressions. λ4 and λ5 obviously

shift sign at un = 0. Also, since λ4 = λ5 = 0 with Mn = un = 0, we have that
det(E22) = 0. Thus, to rotate A by R we once more need Mn �= 0. λ2 and λ3 can be
expressed as

λ2,3 =
c

2γMn

(
−1 + 2γM2

n ±
√

1 + 4(γ − 1)γM2
n

)
.(33)
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Consider λ2, and note that γ ≥ 1. Then
√

1 − 4γM2
n + 4γ2M2

n ≥ 1 such that the sign
of λ2 is the same as the sign of the denominator, i.e., Mn or un. This means that
λ2 �= 0 for all Mn �= 0, and λ2 = 0 for Mn = 0.

At last, λ3 is considered. λ3 shifts sign when

2γM2
n − 1 −

√
1 − 4γM2

n + 4γ2M2
n = 0.

Alternatively, (2γM2
n − 1)2 = (1 − 4γM2

n + 4γ2M2
n), which has the solutions Mn =

0, 1,−1, but Mn = 0 is discarded due to the original equality. Thus, λ3 �= 0, and
hence det(E22) �= 0 for |Mn| �= 1. Note that, λ3 is singular for Mn = 0.

We have now derived the number of positive and negative eigenvalues of A, and
hence the number of boundary conditions, and their dependence on Mn. This was
done by calculating the eigenvalues of E explicitly.

To obtain a set of boundary conditions we also need the eigenvectors of E. Given
the eigenvectors of E, it is a simple task to derive a diagonalizing matrix to A. The
eigenvectors of E22 are able to be explicitly derived since the eigenvalues are explicitly
given and they are Y = (y2, y3, y4, y5), where

y2 =

(
n1, n2, n3,−

−b4 −
√
b2 + 4a2u2

n

2aun

)T

=

(
n1, n2, n3,

−λ3 + un

a

)T

,(34)

y3 =

(
n1, n2, n3,−

−b4 +
√
b2 + 4a2u2

n

2aun

)T

=

(
n1, n2, n3,

−λ2 + un

a

)T

,(35)

y4 = (−n2, n1, 0, 0)
T
,(36)

y5 = (−n3, 0, n1, 0) .(37)

Remark 6. We omit the normalization of the eigenvectors to keep the expressions
(34)–(37) simple.

Now, we can derive a specific diagonalizing matrix M and conclude step (iii). For
convenience, we restate (6),

ṽTM−1,TMTAMM−1ṽ = w̃TΛMw̃,

where M = RX and ṽ = (ũT (G̃V )T )T . R is given in (26), (27), and (28). Further,

X =

⎛
⎝ 1 014 014

041 Y 04

041 04 Y

⎞
⎠ , ΛM =

⎛
⎝ un 014 014

041 Λ 04

041 04 −ε2Λ−1

⎞
⎠ ,

where Λ = diag(λ2, λ3, λ4, λ5). Inverting R and M yields

R−1 =

⎛
⎝ 1 −ᾱ 014

041 I4 −γ̄
041 04 I4

⎞
⎠ , M−1 = XTR−1 =

⎛
⎝ 1 −ᾱ 014

041 Y T −Y T γ̄
041 04 Y T

⎞
⎠ .(38)
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To simplify the computation of M−1 we use (27) and obtain

−Y T γ = εY TE−1
22 = εY TY Λ−1Y T = εΛ−1Y T = ε

⎛
⎜⎜⎝

λ−1
2 yT2

λ−1
3 yT3

λ−1
4 yT4

λ−1
5 yT5

⎞
⎟⎟⎠ ,(39)

yielding

M−1 =

⎛
⎝ 1 −ᾱ 014

041 Y T εΛ−1Y T

041 04 Y T

⎞
⎠ , where ᾱ =

(
− b

un
n̂, 0

)
.(40)

We proceed by computing the variables, w̃ = XTR−1ṽ = M−1ṽ, to which boundary
conditions should be applied. Let G̃V

i be the ith component of G̃V . Define ṽi...j =
(ṽi, . . . , ṽj)

T and ũn = (ũ1, ũ2, ũ3) · n̂. For convenience, we restate ṽ,

ṽ =

(
b

ρ
ρ̃, ũ1, ũ2, ũ3,−

b√
γ − 1

ρ̃

ρ
+

1

ρa
p̃, G̃V

1 , G̃V
2 , G̃V

3 , G̃V
4

)T

.(41)

Then,

w̃ = M−1ṽ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽ1 − ᾱ · ṽ2...5

yT2 (ṽ2...5 − ελ−1
2 G̃V )

yT3 (ṽ2...5 − ελ−1
3 G̃V )

yT4 (ṽ2...5 − ελ−1
4 G̃V )

yT5 (ṽ2...5 − ελ−1
5 G̃V )

yT2 G̃
V

yT3 G̃
V

yT4 G̃
V

yT5 G̃
V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(42)

by using (34)–(37).
For completeness we also give the reverse transformation. It is ṽ = RXw̃ = Mw̃,

M =

⎛
⎝ 1 ᾱY β̄Y

031 Y γ̄Y
031 03 Y

⎞
⎠ =

⎛
⎝ 1 ᾱY ᾱΛ−1Y T

031 Y −εY Λ
031 03 Y

⎞
⎠ .(43)

The corresponding diagonalizing matrices in the two-dimensional case are given in
Appendix A.

Remark 7. Note that we have found one of possibly several diagonalizing matrices.
M is not orthogonal, which means that ΛM does not hold the eigenvalues of A.

Remark 8. Note that the only condition involved with finding a diagonalizing
matrix M is that A be nonsingular. Then we can choose to rotate A to block diagonal
form with blocks of arbitrary size. If the blocks are small enough, we can derive their
eigenvalues analytically.

3.4. Step (iv) and (v): Split ΛM and w̃. In order to know which components
of w̃ to bound with boundary conditions we need to investigate the sign of the diagonal
entries of ΛM, i.e., the eigenvalues of E (step (iv)).
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Table 1

The sign of the eigenvalues for different Mach numbers.

Eigenvalue Mn < −1 −1 < Mn < 0 0 < Mn < 1 Mn > 1
λ1 − − + +
λ2 − − + +
λ3 − + − +
λ4 − − + +
λ5 − − + +
λ6 + + − −
λ7 + − + −
λ8 + + − −
λ9 + + − −

Table 2

The number of boundary conditions to be specified at different flow cases for the three-
dimensional Navier–Stokes equations.

Supersonic inflow 5
Subsonic inflow 5
Subsonic outflow 4

Supersonic outflow 4

Table 3

The number of boundary conditions to be specified at different flow cases for the three-
dimensional Euler equations.

Supersonic inflow 5
Subsonic inflow 4
Subsonic outflow 1

Supersonic outflow 0

In the proof of Proposition 3.1, λ3 given by (33) was analyzed. It was shown
that λ3 changes sign at Mn = 0 and |Mn| = 1. The eigenvalues λ1, λ2, λ4, and λ5

only change signs at Mn = 0. Thus, the different cases are inflow or outflow and
sub- or supersonic flow. A consequence is that sub- or supersonic flow affects which
boundary conditions to choose but not the number of them. In fact, only the boundary
condition corresponding to λ3 (and hence −ε2λ−1

3 ≡ λ7) changes sign at |Mn| = 1.
With Λ = diag(λ2, λ3, λ4, λ5), the diagonal form of E is ΛM = diag(λ1,Λ,−ε2Λ−1). In
Table 1 the signs of the different eigenvalues are summarized, where λ6, . . . , λ9 denotes
the diagonal entries of −ε2Λ−1. Those with negative signs have to be supplied with
boundary conditions. As mentioned above, since n̂ is the outward-pointing normal,
negative values of Mn indicate inflow and positive values mean outflow.

In Table 2 the numbers of boundary conditions deduced from Table 1 for different
flow cases are shown. They are in full agreement with the results from the Laplace
transform technique derived in [14] and also in [15]. Note that in the Euler limit,
i.e., ε → 0, the last four eigenvalues will become zero, and there are five nontrivial
eigenvalues. In Table 3 the numbers of boundary conditions are displayed for the
Euler case, ε → 0. The result agrees with the well-known theory for Euler equations.

At last, we can split w̃ given by (42) into w̃+ and w− corresponding to the positive
and negative eigenvalues and perform step (v), such that well-posedness follows.

Remark 9. Though there are no numerical computations in this article, we would
like to comment on some computational aspects. We assume that we know the ex-
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act boundary data ahead of time. This implies knowledge of the type of boundary
(inflow/outflow, subsonic/supersonic) that we have at each point on the boundary as
well as when one boundary type changes to another.

However, in computations, the numerical result might indicate that the assumed
data are erroneous. In such a case, this procedure as well as other boundary condition
procedures require an adjustment of the given data or location of the boundary for
better accuracy.

3.5. Special case: un = 0. The above derivation gives a set of boundary
conditions that leads to a well-posed mathematical problem. However, it is assumed
that un �= 0, which excludes two cases: tangential flow and the important solid wall
condition. We will treat the case un = 0 separately and redo the steps (iii)–(v).
Throughout this paper, we have considered the Navier–Stokes equations linearized
around the solution at the boundary, in this case un = 0. We obtain

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 bn1 bn2 bn3 0 0 0 0 0
bn1 0 0 0 an1 −ε 0 0 0
bn2 0 0 0 an2 0 −ε 0 0
bn3 0 0 0 an2 0 0 −ε 0
0 an1 an2 an3 0 0 0 0 −ε
0 −ε 0 0 0 0 0 0 0
0 0 −ε 0 0 0 0 0 0
0 0 0 −ε 0 0 0 0 0
0 0 0 0 −ε 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(44)

to which the previous rotation does not apply, since A is now singular. This leaves
us with no other choice but to seek the eigenvalues and eigenvectors of this matrix.
It turns out that it is now a simpler task than with un �= 0. The result is presented
below, and the details of the derivation are found in Appendix B.

Define m1 and m2 such that n̂Tm1 = 0, n̂Tm2 = m1
Tm2 = 0, and

μ1,2 = −c2

2
±
√

c4

4
+ a2ε2.

Then,

λ1 = −ε, e1 = (0,m1
T , 0,m1

T , 0)T ,

λ2 = −ε, e2 = (0,m2
T , 0,m2

T , 0)T ,

λ3 = ε, e3 = (0,m1
T , 0,−m1

T , 0)T ,

λ4 = ε, e4 = (0,m2
T , 0,−m2

T , 0)T ,

λ5 = 0, e5 =

(
1, 0, 0, 0, 0,

b

ε
n̂, 0T

)
,(45)

λ6 =
√
ε2 − μ1, e6 =

(
b, λ6n̂

T ,−aλ2
6

μ2
1

,−εn̂T ,
εaλ6

μ2
1

)T

,

λ7 = −
√
ε2 − μ1, e7 =

(
b, λ7n̂

T ,−aλ2
7

μ2
1

,−εn̂T ,
εaλ7

μ2
1

)T

,

λ8 =
√
ε2 − μ2, e8 =

(
b, λ8n̂

T ,−aλ2
8

μ2
2

,−εn̂T ,
εaλ8

μ2
2

)T

,

λ9 = −
√
ε2 − μ2, e9 =

(
b, λ9n̂

T ,−aλ2
9

μ2
2

,−εn̂T ,
εaλ9

μ2
2

)T

.
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Remark 10. With some algebra one can show that ε2 ≥ μ1,2 such that the
eigenvalues λ6, . . . , λ9 are real. In fact, since A is symmetric and the vectors e1, . . . , e9

are orthogonal and diagonalize A, λ1, . . . , λ9 have to be real.
Above, step (iii) is performed and we turn to step (iv). We have

Λ− = diag(λ1, λ2, 0, 0, 0, 0, λ7, 0, λ9),

Λ+ = diag(0, 0, λ3, λ4, 0, λ6, 0, λ8, 0).

Remark 11. Note that we have four negative eigenvalues. This means that a
boundary with un = 0 is classified as an outflow boundary.

Further, w̃ = XT v, where the column vectors of X are the eigenvectors. With
ũ = (ũ1, ũ2, ũ3)

T , G̃V
i...j = (G̃V

i , . . . , G̃
V
j )T , and the ith component of ṽ denoted by ṽi,

we obtain

w̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1
T (ũ + G̃V

1...3)

m2
T (ũ + G̃V

1...3)

m1
T (ũ − G̃V

1...3)

m2
T (ũ − G̃V

1...3)

v1 + b
ε n̂

T (G̃V )1...3

bv1 + n̂T (λ6ũ − εG̃V
1...3) − aλ6

μ2
1

(λ6v4 − εG̃V
4 )

bv1 + n̂T (λ7ũ − εG̃V
1...3) − aλ7

μ2
1

(λ7v4 − εG̃V
4 )

bv1 + n̂T (λ8ũ − εG̃V
1...3) − aλ8

μ2
2

(λ8v4 − εG̃V
4 )

bv1 + n̂T (λ9ũ − εG̃V
1...3) − aλ9

μ2
2

(λ9v4 − εG̃V
4 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(46)

Finally, we can split w̃ into w̃+ and w̃− as before and perform step (v), i.e., supply
w̃− with boundary conditions to obtain a well-posed system.

Remark 12. There are two more cases where un �= 0. Those are tangential flows
with |Mn| = 1. To find the eigenvalues of A directly for Mn = 1,−1 is equally difficult
as the general case, and we did not find roots in closed form.

3.6. Curvilinear coordinates. Until now, we have analyzed well-posed bound-
ary conditions for the Navier–Stokes equations in a Cartesian coordinate system and
a general domain. Considering numerical computations, that derivation suffices when
using unstructured methods such as finite volume schemes. However, for structured
methods, such as finite difference schemes, the Navier–Stokes equations are usually
expressed in a curvilinear coordinate system. We have included a brief analysis in Ap-
pendix C showing that the Cartesian results are directly applicable in the curvilinear
case through metric transformations.

4. Conclusions. We have proposed a step-by-step procedure to analyze a gen-
eral time dependent partial differential equation in terms of well-posedness including
boundary conditions. The procedure applied to the Euler equations results in the
well-known characteristic boundary conditions. In this article we have applied the
procedure to the three-dimensional Navier–Stokes equations on a general domain and
obtained a novel set of well-posed boundary conditions.

Appendix A. The two-dimensional matrices. With very few comments and
leaving out most details, we show the differences of the derivation in section 3 for the
two-dimensional case.
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With

B21 = B12 =
Bxy

2
,

the symmetrized equations are

ũt + A1ũx + A2ũy = ε(B11ũxx + B22ũyy + B12ũxy + B21ũyx).

The matrices are obtained by deleting the row and column referring to the u3 com-
ponent (see [10]). We introduce

F̃v = B11ũx + B21ũy, G̃v = B22ũy + B12ũx,

such that

1

2
‖ũ‖2

t +

∮
∂D

1

2

(
ũ

F̃V

)T (
A1n1 + A2n2 −εI4

−εI4 04

)(
ũ

F̃V

)
= DI,

where n̂ = [n1, n2], ds =
√
dx2 + dy2, and F̃V = F̃vn1 + G̃vn2.

By deleting the first component of F̃V yielding G̃V , the matrix is reduced from
an 8-by-8 matrix to a 7-by-7 matrix. With u = (u1, u2), we obtain

(
ũ

F̃V

)T (
A1n1 + A2n2 −εI4

−εI4 04

)(
ũ

F̃V

)
=

(
ũ

G̃V

)T

A

(
ũ

G̃V

)
,

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u · n̂ bn1 bn2 0 0 0 0
bn1 u · n̂ 0 an1 −ε 0 0
bn2 0 u · n̂ an2 0 −ε 0
0 an1 an2 u · n̂ 0 0 −ε
0 −ε 0 0 0 0 0
0 0 −ε 0 0 0 0
0 0 0 −ε 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ A11 A12 014

A21 A22 −εI4
041 −εI4 04

⎞
⎠ .

The rotation of A is precisely similar,

RTAR =

⎛
⎝ 1 013 013

ᾱT I3 03

β̄T γ̄T I3

⎞
⎠

⎛
⎝ A11 A12 013

A21 A22 −εI3
031 −εI3 03

⎞
⎠

⎛
⎝ 1 ᾱ β̄

031 I3 γ̄
031 03 I3

⎞
⎠

=

⎛
⎝ E11 E12 E13

E21 E22 E23

E31 E32 E33

⎞
⎠ = E.

The same solution is obtained,

ᾱ = −A−1
11 A12, β̄ = A−1

11 A12E
−1
22 , γ̄ = −εE−1

22 ,
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E =

⎛
⎝ A11 014 014

041 E22 04

041 04 −ε2E−1
22

⎞
⎠ , E22 = A22 −A21A

−1
11 A12.

The first eigenvalue of E is λ1 = A11 = un, and the others are given by the eigenvalues
of E22,

E22 =

⎛
⎜⎜⎜⎝

− b2n2
1

un
+ un − b2n1n2

un
an1

− b2n1n2

un
− b2n2

2

un
+ un an2

an1 an2 un

⎞
⎟⎟⎟⎠ ,

λ2,3 =
−b2 + 2u2

n ±
√
b4 + 4a2u2

n

2un
, λ4 = un,

where n2
1 + n2

2 = 1 and un = u · n̂. These can be simplified similarly as for the
three-dimensional case.

The eigenvectors Y = (y2, y3, y4) are

y2 =

⎛
⎝ n1

n2
−λ3+un

a

⎞
⎠ , y3 =

⎛
⎝ n1

n2
−λ2+un

a

⎞
⎠ , y4 =

⎛
⎝ −n2,

n1

0

⎞
⎠ .(47)

Introduce the block matrix, X = diag(1, Y, Y ), such that XTEX = Λ, where Λ =
diag(un,Λ,−ε2Λ). Let ṽ = (ũT , (G̃V )T )T ; then ṽTAṽ = w̃TΛw̃, where w̃ = XTR−1ṽ =
M−1ṽ and Λ = MTAM . The matrices are

R−1 =

⎛
⎝ 1 −ᾱ 013

031 I3 −γ̄
031 03 I3

⎞
⎠ , M−1 =

⎛
⎝ 1 −ᾱ 014

041 Y T εΛ−1Y T

041 04 Y T

⎞
⎠ ,

where

Λ−Y T =

⎛
⎝ λ−1

2 y2

λ−1
3 y3

λ−1
4 y4

⎞
⎠ , ᾱ =

(
− b

un
n̂, 0

)
, M =

⎛
⎝ 1 ᾱY ᾱΛ−1Y T

031 Y −εY Λ
031 03 Y

⎞
⎠ .

In two dimensions, ṽ is

ṽ =

(
b

ρ

ρ̃

ρ
, ũ1, ũ2,−

b√
γ − 1

ρ̃ +
1

ρa
p̃, G̃V

1 , G̃V
2 , G̃V

3

)
.

Then,

w̃ = M−1ṽ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽ1 − ᾱ · ṽ2...4

yT2 (ṽ2...4 − ελ−1
2 G̃V )

yT3 (ṽ2...4 − ελ−1
3 G̃V )

yT4 (ṽ2...4 − ελ−1
4 G̃V )

yT2 G̃
V

yT3 G̃
V

yT4 G̃
V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(48)
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Appendix B. Diagonalization with un = 0. Consider

Ae = λe,(49)

where A is given by (44), repeated here for convenience,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 bn1 bn2 bn3 0 0 0 0 0
bn1 0 0 0 an1 −ε 0 0 0
bn2 0 0 0 an2 0 −ε 0 0
bn3 0 0 0 an2 0 0 −ε 0
0 an1 an2 an3 0 0 0 0 −ε
0 −ε 0 0 0 0 0 0 0
0 0 −ε 0 0 0 0 0 0
0 0 0 −ε 0 0 0 0 0
0 0 0 0 −ε 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(50)

The structure of A suggests the following ansatz:

e1 = (0,m1,m2,m3, 0,m1,m2,m3, 0)T ,(51)

e2 = (0,m1,m2,m3, 0,−m1,−m2,−m3, 0)T ,(52)

e3 = (m4,m5n1,m5n2,m5n3,m6,m7n1,m7n2,m7n3,m8).(53)

We will use the notation m = (m1,m2,m3)
T . With (51), equation (49) becomes⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bn̂Tm
−εm1

−εm2

−εm3

an̂Tm
−εm1

−εm2

−εm3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
m1

m2

m3

0
m1

m2

m3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(54)

With λ = λ1 and m = m1, the following choice satisfies the above equation, n̂Tm1 =
0, and λ1 = −ε. Further, we may also choose a second solution m = m2 and λ2 = −ε
such that n̂Tm2 = 0 and m2

Tm1 = 0. Similarly, ansatz (52) yields

λ3 = ε, n̂Tm3 = 0,(55)

λ4 = ε, n̂Tm4 = 0, m3
Tm4 = 0.(56)

In fact, we can let m1 = m3 and m2 = m4 . It is obvious that the vectors (51) and
(52) will be orthogonal, and, by definition, they are orthogonal to (53). So far, four
eigenvalues and eigenvectors out of nine are derived when we turn to the last ansatz
(53). In this case (49) becomes⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m5b
(bm4 + am6 − εm7)n1

(bm4 + am6 − εm7)n2

(bm4 + am6 − εm7)n3

am5 − εm8

−εm5n1

−εm5n2

−εm5n3

−εm6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m4

m5n1

m5n2

m5n3

m6

m7n1

m7n2

m7n3

m8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(57)



1248 JAN NORDSTRÖM AND MAGNUS SVÄRD

where n2
1 +n2

2 +n3
3 has been used. Note that the above system of equations reduces to

only five equations by the choice of the eigenvector. Further, we have five unknowns,
including λ. (One of the unknowns of the eigenvector drops out since it should only
enter as a scaling.) We have

m5b = λm4,(58)

bm4 + am6 − εm7 = λm5,(59)

am5 − εm8 = λm6,(60)

−εm5 = λm7,(61)

−εm6 = λm8.(62)

In this case it turns out that the ansatz was satisfactory since five solutions to the
system (58)–(62) exist.

The case we examine is the marginal case with un = 0, which leads us to expect
one eigenvalue to be zero. Thusly, with λ5 = 0 the following eigenvector is obtained:

e5 =

(
1, 0, 0, 0, 0,

b

ε
n1,

b

ε
n2,

b

ε
n3, 0

)T

.(63)

Next, we solve full system (58)–(62) without assumptions on the solution. With
μ = ε2 − λ2, a second degree equation in μ is obtained,

μ2 + (b + a2)μ− a2ε2 = 0,(64)

with the solutions

μ1,2 = −b + a2

2
±
√

(b + a2)2

4
+ a2ε2 = −c2

2
±
√

c4

4
+ a2ε2(65)

such that λ6,7 = ±
√
ε2 − μ1 and λ8,9 = ±

√
ε2 − μ2. For any of these λ’s the eigen-

vector is given by

e =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
λn1

λn2

λn3

− aλ2

ε2−λ2

−εn1

−εn2

−εn3
εaλ

ε2−λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(66)

Next, we have to show that the different eigenvectors obtained from (66) are
orthogonal to each other. We distinguish between two cases: 1. any of the eigenvalues
derived from μ1, denoted by ξ1, and another eigenvalue ξ2 derived from μ2; 2. both
eigenvalues ξ1,2 derived from the same μ.

The scalar product is

e(ξ1)
T · e(ξ2) = b + ξ1ξ2 +

a2ξ2
1ξ

2
2

(ε2 − ξ2
1)(ε2 − ξ2

2)
+ ε2 +

ε2a2ξ1ξ2
(ε2 − ξ2

1)(ε2 − ξ2
2)

.(67)
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Case 1. For a general quadratic equation x2 +px+q = 0 the roots fulfill x1x2 = q
and x1 + x2 = −p. When applied to (64) this implies

μ1μ2 = (ε2 − ξ2
1)(ε2 − ξ2

2) = −a2ε2,(68)

μ1 + μ2 = −(b + a2).(69)

Thus, (67) is

b + ξ1ξ2 −
ξ2
1ξ

2
2

ε2
+ ε2 − ξ1ξ2

= b + ε2 +
(ε2 − μ1)(ε

2 − μ2)

ε2

= b + ε2 − (ε2 − (μ1 + μ2) − a2)

= b− (b + a2) + a2 = 0.(70)

Case 2. In this case the following relations hold:

λ2 = ξ2
1 = ξ2

2 ,(71)

λ = ξ1 = −ξ2,(72)

λ2 = −ξ1ξ2 = (μ− ε2),

(ε2 − ξ2
1,2) = μ.(73)

Then (67) becomes, after multiplying by (ε2 − λ2)2,

(ε2 − λ2)2(b− λ2 + ε2) + a2λ4 − ε2a2λ2

= (b− λ2 + ε2)(ε2 − λ2)2 + a2λ2(λ2 − ε2)

= (λ2 − ε2)((b + (ε− λ2))(ε2 − λ2) + a2λ2)

= −μ((b + μ)μ + a2(μ− ε2))

= −μ(μ2 + (b + a2)μ− a2ε2) = 0,

where the last equality is due to (64).
One should also normalize these vectors to formally obtain the eigenvectors of

the matrix A. With this done, we conclude that in the case of neither inflow nor
outflow, the above derivation gives the eigenvalues and eigenvectors of the linearized
Navier–Stokes equations in three dimensions.

Appendix C. Curvilinear coordinates.

C.1. Metric relations. Let x, y, z denote the usual Cartesian coordinates. Con-
sider the following coordinate transformation:

ξ = ξ(x, y, z), η = η(x, y, z), ζ = ζ(x, y, z).

The Jacobian is defined as

J =

⎛
⎝ xξ xη xζ

yξ yη yζ
zξ zη zζ

⎞
⎠ .(74)

Let x̄ = (x, y, z) = (x1, x2, x3) and ξ̄ = (ξ, η, ζ) = (ξ1, ξ2, ξ3). Then we can formally



1250 JAN NORDSTRÖM AND MAGNUS SVÄRD

express the Jacobian as Dξ̄x̄ = J. The following relation holds:

I = Dx̄x̄(ξ̄) = Dξ̄x̄Dx̄ξ̄.(75)

Hence,

J−1 = Dx̄ξ =

⎛
⎝ ξx ξy ξz

ηx ηy ηz
ζx ζy ζz

⎞
⎠ .(76)

However, J−1 can also be obtained directly by inverting (74),

J−1 = Dx̄ξ =
1

J

⎛
⎝ yηzζ − yζzη −(xηzζ − xζzη) xηyζ − xζyη

−(yξzζ − yζzξ) xξzζ − xζzξ −(xξyζ − xζyξ)
yξzη − yηzξ −(xξzη − xηzξ) xξyη − xηyξ

⎞
⎠ ,(77)

where J denotes the determinant of the Jacobian. Then (76) and (77) give relations
between the different metric coefficients. For example, we note that

(Jξx)ξ + (Jηx)η + (Jζx)ζ = (yηzζ − yζzη)ξ − (yξzζ − yζzξ)η + (yξzη − yηzξ)ζ = 0,

(Jξy)ξ + (Jηy)η + (Jζy)ζ = −(xηzζ − xζzη)ξ + (xξzζ − xζzξ)η − (xξzη − xηzξ)ζ = 0,

(Jξz)ξ + (Jηz)η + (Jζz)ζ = (xηyζ − xζyη)ξ − (xξyζ − xζyξ)η + (xξyη − xηyξ)ζ = 0,

(78)

which will be used below.

C.2. Curvilinear Navier–Stokes equations. Consider the linearized and sym-
metrized Navier–Stokes equations (9), restated here for convenience,

ũt+ (A1ũ− ε(B11ũx + B12ũy + B13ũz))x

+ (A2ũ− ε(B22ũy + B23ũz + B12ũx))y

+ (A3ũ− ε(B33ũz + B32ũy + B13ũx))z = 0

or

ũt + (F I − εF̃v)x + (GI − εG̃v)y + (HI − εH̃v)z(79)

= ũt + Fx + Gy + Hz = 0.

Multiply (79) by J and make the change of coordinates,

0 = (Jũ)t + JFx + JGy + JHz

= (Jũ)t + JξxFξ + JηxFη + JζxFζ(80)

+JξyGξ + JηyGη + JζyGζ

+JξzHξ + JηzHη + JζzHζ .

Reformulating (80) yields

(Jũ)t +(JξxF + JξyG + JξzH)ξ −R1

+ (JηxF + JηyG + JηzH)η −R2

+ (JζxF + JζyG + JζzH)ζ −R3,
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where

R1 = (Jξx)ξF + (Jξy)ξG + (Jξz)ξH,

R2 = (Jηx)ηF + (Jηy)ηG + (Jηz)ηH,

R3 = (Jζx)ζF + (Jζy)ζG + (Jζz)ζH.

By using the metric relations in (78), we obtain

R1 + R2 + R3 = F ((Jξx)ξ + (Jηx)η + (Jζx)ζ)
+G((Jξy)ξ + (Jηy)η + (Jζy)ζ)
+H((Jξz)ξ + (Jηz)η + (Jζz)ζ) = 0.

Define

F̂ = (JξxF + JξyG + JξzH),

Ĝ = (JηxF + JηyG + JηzH),

Ĥ = (JζxF + JζyG + JζzH)

such that

0 = (Jũ)t + JFx + JGy + JHz = (Jũ)t + F̂ξ + Ĝη + Ĥζ .(81)

Next, we express the new fluxes in curvilinear coordinates. We obtain

F̂ I =(JξxF
I + JξyG

I + JξzH
I) = J(ξxA1 + ξyA2 + ξzA3)u,

ĜI =(JηxF
I + JηyG

I + JηzH
I) = J(ηxA1 + ηyA2 + ηzA3)u,(82)

ĤI =(JζxF
I + JζyG

I + JζzH
I) = J(ζxA1 + ζyA2 + ζzA3)u,

and

F̂v = (JξxF̃v + JξyG̃v + JξzH̃v),

Ĝv = (JηxF̃v + JηyG̃v + JηzH̃v),(83)

Ĥv = (JζxF̃v + JζyG̃v + JζzH̃v),

where

F̃v = B̃11ũξ + B̃12ũη + B̃13ũζ ,

G̃v = B̃22ũη + B̃23ũζ + B̃12ũξ,

H̃v = B̃33ũζ + B̃32ũη + B̃13ũξ,

and

B̃11 = B11ξx + B12ξy + B13ξz, B̃12 = B11ηx + B12ηy + B13ηz,

B̃13 = B11ζx + B12ζy + B13ζz, B̃22 = B22ξy + B23ξz + B12ξx,

B̃23 = B22ηy + B23ηz + B12ηx, B̃21 = B22ζy + B23ζz + B12ζx,

B̃33 = B33ξz + B32ξy + B13ξx, B̃32 = B33ηz + B32ηy + B13ηx,

B̃31 = B33ζz + B32ζy + B13ζx.
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C.3. Energy estimate. Next, we turn to the well-posedness of (81). We apply
the energy method and derive the boundary terms. Our aim is to relate the boundary
terms in curvilinear coordinates to those derived in x̄-space.

First we note that

dxdydz = Jdξdηdζ.(84)

Further, we use the notation Dξ̄ in ξ̄-space for the image of the domain Dx̄ in x̄-space.
Apply the energy method to (81) to obtain

0 =

∫
Dξ̄

ũT ũtJdξdηdζ +

∫
Dξ̄

ũT (F̂ I
ξ + ĜI

η + ĤI
ζ )dξdηdζ

− ε

∫
Dξ̄

ũT ((F̂v)ξ + (Ĝv)η + (Ĥv)ζ)dξdηdζ =

∫
Dx̄

ũT ũtdxdydz + I1 − εI2,(85)

I2 =

∫
Dξ̄

(ũT F̂v)ξ + (ũT Ĝv)η + (ũT Ĥv)ζdξdηdζ

−
∫
Dξ̄

ũT
ξ (F̂v)ξ + ũT

η (Ĝv)η + ũT
ζ (Ĥv)ζdξdηdζ(86)

=

∫
Dξ̄

(ũT F̂v)ξ + (ũT Ĝv)η + (ũT Ĥv)ζdξdηdζ −DI

=

∮
Γξ̄

(ũT F̂v, ũ
T Ĝv, ũ

T Ĥv) · nξ̄dsξ̄ −DI

=

∮
Γξ̄

ũT F̂V dsξ̄ −DI,

where nξ̄ = (nξ, nη, nζ) and dsξ̄ denote the outward-pointing normal and surface

element in ξ̄-space, respectively. Further, F̂V = F̂vnξ + Ĝvnη + Ĥvnζ . DI denotes a
dissipative term and is equal to DI defined in subsection 3.2.

I1 =

∫
Dξ̄

ũT (F̂ I
ξ + ĜI

η + ĤI
ζ )dξdηdζ

=

∫
Dξ̄

ũT (JξxA1ũ + JξyA2ũ + JξzA3ũ)ξ

+ ũT (JηxA1ũ + JηyA2ũ + JηzA3ũ)η

+ ũT (JζxA1ũ + JζyA2ũ + JζzA3ũ)ζdξdηdζ.

Next, we use relations of the type

ũT (JξxA1ũ)ξ = (Jξx)ξũ
TA1ũ + (Jξx)

(
1

2
ũTA1ũ

)
ξ

= (Jξx)ξũ
TA1ũ +

(
Jξx

1

2
ũTA1ũ

)
ξ

− (Jξx)ξ

(
1

2
ũTA1ũ

)

=

(
Jξx

1

2
ũTA1ũ

)
ξ

+ (Jξx)ξ

(
1

2
ũTA1ũ

)
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to obtain

I1 =

∫
Dξ̄

(
Jξx

1

2
ũTA1ũ

)
ξ

+

(
Jξy

1

2
ũTA2ũ

)
ξ

+

(
Jξz

1

2
ũTA3ũ

)
ξ

+

(
Jηx

1

2
ũTA1ũ

)
η

+

(
Jηy

1

2
ũTA2ũ

)
η

+

(
Jηz

1

2
ũTA3ũ

)
η

+

(
Jζx

1

2
ũTA1ũ

)
ζ

+

(
Jζy

1

2
ũTA2ũ

)
ζ

+

(
Jζz

1

2
ũTA3ũ

)
ζ

(87)

+
1

2
ũTA1ũ(Jξx)ξ +

1

2
ũTA1ũ(Jηx)η +

1

2
ũTA1ũ(Jζx)ζ

+
1

2
ũTA2ũ(Jξy)ξ +

1

2
ũTA2ũ(Jηy)η +

1

2
ũTA2ũ(Jζy)ζ

+
1

2
ũTA3ũ(Jξz)ξ +

1

2
ũTA3ũ(Jηz)η +

1

2
ũTA3ũ(Jζz)ζdξdηdζ.

Hence, by using (78), the last three rows of (87) are identically zero:

I1 =

∮
Γξ̄

1

2
(ũT (Â1)ũ, ũ

T (Â2)ũ, ũ
T (Â3)ũ) · nξ̄dsξ̄,(88)

where

Â1 = (A1Jξx + A2Jξy + A3Jξz),

Â2 = (A1Jηx + A2Jηy + A3Jηz),

Â3 = (A1Jζx + A2Jζy + A3Jζz).

By inserting (86) and (88) into (85), we obtain

2

∫
Dx̄

ũT ũtdxdydz

+

∮
Γξ̄

(ũT (Â1)ũ, ũ
T (Â2)ũ, ũ

T (Â3)ũ) · nξ̄dsξ̄ − ε

(∮
Γξ̄

2ũT F̂V dsξ̄ −DI

)

= ‖ũ‖2
t +

∮
Γξ̄

(
ũ

F̂V

)(
(Â1, Â2, Â3) · nξ̄ −εI

−εI 0

)(
ũ

F̂V

)
dsξ̄ −DI

= ‖ũ‖2
t +

∮
Γξ̄

(
ũ

F̂V

)
Â

(
ũ

F̂V

)
dsξ̄ −DI = 0.(89)

The form (89) is completely similar to the one in the x̄-system. As mentioned earlier,
the domain in ξ̄-space is a cube. Hence, nξ̄ is particularly simple. It is a unit vector
in the coordinate directions, ±eξ,±eη,±eζ , on the boundary of the computational
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domain, 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1. The full formulation for the cube is

‖ũ‖2
t−

∫
ξ=0

(
ũ

F̂v

)(
Â1 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

+

∫
ξ=1

(
ũ

F̂V

)(
Â1 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

−
∫
η=0

(
ũ

F̂V

)(
Â2 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄(90)

+

∫
η=1

(
ũ

F̂V

)(
Â2 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

−
∫
ζ=0

(
ũ

F̂V

)(
Â3 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

+

∫
ζ=1

(
ũ

F̂V

)(
Â3 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄ = DI.

Note that dsξ̄ is different in the different coordinate directions. As a last step we will
express one of the integrals in (90) in x̄- space. Consider, for example,

−
∫
ξ=0

(
ũ

F̂V

)(
Â1 −εI
−εI 0

)(
ũ

F̂V

)
dsξ̄

=

∫
ξ=0

(
ũ

F̂V

)(
−A1Jξx −A2Jξy −A3Jξz −εI

−εI 0

)(
ũ

F̂V

)
dsξ̄

=

∫
ξ=0

(
ũ
F̂V

JT1

)(
−A1

ξx
T1

−A2
ξy
T1

−A3
ξz
T1

−εI

−εI 0

)(
ũ
F̂V

JT1

)
JT1dsξ̄

=

∫
ξ=0

(
ũ
F̂V

JT1

)(
A1n1 + A2n2 + A3n3 −εI

−εI 0

)(
ũ
F̂V

JT1

)
JT1dsξ̄,(91)

where T1 =
√

(ξx)2 + (ξy)2 + (ξz)2 and n2
1 + n2

2 + n2
3 = 1. In fact, (n1, n2, n3) is

equal to the normal in the x̄- system. This is easily seen by the following. Denote by
r = (x, y, z) a position vector in space. The unnormalized normal vector at ξ = 0 is

∂r

∂η
× ∂r

∂ζ
= (xη, yη, zη) × (xζ , yζ , zζ)

= (yηzζ − zηyζ ,−(xηzζ − zηxζ), xηyζ − yηxζ) = JT1(n1, n2, n3),(92)

where (76) and (77) have been used. Hence the matrices appearing in (91) and (23)
are equal. Next, we will show that the vectors in (91) and (23) are also equal. We
have

F̂V

JT1
=

F̂v · 1 + Ĝv · 0 + Ĥv · 0
JT1

=
F̂v

JT1

=
(ξxF̃v + ξyG̃v + ξzH̃v)

T1
= F̃vn1 + G̃vn2 + H̃vn3 = F̃V .

At last, we find

dsx̄ =

∣∣∣∣∂r∂η × ∂r

∂ζ

∣∣∣∣ dsξ̄ = JT1dsξ̄,(93)
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implying that (91) and (23) are equal.
The other boundaries can be treated similarly. To summarize, we have shown

that the relations in x̄-space are completely equivalent to those in ξ̄-space.
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OF MARKOV PROCESSES∗
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Abstract. Using a sequential control variates algorithm, we compute Monte Carlo approxima-
tions of solutions of linear partial differential equations connected to linear Markov processes by the
Feynman–Kac formula. It includes diffusion processes with or without absorbing/reflecting bound-
ary and jump processes. We prove that the bias and the variance decrease geometrically with the
number of steps of our algorithm. Numerical examples show the efficiency of the method on elliptic
and parabolic problems.
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1. Introduction. We are concerned with the numerical evaluation of E(Ψ(Xs :
s ≥ t)|Xt = x), where (Xt)t is a Markov process (with linear dynamics) and where Ψ
belongs to a class of functionals related to Feynman–Kac representations. These issues
arise, for example, in physics in the computations of the solution of diffusion equations
(see [CDL+89]), or in finance in the pricing of European options (see [DG95] and the
references therein). Monte Carlo methods are usually used to evaluate these expecta-
tions for high-dimensional problems or when the functionals are complex. They give
a rather poor approximation because of a slow convergence as σ/

√
M , M being the

number of simulations and σ2 the relative variance. A better accuracy can neverthe-
less be reached by using relevant variance-reduction tools like, for instance, the control
variates method or importance sampling [Hal70, New94]. One of the most performing
tools is the sequential Monte Carlo approach which consists in using iteratively these
variance-reduction ideas [Hal62, Hal70, Boo89]. Using, respectively, importance sam-
pling and control variates, this approach has been recently developed in [BCP00] for
Markov chains and in [Mai03] for the numerical integration of multivariate smooth
functions. We have introduced in [GM04] a sequential Monte Carlo method to solve
the Poisson equation with Dirichlet boundary conditions over square domains. This
method was based on Feynman–Kac computations of pointwise solutions combined
with a global approximation on Tchebychef polynomials [BM97]. Pointwise solutions
were computed using walk-on-spheres (WOS) simulations of stopped Brownian mo-
tion, which induces a simulation error due to the absorption layer thickness. We have
nevertheless observed a geometric reduction up to a limit of both the simulation error
and the variance with the number of steps of the algorithm. The global error was
comparable to standard deterministic spectral methods [BM97] while avoiding the
resolution of a linear system. Our goal here is twofold:

• to extend the scope of the approach to general Markov processes connected
to linear elliptic and parabolic Dirichlet problems;
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• to analyze mathematically the convergence of both the bias and the variance.
This will be achieved for general discretization schemes for the stochastic processes
and also for general global approximations of the solution (not only using Tchebychef
polynomials). We also emphasize two major improvements compared to [BCP00]
where analogous geometric convergences are proved for Markov chains. First we
incorporate in our analysis the influence of the discretization error on the underlying
process. Second we allow the global solution not to be in the right approximation
space.

In section 2, we make a complete study of the algorithm on elliptic problems with
general boundary conditions. At each step of the algorithm, the Monte Carlo compu-
tation of E(Ψ(Xs : s ≥ 0)|X0 = x) at some points x in the domain is required. Then,
we build a global approximation using the values at these points. This approximation
is used as a control variate at the next step and so on. If the discretization step is
small enough, we first prove that the error on the mean value of the global solution
reduces geometrically up to a limit directly linked to the approximation error of the
exact solution. If furthermore the number of drawings at each step is large enough,
we also prove that the variance of the solution reduces in the same way. The proofs of
convergence mainly rely on independence properties of the different simulations, on
the connection with a linear partial differential equation (PDE), and on the linearity
of the functionals with respect to (w.r.t.) the data. This means that the algorithm
can be used for Brownian stochastic differential equations (SDEs) with or without ab-
sorbing/reflecting boundary, or for Lévy-driven SDEs. The last two sections describe
the practical implementation of the algorithm. We first make a discussion on the
discretization schemes and on the approximation problems. We then give numerical
examples on elliptic and parabolic problems after having precisely studied the speed
of convergence of the algorithm on the relative approximation bases. The numeri-
cal results confirm the efficiency of the method and the phenomenon of geometric
convergence on both the bias and the variance up to a limit.

2. Statement of the problem.

2.1. Elliptic problems. Before giving a general formulation, we prefer list-
ing relevant examples. The Markov process underlying our study is denoted by
X(x) = [Xt(x)]t≥0 and its initial value x belongs to a domain D ⊂ �d. The func-
tionals Ψ(Xt(x) : t ≥ 0) := Ψ(f, g,X(x)) are related to Feynman–Kac formulas and
represented by two continuous functions f and g, respectively defined on D̄ and its
boundary ∂D. We especially consider the following.
Ex. 1: Brownian SDEs [RY94]: Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs, where W is a

Brownian motion. Set Zt = e−
∫ t
0
c(Xr)dr and τ = inf{t ≥ 0 : Xt /∈ D}: we

can take Ψ(f, g,X(x)) = g(Xτ )Zτ −
∫ τ

0
f(Xs)Zsds (provided that τ < +∞

a.s.). If D = �d, we may consider Ψ(f, g,X(x)) = −
∫∞
0

f(Xs)Zsds (g ≡ 0)
(see [Fre85]).

Ex. 2: SDEs with reflection on ∂D in the nontangential direction γ [Fre85]: Xt =

x+
∫ t

0
b(Xr)dr+

∫ t

0
σ(Xr)dWr+

∫ t

0
γ(Xr)dΛr, where Xt takes values in D̄ and

where the so-called local time (Λt)t is increasing only when Xt is on ∂D. Set
Zs = e−

∫ s
0
c(Xr)dr−

∫ s
0
λ(Xr)dΛr : we can take Ψ(f, g,X(x)) =−

∫∞
0

f(Xs)Zsds−∫∞
0

g(Xs)ZsdΛs.

Ex. 3: Lévy-driven SDEs (see [BL84, GM92]): Xt = x+
∫ t

0
b(Xr)dr+

∫ t

0
σ(Xr)dWr+∫ t

0

∫
�p Υ(Xr, z)μ(dr, dz), where μ is a martingale normalized Poisson mea-

sure on �p, with Lévy measure m(dz). We can take Ψ(f, g,X(x)) =
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−
∫ τ

0
f(Xs)Zsds (g ≡ 0) where τ and Z are defined as in the Brownian case.

Note that reflections could be included [BL84]. Similar situations also occur
with transport equations [CDL+89].

The processes above are well defined under, for example, Lipschitz assumptions on
their coefficients. For the first two cases, the relative infinitesimal generator is given
by L0φ =

∑d
i=1 bi(x)∂xiφ + 1

2

∑d
i,j=1[σσ

∗(x)]i,j∂
2
xi,xj

φ. For the last one, jumps are
taken into account by an extra integral kernel. Thus, the associated infinitesimal
generator is defined by L0φ(y)+

∫
�p

[
φ(y+ z)−φ(y)− z ·∇φ(y)1|z|≤1

]
M(y, dz) (here

the measure M(y, ·) is defined by M(y,A) = m{z : Υ(y, z) ∈ A}). The key point is
that these operators are linear. The goal of this section is to describe how to evaluate
efficiently the quantity

u(x) = E
(
Ψ(f, g,X(x))

)
.(2.1)

We assume the following.
(H1) The process X, the domain D, and the data (f, g) are such that Ψ(f, g,X(x))

is a linear map w.r.t. the data (f, g) and that Var(Ψ(f, g,X(x))) < +∞.
This assumption is natural in view of the previous examples. Usually, it imposes
restrictions on the domain, on the sign of c arising in Z. See Proposition 4.1 for
explicit conditions about absorbed Brownian SDEs. We now assume that u solves
an elliptic PDE with appropriate boundary conditions, using the connection between
Markov processes and PDEs.

(H2) The process X, the domain D, and the data (f, g) are such that u is a classic1

solution of {
Au = f in D,
Bu = g on ∂D,

(2.2)

where A and B are second order linear operators.
The domain may be bounded or unbounded in some cases, the diffusion processes
may be elliptic or hypo-elliptic. We refer the reader to [Fri75, BL84, Fre85] for details
and references. For the first example, we have Au = L0u− cu and Bu = u (Dirichlet
boundary condition), for the second example Bu = ∇xu.γ − λu (Neumann boundary
condition). Second order operators B arise with Ventcel’s boundary conditions cor-
responding to processes having a diffusion part on ∂D (see [Cat92]). These different
boundary conditions can also be mixed.

2.2. Parabolic problems. The extension to problems with a terminal time T is
straightforward. Formally, it is achieved by considering the time-space process (t,Xt)t
in the domain ]0, T [×D. Then the operator A has to replaced by ∂t+A. In that case,
we can take D = �d (this is the so-called Cauchy problem). The coefficients of X and
the domain D may also be time-dependent [BL84, Lie96]. The reader can check that
the following algorithm and its convergence proof are derived in the same way.

3. Study of the algorithm.

3.1. Description. We now describe our algorithm, which computes iterative
approximations (un)n≥0 of the global solution u. These approximations rely on the

computations of E[Ψ(f̃ , g̃, X(x))] (for data f̃ and g̃ possibly different from f and g)
at some points (xi)1≤i≤N .

1The regularity of u depends on the type of the boundary condition.
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Initialization. We begin with u0 ≡ 0.

Iteration n, step 1. Assume that an approximated solution un−1 of class C2(D̄)
is built at stage n−1 and that the representation un−1(x)=E(Ψ[Aun−1,Bun−1, X(x)])
holds (which simply means that un−1 solves (2.2) with f = Aun−1 and g = Bun−1).
The idea is to compute a correction yn = u − un−1 on this approximation. Using
(2.1), we have

yn(x) = E(Ψ[f −Aun−1, g − Bun−1, X(x)]).(3.1)

In the above equation, the expectation is relative to the law of X and not to the law of
un−1, which can be random. We intend to compute a Monte Carlo approximation of
yn(xi). For this, we replace the simulations of the random variable Ψ[f −Aun−1, g−
Bun−1, X(xi)] by Ψ[f − Aun−1, g − Bun−1, X

Δ(xi)] using a suitable discretization
procedure XΔ(xi) for the stochastic process X(xi). For the moment, we prefer keeping
quite abstract notations concerning the discretization scheme, since mild assumptions
are required (see assumption (H4) below). We just mention that Δ usually represents
the discretization parameter which tends to 0 (for instance, for the WOS procedure
[Sab91], Δ is the space step; for the Euler procedure [CPS98, Gob01], Δ is the time
step). Consequently, yn(xi) is approximated by

ȳn(xi) =
1

M

M∑
m=1

Ψ[f −Aun−1, g − Bun−1, X
Δ,n,m(xi)](3.2)

using M independent simulations of the paths XΔ,n,m(xi). They are also generated
independently of everything else. In fact, the independence of simulations at different
points is not crucial to ensure the convergence of the algorithm. Nevertheless, we
think that dependent drawings slow down the convergence of the method and are less
adapted to parallel computations.

Iteration n, step 2. In order to build a global approximation yn based on
the values (ȳn(xi))i, we use a linear approximation [CHQZ88, BM97]. The linear
approximation of a function w(·) at some points (xj)j can always be written

Pw(x) =

N∑
j=1

w(xj)Cj(x)(3.3)

for some functions (Cj)j . In addition we assume a stability property:

P[Pw] = Pw for any function w.(3.4)

If we use an interpolation, the functions (Cj)j simply verify Cj(xi) = δi,j . This is,
for example, the case of interpolation in dimension one on Lagrange polynomials

Lj(x) =
∏

i�=j(x−xj)∏
i�=j(xi−xj)

. This approximation can also come from a problem of fitting an

approximation model
∑K

k=1 αkϕk on some basis functions (ϕk)k to the values (w(xi))i.
This leads to a discrete least-squares problem [Bjö96], using the norm associated to the

discrete inner product 〈u, v〉μ =
∑N

j=1 μjv(xj)u(xj) for some positive weights (μj)j ,

which consists in the minimization of the squared norm ‖
∑K

k=1 αkϕk −w‖2
μ. The op-

timal coefficients (αk)k are hence solutions of a linear system Aα = b with Aik =
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〈ϕi, ϕk〉μ, bk = 〈w,ϕk〉μ. As α=A−1b, we get αk =
∑N

i=1 A
−1
ik

∑N
j=1 μjϕk(xj)w(xj)

and we are still in a linear form of type (3.3) in letting

Cj(x) = μj

K∑
k=1

N∑
i=1

A−1
ik ϕk(xj)ϕk(x).

If the (ϕk)k are, moreover, orthonormal w.r.t. 〈·, ·〉μ, then we simply have Cj(x) =

μj

∑K
k=1 ϕk(xj)ϕk(x). A slightly different situation is the computation of the projec-

tion of the function w on orthonormal polynomials (Tn)n w.r.t. the inner product
〈u, v〉ν =

∫
[a,b]

v(x)u(x)ν(x)dx, where ν is a positive weight function on the interval

D = [a, b]. We have w(x) 
∑N

k=0 αkTk(x) with αk = 〈w, Tk〉ν and the points (xi)i
are used to build quadrature formulas to compute accurately the coefficients (αk)k.
These points are usually chosen as the zeros of TN+1 which makes the quadrature
formula exact for all polynomials of degree ≤ 2N + 1. Note that in this case, this
approximation is equal to the interpolation at the same points. Another possibility
is the Gauss–Lobatto formulas where the boundaries of the interval are chosen as
quadrature points. In higher dimensions, the approximations are built using tensor
products. In any case the approximations are still linear and they will be described
in detail in section 4. Note that the stability property (3.4) holds for all of these
approximations. Once one of the above approximations has been chosen we just write

un = un−1 + P ȳn = un−1 +

N∑
j=1

ȳn(xj)Cj(3.5)

and we can proceed to the next iteration. Furthermore, we assume the following
throughout the remainder of the paper.

(H3) The functions (Cj)1≤j≤N are of class C2(D̄). Furthermore, for any x ∈ D we
have Var(Ψ(ACj ,BCj , X(x))) < +∞ and

E(Ψ(ACj ,BCj , X(x))) = Cj(x).(3.6)

In other words, Cj (formally) solves (2.2) with data f = ACj and g = BCj .
Hence, Pw ∈ C2(D̄) for any function w. In particular, un is of class C2(D̄) for any
n and satisfies the representation un(x) = E(Ψ[Aun,Bun, X(x)]), which makes our
algorithm valid. Note also that the stability property (3.4) written for un gives

Pun = un for any n ≥ 0.(3.7)

Note that the numerical computations of Aun−1 in (3.2) (and analogously those of
Bun−1) are performed using the evaluations of (ACj)j through the equality Aun−1 =∑N

j=1 un−1(xj)ACj (see [GM04]).

3.2. Convergence results. Our goal is now to estimate the convergence of

mn := sup
1≤i≤N

|E(un(xi) − u(xi))|, vn := sup
1≤i≤N

Var(un(xi)).(3.8)

It is possible to derive other measures of the error, like 1
N

∑N
i=1 |E(un(xi) − u(xi))|,

without major differences. However, in this work, rather than finding the optimal
way to measure the error, we prefer studying in detail the convergence. We need to
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introduce some extra notation regarding the scheme XΔ. For a deterministic smooth
function g̃ we set

e(g̃,Δ, x) = E
(
Ψ[Ag̃,Bg̃, XΔ(x)]

)
− E

(
Ψ[Ag̃,Bg̃, X(x)]

)
,

V (g̃,Δ, x) = Var
(
Ψ[Ag̃,Bg̃, XΔ(x)]

)
.

We state mild assumptions on the discretization scheme XΔ, which allows great gen-
erality on the procedures that can be used.

(H4) (1) The map (f̃ , g̃) �→ Ψ(f̃ , g̃, XΔ(x)) is linear.
(2) The discretization errors [e(Cj ,Δ, xi)]1≤i,j≤N converge to 0 as Δ → 0.
(3) The variances [V (u,Δ, xi)]i and [V (Ck,Δ, xi)]i,k are finite.
(4) The latter are uniformly bounded for Δ close to 0:

lim supΔ→0 V (Ck,Δ, xi) < ∞ for any i and k.
The first assumption is natural since the initial map (f̃ , g̃) �→ Ψ(f̃ , g̃, X(x)) is linear.
The second one is minimal since it requires only the weak convergence of the discretiza-
tion scheme for the C2(D̄)-functions (Ck)k. The last two ones are also very natural
since they are satisfied for X (see (H1)–(H3)). A practical verification of (H4) will be
given in section 4.1. It easily follows from statement (3) that V (u−Pu,Δ, xi) < +∞
for any i. This justifies the finiteness of the terms which appear in Theorem 3.2.

We first state a convergence result for the bias.
Theorem 3.1. Assume (H1)–(H2)–(H3)–(H4). Then, for any n ≥ 1, one has

mn ≤ ρm mn−1 + sup
1≤i≤N

|[Pu− u](xi) + P[e(u− Pu,Δ, ·)](xi)|,(3.9)

where ρm = sup1≤i≤N

[∑N
j=1 |P[e(Cj ,Δ, ·)](xi)|

]
. For Δ small enough, one has ρm < 1.

Thus, the convergence of (mn)n is geometric at rate ρm, up to a threshold equal to

lim sup
n

mn ≤ 1

1 − ρm
sup

1≤i≤N
|[Pu− u](xi) + P[e(u− Pu,Δ, ·)](xi)|.(3.10)

The upper limit for the bias strongly depends on the quality of the approxima-
tion of u by the operator P. Note that if u is in the right approximation space
(Pu ≡ u), the first term on the right-hand side of (3.10) cancels and the bias mn con-
verges geometrically to 0. In other words, even if the simulations are biased because
of Δ, the bias vanishes at the limit. This is a surprising and very interesting phe-
nomenon. However, unlike the direct Monte Carlo procedure, there is no guarantee
that limΔ→0 lim supn mn = 0, except in the case of the interpolation operator P (i.e.,
Pu(xi) = u(xi) for any xi). We now state the convergence of the variance (vn)n.

Theorem 3.2. Assume (H1)–(H2)–(H3)–(H4) and set

C(Δ, N) = 2 sup
1≤i≤N

N∑
j=1

C2
j (xi)

[ N∑
k=1

√
V (Ck,Δ, xj)

]2

,

ρv = sup
1≤i≤N

( N∑
j=1

|P[e(Cj ,Δ, ·)](xi)|
)2

+
C(Δ, N)

M
.

Then, for any n ≥ 1, one has

vn ≤ ρvvn−1 +
1

M

{
2 sup

1≤i≤N

N∑
j=1

C2
j (xi)V (u− Pu,Δ, xj) + C(Δ, N)m2

n−1

}
.(3.11)



1262 EMMANUEL GOBET AND SYLVAIN MAIRE

For Δ small enough and M large enough, one has ρv < 1. Thus, the convergence of
(vn)n is geometric at rate ρv, up to a threshold equal to

lim sup
n

vn ≤ 1

(1− ρv)M

{
2 sup

1≤i≤N

N∑
j=1

C2
j (xi)V (u−Pu,Δ, xj) +C(Δ, N) lim sup

n
m2

n

}
.

(3.12)

Note that when ρv < 1, ρm < 1, so that the convergence holds simultaneously
for the bias and for the variance. As for the bias, if Pu = u, then lim supn mn = 0
and thus lim supn vn = 0: the variance vn converges geometrically to 0, provided that
1/Δ and M are large enough.

3.3. Proofs of convergence. To make the distinction between what is simu-
lated before stage n and at stage n, we define the usual conditional expectations and
variances

En−1(Y ) = E
(
Y
∣∣σ(XΔ,n′,m(xi) : 1 ≤ n′ ≤ n− 1; 1 ≤ m ≤ M ; 1 ≤ i ≤ N)

)
and Varn−1(Y ) = En−1(Y 2) − [En−1(Y )]2. Note that the construction of the algo-
rithm yields that the discretized processes [XΔ,n,m(xi)]m,i,n are independent.

3.3.1. Proof of Theorem 3.1. Formula (3.10) is a straightforward consequence
of (3.9). Before proving (3.9), we transform the expression of un(xi) for a fixed
xi. Using (3.5), (3.2), and the PDE solved by u, we get un(xi) = un−1(xi) +
1
M

∑N
j=1

∑M
m=1 Ψ[A(u−un−1),B(u−un−1), X

Δ,n,m(xj)]Cj(xi). In view of (3.7), note
that

u− un−1 = u− Pu +

N∑
k=1

(u− un−1)(xk)Ck(3.13)

and that Ψ[A(u− un−1),B(u− un−1), X
Δ,n,m(xj)] equals

Ψ[A(u− Pu),B(u− Pu), XΔ,n,m(xj)] +

N∑
k=1

(u− un−1)(xk)Ψ[ACk,BCk, XΔ,n,m(xj)],

because of the linearity of Ψ[(·, ·), XΔ(x)] under (H4). Thus, we obtain

un(xi) = un−1(xi) +
1

M

N∑
j=1

M∑
m=1

[
Ψ[A(u− Pu),B(u− Pu), XΔ,n,m(xj)]

+

N∑
k=1

(u− un−1)(xk)Ψ[ACk,BCk, XΔ,n,m(xj)]

]
Cj(xi).(3.14)

Computation of En−1 (un(xi)). As [XΔ,n,m(xj)]m,j is independent of un−1,
we readily get

En−1(un(xi)) = un−1(xi) +

N∑
j=1

E
(
Ψ[A(u− Pu),B(u− Pu), XΔ(xj)]

)
Cj(xi)

+

N∑
k=1

(u− un−1)(xk)

N∑
j=1

E
(
Ψ[ACk,BCk, XΔ(xj)]

)
Cj(xi).(3.15)
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Note that
(a) using (2.1) and (3.6), we have E

(
Ψ[A(u−Pu),B(u−Pu), XΔ(xj)]

)
= e(u−

Pu,Δ, xj) + (u− Pu)(xj);
(b) using (3.6), we have E

(
Ψ[ACk,BCk, XΔ(xj)]

)
= e(Ck,Δ, xj) + Ck(xj);

(c) owing to (3.4), we have
∑N

j=1 Ck(xj)Cj(xi) = Ck(xi) (indeed, a choice of w(·)
such that w(xi) = δi,k leads to Pw = Ck, and thus PCk = Ck by (3.4)).

Plugging these identities in (3.15), it readily follows that

En−1(un(xi)) = un−1(xi) +

N∑
j=1

[
e(u− Pu,Δ, xj) + (u− Pu)(xj)

]
Cj(xi)

+

N∑
k=1

(u− un−1)(xk)

[
Ck(xi) +

N∑
j=1

e(Ck,Δ, xj)Cj(xi)

]

= Pu(xi) +P[e(u−Pu,Δ, ·)](xi) +

N∑
k=1

(u−un−1)(xk)P[e(Ck,Δ, ·)](xi),(3.16)

simplifications at the last line arising from (3.4).

Computation of E(un(xi)). Taking the expectation in (3.16) we obtain

E
(
un(xi) − u(xi)

)
= Pu(xi) − u(xi) + P[e(u− Pu,Δ, ·)](xi)

+
N∑

k=1

E((u− un−1)(xk))P[e(Ck,Δ, ·)](xi).

It remains to take absolute values and the supremum over i on both sides to complete
the proof of (3.9).

3.3.2. Proof of Theorem 3.2. Note that the inequality ρv < 1 holds for Δ
small enough and M large enough. Indeed, under (H4) C(Δ, N) remains uniformly
bounded w.r.t. Δ close to 0. We prove only (3.11). Taking some fixed xi, we have

Var(un(xi)) = Var
[
En−1(un(xi))

]
+ E

[
Varn−1(un(xi))

]
.(3.17)

Computation of Var[En−1(un(xi))]. In view of (3.16), we have

Var
[
En−1(un(xi))

]
= Var

[ N∑
j=1

un−1(xj)P[e(Cj ,Δ, ·)](xi)

]

≤ vn−1

( N∑
j=1

|P[e(Cj ,Δ, ·)](xi)|
)2

,(3.18)

where we have used the standard inequality

Var

( N∑
j=1

αjYj

)
=

N∑
j1,j2=1

αj1αj2Cov(Yj1 , Yj2)

≤
N∑

j1,j2=1

|αj1 | |αj2 |
√

Var(Yj1)
√

Var(Yj2) =

[ N∑
j=1

|αj |
√

Var(Yj)

]2

(3.19)

for any real numbers (αj)j and any square integrable real random variables (Yj)j .
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Computation of Varn−1(un(xi)). We invoke the independence of [XΔ,n,m(xi)]m,i

and un−1 in (3.14) to derive

Varn−1(un(xi)) =

N∑
j=1

C2
j (xi)

M
Varn−1

[
Ψ[A(u− Pu),B(u− Pu), XΔ(xj)]

+

N∑
k=1

(u− un−1)(xk)Ψ[ACk,BCk, XΔ(xj)]

]

≤
N∑
j=1

C2
j (xi)

M

[√
V (u−Pu,Δ, xj)+

N∑
k=1

|u−un−1|(xk)
√
V (Ck,Δ, xj)

]2

,

using (3.19) at the last inequality. Applying the inequality E(α0 +
∑N

k=1 αkYk)
2 ≤

2α2
0 + 2

(∑N
k=1 |αk|

√
E(Y 2

k )
)2

, which can be proved as (3.19), we get

E(Varn−1(un(xi))) ≤ 2 sup
1≤i≤N

N∑
j=1

C2
j (xi)

M

{
V (u− Pu,Δ, xj)

+ sup
1≤k≤N

E((u− un−1)
2(xk))

[ N∑
k=1

√
V (Ck,Δ, xj)

]2}
.

Combine this estimate with (3.18) and (3.17), use sup1≤k≤N E((u − un−1)
2(xk)) ≤

vn−1 + m2
n−1, and take the supremum over i to complete the proof of (3.11).

4. Influence of parameters of the algorithm. We focus mainly on the first
example of Brownian SDEs with a Dirichlet boundary condition. This means (see

section 2) that Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs, Ψ(f, g,X(x)) = g(Xτ )Zτ −∫ τ

0
f(Xs)Zsds (with Zt = e−

∫ t
0
c(Xr)dr and τ = inf{t ≥ 0 : Xt /∈ D}), Au =∑d

i=1 bi∂xiu+ 1
2

∑d
i,j=1[σσ

∗]i,j∂
2
xi,xj

u− cu, and Bu = u. We first give a set of explicit
assumptions implying (H1)–(H2) and (3.6) in this case.

(H2′) (i) The functions b and σ are Lipschitz continuous on D̄ and σσ∗(x) ≥ ε0Id
uniformly w.r.t. x ∈ D (ε0 > 0).

(ii) D is a bounded domain and each point of its boundary ∂D satisfies
the exterior cone condition: for any x ∈ ∂D, there exists a finite right
circular cone K, with vertex x, such that K̄ ∩ D̄ = {x}.

(iii) The function g is continuous on ∂D, f and c ≥ 0 are uniformly Hölder
continuous in D̄ (with exponent α ∈ ]0, 1[).

Proposition 4.1. Under (H2′), (H1) and (H2) are fulfilled. Furthermore, if Cj
is of class C2(D̄), (H3) holds.

Proof. The variance in (H1) is finite. Indeed, on the one hand the functions g
and f are bounded and c is nonnegative. On the other hand, we have Ex(τ) < +∞
(which automatically induces exponential moments for τ ; see [Fre85, section 3.3]).

The proof of (H2) is somewhat classic except that D is not smooth here. We
just recall the two main steps. First, the existence of a solution to (2.2) follows from
the remark after [GT83, Theorem 6.13], noting that under (H2′) every point of the
boundary has a barrier (see Problem 6.3 in [GT83]). Second, [Fre85, Theorem 2.1,
section 2.2] states that the solution is given by (2.1). This is achieved by applying Itô’s
formula to u and using some careful localization procedures because derivatives of u
explode near the boundary (see also Appendix B). (H3) is proved analogously.
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4.1. Verification of assumption (H4). We propose to check it when we use
the so-called discrete Euler scheme [Gob00], which is the simplest procedure that can
be used for general stopped diffusions. An alternative is the WOS scheme, which
is especially efficient when we are dealing with the Brownian motion (see [HMG03]
and the references therein). Some refinements to the discrete Euler scheme are also
possible, using Brownian bridge simulations [Bal95, Gob00, Gob01].

For a given time step Δ and discretization times tk = kΔ, the Euler scheme is
defined by XΔ

0 = x and XΔ
tk+1

− XΔ
tk

= b(XΔ
tk

)(tk+1 − tk) + σ(XΔ
tk

)(Wtk+1
− Wtk),

which can be written in continuous time as

XΔ
t = x +

∫ t

0

b(XΔ
φ(s))ds +

∫ t

0

σ(XΔ
φ(s))dWs.(4.1)

Here, φ(s) = tk for tk ≤ s < tk+1. The approximated exit time is defined by τΔ =
inf{tk ≥ 0 : XΔ

tk
/∈ D}. Thus, to approximate Ψ(f, g,X(x)), we simply propose

Ψ(f, g,XΔ(x)) = g(XΔ
τΔ)ZΔ

τΔ −
∫ τΔ

0

f(XΔ
φ(s))Z

Δ
φ(s)ds, ZΔ

s = e−
∫ s
0
c(XΔ

φ(u))du.(4.2)

Here, g is evaluated at XΔ
τΔ which is not a priori on ∂D: hence, in (4.2) g has to be

understood as a bounded continuous function on the whole space. In view of (4.2),
(H4)-(1) is clearly fulfilled. To verify (2)–(4) of (H4), our main tool is the following
theorem, which is original in this context of elliptic problems and whose proof is
postponed to Appendix A.

Theorem 4.2. Assume (H2′). Then, the following assertions hold.
(a) For any p ≥ 1, supx∈D̄ Ex(τp) + lim supΔ→0 supx∈D̄ Ex([τΔ]p) < ∞.
(b) limΔ→0 τ

Δ = τ in Lp for any p ≥ 1.
(c) limΔ→0 X

Δ
τΔ = Xτ in probability.

(d) For any bounded continuous γ, lim supΔ→0

∫ τΔ∧τ

0
|γ(Xs) − γ(XΔ

φ(s))|ds = 0
in Lp for any p ≥ 1.

Since |Ψ[Au, u,XΔ(x)]| = |Ψ[f, u,XΔ(x)]| ≤ C(1+τΔ) and |Ψ[ACk, Ck, XΔ(x)]| ≤
C(k)(1 + τΔ), we easily get that (H4)-(3) and (H4)-(4) are fulfilled in view of (a).
It remains to prove that e(Ck,Δ, x) = E

(
Ψ[ACk, Ck, XΔ(x)]−Ψ[ACk, Ck, X(x)]

)
con-

verges to 0 when Δ → 0, for any Ck of class C2(D̄). Using (c), we get the con-
vergence of Ck(XΔ

τΔ) to Ck(Xτ ) in probability, and thus in L1 since Ck is bounded.
Since exp(·) is 1-Lipschitz on �− and c(·) is nonnegative, we have |ZΔ

τΔ − Zτ | ≤
|
∫ τΔ

0
c(XΔ

φ(u))du−
∫ τ

0
c(Xu)du|, which converges to 0 in L1, using (b) and (d). For

the convergence in L1 of
∫ τΔ

0
f(XΔ

φ(s))Z
Δ
φ(s)ds to

∫ τ

0
f(Xs)Zsds, the previous argu-

ments apply and this completes the verification of (H4)-(2).

4.2. Impact of the approximation operator. The discretization parameter
Δ has to be chosen small enough to ensure the convergence of the bias. This con-
vergence depends on the approximation operator as we must have ρm < 1. As it is
mainly described by the sensitivity of regular functions to the discretization error, it
actually depends very little on the approximation operator. The convergence of the
variance (described by the condition ρv < 1) depends a lot more on the choice of
the approximation, but in the same way concerning the discretization parameter. In
order to study this convergence, we can hence focus on the case Δ = 0. In this ideal
case, we have

vn ≤ vn−1
C(0, N)

M
+

2

M
sup

1≤i≤N

N∑
j=1

C2
j (xi)V (u− Pu, 0, xj)
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with

C(0, N) = 2 sup
1≤i≤N

N∑
j=1

C2
j (xi)

(
N∑

k=1

√
V (Ck, 0, xj)

)2

.

The quantities V (u− Pu, 0, xj) and V (Ck, 0, xj) can be computed as

V (u− Pu, 0, xj) = Exj

[∫ τ

0

Z2
s |∇x(u− Pu)σ|2 (Xs)ds

]
,

V (Ck, 0, xj) = Exj

[∫ τ

0

Z2
s |∇xCkσ|2 (Xs)ds

]
,

using Lemma B.1 given in Appendix B. The first term enables us to control the final
error and the second one the speed of convergence of the algorithm. Both depend
only on the gradient of the basis functions and not on the second derivatives of these
functions. It is quite difficult to make a general discussion on the optimal choice of the
approximation in a general domain. We prefer focusing on polynomial interpolations
on square domains and give explicit computations of the convergence parameters in
this case. The process X remains general.

4.3. Gauss–Tchebychef interpolation on ]−1, 1[
d
. The Tchebychef polyno-

mials Tn(x) = cos(n arccos(x)) are the orthogonal polynomials on ]−1, 1[ with respect

to the inner product 〈P,Q〉w =
∫ 1

−1
P (x)Q(x)w(x)dx, where w(x) = 1√

1−x2 . We have

‖T0‖2
w = π and ‖Tn‖2

w = π
2 if n ≥ 1. In dimension one, the interpolation polynomial

PN (u) of the function u at the Tchebychef abscissae

xk = cos

(
2k + 1

N + 1

π

2

)
, k = 0, 1, . . . , N,

is given by [Bjö96]

PN (u) =

N∑
n=0

αnTn

with

αn =
π

‖Tn‖2
w(N + 1)

N∑
k=0

u(xk)Tn(xk).

This interpolation is optimal w.r.t. the sup norm. The control of u and of its derivative
is given in the following theorem (see [CHQZ88, p. 298]).

Theorem 4.3. Denote by Hm
w the w-weighted Sobolev space with regularity m ∈

N∗. Then ∃ c1, c2 > 0 such that ∀u ∈ Hm
w , we have

‖u− PN (u)‖w ≤ c1N
−m‖u‖Hm

w
, ‖u− PN (u)‖

H1
w
≤ c2N

2−m ‖u‖Hm
w
.

The Tchebychef interpolation of a function u : D = ]−1, 1[
d �→ R is built using

the same process as in dimension one. The interpolation polynomial PN (u) at the
Nd points of a tensored Tchebychef grid and evaluated at z = (z1, . . . , zd) is

PN (u)(z) =

N∑
n1,...,nd=1

αn1,...,nd
Tn1(z1) · · ·Tnd

(zd),
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where the αn1,...,nd
are defined by

αn1,...,nd
=

d∏
i=1

(
π

‖Tni
‖2
w(N + 1)

) N∑
m1,...,md=1

u(xm1
, . . . , xmd

)Tn1
(xm1

) · · ·Tnd
(xmd

).

The quality of this interpolation is exactly the same as that in Theorem 4.3. In
dimension one, the basis functions Ck write

Ck(x) =

N∑
n=0

π

‖Tn‖2
w(N + 1)

Tn(xk)Tn(x).

As T
′

n(x)= −n sin(n arccos(x))√
1−x2 and because π

‖Tn‖2
w(N+1)Tn(xk)≤ 2

N+1 , we have |∇xCk(x)|2

≤ [
∑N

n=0
2

N+1
n√

1−x2 ]2 = N2

1−x2 ≤ N2

1−|x| . Using Z2
s ≤ 1, the occupation time formula

[RY94], and Lemma 4.4 (which is proved in Appendix C), we finally have V (Ck, 0, xj) ≤∫ 1

−1
|∇xCk(y)|2Exj (L

y
τ (X))dy ≤ CN2.

Lemma 4.4. For D = ]−1, 1[ and under (H2′), we have Ex(Ly
τ (X)) ≤ C(1 − |y|)

uniformly in x ∈ D.
As furthermore Ck(xj) = δk,j , we have

C(0, N) = 2 sup
0≤j≤N

( N∑
k=0

√
V (Ck, 0, xj)

)2

≤ 2

( N∑
k=0

√
CN

)2

= O(N4).

This means that we need to take M ≥ CN4 (with C large enough) to ensure the
convergence. Using the same tools, we can also prove that if u ∈ Hm

w ,

V (u− PN (u), 0, xj)≤C

∫ 1

−1

|∇x(u− PN (u))|2 (y)dy ≤ C‖u− PN (u)‖2
H1

w
=O(N−2m+4)

and so that the final error on the solution is a

O

⎛
⎝
√√√√ sup

1≤i≤N

N∑
j=1

C2
j (xi)

V (u− Pu, 0, xj)

M

⎞
⎠ = O(N−m).

We now go back to the interpolation on the multidimensional Tchebychef grid. In this
case, the basis functions simply write Ck1,...,kd

(x1, . . . , xd) = Ck1
(x1) · · · Ckd

(xd). As

|∇xCk1,...,kd
(x)|2 ≤ C

∑d
i=1 |∇xCki(xi)|2, we deduce immediately that V (Ck1,...,kd

, 0, x)
= O(N2) and that C(0, N) = O(N2+2d). The error estimates, using the order m of
regularity of u, are the same in dimension d as they are in dimension one. As the
convergence is geometric and the solution is computed at Nd points with a source term
constituted of Nd terms, the complexity of the algorithm is essentially C(0, N)N2d.
The upper bound on C(0, N) may not be tight. We shall especially see that in all the
numerical experiments C(0, N) is a lot smaller than N2+2d, and we should also keep
in mind that the spectral methods are used for very smooth solutions so that N is
usually small. As a comparison, the usual spectral method requires us to solve a linear
system of size Nd which involves a complexity of a O(N3d) using a direct method and
of N2d at each step of an iterative method. The resolution induces moreover an
additional error on the solution due to the condition number of the matrix which can
grow very quickly with N [BM97]. This can also make the speed of convergence of
the iterative method quite slow. A big advantage of our method is that it keeps all
the advantages of the Monte Carlo method in terms of parallel computing. One can,
for example, use one processor for each of the Nd points of the grid.
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4.4. Gauss–Lobatto–Tchebychef interpolation. To reach a slightly better
accuracy, one can also use the Gauss–Lobatto points [BM97]

yk = cos

(
N − k

N
π

)
, k = 0, 1, . . . , N,

where the boundaries of the interval are taken as interpolation points. The coeffi-
cients (βn) of the interpolation polynomial QN (u) =

∑N
n=0 βnTn satisfy the relation

βn‖Tn‖2
w =

∫ 1

−1
QN (u)(x)Tn(x)w(x)dx. For n < N , the integral equals

π

N

(
u(−1)Tn(−1) + u(1)Tn(1)

2
+

N−1∑
k=1

u(yk)Tn(yk)

)

using the relative quadrature formula, which is exact on polynomials of degree smaller
than 2N − 1. This gives the values of βn for n < N . Moreover, as Tn(1) = 1, we have

βN = u(1) −
∑N−1

n=0 βn. Hence, the basis functions write

CN = TN +

N−1∑
n=0

π(Tn − TN )

2N‖Tn‖2
w

, C0 =

N−1∑
n=0

π(−1)n(Tn − TN )

2N‖Tn‖2
w

and if j �= 0, N ,

Cj =

N−1∑
n=0

πTn(yj)

N‖Tn‖2
w

(Tn − TN ).

As for the Gauss–Tchebychef case, the d-dimensional extension on tensored domains
is obtained by setting Ck1,...,kd

(x1, . . . , xd) = Ck1
(x1) · · · Ckd

(xd). This interpolation
enables a better control of the derivative of u than the previous one, as we can see in
the following theorem [BM97] (valid in any dimension).

Theorem 4.5. For all m ∈ N∗, ∃ c1, c2 > 0 such that ∀u ∈ Hm
w , we have

‖u−QN (u)‖w ≤ c1N
−m‖u‖Hm

w
, ‖u−QN (u)‖

H1
w
≤ c2N

1−m ‖u‖Hm
w
.

Using the previous tools, one can easily prove that C(0, N) = O(N2+2d) and
V (u−Pu, 0, xj) = O(N−2m+2) so that the final error on the solution is an O(N−m−1)
which is compared to an O(N−m) for the previous interpolation.

5. Numerical results. The aim of this numerical part is not to give the op-
timal way to solve a general problem using our algorithm. We study various classic
situations only to illustrate the convergence and the accuracy of our algorithm. Dif-
ferent approximations and discretization schemes are tested to confirm our theoretical
estimates and the great efficiency and generality of our approach.

5.1. Poisson equation in dimension one. Our first example is the numerical
resolution of the Poisson equation in dimension one using a Monte Carlo scheme with
no discretization error [GM04] and Tchebychef interpolations on either the (xk)k or
the (yk)k. The solution of this Poisson equation

1

2
u

′′
= f in ]−1, 1[
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with boundary conditions u(−1) = a, u(1) = b is u(x) = aPx(WτD = −1) + b(1 −
Px(WτD = −1)) − Ex(

∫ τD
0

f(Ws)ds). As Px(WτD = −1) = 1−x
2 the contribution

of the boundary conditions to the solution can be easily simulated. To achieve the
contribution of the source term with no discretization error, we use the representation
Ex(

∫ τD
0

f(Ws)ds) = (1− x2)E(f(Yx)) where the density of the random variable Yx is
1+r
1+x1−1≤r≤x + 1−r

1−x1x≤r≤1.

We study the example f(x) = (x+2) exp(x)/2, a = − 1
e , b = e, so that the solution

of this equation is u(x) = x exp(x). We give in the following table the error

e(j) = sup
0≤k≤N

|u(xk) − uj(xk)|

as a function of the number j of steps and of the number M of sample values to
compute the pointwise approximation at the xk. Even if our algorithm is based on
independent random drawings, we have observed in [GM04] that one could use low-
discrepancy sequences to speed up the convergence of the algorithm. We hence use
here a version of the algorithm based on Halton sequences, which is twice as fast as
the Monte Carlo version. The accuracy of the crude quasi–Monte Carlo method with
M sample values is given by e(1). L is the number of steps until convergence for a
given value of M. All the CPU times are less than one second.

N M L e(1) e(5) e(L)

5 80 16 2 × 10−1 2 × 10−2 5 × 10−4

7 200 30 1 × 10−1 9 × 10−3 4 × 10−6

10 800 45 9 × 10−2 2 × 10−3 8 × 10−10

M has to be chosen large enough with respect to N to make the algorithm con-
verge but is significantly smaller than N4. The error at convergence e(L) corresponds
exactly to the interpolation error of the interpolation polynomial PN (u) of the exact
solution at the Tchebychef abscissae. We now study the same example using the
Gauss–Lobatto–Tchebychef interpolation.

N M L e(1) e(5) e(L)

5 40 10 4 × 10−1 1 × 10−3 7 × 10−4

7 100 26 2 × 10−1 2 × 10−2 2 × 10−6

10 400 35 1 × 10−1 1 × 10−2 2 × 10−9

We can see that we can take half as many drawings to achieve the same final
accuracy for similar number of steps. This means that the convergence is twice as
fast using this kind of interpolation, maybe because there is no error on the correction
at the two boundary points. We do not notice any major difference on the final error,
as we might have expected.

5.2. The bidimensional case. We consider the Poisson equation on the square
domain D = ]−1, 1[

2
with Dirichlet boundary conditions. We use an interpolation at

the bidimensional Tchebychef grid, two types of discretization schemes, and Monte
Carlo simulations. The first one is the modified WOS method [HMG03, GM04] which
can take into account the source term f . This walk goes from one sphere to an-
other until the motion reaches the ε-absorption layer. The second one is based on
the continuous Euler scheme with parameter �t [Gob01]. We study the equation
1
2�u = 1

2 (4x2 + 3) exp(x2 + y) with Dirichlet boundary conditions chosen so that the
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solution of this equation is u(x, y) = exp(x2 + y). We begin with the WOS scheme
taking, respectively, ε1 = 10−2 and ε2 = 10−3 for the absorption layer thickness and
use the same notation as in the previous examples.

N M L e1(1) e1(L) CPU e2(1) e2(L) CPU

6 200 11 0.24 1 × 10−3 1.4 0.18 1 × 10−3 2.4

8 400 13 0.17 8 × 10−5 6.7 0.14 7 × 10−5 10.5

10 800 17 0.13 3 × 10−6 28 0.14 4 × 10−6 44

We observe a geometric convergence on both the bias and the variance up to the
interpolation error of the exact solution. We do not notice any difference on the final
accuracy for the two values ε1 and ε2. CPU times are of course smaller for ε1 and also
about eight times smaller than in [GM04] by using a recursive computation of the
Tchebychef polynomials instead of their trigonometric expression. We now use the
corrected Euler scheme with discretization parameters �t1 = 0.005 and �t2 = 0.002.

N M L e1(1) e1(L) CPU L e2(1) e2(L) CPU

6 30 10 0.7 3 × 10−3 1.4 12 0.6 2 × 10−3 4

8 100 40 0.37 2 × 10−4 28 10 0.38 1 × 10−4 16

10 200 10 0.4 5 27 50 0.3 3 × 10−5 300

We observe the same kind of convergence as in the previous examples except in
the case �t1 = 0.005 and N = 10 because the discretization parameter is not small
enough (see the condition ρv < 1). Nevertheless, we do not achieve the same accuracy
at the limit. A bias due to the discretization scheme still remains. When �t decreases
this bias decreases and the convergence is faster. Using the naive Euler scheme on
the same example, the bias at the limit was twice as big and the convergence twice
as slow. We can take M a lot smaller than using the WOS method to achieve the
convergence.

5.3. Parabolic problem. We consider a regular up and out call option with
maturity T = 1, corresponding to the domain D = ]0, 2[ (actually, 0 is a natural
boundary) and the Cauchy–Dirichlet boundary condition g(t, x) = (x − 1)+ if t = 1
and g(t, x) = 1 if x = 2. The dynamics is given by Xt = x exp(σWt − 1

2σ
2t). The

quantity u(0, x) = Ex((Xτ − 1)+) (with τ = inf{t : Xt /∈]0, 2[} ∧ 1) gives the risk-
neutral price of the option at time 0, when the interest rate equals 0. The solution u
can be computed by a closed formula [Zha97]. The derivatives of u have singularities
around (t, x) = (1, 1). Thus, the solution is less smooth than in previous examples and
the numerical results below show that the benefit of our method is less important in
that case. For the interpolation procedure, we propose a piecewise linear interpolation
w.r.t. the time variable and a Tchebychef interpolation w.r.t. the space variable. The
interpolation times are (ti = iT/(K − 1))0≤i<K and the N + 1 Tchebychef points at
each interpolation time are the (xn) or (yn) (on the interval [0, 2] instead of [−1, 1]).

Notation relative to the errors remains the same. We first compare the accuracy
of the Gauss–Tchebychef (GT) and Gauss–Lobatto–Tchebychef (GLT) interpolations,
in the case K = 5, N = 5. The simulation of X can be exactly performed at
discretization times (k�t), from which we can derive a naive approximation of τ .
Here, we take �t = 0.05 and M = 10 simulated paths. All the CPU times are less
than one second.
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Fig. 5.1. On the left, error e(j) w.r.t. the number of iterations. On the right, the same in
logarithmic scales.

K N M �t L e(1) e(2) e(L)

GT 5 5 10 0.05 4 1.32 × 10−1 7.92 × 10−2 3.88 × 10−2

GLT 5 5 10 0.05 4 1.72 × 10−1 4.7 × 10−2 1.44 × 10−2

The GLT interpolation converges faster and the relative final error is slightly
smaller. Note also that from the first iteration, the accuracy of our method compared
to a crude Monte Carlo method is improved by a factor of 3.6 using the GLT inter-
polation: this accuracy could be achieved using 13 times more crude Monte Carlo
simulations. To diminish the bias, we now use Brownian bridge corrections to sim-
ulate the exit event. To obtain more evidence of the better convergence of the GLT
interpolation, we increase the value of N to 15: the contraction constant ρv should

increase (from Theorem 3.2 and sections 4.2 and 4.3, one has ρv ≈ O(N
4

M )) and may
become larger than 1 (to recover ρv < 1, one can increase M). This is confirmed by
the following result, where for the GLT interpolation, the convergence still holds but
not for the GT interpolation.

K N M �t L e(1) e(2) e(L)

GT 5 15 10 0.01 – 1.98 × 10−1 5.64 × 10−1 2.7 for L = 15

GLT 5 15 10 0.01 10 2.13 × 10−1 1.24 × 10−1 5.65 × 10−3

In view of this nice behavior, the following experiments are done using GLT
interpolation. Figure 5.1 illustrates the geometric convergence till the interpolation
error. It has been obtained with K = 10, N = 20, M = 20, and �t = 0.001. The
optimal choice of (K,N) will be analyzed in future research.

6. Conclusion. We developed and studied a sequential Monte Carlo method for
the numerical solution of linear PDEs. This method provides a regular global approx-
imation of this solution by combining pointwise approximations via the Feynman–
Kac formula and a linear approximation on some basis functions. As the pointwise
approximations are computed by means of a Monte Carlo method, statistical and
discretization errors occur. We have proved the geometric reduction of these two
kinds of errors up to a limit linked to the linear approximation. Numerical experi-
ments on simple diffusion equations using various discretization schemes and different
kinds of approximations have confirmed this geometric reduction and the efficiency
of our method. Further numerical examples should be developed on more complex
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domains, in higher dimensions, or for less regular solutions. In higher dimensions,
one needs to diminish the dimensional effect by making a good choice of the basis
functions [Mai03]. For more complex domains or less regular solutions, new versions
of the algorithm based on finite elements approximations or domain decomposition
methods can certainly be developed. In all those situations, our algorithm could at
least be a variance reduction tool by computing a rather poor approximation on few
basis functions. As a final remark, we think that our method could advantageously
replace the usual deterministic methods in many situations, especially if it is used in
a parallel version.

Appendix A. Proof of Theorem 4.2.

Statement (a). Since D is bounded, it is sufficient to prove the result when
D = DR = [−R,R]d for an arbitrary R. We proceed in several steps.

Step 1. τΔ has exponential moments, not necessarily uniformly bounded in Δ.
If we use the Markov property at time (tk)k for the Euler scheme, we get the rough
estimate P(τΔ > mΔ) ≤ [supx∈D̄ Px(XΔ

Δ ∈ D)]m. Under (H2′), supx∈D̄ Px(XΔ
Δ ∈

D) < 1, and thus τΔ has exponential moments. The point is to prove that they are
uniformly bounded w.r.t. Δ, which is not clear from the computations above.

Step 2. The first moment supx∈D̄ Ex(τΔ) is uniformly bounded w.r.t. Δ close to
0. We adapt the arguments from [Fre85], where it is proved that supx∈D̄ Ex(τ) < ∞.
Take x ∈ D and set 1 = (1, . . . , 1)∗; the ellipticity assumption combined with Itô’s
formula applied to eλ1.x (for λ large enough such that −λ|b|∞d + 1

2λ
2ε0d ≥ 1) gives

Ex(eλ1.XΔ
τΔ ) ≥ eλ1.x + Ex

(∫ τΔ

0

eλ1.XΔ
s ds

)

≥ eλ1.x + min
z∈DR+1

eλ1.z

[
Ex(τΔ) − Ex

(∫ τΔ

0

1XΔ
s /∈DR+1

ds

)]
.(A.1)

On the one hand, we have

Ex(eλ1.XΔ
τΔ ) ≤ sup

z∈DR+1

eλ1.z +

∞∑
k=0

Ex

[
1tk<τΔ1XΔ

tk+1
/∈DR+1

e
λ1.XΔ

tk+1
]
.

Standard large deviation estimates (see Lemma 4.1 in [Gob00]) give

E
(
e
λ1.XΔ

tk+11XΔ
tk+1

/∈DR+1
|Ftk

)
≤ C(λ)e−c/Δ

for some constants c > 0 and C(λ) uniform w.r.t. Δ ≤ 1 and XΔ
tk

∈ DR. For Δ small

enough such that C(λ)e−c/Δ

Δ ≤ 1
3 minz∈DR+1

eλ1.z, we obtain

Ex(eλ1.XΔ
τΔ ) ≤ sup

z∈DR+1

eλ1.z + Ex(τΔ)
1

3
min

z∈DR+1

eλ1.z.

On the other hand, from Fubini’s theorem, we have Ex(
∫ τΔ

0
1XΔ

s /∈DR+1
ds) =∫∞

0
Px(φ(s)<τΔ;XΔ

s /∈ DR+1)ds. The previous arguments give Ex(
∫ τΔ

0
1XΔ

s /∈DR+1
ds)

≤ Ce−c/Δ
∫∞
0

Px(φ(s) < τΔ)ds ≤ 1
3Exτ

Δ for Δ small enough. Plugging all these es-
timates into (A.1), we get

sup
z∈DR+1

eλ1.z ≥ eλ1.x + Ex(τΔ)
1

3
min

z∈DR+1

eλ1.z
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uniformly in x ∈ D for Δ small enough. This proves our assertion.
Step 3. The pth moment supx∈D̄ Ex([τΔ]p) (p ≥ 1) is uniformly bounded w.r.t.

Δ close to 0. This is a standard consequence of the boundedness of supx∈D̄ Ex(τΔ)
and of the Markov property at times (kΔ)k. We refer to section 3.3 in [Fre85] for a
proof in the diffusion case, which can be adapted to the discrete Euler scheme in a
straightforward way. Statement (a) is proved.

Statement (b). In view of the uniform integrability conditions (a), it is enough
to prove that τΔ converges in probability to τ , which follows from the weak conver-
gence of (τΔ, τ) to (τ, τ) (stable convergence). Thus, we aim at showing that for any
s1, s2, we have

lim
Δ→0

Px(τΔ ≤ s1, τ ≤ s2) = Px(τ ≤ s1, τ ≤ s2).(A.2)

We introduce the signed distance to ∂D, defined by F (x) = d(x, ∂D) if x ∈ D and
F (x) = −d(x, ∂D) if x /∈ D. Without additional regularity on D, F is at least a
Lipschitz continuous function. Note that {τΔ ≤ s1} = {inft≤s1 F (XΔ

φ(t)) ≤ 0} and

{τ ≤ s1} = {inft≤s1 F (Xt) ≤ 0}. From the a.s. uniform convergence of (XΔ
φ(t))t

to (Xt)t on [0, s1] (see [Gob00], for instance), we have limΔ→0 inft≤s1 F (XΔ
φ(t)) =

inft≤s1 F (Xt) a.s. Thus, (A.2) holds true if 0 = P(inft≤s1 F (Xt) = 0), and we obtain,
using the strong Markov property,

0 = E(1τ<s1PXτ (∀t ≤ s1 − τ : Xt ∈ D̄)) + P(τ = s1).(A.3)

In fact, for any r > 0 and x ∈ ∂D, under (H2′) we have Px(∀t ≤ r : Xt ∈ D̄) ≤
Px(Xr ∈ D̄) < 1 (in [Gob00], see inequality (68) and the comments before Remark
5.1). Thus, by the Blumenthal zero-one law, the probability Px(∀t ≤ r : Xt ∈ D̄)
must be equal to 0. Hence, (A.3) is reduced to P(τ = s1) = 0. This equality is true
except for the countable number of points of discontinuity of s1 �→ P(τ ≤ s1), which
is enough to derive (A.2) for any s1.

Statements (c) and (d). Both statements easily follow from the a.s. uniform
convergence of XΔ to X on compact sets, from the uniform integrability in (a) and
from the convergence (b).

Appendix B. A technical lemma.
Lemma B.1. Assume (H2′) and that û is the C0(D̄) ∩ C2(D)-solution of L0û−

cû = f̂ in D and û = ĝ on ∂D, where f̂ and ĝ are bounded continuous functions.
Then

V (û, 0, x) = Ex

[∫ τ

0

Z2
s |∇xû σ|2(Xs)ds

]
< +∞.

Proof. The technical difficulty comes from the fact that û may have derivatives
exploding near the boundary. To circumvent this problem, set Dε = {x ∈ D :
d(x, ∂D) > ε} for ε > 0 and denote by τε the associated exit time. By standard interior
estimates [GT83], û has a bounded gradient in Dε. Furthermore, it is straightforward
to see that τε ↑ τ a.s. as ε ↓ 0. An application of Itô’s formula gives

û(Xτε)Zτε +

∫ τε

0

Zs(−L0û + cû)(Xs)ds = û(x) +

∫ τε

0

Zs [∇xû σ](Xs)dWs.
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Owing to the localization in Dε, it is easy to see that Ex

[ ∫ τε
0

Z2
s |∇xû σ|2(Xs)ds

]
<

∞. Hence, by the isometry property, we obtain

Ex

[ ∫ τε

0

Z2
s |∇xû σ|2(Xs)ds

]
= Varx

[
û(Xτε)Zτε +

∫ τε

0

Zs(−L0û + cû)(Xs)ds

]
.

Take the limit when ε goes to 0: the left-hand side converges using the monotone
convergence theorem and the right-hand side using the dominated convergence the-
orem. The limit writes Ex

[ ∫ τ

0
Z2
s |∇xû σ|2(Xs)ds

]
= V (û, 0, x), which is our state-

ment.

Appendix C. Proof of Lemma 4.4. We can assume y ≥ 0. Tanaka’s formula
[RY94] yields

1

2
Ex(Ly

τ (X)) = Ex(Xτ − y)+ − (x− y)+ − Ex

(∫ τ

0

b(Xs)1Xs≥yds

)
.

Hence, we get Ex(Ly
τ (X)) ≤ C uniformly in x, y. Using the occupation time formula

in the equality above and the previous uniform estimate, we obtain 1
2Ex(Ly

τ (X)) ≤
(1−y)+C

∫ 1

y
Ex(Lz

τ (X))dz ≤ C(1−y). If y < 0, then the same arguments apply.
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Abstract. In this paper, we are concerned with mortar element methods for the numerical
solution of the eddy currents equations based on domain decompositions on nonmatching grids using
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1. Introduction. Mortar element methods have attracted considerable atten-
tion in recent years, since they can handle situations where meshes on different subdo-
mains need not align across interfaces, and the matching of discretizations on adjacent
subdomains is only enforced weakly. In [8], Bernardi, Maday, and Patera first intro-
duced basic concepts of general mortar element methods, including the coupling of
spectral elements with finite elements. Subsequently, they have been extensively used
and analyzed by many authors. In [4], Ben Belgacem studied the mortar element
method within a primal hybrid finite element formulation. Some extensions and con-
vergence results in three dimensions have been considered in [5], [10], and [22].

In the framework of edge element discretizations, the mortar element method has
been studied for two-dimensional problems in [3] and [6]. However, similar to second
order elliptic problems (cf., e.g., [5], [10], [22]), the situation in the three-dimensional
case is much more complicated, since it particularly requires a subtle specification of
the multiplier space. Recently, the second author of this paper considered a mortar
element method for three-dimensional Maxwell equations in [20], where the edge ele-
ment of the first family has been studied (see also [21]). Related work for mortar edge
elements has been proposed by Ben Belgacem, Buffa, and Maday in [7], but their result
holds only for the lowest order edge elements of Nédélec’s second family [26]. Further-
more, their error estimate of order O(hlog(h)) is not optimal and requires a somewhat
high regularity of the solution, i.e., the solution is assumed to belong to H2(curl; Ω).

In this paper, we will give an optimal error estimate for the mortar edge element
method based on the lowest order edge elements of Nédélec’s first family. Our conver-
gence results are established under a weaker regularity assumption, i.e., the solution
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is assumed to belong to H1(curl; Ω). On the other hand, on the basis of the discrete
inf-sup condition constructed in [20], we also obtain an optimal error estimate for the
Lagrange multiplier.

The paper is organized as follows. Section 2 describes the model problem under
consideration. Section 3 introduces the mortar edge element method followed by the
derivation of the optimal energy error estimate in section 4. Finally, section 5 is
devoted to an optimal error estimate for the Lagrange multiplier.

2. Model problem. Given a bounded simply connected domain Ω in R3 with
polyhedral boundary ∂Ω, we consider the following elliptic boundary value problem:{

curl A curl j + B j = f in Ω,
j ∧ n = g on ∂Ω,

(2.1)

where n denotes the exterior unit normal vector on ∂Ω. We note that the above
problem arises, for instance, in the computation of eddy currents and can be deduced
from the time-dependent equations by using an implicit finite difference scheme (cf.
[9], [18], [23]).

We assume A = {aij}3
i,j=1 and B = {bij}3

i,j=1 to be symmetric matrix-valued

functions, with aij ∈ C1(Ω̄), bij ∈ L∞(Ω), 1 ≤ i, j ≤ 3, satisfying

c|ξ|2 ≤
3∑

i,j=1

aij(x)ξiξj ≤ C|ξ|2, c|ξ|2 ≤
3∑

i,j=1

bij(x)ξiξj ≤ C|ξ|2, ξ ∈ R3,

for almost all x ∈ Ω. In this paper, the constants c and C with or without subscript
always denote general positive constants independent of the mesh size. Moreover, we
assume f ∈ L2(Ω)3 and suppose, for simplicity, that g = 0.

We denote by H(curl; Ω) the Hilbert space

H(curl; Ω) := {q ∈ L2(Ω)3 | curlq ∈ L2(Ω)3}

equipped with the norm

‖q‖curl,Ω := (‖q‖2
0,Ω + ‖curlq‖2

0,Ω)
1
2 .

Here and in what follows, ‖ · ‖k,Ω, k ∈ N0, stands for the norm of the Sobolev space
Hk(Ω)3. Moreover, we define the space

H1(curl; Ω) := {q ∈ H1(Ω)3|curlq ∈ H1(Ω)3}

equipped with the norm

‖q‖1,curl,Ω := (‖q‖1,Ω + ‖curlq‖1,Ω)
1
2 .

Similarly, if G is a subdomain of Ω, we can define the space H1(curl;G) over the
subdomain G. The corresponding norm is denoted by ‖q‖1,curl,G.

We refer to

V := H0(curl; Ω) = {q ∈ H(curl; Ω) | n ∧ (q ∧ n)|∂Ω = 0}

as the subspace of vector fields with vanishing tangential components trace on ∂Ω.
Then, the variational formulation of (2.1) is to find j ∈ V such that

aΩ(j,q) = l(q) ∀q ∈ V,(2.2)
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where the bilinear form aΩ(·, ·) : H(curl; Ω) × H(curl; Ω) → R and the functional
l(·) : H(curl; Ω) → R are given by

aΩ(j,q) :=

∫
Ω

(A curl j · curl q + B j · q) dx,

l(q) :=

∫
Ω

f · q dx.

We further have to introduce the tangential traces of H(curl; Ω). In particular, we
denote by divτ and curlτ the surfacic divergence and the adjoint of the surfacic

rotational curlτ (cf. [1]). For B ⊂ ∂Ω, the space H
1
2
00(B) is the subspace of func-

tions u ∈ H
1
2 (Ω) whose extension ũ by zero to ∂Ω\B belongs to H

1
2 (∂Ω) with norm

‖u‖
H

1
2
00(B)

:= ‖ũ‖ 1
2 ,∂Ω. We refer to H− 1

2 (B) as the dual space of H
1
2
00(B) (cf. [19] for

details).
The tangential trace (q ∧ n)|B belongs to the Hilbert space

H− 1
2 (divτ ;B) := {q ∈ H− 1

2 (B)3 | n · q|B = 0 and divτq ∈ H− 1
2 (B)}

equipped with the norm

‖q‖− 1
2 ,divτ ,B := (‖q‖2

− 1
2 ,B

+ ‖divτq‖2
− 1

2 ,B
)1/2,

whereas the tangential components trace (n ∧ (q ∧ n))|B lives in the Hilbert space

H− 1
2 (curlτ ;B) := {q ∈ H− 1

2 (B)3 | n · q|B = 0 and curlτq ∈ H− 1
2 (B)}

equipped with the norm

‖q‖− 1
2 ,curlτ ,B := (‖q‖2

− 1
2 ,B

+ ‖curlτq‖2
− 1

2 ,B
)1/2.

The spaces H− 1
2 (divτ ;B) and H− 1

2 (curlτ ;B) are dual to each other with L2
t(B) :=

{q ∈ L2(B)3 | n · q|B = 0} as the pivot space (cf. [13], [14], and [15] for details).

3. The mortar edge element method. We now introduce a mortar finite
element method for the solution of (2.1). First, we partition Ω into nonoverlapping
subdomains such that

Ω =

N⋃
i=1

Ωi and Ωi ∩ Ωj = Ø, i 
= j.

We assume this decomposition to be geometrically conforming in the sense that the
intersection of Ω̄i ∩ Ω̄j for i 
= j is either empty, a vertex, an edge, or a face. The
skeleton of the decomposition

S =

N⋃
i=1

∂Ωi\∂Ω

is partitioned into a set of disjoint open faces γm (1 ≤ m ≤ M) called mortars, i.e.,

S =

M⋃
m=1

γ̄m, γm ∩ γn = Ø if m 
= n.

We denote the common interface between Ωi and Ωj by γm. We refer to γm(i) as
the mortar associated with subdomain Ωi, while the other face, which geometrically
occupies the same place, is denoted by δm(j) and is called the nonmortar.
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Let Ti be a regular and quasi-uniform triangulation of the subdomain Ωi with
mesh size hi := maxK∈Ti hK made of tetrahedra. The triangulations generally do
not align at the interfaces. We denote the global mesh ∪iTi by Th with mesh size
h := maxi hi. We refer to Tγm(i)

and Tδm(j)
as the triangulations which are inherited

from the triangulations Ti and Tj on the mortar and nonmortar sides, respectively.
We further denote by hγm(i)

and hδm(j)
the global mesh sizes with respect to the

triangulations Tγm(i)
and Tδm(j)

. Moreover, for Σi ⊂ Ω̄i we define Fh(Σi) and Eh(Σi)
as the sets of faces, respectively, edges, of Ti in Σi. Likewise, for Σγm(i)

and Σδm(j)
⊂ γm

we refer to Eh(Σγm(i)
) and Eh(Σδm(j)

) as the set of edges of Tγm(i)
, respectively, Tδm(j)

,
in Σγm(i)

, respectively, Σδm(j)
.

We assume that there exist constants c, C independent of hγm(i)
and hδm(j)

such
that

c hγm(i)
≤ hδm(j)

≤ C hγm(i)
.(3.1)

For the discretization of H(curl; Ωi), we introduce Nédélec’s curl-conforming
edge elements of the first family as described in [25], i.e., for a tetrahedron K ∈ Ti
the lowest order edge element ND1(K) is defined as

ND1(K) := {q = a + b ∧ x | a, b ∈ R3, x ∈ K}.

Note that any q ∈ ND1(K) is uniquely determined by the degrees of freedom

le(q) :=

∫
e

te · q ds, e ∈ Eh(K),(3.2)

where te stands for the tangential unit vector along e.
Then, the spaces ND1(Ωi; Ti) are given as follows:

ND1(Ωi; Ti) := {qh ∈ H(curl; Ωi) | qh|K ∈ ND1(K), K ∈ Ti}.

On the basis of the above definition, we consider the product space

Ṽh := {qh ∈ L2(Ω)3 | qh|Ωi ∈ ND1,0(Ωi; Ti), 1 ≤ i ≤ n},

where we refer to ND1,0(Ωi; Ti) as the subspace of vector fields with vanishing tan-
gential component traces on ∂Ω ∩ ∂Ωi.

It is clear that we cannot expect Ṽh to be a subspace of H0(curl; Ω), since the
tangential traces (qh ∧ n)|F ,qh ∈ Ṽh, are not continuous across the common face
F of two adjacent subdomains. Therefore, in order to guarantee consistency of the
approximation, we have to impose some weak continuity constraints on the tangential
traces. We note that (qh ∧n)|γm(i)

and (qh ∧n)|δm(j)
are elements of the lowest order

Raviart–Thomas finite element spaces RT0(γm(i); Tγm(i)
) and RT0(δm(j); Tδm(j)

). We
recall the definition of the lowest order Raviart–Thomas conforming finite element
(cf. [12], [27]). For a triangle T ∈ Tγm(i)

, we define RT0(T) by means of

RT0(T) := {q = a + bx | a ∈ R
2, b ∈ R, x ∈ T}.

Any q ∈ RT0(T) is uniquely defined by the degrees of freedom

le(q) :=

∫
e

ne · q ds, e ∈ Eh(T ),(3.3)
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where ne stands for the exterior unit normal vector with respect to e.
Then, RT0(γm(i); Tγm(i)

) is given as

RT0(γm(i); Tγm(i)
) := {qh ∈ H(div; γm(i)) | qh|T ∈ RT0(T ), T ∈ Tγm(i)

},

and we can similarly define RT0(δm(j); Tδm(j)
).

For the Lagrange multiplier space we choose

Mh :=
∏
δm(j)

Mh(δm(j))

with

dim Mh(δm(j)) = dim RT0,0(δm(j); Tδm(j)
),

where RT0,0(δm(j); Tδm(j)
) denotes the subspace of vector fields with vanishing normal

components along the boundary ∂δm(j).
For the proper definition of Mh(δm(j)) we need a more detailed specification of

the basis fields of RT0(δm(j); Tδm(j)
). In view of (3.3), we specify the basis field qγ

associated with the edge eγ ∈ Eh(δ̄m(j)) according to
∫
eμ

nμ · qγ ds = hδm(j)
δγμ, eμ ∈ Eh(δ̄m(j)).(3.4)

We now define Mh(δm(j)) by an extension of the basis field qe ∈ RT0,0(δm(j); Tδm(j)
)

with respect to those edges in δm(j) that have at least one neighboring edge on the
boundary ∂δm(j). The precise specification requires some notation:

1. For an interior edge e ∈ Eh(δm(j)), we denote by

E∂δm(j)

h (e) := {f ∈ Eh(∂δm(j)) | f ⊂ supp qe}(3.5)

the set of the neighboring edges on ∂δm(j).
2. For a boundary edge f ∈ Eh(∂δm(j)), we refer to

Eδm(j)

h (f) := {e ∈ Eh(δm(j)) | e ⊂ supp qf}(3.6)

as the set of neighboring edges in the interior of δm(j).
Finally we define

Eδm(j)

h (∂δm(j)) :=
⋃

f∈Eh(∂δm(j))

Eδm(j)

h (f)(3.7)

as the set of interior edges with a neighboring edge on ∂δm(j).

Then, for e ∈ Eδm(j)

h (∂δm(j)), we choose appropriate weighting factors λe,f ∈ R,

f ∈ E∂δm(j)

h (e), and define the basis field q̃e, e ∈ Eh(δm(j)), according to

q̃e =

⎧⎨
⎩

qe, e ∈ Eh(δm(j))\E
δm(j)

h (∂δm(j))

qe +
∑

f∈E
∂δm(j)

h
(e)

λe,fqf , e ∈ Eδm(j)

h (∂δm(j)),
(3.8)

where the weighting factors are assumed to satisfy{
λe,f ≥ 0,∑

e∈E
δm(j)

h
(f)

λe,f = 1, f ∈ Eh(∂δm(j)).
(3.9)



CONVERGENCE OF MORTAR EDGE ELEMENT METHODS IN R3 1281

The thus specified basis fields define

Mh(δm(j)) := span{q̃e|e ∈ Eh(δm(j))}.(3.10)

Remark 3.1. In view of (3.9) it is easy to check that Mh(δm(j)) contains the
constant vectors.

Next, we introduce the L2-projection Q
δm(j)

h : L2(γm)2 → Mh(δm(j)) as follows:

(Q
δm(j)

h q,w) = (q,w), w ∈ Mh(δm(j)).(3.11)

Lemma 3.1. Let Q
δm(j)

h be given by (3.11). Then there holds

‖q −Q
δm(j)

h q‖0,γm ≤ C h
1
2

δm(j)
|q| 1

2 ,δm(j)
, q ∈ (H

1
2 (δm(j)))

2.

Proof. Let Ih denote the global interpolation operator associated with the space
Mh(δm(j)), i.e.,

Ihq =
∑

e∈Eh(δm(j))

le(q)q̃e,

where le(q) =
∫
e
ne · q ds ∀q ∈ (H1(δm(j)))

2.
In view of Remark 3.1 we know that Ih preserves constant vectors, i.e., for any

C ∈ R2,

IhC = C.

Consequently, by the standard Bramble–Hilbert lemma and scaling argument we get

‖(I − Ih)q‖2
0,γm

= ‖(I − Ih)(q + C)‖2
0,γm

=
∑

T∈Tδm(j)

‖(I − Ih)(q + C)‖2
0,T

≤ Ch2
δm(j)

|q|21,δm(j)
, q ∈ (H1(δm(j)))

2,

whence

‖(I − Ih)q‖0,γm ≤ Chδm(j)
|q|1,δm(j)

, q ∈ (H1(δm(j)))
2.

It follows from the definition of Q
δm(j)

h that

‖(I −Q
δm(j)

h )q‖0,γm
≤ ‖(I − Ih)q‖0,γm

≤ Chδm(j)
|q|1,δm(j)

, q ∈ (H1(δm(j)))
2.

On the other hand,

‖(I −Q
δm(j)

h )q‖0,γm ≤ 2‖q‖0,δm(j)
.

The assertion then follows from a standard interpolation of the preceding inequa-
lities.

We now introduce the following mortar edge element space:

Vh = {qh | qh ∈ Ṽh, and for any γm = γm(i) = δm(j),

Q
δm(j)

h (qh ∧ n|γm(i)
) = Q

δm(j)

h (qh ∧ n|δm(j)
)}.(3.12)
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We define the bilinear form ah(·, ·) : Vh × Vh → R by means of

ah(jh,qh) =

N∑
i=1

∫
Ωi

(A curl jh · curl qh + B jh · qh) dx.(3.13)

Then the mortar finite element method for the solution of (2.4) can be stated as
follows: Find jh ∈ Vh such that

ah(jh,qh) = l(qh), qh ∈ Vh.(3.14)

4. Error estimates. We first recall the well-known Strang lemma (cf., e.g.,
[17]).

Lemma 4.1 (Strang’s lemma). Let j, jh be the solutions of (2.2) and (3.14), re-
spectively. Then there holds

‖j − jh‖ah
≤

(
inf

qh∈Vh/{0}
‖j − qh‖ah

+ sup
qh∈Vh\{0}

|ah(j,qh) − (f,qh)|
‖qh‖ah

)

:= C(Ea + Ec),

where ‖ · ‖ah
= ah(·, ·) 1

2 .
We are now in a position to estimate the two terms on the right side of the above

inequality. As usual, we refer to the first one as the approximation error and to the
second one as the consistency error.

4.1. Consistency error. For curl j ∈ (H1(Ωi))
3, qh ∈ ND1(Ωi; Ti), by Stokes’

theorem we get

∫
Ωi

curl · Acurl j · qh dx

−
∫

Ωi

Acurl j · curl qh dx = (n ∧ (Acurl j ∧ n),qh ∧ n)0,∂Ωi,

where n ∧ (Acurl j ∧ n) is the tangential components trace of Acurl j. Rearranging
the right-hand term in the above equality, for any qh ∈ Ṽh, and curl j ∈ (H1(Ωi))

3,
i = 1, . . . , N, we have (cf. [7] for details)

N∑
i=1

(∫
Ωi

curl · Acurl j · qh dx −
∫

Ωi

Acurl j · curl qh dx

)

=

M∑
m=1

(n ∧ (Acurl j ∧ n), [qh ∧ n])0,γm ,(4.1)

where [·] denotes the jump across the interface γm, i.e.,

[qh ∧ n] = qh ∧ n|δm(j)
− qh ∧ n|γm(i)

.

On the basis of the above equality, we can easily show that

Ec = sup
qh∈Vh\{0}

∣∣∣∣∣
M∑

m=1

(n ∧ (Acurl j ∧ n), [qh ∧ n])0,γm

‖qh‖ah

∣∣∣∣∣ .
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Theorem 4.1. Assume j ∈ H1(curl; Ω). Then the consistency error can be
estimated as follows:

Ec ≤ C

⎛
⎝ N∑

j=1

h2
j ‖curl j‖2

1,Ωj

⎞
⎠

1
2

.

Proof. It follows from Lemma 3.1, (3.12), and the trace inequality that

|(n ∧ (Acurl j ∧ n), [qh ∧ n])0,γm |
= |(n ∧ (Acurl j ∧ n) −Q

δm(j)

h (n ∧ (Acurl j ∧ n)), [qh ∧ n])0,γm
|

≤ ‖n ∧ (Acurl j ∧ n) −Q
δm(j)

h (n ∧ (Acurl j ∧ n))‖0,γm ‖[qh ∧ n]‖0,γm

≤ Ch
1
2

δm(j)
|n ∧ (Acurl j ∧ n)| 1

2 ,δm(j)
‖[qh ∧ n]‖0,γm

≤ Ch
1
2
j ‖curl j‖1,Ωj ‖[qh ∧ n]‖0,γm .

On the other hand, for qh ∈ Vh, Theorem 3.2 in [20] yields

‖[qh ∧ n]‖0,γm ≤ C h
1
2

δm(j)
(‖curl qh‖0,Ωi + ‖curl qh‖0,Ωj ).(4.2)

On the basis of the preceding inequalities, we get

Ec ≤

⎡
⎣ N∑
j=1

C hj ‖curl j‖1,Ωj
(‖curl qh‖0,Ωi

+ ‖curl qh‖0,Ωj
)

⎤
⎦ /‖qh‖ah

≤ C

⎡
⎢⎣‖curl qh‖0,Ω

⎛
⎝ N∑

j=1

h2
j ‖curl j‖2

1,Ωj

⎞
⎠

1
2

⎤
⎥⎦ /‖qh‖ah

≤ C

⎛
⎝ N∑

j=1

h2
j ‖curl j‖2

1,Ωj

⎞
⎠

1
2

.

4.2. Approximation error. We first introduce the extension operator E
δm(j)

h :
RT0,0(δm(j); Tδm(j)

) → ND1(Ωj ; Tj), defined according to

(E
δm(j)

h λj
h) ∧ n = λj

h on δm(j), λj
h ∈ RT0,0(δm(j); Tδm(j)

),

where all degrees of freedom that are not located on δm(j) are set equal to zero.

In order to estimate E
δm(j)

h λj
h, λj

h ∈ RT0,0(δm(j); Tδm(j)
), we need some auxiliary

results.
Lemma 4.2. For any qh ∈ ND1(Ωi; Ti), there holds

ch3
i

∑
T∈Fh(Ω̄i)

|(nT · curlqh)|T |2 ≤ ‖curlqh‖2
0,Ωi

≤ Ch3
i

∑
T∈Fh(Ω̄i)

|(nT · curlqh)|T |2,

and

ch3
i

∑
e∈Eh(Ω̄i)

|(te · qh)(xM
e )|2 ≤ ‖qh‖2

0,Ωi
≤ Ch3

i

∑
e∈Eh(Ω̄i)

|(te · qh)(xM
e )|2,
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where nT denotes the exterior unit normal vector with respect to T ∈ Fh(Ω̄i), and
xM
e is the midpoint of the edge e. Similarly, for any δm(j) ⊂ S, and any qh ∈

RT0(δm(j); Tδm(j)
), we have

ch2
δm(j)

∑
T∈Tδm(j)

|(divτqh)|T |2 ≤ ‖divτqh‖2
0,δm(j)

≤ Ch2
δm(j)

∑
T∈Tδm(j)

|(divτqh)|T |2,

and

ch2
δm(j)

∑
e∈Eh(δ̄m(j))

|(ne ·qh)(xM
e )|2 ≤ ‖qh‖2

0,δm(j)
≤ Ch2

δm(j)

∑
e∈Eh(δ̄m(j))

|(ne ·qh)(xM
e )|2.

Proof. We first prove the second inequality. In the reference tetrahedron K̂, it is
easy to see that

‖q̂h‖0,K̂ and

⎛
⎝ ∑

e∈Eh(K̄)

|(te · q̂h)(xM
e )|2

⎞
⎠

1
2

are equivalent norms over the finite dimension space. By a scaling argument and
summing up all e ∈ Eh(Ω̄i), we can get the second inequality. Similarly, the fourth
inequality can be verified. Moreover, the first and third inequalities are easy conse-
quences of the following fact:

curl qh|K ∈ P0(K)3, K ∈ Ti, and divτqh|T ∈ P0(T ), T ∈ Tδm(j)
.

On the basis of Lemma 4.2 we can derive the following lemma.
Lemma 4.3. For λj

h ∈ RT0,0(δm(j); Tδm(j)
) there holds

‖Eδm(j)

h λj
h‖curl,Ωj

≤ C h
1
2

δm(j)
‖λj

h‖divτ ,δm(j)
,

where ‖v‖divτ ,δm(j)
:= (‖v‖2

0,δm(j)
+ ‖divτv‖2

0,δm(j)
)

1
2 , ∀v ∈ RT0,0(δm(j); Tδm(j)

).

Proof. It follows from the definition of the extension operator E
δm(j)

h and Lemma
4.2 that

‖curl(E
δm(j)

h λj
h)‖2

0,Ωj
≤ Ch3

j

∑
T∈Tδm(j)

|nT · curl(E
δm(j)

h λj
h)|T |2

= Ch3
j

∑
T∈Tδm(j)

|divτ (E
δm(j)

h λj
h ∧ n)|T |2

= Ch3
j

∑
T∈Tδm(j)

|divτ (λ
j
h)|T |2

≤ Chj ‖divτ (λ
j
h)‖2

0,δm(j)
.

Using Lemma 4.2 again, we have

‖Eδm(j)

h λj
h‖2

0,Ωj
≤ Ch3

j

∑
e∈Eh(Ω̄j)

|(te · E
δm(j)

h λj
h)(xM

e )|2

= Ch3
j

∑
e∈Eh(Ω̄j)

|ne · (E
δm(j)

h λj
h ∧ n)(xM

e )|2
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= Ch3
j

∑
e∈Eh(δm(j))

|(ne · λj
h)(xM

e )|2

≤ hj‖λj
h‖2

0,δm(j)
.

Then, Lemma 4.3 follows from the above two inequalities.
Lemma 4.4. Let Πj

h : H1(curl; Ωj) → ND1(Ωj ; Tj) be the standard interpolation
operator associated with subdomain Ωj . Then there holds

(i)‖nT · (curl Πj
hj − curl j)‖0,T ≤ Ch

1
2

K‖curl j‖1,K , K ∈ Tj ,
(ii) ‖Πj

hj − j‖0,T ≤ Ch
1
2

K‖j‖1,curl,K , T ∈ ∂K.

Proof. We first prove (i). For K ∈ Ti and T ∈ ∂K let FK(x̂) = BK x̂+bK , x̂ ∈ K̂,
be the affine transformation mapping the reference element K̂ onto K. Further,
choose T̂ ∈ ∂K̂ such that T = FK(T̂ ) and denote by FT = FK |T̂ the associated affine

transformation FT (x̂) = BT x̂ + bT , x̂ ∈ T̂ , mapping T̂ onto T . Setting ĵ = B∗
Kj, it is

easy to check that

nT · (curl Πj
hj − curl j)|T = curlτΠ

j
hj|T − curlτ j|T .

We note (cf. Lemma 3.57 of [24] for details) that

curlτ j|T = (B∗
T )−1 curlτ ĵ|T̂ B−1

T ,

where curlτ u denotes the 2 × 2 matrix with entries

[curlτ u]i,j =
∂ui

∂xj
− ∂uj

∂xi
, u := (u1, u2).

It follows that

‖nT · (curl Πj
hj − curl j)‖2

0,T(4.3)

= ‖curlτΠ
j
hj|T − curlτ j|T ‖2

0,T

≤ C |det BT |‖B−1
T ‖4 ‖nT̂ · curl(Π̂j

hĵ − ĵ)‖2
0,T̂

≤ C |det BT |‖B−1
T ‖4 ‖curl(Π̂j

hĵ − ĵ)‖2
0,T̂

≤ C|det BT |‖B−1
T ‖4 ‖(I − Ŵ j

h)curl ĵ‖2
0,T̂

.

Here, we have used curl Π̂j
hĵ = Ŵ j

hcurl ĵ with Ŵ j
h being the L2-projection onto the

space of elementwise constants. It follows that

‖(I − Ŵ j
h)curl ĵ‖2

0,T̂
≤ C |curl ĵ|2

1,K̂
.(4.4)

We note that

curl ĵ = B∗
K curl j BK ,

where curl j stands for the 3 × 3 matrix with entries

[curl j]i,j =
∂ji
∂xj

− ∂jj
∂xi

, j := (j1, j2, j3).

Hence, by backtransformation we obtain (cf. Lemma 5.5 in [1] for details)

|curl ĵ|2
1,K̂

≤ C |det BK |−2 ‖BK‖7‖B∗
K‖2 |curl j|21,K .(4.5)
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Summarizing (4.3), (4.4), and (4.5), it follows that

‖nT · (curl Πj
h j − curl j)‖2

0,T(4.6)

≤ C
|det BT |
|det BK | (‖B−1

T ‖ ‖BK‖)4 ‖BK‖3‖B∗
K‖2|det BK |−1 |curl j|21,K .

Finally, taking into account that Ti is a regular triangulation, we have

‖B−1
T ‖ ‖BK‖ ≤ C, ‖BK‖, ‖B∗

K‖ ≤ C hK .(4.7)

Moreover,

|det BT | =
meas(T )

meas(T̂ )
, |det BK | =

meas(K)

meas(K̂)
.(4.8)

Using (4.7) and (4.8) in (4.6) gives the assertion.
We now prove (ii). Observing

j|T = (B∗
T )−1ĵ|T̂ ,

we have

‖Πj
hj − j‖2

0,T ≤ |detBT |‖(B∗
T )−1‖2‖Π̂j

hĵ − ĵ‖2
0,T̂

.

Using the trace inequality and similar arguments as in the proof of Theorem 5.41 of
[24], we can derive that

‖Π̂j
hĵ − ĵ‖2

0,T̂
≤ C(|̂j|1,K̂ + |curl ĵ|1,K̂).

On the other hand,

|̂j|2
1,K̂

≤ ‖BK‖5‖B∗
K‖2|detB−1

K |2|j|21,K .

Combining the above three inequalities with (4.5), (4.7), and (4.8) yields Lemma
4.4(ii).

We further introduce a special projection operator π
δm(j)

h which will play an im-
portant role in analyzing the approximate error of the mortar edge element method.

We define π
δm(j)

h : L2(γm)2 → RT0,0(δm(j); Tδm(j)
) according to

∫
δm(j)

π
δm(j)

h (p) · qh dx =

∫
δm(j)

p · qh dx, qh ∈ Mh(δm(j)).(4.9)

The boundedness of π
δm(j)

h is a direct consequence of the following result.
Lemma 4.5. The following inf-sup condition holds true:

inf
qh∈RT0(δm(j);Tδm(j)

)
sup

μh∈Mh(δm(j))

(qh, μh)0,δm(j)

‖qh‖0,δm(j)
‖μh‖0,δm(j)

≥ C > 0.

Proof. Taking the construction (3.8) on the basis of Mh(δm(j)) into account, for
qh ∈ RT0(δm(j); Tδm(j)

) we determine μh ∈ Mh(δm(j)) by specifying its degrees of
freedom according to

�e(μh) =

⎧⎨
⎩
�e(qh), e ∈ Eh(δm(j)) \ E

δm(j)

h (∂δm(j)),

�e(qh) +
∑

f∈E
δm(j)

h
(e)

λe,f �f (qh), e ∈ Eδm(j)

h (∂δm(j)).
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The assertion can then be verified by following lines of proof analogous to those of
[20, Lemma 3.2].

Furthermore, by Lemma 3.2 in [20], we know that the following inf-sup condition
also true

Corollary 4.6. There holds

inf
μh∈Mh(δm(j))

sup
qh∈RT0,0(δm(j);Tδm(j)

)

(qh, μh)0,δm(j)

‖qh‖0,δm(j)
‖μh‖0,δm(j)

≥ C > 0.

On the basis of Lemma 4.5, we have the following.

Corollary 4.7. Let π
δm(j)

h be given by (4.9). Then there holds

‖πδm(j)

h (p)‖0,δm(j)
≤ C ‖p‖0,γm

, p ∈ L2(γm)2.

Proof. Using Lemma 4.5, straightforward computation reveals

‖πδm(j)

h (p)‖0,δm(j)
≤ C sup

μh∈Mh(δm(j))

(π
δm(j)

h (p), μh)0,δm(j)

‖μh‖0,δm(j)

= C sup
μh∈Mh(δm(j))

(p, μh)0,δm(j)

‖μh‖0,δm(j)

≤ C ‖p‖0,γm .

As a further consequence of the inf-sup condition in Lemma 4.5, we obtain the
following.

Lemma 4.8. Let Πh : H1(curl; Ω) ∩ V → Ṽh be the standard interpolation
operator. Then we have

‖divτπ
δm(j)

h [Πhj ∧ n]‖0,γm ≤ C ‖divτ [Πhj ∧ n]‖0,γm .

Proof. We denote by P
δm(j)

h the RT0(δm(j); Tδm(j)
)-interpolation operator. Obser-

ving that P
δm(j)

h |T , T ∈ Tδm(j)
, preserves constant tangential traces, by a Bramble–

Hilbert argument we obtain

‖(I − P
δm(j)

h )[Πhj ∧ n]‖2
0,γm

≤ Ch2
δm(j)

∑
T∈Tδm(j)

∑
T ′∩T �=Ø,T ′∈Tγm(i)

|[Πhj ∧ n]|21,T ′∩T

= Ch2
δm(j)

∑
T∈Tδm(j)

‖divτ [Πhj ∧ n]‖2
0,T

= C h2
δm(j)

‖divτ [Πhj ∧ n]‖2
0,γm

,

where we have used the fact that Πhj ∧ n|γm belongs to the lowest order Raviart–
Thomas space. Similar arguments for the proof of the first inequality can be found
in [16] . So we get

‖(I − P
δm(j)

h )[Πhj ∧ n]‖0,γm ≤ C hδm(j)
‖divτ [Πhj ∧ n]‖0,γm .(4.10)

Moreover, in view of

divτP
δm(j)

h [Πhj ∧ n] = W
δm(j)

h divτ [Πhj ∧ n],
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where W
δm(j)

h is the L2-projection onto the elementwise constants, we obtain

‖divτP
δm(j)

h [Πhj ∧ n]‖0,γm ≤ C ‖divτ [Πhj ∧ n]‖0,γm .(4.11)

We have (π
δm(j)

h − P
δm(j)

h )[Πhj ∧ n] ∈ RT0(δm(j); Tδm(j)
), and hence, by Lemma 4.5

and (4.10),

‖(πδm(j)

h − P
δm(j)

h )[Πhj ∧ n]‖0,γm(4.12)

≤ C sup
ψ∈Mh(δm(j))

((π
δm(j)

h − P
δm(j)

h )[Πhj ∧ n], ψ)

‖ψ‖0,δm(j)

= C sup
ψ∈Mh(δm(j))

((I − P
δm(j)

h )[Πhj ∧ n], ψ)

‖ψ‖0,δm(j)

≤ C hδm(j)
‖divτ [Πhj ∧ n]‖0,γm .

Combining (4.11) and (4.12), we get

‖divτπ
δm(j)

h [Πhj ∧ n]‖0,γm

≤ ‖divτ (π
δm(j)

h − P
δm(j)

h )[Πhj ∧ n]‖0,γm + ‖divτP
δm(j)

h [Πhj ∧ n]‖0,γm

≤ C h−1
δm(j)

‖(πδm(j)

h − P
δm(j)

h )[Πhj ∧ n]‖0,γm
+ ‖divτ [Πhj ∧ n]‖0,γm

≤ C ‖divτ [Πhj ∧ n]‖0,γm .

We are now in a position to estimate the discretization error of the mortar edge
element method.

Theorem 4.2. For any j ∈ H1(curl; Ω) there exists a function qh ∈ Vh such
that

‖j − qh‖ah
≤ C

⎛
⎝ N∑

j=1

h2
j ‖j‖2

1,curl,Ωj

⎞
⎠

1
2

.

Proof. We define qh as

qh = Πhj −
M∑

m=1

E
δm(j)

h {πδm(j)

h [(Πj
hj ∧ n)|δm(j)

− (Πi
hj ∧ n)|γm(i)

]}

and remark that qh ∈ Vh can be easily seen.
For each δm(j), by Lemma 4.3, Corollary 4.7, and Lemma 4.8, we get

‖Eδm(j)

h (π
δm(j)

h ((Πj
hj ∧ n)|δm(j)

− (Πi
hj ∧ n)|γm(i)

))‖curl,Ωj
(4.13)

≤ C h
1
2

δm(j)
‖divτ

(
π
δm(j)

h ((Πj
hj ∧ n)|δm(j)

− (Πi
hj ∧ n)|γm(i)

)
)
‖0,γm

+ C h
1
2

δm(j)
‖πδm(j)

h

(
(Πj

hj ∧ n)|δm(j)
− (Πi

hj ∧ n)|γm(i)

)
‖0,γm

≤ C h
1
2

δm(j)
‖divτ

(
(Πj

hj ∧ n)|δm(j)
− (Πi

hj ∧ n)|γm(i)

)
‖0,γm

+ C h
1
2

δm(j)
‖(Πj

hj ∧ n)|δm(j)
− (Πi

hj ∧ n)|γm(i)
‖0,γm

:= I1 + I2.
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As far as the first term I1 is concerned, applying Lemma 4.4 results in

I1 ≤ C h
1
2
j (‖divτ

(
(Πj

hj ∧ n)|δm(j)
− (j ∧ n)|δm(j)

)
‖0,γm

(4.14)

+‖divτ

(
(Πi

hj ∧ n)|γm(i)
− (j ∧ n)|γm(i)

)
‖0,γm)

≤ C h
1
2
j

⎛
⎝ ∑

T∈T (δm(j))

(‖nT · (curl Πj
h j − curl j)|T ‖2

0,T

⎞
⎠

1
2

+

⎛
⎝ ∑

T∈T (γm(i))

(‖nT · (curl Πi
h j − curl j)|T ‖2

0,T )
1
2

⎞
⎠

≤ C h
1
2
j

(
h

1
2
j ‖curl j‖1,Ωj + h

1
2
i ‖curl j‖1,Ωi

)
.

For the second term I2, using Lemma 4.4, we obtain

I2 ≤ C h
1
2

δm(j)

(
‖(Πj

hj ∧ n)|δm(j)
− (j ∧ n)|δm(j)

‖0,γm

)
(4.15)

+‖(Πi
hj ∧ n)|γm(i)

− (j ∧ n)|γm(i)
‖0,γm

≤ C h
1
2
j

(
h

1
2
j ‖j‖1,curl,Ωj

+ h
1
2
i ‖j‖1,curl,Ωi

)
.

Observing the standard approximation property

‖j − Πhj‖ah
≤ C

⎛
⎝ N∑

j=1

h2
j ‖j‖2

1,curl,Ωj

⎞
⎠

1
2

and using (4.13), (4.14), and (4.15) results in

‖j − qh‖2
ah

≤ C
(
‖j − Πhj‖2

ah

+

m∑
m=1

‖Eδm(j)

h (π
δm(j)

h ((Πj
hj ∧ n)|δm(j)

− (Πi
hj ∧ n))‖2

curl,Ωj
)

≤ C

N∑
j=1

h2
j ‖j‖2

1,curl,Ωj
.

Finally, Theorems 4.1 and 4.2 imply the main result of this paper.
Theorem 4.3. Let j ∈ H1(curl; Ω) and jh ∈ Vh be the solutions of (2.2) and

(3.14), respectively. Then there holds

‖j − jh‖ah
≤ C

⎛
⎝ N∑

j=1

h2
j ‖j‖2

1,curl,Ωj

⎞
⎠

1
2

.

5. Saddle point formulation. A saddle point formulation for mortar element
methods associated with second order elliptic problems has been introduced in [4].

In particular, an a priori estimate for the Lagrange multiplier in the (H
1
2
00)

′-norm
has been established there, whereas related estimates in mesh-dependent norms have
been given in [28], [29], [30]. In this section, we will derive an a priori estimate for
the Lagrange multiplier of the mortar edge element method.
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First, we introduce a macrohybrid variational formulation for the continuous prob-
lem (2.1).

Using the domain decomposition as presented in the preceding section, we intro-
duce the product space

X := {q ∈ L2(Ω)3 | q|Ωi
∈ H(curl; Ωi), (n ∧ (q ∧ n))|∂Ωi∩∂Ω = 0}

equipped with the norm

‖q‖X :=

(
N∑
i=1

‖q‖2
curl,Ωi

) 1
2

.

We further consider the subspace

Ṽ :=
{
q ∈ X | [q ∧ n]|γm ∈ (H

1
2
00(γm))2

}
provided with the norm

‖q‖Ṽ :=
(
‖q‖2

X + ‖[q ∧ n]‖2
1
2 ,S

) 1
2 ,

where

‖[q ∧ n]‖ 1
2 ,S

:=

⎛
⎝ ∑

γm∈S

‖[q ∧ n]‖2

(H
1
2
00(γm))2

⎞
⎠

1
2

.

A natural candidate for the multiplier space is then

M :=
∏
γm

(H− 1
2 (δm(j)))

2

equipped with the norm

‖μ‖M :=

⎛
⎝ ∑

δm(j)∈S

‖μ|δm(j)
‖2
− 1

2 ,δm(j)

⎞
⎠

1
2

,

where H− 1
2 (δm(j)) := (H

1
2
00(δm(j)))

′.
We introduce the bilinear form a(·, ·)X×X → R as the sum of the bilinear forms

associated with the subdomain problems according to

a(j,q) :=

N∑
i=1

aΩi(j|Ωi
,q|Ωi

) =

N∑
i=1

∫
Ωi

[
Acurl j · curl q + Bj · q

]
dx.

Furthermore, we define the bilinear form b(·, ·) : Ṽ × M → R by means of

b(q, μ) := 〈[q ∧ n], μ〉 1
2 ,S

,

where 〈·, ·〉 1
2 ,S

:=
∑

δm(j)∈S〈·, ·〉 1
2 ,δm(j)

.

Then the appropriate macrohybrid variational formulation of (2.1) can be formu-
lated as follows:

Find (j, λ) ∈ Ṽ × M such that

a(j,q) + b(q, λ) = l(q), q ∈ Ṽ,(5.1)

b(j, μ) = 0, μ ∈ M.
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Denote by B : Ṽ → M the operator associated with the bilinear form b(·, ·), i.e.,

〈Bq, μ〉 1
2 ,S

= b(q, μ), μ ∈ M.

It is proved in Theorem 2.1 of [20] that the bilinear form a(·, ·) is KerB-elliptic and
the bilinear form b(·, ·) satisfies the LBB condition. So the saddle point problem (5.1)
admits a unique solution. For q ∈ V ⊂ Ṽ, the first equation of (5.1) reduces to (2.2).
Hence, the solution j of (5.1) is also the solution of (2.2). Finally, by (4.1) we know
that λ|γm = n ∧ (A curl j ∧ n)|γm .

Next, we consider the discrete version of (5.1). On Ṽh, we define the norm

‖qh‖Ṽh
:=

(
‖qh‖2

X + ‖[qh ∧ n]|S‖2
1
2 ,h,S

) 1
2 , qh ∈ Ṽh,

where ‖ · ‖ 1
2 ,h,S

is given by

‖[qh ∧ n]|S‖ 1
2 ,h,S

:=

⎛
⎝ ∑

γm⊂S

‖[qh ∧ n]‖2
1
2 ,h,γm

⎞
⎠

1
2

and ‖ · ‖ 1
2 ,h,γm

stands for the mesh-dependent norm:

‖[qh ∧ n]‖ 1
2 ,h,γm

:= h
− 1

2

δm(j)
‖[qh ∧ n]‖0,γm .

The Lagrange multiplier space Mh will be provided with the following mesh-dependent
norm:

‖μh‖Mh
:= ‖μh‖− 1

2 ,h,S
, μh ∈ Mh,

where

‖μh‖− 1
2 ,h,S

:=

⎛
⎝ ∑

δm(j)⊂S

‖μh‖2
− 1

2 ,h,δm(j)

⎞
⎠

1
2

and ‖ · ‖− 1
2 ,h,δm(j)

is given by

‖μh|δm(j)
‖− 1

2 ,h,δm(j)
:= h

1
2

δm(j)
‖μh‖0,δm(j)

.

In addition to the bilinear form ah(·, ·) : Ṽh × Ṽh → R as defined by (3.13), we
introduce the bilinear form bh(·, ·) : Ṽh × Mh → R according to

bh(qh, μh) :=
∑

γm∈S

([qh ∧ n]|γm
, μh)0,δm(j)

.

Then the mortar edge element approximation of (5.1) amounts to the solution of the
following problem: Find (jh, λh) ∈ Ṽh × Mh such that

ah(jh,qh) + bh(qh, λh) = l(qh), qh ∈ Ṽh,(5.2)

bh(jh, μh) = 0, μh ∈ Mh.
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The saddle point problem (5.2) admits a unique solution which follows from the
following LBB condition for the bilinear form bh(·, ·).

Lemma 5.1. The bilinear form bh(·, ·) : Ṽh × Mh → R satisfies a discrete inf-
sup condition (LBB condition) uniformly in hi, i.e., there exists a constant c > 0
independent of the mesh size hi such that

sup
qh∈Ṽh

bh(qh, μh)

‖qh‖Ṽh

≥ c ‖μh‖Mh
.

Proof. For any μh ∈ Mh(δm(j)) we define pj
h ∈ RT0,0(δm(j); Tδm(j)

) according to

�e(p
j
h) = �e(μh), e ∈ Eh(δm(j))

and refer to qj
h ∈ ND1(Ωj ; Tj) as the trivial extension, i.e.,

qj
h ∧ n = pj

h on δm(j),

where all degrees of freedom that are not located on δm(j) are set equal to zero,

especially [qj
h ∧ n] = pj

h. On the basis of Lemma 4.3, we have

‖qj
h‖curl,Ωj ≤ C h

1
2
j ‖pj

h‖divτ ,δm(j)

≤ C h
− 1

2
j ‖pj

h‖0,δm(j)

= C h
− 1

2
j ‖[qj

h ∧ n]‖0,δm(j)
.

By Corollary 4.6 and the above inequality, we obtain

(μh, [q
j
h ∧ n]|δm(j)

)0,δm(j)
≥ C ‖μh‖0,δm(j)

‖[qj
h ∧ n]‖0,δm(j)

≥ C h
1
2
j ‖μh‖0,δm(j)

‖qj
h‖curl,Ωj

≥ C ‖μh‖− 1
2 ,h,δm(j)

‖qj
h‖curl,Ωj .

On the other hand,

(μh, [q
j
h ∧ n]|δm(j)

)0,δm(j)
≥ C ‖μh‖0,δm(j)

‖[n ∧ qj
h]‖0,δm(j)

= C h
1
2
j ‖μh‖0,δm(j)

h
− 1

2
j ‖[qj

h ∧ n]‖0,δm(j)

= C ‖μh‖− 1
2 ,h,δm(j)

‖[qj
h ∧ n]‖ 1

2 ,h,δm(j)
.

Adding the above inequalities and summing over all δm(j) ⊂ Γ gives the asser-
tion.

Finally, we obtain the following.
Theorem 5.2. Let j ∈ H1(curl; Ω) and (jh, λh) ∈ Ṽh × Mh be the solutions of

(2.2) and (5.2), respectively. Then there holds

‖λ− λh‖− 1
2 ,h,S

≤ C

⎛
⎝ N∑

j=1

h2
j ‖j‖2

1,curl,Ωj

⎞
⎠

1
2

.

Proof. On the basis of the inf-sup condition developed in Lemma 5.1 and argu-
ments similar to those in [12] for the mixed finite element methods and [30] for the
saddle point method for mortar element methods, we get

‖λ− λh‖− 1
2 ,h,S

≤ C(‖j − jh‖ah
+ inf

μh∈Mh

‖λ− μh‖− 1
2 ,h,S

).
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By Theorem 4.3, we have

‖j − jh‖ah
≤ C

⎛
⎝ N∑

j

h2
j‖j‖2

1,curl,Ωj

⎞
⎠

1
2

.(5.3)

Moreover, by Lemma 3.1

inf
μh∈Mh(δm(j))

‖λ− μh‖− 1
2 ,h,δm(j)

= h
1
2

δm(j)
inf

μh∈Mh(δm(j))
‖λ− μh‖0,δm(j)

≤ C hj ‖n ∧ (A curl j ∧ n)‖ 1
2 ,δm(j)

≤ C hj ‖curl j‖1,Ωj .

Summing over all δm(j) results in

inf
μh∈Mh

‖λ− μh‖− 1
2 ,h,S

≤ C

⎛
⎝ N∑

j

h2
j‖curl j‖2

1,Ωj

⎞
⎠

1
2

.(5.4)

Finally, combining (5.3) and (5.4) gives the assertion.
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Abstract. The discretization by finite element methods of a new variational formulation of
crack problems is considered. The new formulation, called the smooth domain method, is derived
for crack problems in the case of an elastic membrane. Inequality type boundary conditions are
prescribed at the crack faces. The resulting model takes the form of a unilateral contact problem
on the crack. We study and implement various mixed finite element methods for the numerical
approximation of the model. A priori error estimates are derived, and results of computations are
provided. The convergence rates obtained from the numerical simulations are in agreement with the
theoretical estimates.

Key words. crack problems, variational inequalities, mixed finite element methods, a priori
error estimates
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1. Introduction. The smooth domain method is based on a new approach [25]
to the crack modelling of linear elastic bodies with inequality type boundary condi-
tions prescribed on the crack faces. By a crack problem we mean the boundary value
problem defined in the geometrical domain Ωc = Ω \ Γc with the cut Γc. The cut is
called a crack provided that some boundary conditions are specified on both sides Γ±

c

of the set Γc [24]. In general, such conditions are only an approximation of the exact
contact conditions derived for the displacement and stress fields in the framework of
the elasticity theory. We restrict ourselves to a model problem with the unilateral
conditions for scalar unknown functions. More realistic boundary conditions for the
elasticity boundary value problem are the subject of further investigations from the
numerical point of view in a forthcoming work. The boundary conditions of uni-
lateral type on Γ±

c describe the mutual nonpenetration between the crack faces. In
the smooth domain method the elements of the convex cone of admissible displace-
ments and stresses used in the mixed variational formulation are extended to the
crack surface. Therefore, the admissible displacements and stresses are defined in the
smooth domain Ω, with the removed cut Γc. However, the restrictions imposed on
the admissible functions are still present and can be considered as internal constraints
prescribed on the given subset Γc of the smooth geometrical domain Ω. The result-
ing weak formulation of the nonlinear boundary value problem is defined over the
smooth domain of integration. Such a formulation includes integral equations and
inequalities. Applying this new approach to the elastic membrane problem in the do-
main with a cut, we analyze and implement the discretization by mixed finite element
methods. The internal constraint in the model, which requires the nonpositivity of
normal derivatives at crack faces, is expressed by means of a Lagrange multiplier.
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The analysis of contact problems and their approximation by finite elements, or
mixed finite elements methods, were performed by several authors (e.g., in [21], [22],
[26], [9], [10], [19], [35], and the references therein). More recently, significant progress
in the numerical analysis of such problems has been made. We refer the reader to, for
example, [23], [3], [4] for the discretization by the mortar affine finite element method.
In [14], [29] the mixed finite elements method is analyzed and implemented. We also
refer to [34], [33] for a general setting to study some mixed variational formulations
and the application to the discretization by the Raviart–Thomas elements of lowest
order. In [33], an extension of the analysis of some mixed formulations arising in
contact problems to the case where the first bilinear form is not coercive on the whole
space is proposed and the numerical analysis is performed. Even if the problem we
consider is set in a non-Lipschitzian domain, the mixed variational formulation that we
obtain in the entire domain fits within the framework of [33]. However, our approach
is different since we prefer to work with the hybrid mixed formulation. The tools of
the numerical analysis and the results that we obtain in this article for our specific
problem appear to be a complementary contribution to the analysis and discretization
of contact problems already deeply performed in [5], [14], [34], [33].

The important feature of these approaches is the specific approximation of the
nonpenetration conditions in the discrete model. For mixed finite element meth-
ods, the unilateral conditions can be expressed by introduction of either a piecewise
constant [29], [33] or a piecewise continuous Lagrange multiplier [5], [14]. Such a
construction is also crucial for the convergence analysis and numerical solution of the
crack problem with the smooth domain formulation.

In this paper, we perform the convergence analysis and derive a priori error esti-
mates for some mixed finite element methods that are also implemented numerically.
Each approach among those considered in this work is characterized by the specific
space of approximation for the Lagrangian multipliers. We obtain for the smooth
domain method the convergence rate O(h

3
4 ) for the best choice of continuous piece-

wise affine approximation of the multipliers, exactly the same as the rate derived for
the classical unilateral problems arising in contact mechanics. In fact, the smooth
domain method can be considered as a mixed variational formulation, which takes
into consideration the inequality conditions for the normal derivatives on the crack
faces rather than the unilateral conditions for the jump of the displacement over the
crack.

The paper is organized as follows. In section 2, the crack problem for an elastic
membrane is introduced. The smooth domain formulation is given, and its well-
posedness is established. Section 3 is devoted to the discretization of the continuous
problem. First of all, a new formulation, based on the mixed variational method, is
introduced and analyzed. The convergence analysis is performed in section 4. The
error estimates and the convergence rates are established for the proposed approxi-
mations. In section 5, the numerical implementation is described in details, and some
numerical examples are presented. Finally, some concluding remarks and perspectives
are given.

2. Model problem. We present the smooth domain method for a scalar model
problem. First, appropriate notations are introduced.

Let Ω be a bounded domain in R
2 with smooth boundary Γ, and Γc ⊂ Ω be a

smooth curve without self-intersections. We assume that Γc can be extended to a
closed smooth curve Σ ⊂ Ω, with Σ of class C1,1, and Ω = Ω1 ∪ Σ ∪ Ω2 divided into
two subdomains Ω1, Ω2 (see Figure 1). In this case, Σ = ∂Ω1 is the boundary of
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Ω

Ω
Σ

Γ

Γc

1

2

Fig. 1. Domain with a cut.

Ω1 and Σ ∪ Γ = ∂Ω2 is the boundary of Ω2. Let Ωc be the domain Ω \ Γc; then Γc

is called a crack in the elastic body of the reference configuration Ωc (see Figure 2).
The static equilibrium problem for the elastic membrane in the domain Ωc with the
interior crack Γc can be formulated as follows.

Find u such that

−Δu = f in Ωc,(1)

u = 0 on Γ,(2)

[u] ≥ 0,

[
∂u

∂ν

]
= 0, [u]

∂u

∂ν
= 0 on Γc,(3)

∂u

∂ν
≤ 0 on Γ±

c ,(4)

where f is a given function in L2(Ωc). The jump of the function u on Γc is denoted
by [u] = u+ − u−, where u± = u|Γ±

c
are the traces of u on Γ±

c .
Boundary value problem (1)–(4) can be considered as a free boundary problem

since the coincidence set Ξ = {x ∈ Γc| [u] = 0} is an unknown part of Γc. When using
the modelling in the framework of linear elasticity, similar boundary value problems
arise in the crack theory for elastic bodies [25], [28]. In such a case the inequality type
boundary conditions are imposed on Γc to describe mutual nonpenetration between
the crack faces. It is the so-called frictionless contact problem on the crack. It is
well-known that problem (1)–(4) admits a unique weak solution that minimizes the
energy functional

1

2

∫
Ωc

|∇v|2 dx−
∫

Ωc

fv dx

over the closed convex cone

C(Γc) = {v ∈ H1(Ωc)|v = 0 on Γ, [v] ≥ 0 on Γc}
including the functions in the Sobolev space H1(Ωc) which vanish on Γ and satisfy
the unilateral condition [v] ≥ 0 on Γc.

We denote by V = V (Ωc) the space L2(Ωc) and consider the vector space X =
X(Ωc),

X =
{
q ∈ L2(Ωc)

2, divq ∈ L2(Ωc)
}
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Γ

Γ

c

[u]>0
+

−

Ωc

Fig. 2. Elastic membrane.

equipped with the norm

‖q‖X =
(
‖q‖2

(L2(Ωc))2
+ ‖div q‖2

L2(Ωc)

) 1
2

.

Remark 2.1. For the sake of simplicity, in the smooth domain formulation over
Ω, we use the same notation for V = V (Ω) and for X = X(Ω), i.e., the domain Ωc is
replaced in both function spaces by the smooth domain Ω.

The closed convex cone K ⊂ X can be defined using the dual order in the Sobolev

space (H
1
2
00(Γc))

′ as

K =
{
q ∈ X, [q.ν] = 0, on Γc, (q.ν)± ≤ 0, on Γ±

c

}
,

where [.] denotes the jump across Γc and ν is the unit normal vector pointing to the
exterior of Ω1 (see Figure 1). More precisely, we can use the integral inequalities and
the cone C(Γc) in order to define K in an equivalent way,

K =

{
q ∈ X,

∫
Ωc

q · ∇v + v divq ≥ 0 ∀v ∈ C(Γc)

}
.

Under our assumptions, functions in H1(Ωc) admit traces on the curve Σ, and there-
fore on the crack Γc. In order to characterize such traces as elements of fractional
Sobolev spaces and introduce the dual order in the dual spaces, we need some nota-
tions. We introduce the space H

1
2 (Σ) equipped with the norm

‖ϕ‖2

H
1
2 (Σ)

= ‖ϕ‖2
L2(Σ) +

∫
Σ

∫
Σ

|ϕ(x) − ϕ(y)|2
|x− y|2 dx dy,

and we denote by H− 1
2 (Σ) its dual space. For q ∈ X the traces (q.ν)± on Σ± can

be defined as elements of H− 1
2 (Σ) and the trace operator is continuous from X into

H− 1
2 (Σ). The space H

1
2
00(Γc) is the subspace of H

1
2 (Γc) which can be identified [30]

with the subspace of functions in H
1
2 (Σ) vanishing on the set Σ \ Γc. So, formally

H
1
2
00(Γc) includes the functions vanishing at the endpoints of Γc (see [30]). We can

define the traces (q.ν)± ∈ (H
1
2
00(Γc))

′ and the constraints in the definition of K can
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be formulated using the duality, i.e., [q.ν] = 0 means that

〈[q.ν] , ϕ〉 1
2 ,Γc

= 0 ∀ϕ ∈ H
1
2
00(Γc),

and if the jump condition [q.ν] = 0 is combined with the sign condition (q.ν)± ≤ 0 it
is simply required that

〈(q.ν)±, ϕ〉 1
2 ,Γc

≤ 0 ∀ϕ ∈ H
1
2
00(Γc), ϕ ≥ 0, a.e. on Γc,

where 〈., .〉 1
2 ,Γc

stands for the duality pairing between H
1
2
00(Γc) and its dual (H

1
2
00(Γc))

′.
We can consider the following equalities in the sense of distributions, i.e., in

D′(Ωc),

p = gradu in Ωc,(5)

and then we have

−divp = f in Ωc.(6)

The mixed formulation of boundary value problem (1)–(4) can be written as follows.
Find (p, u) ∈ K × V such that

⎧⎨
⎩

∫
Ωc

p (q − p) dx +
∫
Ωc

u (divq − divp) dx ≥ 0 ∀q ∈ K,

−
∫
Ωc

divp v dx =
∫
Ωc

f v dx ∀v ∈ V.
(7)

Note that p = gradu and u is the solution of problem (1)–(4).
Remark 2.2. The mixed formulation (7) can also be applied in the case of the set

Γc crossing the external boundary Γ as well as in the case of Γc, which is less regular
and belongs only to the class C0,1 (see, e.g., [27]). In the case of Γc, which divides
Ω into two disjoint Lipschitz subdomains Ω1 and Ω2, and for the inequality type
boundary conditions (3)–(4) prescribed on Γc, the mixed formulation of the contact
problem for two elastic bodies occupying Ω1 and Ω2 is obtained.

Remark 2.3. The smooth domain method can also be used for the modelling
of a large class of crack problems with inequality type conditions prescribed on the
crack including the most difficult, from a mathematical point of view, contact problem
with Coulomb friction law. In particular, the field of applications includes the linear
elastic bodies and the Kirchhoff plate models [25]. As an example of modelling in
the framework of elasticity, we can consider the frictionless contact problem that
takes the form of an equilibrium boundary value problem for the linear elastic body
occupying the domain of reference Ωc with the interior crack Γc. Such a problem can
be formulated as follows.
Find u = (u1, u2) and σ = (σ)ij , i, j = 1, 2, such that

−divσ = f in Ωc,(8)

Cσ − ε(u) = 0 in Ωc,(9)

u = 0 on Γ,(10)

[u] ν ≥ 0, [σν ] = 0, σν [u] · ν = 0 on Γc,(11)

σν ≤ 0, στ = 0 on Γ±
c .(12)
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Here

σν = σijνjνi, στ = σν − σν =
{
σi
τ

}2

i=1
, σν = {σijνj}2

i=1 ,

εij(u) =
1

2
(ui,j + uj,i), i, j = 1, 2, ε(u) = (εij)

2
i,j=1,

{Cσ}ij = cijk�σk�, cijk� = cjik� = ck�ij , cijk� ∈ L∞(Ω).

The tensor C satisfies the ellipticity condition

cijk�ξjiξk� ≥ c0|ξ|2 ∀ξji = ξij , c0 > 0,(13)

and we have used the summation convention over repeated indices.
This problem can also be reformulated in the framework of the smooth domain

method. Then the complete numerical analysis performed in the paper can be ex-
tended to the boundary value problem for frictionless contact conditions on the crack.
The most challenging task is to extend the numerical results to the case of contact
problems with friction.

Now we are in position to present the smooth domain method that allows us
to solve numerically the crack problem in the smooth domain Ω. An application
of the method means that the functions p and u are extended to the entire domain
Ω = Ωc∪Γc, and it results in the closed problem formulation (14) obtained by replacing
Ωc with Ω in (7), with the obvious modification of the function spaces defined now in
Ω, which are still denoted by X = X(Ω) and V = V (Ω),

⎧⎨
⎩

∫
Ω

p (q − p) dx +
∫
Ω
u (divq − divp) dx ≥ 0 ∀q ∈ K,

−
∫
Ω

divp v dx =
∫
Ω
f v dx ∀v ∈ V.

(14)

K = K(Ω) denotes the closed convex set

K =
{
q ∈ L2(Ω)2, divq ∈ L2(Ω), q.ν ≤ 0, on Γc

}
.

The well-posedness of smooth domain formulation (14) is proved in [25] with argu-
ments based on the regularization technique (a similar argument used in [33] yields
the same result). We briefly recall the main idea of the regularization technique
that we also use in the discretization of the problem. Actually, for the regularization
parameter δ > 0, we consider the equation

δuδ − divpδ = f in Ω,(15)

which leads to the following regularized formulation: Find (pδ, uδ) ∈ K×V such that
⎧⎨
⎩

aδ(uδ, vδ) + b(vδ,pδ) = (f, vδ) ∀vδ ∈ V,

−b(uδ,qδ − pδ) + g(pδ,qδ − pδ) ≥ 0 ∀qδ ∈ K,
(16)

where we have

aδ(u, v) = δ

∫
Ω

u v dx,

b(v,q) = −
∫

Ω

v divq dx,
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and

g(p,q) =

∫
Ω

pq dx.

The bilinear form aδ(., .) is continuous and V -elliptic, and b(., .) is continuous and
satisfies the inf-sup condition. This yields the following result.

Theorem 2.4. Problem (16) admits a unique solution (uδ,pδ) for any f ∈ L2(Ω).
Moreover, we have the following stability estimate:

‖uδ‖V + ‖pδ‖X ≤ c‖f‖L2(Ω),(17)

and the sequence of the regularized solutions (uδ,pδ)δ converges to (u,p) the solution
of problem (14) when δ goes to zero.

Remark 2.5. Note that the interpretation of problem (16) leads to

pδ = graduδ,

and also it gives uδ = 0 on Γ; thus uδ belongs to H1
0 (Ω). It follows also from (15)

that if f is in H1(Ω), then pδ belongs to the space

Z =
{
q ∈ (H1(Ω))2; divq ∈ H1(Ω)

}
.

However, the convergence of uδ to u is to be understood in the weak H1(Ω)-norm and
the convergence of pδ holds in the weak H(div,Ω)-norm [25].

There are only very few results on the regularity of the solutions to crack prob-
lems with unilateral conditions. However, proceeding as for the unilateral contact
problems [31], it can readily be checked that the unilateral conditions may also gen-
erate some singularities of solutions in the vicinity of the tips of Γc even for a regular
datum f and the smooth exterior boundary ∂Ω. For example, if f ∈ H1(Ω), the
solution u may not be of class H3 in the vicinity of the crack Γc (see [31]). The
reason for the lack of regularity can be explained in the following way. Let m be a
point on Γc where the unilateral constraints change from binding to nonbinding; then
the Dirichlet–Neumann singular function Sm(r, ϑ) = r

3
2 sin( 3

2ϑ)ϕ(r) appears in the
decomposition of the solution. Here (r, ϑ) are the polar coordinates with the origin at
m, and ϕ is a smooth function with the compact support, which equals 1 in the vicin-
ity of m. We refer the reader to [20] for the details on the decompositions of solutions
to elliptic equations into singular and regular parts. The first Dirichlet–Neumann
singular function r

1
2 sin( 1

2ϑ)ψ(r) does not appear in the decomposition, since it fails

to satisfy the required unilateral conditions—i.e., the nonnegativity of Sm and ∂Sm

∂n ,
simultaneously. Therefore, following [31] (see also [17]), we can apply the results de-
rived for the Signorini problem and show that under appropriate symmetry conditions
for f and Ω, it can be expected at most that u ∈ Hσ(O(Γc)) with σ < 5

2 , where O(Γc)

is an open set containing Γc.

3. Discrete variational formulation.

3.1. The discrete regularized problem. We propose a discretization of the
continuous variational formulation. First, we note that the bilinear form g(., .) is not
elliptic on X; therefore, the regularized problem (16) is considered for the approxi-
mation analysis. In fact, the ellipticity of g(., .) on the subspace of divergence free
vector fields is a sufficient condition in order to apply the saddle-point theory. How-
ever, the regularization technique leads to a simple numerical method and, acting as
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a stabilized formulation, allows more flexibility in the choice of discretization spaces.
In what follows, the regularization parameter δ > 0 is omitted in our notation; e.g.,
we write uh instead of uδ,h for the sake of simplicity.

The finite element family that we have chosen in the discretization is based on
the element called the Taylor–Hood mini element coming from the fluid dynamic. It
consists of the approximation of the displacement uh by piecewise affine polynomials
and the pressure ph by the P1-bubble element. Other (more standard) choices, such
as elements based on the Raviart–Thomas finite element, are currently considered in
the implementation. The reason of our choice is that we expect the solutions of our
problem to have the same regularity as those of the usual Signorini problem; thus, we
choose an element that requires few degrees of freedom and provides “high” accuracy.
In fact this element is an intermediary choice between RT0 and RT1.

We assume, to avoid curved elements, that Ω is polygonal and the crack Γc

is a straight segment. We denote by Th a triangulation of Ω. Th is a family of
elements which are triangles (or quadrilaterals), and the maximal size of elements is
the parameter of approximation denoted by h > 0, in addition satisfying the usual
admissibility assumptions. That is, the intersection of two different elements is either
empty, a vertex, or a whole edge. Furthermore, Th is assumed to be regular; i.e., the
ratio of the diameter of any element T ∈ Th to the diameter of its largest inscribed
ball is bounded by a constant σ independent of T and h. We also assume that the
endpoints of Γc are vertices of the triangulation. The nodes on Γc are denoted by
c1 = x0, x1, . . . , xI−1, xI = c2, and we set ti = ]xi−1, xi[ and |ti| = |xi − xi−1|. We
will assume for simplicity that the triangulation Th is quasi-uniform, i.e., there is a
constant τ > 0 such that

maxT hT

minT hT
≤ τ.

Remark 3.1. This assumption could be weakened. Indeed, if some general meshes
are considered (for example in some adaptivity process), we can avoid such assumption
and only assume that the 1D triangulation on Γc satisfies the following criterion (due
to Crouzeix and Thomée [13]):

|ti|
|tj |

≤ Cβ|i−j| ∀i, j (0 ≤ i, j ≤ I − 1),(18)

with 1 ≤ β < 4 and a constant C independent of h. In fact, this last condition is
sufficient to prove the continuity property of the projection operators (for the appro-
priate norms), which is equivalent to the inf-sup conditions [11], [5]. In the case of
quasi-uniform meshes, this continuity property results directly from inverse inequali-
ties.

We introduce the following finite dimensional space for h > 0:

Vh =
{
vh ∈ C(Ω), vh|T ∈ P1(T )

}
.

For each element T in Th, the associated bubble function ϕT is defined by

ϕT (x) =

3∏
i=1

λi(x) ∀x ∈ T,

where λi denotes the ith barycentric coordinate in T . P1(T ) stands for the space of
the first-order polynomials over T , and PB(T ) = P1(T )⊕RϕT is selected as the local
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approximation space for the vector fields in X. Hence the global approximation space
takes the form

Xh =
{
qh ∈ C(Ω)2, qh ∈ PB(T )2

}
,

and the following closed convex set is introduced for approximation of K:

Kh = {qh ∈ Xh, qh.ν ≤ 0, on Γc} .

Due to the lack of regularity for solutions of crack problems, we restrict ourselves to
affine finite elements. The numerical simulations show in some cases an additional
regularity of solutions, and therefore the use of higher order finite elements could be
advantageous [2]. We point out that the choice of the discrete spaces Vh and Xh

can be modified by choosing any other classical lower order finite elements spaces.
Some possible choices, such as Raviart–Thomas elements, will be considered in a
forthcoming paper. Note also that, for the choice presented in this paper, the discrete
spaces satisfy the usual inf-sup condition that we recall now (see [8]): There exists
γ > 0 independent of h such that

∀vh ∈ Vh, sup
qh∈Xh

|b(vh,qh)|
‖qh‖X

≥ γ‖vh‖V .(19)

By Vh(Ω�) and Xh(Ω�), � = 1, 2, we denoted the finite dimensional spaces of
functions of Vh and Xh, respectively, restricted to the subdomains Ω�.

The discrete problem is defined in the following way.
Find (uh,ph) ∈ Vh × Kh such that

⎧⎨
⎩

aδ(uh, vh) + b(vh,ph) = (f, vh) ∀vh ∈ Vh,

−b(uh,qh − ph) + g(ph,qh − ph) ≥ 0 ∀qh ∈ Kh.
(20)

Theorem 3.2. Problem (20) admits a unique solution (uh,ph) for h > 0. More-
over, we have the following stability estimate, uniform with respect to h:

‖uh‖V + ‖ph‖X ≤ c‖f‖L2(Ω).(21)

Proof. The proof in the discrete case is similar to the continuous problem (see [33,
Theorem 2.3]). Indeed, the existence is based on a perturbation technique applied to
the variational inequality obtained by summing the two lines of (20), then applying
Stampacchia’s theorem and, thanks to a uniform a priori estimate (with respect to
h), passing to the limit.

It remains to prove the uniqueness of the solution of problem (20), which fol-
lows from direct computations. Assume there exist two solutions (uhi,phi), i = 1, 2.
Choosing qh = ph2 in the second line of (20) with the first solution, respectively,
qh = ph1 with the second solution, and summing the resulting inequalities yield

−b(uh2 − uh1,ph2 − ph1) + g(ph2 − ph1,ph2 − ph1) ≤ 0.

Subtracting the first lines of problem (20),

a(uh1, vh) + b(vh,ph1) = (f, vh),
a(uh2, vh) + b(vh,ph2) = (f, vh),
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and choosing vh = uh2 − uh1 lead to

−b(uh2 − uh1,ph2 − ph1) = aδ(uh2 − uh1, uh2 − uh1) ≥ 0;

thus g(ph2 − ph1,ph2 − ph1) ≤ 0, which implies ph1 = ph2, and we deduce that
uh1 = uh2.

For the convergence analysis and the numerical simulations we will introduce
a new discrete formulation of problem (20) in the framework of the saddle-point
approach.

3.2. New discrete formulation. The numerical analysis of mixed variational
formulations for unilateral frictionless contact problems is performed, e.g., in [14],
[29], [5], [33]. There are some similarities between modelling of contact problems and
the smooth domain models of crack problems considered in this paper. Therefore,
the same saddle-point framework, as in the case of contact problems, can be used for
the convergence analysis of proposed finite element approximations for the smooth
domain method.

First, the following energy functional is defined over the convex set V × K:

J (v,q) =
1

2
aδ(v, v) − (f, v) − b(v,q) +

1

2
g(q,q).

Clearly, solution of problem (20) is equivalent to the minimization problem for J ,

J (u,p) = min
(v,q)∈V×K

J (v,q).(22)

The constraints in K can be defined by duality using the closed convex cone

M =
{
μ ∈ H

1
2 (Γc); μ ≥ 0

}
;

thus, we can write equivalently problem (16) as follows: Find (u,p, λ) ∈ V ×X×M
such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aδ(u, v) + b(v,p) = (f, v) ∀v ∈ V,

−b(u,q) + g(p,q) + 〈λ,q.ν〉 1
2 ,Γc

= 0 ∀q ∈ X,

〈μ− λ,p.ν〉 1
2 ,Γc

≤ 0 ∀μ ∈ M,

(23)

where the elements (u,p, λ) are given by a saddle-point of the Lagrangian

L(v,q, μ) = J (v,q) + 〈μ,q.ν〉 1
2 ,Γc

,

defined over the product V ×X×M . Note that λ is the Lagrange multiplier associated
to the inequality constraint p.ν ≤ 0 on Γc.

Proposition 3.3. Problem (23) admits a unique solution (u,p, λ) ∈ V ×X×M
for any δ > 0. Moreover,

λ = [u] on Γc,

and (u,p) is the solution of problem (16).
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In order to define a finite dimensional approximation of problem (23) we need an
approximation of the inequality constraints in K. For this purpose, we introduce two
finite dimensional spaces of scalar functions on Γc,

W 0
h (Γc) =

{
μh, μh|ti ∈ P0(ti), 0 ≤ i ≤ I − 1

}
,

W 1
h (Γc) =

{
μh ∈ C(Γc), ∃qh ∈ Xh, such that qh.ν = μh on Γc

}
.

Now, we are in position to define the finite dimensional approximations of the set M .
The first set M0

h is an external approximation of M since piecewise constant functions

are not elements of the fractional Sobolev space H
1
2 . Thus, with the choice of the

space W 0
h (Γc) we have the definition

M0
h =

{
μh ∈ W 0

h (Γc), μh ≥ 0, on Γc

}
,(24)

and the choice of W 1
h (Γc) leads to the following two approximation sets:

M1
h =

{
μh ∈ W 1

h (Γc), μh ≥ 0 on Γc

}
(25)

and

M1,∗
h =

{
μh ∈ W 1

h (Γc),

∫
Γc

μhψh dΓ ≥ 0 ∀ψh ∈ M1
h

}
.(26)

We note that the set M1
h is well defined since μh is a continuous function, piecewise

P1 so that the nonnegativity condition can only be imposed at the nodes of the 1D
mesh of Γc.

Remark 3.4. It can be expected that the choice of the set M0
h , for the approxima-

tion of Lagrangian multipliers as elements of H
1
2 (Γc), leads to worse results compared

to the two other possibilities listed above. This fact is confirmed by the convergence
analysis, at least when we compare with the choice of M1,∗

h . We consider such an
approximation (with M0

h) for the sake of completeness (since it is sometimes used in
computations in contact mechanics).

The solution (uh,ph, λh) ∈ Vh×Xh×Mh of the finite dimensional mixed approx-
imation of (23) satisfies the following discrete system of equations and inequalities:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aδ(uh, vh) + b(vh,ph) = (f, vh) ∀vh ∈ Vh,

−b(uh,qh) + g(ph,qh) +
∫
Γc

(λh)(qh.ν) dσ = 0 ∀qh ∈ Xh,

∫
Γc

(μh − λh)(ph.ν) dσ ≤ 0 ∀μh ∈ Mh,

(27)

where Mh is a specific multiplier set defined by (24), (25), or in (26).
Notation . d(., .) is a bilinear form defined on M × (V × X) by

d(μ,V) = 〈(q.ν), μ〉 1
2 ,Γc

,

where V = (v,q) ∈ V × X.
The uniqueness of (uh,ph) as a solution of (27) follows directly from the unique-

ness argument in the proof of Theorem 3.2.
Therefore, to prove the existence and uniqueness of a saddle-point in (27), it is

sufficient to verify that

{μh ∈ Mh, d(μh,V) = 0 ∀V ∈ Vh × Xh} = {0} ,
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which is straightforward in the case Mh = M1
h or Mh = M1,∗

h and which still holds
for Mh = M0

h by the inf-sup condition (29) under condition (18). Thus, the following
result is obtained.

Proposition 3.5. Assume that the set Mh is given by Mh = M0
h, Mh = M1

h, or

Mh = M1,∗
h . For each of the choices, problem (27) admits a unique solution.

In order to perform the convergence analysis of finite element methods, we first
check the compatibility condition (inf-sup condition) between the spaces W 1

h (Γc) and
Vh × Xh, respectively, the compatibility condition between W 0

h and Vh × Xh. These
conditions are necessary to obtain optimal stability results.

The first inf-sup condition. This condition between W 0
h and Vh × Xh is ob-

tained under the assumption (18) in [5, Lemma 6.3] with W 0
h equipped with the

H− 1
2 -norm. For our purpose, we need the inf-sup condition in the mesh-dependent

norm

‖μh‖L =

(
I−1∑
i=1

hti‖μh‖2
L2(ti)

) 1
2

.

We denote by ‖μh‖L−1 =
(∑I−1

i=1 h−1
ti ‖μh‖2

L2(ti)

) 1
2 its dual norm. Therefore, it is

standard [11] that the inf-sup condition follows from the stability with respect to the
norm ‖.‖L−1 of the L2-projection operator π0

h : L2(Γc) −→ W 0
h :

∫
Γc

vψh dσ =

∫
Γc

π0
h(v)ψh dσ, ψh ∈ W 0

h .(28)

Noting that (28) is a linear system of the form y = Dx, with a diagonal (positive defi-
nite) matrix D, the stability property for π0

h follows by straightforward computations.
Thus, we derive the following inf-sup condition.

Proposition 3.6. There exists β0 > 0 such that

∀μh ∈ W 0
h , sup

Vh∈Vh×Xh

d(μh,Vh)

‖Vh‖V×X
≥ γ0 ‖μh‖L ≥ β0 h

1
2 ‖μh‖L2(Γc).(29)

The operator π0
h satisfies the following estimates proved in [29]. Namely, for the

functions ϕ ∈ Hν(Γc) with ν = 1
2 , or with ν = 1, there exists a constant c > 0

independent of h such that

‖ϕ− π0
hϕ‖L2(Γc) ≤ chν‖ϕ‖Hν(Γc).(30)

Moreover, if ϕ ∈ L2(Γc), then

‖ϕ− π0
hϕ‖H− 1

2 (Γc)
≤ ch

1
2 ‖ϕ− π0

hϕ‖L2(Γc).(31)

In addition, we have the following property of the operator: For ϕ ≥ 0 it follows that
π0
hϕ ∈ M0

h .

The second inf-sup condition. The second condition is stated in Proposi-
tion 3.7 and requires us to introduce some additional tools. We define the projection
operator π1

h : L2(Γc) �→ W 1
h (Γc), with respect to the scalar product in L2(Γc), which

satisfies the following properties proved in [7].
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Given μ ∈ [0, 1] and ν ∈
]
1
2 , 2

]
, there exists a constant c > 0 that is independent of

h, such that for all functions ϕ ∈ Hν(Γc),

‖ϕ− π1
hϕ‖H−μ(Γc) + hμ+ 1

2 ‖ϕ− π1
hϕ‖H 1

2 (Γc)
≤ chμ+ν‖ϕ‖Hν(Γc).(32)

Proposition 3.7. There exists β > 0, independent of h, such that the following
inf-sup condition holds:

sup
V∈Vh×Xh

d(μh,V)

‖V‖ ≥ β‖μh‖
H

1
2 (Γc)

∀μh ∈ W 1
h .(33)

Proof. Let μh ∈ W 1
h (Γc). We want to construct qh ∈ Xh such that

d(μh, (0,qh)) ≥ ‖μh‖2

H
1
2 (Γc)

and β‖qh‖H1(Ω)2 ≤ ‖μh‖
H

1
2 (Γc)

.(34)

Let us consider q ∈ H1(Ω)2 such that
∫

Ω

q · w dx +

∫
Ω

(gradq) : (gradw) dx = d(μh, (0,w)) ∀w ∈ H1(Ω)2,(35)

where

gradq : gradw =

2∑
i,j=1

∂qj

∂xi

∂wj

∂xi
.

The following stability inequalities hold:

c1‖μh‖
H

1
2 (Γc)

≤ ‖q‖H1(Ω)2 ≤ c2‖μh‖
H

1
2 (Γc)

.(36)

Note that the first inequality comes from the continuous inf-sup condition of d(., .)
and (35).

Then we set qh ∈ Xh such that (qh.ν)Γc
= π1

h((q.ν)Γc
) and

‖qh‖H1(Ω)2 ≤ c‖π1
h(q.ν)‖

H
1
2 (Γc)

≤ c‖q.ν‖
H

1
2 (Γc)

.(37)

Such qh is built using a stable finite element extension operator studied in [6]. Next,
observe that we have

d(μh, (0,qh)) = d(μh, (0,q)) = ‖q‖2
H1(Ω)2 ≥ c21‖μh‖2

H
1
2 (Γc)

,

which yields the first statement of (34). The second one is obtained from (36) and
(37).

4. Convergence analysis. In this section we perform the convergence analysis
and give the error estimates and the rates of convergence. Let us define a bilinear
form A(., .) on the product space V × X by

A(U − Uh,U − Vh) = aδ(u− uh, u− vh) + b(u− vh,p − ph)

−b(u− uh,p − qh) + g(p − ph,p − qh),

where U = (u,p), Uh = (uh,ph) and Vh = (vh,qh). In the following lemma we
establish an abstract error expression for the solution (u,p) of problem (27); since the
proof is rather long we give it in the appendix.
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Lemma 4.1. Let (u,p) be the solution of problem (16) and (uh,ph) the solution
of problem (27); then the following estimate holds: For small δ > 0, and for any
(Vh, μh) ∈ L2(Ω) × Xh ×Mh,

(38)

‖u−uh‖2
V +‖p−ph‖2

L2(Ω)2 ≤ c
(
|A(U−Uh,U−Vh)|+|d(μh−λ,p−ph)+d(λ−λh,p−qh)

+ d(λ− μh,p) + d(λh,p) + d(μh,ph)| + inf
vh∈Vh

‖u− vh‖2
V + ‖λ− λh‖2

)
.

We also need some related results on the approximation by means of the Lagrange
interpolation. We refer the reader to [12] for the proofs of the results. Denote by
I�h and ih the Lagrange interpolation operators with values in the spaces Vh(Ω�)
and W 1

h (Γc), respectively. Then, there exists a constant C > 0 such that for all

v� ∈ H2(Ω�) and v ∈ H
3
2 (Γc),

‖v� − I�hv
�‖L2(Ω�) ≤ ch2‖v�‖H2(Ω�); ‖v − ihv‖L2(Γc) ≤ ch

3
2 ‖v‖

H
3
2 (Γc)

.(39)

Let Π�
h be the projection operator from X(Ω�) into (Vh(Ω�))2 introduced in [8]; then

we have for q ∈ X such that q� = q|Ω� ∈ Hs�(Ω�), 1 ≤ s� ≤ 2, � = 1, 2 [8, Theorem
3.4],

‖q� − Π�
hq

�‖L2(Ω�)2 ≤ chs�‖q�‖(Hs� (Ω�))2 ,(40)

‖divq� − div Π�
hq

�‖L2(Ω�) ≤ chs�−1‖q�‖(Hs�−1(Ω�))2 .(41)

In order to simplify the error analysis we will assume that the solution p of problem
(23) is such that

divp� ∈ H1(Ω�), � = 1, 2.(42)

It is readily checked that under assumption (42) the trace p.ν belongs to H
3
2 (Γc).

Note that assumption (42) is not stringent since it requires only local regularity in
each subdomain (which holds in general—see the end of section 1). If we assume
only p� ∈ H1(Ω�), we derive, similarly to the rest of this section, the complete error

estimate (in this case the error behaves as O(h
1
4 )).

The following lemma states the first error estimates; for the convenience of the
reader the proof is also given in the appendix.

Lemma 4.2. Let (U, λ), with U = (u,p), be the solution of problem (23). Suppose
that u|Ω1 ∈ H2(Ω1), u|Ω2 ∈ H2(Ω2), that also p|Ω1 ∈ H1(Ω1)2, p|Ω2 ∈ H1(Ω2)2, and
that assumption (42) holds.

(i) Let (Uh, λh) be the solution of (27) with Mh = M0
h; then the following estimate

holds:

(43)

‖u−uh‖2
V + ‖p−ph‖2

L2(Ω)2 ≤ C(δ, u,p)
(
h‖λ−λh‖L2(Γc) + ‖λ−λh‖2

L2(Γc)
+h

3
2

)
.

(ii) In the case of Mh = M1,∗
h the following estimate holds:

(44)

‖u−uh‖2
V +‖p−ph‖2

L2(Ω)2 ≤ C(δ, u,p)
(
h

3
2 ‖λ−λh‖

H
1
2 (Γc)

+‖λ−λh‖2

H
1
2 (Γc)

+h
3
2

)
,
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where the (generic) constant C(δ, u,p) depends linearly on the norms ‖u|Ω�‖H2(Ω�),
‖p|Ω�‖H1(Ω�)2 , and ‖divp|Ω�‖H1(Ω�)2 , � = 1, 2.

Proof. First, the result is established for Mh = M1,∗
h , and we denote by πh the

associated projection operator π1
h given in (32). The proof is divided into small steps.

Step 1. Recall the definition of A(., .):

A(U − Uh,U − Vh) = aδ(u− uh, u− vh) + b(u− vh,p − ph)

−b(u− uh,p − qh) + g(p − ph,p − qh).

Then, for particular choices of the test functions as v�h = I�hu
� and q�

h = Πhp
�, � = 1, 2,

and using inequalities (39) and (40), we derive

|aδ(u− uh, u− vh)| ≤ δc(u)h2‖u− uh‖V ,

|b(u− vh,p − ph)| ≤ c(u)h2‖divp − divph‖L2(Ω),

|b(u− uh,p − qh)| ≤ c(p)h‖u− uh‖V ,

|g(p − ph,p − qh)| ≤ c(p)h‖p − ph‖L2(Ω)2 ,

where the (generic) constants are linear with respect to the appropriate norms, i.e.,
with

c(u) ≤ cmax{‖u|Ω1‖H2(Ω1), ‖u|Ω2‖H2(Ω2)},

and

c(p) ≤ cmax{‖p|Ω1‖H1(Ω1)2 , ‖p|Ω2‖H1(Ω2)2 , ‖divp|Ω1‖H1(Ω1), ‖divp|Ω2‖H1(Ω2)}.

Note that we have (see [8, Theorem 3.4 and condition (3.10)])

(45) ‖divp − divph‖L2(Ω) = ‖divp − divqh‖L2(Ω)

=

( ∑
T∈Th

‖divp − divqh‖2
L2(T )

) 1
2

≤ c

( ∑
T∈Th

h2
T ‖divp‖2

H1(T )

) 1
2

≤ c(p)h.

Thus we can write

|b(u− vh,p − ph)| ≤ c(u,p)h3.

The above estimates yield

A(U − Uh,U − Vh) ≤ C(u,p, δ)
{
h(‖u− uh‖V + ‖p − ph‖L2(Ω)2) + h3

}
.(46)

Step 2. Taking μh = ih(λ), by an application of the Cauchy–Schwarz inequality,
combined with estimates (39), it follows that

d(λ− μh,Uh − U) ≤ ‖λ− μh‖L2(Γc)‖(ph − p) · ν‖L2(Γc)

≤ ch
3
2 ‖λ‖

H
3
2 (Γc)

‖(ph − p).ν‖L2(Γc).
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By a scaling we derive, for each edge e of a triangle T ∈ Th ∩ Γc, the following trace
theorem:

‖(p − ph) · ν‖L2(e) ≤ c
(
h
− 1

2

T ‖p − ph‖L2(T )2 + h
1
2

T ‖(divp − divph)‖L2(T )

)
.(47)

Applying this inequality and (45) yields

d(λ− μh,Uh − U) ≤ C(u,p)
(
h‖p − ph‖L2(Ω)2 + h2

)
.(48)

The term d(μh,ph) is bounded similarily and yields

d(μh,Uh − U) ≤ C(u,p)
(
h‖p − ph‖L2(Ω)2 + h2

)
.(49)

Step 3. For qh.ν = πh(q.ν), an application of the Cauchy–Schwarz inequality
combined with (32) leads to

d(λ− λh,U − Vh) ≤ ‖λ− λh‖
H

1
2 (Γc)

‖(p − qh).ν‖
H− 1

2 (Γc)
(50)

≤ C(p)h2‖λ− λh‖
H

1
2 (Γc)

.

Step 4. We have

d(λ− μh,U) =

∫
Γc

(λ− μh)(p.ν) dΓ

=

∫
Γc

(λ− ih(λ))(p.ν − πh(p.ν)) dΓ (πh(ih(ϕ)) = ih(ϕ))

≤ ‖λ− ih(λ)‖L2(Γc)‖p.ν − πh(p.ν)‖L2(Γc).

Using (39) and the appropriate approximation property of the projection πh = π1
h [7],

we obtain

d(λ− μh,U) ≤ C(u,p)h3.(51)

Step 5. We establish an estimate for the last term in (38) in order to apply
estimate (38). The term is rewritten as follows:

d(λh,U) =

∫
Γc

(λh)(p.ν) dΓ

=

∫
Γc

(λh)(p.ν − ih(p.ν)) dΓ +

∫
Γc

λhih(p.ν) dΓ.

Since ih(p.ν) ≤ 0, and λh ∈ M1,∗
h , we have∫

Γc

λhih(p.ν) dΓ ≤ 0.

Therefore

d(λh,U) ≤
∫

Γc

(λh)(p.ν − ih(p.ν)) dΓ

≤
∫

Γc

(λh − λ)(p.ν − ih(p.ν)) dΓ

+

∫
Γc

(λ)(p.ν − ih(p.ν)) dΓ

≤ ‖λ− λh‖
H

1
2 (Γc)

‖(p.ν − ih(p.ν))‖L2(Γc)

+ ‖λ‖L2(Γc)‖(p.ν − ih(p.ν))‖L2(Γc)
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and by (39)

d(λh,U) ≤ C(u,p)h
3
2 ‖λ− λh‖

H
1
2 (Γc)

+ C(u,p)h
3
2 .(52)

Finally, assembling estimates (46)–(52) in the right-hand side of (38) yields

‖u− uh‖2
V + ‖p − ph‖2

L2(Ω)2 ≤ C(δ, u,p)
(
h(‖u− uh‖V + ‖p − ph‖L2(Ω)2)

+ h
3
2 ‖λ− λh‖

H
1
2 (Γc)

+ ‖λ− λh‖2

H
1
2 (Γc)

+ h
3
2

)
.

Writing

C(δ, u,p)h(‖u− uh‖V + ‖p − ph‖L2(Ω)2)

≤ γ(‖u− uh‖V + ‖p − ph‖L2(Ω)2)
2 +

C(δ, u,p)2

4γ
h2

with γ > 0 leads to the desired estimate for sufficiently small γ. This completes the
proof for Mh = M1,∗

h .
The case of Mh = M0

h can be treated in the same way, with the projection πh in
Steps 3 and 4 replaced by the appropriate L2-projection π0

h on Mh (see [29] for the
properties of the projection operator), and in view of d(λh,U) ≤ 0, Step 5 can be
neglected. We briefly list the results that can be obtained for the particular case of
Mh = M0

h ; the details are left to the reader. Actually, in Step 3 the following estimate
is established:

d(λ− λh,U − Vh) ≤ ‖λ− λh‖L2(Γc)‖(p − qh).ν‖L2(Γc) ≤ C(p)h‖λ− λh‖L2(Γc),

and accordingly, in Step 4 the resulting inequality takes the form

d(λ− μh,U) ≤ C(u,p)h
5
2 .

Remark 4.3. The same rate of convergence as in Lemma 4.2 cannot be derived
for the case of Mh = M1

h . However, the same procedure as in [5] results in the

convergence rate O(h
1
2 ).

Remark 4.4. Estimates (43) and (44) can be formulated in terms of the mesh-
dependent norm ‖.‖h on X defined by

‖q‖h =

( ∑
T∈Th

‖q‖2
L2(T )2 + h2

T ‖divq‖2
L2(T )

) 1
2

.

Lemma 4.5. Let (u,p, λ) be the solution of problem (23). As usual we denote
U = (u,p). Suppose that u|Ω1 ∈ H2(Ω1), u|Ω2 ∈ H2(Ω2) and also p|Ω1 ∈ H1(Ω1)2,
p|Ω2 ∈ H1(Ω2)2, and assumption (42) holds. Let (Uh, λh) be the solution of (27) for
Mh = M0

h; then the following estimate holds:

‖λ− λh‖L2(Γc) ≤ Ch− 1
2 (‖u− uh‖V + ‖p − ph‖L2(Ω)2) + C(u)h

1
2 .(53)

If Mh = M1,∗
h , then the following estimate is obtained:

‖λ− λh‖
H

1
2 (Γc)

≤ C(‖u− uh‖V + ‖p − ph‖L2(Ω)2 + C(u,p)h),(54)
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where C(u,p) ≤ cmax{‖u|Ω�‖H2(Ω�), ‖p|Ω�‖H1(Ω�)2 , ‖divp|Ω�‖H1(Ω�)2 , � = 1, 2}.
Proof. We set q = qh ∈ Xh ⊂ X in the second equation of (23) and subtract the

resulting equation from the second equation in (27), which leads to

−b(u− uh,qh) + g(p − ph,qh) + d(λ− λh(0,qh)) = 0

and

d(λh − πh(λ), (0,qh)) = −b(u− uh,qh) + g(p − ph,qh) + d(λ− πh(λ), (0,qh))

≤ C(‖u− uh‖V + ‖p − ph‖L2(Ω)2 + C‖λ− πh(λ)‖Hs(Γc)‖qh‖X),

where s = 0 or 1
2 . We consider separately two particular cases of projection operators

and derive the resulting error estimates. Namely, s = 0 and πh := π0
h in the first case

of Mh = M0
h ; otherwise, s = 1

2 and πh := π1
h if Mh = M1,∗

h in the second case.
Case of projection π0

h in M0
h. In view of (30) we have

‖λ− πh(λ)‖L2(Γc) ≤ Ch‖λ‖
H

3
2 (Γc)

.(55)

On the other hand, using (29) we derive the following estimate:

‖λh − πh(λ)‖L2(Γc) ≤ β−1
0 h− 1

2 sup
Vh∈Vh×Xh

d(λh − πh(λh),Vh)

‖Vh‖Vh×Xh

(56)

≤ Ch− 1
2 (‖u− uh‖V + ‖p − ph‖L2(Ω)2 + Ch‖λ‖

H
3
2 (Γc)

).

Case of projection π1
h in M1,∗

h . Using (32), we obtain

‖λ− πh(λ)‖
H

1
2 (Γc)

≤ Ch‖λ‖
H

3
2 (Γc)

,(57)

which together with the inf-sup condition (33) leads to

β‖λh − πh(λ)‖
H

1
2 (Γc)

≤ sup
Vh∈Vh×Xh

d(λh − πh(λh),Vh)

‖Vh‖Vh×Xh

(58)

≤ C(‖u− uh‖V + ‖p − ph‖L2(Ω)2 + Ch‖λ‖
H

3
2 (Γc)

).

By the triangular inequality

‖λ− λh‖
H

1
2 (Γc)

≤ ‖λ− πh(λ)‖
H

1
2 (Γc)

+ ‖λh − πh(λ)‖
H

1
2 (Γc)

and the estimates (56) and (55) (respectively, (58) and (57)), we obtain the inequality
(53) (respectively, (54)).

Assembling all the estimates given in Lemmas 4.2 and 4.5, we obtain the main
result on error estimates.

Theorem 4.6. Let (u,p, λ) be the solution of problem (23). Suppose that u|Ω1 ∈
H2(Ω1), u|Ω2 ∈ H2(Ω2) and also p|Ω1 ∈ H1(Ω1)2, p|Ω2 ∈ H1(Ω2)2, and assumption
(42) holds. Let (Uh, λh) be the solution of (27) with Mh = M0

h. Then the following
estimate holds:

‖u− uh‖V + ‖p − ph‖L2(Ω)2 + ‖λ− λh‖L2(Γc) ≤ C(δ, u,p)h
1
2 .(59)

When Mh = M1,∗
h the following estimate holds:

‖u− uh‖V + ‖p − ph‖L2(Ω)2 + ‖λ− λh‖
H

1
2 (Γc)

≤ C(δ, u,p)h
3
4 ,(60)
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where C(δ, u,p) depends linearly on ‖u|Ω�‖H2(Ω�), ‖p|Ω�‖H1(Ω�)2 , and ‖divp|Ω�‖H1(Ω�)2 ,
� = 1, 2.

Remark 4.7. The global error estimate (59) is only O(h
1
2 ) because the approxi-

mation of the Lagrange multiplier λ by functions of M0
h cannot provide better results

even if λ is more regular, as can be seen in (55).

5. Numerical experiments. In order to perform the computations, the matrix
formulation of problem (27) is derived. It is readily checked that (uh,ph, λh) ∈
Vh ×Xh ×Mh is a solution of (27) if and only if (uh,ph, λh) is a saddle-point of the
Lagrangian defined on Vh × Xh ×Mh by

L(vh,qh, μh) = J (vh,qh) +

∫
Γc

μh.(qh.ν) dσ,(61)

which means that (uh,ph, λh) satisfies

L(uh,ph, μh) ≤ L(uh,ph, λh) ≤ L(vh,qh, λh) ∀(vh,qh) ∈ Vh × Xh, ∀μh ∈ Mh.

Let V, U denote the vectors with the entries given by the nodal values of the functions
(vh,qh) and (uh,ph), respectively. Let M and Λ be the vectors with the entries given
by the nodal values of μh and λh, respectively, for the three different choices of the
space Mh, namely Mh = M1

h , Mh = M1,∗
h , or Mh = M0

h . Therefore, the saddle-point
problem for Lagrangian (61) can be rewritten in finite dimensional setting:
Find U = (uh,ph) and Λ, defined by the following max-min condition:

max
SM≥0

(
min
V

1

2
tVKV − tVF + (tVL)SM

)
,(62)

where K denotes the stiffness matrix, F is the vector corresponding to the external
loading, and the matrix S expresses the sign conditions for multipliers (24)–(26).

Given a triangularization Th of Ω, let N denote the number of nodes in Ω and NT

the number of elements in Th. Denote by (wi)
N
i=1 the Lagrange finite element basis of

Vh and let (Φi) stand for the basis in the space Xh. Each vector function Φi either is
of the form (wi, 0), 1 ≤ i ≤ N , (bi, 0), 1 ≤ i ≤ NT , or is given by (0, wi), 1 ≤ i ≤ N ,
(0, bi), 1 ≤ i ≤ NT , respectively, where bi denotes a bubble function. Then the matrix
K is defined by

K =

⎛
⎝ Aδ

tB1
tB2

−B1 G1 0
−B2 0 G2

⎞
⎠ ,

and the right-hand side takes the form

F =

⎛
⎝ DF

0
0

⎞
⎠ ,

with F = (fi)i, D = (
∫
Ω
wi wj dx)ij , i, j = 1, . . . , N , and Aδ = δ D. The matrices B1

and B2 are defined by (B1)ij = (
∫
Ω
wj∂1Φ

(1)
i dx)ij and (B2)ij = (

∫
Ω
wj∂2Φ

(2)
i dx)ij ,

j = 1, . . . , N , i = 1, . . . , N + NT . Finally,

G1 = G2 =

(
D (

∫
Ω
wi bj dx)ij

(
∫
Ω
bi wj dx)ij (

∫
Ω
b2i dx)δij

)
,
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where δij is the Kronecker symbol.
Let Nc denote the number of nodes on Γc and let us denote by (ψi)i, 1 ≤ i ≤ Nc

the basis in the space W 1
h (Γc) and by (ϕi)i the basis of W 0

h (Γc), 1 ≤ i ≤ Nc − 1. We
have a specific form of S for each particular choice of Mh, namely

• if Mh is M0
h or M1

h then S is given by the identity matrix,

• if Mh = M1,∗
h , then S is given by Sij =

∫
Γc

ψi ψj dΓ, 1 ≤ i, j ≤ Nc.
Finally, the coupling matrix

L =

⎛
⎝ 0
L1

L2

⎞
⎠

is defined in the following way:
• If Mh = M1

h or Mh = M1,∗
h , then

(L1)ij =

{ ∫
Γc

ψj ((wi, 0).ν) dΓ, 1 ≤ i ≤ N, 1 ≤ j ≤ Nc,

0, 1 ≤ i ≤ NT , 1 ≤ j ≤ Nc,

and

(L2)ij =

{ ∫
Γc

ψj ((0, wi).ν) dΓ, 1 ≤ i ≤ N, 1 ≤ j ≤ Nc,

0, 1 ≤ i ≤ NT , 1 ≤ j ≤ Nc.

• If Mh = M0
h , then

(L1)ij =

{ ∫
Γc

ϕj ((wi, 0).ν) dΓ, 1 ≤ i ≤ N, 1 ≤ j ≤ Nc − 1,

0, 1 ≤ i ≤ NT , 1 ≤ j ≤ Nc,

and

(L2)ij =

{ ∫
Γc

ϕj ((0, wi).ν) dΓ, 1 ≤ i ≤ N, 1 ≤ j ≤ Nc − 1,

0, 1 ≤ i ≤ NT , 1 ≤ j ≤ Nc.

The solution (U,Λ) of (62) satisfies the saddle-point conditions and we have

U = K−1(F − LSΛ).(63)

Therefore, for Φ = SΛ, the saddle-point problem (62) can be rewritten as a quadratic
programming problem

min
Φ≥0

(
1

2
tΦtLK−1LΦ − tΦtLK−1F +

1

2
tFK−1F

)
.(64)

If Φ is the solution of (64) then Λ = S−1Φ. The solution U is obtained by solving
(63).

We note that eliminating the bubbles yields problems (64) and (63) with reduced
matrices to be solved and, therefore, with reduced number of unknowns.

In all the numerical experiments, the domain Ω = ]0, 4[ × ]0, 1[ is fixed, and data
are selected as follows: f = 1, δ = 0.1.

In the first example the numerical comparison of the three methods corresponding
to Mh = M0

h , Mh = M1
h , and Mh = M1,∗

h is performed. This comparison is limited to
the case of only one global triangulation in the whole domain Ω, which is in fact our
goal. It can be expected, as for classical unilateral contact problems, that different
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Table 1

‖u− uh‖L2(Ω).

dof 160 610 934 1233

Mh = M1,∗
h

2.32 × 10−2 0.621 × 10−3 4.61 × 10−3 3.31 × 10−3

Mh = M1
h 2.30 × 10−2 6.17 × 10−3 4.58 × 10−3 3.28 × 10−3

Mh = M0
h 2.30 × 10−2 6.18 × 10−3 4.58 × 10−3 3.29 × 10−3

Table 2

‖p1 − p1h‖L2(Ω).

dof 160 610 934 1233

Mh = M1,∗
h

1.20 × 10−1 5.83 × 10−2 3.987 × 10−2 2.902 × 10−2

Mh = M1
h 1.18 × 10−1 5.79 × 10−2 3.955 × 10−2 2.75 × 10−2

Mh = M0
h 1.18 × 10−1 5.79 × 10−2 3.955 × 10−2 2.754 × 10−2

triangulations of Ω1 and Ω2 with nonmatching grids at the crack Γc lead to the
same numerical results. For Γc = ]0, 4[ ×

{
1
2

}
the relative errors ‖u − uh‖L2(Ω),

‖p − ph‖L2(Ω), and ‖λ − λh‖L2(Γc) are computed. Since the exact solution is not
available, we use (as usual) a reference solution obtained for the sufficiently fine mesh,
namely for the triangulation which is made of 3308 elements, with 1725 degrees of
freedom and 114 vertices on Γc. In Tables 1–4, the relative errors are reported as a
function of the degrees of freedom (dof). The respective convergence curves, which
represent the logarithms of the relative errors in function of the logarithms of dof,
are given by Figures 3–5. The three methods lead to similar approximation results,
and this fact agrees with the theoretical estimates and it is also in accordance with
previous numerical studies for classical unilateral contact problems (see, e.g., [14]).
Since the solution is sufficiently smooth (in particular, u is continuous), the norm of
λ is relatively small, which explains the fact that the relative error for λ is quite large
(compared to the others errors). In addition, the approximation results for p could
be significantly improved by employing finite elements other than the stabilized linear
elements (PB), which are known to be less efficient for the approximation of functions
in X.

In the second example, we present the isolines of u, p1, and p2 with various cuts.
The plots are obtained by the interpolation of the computed solution (uh,ph) on
a new regular and coarse mesh. Figures 6–8 correspond to Γc = ]1, 3[ ×

{
3
4

}
; as

expected from the symmetry of the domain (with respect to Γc) and of the data, the
solution (u,p) is smooth. In Figures 9–11, the crack line Γc = ]0, 1[ ×

{
1
4

}
touches

the boundary at one of its endpoints, and the domain is not symmetric.

6. Conclusion. We performed the convergence analysis and derived the er-
ror estimates. The variational formulation was constructed and implemented. The
numerical results are in full agreement with the theoretical estimates.

The further applications of the proposed numerical methods concern the contact
problems in elasticity with the Coulomb friction.
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Table 3

‖p2 − p2h‖L2(Ω).

dof 160 610 934 1233

Mh = M1,∗
h

7.6 × 10−2 3.7 × 10−2 3.2 × 10−2 2.9 × 10−2

Mh = M1
h 5.40 × 10−2 2.50 × 10−2 2.17 × 10−2 1.51 × 10−2

Mh = M0
h 5.40 × 10−2 2.50 × 10−2 2.17 × 10−2 1.50 × 10−2

Table 4

‖λ− λh‖L2(Γc).

dof 160 610 934 1233

Mh = M1,∗
h

5.0240 1.6019 1.3745 1.2922

Mh = M1
h 17.2834 2.6886 1.6801 1.4406

Mh = M0
h 13.9451 2.9765 1.7065 1.5474

Appendix. In this appendix, we give the proof of Lemma 4.1, which states the
following abstract error:

‖u−uh‖2
V +‖p−ph‖2

L2(Ω)2 ≤ c
(
|A(U−Uh,U−Vh)|+|d(μh−λ,p−ph)+d(λ−λh,p−qh)

+ d(λ− μh,p) + d(λh,p) + d(μh,ph)| + inf
vh∈Vh

‖u− vh‖2
V + ‖λ− λh‖2

)
.

Proof. We have

δ‖u− uh‖2
V = aδ(u− uh, u− uh) = aδ(u− uh, u− vh) + aδ(u− uh, vh − uh), vh ∈ Vh.

Noting that Vh ⊂ V and subtracting the first lines of (23) and (27) (with v = uh−vh),
we obtain

δ‖u− uh‖2
V = aδ(u− uh, u− vh) + b(uh − vh,p − ph)

= aδ(u−uh, u−vh)+b(u−vh,p−ph)+b(uh−u,p−qh)+b(uh−u,ph−qh) ∀qh ∈ Xh.

Since Xh ⊂ X, subtracting the second lines of (23) and (27) (with q and qh replaced
by ph − qh) yields

δ‖u− uh‖2
V = aδ(u− uh, u− vh) + b(uh − vh,p − ph)

= aδ(u− uh, u− vh) + b(u− vh,p − ph) + b(uh − u,p − qh)

+ g(qh − ph,p − ph) + d(λ− λh,qh − ph), qh ∈ Xh

= aδ(u− uh, u− vh) + b(u− vh,p − ph) + b(uh − u,p − qh)

+ g(qh − p,p − ph) + g(p − ph,p − ph) + d(λ− λh,ph − qh).

Noting that d(λh,ph) = 0, we deduce that for all μh ∈ Mh

d(λ− λh,ph − qh) = d(λ,ph − qh) + d(λh,qh)

= d(μh − λ,p − ph) + d(λ− λh,p − qh) + d(λ− μh,p)

+ d(λh,p) + d(μh,ph).
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Fig. 3. Convergence rate with Mh = M0
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Thus, we obtain (from the definition of g(., .))

‖p − ph‖2
L2(Ω)2 ≤ δ‖u− uh‖2

V +
(
|aδ(u− uh, u− vh)| + b(u− vh,p − ph)

+ b(uh − u,p − qh) + g(qh − p,p − ph)| + |d(μh − λ,p − ph)

d(λ− λh,p − qh) + d(λ− μh,p) + d(λh,p) + d(μh,ph)|
)
,

and this inequality is written as

‖p − ph‖2
L2(Ω)2 ≤ δ‖u− uh‖2

V +
(
|A(U − Uh,U − Vh)| + |d(μh − λ,p − ph)

d(λ− λh,p − qh) + d(λ− μh,p) + d(λh,p) + d(μh,ph)|
)
.

(65)

Next, we have

b(uh − vh,qh) = b(uh − u,qh) + b(u− vh,qh)

= g(p − ph,qh) + d(λ− λh,qh) + b(u− vh,qh)

≤ g(p − ph,qh) + d(λ− λh,qh) + b(u− vh,qh),
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Fig. 6. Isolines of u.

Fig. 7. Isolines of p1 (left) and p2 (right).

Fig. 8. Isolines of u.
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Fig. 10. Isolines of u.
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and using the inf-sup condition (19), we derive

‖uh − vh‖V ≤ γ−1 sup
qh∈Xh

|b(u− vh,qh) + g(p − ph,qh) + d(λ− λh,qh)|
‖qh‖X

≤ γ−1
(
‖b‖‖u− vh‖V + ‖g‖ ‖p − qh‖L2(Ω)2 + ‖d‖ ‖λ− λh‖

)
,

where ‖b‖, ‖g‖, and ‖d‖ denote the norms of the bilinear forms, from which, combining
with the triangle inequality, we have

‖u− uh‖V ≤
(
(1 + γ−1‖b‖) inf

vh∈Vh

‖u− vh‖V + γ−1‖g‖ ‖p − ph‖L2(Ω)2 + γ−1‖d‖ ‖λ− λh‖
)
.

(66)

Inserting in (65) yields

(1 − δγ−1‖g‖) ‖p−ph‖2
L2(Ω)2 ≤ δ

(
(1 + γ−1‖b‖) inf

vh∈Vh

‖u− vh‖2
V + γ−1‖d‖ ‖λ− λh‖2

)
+
(
|A(U − Uh,U − Vh)| + |d(μh − λ,p − ph)d(λ− λh,p − qh)

+ d(λ− μh,p) + d(λh,p) + d(μh,ph)|
)
,

from which

‖p − ph‖2
L2(Ω)2 ≤ C(δ, γ, ‖b‖, ‖g‖, ‖d‖)

(
inf

vh∈Vh

‖u− vh‖2
V + ‖λ− λh‖2

)

+
(
|A(U − Uh,U − Vh) + |d(μh − λ,p − ph) + d(λ− λh,p − qh)

+ d(λ− μh,p) + d(λh,p) + d(μh,ph)|
)
.

(67)

The inequality (38) follows easily from (67) and (66).
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TENSOR-KRYLOV METHODS FOR SOLVING LARGE-SCALE
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Abstract. This paper develops and investigates iterative tensor methods for solving large-scale
systems of nonlinear equations. Direct tensor methods for nonlinear equations have performed es-
pecially well on small, dense problems where the Jacobian matrix at the solution is singular or
ill-conditioned, which may occur when approaching turning points, for example. This research ex-
tends direct tensor methods to large-scale problems by developing three tensor-Krylov methods that
base each iteration upon a linear model augmented with a limited second-order term, which pro-
vides information lacking in a (nearly) singular Jacobian. The advantage of the new tensor-Krylov
methods over existing large-scale tensor methods is their ability to solve the local tensor model to a
specified accuracy, which produces a more accurate tensor step. The performance of these methods
in comparison to Newton-GMRES and tensor-GMRES is explored on three Navier–Stokes fluid flow
problems. The numerical results provide evidence that tensor-Krylov methods are generally more
robust and more efficient than Newton-GMRES on some important and difficult problems. In addi-
tion, the results show that the new tensor-Krylov methods and tensor-GMRES each perform better
in certain situations.
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1. Introduction. This paper describes a new class of methods for solving the
nonlinear equations problem

given F : R
n → R

n, find x∗ ∈ R
n such that F (x∗) = 0,(1.1)

where it is assumed that F (x) is at least once continuously differentiable. Large-
scale systems of nonlinear equations defined by (1.1) arise in many practical situa-
tions, including systems produced by finite-difference or finite-element discretizations
of boundary value problems for ordinary and partial differential equations.

Standard direct methods, such as Newton’s method, are impractical on large-scale
problems because of their high linear algebra costs and large memory requirements.
Thus, most current practical approaches for solving large problems involve approxi-
mately solving a local linear model and then using these “inexact” steps to locate the
next point.
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Two inexact versions of tensor methods already exist for solving large problems.
Bouaricha [5] describes an implementation of a tensor method using Krylov subspace
methods for linear equations, which involves constructing an inexact tensor step from
the approximate solutions of two linear systems (with the same Jacobian matrix). In
addition, Feng and Pulliam [18] have developed a “tensor-GMRES” method, which
first finds the Newton-GMRES step and then solves for an approximate tensor step.

We propose three variants of a new approach for solving the large-scale nonlinear
equations problem (1.1). These new methods are an extension of the class of standard
tensor methods [28], which base each iteration on a simplified quadratic model of F (x)
such that the quadratic term is a low-rank secant approximation that augments the
standard linear model. Specifically, the new algorithms are an amalgamation of vari-
ous techniques, including tensor methods for nonlinear equations [28], Krylov subspace
techniques [8], and an inexact solver framework [14], that make them well-suited for
large-scale problems. Given the parallels to Newton-Krylov methods [8], we call the
new algorithms “tensor-Krylov” methods. In a manner similar to Newton-GMRES,
the tensor-Krylov methods calculate an inexact tensor step from a specially chosen
Krylov subspace that facilitates the solution of a minimization subproblem at each
step. The Krylov subspace generated is different from the standard implementation
of GMRES and requires some modifications to a block-Krylov solver.

The key feature of these new methods is that the step satisfies the local tensor
model to within a specified tolerance, making it possible to control the quality of the
step. In addition, the new tensor-Krylov methods are aptly suited to target problems
where the Jacobian at the root is singular or, at least, very ill-conditioned. Newton-
based methods do not handle singular problems well because they converge linearly
to the solution and, in some cases, with poor accuracy [11, 12, 13, 21]. On the other
hand, tensor methods are superlinearly convergent on singular problems under mild
conditions [17].

Because the tensor-Krylov methods borrow elements from both direct tensor
methods and linear Krylov subspace methods, these topics are reviewed before in-
troducing the tensor-Krylov formulations. Section 2 reviews direct tensor methods
for solving small-scale systems of nonlinear equations and includes background on per-
tinent large-scale methods, namely linear Krylov subspace methods, Newton-GMRES,
and existing large-scale tensor methods. Then section 3 describes three different ap-
proaches for solving the local tensor model using a Krylov-based method and wraps
these local Krylov solvers into a large-scale method with options for various global
strategies. With the complete tensor-Krylov nonlinear solver fully discussed, section 4
describes several fluid flow benchmark problems that serve as ambitious test problems.
Finally, section 5 makes some concluding remarks and discusses directions for future
research.

Throughout this paper, a subscript k refers to the current iterate of a nonlinear
solver. We denote the Jacobian F ′(x) by J(x) and abbreviate J(xk) as Jk. Similarly,
F (xk) is abbreviated often as Fk. When the context is clear, we may drop the subscript
k on Jk, Fk, ak, and sk while still referring to the current values at an iteration.

2. Background and review. In this section, we introduce standard methods
for solving systems of nonlinear equations. We provide a brief review of standard
methods in section 2.1 and a short introduction to tensor methods in section 2.2. We
extend these methods to large-scale problems in sections 2.3 and 2.4 by reviewing
Newton-Krylov methods and existing large-scale tensor methods, respectively. Gen-
eral references for topics in nonlinear solvers include [15], [20], and [25].
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2.1. Standard methods. In this paper, we will refer to a class of methods,
which we will call standard methods, for solving (1.1) that are based on a linear
local model. Most notable among these methods is Newton’s method, which bases
each iteration upon a linear local model MN (xk + d) of the function F (x) around the
current iterate xk ∈ R

n:

MN (xk + d) = F (xk) + J(xk)d,(2.1)

where d ∈ R
n is the step and J(xk) ∈ R

n×n is either the current Jacobian matrix or
an approximation to it. A root of this local model provides the Newton step

dN = −J(xk)
−1F (xk),

which is used to reach the next trial point. Thus, Newton’s method is defined when
Jk is nonsingular and consists of updating the current point with the Newton step

xk+1 = xk + dN .(2.2)

Due to large arithmetic and storage costs, implementations of Newton’s method
using direct factorizations of J(xk) are not practical for large-scale problems.

2.2. Tensor methods. Tensor methods solve (1.1) by including more informa-
tion in the local model than Newton’s method. By solving this augmented local model,
tensor methods tend to generate steps of better quality than standard methods, thus
reaching the solution faster. The local tensor model has the generic form

MT (xk + d) = Fk + Jkd + 1
2Tkdd,(2.3)

where Tk ∈ R
n×n×n is a tensor, which includes second-order information and is where

these methods get their name. This term is selected so that the model interpolates
p ≤

√
n previous function values in the recent history of iterates, which makes Tk a

rank p tensor. Most often p is 1 or 2, but computational evidence in [28] suggests that
p > 1 actually adds little to the computational performance of the direct method.

For this paper, we focus on the case of p = 1 because the tensor-Krylov methods
only use one secant update. In this case, the tensor model about xk reduces to

MT (xk + d) = Fk + Jkd + 1
2ak(s

T
k d)

2,(2.4)

where

ak ∈ R
n =

2(Fk−1 − Fk − Jksk)

(sTk sk)
2

,(2.5)

sk ∈ R
n = xk−1 − xk.(2.6)

After forming the model, we use it to determine the step to the next trial point.
Because (2.4) may not have a root, one solves the minimization subproblem

min
d∈Rn

‖MT (xk + d)‖2 ,(2.7)

and a root or minimizer of the model is the tensor step. Due to the special form
of (2.4), the solution of (2.7) in the nonsingular case reduces to solving a quadratic
equation followed by solving a system of n− 1 linear equations in as many unknowns.
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A practical approach for solving (2.7), which relates to the presentation of tensor-
Krylov methods in section 3, uses two orthogonal transformations to reduce the prob-
lem to two subproblems that are more easily solved. Briefly, the first transformation
finds an orthogonal Q1 ∈ R

n×n such that s/ ‖s‖ is the last column and permits a
change in variables

d = Q1d̂.

The second transformation finds an orthogonal Q2 ∈ R
n×n such that Q2JkQ1 is upper

triangular. Thus, applying the two transformations to (2.4) and setting it equal to
zero yields the following triangular system of n equations in n unknowns

Q2F + Q2JQ1d̂ + 1
2Q2a ‖s‖2

d̂2
n = 0,(2.8)

where d̂n ∈ R is the quadratic variable.
Then, breaking (2.8) into two smaller problems, the solution to (2.7) continues

by first solving for d̂n by minimizing the quadratic equation appearing in the last row
of (2.8) and choosing the smaller magnitude minimizer if there are two. Using the

value of d̂n in (2.8), a triangular linear system of size (n − 1) × (n − 1) is revealed.
Finally, the complete solution to (2.7) is found by solving this resultant system for

the remaining components of d̂ and then reversing the variable space transformation
from the first step, d = Q1d̂.

2.3. Newton-Krylov methods. Up to this point, this review has discussed
direct methods for the solution of small, dense problems such that the local model is
solved using direct factorizations of the Jacobian matrix. Large, sparse systems often
are solved successfully using a class of “inexact” Newton methods:

xk+1 = xk + dk, where J(xk)dk = −F (xk) + rk, ‖rk‖ ≤ ηk ‖F (xk)‖ ,(2.9)

where the local model typically is solved only approximately at each step using a less
expensive approach. Successively better approximations at each iteration preserve the
rapid convergence behavior of Newton’s method when nearing the solution. The com-
putational savings reflected in this less expensive inner iteration are usually partially
offset with more outer iterations, but the overall savings still are quite significant on
large-scale problems.

The most common methods for approximately solving the local Newton model in
(2.9) are Krylov-based methods. Newton-Krylov methods have the appeal of requiring
almost no matrix storage due to their exclusive use of Jacobian-vector products, which
may be calculated by a finite-difference directional derivative.

A linear Krylov subspace method is a projection method that seeks an approxi-
mate solution xm to the linear system Ax = b from an m-dimensional affine subspace
x0 + Km. Here, Km is the Krylov subspace

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0},

where r0 = b−Ax0 is the residual at an initial guess x0. A popular Krylov subspace
method is the Generalized Minimum Residual method (GMRES) [26], which computes
a solution xm ∈ x0 + Km such that the residual norm over all vectors in x0 + Km

is minimized. That is, at the mth step, GMRES finds xm such that ‖b−Axm‖2 is
minimized for all xm ∈ x0+Km. One drawback of GMRES is the storage requirement
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of an orthogonal basis, which could be larger than a sparse Jacobian matrix unless
m is kept small. Other Krylov methods, such as BiCGSTAB and TFQMR (see, e.g.,
[25]), do not have these additional storage requirements but may not be as robust.
Newton-GMRES is a popular algorithm for solving large-scale problems and will be
the standard algorithm in our numerical experiments.

2.4. Previous large-scale, sparse tensor methods. The large-scale tensor
methods described in this paper are not the first tensor methods aimed at large-scale
problems. Two other methods have been proposed, and we will discuss them now.

Bouaricha [5] describes a large-scale implementation of a tensor method using
Krylov subspace methods for linear equations (GMRES and FOM), which involves
constructing an inexact tensor step from the approximate solutions of J−1Fk and
J−1Fk−1. The approach involves finding the values sTJ−1Fk and sTJ−1ak, which are
used to calculate an approximate value of sT dT , which multiplies J−1ak in the final
computation of the step. More precise details regarding an efficient implementation
may be found in [1] or [5].

Despite some favorable results in [5], we have found Bouaricha’s method to be
not as competitive on more practical problems. The two main disadvantages of this
method stem from the fact that two linear systems must be solved for each outer
iteration and that an accurate value of sT dT is not calculated, which may lead to spu-
rious steps. Due to these theoretical disadvantages and based upon our own numerical
experience with the algorithm in [1], we will not consider any numerical comparisons
with Bouaricha’s algorithm.

Feng and Pulliam [18] describe another large-scale tensor method that they call
“tensor-GMRES.” It uses a Krylov subspace projection technique, namely GMRES,
to find the approximate Newton step dN = d0 + Vmym. The Arnoldi process in
GMRES generates a Hessenberg matrix Hm and an orthonormal basis for the Krylov
subspace Km in the columns of Vm. Given these key matrices, their algorithm proceeds
to solve a projected version of the tensor model (2.4) along a subspace that spans the
Newton step direction (i.e., the approximate tensor step is in the span of the Krylov
subspace KN

m and d0, or equivalently the span of the matrix [Vm, d0]). Thus, their
algorithm solves the least-squares problem

min
d∈{d0}∪KN

m

∥∥Fk + Jkd + 1
2Pa(sT d)2

∥∥ ,(2.10)

where P is the projection matrix P = Y (Y TY )−1Y T and Y = Jk[Vm, d0].
The algorithm has some difficult algebra (details may be found in [18]), but the

design is actually rather straightforward. The algorithm may be viewed as an exten-
sion of Newton-GMRES, where the inexact Newton step is calculated via GMRES
in the standard way. The tensor step is calculated subsequently using the Krylov
subspace information generated for the Newton step. In this way, the method is also
consistent with preconditioning techniques and a matrix-free implementation, which
makes it appealing for general use.

The extra work and storage beyond the GMRES method is actually quite small,
and the analysis in [18] shows that the same superlinear convergence properties for the
unprojected tensor model considered in [17] also hold for the projected tensor model
in (2.10). These properties are evident in the numerical results of [18], which show
the superlinear convergence behavior of tensor-GMRES on the singular and nearly
singular problems, where the Newton-GMRES method exhibits linear convergence due
to a lack of sufficient first-order information. The margin of improvement (in terms
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of reduction of nonlinear iterations over Newton’s method) spanned 20–55 percent on
the simpler problems and 32–60 percent on the more difficult Euler problem.

However, there are a few potential disadvantages related to the Feng and Pulliam
method. The variable space restriction on d in the minimization problem (2.10) illus-
trates a possible disadvantage, particularly when using preconditioners or restarted
GMRES. The norm of the projected tensor model is only minimized to the extent
that the Krylov subspace for the Newton-GMRES step is large enough to capture
important directions in the tensor step. For example, consider using an exact precon-
ditioner, i.e., Jk itself. One iteration of GMRES solves the Newton equations exactly,
and the Newton step direction is along v1, the first basis vector in Vm. Then, ac-
cording to the Feng–Pulliam method, the approximate tensor step that solves (2.10)
could only be a scalar multiple of the direction v1 (assuming that d0 = 0). A sim-
ilar example may be developed when using restarted GMRES in the Feng–Pulliam
method—if GMRES converges soon after a restart, then the orthonormal basis Vm is
smaller than before the restart. A smaller basis may lead to a tensor step that solves
(2.10) with more error due to fewer degrees of freedom.

Despite these hypothetical examples, it is unclear whether solving (2.10) in a
smaller variable space will adversely affect the practical performance of this method
when using preconditioners or restarted GMRES. Because the Newton step tends to
undershoot (or overshoot) when first-order information is lacking in the local model,
the solution to the tensor model is often nearly along the Newton direction, so the
subspace restriction on d might not be a problem. The fact remains, however, that
the Feng–Pulliam method solves the projected tensor model (2.10), which loses some
information in the projection. In addition, the relative stopping tolerance ηk in the
Newton-GMRES step has no direct relationship with the error in the tensor model.

3. Tensor-Krylov methods. The new tensor-Krylov methods differ from pre-
vious large-scale tensor methods in their ability to solve the local tensor model to a
specified tolerance. Using either the methods of Bouaricha or Feng and Pulliam, the
residual error ‖MT (xk + d)‖ must be computed explicitly, making it difficult to assess
the quality of the approximate tensor step that they compute. In addition, the new
methods avoid the costly solution of two linear systems (as in Bouaricha’s method)
and compute the solution to the full tensor model, as opposed to a projected tensor
model (as in the Feng–Pulliam method).

In the same manner that GMRES is an algorithm for solving linear systems and
Newton-GMRES is the nonlinear solver, we make a distinction between the solver for
the local tensor model and the nonlinear solver. In this section, we describe three
procedures for iteratively solving the local tensor model that use the concepts from
linear Krylov subspace methods. We restrict ourselves to the rank-one tensor model in
(2.4)–(2.6), which only interpolates the function value at the previous iterate. Because
(2.4) may or may not have a root, we seek a solution to the minimization problem

min
d∈Km

‖MT (xk + d)‖2 = min
d∈Km

∥∥Fk + Jkd + 1
2ak(s

T
k d)

2
∥∥

2
,(3.1)

where Km is a specially chosen Krylov subspace that facilitates the solution of the
quadratic model. The three tensor-Krylov methods differ in their choice of Km, which
becomes their signature difference and dictates the algorithm. We differentiate the
three variants by the size of their initial block subspace, identifying them as block-2,
block-2+, and block-3. The reason for considering three variants is related to their
complexity and usefulness as a block algorithm. The block-3 method is the most
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straightforward and most likely the best block implementation, while the block-2
methods are more complex but may work better in scalar implementations.

In sections 3.1–3.3, we start with a description of the three Krylov-based tech-
niques for solving the local tensor model. Due to space considerations, we describe
only the block-2 method in detail and refer to [1] for more detailed information on
the other two methods. Section 3.1 covers all aspects of the block-2 method that
are important to a nonlinear equations solver, including block-Krylov subspace is-
sues, residual calculation, stopping conditions, preconditioning and scaling techniques,
computation of the Newton step, and cost. Section 3.4 wraps the local solver into a
complete tensor-Krylov algorithm for solving large-scale systems of nonlinear equa-
tions, and section 3.5 discusses the global strategies for the tensor-Krylov algorithm.

3.1. Block-2 method. The block-2 algorithm proceeds in a block-Krylov-like
fashion, operating on a matrix of initial vectors V instead of the single residual vector
of a linear system. In particular, this method uses a block-Krylov subspace composed
of two initial vectors.

We begin by rearranging the local tensor model and noting that it looks like a
linear system involving a linear combination of two right-hand sides:

Jd = −Fk − 1
2aβ

2,(3.2)

where β ≡ sT d. The right-hand side spans only the directions Fk and a; the vector s
appears in the inner product β = sT d, which is a scalar multiple for a that is unknown.
Thus, the premise of the block-2 method is that we start with the initial block Krylov
subspace K0 = span{a, Fk} and build Km = span{a, Fk, Ja, JFk, J

2a, J2Fk, . . . } to
solve (3.1). Specifically, we consider the block of initial vectors

R0 = [(Jd0 + Fk), a],(3.3)

where d0 ∈ R
n is some initial guess for the step. Because the starting matrix R0 uses

the residual Fk + Jd0, which depends on d0, the block-2 method may be restarted
with successively better initial guesses in a manner similar to restarted GMRES.

The first step of the algorithm computes the QR-factorization of R0,

R0 = V R = [v1, v2]R,(3.4)

where V ∈ R
n×2 = [v1, v2] is unitary and R ∈ R

2×2 is upper triangular. A block-
Arnoldi process then creates additional columns of an orthonormal basis Vm that
spans the block-Krylov subspace

span{V, JV, J2V, J3V, . . . }.(3.5)

There are several block-Arnoldi versions available for implementation, and the partic-
ular variant is not critical to the implementation of the tensor-Krylov method. The
standard procedure works on a whole block V ∈ R

n×t and adds t vectors—t = 2 in
this case—to the subspace at a time. This procedure may work well when considering
cache memory performance and may be considered in future research. However, we
decided to implement the single-vector version of block-Arnoldi to more closely cor-
respond with the scalar implementation of GMRES. The version in Algorithm 3.1 is
very similar to the standard Arnoldi algorithm, which operates on a single vector at
a time and is due to Ruhe [22] (see also [25]) for the symmetric case (block Lanczos).
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Algorithm 3.1. Block Arnoldi Process—Ruhe’s variant.

1. Choose t initial orthonormal vectors {vi}i=1,...,t.
2. Choose a number of Arnoldi iterations to perform and set to m.
3. For k = 1, . . . ,m :

(a) Set j := k + t− 1
(b) Compute w := Jvk
(c) For i = 1, 2, . . . , j

i. hik := (w, vi)
ii. w := w − hikvi

(d) hj+1,k := ‖w‖2

(e) If hj+1,k �= 0, then set vj+1 := w/hj+1,k;
Else if t = 1, then Stop;
Else set t := t− 1 and continue.

The first step of the algorithm is to multiply a single vector, v1, by the Jacobian
matrix J and orthonormalize the resulting vector w against all j vectors v1, . . . , vj
(j = t at the first iteration) in the orthonormal basis, building the subspace one
vector at a time. Thus, a vector from the initial block {vi}i=1,...,t is multiplied by
J every t steps. Step 3(e) avoids a division by zero and is commonly referred to as
the breakdown condition. In the scalar case (t = 1), a breakdown condition indicates
that the solution is in the subspace spanned by the k basis vectors computed thus far.
Here in the block case, we modify the usual condition to reduce the block dimension
by one until it eventually reduces to the scalar case.

After m steps on the initial matrix V ∈ R
n×2 defined in (3.4), the block-Arnoldi

process produces an orthogonal matrix Vm+2 ∈ R
n×(m+2) and a matrix H̄m ∈ R

(m+2)×m

whose nonzero entries are the elements hik computed in the process. It is important to
note that H̄m is banded upper Hessenberg with two subdiagonals. The orthonormal
basis Vm+2 and the matrix H̄m have an important relationship,

JVm = Vm+2H̄m.(3.6)

Continuing with the solution to (3.1), let the approximate solution at the mth
iteration be

d = d0 + Vmy,(3.7)

where Vm ∈ R
n×m is an orthonormal basis for the Krylov subspace generated in (3.5)

and y ∈ R
m is unknown. Substituting (3.7) into the tensor model yields

MT (xk + d) = Fk + Jd + 1
2a(s

T d)2

= Fk + Jd0 + JVmy + 1
2a(s

T d0 + sTVmy)2

= r0 + JVmy + 1
2a(s

T d0 + sTVmy)2,(3.8)

where r0 = Fk +Jd0, which is also the residual for the Newton model when using the
initial guess d0. Having r0 permits the calculation of the approximate Newton step
later in the algorithm.

Let Q1 ∈ R
m×m be an orthogonal matrix that has V T

m s/
∥∥V T

m s
∥∥ in the last column,

and let the vector ŷ ∈ R
m be defined by the following transformation:

y = Q1ŷ.(3.9)
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Then, using Q1 and ŷ, the simplification of (3.8) continues:

MT (xk + d) = r0 + JVmy + 1
2a(s

T d0 + sTVmy)2

= r0 + JVmQ1ŷ + 1
2a(s

T d0 + (V T
m s)TQ1ŷ)

2

= r0 + JVmQ1ŷ + 1
2a(s

T d0 +
∥∥V T

m s
∥∥ ŷm)2,(3.10)

where ŷm is the mth element of ŷ and limits the quadratic part to a single unknown.
After the next step, we will discuss a good choice for efficiently constructing the
orthogonal matrix Q1 that retains a desirable structure for solving this problem.

From (3.3) and (3.4), let r̄1 ∈ R
m+2 and ā ∈ R

m+2 denote the first and second
columns of R, respectively, padded with m zeros to a length m+2. These definitions,
along with (3.6), permit a change in the function space of (3.10):

MT (xk + d) = r0 + JVmQ1ŷ + 1
2a(s

T d0 +
∥∥V T

m s
∥∥ ŷm)2

= r0 + Vm+2H̄mQ1ŷ + 1
2a(s

T d0 +
∥∥V T

m s
∥∥ ŷm)2

= Vm+2

(
r̄1 + H̄mQ1ŷ + 1

2 ā(s
T d0 +

∥∥V T
m s

∥∥ ŷm)2
)
.(3.11)

Because the column-vectors of Vm+2 are orthonormal, the original least-squares
problem of (3.1) may be simplified:

min
d∈Km

‖MT (xk + d)‖2 = min
d∈Km

∥∥V T
m+2MT (xk + d)

∥∥
2
,(3.12)

where

V T
m+2MT (xk + d) = r̄1 + H̄mQ1ŷ + 1

2 ā(s
T d0 +

∥∥V T
m s

∥∥ ŷm)2.(3.13)

At this point, we want to preserve some structure of the problem by requiring
that the product H̄mQ1 does not need expensive updates to transform it to upper
triangular form. In other words, we want the banded Hessenberg structure of H̄m to
be retained after multiplication with Q1, adding at most another subdiagonal. That
restriction may be accomplished with an orthonormal Q1 that is itself a Hessenberg
matrix. Efficiently constructing such an orthogonal matrix Q1 in this algorithm in-
volves some careful algebra, which we now discuss.

Let the orthonormal matrix Q1 be represented by an orthogonal matrix times a
diagonal scaling matrix:

Q1 = Q̂1D.

The diagonal scaling matrix has diagonal entries Dii = 1
‖Q̂1[:,i]‖

so that the columns

in Q1 have unit length. The last column in Q̂1 is the m-dimensional vector V T
m s, and

constructing an orthogonal Hessenberg matrix using this last column involves only
two updates on the mth iteration: the (m,m) and (m,m − 1) elements. We define
Q̂1 recursively:

Q̂1 =

(
Q̂1[1 : m− 1; 1 : m− 2] Q̂1[1 : m− 1;m− 1] V T

m−1s

0
−(V T

m−1s)
2

vT
ms

vTms

)
,(3.14)

where the initial Q̂1[1; 1] = vT1 s. The matrix Q1 may be represented by three vectors:
the mth column of Q̂1 holding V T

m s, the subdiagonal of Q̂1, and the entries in the
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diagonal scaling matrix. In addition, because only the two elements in the last row are
new on the mth iteration, the product H̄mQ1 has only two newly updated columns,
which can be computed in 2(m+1)+2 multiplications. Using a simple example with
m = 4, we may represent this graphically:

H̄mQ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

x x x �
x x x �
x x x �

x x �
x �

�

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
x x x x
x x x x

x x x
� �

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

x x (x + �) (x + �)
x x (x + �) (x + �)
x x (x + �) (x + �)
x x (x + �) (x + �)

x (x + �) (x + �)
� �

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where a � represents a new number on the mth iteration and an x represents a nonzero
from a previous iteration.

Given that the matrix H̄m has two subdiagonals and that the matrix product
H̄mQ1 has three subdiagonals, the structure of (3.13) is

V T
m+2MT (xk + d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � · · · � �
� � � � �
� � � � �
� � � � �

� � � �
� · · · � �

. . .
...

...
� �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ŷ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(sT d0 +
∥∥V T

m s
∥∥ ŷm)2.

Eliminating the subdiagonals of H̄mQ1 may be accomplished with a series of
Givens rotations or Householder reflections. Let Q2 ∈ R

(m+2)×(m+2) be the product
of all Givens rotations or Householder reflections applied to the system, and let the
variables r̃1, ã, and H̃m denote the following transformed vectors:

r̃1 ≡ Q2r̄1,(3.15)

ã ≡ Q2ā,(3.16)

H̃m ≡ Q2H̄mQ1.(3.17)

Using (3.15)–(3.17), we may premultiply (3.13) by Q2 as a step toward the least-
squares solution:

Q2V
T
m+2MT (xk + d) = r̃1 + H̃mŷ + 1

2 ã(s
T d0 +

∥∥V T
m s

∥∥ ŷm)2,(3.18)

which has the following structure:

Q2V
T
m+2MT (xk + d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�
�
...
�
�
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � · · · �
� � �

� · · · �
. . .

...
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ŷ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�
�
...
�
�
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(sT d0 +
∥∥V T

m s
∥∥ ŷm)2.
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This system has m+2 equations in m unknowns, and the last three rows are quadratic
equations in the variable ŷm.

By the orthonormality of Q2 and Vm+2, minimizing
∥∥Q2V

T
m+2MT (xk + d)

∥∥ is the
same as minimizing ‖MT (xk + d)‖. Thus, the solution to (3.1) involves minimizing
the last three rows of (3.18), which requires finding the optimum value for ŷm:

min
ŷm∈R

∥∥∥r̃1[m : m + 2] + H̃m[m : m + 2,m]ŷm + 1
2 ã[m : m + 2](sT d0 +

∥∥V T
m s

∥∥ ŷm)2
∥∥∥ .

(3.19)

Problem (3.19), which has a closed-form solution, involves minimizing a quartic
equation in a single unknown. The minimizers correspond to the critical points of
the quartic equation in the objective function of (3.19) are thus among the real roots
of a cubic equation found by differentiating the quartic equation with respect to ŷm.
Thus, (3.19) can have one or two minimizers, in which case we choose the minimizer
that makes β = (sT d0 + ‖s‖ ŷm) have smaller magnitude. This choice is not necessar-
ily the global minimizer of (3.19). Justification for choosing the smaller magnitude
minimizer comes both from the step itself and from considering the sequence of it-
erates. Choosing the smaller magnitude minimizer is consistent with the approach
used in direct tensor methods and results in the inexact tensor step being closer to
the inexact Newton step. Also, if we consider the sequence of values {βj} for the
first j iterations, then this sequence converges to a single number when choosing the
smaller magnitude minimizer. If we were to choose the global minimizer, then the
sequence {βj} could oscillate between two numbers, and thus the residual error would
not necessarily be monotonically decreasing (β enters into the residual calculation via
1
2aβ

2). Hence, the smaller magnitude minimizer has more theoretical appeal and is
used here.

As a simpler alternative for determining ŷm, we mention an approach that would
approximately minimize

∥∥Q2V
T
m+2MT (xk + d)

∥∥. Instead of solving a quartic equa-
tion, we solve the single quadratic equation in the mth row of (3.18), choosing the
root such that β = (sT d0 +

∥∥V T
m s

∥∥ ŷm) has smaller magnitude. If the equation does
not have a root, then we choose the value of ŷm that minimizes the quadratic equa-
tion. The difference between ŷm found in this manner and ŷm found by minimizing
(3.19) is usually negligible once the relative residual decreases by about two orders of
magnitude.

Once the minimizer ŷm is determined, the remaining elements of ŷ may be found
by computing a single right-hand side using the value ŷm and solving the resultant
(m− 1) × (m− 1) linear system found by neglecting the last 3 rows of (3.18).

At this stage, the vector ŷ contains the coefficients for the linear combination of
basis vectors {vi}. Thus, the approximate tensor step that solves (3.1) is

dT = d0 + VmQ1ŷ.

The decision for stopping the Arnoldi process so that the approximate step solves
the tensor model to a specified tolerance appears before the computation of the explicit
step, which is at an inconvenient location. GMRES has a similar dilemma but uses
an efficient approach in its least-squares solution. With GMRES, the least-squares
error ‖b−Ax‖2 is equal to the last element of Qe1 ‖b‖, where Q is the product of all
Givens rotations to transform the Hessenberg matrix to upper triangular form and
e1 is the unit vector (1, 0, 0, . . . )T . Similarly, the last 3 rows of (3.18) pertain to the
least-squares error of the local tensor model and may be used in stopping conditions.
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There are two possible implementations for computing a stopping condition in
these Krylov-based methods, and they are fundamentally similar. Both may be
checked without explicitly computing the approximate step dm after each step in
the Arnoldi process.

The practical stopping condition that is used in our numerical tests is similar to
GMRES in that it involves computing the norm of the remaining rows below the tri-
angular part of H̃m. That is, we neglect the contribution from the quadratic equation
in row m of (3.18) and only calculate the norm of the last two rows when computing
the least-squares error. This computation does not include any contribution from H̃m

because its last two rows contain only zeroes. Thus, the practical stopping condition
may be simplified to

∥∥∥r̃1[m + 1 : m + 2] + ã[m + 1 : m + 2]β̃2
m

∥∥∥ ≤ ηk ‖F (xk)‖2 ,(3.20)

where ηk is the relative stopping tolerance and the norm covers only the last two rows
of the vectors r̃3 and ã. We point out that (3.20) requires the computation of β̃m at
each iteration m. Calculating β̃m is an O(1) calculation using the first-order condition
for a minimizer of |q(β̃)|.

Another stopping condition, which is briefly mentioned here but covered in more
detail in [1], considers how close the residual norm at the approximate step dm comes
to the minimum residual norm at the exact step dT . In other words, the comparison
is

‖MT (xk + dm)‖ − ‖MT (xk + dT )‖ ≤ ηk ‖F (xk)‖ .(3.21)

A practical implementation of (3.21) is straightforward. The residual error ‖MT (xk + dm)‖
equals the minimum value calculated in (3.19), and the current estimate of ‖MT (xk + dT )‖
at the mth iteration equals the value of the quadratic equation on the mth row.

Of the two conditions, (3.20) is a more demanding test than (3.21), and an imple-
mentation using (3.20) may require more iterations before satisfying the same relative
tolerance.

Algorithm 3.2 describes the whole process for computing the approximate tensor
step dT . The algorithm is a basic implementation that progressively updates H̄m to
H̃m after each step in the Arnoldi process.

Algorithm 3.2. Block-2 Iterative Tensor Method.

1. Choose a relative residual tolerance η ∈ [0, 1) and maximum subspace dimen-
sion mmax.

2. Given the local tensor model MT (xk + d) = Fk + Jd + 1
2a(s

T d)2, previous
function value Fk−1, and initial guess d0, form the block of initial vectors

R0 = [(Jd0 + Fk), a], where a = 2(Fk−1−Fk−Js)
(sT s)2

and s = xk−1 − xk.

3. Perform a partial QR-factorization on R0 such that R0 = [v1, v2]R = V R.
4. For m = 1, 2, . . . ,mmax do:

(a) Let the two columns of R, appended with m zeroes to a length m + 2,
be labeled r̄1 and r̄2, respectively.

(b) Form the vector Jvm and orthogonalize it against the previous v1, . . . , vm+1
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vectors via the block Arnoldi process, Algorithm 3.1:

w := Jvm

hi,m := (w, vi), i = 1, 2, . . . ,m + 1

w := w −
m+1∑
i=1

hi,mvi

hm+2,m := ‖w‖2

vm+2 := w/hm+2,m.

(c) Define H̄m to be the (m+2)×m upper banded Hessenberg matrix whose
nonzero entries are the coefficients hij , 1 ≤ i ≤ m + 3, 1 ≤ j ≤ m, and
define Vm = [v1, v2, . . . , vm].

(d) Let Q1 ∈ R
m×m be an orthogonal Hessenberg matrix that has V T

m s/
∥∥V T

m s
∥∥

in the last column and be computed via (3.14), and let the vector ŷ ∈ R
m

be defined by the following transformation y = Q1ŷ.
(e) Let h̄m−1 and h̄m denote the two newly updated columns of the matrix-

matrix product H̄mQ1.
(f) Using Householder reflections, transform the (m + 2) ×m system r̄1 +

H̄mQ1ŷ+ 1
2 ā(s

T d0+
∥∥V T

m s
∥∥ ŷm)2 into r̃1+H̃mŷ+ 1

2 ã(s
T d0+

∥∥V T
m s

∥∥ ŷm)2,
which involves applying all previous reflections to h̄m−1 and h̄m, followed
by two new reflections to zero three elements in h̄m−1 and two elements
in h̄m. Apply these reflections to the vectors r̃1 and ã.

(g) Find the minimizer ŷm of (3.19) such that β = (sT d0 +
∥∥V T

m s
∥∥ ŷm) has

smaller magnitude and minimizes the least-squares error in (3.19).
(h) Let ρm represent the error estimate of solving the local tensor model.

Either set ρm equal to the norm of the last 2 rows of (3.18), or set ρm
equal to the norm of the last 3 rows of (3.18) minus the absolute value
of the mth row.

(i) If ρm ≤ η ‖Fk‖, then proceed to step 5 to calculate the approximate
step.

5. Form the approximate solution:
(a) Find the remaining m − 1 elements of the vector ŷ by solving the first

m− 1 rows of the linear system

H̃mŷ = −r̃1 − h̃mŷm − 1
2 ã(s

T d0 +
∥∥V T

m s
∥∥ ŷm)2,

where h̃m is the mth column of H̃mQ1.
(b) Form the approximate step dT = d0 + VmQ1ŷ.

Just as with the Newton-GMRES algorithm, Algorithm 3.2 may be implemented
matrix-free. Jacobian-vector products may be approximated by

J(x)v ≈ F (x + σv) − F (x)

σ
.

In addition, we may apply preconditioning to accelerate convergence of the iterative
methods. Consider a matrix M that approximates the current Jacobian J in some
manner and is simple enough to permit inexpensive solutions to linear systems of the
form Mx = b. Then, given M , the following left-preconditioned tensor model can be
formed and solved:

min
d∈Km

∥∥M−1Fk + M−1Jd + 1
2M

−1a(sT d)2
∥∥ .(3.22)
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The iterative tensor algorithms outlined above requires only minor modifications to
incorporate left preconditioning—replace the call to Jv with M−1Jv in the Arnoldi
process and premultiply all occurrences of Fk and a by M−1. A separate subroutine
that computes the action of M−1 times a vector is all that is needed.

Right preconditioning transforms the variable space. Given a preconditioner M ,
the following right-preconditioned tensor model can be formed and solved:

min
u∈Km

∥∥Fk + JM−1u + 1
2a(s

TM−1u)2
∥∥ ,(3.23)

where the approximate step d is found from the solution of Md = u. Once again,
the iterative tensor algorithm requires only minor modifications—replace the call to
Jv with JM−1v in the Arnoldi process and replace the starting vector s in R0 with
M−T s. If the matrix M−1 is not explicitly stored, then M−T s may be difficult to
compute. The algorithm may be modified to avoid this step, however.

Of the two forms, right preconditioning is mildly preferred over left precondi-
tioning because the norm of the residual ‖MT (xk + d)‖, which enters directly into
the stopping conditions, is unaffected with right preconditioning. In addition, right
preconditioning guarantees that the inexact Newton step is a descent direction on
the function, which is of paramount importance to a linesearch global strategy. With
left preconditioning (with either GMRES or the Krylov-based tensor methods), the
Newton step dN ∈ K is no longer guaranteed to be a descent direction on F (x), which
has dire consequences in linesearch global strategies because backtracking along a step
presupposes that the direction is a descent direction for eventual step acceptance. An
advantage of left preconditioning is that the relative residual reduction can be a better
indicator of true error reduction, thereby producing a more accurate step.

Scaling is of particular importance when solving systems of nonlinear equations,
as noted in [15], and is a subject that is closely related to preconditioning. We only
mention here that variable and function scaling is possible in the Krylov-based tensor
method and may be implemented in a manner similar to preconditioning. Often it is
desirable to scale the system on the left and precondition on the right to address the
issues above.

An important remark about Algorithm 3.2 is that the Newton model is carried
through the procedure, so the Newton step is calculated readily at the end of the
algorithm and permits greater flexibility with the global strategy. In a manner similar
to GMRES, we solve the linear least-squares problem

min
ŷ∈Rm

∥∥∥r̃1 + H̃mŷ
∥∥∥ ,

which involves a back substitution with the upper triangular matrix H̃m and right-
hand side −r̃1. Then the approximate Newton step is given by

dN = d0 + VmQ1ŷ.

Calculating the Newton step in addition to the tensor step adds a minimal cost. It
involves a back substitution (1

2m
2 multiplications), matrix-vector product (m2 mul-

tiplications), and a linear combination of basis vectors (nm multiplications), which is
the dominant cost.

The cost of Algorithm 3.2 is very similar to the cost of GMRES. The extra work
beyond GMRES involves the following:

1. Computation of one extra Jacobian-vector product to get a,
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2. Partial QR-factorization of the n × 2 matrix of initial vectors R0 (4n multi-
plications to get the second column of both Q and R),

3. Orthogonalization against one extra vector in the Gram–Schmidt process
(2nm multiplications),

4. Formation of an orthogonal Q1 (nm multiplications for V T
m s),

5. Computation of the new columns in the matrix-matrix product H̄mQ1 (m2

multiplications),
6. Orthogonal transformations involving Q2 to form H̃m (8m2 multiplications,

if using Householder reflections),
7. Matrix-vector multiplication Q1ŷ (m2 multiplications).

Thus, when considering only the leading terms, the total cost beyond GMRES is
4n + 3nm + 6m2 multiplications plus one Jacobian-vector product. The bulk of the
cost of GMRES is due to Gram–Schmidt orthogonalization in the Arnoldi process,
O(nm2), so the extra cost of the iterative Krylov-based tensor method is minor. This
method compares favorably with the tensor-GMRES of Feng and Pulliam, which
costs 5n+4nm+2m2 multiplications plus one extra Jacobian-vector product beyond
GMRES.

As a final remark, extending these methods to run in parallel should be straight-
forward. Because the tensor-Krylov method uses the same basic vector and matrix
operations as GMRES, we don’t expect any implementation issues.

3.2. Block-2+ method. It is conceivable that the block-2 method above could
generate a Krylov subspace for a step that minimizes (3.1) but does not include any
information in the direction s, thereby neglecting any contribution from the second-
order term 1

2a(s
T d)2. The aim of the the block-2+ method is to explicitly include

the direction s in the subspace so that the inner product sT d is fully captured in
the Krylov subspace while still working with a block of dimension two. Here we
only mention the discriminating feature of this method and refer to [1] or [2] for the
algorithmic details.

The problem that we are solving changes to finding the step d that solves the
minimization problem

min
d∈{s}∪Km

∥∥Fk + Jd + 1
2a(s

T d)2
∥∥

2
.(3.24)

The procedure is basically the same as the block-2 method in section 3.1 but with
some extra algebra and a special technique for augmenting the standard block-Krylov
subspace with the new direction s at each Arnoldi iteration. This approach contrasts
with the usual implementation of augmented Krylov subspace methods [10] and is
discussed in [1].

3.3. Block-3 method. The block-3 algorithm for solving (3.1) proceeds in a
block-Krylov-like fashion, operating on a matrix of three initial vectors instead of
the single residual r0 of a linear system. By choosing three vectors, we may include
information on the three known vectors in the local tensor model (s, a, and Fk) and
allow a transformation of the variable space and function space in a manner similar
to the method of orthogonal transformations of section 2.2. To that end, we consider
the block of initial vectors

R0 = [s, (Jd0 + Fk−1), (Jd0 + Fk)].(3.25)

The rationale for choosing these specific vectors is as follows. The vector s is listed
first in order to isolate the inner product sT d (via ‖s‖ vT1 d) and later create a single
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quadratic equation in a single unknown. The second vector is the residual involving
the previous function value Fk−1 and is needed for computing the tensor term a, (2.5).
The third vector is the residual of the Newton equations, and it may be placed as the
second or third column in R0. Collectively, these three vectors are chosen specifically
to compute the tensor term a later in the algorithm in addition to fully characterizing
the local tensor model (i.e., the three known vectors Fk, a, s) with this initial subspace.

The block-3 algorithm is procedurally different from the block-2 algorithm be-
cause it uses orthogonal transformations and permutation matrices to switch rows
and columns to isolate a quadratic equation in the mth row. After the block-Arnoldi
process adds a basis vector and an extra column to H̄m, we perform a series of plane
rotations to put the matrix H̄m in upper triangular form. In its current ordering,
the quadratic equation would not be isolated to a single variable in the first row and
should be switched to the mth row. So we permute the first row and column with
the mth row and column to facilitate an easier solution. After all of the orthog-
onal transformations and row/column permutations, the structure of the simplified
problem is

QPLV
T
m+3MT (xk + d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�
�
...
�
�
�
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � · · · �
� � �

� · · · �
. . .

...
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ŷ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�
�
...
�
�
�
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(sT d0 + ‖s‖ ŷm)2.

Otherwise, the block-3 algorithm is similar to the block-2 algorithm above.

3.4. Tensor-Krylov methods. With the introduction of the Krylov-based it-
erative methods for solving the local tensor model in sections 3.1–3.3, we return to
solving the general nonlinear equations problem (1.1). The following algorithm out-
lines the tensor-Krylov algorithm, which at every outer iteration calls a Krylov-based
iterative method for solving the local tensor model.

Algorithm 3.3. Tensor-Krylov Method.

1. Given the nonlinear equations problem F (x), choose a starting point x0 and
set the maximum iteration counter kmax.

2. For k = 0, 1, 2, . . . , kmax, do:
(a) Choose a forcing term tolerance ηk ∈ [0, 1).
(b) If k = 0, then calculate the Newton-GMRES step dN according to the

relative tolerance ηk and proceed to step 2e.
(c) Form the local tensor model MT (xk + d) = Fk + Jd + 1

2a(s
T d)2, where

Fk = F (xk), Fk−1 = F (xk−1), J = F ′(xk), s = xk−1 − xk, and a =
2(Fk−1−Fk−Js)

(sT s)2
.

(d) Compute the inexact tensor step dT according to the relative tolerance
ηk by approximately solving the local tensor model according to the
methods of sections 3.1, 3.2, or 3.3.

(e) Set xk+1 = xk + λd, where d and λ are chosen according to a linesearch
strategy that uses the directions dT and/or dN .

(f) If xk+1 is an acceptable approximation to a root of F (x), then stop and
signal a success.
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When referring to Algorithm 3.3 that uses a specific Krylov-based local solver in
step 2d as defined in sections 3.1, 3.2, or 3.3 (i.e., the block-2, block-2+, or block-3
methods), we will abbreviate the method as TK2, TK2+, and TK3, respectively.

The main advantage of this method over previous inexact tensor methods is that
the inexact tensor step dT satisfies the local tensor model to within the specified
tolerance ηk. The tensor-GMRES method, on the other hand, computes the solution
of a projected tensor model, which is missing second-order information in the direction
of s and may compute a less desirable step. The Bouaricha method [5] uses the exact
model, but the relationship ‖M(x + dT )‖ < ηk ‖Fk‖ is not guaranteed, thereby raising
the possibility of less accurate steps.

3.5. Global strategy and step selection. Algorithm 3.3 needs a robust strat-
egy for global convergence if neither the full tensor step nor Newton step is satisfactory
in step 2e. While step 2e uses a linesearch strategy, a trust region strategy is still
viable, albeit less straightforward. Here we discuss details regarding a linesearch
implementation in the tensor-Krylov method.

The standard tensor linesearch of [28] and the TENSOLVE linesearch of [5, 6] are
straightforward applications of backtracking along the tensor step, if it is a descent
direction, or otherwise along the Newton direction. The curvilinear linesearch imple-
mentation of [4] requires a little adaptation. Because the curvilinear linesearch for
tensor methods has posted encouraging results and has a nice theoretical basis, we
will focus primarily on this linesearch implementation in the tensor-Krylov algorithm.

The curvilinear step dT (λ) is the solution of the modified tensor model λF +Jd+
1
2a(s

T d)2, where λ is the linesearch parameter. Thus, in the tensor-Krylov algorithm,
the local tensor model is likewise changed and recomputed. Fortunately, the scalar
λ is carried through the process in a straightforward manner, irrespective of method,
as will now be discussed. For this discussion, we focus on the block-2 method in
Algorithm 3.2, but the procedure applies to the block-2+ and block-3 methods in the
obvious way. The only trick to this implementation involves the scaling of the initial
guess d0; all other aspects are intuitive.

The derivation involves changing the block of initial vectors in (3.3) to include λ
in the Newton residual,

R0 = [λ(Jd0 + Fk), a].(3.26)

The scalar λ follows through the steps of Algorithm 3.2 and changes (3.18) to

Q2V
T
m+2MT (xk + d) = λr̃1 + H̃mŷ + 1

2 ã(s
T d0 +

∥∥V T
m s

∥∥ ŷm)2,(3.27)

which only differs by λ multiplying r̃1. Up to this point in the algorithm, the presence
of λ does not require any new computations. To be more precise, the basis vectors
in V and the matrix H̃m are unchanged. The presence of λ in (3.27) does change the
calculation of the vector ŷm, and the corresponding change in (3.19) is

min
ŷm∈R

∥∥∥λr̃1 + H̃mŷ + 1
2 ã(s

T d0 +
∥∥V T

m s
∥∥ ŷm)2

∥∥∥ .
The remaining elements of ŷ are found by solving the triangular system with a right-
hand side modified by λ and the newly computed ŷm. Finally, the change in (3.26)
corresponds to scaling both Fk and d0 by λ, so the curvilinear step changes to

dT (λ) = λd0 + VmQ1ŷ,(3.28)
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where ŷ is also a function of λ, as noted above.
We reiterate that the scalar λ may multiply r̃1 after all orthogonal transforma-

tions, so the initial work in generating a Krylov basis and performing the subsequent
orthogonal transformations to calculate dT is not repeated for computing dT (λ). That
is, the matrix of basis vectors Vm used in (3.28) contains the same vectors from the
original computation of dT ; only the vector ŷ depends on λ.

The additional cost of the curvilinear linesearch per trial is an extra backsolve per
λ-value (an extra 1

2m
2 multiplications) plus a linear combination of basis vectors (nm

multiplications), which is the dominant cost. However, if using right preconditioning,
one application of the preconditioner must be used, which increases the cost further.
While these costs are more than in the other linesearches, they are probably still less
than the cost of evaluating F (x) and certainly less than the cost of evaluating J(x)
or the total cost of generating the Krylov subspace for the original computation of
dT . Alternative implementations that use other simplifications or approximations are
discussed in [1].

It should be noted that other large-scale tensor methods, such as the tensor-
GMRES method of Feng and Pulliam [18], could employ the curvilinear linesearch
even though these other methods have subtle differences in calculating an inexact
tensor step. This is because the curvilinear step is calculated from a simple scalar
multiplication of the function value in the local tensor model and may be carried
through the algebra of the step calculation to arrive at a parametric form of the
curvilinear step.

As a final note, it is unclear how best to employ the adaptive forcing terms of
Eisenstat and Walker [16] in the curvilinear linesearch or in tensor methods, in gen-
eral. The theory behind adaptive forcing is to reduce oversolving of the linear system,
especially when far from the nonlinear solution, which tends to prevent the approxi-
mate Newton step from being excessively long (e.g., if the Jacobian has small singular
values) or from being nearly orthogonal to the gradient of ‖F‖ (e.g., if the Jacobian
is ill-conditioned); see [31]. It is not clear how the same theory should be applied to a
tensor method. The simplified quadratic term augmenting the linear system provides
good directional information when dealing with ill-conditioned systems, so a more
accurate solution provides a qualitatively better step than the Newton step. On the
other hand, we also wish to avoid oversolving the tensor model when possible, which
argues for a larger ηk. Thus, appropriate forcing terms for tensor methods, or perhaps
just more reasonable safeguards, are still open questions at this stage.

4. Computational results and discussion. This section describes numeri-
cal tests aimed at comparing the tensor-Krylov methods with Newton-GMRES and
tensor-GMRES [18]. Other numerical tests may be found in [1], and results on several
ill-conditioned problems are included in [3].

4.1. Test results for the Chan problem. To first highlight some basic dif-
ferences among the various classes of methods with a numerical example, we present
results of solving a simplified model of combustion phenomena using Matlab imple-
mentations. The problem is an elliptic PDE considered by Chan [9] that has multiple
turning points and is given by

Δu + λ

(
1 +

u + u2/2

1 + u2/100

)
= 0 in Ω, u = 0 on ∂Ω,(4.1)

where Δ is the Laplace operator, λ ∈ R is a parameter, Ω is the domain [0, 1]× [0, 1],
and ∂Ω is the boundary of Ω. For our tests, we set λ = 7.978735, which is very close
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Fig. 4.1. Iteration histories on the Chan problem with and without preconditioning.

to a turning point in the problem. We used a centered differences discretization with
31 × 31 uniformly spaced grid points and started from the zero vector. We used the
Laplacian as our preconditioner and used a constant forcing term of ηk = 10−4. All
methods converged to the same point.

Figure 4.1 presents the iteration history of all methods when solving with no
preconditioning and with left preconditioning. Both plots show that Newton-GMRES
has a long stretch of linear convergence rate due to the nearly singular Jacobian at the
solution. The three tensor-Krylov methods have roughly the same quality of steps (as
evidenced by their nearly identical trajectories). Tensor-GMRES does not share the
same trajectory as the tensor-Krylov methods, which indicates that the projection of
the tensor term in (2.10) loses some critical directional information. Similar numerical
behavior is observed for different starting points, preconditioners, and/or values of the
forcing term ηk on this problem, indicating that tensor-GMRES has some inherent
difficulty with this type of problem.

4.2. Test results on fluid flow benchmark problems. For a broader com-
parison, we consider a couple of CFD benchmark problems described in [30] that are
used for verification of fluid flow codes and solution algorithms: the 2D backward-
facing step problem and the 2D and 3D thermal convection problem.

We implemented the algorithms in a software package called NOX [19], which
is a C++ object-oriented nonlinear solver package being developed at Sandia Na-
tional Laboratories. For objective comparisons, all of the methods, including Newton-
GMRES and tensor-GMRES, used the same Arnoldi process (modified Gram–Schmidt)
as the tensor-Krylov methods. That choice granted us more control over the algo-
rithm and assured us of a controlled experiment. Thus, the results in this section do
not reflect the most efficient and optimized implementations available.

We set up the numerical experiments to closely correspond to those in [30], using
many of the same conditions and parameters. A successful termination was declared
when both of the following stopping conditions were satisfied:

‖F (xk)‖ ≤ εF ‖F (x0)‖(4.2)

and

1√
n
‖Wdk‖ < 1,(4.3)
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where n is the total number of unknowns, dk is the full Newton or tensor step, and
W is a diagonal scaling matrix with entries

Wii =
1

εr |xki | + εa
,

in which xki is the ith element of the current solution xk. We used the same param-
eters as in [30]: εF = 10−2, εr = 10−3, and εa = 10−8.

In practice, the step length criterion (4.3) is more stringent than (4.2) and is
necessary to resolve finer details of the fluid flow and transport by requiring that each
ith element of the Newton or tensor step be small relative to its current value xki .
All successful runs, except for two noted in section 4.2.1, satisfied (4.2) with at least
εF = 10−8 and converged to the same solution. The last several iterations in each
run were needed to satisfy (4.3).

If the test problem required more than 200 nonlinear (outer) iterations or if
there was a linesearch failure (i.e., f(xc + λd) ≤ f(xc) + αλ∇f(xc)

T d, where f(x) ≡
1
2 ‖F (x)‖2 and α = 10−4, could not be satisfied with λ > 10−12 in at most 40 back-
tracks), then we declared a failure for the run.

The tests in [30] used a variety of forcing terms, particularly the adaptive forcing
terms of Eisenstat and Walker [16]. As mentioned in section 3.5, more research is
needed to determine how best to apply adaptive forcing terms to tensor methods.
Consequently, we have used a constant forcing term of ηk = 10−4 in the 2D problems
and ηk = 10−2 in the 3D problem. As in [30], we allowed the local solver (i.e.,
GMRES or its tensor-Krylov equivalent) a restart value of 200 with a maximum of
600 total iterations. If the local solver did not satisfy the desired tolerance within
the 600 iterations, then we used the step computed thus far and tested for step
acceptance with our global strategies. Restarting became more of an issue as the
problem difficulty increased.

We used an explicit Jacobian, which our PDE code computed efficiently by a
combination of analytic evaluation and numerical differentiation, and enabled the
option for maximum accuracy in the Jacobian. We employed right preconditioning in
all cases using an ILUT preconditioner [24], and we performed no variable or function
scaling in the problems. The initial approximation was the zero vector for all cases.

We used a standard backtracking linesearch procedure for Newton-GMRES and
used the complete tensor-GMRES algorithm in [18], including their globalization. For
the tensor-Krylov methods, we used the curvilinear linesearch due to favorable theo-
retical and performance considerations in [4]. For selecting the linesearch parameter
at each trial step, we used the λ-halving procedure (dividing λ by two at each inner
iteration). Quadratic backtracking was an option, but it generally required more it-
erations and function evaluations than λ-halving across all methods in preliminary
tests on these problems, so it was not used.

All tests were performed on a dual 3GHz Pentium Xeon desktop computer with
2GB of RAM, which was more than sufficient for these problems. However, the
computer was not dedicated to these tests, so the timing statistics provided are only
approximate and could be off by 10 percent or more relative to each other.

The fluid flow problems are set up using a particular spatial discretization of
the governing steady-state transport equations for momentum and heat transfer in
flowing fluids. These governing PDEs are given below. The unknown quantities in
these equations are the fluid velocity vector (u), the hydrodynamic pressure (P ), and
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the temperature (T ).

Conservation of mass: ∇ · u = 0(4.4)

Momentum transport: ρ u · ∇u −∇ · T − ρg = 0(4.5)

Energy transport: ρCpu · ∇T + ∇ · q = 0(4.6)

In these equations, g is the gravity vector, and ρ and Cp are the density and specific
heat at constant pressure of the bulk fluid, respectively. The constitutive equations
for the stress tensor T and heat flux q are

T = −P I + μ(∇u + ∇uT ),

q = −κ∇T,

where μ is the dynamic viscosity and κ is the thermal conductivity of the fluid.
The particular spatial discretization of (4.4)–(4.6) that we use is from a finite

element reacting flow code called MPSalsa [27] developed at Sandia National Labo-
ratories. MPSalsa generates an algebraic system of equations by a pressure-stabilized
Petrov–Galerkin finite element formulation of the low Mach number Navier–Stokes
equations with heat transport. This scheme uses equal-order interpolation of velocity
and pressure, and we enabled the option for streamline upwinding to limit oscilla-
tions due to high grid Reynolds numbers. Since the publication of [30], the pressure-
stabilized streamline upwinding Petrov–Galerkin formulation in MPSalsa has been
changed to a Galerkin least squares–type method [29]. This stabilization method is
slightly less dissipative, and the nonlinear convergence behavior for difficult problems
can be less robust at higher Reynolds numbers. Consequently, this change precludes
direct comparisons with results in [30].

To complete a problem’s specification, boundary conditions are imposed on the
governing PDEs, which we discuss in the subsections that follow. The problems differ
only in their boundary conditions and in whether they use (4.4)–(4.6) or only (4.4)–
(4.5). The next three subsections describe the test problems and their results.

4.2.1. Backward-facing step problem. This problem consists of a rectangu-
lar channel with a 1× 30 aspect ratio in which a reentrant backward-facing step (i.e.,
a sudden expansion in the channel width) is simulated by injecting fluid with a fully
developed parabolic velocity profile in the upper half of the inlet boundary and impos-
ing a zero velocity on the lower half. The channel geometry and flowing fluid produce
recirculation zones beneath the entering flow on the lower wall and, for sufficiently
fast flow, farther downstream on the upper wall. This problem requires the solution
of (4.4)–(4.5) on the unit square with the following Dirichlet boundary conditions:

u = 24y( 1
2 − y)U0x̂ at x = 0, 0 ≤ y ≤ 1

2 ,

u = 0 at x = 0, − 1
2 ≤ y < 0,

u = 0 at y = − 1
2 ,

1
2 ,

Txx = Txy = 0 at x = 30,

where x̂ is the unit vector in the x-direction. Once the governing equations and bound-
ary conditions are nondimensionalized, the Reynolds number (Re) appears, which is
a measure of inertial forces to viscous forces. In our experiments, we increased the
Reynolds number up to 800, which increases the nonlinear inertial terms in the mo-
mentum equation and makes the solution more difficult to obtain. Beyond Re = 800,
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it is not clear that the problem is stable and admits a physical solution. All solutions
for this problem were computed on a 20 × 400 unequally spaced mesh, which has
25,263 unknowns.
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Fig. 4.2. Results of the backward-facing step problem for the following methods: Newton-
GMRES (◦, dashed line), tensor-GMRES (�, dash-dotted line), TK2 (×, solid line), TK2+ (+,
solid line), and TK3 (�, solid line).

The plots in Figure 4.2 show that all of the methods require about 10–12 iter-
ations, on average, to solve, with Newton-GMRES requiring considerably more it-
erations in some cases. Newton’s method tended to be more erratic, having slight
difficulty at Re = 300 and 400, improvements at Re = 500 and 600, and then more
difficulty on the three hardest problems. The two Newton solutions at Re = 700 and
750 actually converged to a local minimizer of the linesearch merit function yet still
satisfied the relative residual reduction criterion of 10−2. If εF in (4.2) were 10−3,
then these two runs would have been linesearch failures.

All of the tensor-Krylov methods share almost the exact same level of performance
in terms of nonlinear iterations. Tensor-GMRES requires slightly more nonlinear
iterations than the tensor-Krylov methods, but its local solve with GMRES is more
efficient. Thus, for this problem, tensor-GMRES is more efficient than the tensor-
Krylov methods by a small margin, and TK2 and TK2+ are more efficient than TK3
by about the same amount. There appears to be no distinct difference between TK2
and TK2+.

4.2.2. Thermal convection problem. This problem consists of the thermal
convection (or buoyancy-driven) flow of a fluid in a differentially heated square cavity
in the presence of gravity. It requires the solution of (4.4)–(4.6) on the unit square
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with the following Dirichlet and Neumann boundary conditions:

T = Tcold, u = 0 at x = 0,(4.7)

T = Thot, u = 0 at x = 1,(4.8)

∂T

∂y
= 0, u = 0 at y = 0, 1.(4.9)

Once the governing equations and boundary conditions are nondimensionalized, two
parameters appear: the Prandtl number (Pr) and the Rayleigh number (Ra). In our
experiments, we fixed Pr = 1 and increased the Rayleigh number from Ra = 104 up
to 2×107, which increases the nonlinear effects of the convection terms and makes the
solution more difficult to obtain. The range in [30] is Ra = 103 to 106, but we shifted
the range to explore the effectiveness of tensor methods on more difficult problems.
We used a 100 × 100 equally spaced mesh, which has 40,804 unknowns. On this
size mesh, it is unclear whether the choice of Ra > 106 admits a physically accurate
and/or stable solution, but we are interested only in the relative performance of the
numerical methods on this problem, which remain valid comparisons.

Figure 4.3 shows the overall performance of the methods on this problem. While
difficult to see, Newton-GMRES performs a little better than the other methods on
the easiest problem difficulties (Ra ≤ 105). Yet as the Rayleigh number increases,
Newton-GMRES requires increasingly more work to solve the problems. For Ra ≥
107, Newton-GMRES fails to solve the problem in 200 iterations. Thus, the trend
for Newton-GMRES is a clear degradation in performance as the problem becomes
more difficult to solve. In contrast, the tensor-Krylov methods with the curvilinear
linesearch are much less affected by the transition and see a much smaller increase in
execution time. Results of the tensor-Krylov methods with the old standard tensor
linesearch (not shown) are less impressive but are still better than Newton-GMRES
and tensor-GMRES on the harder problems.

Among the tensor-Krylov methods, TK2 is virtually identical to TK2+ in terms
of nonlinear iterations, Arnoldi iterations, and execution time. Both are more efficient
than TK3, which required more Arnoldi iterations at all Rayleigh numbers. This was
due in part to restarts of the TK3 method. At Ra ≥ 3 × 106, restarts contributed to
an increasing number of Arnoldi iterations for TK3. For both TK2 and TK2+, the
local model was solved in less than 200 Arnoldi iterations.

Tensor-GMRES only does well on this problem at the easier difficulties (Ra ≤ 105)
due to fewer nonlinear iterations and an efficient use of GMRES. However, tensor-
GMRES is unable to solve the most difficult problems in 200 nonlinear iterations or
less at Ra > 5× 106, whereas all tensor-Krylov methods are able to solve the hardest
problems. Even when employing the standard linesearch, the tensor-Krylov methods
can solve up to Ra = 107 but fail on the hardest problem at Ra = 2 × 107.

4.2.3. 3D Thermal convection problem. This final problem uses slightly
different test conditions to help assess the applicability for very large problems. The
3D version of this problem has the same boundary conditions as (4.7)–(4.9) but with
an additional boundary condition in 3D

∂T

∂z
= 0, u = 0 at z = 0, 1.(4.10)

All solutions were computed on a 32×32×32 equally spaced grid, resulting in 179,685
unknowns for the discretized problem. To force more restarts, we reduced the restart
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Fig. 4.3. 2D Thermal convection problem results for the following methods: Newton-GMRES
(◦, dashed line), tensor-GMRES (�, dash-dotted line), TK2 (×, solid line), TK2+ (+, solid line),
and TK3 (�, solid line). Only results for the successful runs are included in the bottom two plots.

value to 75 and allowed a maximum of 225 total iterations. The quality of the precon-
ditioner did not permit a restart value much less than 75 across all problem difficulties
in this experiment.

Figure 4.4 shows the results for this problem. As the Rayleigh number increases,
restarts become increasingly more important, and all methods start to suffer, espe-
cially the tensor methods. Without restarts, the results for all methods more closely
resemble the 2D results in Figure 4.3. Up until about Ra = 6× 106, Newton-GMRES
is the best method. At Ra = 107, TK2 and TK2+ outperform Newton-GMRES,
but at harder difficulties, they produce less accurate steps and fail to solve in 200
nonlinear iterations. TK3 is adversely affected by restarts from the beginning.

Here, TK2 and TK2+ are better at restarting than TK3. We believe this is
because in a single restart cycle, the block-2 methods have a polynomial expansion of
the block-Krylov subspace that contains higher orders of the Jacobian matrix. That
is, after m Arnoldi iterations, the block-2 methods have terms in the Krylov subspace
up to J

m
2 −1, whereas the block-3 method has terms up to J

m
3 −1. For comparison,

GMRES includes terms up to Jm−1.

Figure 4.4 also shows some evidence that tensor-GMRES loses effectiveness when
restarting. A smaller subspace provides less information in the projection of the tensor
term (i.e., Pa(sT d)2) as well as including a smaller basis for solving the minimization
problem in (2.10), where Pa(sT d)2 acts as another right-hand side but the Krylov
subspace generated by GMRES starts with the residual Fk + Jkd0.

Other numerical tests investigating restarts that were performed in [1] support
these findings. In addition, the tensor-Krylov methods tended to stall more frequently
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Fig. 4.4. 3D Thermal convection problem results for the following methods: Newton-GMRES
(◦, dashed line), tensor-GMRES (�, dash-dotted line), TK2 (×, solid line), TK2+ (+, solid line),
and TK3 (�, solid line). Only results for the successful runs are included in the bottom two plots.

than restarted GMRES. That is, restarting the method did not always appreciably
improve the step after another m iterations. This behavior may be attributed to the
block-Krylov style of the Arnoldi process, which retains a constant vector in R0 at
each restart (i.e., s and/or a, depending upon the algorithm), keeping part of the
subspace unchanged. Restarts rely on a new and different subspace to make progress.

5. Summary and conclusions. The main objective of this research was to
combine approaches based on direct tensor methods and Krylov subspace methods
into an effective large-scale nonlinear equations solver. We developed three Krylov-
based methods for iteratively solving the local tensor model, and we incorporated these
three local solvers into an inexact nonlinear solver framework for different versions of a
“tensor-Krylov” method, which we denoted TK2, TK2+, and TK3. The new tensor-
Krylov methods are especially effective at solving large-scale problems that possess
Jacobians at the solution that are highly ill-conditioned or singular. Algorithms based
on Newton’s method exhibit very slow convergence on such problems.

The new methods proposed in this paper solve the local tensor model in a novel
fashion. Their costs per iteration are similar to GMRES, requiring only one Jacobian-
vector product at each iteration and O(nm) additional arithmetic operations beyond
GMRES per solve. Relative to previous iterative tensor methods, they are the only
methods that produce an approximate tensor step that solves the local tensor model to
within a specified accuracy. In addition, these methods can compute an exact solution
to the tensor model in at most n iterations (in exact arithmetic). The new tensor-
Krylov methods can also utilize much of the technology developed for Newton-Krylov
methods, including preconditioning and restarting.
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Our numerical results suggest that the new tensor-Krylov methods clearly have
some advantages over Newton-GMRES, especially as the problem becomes more dif-
ficult to solve or more ill-conditioned. In addition, the tensor-Krylov methods have
some potential advantages over tensor-GMRES that make them likely to be bene-
ficial on some important problems. Overall, tensor-GMRES and the tensor-Krylov
methods are fairly similar—sometimes tensor-GMRES is better due to its efficient use
of restarted GMRES(m), and sometimes tensor-Krylov methods are better due to a
more accurate tensor step.

There are many different research questions at this point to explore. We mention
four future extensions here. First, adaptive forcing terms like the form by Eisenstat
and Walker [16] may help improve robustness. Second, an improved restart strat-
egy may be necessary for some difficult problems, as witnessed with the 3D thermal
convection problem results. One alternative to restarting is incomplete orthogonal-
ization [7, 23], which would require modifications to the algorithms but may be a
better strategy for coping with difficult problems. Third, changing the current scalar
implementation of the block-Arnoldi method to a true block implementation (i.e.,
simultaneously multiplying a block of vectors by the Jacobian) may improve memory
efficiency and make the tensor-Krylov methods even more economical and attractive.
Fourth, the current tensor-Krylov and tensor-GMRES implementations need to ma-
nipulate data structures that are inaccessible in many linear solver packages, so we
would like to simplify these methods and investigate better ways to incorporate stand-
alone linear algebra packages. These changes would make the methods possibly more
efficient, more robust, and more accessible than their current implementations.
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and the anonymous referee for their constructive comments in the review process that
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Abstract. We show how interval arithmetic can be used in connection with Borsuk’s theorem
to computationally prove the existence of a solution of a system of nonlinear equations. It turns out
that this new test, which can be checked computationally in several different ways, is more general
than an existing test based on Miranda’s theorem in the sense that it is successful for a larger set of
situations. A numerical example is included.

Key words. nonlinear systems, Miranda’s existence theorem, Borsuk’s theorem, computational
verification, interval analysis

AMS subject classifications. 47H10, 65G20, 65G40, 65H10

DOI. 10.1137/S0036142903438148

1. Introduction. One of the most common problems in numerical analysis is
to find a zero x∗ of a nonlinear mapping

f : D ⊆ R
n → R

n, x �→ (f1(x), . . . , fn(x)).

Any numerical method will usually only deliver an approximation x0 to x∗, i.e., f(x0)
will be fairly small, but not equal to zero. The question therefore arises whether there
really exists an “exact” zero x∗ of f in a (sufficiently small) neighborhood of x0 and
whether there is a computational method to obtain such a neighborhood. Among
the most successful such methods are Moore’s existence test [11] and an existence
test based on Miranda’s theorem [12]. Both these tests rely on the use of interval
arithmetic. We assume that the reader is familiar with the basics of interval arithmetic
as described in [2], for example.

To fix our notation let us use square brackets to denote interval quantities. So
IR = {[a] = [a, a] : a ≤ a} is the space of all (compact) intervals, [x] = ([x1], . . . , [xn])T

with [xi] = [xi, xi] ∈ IR is an interval vector, and, similarly, [A] = ([aij ]) is an interval
matrix. Given [a] = [a, a] ∈ IR, it will sometimes be useful to denote the bounds of
[a] in a different way as

a = inf[a], a = sup[a].

For any interval [a], let

mid[a] =
a + a

2

denote its midpoint; this is similar for interval vectors and interval matrices.
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Assume now that for a given interval vector [x] and a fixed x̂ ∈ [x] we know an
interval matrix (slope matrix ) [Y ] such that

f(x) − f(x̂) ∈ [Y ] · (x − x̂) for all x ∈ [x];(1.1)

i.e., for each x ∈ [x] there is a matrix Yx ∈ [Y ] such that

f(x) − f(x̂) = Yx · (x − x̂).

If f is (Fréchet-)differentiable, [Y ] could be taken to be the interval hull �Df of
the set Df = {f ′(z) : z ∈ [x]}, i.e., the intersection of all interval matrices containing
Df . In a more constructive manner, if f ′(x) admits an interval arithmetic evaluation
f ′([x]) in the sense of [2], we can take [Y ] = f ′([x]) ⊇ �Df .

Now, let A ∈ R
n×n be some nonsingular matrix. Then Moore’s existence test

means checking the inclusion (1.2) given in the following theorem.
Theorem 1.1. Let x̂ ∈ [x] and assume that

[x]1 := x̂ −Af(x̂) + (I −A[Y ])([x] − x̂) ⊆ [x].(1.2)

Then [x]1 contains a zero x∗ of f .
This theorem dates back to [11]. It follows from the fact that, due to the inclusion

property of interval arithmetic, the interval vector [x]1 contains the range of the
continuous function x − Af(x) = x̂ − A · f(x̂) + (x − x̂) − A · (f(x) − f(x̂)) = x̂ −
Af(x̂) + (I −AYx)(x− x̂) for x ∈ [x]. By Brouwer’s theorem, this function therefore
has a fixed point which is a zero of f . Often A is taken as (an approximation to) the
inverse of f ′(mid[x]).

The Miranda existence test is based on Miranda’s existence theorem [10], which
generalizes the intermediate value theorem to higher dimensions. The key idea is to
consider the signs of components of f on opposite facets of an interval vector [x]. Let
us denote these facets by [x]i,+, [x]i,−, i.e.,

[x]i,+ = ([x1], . . . , [xi−1], xi, [xi+1], . . . , [xn])T ,
[x]i,− = ([x1], . . . , [xi−1], xi, [xi+1], . . . , [xn])T

}
i = 1, . . . , n.

Miranda’s existence theorem reads as follows.
Theorem 1.2. Assume that f : [x] ⊆ R

n → R
n is continuous and that

fi(x) ≥ 0 for x ∈ [x]i,+, fi(x) ≤ 0 for x ∈ [x]i,−, i = 1, . . . , n.(1.3)

Then [x] contains a zero x∗ of f .
Miranda’s theorem essentially requires that each component fi is of constant and

opposite sign on the opposite faces [x]i,±. In practice, the theorem is not applied
to the function f under consideration but to a preconditioned (affinely transformed)
function g : [x] → R

n, where

g(x) = A · f(x).

Again, A denotes some nonsingular matrix, and often A is taken as an approximation
to the inverse of f ′(mid[x]).

Let Rg(gi, [z]) denote the range of gi over some interval vector [z]. The continuity
of gi implies that Rg(gi, [z]) is an interval. Then, verifying (1.3) for the function g is
equivalent to checking, for each i ∈ {1, . . . , n}, the conditions

sup Rg(gi, [x]i,−) ≤ 0 ≤ inf Rg(gi, [x]i,+).(1.4)
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There are several ways to use interval arithmetic for enclosing the ranges in (1.4)
into intervals [m]i,±.

Naive: In a naive implementation, the exact ranges are replaced with the interval
arithmetic evaluations of the functions over the facets,

[mN]i,± := gi([x]i,±).

Centered: A more sophisticated technique is due to Moore and Kioustelidis [12].
It works as follows: As before, let x̂ ∈ [x] and let [Y ] be a slope matrix
fulfilling (1.1). Since

g(x) − g(x̂) = A · (f(x) − f(x̂))

= (A · Yx) · (x − x̂),

A · [Y ] is a slope matrix for g, and therefore we have, for i = 1, . . . , n,

Rg(gi, [x]i,±) ⊆ gi(x̂) + (A · [Y ])i · ([x]i,± − x̂) =: [mC]i,±,

where (· · · )i denotes the ith row of a matrix.
Facet-centered: Similar to [12], suppose now that for each facet [x]i,± a point

x̂i,± ∈ [x]i,± is given and an interval row vector (slope vector) [y]i,± is known
such that

gi(x) − gi(x̂
i,±) ∈ [y]i,± · (x − x̂i,±) for all x ∈ [x]i,±.(1.5)

For example, x̂i,± might be the midpoint of the facet [x]i,±, and [y]i,+ and
[y]i,− might be taken as the ith row of A · f ′([x]i,±) or A · f ′([x]). Of course,
other choices are also possible. Then, for i = 1, . . . , n,

Rg(gi, [x]i,±) ⊆ gi(x̂
i,±) + [y]i,± · ([x]i,± − x̂i,±) =: [mF]i,±.

(Note that in the original paper [12], x̂ and x̂i,± are assumed to be the midpoints
of [x] and [x]i,±, respectively, and that [Y ] and [y]i,± are enclosures for the derivatives
f ′ over [x] and of g′i over [x]i,±, respectively. These requirements can be relaxed as
formulated above.) The resulting computational tests are summarized in the following
definition.

Definition 1.3. The term Miranda test means checking, for each i ∈ {1, . . . , n},
one of the conditions

sup[mN]i,− ≤ 0 ≤ inf[mN]i,+ ,(1.6a)

sup[mC]i,− ≤ 0 ≤ inf[mC]i,+ ,(1.6b)

sup[mF]i,− ≤ 0 ≤ inf[mF]i,+ .(1.6c)

Note that we do not require the same condition to be checked for all i.
By the inclusion property of interval arithmetic we know that each of the condi-

tions (1.6a)–(1.6c) implies (1.4). So g and therefore f has a zero x∗ in [x].
The question of how the Miranda criterion compares to the Moore criterion was

raised in [3] and settled in [14, 8]. Indeed in [8] the Miranda test was shown to be
more powerful than the Moore test in the sense that if (1.2) holds for some [x], x̂,
[Y ], and A then (1.6b) also holds for i = 1, . . . , n with the same [x], x̂, [Y ], and A.
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As a further result in this direction we now show that, at the cost of some additional
function evaluations, formulation (1.6c) of the Miranda test is more powerful than
(1.6b).

Theorem 1.4. If (1.6b) is satisfied for some i, [x], x̂, [Y ] and A, then with the
same i, [x] and A also (1.6c) holds true provided that we choose x̂i,± as the orthogonal
projection of x̂ onto the facet [x]i,±,

x̂i,± = (x̂1, . . . , x̂i−1, [xi]
i,±, x̂i+1, . . . , x̂n)

and that [y]i,± is a subset of the ith row of A · [Y ].
Proof. First note that the [xi]

i,± are point intervals, [xi]
i,+ = sup[xi], and

[xi]
i,− = inf[xi]. Since

x̂i,± − x̂ = (0, . . . , 0, [xi]
i,± − x̂i, 0, . . . , 0)T and

[x]i,± − x̂i,± = ([x1]
i,± − x̂1, . . . , [xi−1]

i,± − x̂i−1, 0,

[xi+1]
i,± − x̂i+1, . . . , [xn]i,± − x̂n)T ,

by the definition of [Y ] we have

gi(x̂
i,±) ∈ gi(x̂) + (A[Y ])i · (x̂i,± − x̂)

= gi(x̂) + (A[Y ])ii · ([xi]
i,± − x̂i) ,

and therefore, making use of [y]i,± ⊆ (A · [Y ])i,

[mF]i,± = gi(x̂
i,±) + [y]i,± · ([x]i,± − x̂i,±)

⊆ gi(x̂
i,±) +

∑
� �=i

(A[Y ])i� · ([x�]
i,± − x̂�)

⊆ gi(x̂) + (A[Y ])ii · ([xi]
i,± − x̂i) +

∑
� �=i

(A[Y ])i� · ([x�]
i,± − x̂�)

= gi(x̂) + (A[Y ])i · ([x]i,± − x̂)

= [mC]i,± .

Thus, (1.6b) implies (1.6c).
Note. (i) The compatibility condition [y]i,± ⊆ (A · [Y ])i for the slopes is not

a triviality since [Y ] contains slopes relative to the point x̂, whereas the slopes in
[y]i,± are relative to the point x̂i,±. The condition is, however, certainly fulfilled
for two simple choices, [Y ] = f ′([x]) and [y]i,± = (A · [Y ])i, or [Y ] = f ′([x]) and
[y]i,± = (A · f ′([x]i,±))i.

(ii) If x̂ is the midpoint of [x], then the orthogonal projections x̂i,± are the
midpoints of the respective facets.

Another fixed point test, which will not be discussed further in the present paper,
is based on Kantorovich’s theorem. As pointed out in [1], Kantorovich’s theorem is
weaker than Borsuk’s in the sense that the prerequisites of Kantorovich’s theorem
being fulfilled implies those of Borsuk’s theorem to be fulfilled, too. Note that the
cited paper ranks different fixed point theorems with respect to their strength without
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Fig. 2.1. Illustration of Borsuk’s theorem. In the left picture, there is a pair of opposite points
on ∂Ω such that f points in the same direction, i.e., condition (2.1) is not fulfilled. By contrast,
there is no such pair of points in the right picture, and therefore Borsuk’s theorem guarantees the
existence of a zero in this case.

addressing the issue of their implementation in computational tests. Concerning such
tests, [13] concludes that a computational test based on Kantorovich’s theorem is not
much stronger, but significantly more costly, than the Moore test.

2. Tests based on Borsuk’s theorem. Let Ω ⊆ R
n be an open, bounded,

convex set that is symmetric with respect to its center x0, i.e., x0+y ∈ Ω iff x0−y ∈ Ω.
Then Borsuk’s theorem [6, 7] can be formulated as follows.

Theorem 2.1. Assume that f : Ω → R
n is continuous and that for all x =

x0 + y ∈ ∂Ω, the topological boundary of Ω, we have

f(x0 + y) 	= λf(x0 − y) for all λ > 0.(2.1)

Then f has a zero in Ω.
This theorem can in particular be applied in the case when Ω = [x] is an interval

vector; cf. Figure 2.1.
Similarly to the Miranda existence test, we now derive three range-based criteria

for (2.1). Later on we will show how these criteria can be checked computationally
using interval arithmetic. Note that the boundary of [x] is given by the facets [x]i,±

defined before, and x0 + y ∈ [x]i,+ iff x0 − y ∈ [x]i,−. We again consider the precon-
ditioned function g(x) = A · f(x), x ∈ [x], with a nonsingular matrix A, and for easier
exposition we assume that f (and therefore g) has no zero on ∂[x], the boundary
of [x].

First we note that, for any vectors u,v 	= 0, the Cauchy–Schwarz inequality
yields

−1 ≤ 〈u,v 〉
‖u‖ · ‖v‖ ≤ +1,

the value +1 being attained iff u and v are collinear and point into the same direction.
Thus, condition (2.1) from Borsuk’s theorem is equivalent to

sup Rg(σ, [x]i,+) < 1(2.2)
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being fulfilled for each i ∈ {1, . . . , n}, where for x0 + y ∈ [x]i,+ we define

σ(x0 + y) =

〈
g(x0 + y),g(x0 − y)

〉
‖g(x0 + y)‖ · ‖g(x0 − y)‖ .(2.3)

So one criterion is (2.2) to be fulfilled for i = 1, . . . , n.
To derive the remaining two (sufficient) range-based criteria, we assume that for

some x0 + y ∈ ∂[x] the function g does not fulfill (2.1). This means that for some
i ∈ {1, . . . , n} with x0 + y ∈ [x]i,+ and for some λ > 0 we would have

gj(x
0 + y) = λgj(x

0 − y), j = 1, . . . , n.(2.4)

This would imply

λ =
gj(x

0 + y)

gj(x0 − y)
∈ Rg(gj , [x]i,+)

Rg(gj , [x]i,−)
for all j = 1, . . . , n,

invoking extended interval arithmetic [15] in the case 0 ∈ Rg(gj , [x]i,−). Therefore
(2.1) is certainly fulfilled if

n⋂
j=1

Rg(gj , [x]i,+)

Rg(gj , [x]i,−)
∩ (0,∞) = ∅(2.5)

for each i ∈ {1, . . . , n}, which is our second criterion.
The third criterion is also obtained from (2.4). Given a slope matrix [Y ] according

to (1.1), condition (2.4) would imply

gj(x
0) + (A · Y+)j · y = λ

(
gj(x

0) − (A · Y−)j · y
)

(2.6)

with matrices Y+, Y− ∈ [Y ]. Transforming further, (2.6) yields

(1 − λ) · gj(x0) = −(A · (λY− + Y+))j · y

∈ −(A · (λ[Y ] + [Y ]))j · ([x]i,+ − x0)

= − (λ + 1) (A · [Y ])j · ([x]i,+ − x0),

the last equality holding because λ > 0. Thus, we finally obtain

λ− 1

λ + 1
gj(x

0) ∈ (A · [Y ])j · ([x]i,+ − x0).(2.7)

This gives us a condition on the range of (λ− 1)/(λ + 1), because (2.7) implies

λ− 1

λ + 1
∈ (A · [Y ])j · ([x]i,+ − x0)

gj(x0)

with the convention that the division of an interval by 0 is defined as

[a]

0
=

{
R if 0 ∈ [a],
∅ else.



1354 ANDREAS FROMMER AND BRUNO LANG

For λ > 0, the range of (λ−1)/(λ+1) is contained in (−1, 1). Putting things together,
we see that if (2.4) holds, we have

λ− 1

λ + 1
∈

n⋂
j=1

(A · [Y ])j · ([x]i,+ − x0)

gj(x0)
∩ (−1, 1).

Since the existence of a zero of g in [x] is guaranteed by Borsuk’s theorem if (2.4)
does not hold for i = 1, . . . , n, we obtain the following, third, criterion: If

n⋂
j=1

(A · [Y ])j · ([x]i,+ − x0)

gj(x0)︸ ︷︷ ︸
=: [bM]i

∩ (−1, 1) = ∅(2.8)

for each i ∈ {1, . . . , n}, then g (and thus f = A−1g) has a zero x∗ in [x].
At first glance it may be surprising that the opposite facets [x]i,− do not at all

enter criterion (2.8). But since [x]i,− − x0 = −([x]i,+ − x0), we have

n⋂
j=1

(A · [Y ])j · ([x]i,− − x0)

gj(x0)
= −

n⋂
j=1

(A · [Y ])j · ([x]i,+ − x0)

gj(x0)

so that substituting [x]i,+ by [x]i,− in (2.8) just produces an equivalent condition to
(2.8).

We will now discuss several ways for checking the above three criteria computa-
tionally with the use of interval arithmetic.

While the formulation (2.8) is directly amenable to interval evaluation, the exact
ranges in (2.2) and (2.5) must be replaced with quantities that can be computed
effectively.

For the criterion (2.5), the naive, centered, and facet-centered techniques de-
scribed in the context of the Miranda test lead to the interval quantities

[bN]i :=

n⋂
j=1

gj([x]i,+)

gj([x]i,−)
,

[bC]i :=

n⋂
j=1

gj(x̂) + (A · [Y ])j · ([x]i,+ − x̂)

gj(x̂) + (A · [Y ])j · ([x]i,− − x̂)
,

[bF]i :=

n⋂
j=1

gj(x̂
i,+) + [yj ]

i,+ · ([x]i,+ − x̂i,+)

gj(x̂i,−) + [yj ]i,− · ([x]i,− − x̂i,−)
,

where again [Y ] is a slope matrix fulfilling (1.1), x̂ is a given point in the box [x]
(not necessarily its midpoint), the x̂i,± are given points on the facets (x̂i,± ∈ [x]i,±),
and the [yj ]

i,± are row vectors such that gj(x)− gj(x̂
i,±) ∈ [yj ]

i,± · (x− x̂i,±) for all
x ∈ [x]i,±.

In (2.2) the exact range Rg(σ, [x]i,+) must be enclosed in an interval [bS]i. Since a
naive interval-arithmetic evaluation of the function σ defined in (2.3) suffers severely
from the dependence problem [9, p. 4], higher-order methods should be applied to
obtain a reasonably narrow enclosure of the range, e.g., by decomposing the domain
into smaller subdomains or by using Taylor models [4, 5].
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The computational tests resulting from the criteria (2.8), (2.5), and (2.2) are
summarized in the following definition; note that [bM]i is defined in (2.8).

Definition 2.2. The term Borsuk test denotes checking, for each i ∈ {1, . . . , n},
one of the conditions

[bM]i ∩ (−1, 1) = ∅,(2.9)

[bN]i ∩ (0,∞) = ∅,(2.10a)

[bC]i ∩ (0,∞) = ∅,(2.10b)

[bF]i ∩ (0,∞) = ∅,(2.10c)

sup[bS]i < 1.(2.11)

Again, we do not have to require the same condition to be checked for all i.
With the same arguments as in the proof to Theorem 1.4 we can show that

(2.10c) is more powerful than (2.10b), provided that x̂i,± is chosen as the orthogonal
projection of x̂ onto the facet [x]i,± and that [yj ]

i,± is a subset of the jth row of
A · [Y ]. We do not explicitly formulate this as a theorem here.

We can also show that the Borsuk test compares favorably to the Miranda test.
Theorem 2.3. Each variant (2.10a)–(2.10c) of the Borsuk test is more powerful

than the corresponding variant (1.6a)–(1.6c) of the Miranda test in the sense that if
(1.6a) (respectively, (1.6b), respectively, (1.6c)) is satisfied for some i, [x], x̂, x̂i,±,
A, [Y ] and [y]i,±, then (2.10a) (respectively, (2.10b), respectively, (2.10c)) also holds
true with the same i, [x], x̂, x̂i,±, A and [Y ], provided that the [yj ]

i,± are chosen such
that [yi ]

i,± ⊆ [y]i,± is fulfilled.
Proof. We will only consider the naive variant, the arguments for the centered

and face-centered cases being the same. If (1.6a) is fulfilled, then

gi([x]i,+)

gi([x]i,−)
⊆ (−∞, 0],

extended interval arithmetic coming into play if sup gi([x]i,−) = 0. This immediately
implies

n⋂
j=1

gj([x]i,+)

gj([x]i,−)
∩ (0,∞) = ∅,

with the empty intersection being already enforced by the single component j = i.
Thus (2.10a) also holds true.

Note. If A is an approximation to the inverse of f ′(x̂), if x̂ is a good approximation
to a zero of f , and if the box [x] is sufficiently small, then the function g(x) + x̂ is a
small perturbation of the identity on [x], and therefore empty intersections in (2.10a)–
(2.10c) will typically be caused by the component j = i, i.e., the corresponding
condition of the Miranda test would be fulfilled as well. Under these circumstances,
the variants (2.10a)–(2.10c) of the Borsuk test are hardly more powerful than the
Miranda variants (1.6a)–(1.6c). The situation can be substantially different for larger
boxes.

The variants (2.9) and (2.11) are completely different. In particular, (2.11) may
be significantly more powerful than any variant of the Miranda test provided that
narrow enclosures for the range of σ are available.
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3. An example. In this section we present an example showing that the Borsuk
test may be able to verify the existence of a zero in situations where Miranda-based
tests as well as the Moore test must fail. Consider the function

f(u, v) =

(
4 − 2(u− 1)2

(2 − (u + 1)2) · (2 − (v − 1)2)

)
,

which has a unique zero x∗ = (u∗, v∗) = (1−
√

2, 1−
√

2) in the box [x] = [u]× [v] =
[−1, 1] × [−1, 1].

For future reference, we note that

[x]1,± = {±1} × [−1, 1], [x]2,± = [−1, 1] × {±1},

x0 =

(
0
0

)
, f(x0) =

(
2
1

)
,

f(1, 1) =

(
4
−4

)
, f(1,−1) =

(
4
4

)
,(3.1)

f(−1, 1) =

(
−4
4

)
, f(−1,−1) =

(
−4
−4

)
,(3.2)

f ′(u, v) =

(
−4(u− 1) 0

−2(u + 1)
(
2 − (v − 1)2

)
−2

(
2 − (u + 1)2

)
(v − 1)

)
.

In this two-dimensional example the facets of the rectangle [x] are just its sides.

3.1. Miranda-based tests. We first show that no test based on Miranda’s
theorem is applicable to f and [x], even if arbitrary preconditioning is allowed. To
this end consider the function

g(u, v) =

(
α β
γ δ

)
︸ ︷︷ ︸

A

· f(u, v), α, β, γ, δ ∈ R.(3.3)

We will now show that for any nonsingular A, the function g does not satisfy the
assumptions of Miranda’s theorem. Since g’s property of having—or not having—
constant (different) sign on opposite sides of [x] is invariant to row scaling, we may
assume that, at the upper right corner (1, 1), each component gj takes either a specified
nonzero value, say 4, or is zero.

Case 1. g1(1, 1) = g2(1, 1) = 0. By (3.3) and (3.1), this implies 0 = A · (4,−4)T ,
i.e., A must be singular, which is a contradiction.

Case 2. g1(1, 1) = g2(1, 1) = 4. Then, from (3.3) and (3.1) we obtain

4α− 4β = 4,

4γ − 4δ = 4,

or β = α− 1, δ = γ − 1. Combining these relations with (3.3) and (3.2) yields

g(−1, 1) =

(
α α− 1
γ γ − 1

)
·
(

−4
4

)
=

(
−4
−4

)
,

implying that both g1 and g2 change sign on the upper side [x]2,+ of the box.
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Case 3. g1(1, 1) = 4, g2(1, 1) = 0. Then, (3.3) and (3.1) give

4α− 4β = 4,

4γ − 4δ = 0,

or β = α − 1, δ = γ. As in Case 2, the first of these two equations implies that g1

changes sign on the upper side [x]2,+. Noting that γ 	= 0 because A is nonsingular, a
short calculation shows that g2 takes the constant sign sgn(γ) on the upper side but
changes sign on the lower side [x]2,− since, according to (3.3), (3.1), and (3.2),

g2(1,−1) =
(
γ γ

)
·
(

4
4

)
= 8γ,

g2(−1,−1) =
(
γ γ

)
·
(

−4
−4

)
= −8γ.

Case 4. g1(1, 1) = 0, g2(1, 1) = 4. This case is completely symmetric to Case 3,
with g2 changing sign on [x]2,+ and g1 changing sign on [x]2,−.

To summarize, in all cases none of the components g1 and g2 takes (constant)
different sign on the opposite sides [x]2,+ and [x]2,−. Thus, no nonsingular precon-
ditioning matrix A leads to the prerequisites of Miranda’s theorem being fulfilled.
Therefore the Miranda test as well as the Moore test cannot be successful.

3.2. Applying Borsuk’s theorem. Now we show that the Borsuk test accord-
ing to Definition 2.2 is successful for this example, demonstrating that the assumptions
for Borsuk’s theorem can be checked computationally. Unless explicitly stated oth-
erwise, plain interval arithmetic is used for evaluating expressions over a box. No
preconditioning is necessary, i.e., A = I2 and g ≡ f .

With the simplest choice [Y ] = f ′([x]) we obtain A·[Y ] = f ′([x]) = g′([x]), leading
to (A · [Y ])j = g′j([x]).

Interval evaluation of g′ ≡ f ′ on [x] = [u] × [v] = [−1, 1] × [−1, 1] yields

g′([x]) =

(
−4([u] − 1) 0

−2([u] + 1)(2 − ([v] − 1)2) −2(2 − ([u] + 1)2)([v] − 1)

)

=

(
[0, 8] 0

[−8, 8] [−8, 8]

)
.

In all our computations we assume that the formula [a]2 = [〈[a]〉2, |[a]|2] is used to
compute the range of the square function over some interval [a], where the magnitude
|[a]| and the mignitude 〈[a]〉 denote the maximum and minimum, respectively, absolute
values of elements in [a].

i = 1 (right and left side): Evaluating [bM]i from (2.8) for i = 1 yields

[bM]1 =
g′1([x]) · ([x]1,+ − x0)

g1(x0)
∩ g′2([x]) · ([x]1,+ − x0)

g2(x0)

=
([0, 8], 0) · (1, [−1, 1])T

2
∩ ([−8, 8], [−8, 8]) · (1, [−1, 1])T

1

= [0, 4].
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Since [bM]1 ∩ (−1, 1) 	= ∅, (2.9) could not be verified for i = 1. By contrast,

[bN]1 =
g1([x]1,+)

g1([x]1,−)
∩ g2([x]1,+)

g2([x]1,−)

=
4 − 2(1 − 1)2

4 − 2(−1 − 1)2
∩ (2 − (1 + 1)2)(2 − ([−1, 1] − 1)2)

(2 − (−1 + 1)2)(2 − ([−1, 1] − 1)2)

=
4

−4
∩ [−4, 4]

[−4, 4]

= −1 ∩ R

= −1 ,

showing (2.10a) for i = 1.
i = 2 (upper and lower side): Choosing x̂ as the midpoint of [x], x̂i,± as the

midpoint of the facet [x]i,±, and the slope vector [yj ]
i,± as the jth row of A · [Y ] =

g′([x]), short calculations show that

[bM]2 =
g′1([x]) · ([x]2,+ − x0)

g1(x0)
∩ g′2([x]) · ([x]2,+ − x0)

g2(x0)

=
([0, 8], 0) · ([−1, 1], 1)T

2
∩ ([−8, 8], [−8, 8]) · ([−1, 1], 1)T

1

=
[−8, 8]

2
∩ [−16, 16]

1

= [−4, 4],

implying [bM]2 ∩ (−1, 1) 	= ∅,

[bN]2 =
g1([x]2,+)

g1([x]2,−)
∩ g2([x]2,+)

g2([x]2,−)

=
4 − 2([−1, 1] − 1)2

4 − 2([−1, 1] − 1)2
∩ (2 − ([−1, 1] + 1)2) · (2 − (1 − 1)2)

(2 − ([−1, 1] + 1)2) · (2 − ((−1) − 1)2)

=
[−4, 4]

[−4, 4]
∩ [−4, 4]

[−4, 4]

= R,

meaning [bN]2 ∩ (0,∞) 	= ∅, and similarly,

[bC]2 =
g1(x̂) + g′1([x]) · ([x]2,+ − x̂)

g1(x̂) + g′1([x]) · ([x]2,− − x̂)
∩ g2(x̂) + g′2([x]) · ([x]2,+ − x̂)

g2(x̂) + g′2([x]) · ([x]2,− − x̂)

=
2 + ([0, 8], 0) · ([−1, 1], 1)T

2 + ([0, 8], 0) · ([−1, 1],−1)T
∩ 1 + ([−8, 8], [−8, 8]) · ([−1, 1], 1)

1 + ([−8, 8], [−8, 8]) · ([−1, 1],−1)

=
[−6, 10]

[−6, 10]
∩ [−15, 17]

[−15, 17]

= R
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and

[bF]2 =
g1(mid[x]2,+) + g′1([x]) · ([x]2,+ − mid[x]2,+)

g1(mid[x]2,−) + g′1([x]) · ([x]2,− − mid[x]2,−)

∩ g2(mid[x]2,+) + g′2([x]) · ([x]2,+ − mid[x]2,+)

g2(mid[x]2,−) + g′2([x]) · ([x]2,− − mid[x]2,−)

=
g1(0, 1) + ([0, 8], 0) · ([−1, 1], 0)T

g1(0,−1) + ([0, 8], 0) · ([−1, 1], 0)T

∩ g2(0, 1) + ([−8, 8], [−8, 8]) · ([−1, 1], 0)T

g2(0,−1) + ([−8, 8], [−8, 8]) · ([−1, 1], 0)T

=
[−6, 10]

[−6, 10]
∩ [−6, 10]

[−10, 6]

= R.

So none of the conditions (2.9) and (2.10a)–(2.10c) is fulfilled for i = 2. To check the
remaining condition (2.11), we enclose the range of the function σ over [x]2,+. Note
that, in order to have x0 + y ∈ [x]2,+, the offset y must be of the form y = (u, 1)T

with u ∈ [−1, 1]. Therefore x0 + y = (u, 1)T and x0 − y = (−u,−1)T . This gives

σ(x0 + y) =
〈g(u, 1),g(−u,−1) 〉

‖g(u, 1)‖ · ‖g(−u,−1)‖

=

〈(
4 − 2(u− 1)2

(2 − (u + 1)2) · 2

)
,

(
4 − 2(−u− 1)2

(2 − (−u + 1)2) · (−2)

)〉
∥∥∥∥
(

4 − 2(u− 1)2

(2 − (u + 1)2) · 2

)∥∥∥∥ ·
∥∥∥∥
(

4 − 2(−u− 1)2

(2 − (−u + 1)2) · (−2)

)∥∥∥∥
=

ν

δ

with

ν = (4 − 2(u− 1)2) · (4 − 2(−u− 1)2)

− 4(2 − (u + 1)2) · (2 − (−u + 1)2) ,

δ =
√

(4 − 2(u− 1)2)2 + 4(2 − (u + 1)2)2

·
√

(4 − 2(−u− 1)2)2 + 4(2 − (−u + 1)2)2 .

Using these expressions for the numerator and denumerator, respectively, and plain
interval arithmetic for their evaluation over [u] = [−1, 1], again causes too much
overestimation:

[ν]

[δ]
=

[−32, 32]√
[0, 32] ·

√
[0, 32]

= R.

Other ways for bounding the range, however, yield the required result:
• A symbolic term optimizer detects that ν ≡ 0 and therefore replaces the term

ν/δ representing σ with 0. Evaluating this term immediately yields

sup
x0+y∈[x]2,+

σ(y) = 0 < 1.

This extreme situation is, of course, not very likely to occur in practice.
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• Taylor arithmetic [5] can be used to reduce the heavy dependence of the
variables within the term ν/δ. Indeed, in our example an order-4 Taylor
model—implemented, e.g., using the COSY INFINITY software [4]—shows
that the range of σ is contained in the interval [bS]2 = [−10−12,+10−12],
which is bounded away from +1.

• Subdividing the domain for y is another way to reduce the overestimation.
In our example, dividing [u] into 8 equally sized subintervals and using naive
interval evaluation of the expression ν/δ over these subintervals shows that
the range of σ is a subset of [bS]2 = [−0.8394,+0.8394], which is also bounded
below 1.

Since (2.10a) holds for i = 1 and (2.11) is fulfilled for i = 2, Borsuk’s theorem
guarantees the existence of a zero x∗ of g (and f) in the (rather large) box [x].

4. Concluding remarks. We have presented a new method for automatically
verifying the existence of a zero of a nonlinear function f within some interval vector
[x]. Our test is based on a theorem by Borsuk and can be implemented in several
different ways. For some of these, similar criteria based on a theorem by Miranda
are known. We could show that in these cases our test is at least as powerful as the
corresponding Miranda test.

The Borsuk test also allows for formulations that have no Miranda analogue and
may be applicable in situations where no Miranda-based test can be successful. This
fact has been illustrated by a numerical example.

From a complexity point of view, it is important that the Borsuk test can be
implemented to complement the Miranda test in the following way: If we first apply
the Miranda test and one of the conditions (1.6a)–(1.6c) can be verified for some
i then, by Theorem 2.3, we know that the respective condition (2.10a)–(2.10c) is
fulfilled as well. Thus, the (more expensive) Borsuk test must be applied only to
those components i for which the Miranda test has failed.

As Borsuk’s theorem only requires that the function does not point in the same
direction at opposite boundary points, different preconditioning g(i) = Ai · f might be
used on each pair [x]i,± of opposite facets. The potential benefits of this additional
flexibility, which is not available in Miranda-based tests, will be explored in the future.
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Abstract. We study the finite element method for stochastic parabolic partial differential
equations driven by nuclear or space-time white noise in the multidimensional case. The discretization
with respect to space is done by piecewise linear finite elements, and in time we apply the backward
Euler method. The noise is approximated by using the generalized L2-projection operator. Optimal
strong convergence error estimates in the L2 and Ḣ−1 norms with respect to the spatial variable are
obtained. The proof is based on appropriate nonsmooth data error estimates for the corresponding
deterministic parabolic problem. The computational analysis and numerical example are given.
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1. Introduction. We study the finite element approximation of the stochastic
parabolic partial differential equation

du + Audt = σ(u)dW for 0 < t ≤ T , with u(0) = u0,(1.1)

in a Hilbert space H, with inner product (·, ·) and norm ‖·‖, where u(t) is an H-valued
random process; A is a linear, self-adjoint, positive definite, not necessarily bounded
operator with a compact inverse, densely defined in D(A) ⊂ H; and σ is a nonlinear
operator-valued function defined on H which we will specify later. Here W (t) is a
Wiener process defined on a filtered probability space (Ω,F ,P, {Ft}t≥0) and u0 ∈ H.

For the sake of simplicity, we shall concentrate on the case A = −Δ, where Δ
stands for the Laplacian operator subject to homogeneous Dirichlet boundary condi-
tions, and H = L2(D), where D is a bounded convex domain in Rd, d = 1, 2, 3, with
a sufficiently smooth boundary ∂D.

Many models in physics, chemistry, biology, population dynamics, neurophysiol-
ogy, etc., are described by stochastic partial differential equations; see Da Prato and
Zabczyk [8], Walsh [29], etc. The existence, uniqueness, and properties of the solutions
of such equations have been well studied; see Curtain and Falb [4], [5], Da Prato [6],
Da Prato and Lunardi [7], Da Prato and Zabczyk [8], Dawson [10], Gozzi [12], Peszat
and Zabczyk [23], Walsh [29], etc. However, numerical approximation of such equa-
tions has not been studied thoroughly.

We assume that W (t) is a Wiener process with covariance operator Q. This
process may be considered in terms of its Fourier series. Suppose that Q is a bounded,
linear, self-adjoint, positive definite operator on H, with eigenvalues γl > 0 and
corresponding eigenfunctions el. Let βl, l = 1, 2, . . . , be a sequence of real-valued
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independently and identically distributed Brownian motions. Then

W (t) =

∞∑
l=1

γ
1/2
l elβl(t)

is a Wiener process with covariance operator Q.
If Q is in trace class, then W (t) is an H-valued process. If Q is not in trace class,

for example, Q = I, then W (t) does not belong to H, in which case W (t) is called a
cylindrical Wiener process.

Let L0
2 = HS(Q1/2(H), H) denote the space of Hilbert–Schmidt operators from

Q1/2(H) to H, i.e.,

L0
2 =

{
ψ ∈ L(H) :

∞∑
l=1

‖ψQ1/2el‖2 < ∞
}
,

with norm ‖ψ‖L0
2

= (
∑∞

l=1 ‖ψQ1/2el‖2)1/2, where L(H) is the space of bounded linear
operators from H to H.

Let E denote the expectation. Let ψ ∈ L0
2. Then

∫ t

0
ψ(s) dW (s) can be defined,

and the following isometry property holds:

E

∥∥∥∥
∫ t

0

ψ(s) dW (s)

∥∥∥∥
2

=

∫ t

0

‖Eψ(s)‖2
L0

2
ds.(1.2)

Following Da Prato and Zabczyk [8, Chapter 7], we assume that σ : H → L0
2

satisfies the following global Lipschitz and growth conditions:
(i) ‖σ(x) − σ(y)‖L0

2
≤ C‖x− y‖ ∀x, y ∈ H,

(ii) ‖σ(x)‖L0
2
≤ C‖x‖ ∀x ∈ H.

Then (1.1) admits a unique mild solution which has the form

u(t) = E(t)u0 +

∫ t

0

E(t− s)σ(u(s)) dW (s),(1.3)

where E(t) = e−tA is the analytic semigroup generated by −A. Moreover,

sup
t∈[0,T ]

E‖u(t)‖2 ≤ C(1 + E‖u0‖2).

Note that if Tr(Q) = ∞, then the identity mapping σ(u) = I does not satisfy the
condition (ii). In order to cover this important case, we introduce a modified version
of (ii), i.e.,

(ii′) ‖A(β−1)/2σ(x)‖L0
2
≤ C‖x‖ for some β ∈ [0, 1], ∀x ∈ H.

We see that (ii) is the special case β = 1 of (ii′). If σ(·) = I, the condition (ii′)
reduces to ‖A(β−1)/2‖L0

2
≤ C.

The numerical approximation for (1.1) started with the work by Greksch and
Kloeden [13] and Gyöngy and Nualart [16]. Further contributions include Allen,
Novosel, and Zhang [1], Benth and Gjerde [2], Davie and Gaines [9], Du and Zhang [11],
Gyöngy [14], [15], Hausenblas [17], [18], Kloeden and Shott [19], Lord and Rouge-
mont [20], Printems [24], Shardlow [25], Theting [26], [27], Müller-Gronbach and
Ritter [21], and Yan [31], [30].

In this paper we will consider error estimates for approximations of (1.1) based
on the finite element method in space and the backward Euler method in time. The
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noise will be approximated by using generalized the L2-projection operator defined
below.

Let Sh be a family of finite element spaces, where Sh consists of continuous
piecewise polynomials of degree ≤ 1 with respect to the triangulation Th of Ω. For
simplicity, we always assume that {Sh} ⊂ H1

0 = H1
0 (D) = {v ∈ L2(D), ∇v ∈ L2(D),

v|∂D = 0}.
To introduce the finite element formulation of (1.1), we will use the generalized

L2-projection operator Ph : Ḣ−1 → Sh defined by (see Chrysafinos and Hou [3])

(Phv, χ) = 〈v, χ〉 ∀χ ∈ Sh ⊂ Ḣ1, ∀v ∈ Ḣ−1,(1.4)

where 〈·, ·〉 denotes the pairing between Ḣ−1 and Ḣ1. One can easily show that Ph

is well defined by introducing a basis {ϕi}Nh
i=1 and solving for Phv =

∑Nh

j=1 αjϕj from

the equations (
∑Nh

j=1 αjϕj , ϕi) = 〈v, ϕi〉. Also it is evident that when v ∈ L2(D),
Phv is the standard L2-projection operator; see Thomée [28].

The semidiscrete problem corresponding to (1.1) is to find the process uh(t) =
uh(·, t) ∈ Sh such that

duh + Ahuh dt = Phσ(uh) dW for 0 < t ≤ T , with uh(0) = Phu0,(1.5)

where Ah : Sh → Sh is the discrete analogue of A, defined by

(Ahψ, χ) = A(ψ, χ) ∀ψ, χ ∈ Sh.(1.6)

Here A(·, ·) is the bilinear form obtained from the operator A.
Let Eh(t) = e−tAh , t ≥ 0. Then (1.5) admits a unique mild solution

uh(t) = Eh(t)Phu0 +

∫ t

0

Eh(t− s)Phσ(uh(s)) dW (s).

Let Ḣs = Ḣs(D) = D(As/2) with norm |v|s = ‖As/2v‖ for any s ∈ R. For any
Hilbert space H, we define

L2(Ω;H) =

{
v : E‖v‖2

H =

∫
Ω

‖v(ω)‖2
H dP(ω) < ∞

}
,

with norm ‖v‖L2(Ω;H) = (E‖v‖2
H)1/2.

Let k be a time step and tn = nk with n ≥ 1. We define the backward Euler
method

Un − Un−1

k
+ AhU

n =
1

k

∫ tn

tn−1

Phσ(Un−1) dW (s), n ≥ 1, U0 = Phu0.(1.7)

With r(λ) = 1/(1 − λ), we can rewrite (1.7) in the form

Un = r(kAh)Un−1 +

∫ tn

tn−1

r(kAh)Phσ(Un−1) dW (s), n ≥ 1,(1.8)

U0 = Phu0.

Our main results in this paper are the following theorems.
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Theorem 1.1. Let Un and u(tn) be the solutions of (1.8) and (1.1), respectively.
Assume that σ satisfies (i) and (ii′). Assume that u0 ∈ L2(Ω; Ḣβ), 0 ≤ β ≤ 1. Then
there exists a constant C = C(T ) such that, for tn ∈ [0, T ] and 0 ≤ γ < β ≤ 1,

‖Un − u(tn)‖L2(Ω;H) ≤ C(kγ/2 + hβ)

(
‖u0‖L2(Ω;Ḣβ) + sup

0≤s≤T
‖u(s)‖L2(Ω;H)

)
.(1.9)

In particular, if σ satisfies (i) and (ii), then we have, for u0 ∈ L2(Ω; Ḣ1) and 0 ≤
γ < 1,

‖Un − u(tn)‖L2(Ω;H) ≤ C(kγ/2 + h)

(
‖u0‖L2(Ω;Ḣ1) + sup

0≤s≤T
‖u(s)‖L2(Ω;H)

)
.(1.10)

When σ(·) = I, we have the following error estimates.
Theorem 1.2. Let Un and u(tn) be the solutions of (1.8) and (1.1), respec-

tively. Assume that σ(·) = I. Further assume that u0 ∈ L2(Ω; Ḣβ), 0 ≤ β ≤ 1. If
‖A(β−1)/2‖L0

2
< ∞ for some β ∈ [0, 1], then we have, for l = 0, 1 with �k = log(T/k),

where T = tn,

‖Un − u(tn)‖L2(Ω;Ḣ−l) ≤ C(k(β+l)/2 + hβ+l)
(
‖u0‖L2(Ω;Ḣβ) + �lk‖A(β−1)/2‖L0

2

)
.

(1.11)

In particular, if W (t) is an H-valued Wiener process with Tr(Q) < ∞, then we have,
for u0 ∈ L2(Ω; Ḣ1),

‖Un − u(tn)‖L2(Ω;Ḣ−l) ≤ C(k(1+l)/2 + h1+l)
(
‖u0‖L2(Ω;Ḣ1) + �lk Tr(Q)1/2

)
.(1.12)

This paper is organized as follows. In section 2, we give some regularity results for
the mild solution of (1.1) and some error estimates of the corresponding deterministic
problem. In section 3, we prove main theorems. In section 4, we consider how to
compute the approximate solution Un numerically in the additive noise case. Finally,
in section 5, we give the numerical simulations.

2. Regularity of (1.1) and error estimates for the deterministic prob-
lem. In this section, we give some results in order to prove the main theorems.

2.1. Regularity of the mild solution of (1.1). In this section we will consider
the regularity of the mild solution of (1.1). We have the following theorem.

Theorem 2.1. Assume that σ satisfies (i) and (ii′). Let u(t) be the mild solution
(1.3) of (1.1). Then we have, for u0 ∈ L2(Ω; Ḣβ),

‖u(t)‖L2(Ω;Ḣβ) ≤ C

(
‖u0‖L2(Ω;Ḣβ) + sup

0≤s≤t
‖u(s)‖L2(Ω;H)

)
.(2.1)

In particular, if σ satisfies (i) and (ii), then we have, for u0 ∈ L2(Ω; Ḣ1),

‖u(t)‖L2(Ω;Ḣ1) ≤ C

(
‖u0‖L2(Ω;Ḣ1) + sup

0≤s≤t
‖u(s)‖L2(Ω;H)

)
.(2.2)

To prove this theorem, we need some regularity results which are related to the
fact that E(t) = e−tA is an analytic semigroup on H. For later use, we collect some
results in the next two lemmas; see Thomée [28] or Pazy [22].
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Lemma 2.2. For any μ, ν ∈ R and l ≥ 0, there is a C > 0 such that

|Dl
tE(t)v|ν ≤ Ct−(ν−μ)/2−l|v|μ for t > 0, 2l + ν ≥ μ,(2.3)

and
∫ t

0

sμ|Dl
tE(s)v|2ν ds ≤ C|v|22l+ν−μ−1 for t ≥ 0, μ ≥ 0.(2.4)

Lemma 2.3. For any μ ≥ 0, 0 ≤ ν ≤ 1, there is a C > 0 such that

‖AμE(t)‖ ≤ Ct−μ for t > 0,(2.5)

and

‖A−ν(I − E(t))‖ ≤ Ctν for t ≥ 0.(2.6)

Proof. Recall that the mild solution has the form

u(t) = E(t)u0 +

∫ t

0

E(t− s)σ(u(s)) dW (s).

Thus, for any β ≥ 0, using the stability of E(t) and the isometry (1.2),

E|u(t)|2β ≤ 2E|E(t)u0|2β + 2E

∥∥∥∥
∫ t

0

Aβ/2E(t− s)σ(u(s))dW (s)

∥∥∥∥
2

≤ 2E|u0|2β + 2E

∫ t

0

‖Aβ/2E(t− s)σ(u(s))‖2
L0

2
ds

= 2E|u0|2β + 2E

∫ t

0

‖A1/2E(t− s)A(β−1)/2σ(u(s))‖2
L0

2
ds.

By (ii′) and Lemma 2.2, we have

E

∫ t

0

‖A1/2E(t− s)A(β−1)/2σ(u(s))‖2
L0

2
ds

≤
(∫ t

0

‖A1/2E(t− s)‖2 ds

)
sup

0≤s≤t
E‖u(s)‖2 ≤ C sup

0≤s≤t
E‖u(s)‖2.

Thus we get

E|u(t)|2β ≤ C

(
E|u0|2β + sup

0≤s≤t
E‖u(s)‖2

)
,

which implies (2.1) by noting that

(
sup

0≤s≤t
E‖u(s)‖2

)1/2

≤ sup
0≤s≤t

(
E‖u(s)‖2

)1/2
= sup

0≤s≤t
‖u(s)‖L2(Ω;H).

In particular, if (ii) holds, then β = 1, and we get (2.2).
We remark that in Theorem 2.1, if σ(·) = I, the condition (ii′) reduces to the

condition ‖A(β−1)/2‖L0
2
≤ C.

In the case of σ(·) = I, by the proof of Theorem 2.1, we obtain the following.
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Corollary 2.4. Let u(t) be the mild solution (1.3) of (1.1). Assume that
σ(·) = I. If ‖A(β−1)/2‖L0

2
< ∞ for some β ∈ [0, 1], then we have, for fixed t ∈ [0, T ],

‖u(t)‖L2(Ω;Ḣβ) ≤ C
(
‖u0‖L2(Ω;Ḣβ) + ‖A(β−1)/2‖L0

2

)
for u0 ∈ L2(Ω; Ḣβ).(2.7)

In particular, if W (t) is an H-valued Wiener process with covariance operator Q,
Tr(Q) < ∞, then we have

‖u(t)‖L2(Ω;Ḣ1) ≤ C
(
‖u0‖L2(Ω;Ḣ1) + Tr(Q)1/2

)
for u0 ∈ L2(Ω; Ḣ1).(2.8)

If σ(·) = I and d = 1, then we may specialize to Q = I.
Corollary 2.5. Assume that σ(·) = I. Let u(t) be the solution of (1.1) and

A = − ∂2

∂x2 with D(A) = H1
0 (0, 1)∩H2(0, 1). Assume that W (t) is a cylindrical Wiener

process with Q = I. Then we have, for every β ∈ [0, 1/2),

‖u(t)‖L2(Ω;Ḣβ) ≤ C(1 + ‖u0‖L2(Ω;Ḣβ)) for u0 ∈ L2(Ω; Ḣβ).

Proof. By (2.7), it suffices to check in what case ‖A(β−1)/2‖L0
2
< ∞. It is well

known that A has eigenvalues λj = j2π2, j = 1, 2, . . . , and corresponding eigenfunc-
tions ϕj =

√
2 sin jπx, j = 1, 2, . . . , which form an orthonormal basis in H = L2(0, 1).

Thus, we have

‖A(β−1)/2‖2
L0

2
=

∞∑
j=1

‖A(β−1)/2ϕj‖2 =

∞∑
j=1

λβ−1
j ,

which is convergent if β ∈ [0, 1/2). The proof is complete.
We note that in Corollary 2.4 we require the condition ‖A(β−1)/2‖L0

2
< ∞ for

β ∈ [0, 1]. The following lemma shows that this condition is equivalent to having that
W (t) is Ḣβ−1-valued. In particular, W (t) ∈ Ḣ−1, which is important when applying
the finite element method.

Lemma 2.6. Assume that W (t) is a Wiener process with covariance operator Q.
Assume that A and Q have the same eigenvectors. Then the following statements
hold.

(i) If ‖A(β−1)/2‖L0
2
< ∞ for some β ∈ [0, 1], then

W (t) =

∞∑
l=1

Q1/2elβl(t), t ≥ 0,

defines an Ḣβ−1-valued Wiener process with covariance operator Q̃, Tr(Q̃) < ∞. In
particular, Q̃ = Q if Tr(Q) < ∞.

(ii) If W (t) =
∑∞

l=1 Q
1/2elβl(t), t ≥ 0, is an Ḣβ−1-valued Wiener process with

the covariance operator Q̃, Tr(Q̃) < ∞, then

‖A(β−1)/2‖L0
2
< ∞ for some β ∈ [0, 1].

Proof. We first prove (i). With {γl, el}∞l=1 the eigensystem of Q in H, it is easy

to show that gl = Q1/2el = γ
1/2
l el is an orthogonal basis of Q1/2(H). In fact,

(gl, gk)Q1/2(H) = (Q−1/2gl, Q
1/2gk) = (el, ek) = δl,k.
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Note that

∞∑
l=1

|gl|2β−1 =

∞∑
l=1

‖A(β−1)/2Q1/2el‖2 = ‖A(β−1)/2‖L0
2
< ∞,

which means that the embedding of Q1/2(H) into Ḣβ−1 is Hilbert–Schmidt. By
Lemma 4.11 in Da Prato and Zabczyk [8], W (t) defines an Ḣβ−1-valued Wiener pro-
cess with covariance operator Q̃, Tr(Q̃) < ∞. It is obvious that Q̃ = Q if Tr(Q) < ∞.

We now turn to (ii). Since W (t) =
∑∞

l=1 Q
1/2elβl(t), t ≥ 0, is an Ḣβ−1-valued

Wiener process with the covariance operator Q̃, Tr(Q̃) < ∞, we have

E|W (t)|2β−1 < ∞.

With {λl, el}∞l=1 the eigensystem of A in H, we have

E|W (t)|2β−1 = E

∣∣∣∣∣
∞∑
l=1

Q1/2elβl(t)

∣∣∣∣∣
2

β−1

= E

∞∑
l=1

λβ−1
l γlβl(t)

2 = t‖A(β−1)/2‖L0
2
,

which implies that ‖A(β−1)/2‖L0
2
< ∞ for β ∈ [0, 1]. The proof is complete.

We also need regularity in time of the solution of (1.1); see Printems [24, Propo-
sition 3.4].

Lemma 2.7. Assume that (ii′) holds. Let u be the mild solution of (1.1). Then
we have, for 0 ≤ γ < β ≤ 1,

E‖u(t2) − u(t1)‖2 ≤ C(t2 − t1)
γE|u0|2γ(2.9)

+ C(t2 − t1)
γ sup

0≤s≤T
E‖u(s)‖2.

2.2. Error estimates for the deterministic problem. In order to prove er-
ror estimates for the stochastic parabolic partial differential equation in the fully dis-
crete case, we need some error estimates for the corresponding deterministic parabolic
problem.

We first introduce some operators. Consider the stationary problem

−Δu = f in D, with u = 0 on ∂D,(2.10)

where f ∈ Ḣ−1.
The variational form of (2.10) is to find u ∈ H1

0 such that

(∇u,∇φ) = 〈f, φ〉 ∀φ ∈ H1
0 ,(2.11)

where 〈·, ·〉 denotes the duality pairing between Ḣ−1 and H1
0 .

Let Sh ⊂ H1
0 be the finite element space. The semidiscrete problem of (2.11) is

to find uh ∈ Sh such that

(∇uh,∇χ) = 〈f, χ〉 ∀χ ∈ Sh.(2.12)

By the Lax–Milgram lemma, there exist unique solutions u ∈ H1
0 and uh ∈ Sh such

that (2.11) and (2.12) hold. Moreover the following stability result holds:

|u|1 ≤ C|f |−1 ∀f ∈ Ḣ−1.(2.13)



1370 YUBIN YAN

The standard error estimates read

‖uh − u‖ ≤ Chs|u|s, s = 1, 2.(2.14)

Let G : Ḣ−1 → H1
0 denote the exact solution operator of (2.10), i.e., u = Gf .

We define the linear operator Gh : Ḣ−1 → Sh by Ghf = uh, so that uh = Ghf ∈ Sh

is the approximate solution of (2.11). It is easy to see that Gh is self-adjoint, positive
semidefinite on H, and positive definite on Sh. Introducing the elliptic projection
Rh : H1

0 → Sh by

(∇Rhv,∇χ) = (∇v,∇χ) ∀v ∈ H1
0 ,

we see that Gh = RhG, and Rhv is the finite element approximation of the solution
of the corresponding elliptic problem with exact solution v. By (2.14), we get

‖Rhv − v‖ ≤ Chs|v|s, s = 1, 2.

Hence, using (2.13) and the elliptic regularity estimate, we have

∥∥(Gh −G
)
f
∥∥ = ‖(Rh − I)Gf‖ ≤ Chs|Gf |s = Chs|f |s−2 for s = 1, 2,(2.15)

which we need below.
Let Ekh = r(kAh) and E(tn) = e−tnA, where r(λ) = 1/(1 + λ) is introduced in

(1.8). We have
Lemma 2.8. Let Fn = En

khPh − E(tn). Then

‖Fnv‖ ≤ C(kβ/2 + hβ)|v|β for v ∈ Ḣβ , 0 ≤ β ≤ 1,(2.16)

and

⎛
⎝k

n∑
j=1

‖Fjv‖2

⎞
⎠

1/2

≤ C(kβ/2 + hβ)|v|β−1 for v ∈ Ḣβ−1, 0 ≤ β ≤ 1.(2.17)

Furthermore, in the weak norm,

|Fnv|−1 ≤ C(kβ/2 + hβ)|v|β−1 for v ∈ Ḣβ−1, 1 ≤ β ≤ 2,(2.18)

and, with �k = log(T/k), where T = tn,

⎛
⎝k

n∑
j=1

|Fjv|2−1

⎞
⎠

1/2

≤ C(kβ/2 + hβ)�k|v|β−2 for v ∈ Ḣβ−2, 1 ≤ β ≤ 2.(2.19)

Proof. Here we prove only (2.17) in detail. Other proofs are similar. We define
u(tn) = un = E(tn)v, Un = En

khPhv, and en = Fnv. By interpolation theory, it
suffices to show that

⎛
⎝k

n∑
j=1

‖Fjv‖2

⎞
⎠

1/2

≤ C|v|−1(2.20)
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and
⎛
⎝k

n∑
j=1

‖Fjv‖2

⎞
⎠

1/2

≤ C(k1/2 + h)‖v‖.(2.21)

With ∂te
n = (en − en−1)/k, we have the following error equation:

Gh∂te
n + en = ρn + Ghτ

n,(2.22)

where ρn = (Gh −G)ut(tn) and τn = ut(tn) − ∂tu
n.

Taking the inner product of (2.22) with en, we get

(Gh∂te
n, en) + (en, en) = (ρn, en) + (Ghτ

n, en).

By summation on n, using the inequality (ρn, en) ≤ 1
2 (‖ρn‖2 + ‖en‖2), and noting

that Ghe
0 = 0, we have

(Ghen, en) + k

n∑
j=1

‖ej‖2 ≤ Ck

n∑
j=1

‖ρj‖2 + Ck

n∑
j=1

‖Gτ j‖2 + Ck

n∑
j=1

‖(Gh −G)τ j‖2.

(2.23)

Here, using Lemma 2.2, we have, since ρj = ρ(s) +
∫ tj
s

ρt(τ) dτ ,

k

n∑
j=1

‖ρj‖2 = k‖ρ‖2 +

n∑
j=2

∫ tj

tj−1

‖ρj‖2 ds(2.24)

≤ k‖ρ‖2 + 2

n∑
j=2

∫ tj

tj−1

(
‖ρ(s)‖2 +

∥∥∥∥
∫ tj

s

ρt(τ) dτ

∥∥∥∥
2
)
ds

≤ k‖ρ‖2 + 2

∫ tn

t1

‖ρ(s)‖2 ds + 2

n∑
j=2

∫ tj

tj−1

(
(tj − s)

∫ tj

s

‖ρt(τ)‖2 dτ

)
ds

≤ k‖ρ‖2 + 2

∫ tn

t1

‖ρ(s)‖2 ds + 2k

n∑
j=2

∫ tj

tj−1

τ‖ρt(τ)‖2 dτ

≤ Ck‖u‖2 + Ch2

∫ tn

0

|u(s)|21 ds + Ck

∫ tn

0

τ‖ut(τ)‖2 dτ ≤ C(k + h2)‖v‖2,

and, by Taylor’s formula,

k

n∑
j=1

‖(Gh −G)τ j‖2 ≤ Ckh2|τ1|2−1 + Ckh2
n∑

j=2

|τ j |2−1

= Ckh2

∣∣∣∣∣ut(k) − 1

k

∫ k

0

ut(τ) dτ

∣∣∣∣∣
2

−1

+ Ckh2
n∑

j=2

∣∣∣∣∣
1

k

∫ tj

tj−1

(s− tj−1)utt(s) ds

∣∣∣∣∣
2

−1

≤ Ch2‖v‖2 + Ch2
n∑

j=2

∫ tj

tj−1

k(s− tj−1)|utt(s)|2−1 ds

≤ Ch2‖v‖2 + Ch2
n∑

j=2

∫ tj

tj−1

s2|utt(s)|2−1 ds ≤ Ch2‖v‖2,
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and

k

n∑
j=1

‖Gτ j‖2 = k

n∑
j=1

∥∥∥∥∥
1

k

∫ tj

tj−1

(s− tj−1)ut(s) ds

∥∥∥∥∥
2

≤ k

n∑
j=1

∫ tj

tj−1

(s− tj−1)‖ut(s)‖2 ds ≤ Ck

∫ tn

0

s‖ut(s)‖2 ds ≤ k‖v‖2.

We therefore obtain

(Ghe
n, en)1/2 +

⎛
⎝k

n∑
j=1

‖ej‖2

⎞
⎠

1/2

≤ C(k1/2 + h)‖v‖,(2.25)

which implies that (2.21) holds.

3. Proofs of Theorems 1.1 and 1.2. In this section, we will consider the
proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We have, by (1.8), with En
kh = r(kAh)n,

Un = En
khPhu0 +

n∑
j=1

∫ tj

tj−1

En−j
kh Phσ(U j−1) dW (s),

and, by the definition of the mild solution of (1.1), with E(t) = e−tA,

u(tn) = E(tn)u0 +

∫ tn

0

E(tn − s)σ(u(s)) dW (s).

Defining en = Un − u(tn) and Fn = En
khPh − E(tn), we write

en = Fnu0 +

n∑
j=1

∫ tj

tj−1

r(kAh)n−jPh

(
σ(U j−1) − σ(u(tj−1))

)
dW (s)

+

n∑
j=1

∫ tj

tj−1

r(kAh)n−jPh

(
σ(u(tj−1)) − σ(u(s))

)
dW (s)

+
n∑

j=1

∫ tj

tj−1

(
r(kAh)n−jPh − E(tn − tj)

)
σ(u(s)) dW (s)

+

n∑
j=1

∫ tj

tj−1

(
E(tn − tj) − E(tn − s)

)
σ(u(s)) dW (s)

=

5∑
j=1

Ij .

Thus

‖en‖L2(Ω;H) ≤ C

5∑
j=1

‖Ij‖L2(Ω;H).

For I1, we have, by (2.16) with v = u0,

‖I1‖ = ‖Fnu0‖ ≤ C(kβ/2 + hβ)|u0|β ,
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which implies that ‖I1‖L2(Ω;H) ≤ C(kβ/2 + hβ)‖u0‖L2(Ω;Ḣβ).

For I2, we have, by isometry, the stability of r(λ), and the Lipschitz condition (i),

‖I2‖2
L2(Ω;H) = E

∥∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

r(kAh)n−jPh

(
σ(U j−1) − σ(u(tj−1))

)
dW (s)

∥∥∥∥∥∥
2

= k

n∑
j=1

E
∥∥∥r(kAh)n−jPh

(
σ(U j−1) − σ(u(tj−1))

)∥∥∥2

L0
2

≤ k

n∑
j=1

‖r(kAh)n−jPh‖2 E‖σ(U j−1) − σ(u(tj−1))‖2
L0

2

≤ Ck

n∑
j=1

E‖U j−1 − u(tj−1)‖2 = C

n∑
j=1

∫ tj

tj−1

E‖ej−1‖2 ds

≤ Ck

n∑
j=1

‖ej‖2.

For I3, we have, by Lemma 2.7, for 0 ≤ γ < β ≤ 1,

‖I3‖2
L2(Ω;H) =

n∑
j=1

∫ tj

tj−1

E
∥∥∥r(kAh)n−jPh

(
σ(u(tj−1)) − σ(u(s))

)∥∥∥2

L0
2

ds

≤ C

n∑
j=1

∫ tj

tj−1

E‖u(tj−1) − u(s)‖2 ds

≤ C

⎛
⎝ n∑

j=1

∫ tj

tj−1

(s− tj−1)
γ ds

⎞
⎠
(
E|u0|2γ + sup

0≤s≤T
E‖u(s)‖2

)

≤ Ckγ
(
E|u0|2γ + sup

0≤s≤T
E‖u(s)‖2

)
.

For I4, we have

‖I4‖2
L2(Ω;H) = E

∥∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

Fn−jσ(u(s)) dW (s)

∥∥∥∥∥∥
2

=

n∑
j=1

∫ tj

tj−1

E‖Fn−jA
(1−β)/2A(β−1)/2σ(u(s))‖2

L0
2
ds

≤ C

⎛
⎝k

n∑
j=1

‖FjA
(1−β)/2‖2

⎞
⎠ sup

0≤s≤T
E‖u(s)‖2.

We will show that

k

n∑
j=1

‖FjA
(1−β)/2‖2 ≤ C(kβ + h2β).(3.1)

Assuming this for the moment, we get

‖I4‖2
L2(Ω;H) ≤ C(kβ + h2β) sup

0≤s≤T
E‖u(s)‖2.
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For I5, we have

‖I5‖2
L2(Ω;H) = E

∥∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

(E(tn − tj) − E(tn − s))σ(u(s)) dW (s)

∥∥∥∥∥∥
2

=

n∑
j=1

∫ tj

tj−1

E‖(E(tn − tj) − E(tn − s))A(1−β)/2A(β−1)/2σ(u(s))‖2
L0

2
ds

≤ C

⎛
⎝ n∑

j=1

∫ tj

tj−1

‖(E(tn − tj) − E(tn − s))A(1−β)/2‖2 ds

⎞
⎠ sup

0≤s≤T
E‖u(s)‖2.

Noting that, by Lemmas 2.2 and 2.3,

n∑
j=1

∫ tj

tj−1

‖(E(tn − tj) − E(tn − s))A(1−β)/2‖2 ds

=

n∑
j=1

∫ tj

tj−1

‖A1/2E(tn − tj)A
−β/2(I − E(tj − s))‖2 ds

≤ Ckβ
n∑

j=1

∫ tj

tj−1

‖A1/2E(tn − tj)‖2 ds

= Ckβ

⎛
⎝ n∑

j=1

k‖A1/2E(tn − tj)‖2

⎞
⎠ ≤ Ckβ ,

we have

‖I5‖2
L2(Ω;H) ≤ Ckβ sup

0≤s≤T
E‖u(s)‖2.

It remains to show (3.1). In fact, by (2.17),

k

n∑
j=1

‖FjA
(1−β)/2‖2 = k

n∑
j=1

(
sup
v 	=0

‖FjA
(1−β)/2v‖
‖v‖

)2

= sup
v 	=0

k
∑n

j=1 ‖FjA
(1−β)/2v‖2

‖v‖2

≤ sup
v 	=0

C(kβ + h2β)|A(1−β)/2v|2β−1

‖v‖2
≤ C(kβ + h2β).

Together these estimates show, for 0 ≤ γ < β ≤ 1,

E‖en‖2 ≤ C(kγ + h2β)E|u0|2β + Ck

n∑
j=1

E‖ej‖2(3.2)

+ C(kγ + h2β) sup
0≤s≤T

E‖u(s)‖2.

By the discrete Gronwall lemma, we get

E‖en‖2 ≤ C(kγ + h2β)

(
E|u0|2β + sup

0≤s≤T
E‖u(s)‖2

)
,(3.3)
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which implies that

‖en‖L2(Ω;H) ≤ C(kγ/2 + hβ)

(
E|u0|L2(Ω;Ḣβ) + sup

0≤s≤T
‖u(s)‖L2(Ω;H)

)
.(3.4)

The proof is now complete.
Now we turn to the proof of Theorem 1.2.
Proof of Theorem 1.2. We first consider the case l = 0. We have, by (1.8), with

En
kh = r(kAh)n, noting that σ(·) = I,

Un = En
khPhu0 +

n∑
j=1

∫ tj

tj−1

En−j+1
kh Ph dW (s),

and, by the definition of the mild solution of (1.1), with E(t) = e−tA,

u(tn) = E(tn)u0 +

∫ tn

0

E(tn − s) dW (s).

Defining en = Un − u(tn) and Fn = En
khPh − E(tn), we write

en = Fnu0 +

n∑
j=1

∫ tj

tj−1

Fn−j+1 dW (s)

+

n∑
j=1

∫ tj

tj−1

(
E(tn − tj−1) − E(tn − s)

)
dW (s)

= I + II + III.

Thus

‖en‖L2(Ω;H) ≤ C
(
‖I‖L2(Ω;H) + ‖II‖L2(Ω;H) + ‖III‖L2(Ω;H)

)
.

For I, we have, by (2.16) with v = u0,

‖I‖ = ‖Fnu0‖ ≤ C(kβ/2 + hβ)|u0|β ,

which implies that ‖I‖L2(Ω;H) ≤ C(kβ/2 + hβ)‖u0‖L2(Ω;Ḣβ).
For II, we have, by the isometry property,

‖II‖2
L2(Ω;H) = E

∥∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

Fn−j+1 dW (s)

∥∥∥∥∥∥
2

=

n∑
j=1

∫ tj

tj−1

‖Fn−j+1‖2
L0

2
ds

=
∞∑
l=1

⎛
⎝k

n∑
j=1

‖Fn−j+1Q
1/2el‖2

⎞
⎠,

where {el} is any orthonormal basis in H. Using (2.17) with v = Q1/2el, we obtain

‖II‖2
L2(Ω;H) ≤ C

∞∑
l=1

(kβ + h2β)|Q1/2el|2β−1

= C

∞∑
l=1

(kβ + h2β)‖A(β−1)/2Q1/2el‖2 = C(kβ + h2β)‖A(β−1)/2‖2
L0

2
.
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For III, we have, by the isometry property,

‖III‖2
L2(Ω;H) =

n∑
j=1

∫ tj

tj−1

∥∥∥(E(tn − tj−1) − E(tn − s)
)∥∥∥2

L0
2

ds

=

∞∑
l=1

n∑
j=1

∫ tj

tj−1

∥∥∥A−β/2
(
E(s− tj−1) − I

)
Aβ/2E(tn − s)Q1/2el

∥∥∥2

ds.

Using (2.6), and (2.4) with v = A(β−1)/2Q1/2el, we obtain

‖III‖2
L2(Ω;H) ≤ Ckβ

∞∑
l=1

∫ tn

0

‖A1/2E(tn − s)A(β−1)/2Q1/2el‖2 ds(3.5)

≤ Ckβ
∞∑
l=1

‖A(β−1)/2Q1/2el‖2 = Ckβ‖A(β−1)/2‖2
L0

2
,

which completes the proof of (1.9).
In particular, if W (t) is a Wiener process with Tr(Q) < ∞, then we can choose

β = 1 since ‖I‖L0
2

= Tr(Q).
Now we turn to the case l = 1. We have, by (2.18),

‖I‖L2(Ω;Ḣ−1) ≤ Chβ+1‖u0‖L2(Ω;Ḣβ) for 0 ≤ β ≤ 1.

For II, we have, by the isometry property and (2.19) with v = Q1/2el,

‖II‖2
L2(Ω;Ḣ−1)

= E

∥∥∥∥∥∥
n∑

j=1

∫ tj

tj−1

A−1/2Fn−j+1 dW (s)

∥∥∥∥∥∥
2

=

n∑
j=1

∫ tj

tj−1

‖A−1/2Fn−j+1‖2
L0

2
ds

=

∞∑
l=1

⎛
⎝k

n∑
j=1

‖A−1/2Fn−j+1Q
1/2el‖2

⎞
⎠

≤ C(kβ+1 + h2(β+1))�2k

∞∑
l=1

‖A(β−1)/2Q1/2el‖2

≤ C(kβ+1 + h2(β+1))�2k‖A(β−1)/2‖2
L0

2
.

For III, we have, by the isometry property,

‖III‖2
L2(Ω;Ḣ−1)

=

n∑
j=1

∫ tj

tj−1

∥∥∥A−1/2
(
E(tn − tj−1) − E(tn − s)

)∥∥∥2

L0
2

ds

=
∞∑
l=1

n∑
j=1

∫ tj

tj−1

∥∥∥A−(β+1)/2
(
E(s− tj−1) − I

)
A1/2E(tn − s)A(β−1)/2Q1/2el

∥∥∥2

ds.

Following the proof of (3.5), we get

‖III‖2
L2(Ω;Ḣ−1)

≤ Ckβ‖A(β−2)/2‖2
L0

2
,
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which completes the proof of (1.11).

Similarly, if W (t) is a Wiener process with Tr(Q) < ∞, then we can choose
β = 1.

If σ(·) = I and d = 1, we can specialize to the case Q = I.

Corollary 3.1. Let Un and u(tn) be the solutions of (1.8) and (1.1), respec-

tively. Assume that σ(·) = I. Assume that A = − ∂2

∂x2 and D(A) = H1
0 (0, 1)∩H2(0, 1).

If W (t) is a cylindrical Wiener process with Q = I, then we have, for u0 ∈ L2(Ω; Ḣβ),
for l = 0, 1, with �k = log(T/k), where T = tn,

‖Un − u(tn)‖L2(Ω;Ḣ−l) ≤ C(k(β+l)/2 + h(β+l))
(
‖u0‖L2(Ω;Ḣβ) + �k

)
for 0 ≤ β <

1

2
.

4. Computational analysis. In this section we consider how to compute the
approximate solution Un of the solution u of (1.1). For simplicity, we assume that
σ(·) = I. Recall that the Wiener process W (t) with covariance operator Q has the
form (see Da Prato and Zabczyk [8, Chapter 4])

W (t) =
∞∑
j=1

γ
1/2
j ejβj(t),(4.1)

where {γj , ej}∞j=1 is an eigensystem of Q, and {βj(t)}∞j=1 are independently and iden-
tically distributed (iid) real-valued Brownian motions. If Tr(Q) < ∞, then W (t) is
an H-valued process. In fact,

E‖W (t)‖2 = E

∞∑
j=1

γjβj(t)
2 =

∞∑
j=1

γj
(
Eβj(t)

2
)

= tTr(Q) < ∞.

If Tr(Q) = ∞, for example Q = I, then W (t) is not H-valued.

Let Un be the approximation in Sh of u(t) at t = tn = nk. The backward Euler
method is to find Un ∈ Sh such that, with ∂̄Un = (Un−Un−1)/k, n ≥ 1, U0 = Phu0,

(∂̄Un, χ) + (AhU
n, χ) =

(
1

k

∫ tn

tn−1

Ph dW (s), χ

)
∀χ ∈ Sh,(4.2)

where Ah, Ph are defined in the introduction.

Since W (t) is Ḣβ−1-valued with β ∈ [0, 1], PhW (t) is well defined. We therefore
can write

∫ tn

tn−1

Ph dW (s) = Ph

(
W (tn) −W (tn−1)

)
= Ph

∞∑
j=1

γ
1/2
j

(
βj(tn) − βj(tn−1)

)
.

Here

1√
k

(
βj(tn) − βj(tn−1)

)
= N (0, 1),

where N (0, 1) is the real-valued Gaussian random variable.
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Thus the right-hand side of (4.2) can be computed by truncating the following
series to J terms:

(
1

k

∫ tn

tn−1

Ph dW (s), χ

)
=

⎛
⎝1

k

∞∑
j=1

γ
1/2
j ej

(
βj(tn) − βj(tn−1)

)
, χ

⎞
⎠(4.3)

=
1

k

∞∑
j=1

γ
1/2
j

(
βj(tn) − βj(tn−1)

)
(ej , χ)

≈ 1

k

J∑
j=1

γ
1/2
j

(
βj(tn) − βj(tn−1)

)
(ej , χ).

Denote by Nh the dimension of Sh. Below we will show that it is sufficient to
choose J = Nh in order to achieve the required convergence order. To see this, let
us consider the semidiscrete approximation solution uh of u of (1.1). Recall that the
semidiscrete solution uh satisfies

uh(t) = Eh(t)Phu0 +

∫ t

0

Eh(t− s)Ph dW (s)(4.4)

= Eh(t)Phu0 +

∞∑
j=1

∫ t

0

Eh(t− s)Phejγ
1/2
j dβj(s).

Truncating the series in the right-hand side of (4.4), we have

uJ
h(t) = Eh(t)Phu0 +

J∑
j=1

∫ t

0

Eh(t− s)Phejγ
1/2
j dβj(s).(4.5)

We then have the following lemma with respect to the L2 norm in space.
Lemma 4.1. Let uJ

h and uh be defined by (4.4) and (4.5), respectively. Assume
that {Sh} is defined on a quasi-uniform family of triangulations, and let Nh be the
dimension of Sh. Assume that ‖A(β−1)/2‖L0

2
< ∞ for some β ∈ [0, 1]. If J ≥ Nh,

then we have, for t > 0,

‖uJ
h(t) − uh(t)‖L2(Ω,H) ≤ Chβ‖A(β−1)/2‖L0

2
.(4.6)

Proof. We have, by the isometry property, with Fh(t) = Eh(t)Ph − E(t),

E‖uJ
h(t) − uh(t)‖2 = E

∥∥∥∥∥∥
∞∑

j=J+1

∫ t

0

Eh(t− s)Phejγ
1/2
j dβj(s)

∥∥∥∥∥∥
2

=

∞∑
j=J+1

γj

∫ t

0

‖Eh(t− s)Phej‖2 ds

≤ 2

∞∑
j=J+1

γj

∫ t

0

‖E(t− s)ej‖2 ds

+ 2

∞∑
j=J+1

γj

∫ t

0

‖Fh(t− s)ej‖2 ds

= I + II.
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For I, we have

I = 2

∞∑
j=J+1

γj

∫ t

0

e−2(t−s)λj ds ≤
∞∑

j=J+1

γjλ
−1
j

=

∞∑
j=J+1

λ−β
j λβ−1

j γj ≤ λ−β
J+1‖A(β−1)/2‖2

L0
2
.

For II, we have, noting that
∫ t

0
‖Fh(t)v‖2 dt ≤ Chβ |v|2β−1 (see Thomée [28]),

II ≤ Ch2β
∞∑

j=J+1

γj |ej |2β−1 ≤ Ch2β
∞∑
j=1

|Q1/2ej |2β−1 = Ch2β‖A(β−1)/2‖2
L0

2
.

Thus we get

E‖uJ
h(t) − uh(t)‖2 ≤ C(λ−β

J+1 + h2β)‖A(β−1)/2‖2
L0

2
.

Hence (4.6) follows from the following obvious facts: with some constant C which
may be different in different inequalities,

λ−1
J+1 ≤ CJ−2/d ≤ CN

−2/d
h ≤ Ch2,

where d is the dimension of the spatial domain D.
Under the same assumptions as in Lemma 4.1, we can also show the following

results with respect to the weak norm in space:

‖uJ
h(t) − uh(t)‖L2(Ω,Ḣ−1) ≤ Chβ+1�h‖A(β−1)/2‖L0

2
.

5. Numerical illustrations. In this section, we will show some numerical ex-
periments. We consider the following one-dimensional stochastic partial differential
equation driven by white noise (see Allen, Novosel, and Zhang [1] and also Du and
Zhang [11]):

⎧⎪⎨
⎪⎩

∂u
∂t (t, x) − ∂2u

∂2x (t, x) + bu(t, x) = ∂2W
∂t∂x (t, x) + g(t, x), t > 0,

u(0, x) = 10x2(1 − x)2, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

(5.1)

where ∂2W
∂t∂x denotes the mixed second order derivative of the Brownian sheet and

b = 0.5, and

g(t, x) = 10(1 + b)x2(1 − x)2et − 10(2 − 12x + 12x2)et.

Let Un be the approximation in Sh of u(t) at t = tn = nk. Define the following
backward Euler method of (5.1), with ∂̄Un = (Un − Un−1)/k, n ≥ 1, U0 = Phu0:

(∂̄Un, χ) + ((Un)′, χ′) + b(Un, χ) =

(
1

k

∫ tn

tn−1

Ph dW (s), χ

)
+ (gn, χ) ∀χ ∈ Sh,

(5.2)

where (Un)′, χ′ denote the derivatives with respect to the spatial variable, where W (t)
is given by (4.1) with γj = 1.
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Table 5.1

Ratios of error by using different time steps.

i ki S(ki)/S(ki+1) D(ki)/D(ki+1)

1 2−1 1.1705 2.3468

2 2−2 1.1801 2.2778

3 2−3 1.2041 2.2562

4 2−4 1.2322 2.1845

5 2−5 1.2441 2.1025

6 2−6 1.2049 2.0938

7 2−7

We approximate the stochastic integral
∫ tn
tn−1

PhdW (s) by

(∫ tn

tn−1

PhdW,χ

)
≈

⎛
⎝Nh∑

j=1

γ
1/2
j ej(βj(t) − βj−1(t)), χ

⎞
⎠,

where ej =
√

2 sin jπx. By Corollary 3.1 and section 4, we see that there exists a
constant C > 0 such that

‖Un − u(tn)‖L2(Ω,H) ≤ C(kβ/2 + hβ) for 0 ≤ β <
1

2
.(5.3)

In our experiment, we want to see how the error estimates in (5.3) depend on k.
To do this, we choose fixed small h > 0 and a sequence of moderate time steps ki.
In Table 5.1, we choose h = 2−8 and different time steps ki = 2−i, i = 1, . . . , 7. We
consider M = 100 simulations. For each simulation ωj , j = 1, 2, . . . ,M , we generate
Nh independent Brownian motions βl(t), l = 1, 2, . . . , Nh, and compute Un ≈ u(tn)
at time tn = 1 by using the different time step ki. We then compute the following
L2 norm of the error at tn = 1 for each simulation ωj , j = 1, 2, . . . ,M ,

ε(ki, ωj) = ε(ki, ωj , tn) = ‖Un(ωj) − u(tn, ωj)‖2,

where the “true” solution u(tn, ωj) is approximated by a solution computed by small
time step k = 2−10 and space step h = 2−8. We then average ε(ki, ωj) with respect
to ωj to obtain the following approximation of ‖Un − u(tn)‖L2(Ω,H) for fixed time
step ki:

S(ki) =

⎛
⎝ 1

M

M∑
j=1

ε(ki, ωj)

⎞
⎠

1/2

=

⎛
⎝ 1

M

M∑
j=1

‖Un(ωj) − u(tn, ωj)‖2

⎞
⎠

1/2

≈ ‖Un − u(tn)‖L2(Ω,H),

where

‖Un − u(tn)‖L2(Ω,H) =

(∫
Ω

‖Un(ω) − u(tn, ω)‖2 dP(ω)

)1/2

.

Since the convergence order is almost O(k1/4), we expect that

S(ki)

S(ki+1)
≈

(
ki

ki+1

)1/4

= 21/4 ≈ 1.19
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Table 5.2

The approximation of Eu(1, 0.5) and E(u(1, 0.5))2.

h k EU(1, 0.5) E(U(1, 0.5))2

1/4 1/4 1.5281 2.4691
1/4 1/6 1.6364 2.6367
1/4 1/8 1.6473 2.6701
1/4 1/16 1.6977 2.7525
1/4 1/32 1.7011 2.8376
1/8 1/4 1.5278 2.5276
1/8 1/6 1.6308 2.6317
1/8 1/8 1.6579 2.7046
1/8 1/16 1.6802 2.7959
1/8 1/32 1.6993 2.8752
1/16 1/4 1.5259 2.4978
1/16 1/6 1.6364 2.6117
1/16 1/8 1.6492 2.6918
1/16 1/16 1.6889 2.7572
1/16 1/32 1.6951 2.8875
1/32 1/4 1.5357 2.4896
1/32 1/6 1.6674 2.6017
1/32 1/8 1.6894 2.6818
1/32 1/16 1.6951 2.7972
1/32 1/32 1.7003 2.8975

for sufficiently small h such that the error estimates are dominated by ki. Table 5.1
shows that the numerical result is consistent with the above analysis. To compare with
the deterministic convergence order, which is O(k) for the backward Euler method,
in Table 5.1, we also compute D(ki) = ‖Un−u(tn)‖, the L2 norm of the error at time

tn = 1 for fixed time step ki in the deterministic case. We see that D(ki)
D(ki+1)

≈ 2, as

expected.

In Allen, Novosel, and Zhang [1] and Du and Zhang [11], they show the numerical
approximation of E(u(t, x)) and E(u(t, x)2) at time t = 1 and x = 0.5 for (5.1).
In Table 5.2, we obtain approximation values similar to those in their papers for
different pairs k, h. In our experiment, for each pair (k, h), 1000 runs are performed
and Nh independent Brownian motions are generated in each run. We then calculate
the average. In Table 5.2, U(1, 0.5) denotes the approximation of u(t, x) at t = 1 and
x = 0.5. The computational results converge as k and h approach 0.

Let us review the numerical methods in [1] and [11]. They consider both finite
element and finite difference methods for (5.1). They approximate the space-time
white noise by using piecewise constant functions on a partition [tn−1, tn]× [xj−1, xj ],
1 ≤ n ≤ N , 1 ≤ j ≤ J , of [0, T ] × [0, 1]. More precisely, with k = tn − tn−1 and
h = xj − xj−1,

dW (t, x) ≈ dŴ (t, x) =
∂2Ŵ (t, x)

∂t∂x
dtdx =

1

kh

N∑
n=1

J∑
j=1

ηnj
√
khχn(t)χj(x)dtdx,

where

χn(t) =

{
1, tn−1 ≤ t ≤ tn,

0 otherwise,
χj(x) =

{
1, xj−1 ≤ x ≤ xj ,

0 otherwise,
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and

ηnj =
1

kh

∫ tn

tn−1

∫ xj

xj−1

dW (t, x) = N (0, 1),

where N (0, 1) is the standard real-valued Gaussian random variable and ηnj are in-

dependently and identically distributed. It is obvious that ∂2Ŵ
∂t∂x ∈ L2(0, 1) for fixed

t ∈ [0, T ], ω ∈ Ω. Applying the standard finite element and finite difference methods
for the new “simpler” problems, they obtain the approximate solution Un ≈ u(tn) and
the corresponding error estimates. For example, using the backward Euler method,
the finite element approximate solution Un satisfies, with �k = 1 + log(T/k),

‖Un − u(tn)‖L2(Ω;H) ≤ C�k(k
1/4 + h1/2),

which is consistent with our estimates in Corollary 3.1.
We can also approximate the stochastic integral by(∫ tn

tn−1

dŴh, χ

)
=

⎛
⎝Nh∑

j=1

α
1/2
j ϕj(βj(t) − βj−1(t)), χ

⎞
⎠,

where

Ŵh =

Nh∑
j=1

α
1/2
j ϕjβj(t),

where ϕj is the finite element basis and αj is decided specially by solving the following
linear system in order to compare the approximation (4.3):

Nh∑
j=1

αj(ϕj , χ)2 =

Nh∑
j=1

γj(ej , χ)2 ∀χ ∈ Sh.

The right-hand side of the above system is related to the Wiener process PhW . Recall
that PhW is an Sh-valued Wiener process with covariance operator Qh = PhQ and

(Qhχ, χ) = (PhQχ,χ) =

∞∑
j=1

γj(ej , χ)2 ∀χ ∈ Sh.

Below we will give a lemma to show the property of the covariance operator of Ŵh.
Lemma 5.1. Ŵh is an Sh-valued Wiener process with covariance operator Q̂h,

where Q̂h satisfies

(Q̂hχ, χ) =

Nh∑
j=1

γj(ej , χ)2.

Proof. Noting that αj is decided by the linear system

Nh∑
j=1

αj(ϕj , χ)2 =

Nh∑
j=1

γj(ej , χ)2,

we have

(E(Ŵh ⊗ Ŵh)χ, χ) = (tQ̂hχ, χ) = E(Ŵh, χ)2

= t

Nh∑
j=1

αj(ϕj , χ)2 = t

Nh∑
j=1

γj(ej , χ)2 ∀χ ∈ Sh.
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[16] I. Gyöngy and D. Nualart, Implicit scheme for stochastic parabolic partial differential equa-
tions driven by space-time white noise, Potential Anal., 7 (1997), pp. 725–757.

[17] E. Hausenblas, Numerical analysis of semilinear stochastic evolution equations in Banach
spaces, J. Comput. Appl. Math., 147 (2002), pp. 485–516.

[18] E. Hausenblas, Approximation for semilinear stochastic evolution equation, Potential Anal.,
18 (2003), pp. 141–186.

[19] P. E. Kloeden and S. Shott, Linear-implicit strong schemes for Itô–Galerkin approximations
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PSEUDO-TRANSIENT CONTINUATION FOR NONSMOOTH
NONLINEAR EQUATIONS ∗

K. R. FOWLER† AND C. T. KELLEY‡

Abstract. Pseudo-transient continuation is a Newton-like iterative method for computing
steady-state solutions of differential equations in cases where the initial data are far from a steady
state. The iteration mimics a temporal integration scheme, with the time step being increased as
steady state is approached. The iteration is an inexact Newton iteration in the terminal phase.

In this paper we show how steady-state solutions to certain ordinary and differential algebraic
equations with nonsmooth dynamics can be computed with the method of pseudo-transient continu-
ation. An example of such a case is a discretized PDE with a Lipschitz continuous, but nondifferen-
tiable, constitutive relation as part of the nonlinearity. In this case we can approximate a generalized
derivative with a difference quotient.

The existing theory for pseudo-transient continuation requires Lipschitz continuity of the Jaco-
bian. Newton-like methods for nonsmooth equations have been globalized by trust-region methods,
smooth approximations, and splitting methods in the past, but these approaches are not designed to
find steady-state solutions of time-dependent problems. The method in this paper synthesizes the
ideas from nonsmooth calculus and the method of pseudo-transient continuation.

Key words. pseudo-transient continuation, nonlinear equations, semismooth functions, Clarke
differential

AMS subject classifications. 65H10, 65H20, 65L05
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1. Introduction. In this paper we show how pseudo-transient continuation
(Ψtc) can be used to solve a class of nonsmooth nonlinear equations. Ψtc is a
predictor-corrector method for efficient integration of a time-dependent differential
equation to steady state. The objective of the method is not temporal accuracy but
rather to resolve the transient behavior of the solution until the iteration is close to
steady state, and then to increase the “time step” and transition to a fast Newton-like
method.

In this paper we extend the theoretical convergence results of [8, 19] to problems
with certain nonsmooth nonlinearities and, thereby, partially explain the results re-
ported in [9, 11]. We also show how generalized derivatives can be approximated by
finite differences, and how these approximate derivatives can be used effectively both
in locally convergent iterations, such as those which arise in temporal integration, and
in the context of Ψtc. This aspect of the work is motivated by several papers on sim-
ulation of unsaturated flow [11,15,16,25,32,33], in which Lipschitz continuous spline
approximations to the non-Lipschitz continuous van Genuchten [35] and Mualem [26]
constitutive laws are used. These nonsmooth functions are then differentiated with
finite differences as if they were smooth. Our results explain the success reported
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in those papers. Another aspect of the paper is an extension of the local results
in [10,22,28,30].

Ψtc methods are particularly appropriate for the types of nonsmooth nonlinear-
ities which we discuss in this paper. Traditional methods, such as line searches, for
globalizing iterative methods for nonlinear equations can fail as commonly imple-
mented in practice for both smooth and nonsmooth equations [8, 9, 19]. The existing
global convergence results for nonsmooth nonlinear equations are based on either line
searches for an inexact Newton formulation [10, 23], a sequence of smooth approxi-
mations [5,31], methods based on the one-dimensional secant method [29], or explicit
treatment of the nonsmoothness [21]. Only the latter two approaches admit approx-
imation of the generalized Jacobian by a difference, and we use the ideas of [29] in
this paper. Ψtc allows one to deal with the nonsmoothness directly and exploits the
dynamics to guarantee convergence to x∗, the solution one wants.

In section 2 we review the relevant results from nonsmooth analysis (section 2.1)
and Ψtc (section 2.2). Then we describe the setting for the new results. In section
3 we show how finite difference approximations of generalized Jacobians affect the
local convergence of inexact Newton methods for nonsmooth problems. We use those
results in section 4, where we state and prove our local and global convergence results
for Ψtc. We present a numerical example in section 5.

Some extensions of our results to infinite dimensions are possible, using ideas
from [6,12,13,20,34] if the appropriate compactness conditions hold. These extensions
will be explored in a subsequent paper.

2. Previous results. In this section we review the prior results about Ψtc and
nonsmooth analysis that we will need for this paper.

In this paper the norm will be the scaled discrete l2 norm on RN ,

‖w‖ =
1√
N

‖w‖2,

unless stated otherwise. The ball of radius ε about a point x ∈ RN will be denoted
by

B(x, ε) = {z | ‖x− z‖ < ε}.

As is standard, we will let x∗ denote the solution of F (x) = 0, and let

e = x− x∗

denote the error. We will let (x)i denote the ith component of the vector x.

2.1. Nonsmooth analysis. In this section we review the concepts from non-
smooth analysis [7, 24] that we will need for our convergence results. We then state
the local convergence result from [22,30] that we extend in this paper.

Let F : RN → RN be locally Lipschitz continuous. This implies that F is Fréchet
differentiable almost everywhere. We let DF denote the set of points where F is
Fréchet differentiable. The generalized Jacobian [7] of F at x ∈ RN is the set

∂F (x) = co

{
lim

xj→x;xj∈DF

F ′(xj)

}
,(2.1)

where co denotes the convex hull.
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We will consider extensions of the Newton-like iteration

xn+1 = xn − V −1
n F (xn),(2.2)

where Vn ∈ ∂F (xn). Our results will be stated in terms of an inexact formulation,

xn+1 = xn + s,(2.3)

where

‖Vns + F (xn)‖ ≤ ηn‖F (xn)‖(2.4)

and Vn ∈ ∂F (xn).
The concept of semismoothness [24,30] is critical for the results in this paper.
Definition 2.1. F is semismooth at x ∈ RN if F is locally Lipschitz continuous

and, for all w ∈ RN , the limit

lim
V ∈∂F (x+tw′),w′→w,t↓0

{V w′}(2.5)

exists.
Semismoothness is a useful concept [6, 30, 34] in the proofs of convergence and

local convergence rates of the iteration (2.2). In the standard theory for Lipschitz
continuously differentiable F , local quadratic convergence follows from nonsingularity
of the Jacobian F ′(x∗) at the solution and the Lipschitz continuity of F ′. To obtain
convergence rates, in the nonsmooth case, one must prove that the Newton iteration
is well defined and quantify the degree of nonsmoothness.

Lemma 2.2, taken from [28], and Lemma 2.4 are the results that are needed to
prove local superlinear convergence of (2.2).

Lemma 2.2. F is semismooth at x ∈ RN if and only if

lim
w→0,V ∈∂F (x+w)

‖F (x + w) − F (x) − V w‖
‖w‖ = 0.(2.6)

If F is semismooth, then [30] the directional derivatives

F ′(x : w) = lim
h→0

F (x + hw) − F (x)

h

exist for all x,w ∈ RN .
To obtain convergence rates one needs a stronger condition than semismoothness

[30].
Definition 2.3. F is semismooth of order p at x if for all w ∈ RN and V ∈

∂F (x + w)

F (x + w) − F (x) − V w = O(‖w‖1+p)(2.7)

as w → 0.
Lemma 2.4. Let F be semismooth, let F (x∗) = 0, and assume that all matrices

in ∂F (x∗) are nonsingular. Then there are M and Δ such that if x ∈ B(x∗,Δ) and
V ∈ ∂F (x), then ‖V −1‖ ≤ M .

These results have been used to prove several convergence theorems [10,22,28,30]
for (2.2) and (2.3). Theorem 2.5 is a combination of these local convergence results
and is the basis for the new algorithms in this paper.
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Theorem 2.5. Let F : RN → RN with F (x∗) = 0. Assume that F is semismooth
at x∗ and that all matrices in ∂F (x∗) are nonsingular. Then there are η̄, δ̄, K > 0 such
that if x0 ∈ B(x∗, δ̄) and ηn ≤ η̄, then the inexact Newton iteration (2.3) converges to
x∗ and

‖en+1‖ ≤ Kηn‖en‖ + o(‖en‖).

Moreover, if F is semismooth of order p at x∗, then

‖en+1‖ ≤ K(ηn‖en‖ + ‖en‖1+p).

In previous work [12, 17, 20, 21] on nonsmooth nonlinear equations in function
spaces and their discretizations, we used properties of the solution to isolate a smooth
component of the nonlinearity. Each problem required a different approach, and
all assumed that the nonsmooth component was small. In those papers, mesh-
independent convergence results were obtained, and standard implementations of
matrix-free Newton–Krylov methods worked well.

The formulation we consider in this paper is different. Here one does not have
to explicitly split the operator into smooth and nonsmooth parts, a significant ad-
vantage in complicated applications [32]. However, we know of no general proofs
of mesh-independent convergence rates, a problem also mentioned in [34]. In fact,
the numerical results in section 5 show mesh-dependent performance of the iteration,
especially in the midrange. Mesh-dependent convergence was also reported in [5].
In section 5.4 we illustrate this phenomenon and show how a nested iteration can
overcome it.

Numerical differentiation, a topic we consider in section 3.1, is a simple matter
if the smooth and nonsmooth parts of the nonlinearity are split. Here, we use meth-
ods from [29], which can prove accuracy only if one is differentiating in coordinate
directions, and only then for special classes of operators. Since the directions in a
matrix-free Newton–Krylov solver are not predictable, neither the results in [29] nor
our results apply to those methods.

2.2. Pseudo-transient continuation. The objective of Ψtc, as we present it
here, is to find the steady-state solution of the semiexplicit index-one differential
algebraic equation (DAE)

D

(
u
v

)′
= −

(
f(u, v)
g(u, v)

)
= −F (x), x(0) = x0.(2.8)

Here x = (u, v)T ∈ C([0,∞], RN1+N2). The functions u : [0,∞] → RN1 and v :
[0,∞] → RN2 are to be found. The differential variables u and the algebraic variables
v are clearly separated in the semiexplicit case where

D =

(
D11 0
0 0

)
,

where D11 is a nonsingular scaling matrix. A good general reference for DAEs is [4].
We assume that the initial data for (2.8) are consistent (i.e., g(u(0), v(0)) = 0)

and seek the solution x∗ to F (x∗) = 0 that satisfies

lim
t→∞

x(t) = x∗.
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If (2.8) is a discretization in space of a PDE and the initial data are far from
the desired steady state, the application of a conventional method, such as a line
search [18], to the time-independent equation

F (x) = 0

may fail to converge. Possible failure modes [9] are stagnation of the iteration at a
singularity of F ′, the Jacobian of F , and finding a solution other than x∗.

We formulate Ψtc as

xn+1 = xn − (δ−1
n D + F ′(xn))−1F (xn).(2.9)

In (2.9), {δn} is adjusted to efficiently find the steady-state solution rather than to
enforce temporal accuracy.

The convergence results in [8, 19] assume that the time step was updated with
“switched evolution relaxation” (SER) [27], i.e.,

δn = max

(
δn−1

‖F (xn−1)‖
‖F (xn)‖ , δmax

)
.(2.10)

In [8] the authors prove convergence for smooth F under the assumptions that
the DAE has index one in a certain uniform sense, that it has a global solution in
time, and that the solution converges to a steady state. The convergence result for
the exact η = 0 case is

‖xn+1 − x∗‖ = O(‖xn − x∗‖(δ−1
max + ‖xn − x∗‖))(2.11)

as n → ∞.
In this paper we relax the smoothness assumptions and consider the iteration

xn+1 = xn + s,(2.12)

where

‖(δ−1
n D + V (xn))s + F (xn)‖ ≤ ηn‖F (xn)‖,(2.13)

where V (xn) is near to the set ∂F (xn) in the sense that

V (xn) ∈ D(F, xn, C, h), for some small h,(2.14)

where, for x ∈ RN and h ≥ 0,

D(F, x,C, h) = {V | ‖V − V̄ ‖ ≤ Ch for some V̄ ∈ ∂F (x̄) and ‖x− x̄‖ ≤ h}.(2.15)

The sense in which V (xn) is close to ∂F (xn) is technical because ∂F (x) is a set-
valued function of x. The requirement that V (xn) ∈ D(F, xn, C, h) is, in a sense, a
requirement that a combination of the forward and backward errors be small.

In [8,9,11,19] we report on computational results that show that both the local and
global phases of the Ψtc iteration perform as (2.11) predicts even if the nonlinearity is
nonsmooth [8,9,11] and the derivative is approximated by differencing [11,14,15,32].

3. Local convergence theory. In this section we analyze the accuracy of a
finite difference approximation of a generalized Jacobian in the case where the non-
smoothness arises from a substitution operator. The approximation is accurate in
a combined forward and backward sense, and this affects not only the convergence
speed of an inexact Newton iteration but also the limiting accuracy.
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3.1. Finite difference approximations. The results in this paper are moti-
vated in part by our experience with nonsmooth nonlinear substitution operators. A
substitution operator on RN has the form

Φ(x) = (φ(x1), . . . , φ(xN ))T ,(3.1)

where φ : R → R. The generalized Jacobian of Φ is the set of diagonal matrices

∂Φ(x) = (∂φ(x1), . . . , ∂φ(xN ))T .

In this section, we consider maps that are compositions of smooth maps with
substitution operators. Let

G(x) = S(Φ(x)),

where S is continuously differentiable. S is then strictly differentiable in the sense
of [7], and hence the definition (2.1) of ∂G implies (see Theorem 2.6.6 and its corollary
in [7]) that

∂G(x) = S′(Φ(x))∂Φ(x),

where S′ is the Jacobian of S. Of interest here is the approximation of ∂G with a
finite difference approximation using the coordinate directions.

Let ∂F
h G(x) be the matrix whose ith column is

G(x + h1i) −G(x)

h
,

where 1i is the unit vector in the ith coordinate direction. We show that there is C > 0
such that the forward difference ∂F

h G approximates ∂G(x) in the sense described by
(2.15).

Theorem 3.1 can be derived from Lemma 2.3 of [29], which considers one-sided
difference approximations and derivatives by taking averages. We give a direct proof
which allows us to exhibit x̄ as a function of x.

Theorem 3.1. Let φ : R → R be Lipschitz continuous and differentiable except
at finitely many points {ξi}Mi=1. Let S be Lipschitz continuously differentiable in RN .
Then there is C > 0 such that for all h sufficiently small

∂F
h G(x) ∈ D(G, x,C, h).(3.2)

Proof. We begin by showing that it suffices to prove the result for scalar functions.
Differentiability of S and the Lipschitz continuity of φ imply that

G(x + h1i) −G(x) = S′(Φ(x))(Φ(x + h1i) − Φ(x)) + O(h2)

= S′(Φ(x̄))(Φ(x + h1i) − Φ(x)) + O(h2)

for all x̄ such that ‖x̄− x‖ ≤ h. Hence we need only prove the result for substitution
operators.

Since Φ is a substitution operator, the ith component of Φ(x + h1i) − Φ(x) is

φ((x)i + h) − φ((x)i),
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and we need only consider scalar functions. Now let

h < min
i,j

‖ξi − ξj‖∞;

then at most one ξ is in the interval [(x)i, (x)i+h]. If φ is differentiable in the interval
[(x)i, (x)i + h], then

φ((x)i + h) − φ((x)i)

h
= φ′((x)i) + O(h)

and we let the ith component of x̄ be (x)i.
Now assume that ξj ∈ [(x)i, (x)i + h] for some j. Let φ′

+(ξj) and φ′
−(ξj) be the

right- and left-handed derivatives at ξj :

φ′
±(ξj) = lim

h→0

φ(ξj ± h) − φ(ξj)

±h
.

Let ξj − (x)i = νh for ν ∈ [0, 1]. Then

φ((x)i + h) − φ((x)i) = φ(ξj + (1 − ν)h) − φ(ξj − νh)

= φ(ξj + (1 − ν)h) − φ(ξj) + φ(ξj) − φ(ξj − νh)

= (1 − ν)φ′
+(ξj) + νφ′

−(ξj) + O(h2).

Since

(1 − ν)φ′
+(ξj) + νφ′

−(ξj) ∈ ∂φ(ξj)

for all ν ∈ [0, 1], the proof is complete with (x̄)i = ξj .
A similar result holds for central differences. Let ∂C

h G(x) be the matrix whose
ith column is

G(x + h1i) −G(x− h1i)

2h
.

If S is Lipschitz continuously twice differentiable and φ is piecewise Lipschitz contin-
uously twice differentiable, then the statement of Theorem 3.1 with

‖V − V̄ ‖ ≤ Ch

in (2.15) is replaced by

‖V − V̄ ‖ ≤ Ch2.(3.3)

3.2. Local convergence. If the generalized Jacobian is approximated by a finite
difference, one cannot expect asymptotic convergence, because the accuracy in the
terminal phase of the iteration will be limited by the accuracy in the derivative. We
quantify this in Theorem 3.2, which extends the existing local convergence theorems
for inexact Newton methods for semismooth equations. The new assumption that
V (x) ∈ D(F, x,C, h) is motivated by the results in section 3.1.

Theorem 3.2. Assume that F is semismooth at x∗, that F (x∗) = 0, and that all
matrices in ∂F (x∗) are nonsingular. Assume that there is C > 0 such that

V (x) ∈ D(F, x,C, h)(3.4)
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for all x sufficiently near x∗.
Then there is ε such that if x0 ∈ B(x∗, ε), {ηn}, and h are sufficiently small, then

the iteration

xn+1 = xn + s,(3.5)

where

‖V (xn)s + F (xn)‖ ≤ η‖F (xn)‖,(3.6)

converges to x∗. Moreover, there is K > 0 such that

‖en+1‖ ≤ K((ηn + h)‖en‖ + h) + o(‖en‖),(3.7)

or, if F is semismooth of order p at x∗, then

‖en+1‖ ≤ K((ηn + h)‖en‖ + ‖en‖1+p + h).(3.8)

Proof. The plan of the proof is to compare xn+1 with the Newton iteration
from x̄n, where x̄n is the point specified in the definition of D. We can then apply
Theorem 2.5.

Let ε and h be small enough so that

‖V −1‖ ≤ M for all V ∈ ∂F (x) and x ∈ B(x∗, h + ε),(3.9)

which we can do by Lemma 2.4. We assume that xn ∈ B(x∗, ε) and will show, reducing
ε and h if necessary, that (3.8) holds and therefore that xn+1 ∈ B(x∗, ε).

By assumption, there are xn ∈ B(xn, h) and V̄n ∈ ∂F (xn) such that

‖V (xn) − V̄n‖ ≤ Ch.

Hence the step s is nearly an inexact Newton step from x̄n.
By (3.9), for h sufficiently small,

‖V (xn)−1‖ ≤ 1/(M−1 − Ch) ≤ 2M,

and hence

‖s‖ ≤ 2M(ηn + 1)‖F (xn)‖.

Therefore,

‖V̄ns + F (x̄n)‖ ≤ ‖V (xn)s + F (x̄n)‖ + Ch‖s‖

≤ ‖V (xn)s + F (xn)‖ + ‖F (xn) − F (x̄n)‖ + Ch‖s‖

≤ ηn‖F (xn)‖ + Lh + Ch(2M(1 + ηn)‖F (xn)‖),

(3.10)

where L is the Lipschitz constant of F . Since

‖F (xn)‖ ≤ ‖F (x̄n)‖ + Lh,

we may set

K0 = 1 + 2L + 2MC(1 + ηn) ≤ 1 + 2L + 4MC
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and obtain

‖V̄ns + F (x̄n)‖ ≤ K0((ηn + h)‖F (x̄n)‖ + h).(3.11)

The inexact Newton condition (3.6) and (3.11) imply that

xn+1 = xn + s = x̄n − V̄ −1
n (F (x̄n) + rn),

where

rn = V̄ −1
n (x̄n − xn) − (V̄ns + F (x̄n)).

Hence

‖V̄ −1
n rn‖ ≤ MK0((ηn + h)‖F (x̄n)‖ + h) + h,

and

‖en+1‖ = ‖ēn − V̄ −1
n F (x̄n) + V̄ −1

n rn‖

≤ MK0((ηn + h)‖F (x̄n)‖ + h) + h + o(‖ēn‖).
If F is semismooth of order p at x∗, then (2.7) implies that there is K1 > 0 such

that

‖en+1‖ = ‖ēn − V̄ −1
n F (x̄n) + V̄ −1

n rn‖

≤ K1‖ēn‖1+p + MK0((ηn + h)‖F (x̄n)‖ + h) + h.

Since ‖F (x̄n)‖ ≤ L‖ēn‖ and ‖ēn‖ ≤ ‖en‖ + h, we obtain (3.8) with

K = 2K1 + MK0(1 + L) + 1

and complete the proof.

3.3. Optimal choice of h. If x̄n 	= xn, then the estimates (3.7) and (3.8) do
not imply convergence but stagnation once the error is O(h). This is analogous to
convergence results [18] for Newton’s method when there are errors, such as floating
point roundoff, in the evaluation of F . In this case, however, h is larger than floating
point roundoff, and we can combine Theorems 3.1 and 3.2 to estimate the optimal
choice of h.

Suppose that F is piecewise C1 (and hence semismooth of order 1 [24]) and can
be evaluated up to an absolute error of εF . If we incorporate the error in F into the
result of Theorem 3.1 in the standard way [18], we obtain

∂F
h F (x) ∈ D(G, x,C ′, h′),

where h′ = O(h + εF /h). Then the estimate (3.8) becomes

‖en+1‖ ≤ K((ηn + h + εF /h)‖en‖ + ‖en‖2 + h).(3.12)

If we solve the equation for the step exactly, then ηn = 0. In that case, if
‖en‖ = O(h1/2), then

‖en+1‖ = O
( εF
h1/2

+ h
)
.(3.13)

The term on the right-hand side of (3.13) is minimized when

h = O(ε
2/3
F ).(3.14)

If, for example, εF ≈ 10−15 is double precision floating point roundoff, (3.14) would
say that the best results would be obtained if h ≈ 10−10, rather than 10−8 as a
conventional analysis would predict. We provide numerical evidence for this in section
5.3.
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4. Convergence of Ψtc. The analysis of Ψtc in this paper follows the pattern
of [8, 19], considering the iteration in two phases. For phase one, the initial or global
phase, we show that Ψtc is a consistent convergent scheme for integration of the DAE.
The scheme will be first order if F is semismooth of order 1, order p if F is semismooth
of order p < 1, and convergent but with no order if F is merely semismooth.

From the analysis of the global phase we will conclude that, for sufficiently small
δ0, the iteration will approach x∗. For the second local phase of the iteration, we
show that if x is near x∗ and {δn} is bounded away from zero, then δn → δmax, and
the terminal phase of convergence can be described by the results in section 3.

The analysis of the local phase does not depend on the dynamics, and we will
defer the detailed assumptions on the DAE until section 4.2.

4.1. Local phase. We consider the local phase first, as we did in [8,19], in order
to establish targets for the integration in the global phase. We seek to find εL so that
if x0 ∈ B(x∗, εL) and {δn} remains bounded away from zero, then {xn} and {δn} in
(2.12) satisfy xn → x∗ and δn → δmax.

The local convergence rates in the terminal phase depend on the following as-
sumption.

Assumption 4.1. F is semismooth at x∗. There are C, h, β, εL > 0 such that for
all x ∈ B(x∗, εL) and all δ > 0

‖(D + δV (x))−1D‖ ≤ 1/(1 + βδ)(4.1)

and

V (x) ∈ D(F, x,C, h).

Note that Assumption 4.1 does not imply that every element in ∂F (x∗) is non-
singular. It is an assumption on the particular element V (x) ∈ D(F, x,C, h), and the
possibility of a singular matrix in ∂F (x∗) is left open.

Theorem 4.1. Let the assumptions of Theorem 3.2 and Assumption 4.1 hold.
Let {δn} be given by (2.10). Then there are CT and εT such that if {ηn} is sufficiently
small and x0 ∈ B(x∗, εT ), then either infn δn = 0 or δn → δmax, the Ψtc iteration
converges, and, for n sufficiently large,

‖en+1‖ ≤ CT ((ηn + δ−1
n + h)‖en‖ + h) + o(‖en‖)(4.2)

or, if F is semismooth of order p,

‖en+1‖ ≤ CT (‖en‖1+p + (ηn + δ−1
n + h)‖en‖ + h).(4.3)

Proof. We assume that x0 is near enough to x∗ so that the conclusions of Theo-
rem 3.2 hold. If xn ∈ B(εT ), then, following the proof of Theorem 3.2,

en+1 = en − (δ−1
n D + V̄n)−1F (x̄n) + rn,

where

‖rn‖ = O((ηn + h)‖F (x̄n)‖ + h).

Semismoothness and our assumptions imply that

F (x̄n) − V̄nen = O(h) + o(‖en‖)
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and hence

en+1 = en − (δ−1
n D + V̄n)−1V̄nen + Rn

= (δ−1
n D + V̄n)−1δ−1

n Den + Rn,

where

Rn = O((ηn + h)‖F (x̄n)‖ + h) + o(‖en‖).

If δn > δ∗ for all n, then Assumption 4.1 implies that

‖(δ−1
n D + V̄n)−1δ−1

n D‖ < 1/(1 + βδ∗).

This implies that the iteration is q-linearly convergent, and hence δn → δmax and
xn → x∗.

The completion of the proof for large δn is a direct consequence of Theorem 3.2,
since the inexact Newton condition

‖(δ−1
n D + V (xn))s + F (xn)‖ ≤ ηn‖F (xn)‖

implies that there is Ch such that

‖V (xn)s + F (xn)‖ ≤ (ηn + Chh)‖F (xn)‖ + δ−1
n ‖D11‖‖s‖,

and then C and ηn in (3.10) can be replaced by C + ‖D11‖ and ηn + δ−1
n +Chh. This

implies convergence if δmax is sufficiently large.

4.2. Global phase. In the analysis of the global phase we must assume that
the Ψtc iteration is, for small δ, a stable explicit method for the DAE (2.8). To do
this we must assume that the DAE is consistent and has index one. In the smooth
case, one can express this in terms of the nonsingularity of gv, the Jacobian of g with
respect to the algebraic variables. In the nonsmooth case, however, one must take the
limit in (2.1) in all components together. This means that the index assumption is
more technical, using the nonsingularity of the matrix pencil δ−1D + V (x) in part 7
of Assumption 4.2.

We assume that V (x) ∈ D(F, x,C, h) for a sufficiently small h. We decompose
operators V ∈ ∂F into blocks

V (x) =

(
Vuu Vuv

Vvu Vvv

)
,(4.4)

where Vuu ∈ ∂uf , . . . , Vvv ∈ ∂vg.
With this in mind we can formulate our assumptions on the dynamics. Define a

neighborhood of the trajectory from x0 as

S(ε) = {z | inf
t≥0

‖z − x(t)‖ ≤ ε}.(4.5)

Assumption 4.2. g(u0, v0) = 0; i.e., the initial values (u0, v0) are consistent.
There are εG ∈ (0, εT /2), where εT is the radius from Theorem 4.1, such that the

following hold:
1. F is semismooth in S(εG).
2. For all z0 ∈ S(εS), the solution of Dz′ = −F (z), z(0) = z0 exists, z(t) ∈

S(εG) for all t, and limt→∞ z(t) = x∗.
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3. V (x) ∈ D(F, x,C, h) for all x ∈ S(εG).
4. Vvv(x) is nonsingular for all x ∈ S(εG), and there is MV such that ‖Vvv(x)−1‖ ≤

MV for all x ∈ S(εS).
5. There is MI such that for all h sufficiently small, δ > 0, x ∈ S(εG), and

V ∈ D(F, x,C, h), D11 + δVuu is nonsingular and

‖(D11 + δVuu)−1‖ ≤ MI .

6. There is MD > 0 such that for all x ∈ S(εG)

‖V (x)‖ ≤ MD.

7. (δ−1D + V (x)) is nonsingular for all x ∈ S(εG), and δ > 0.
We analyze the global phase by showing that the global truncation error of the

scheme

xn+1 = xn − (δ−1
n D + V (xn))−1F (xn)

is of order p, i.e.,

‖xn − x(tn)‖ = O(δpmax),

where δmax = max0≤m≤n δm. Since the SER formula implies that δmax = O(δ0), this
will imply, similarly to [8, 19], that if δ0 is sufficiently small, then the Ψtc iteration
will correctly track the solution until xn is in the ball of local convergence required
by Theorem 4.1.

We will use a simple consequence of pth order semismoothness.
Lemma 4.2. Let Assumption 4.2 hold. Let x(t) be the solution to (2.8). Let δ > 0

and let

σ =

(
σu

σv

)
= x(t + δ) − x(t).

Then, for δ, h sufficiently small,

(D + δV (x(t)))σ = −δF (x(t)) + O(δh) + o(δ2),(4.6)

and if F is semismooth of order p,

(D + δV (x(t)))σ = −δF (x(t)) + O(δ2+p + δh),(4.7)

uniformly in t.
Proof. In the interest of brevity, we will give the proof for h = 0 and F semi-

smooth of order p. The analysis for h > 0 and semismooth F follows the outlines of
the proofs of Theorems 3.2 and 4.1.

Write x(t) = (u(t), v(t))T . By integrating the DAE (2.8), we see that u is a
Lipschitz continuous function of t. The semismoothness of F and the nonsingularity
of Vvv (from parts 1 and 4 of Assumption 4.2) imply that v is a Lipschitz continuous
function of u and hence also a Lipschitz continuous function of t. This Lipschitz
continuity implies that

‖σ‖ = O(δ),
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uniformly in t. Integrate (2.8) over the interval [t, t+δ] and use the Lipschitz continuity
of F to obtain

Dσ = −
∫ t+δ

t

F (x(τ)) dτ = −δF (x(t + δ)) + O(δ2),(4.8)

uniformly in t.
By the definition of semismoothness with x = x(t+ δ) and w = −σ, we have, for

δ sufficiently small,

F (x(t + δ)) = F (x(t)) + V (x(t))σ + O(‖σ‖1+p)

= F (x(t)) + V (x(t))σ + O(δ1+p).
(4.9)

The estimate (4.9) is uniform in t because the set {x(t) | t ≥ 0} is compact.
Hence, multiplying (4.9) by δ and substituting into (4.8),

(D + δV (x(t)))σ = −δF (x(t)) + O(δ2+p),

as asserted.
Lemma 4.2 will imply convergence of Ψtc in the same way as in the smooth

case [8]. The objective is to show that for δ0 sufficiently small, the Ψtc iteration
remains in the tube S(εG). We will give a proof that is more general than the one
in [8] in that it uses Assumption 4.2 rather than the stronger one in [8].

In the analysis we will let ‖·‖ denote the Euclidean norm on any of RN = RN1+N2 ,
RN1 , or RN2 . The dimension will be clear from the context.

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold. Then if δ0, {ηn}, and h are
sufficiently small and {δn} is bounded from below, then xn → x∗ and (4.2) holds. If
F is semismooth of order p, then (4.3) holds.

Proof. We begin with the special case in which F is semismooth of order p
and ηn = 0 for all n. Part 2 of Assumption 4.2 implies that there is T such that
x(t) ∈ B(x∗, εT /2), the ball of local convergence from Theorem 4.1, for all t ≥ T .

Let

tn =

n∑
k=0

δk.

We will use Lemma 4.2 to show that if δ0 is sufficiently small and the sequence
{δn} is bounded from below, then the Ψtc iteration is an accurate integrator for (2.8)
in the sense that

‖xn − x(tn)‖ = O(δp + h),(4.10)

where δ = max0≤k≤n δk. Hence, we can select δ0 and h such that xn ∈ S(εG) until
tn > T .

We begin by dividing (2.9) and (4.7) into the u and v components. We set

en = xn − x(tn) =

(
eun
evn

)
, sn = xn+1 − xn =

(
sun
svn

)

and

σn = x(tn+1) − x(tn) =

(
σu
n

σv
n

)
.
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First note that if V ∈ D(F, xn, C, h), then V ∈ D(F, x(tn), C, h+ ‖en‖). Hence if
‖en‖ is sufficiently small, Lemma 4.2 implies that

(D + δnV )σn = −δF (x(tn)) + O(δ2+p
n + δn(h + ‖en‖)).(4.11)

We write the u component of (2.9) as

(D11 + δnVuu)sun + Vuvs
v
n = f(un, vn),(4.12)

and the u component of (4.11) as

(D11 + δnVuu)σu
n + δnVuvσ

v
n = −f(u(tn), v(tn)) + O(δ2+p

n + δn(h + ‖en‖)).(4.13)

Subtract (4.13) from (4.12) and use part 6 of Assumption 4.2 to obtain

(D11 + δnVuu)(eun+1 − eun) = O(δn(‖en‖ + ‖evn+1‖) + δ2+p
n + δnh).(4.14)

Hence, we may use part 5 of Assumption 4.2 to obtain

‖eun+1‖ ≤ ‖eun‖ + O(δn(‖en‖ + ‖evn+1‖) + δ2+p
n + δnh).(4.15)

The v component of (2.9) is

Vvus
u
n + Vvvs

v
n = −g(un, vn) = −Vuve

u
n − Vvve

v
n + O(δ1+p

n + hδn + ‖en‖δn),(4.16)

where we use the facts that g(u(t), v(t)) = 0 and V ∈ D(F, x(tn), C, h + ‖en‖) in
the last equality. Adding Vuve

u
n + Vvve

v
n to both sides of (4.16) and noting that

sn = en+1 − en yields

Vvve
v
n = −Vvue

u
n+1 + O(δ1+p

n + δnh + δn‖en‖).(4.17)

Parts 4 and 6 from Assumption 4.2 and (4.17) imply that

‖evn+1‖ = O(‖eun+1‖ + δn‖en‖ + δ1+p
n + δnh).(4.18)

Equations (4.15) and (4.18) together imply that there is L > 0 such that

‖eun+1‖ ≤ (1 + δnL)‖en‖ + δnL‖evn+1‖ + O(δ1+p
n + δnh)

and

‖evn+1‖ ≤ L‖eun+1‖ + δn‖en‖ + O(δ1+p
n + δnh).

(4.19)

So, if we define a new norm on RN by

|||(u, v)T ||| = L‖u‖ + ‖v‖,

then

|||en+1||| = |||en||| + O(δn|||en||| + δ1+p
n + δnh).(4.20)

Our assumption that {δn} is bounded from below implies that there is n∗ such
that tn∗ = T ∗ ≥ T . Then, as is standard in the analysis of numerical methods for
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initial value problems [1], we may let δ∗ = max0≤n≤n∗ δn and use (4.20) to conclude
that, for 0 ≤ n ≤ n∗,

|||en||| = O(δp∗ + h),

which proves (4.10), because ||| · ||| is equivalent to the Euclidean norm on RN .
If F is semismooth and {ηn} is nonzero, then (4.10) becomes (see [19])

‖xn − x(tn)‖ = O

(
h +

n∗∑
n=0

ηnδn

)
+ o(1) as δ0 → 0,(4.21)

and the convergence result still holds if, say, ηn = O(δ∗) for all 0 ≤ n ≤ n∗.

5. Numerical example. We illustrate the results with a simple one-dimensional
example taken from [2, 3, 5]. This example is sufficient to illustrate the convergence
results in this paper and allows us to refine the grids to a degree that was not possible
in the two- and three-dimensional results that motivated this paper [11,15,16,25,32,
33].

We use direct methods to compute the Newton step in this section, so ηn =
0. In all but section 5.3, we compute V ∈ ∂F (x) analytically, so h = 0 in those
computations.

This example, taken from [5], is a Lipschitz reformulation of the boundary value
problem [2,3]

−uzz + λmax(0, u)p = 0, z ∈ (0, 1),

with boundary data

u(0) = u(1) = 0

and p ∈ (0, 1).
The reformulation adds a new variable

v =

{
up if u ≥ 0,
u if u < 0

to obtain a Lipschitz continuous elliptic-algebraic system, F (x) = 0, where x = (u, v)T

and

F (x) =

(
f(u, v)
g(u, v)

)
=

(
−uzz + λmax(0, v)

u− ω(v)

)
= 0,(5.1)

where

ω(v) =

{
v1/p if v ≥ 0,
v if v < 0.

We use SER (2.10) to control the sequence {δn} and use

D =

(
I 0
0 0

)

in (2.9).
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Fig. 5.1. Solution.

The reason we formulate the problem with DAE (rather than ODE) dynamics is
that the pseudo-time variable should not be added to both equations in (5.1) but to
only the first. The reason for this is that the true time-dependent system is

ut = uzz − λmax(0, u)p

and that the auxiliary variable v is used only to make the nonlinearity Lipschitz
continuous. One might think that an ODE formulation would work equally well, but,
in fact, the ODE formulation, which does not model the physics, failed to converge in
our testing.

We discretize the problem with central differences, using a difference increment
of δz. The nonsmooth nonlinearity is a substitution operator, and its generalized
Jacobian is a set of diagonal matrices.

We report on several computations with p = 0.1 and λ = 200. This choice leads
to a large “dead core” [2, 3], a region in which the solution vanishes. We plot the
solution in Figure 5.1.

δ0 = 1 and δmax = 106 for all the computations. We terminate the nonlinear
iteration when either

‖F (xn)‖/‖F (x0)‖ < 10−13 or ‖sn‖ < 10−10,(5.2)

where sn = xn+1 − xn. In the tables we see the superlinear convergence clearly in
the reduction in the norms of the steps; this is consistent with the estimate sn =
−en + o(‖en‖) which follows from local superlinear convergence. The superlinear
convergence is less visible in the residual norms, because the generalized Jacobians
become more ill-conditioned as the mesh is refined. The residual norms begin to
stagnate after a reduction of 1012.

5.1. Exact computation of the generalized Jacobian. For the results in
this section we compute the generalized Jacobian analytically. If we let Lδz be the
discretized Laplacian, we can write

F (x) =

(
f(u, v)
g(u, v)

)
=

(
−Lδzu

u− v − max(0, v)1/p

)
+

(
λ
1

)
max(0, v).(5.3)

In the above and in the discussion that follows, functions of vectors, max(0, v)1/p, for
example, are understood to mean componentwise evaluation.



PSEUDO-TRANSIENT CONTINUATION 1401

We use the known result for the scalar function max(0, v),

∂ max(0, v) =

⎧⎨
⎩

0 if v < 0,
[0, 1] if v = 0,
1 if v > 0,

to obtain

∂F =

(
−Lδz 0

1 −1 − (1/p) max(0, v)(1−p)/p

)
+

(
0 λ
0 1

)(
0 0
0 ∂ max(0, v).

)

(5.4)

The notation should be clear. The 2, 2 blocks in the matrices denote multiplication
operators in the continuous case, and diagonal matrices in the discrete case. We
use this notation because of its compactness and close connection to the original
differential equation.

The calculations in this section use V (xn) ∈ ∂F (xn). We may use any choice
from the set-valued map ∂ max(0, v) and we choose V ∈ ∂F using

χ(v) =

{
0 if v ≤ 0,
1 if v > 0

}
∈ ∂ max(0, v).

Had we used χ(v) = 1 when v = 0, then μ(v) would vanish when μ = 0, leading
to singularity of Vvv. Note that the global convergence result does not require that
all elements of Vvv be nonsingular for all choices of V ∈ ∂F , only that we choose one
for which it is. The local convergence result does require that all elements of ∂F be
nonsingular, as they are.

In Figure 5.2 we plot the norms of the steps and nonlinear residuals together with
the growth of δ for a mesh of width δz = 1/2048. δ grows smoothly in the early phase
of the iteration and reaches its maximum rapidly. The superlinear convergence is
clearly visible in the curve for the norms of the steps. The Jacobian of the nonlinear
residual has a condition number of O(1/h2), and hence the residual norm reflects the
error less accurately.

5.2. Verification of the assumptions. We will now explore verification of
Assumptions 4.1 and 4.2 for the case h = 0. The case h 	= 0 is similar, requiring
only the addition of an O(h) perturbation to ∂F . We have not verified part 2 of
Assumption 4.2, though we have done numerical experiments that indicate its validity.
F is clearly semismooth, and we are using V ∈ ∂F for all x. So parts 1 and 3 in
Assumption 4.2 hold trivially.

Let

V (x) =

(
−Lδz 0

1 −1 − (1/p) max(0, v)(1−p)/p

)
+

(
0 λ
0 1

)
χ(v).

Since the set S(εG) is compact, ‖v‖ is bounded on S(εG), which implies part 6 of
Assumption 4.2.

Now Vvv is the operator of componentwise multiplication by

−μ(v) = −1 − (1/p) max(0, v)(1−p)/p + χ(v).

This operator is negative semidefinite. To see this, note that

μ(v) = 1+(1/p) max(0, v)(1−p)/p−χ(v) =

{
(1/p) max(0, v)(1−p)/p if v > 0,
1 if v ≤ 0

}
> 0.
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Fig. 5.2. Analytic generalized Jacobian.

To verify part 4 of Assumption 4.2, we observe that the smallest nonzero compo-
nent of v(t) is bounded away from zero. This follows from the boundary conditions
on the differential equation and the compactness of S(εG). Hence

Vvvη = −μ(v)η

has a uniformly bounded inverse, as assumed. We will now use part 4 of Assump-
tion 4.2 in the verification of the remaining assumptions.

We now verify the bounds on the inverse, (4.1) in Assumption 4.1 and part 5
of Assumption 4.2. As part of that process, we will also verify the nonsingularity
assumption, part 7 of Assumption 4.2.

We seek to solve

(D + δV )(ξ, η)T = (φ, ψ)T ,

which we write as two equations:

(I − δLδz )ξ + λχ(v)η = φ,

δξ + δVvvη = ψ.
(5.5)

We may eliminate η by using the second equation in (5.5),

η = −V −1
vv (ξ − δ−1ψ),(5.6)

and hence

(I − δLδz − λχ(v)V −1
vv )ξ = φ− δ−1λχ(v)V −1

vv ψ.(5.7)

Since −δLδz is positive definite and δ, λ, μ, χ ≥ 0, we have

‖(I − δLδz − λχ(v)V −1
vv )−1‖ ≤ ‖(I − δLδz )

−1‖ ≤ ‖I‖ = 1.(5.8)
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Fig. 5.3. Norms of the steps and residuals.

Hence we may solve for ξ, proving nonsingularity of (D + δV ).
The bound on Vvv and (5.8) imply

‖ξ‖ ≤ (‖φ‖ + δ−1λMV ‖ψ‖).(5.9)

Combining (5.9) with (5.6) completes the verification of part 5 of Assumption 4.2. To
verify (4.1), we set ψ = 0 and use the second inequality in (5.8).

5.3. Computation of the generalized Jacobian by differences. For the
results in this section we compute the generalized Jacobian with several choices of
differences. The results were similar for all the meshes. In Figure 5.3 we plot residual
and step norm histories for

• analytic generalized Jacobian (Exact),
• forward differences, increment 10−8 (F-8), and
• forward differences, increment 10−10 (F-10)

for a mesh of width δz = 1/2048 and 20 iterations. In this way we can clearly see the
point at which the iteration stagnates. As we predicted in section 3.3, the iteration
is more accurate when the difference increment is 10−10 ≈ ε2/3 than it is with the
standard choice of 10−8 ≈ ε1/2.

5.4. Mesh dependence and nested iteration. We used the analytic ∂F (5.4)
in the computations reported in this section.

In Figure 5.4 we plot the progress of the iteration for mesh sizes of 1/128, 1/512,
and 1/2048, terminating the iteration when ‖s‖ < 10−13. In this way we can examine
the dependence of the convergence on the mesh width. While the convergence in the
early phase is identical for the three meshes and superlinear in the terminal phase,
the global convergence becomes slower as the mesh is refined.

Nested iteration or grid sequencing means solving the problem to high precision
on a coarse mesh, interpolating to a finer mesh in such a way that the interpolation
error can be corrected with a few (e.g., one) iterations and continuing this until one
has a solution on a target, finest mesh. We set δ = 106 for the finer meshes, under
the assumption that we are in the locally convergent phase of the iteration.

For this example, one would hope not only to eliminate the mesh-dependency in
the iteration history that one sees in Figure 5.4, but also to approximate the solution
up to truncation error at each level.
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Fig. 5.4. Mesh-dependence of convergence.

Table 5.1

Step norms: p = 0.1, nested iteration.

n\δz 1/64 1/128 1/256 1/512 1/1024 1/2048
0 4.20e+00 2.02e-02 1.02e-02 5.72e-03 3.45e-03 3.61e-03
1 3.53e+00 1.13e-02 1.23e-03 1.13e-03 2.14e-03 6.16e-04
2 3.91e-02 8.95e-04 1.56e-04 2.15e-04 1.58e-04 1.37e-05
3 4.11e-03 6.44e-05 2.19e-06 6.18e-06 7.24e-05 7.14e-08
4 6.89e-04 3.26e-07 2.23e-12
5 1.94e-05
6 1.47e-08

Table 5.2

Step norms: p = 0.5, nested iteration.

n\δz 1/64 1/128 1/256 1/512 1/1024 1/2048
0 1.32e+00 1.52e-03 3.87e-04 9.74e-05 2.44e-05 6.13e-06
1 5.29e-01 4.37e-05 7.89e-06 1.39e-06 2.47e-07 4.25e-08
2 5.20e-03 1.10e-06 9.73e-08 4.75e-08 4.21e-09
3 6.59e-05 3.83e-09 1.76e-11
4 2.73e-05
5 9.74e-08

This was a successful strategy. However, the results must be interpreted in light
of the continuity properties of the solution. u∗ ∈ C2[0, 1], and hence u∗ ∈ H2[0, 1].
However, if p < 1/2, v∗ = (u∗)p 	∈ H2[0, 1]. This means that linear interpolation
will not approximate v∗ to second order if p < 1/2. To partially address this, we
interpolate u from the coarse to fine mesh with linear interpolation and then compute
v as

v = max(0, u)p.

This give us a better initial approximation of v on the finer mesh than directly inter-
polating v, but not, as Table 5.1 shows, a second order accurate one.

In Tables 5.1 and 5.2 we report the residual and step norms on a sequence of
meshes {2−n}11

n=6 for p = 0.1 and p = 0.5. The initial steps at each mesh reflect both
the error in the initial iterate and the truncation error in the interpolation.
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The iterations for both values of p show that we have recovered mesh independence
in the sense that the iteration requires a roughly constant number of steps to terminate
at each level. The table for p = 0.5 clearly shows second order convergence. The
interpolation error for p = 0.1 is visible in the sizes of the initial steps.
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NUMERICAL PERIODIC NORMALIZATION FOR CODIM 1
BIFURCATIONS OF LIMIT CYCLES∗

YU. A. KUZNETSOV† , W. GOVAERTS‡ , E. J. DOEDEL§ , AND A. DHOOGE‡

Abstract. Explicit computational formulas for the coefficients of the periodic normal forms
for all codim 1 bifurcations of limit cycles in generic autonomous ODEs are derived. They include
second-order coefficients for the fold (limit point) bifurcation, as well as third-order coefficients for
the flip (period-doubling) and Neimark–Sacker (torus) bifurcations. The formulas are independent
of the dimension of the phase space and involve solutions of certain boundary-value problems on
the interval [0, T ], where T is the period of the critical cycle, as well as multilinear functions from
the Taylor expansion of the right-hand sides near the cycle. The formulas allow us to distinguish
between sub- and supercritical bifurcations, in agreement with earlier asymptotic expansions of the
bifurcating solutions. Our formulation makes it possible to use robust numerical boundary-value
algorithms based on orthogonal collocation, rather than shooting techniques, which greatly expands
its applicability. The actual implementation is described in detail. We include three numerical
examples, in which codim 2 singularities are detected along branches of codim 1 bifurcations of limit
cycles as zeros of the periodic normal form coefficients.
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1. Introduction. Isolated periodic orbits (limit cycles) of smooth differential
equations

u̇ = f(u, α), u ∈ R
n, α ∈ R

m,(1.1)

play an important role in applications. In generic systems of the form (1.1) depending
on one control parameter (i.e., with m = 1) a hyperbolic limit cycle exists for an
open interval of parameter values α. At a boundary of such an interval, the limit
cycle may not exist, degenerating into an equilibrium or an orbit homoclinic to an
equilibrium or another nonhyperbolic limit cycle (see, for example, [3]). We do not
consider such cases here, instead focusing on those where the cycle does exist at
the boundary parameter values but loses its hyperbolicity due to the presence of a
nontrivial multiplier μ, with |μ| = 1.

The codim 1 bifurcations of limit cycles in generic systems (1.1) are well under-
stood (see, for example, [8, 10, 3]). Let u0(t) be a periodic solution (with minimal
period) corresponding to a limit cycle Γ of (1.1). The standard approach to the
theoretical and numerical analysis of local bifurcations of limit cycles is based on
Poincaré maps: Given a transversal section Σ to Γ at u0(0), such a map assigns to
each point y of Σ close to u0(0) another point P(y, α), where the orbit of (1.1) starting
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at y intersects Σ again close to u0(0). In local coordinates in Σ, the Poincaré map will
be represented by a smooth map P : R

n−1 ×R
m → R

n−1. The cycle corresponds to a
fixed point y0 of P(·, α); the eigenvalues of its linearization at the fixed point are the
nontrivial multipliers of the periodic solution. Once the Poincaré map is introduced,
the theory of local bifurcations of maps can be applied.

It is well known (see, for example, [8, 10, 1] for the general theory and [3] for
computational formulas) that in generic smooth one-parameter families of maps

y �→ P(y, α), y ∈ R
n−1, α ∈ R

1,(1.2)

only the following three bifurcations of fixed points occur:
(1) The fold. The fixed point y0 has a simple eigenvalue λ1 = 1 and no other

eigenvalues on the unit circle, while the restriction of (1.2) to a one-dimensional
center manifold Wc(y0) at the critical parameter value has the form ξ �→ ξ + b̃ξ2 +
O(ξ3), where b̃ �= 0. At the critical parameter value, two fixed points coalesce. This
bifurcation is often called a saddle-node bifurcation, a fold, or a limit point (LP), since
two periodic solutions of (1.1) collide and disappear when the parameter passes the
critical value. If Av = Pyv and B(u, v) = Pyy[u, v] are evaluated at the critical fixed
point y0, then

b̃ =
1

2
〈q∗,B(q, q)〉,(1.3)

where Aq = q, ATq∗ = q∗, and 〈q∗, q〉 = 1. Here and in what follows, 〈u, v〉 =
uHv = ūTv is the standard scalar product in an appropriate complex (or real) finite-
dimensional vector space; here, R

n−1. It should also be noted that the coefficient b̃ is
not uniquely defined but depends on the normalization of q. A similar remark holds
for all other normal form coefficients.

(2) The flip. The fixed point y0 has a simple eigenvalue λ1 = −1 and no other
eigenvalues on the unit circle, while the restriction of (1.2) to a one-dimensional center
manifold Wc(y0) at the critical parameter value can be transformed to the normal
form ξ �→ −ξ + c̃ξ3 + O(ξ4), where c̃ �= 0. For nearby parameter values, a cycle
of period 2 bifurcates from the fixed point. This is a period-doubling (PD) of the
periodic solution of (1.1); i.e., there are nearby periodic solutions of approximately
double (minimal) period. If C(u, v, w) = Pyyy[u, v, w] is evaluated at y0, then

c̃ =
1

6
〈p∗, C(p, p, p) + 3B(p, (In−1 −A)−1B(p, p))〉,(1.4)

where In−1 is the (n − 1) × (n − 1) identity matrix, Ap = −p, ATp∗ = −p∗, and
〈p∗, p〉 = 1.

(3) The Neimark–Sacker (NS) bifurcation. The fixed point y0 has simple critical
eigenvalues λ1,2 = e±iθ and no other eigenvalues on the unit circle. Assume that

eiqθ − 1 �= 0, q = 1, 2, 3, 4 (no strong resonances).

Then the restriction of (1.2) to a two-dimensional center manifold Wc(y0) at the
critical parameter value can be transformed to the normal form η �→ ηeiθ(1+ d̃|η|2)+
O(|η|4), where η is a complex variable and d̃ is a complex number. Further assume
that Re d̃ �= 0. Under the above assumptions, a unique closed invariant curve around
the fixed point appears when the parameter crosses the critical value. This curve
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corresponds to an invariant torus, on which the flow of (1.1) contains periodic or

quasi-periodic motions. One has the following expression for d̃:

d̃ =
1

2
e−iθ〈v∗, C(v, v, v̄) + 2B(v, (In−1 −A)−1B(v, v̄)) + B(v̄, (e2iθIn−1 −A)−1B(v, v))〉,

(1.5)

where Av = eiθv, ATv∗ = e−iθv∗, and 〈v∗, v〉 = 1.
Although existing software (e.g., content [11]) can compute the normal form

coefficients at codim 1 bifurcations of fixed points of general maps using (1.3)–(1.5),
application of these capabilities to limit cycle analysis has been limited. One rea-
son for this is the necessity to compute the Poincaré map (1.2) and its derivatives
(A,B, C,D, . . . ) numerically. Finite differences work for low-dimensional nonstiff sys-
tems (1.1), where they allow the approximation of the Jacobian matrix A = Py with
reasonable accuracy. However, this approach fails when the cycle has multipliers with
a very big or very small modulus, i.e., when (1.1) is stiff. In general, finite-difference
approximations of higher-order partial derivatives (i.e., B, C,D, . . . ) have very low ac-
curacy due to loss of significant digits and are therefore unreliable. Better results
for computing B and higher-order derivative tensors can be achieved by simultane-
ous numerical integration of the periodic solution and the corresponding variational
equations over the period.

This method has been successfully used in [6] to compute normal form coefficients
of the Poincaré map at the fold-flip bifurcation in a four-dimensional atmosphere cir-
culation model. An interesting alternative to numerical integration of the variational
equations is to compute the higher-order derivatives of the Poincaré map P by auto-
matic differentiation [12] of the (for example, C-) code used to compute the Poincaré
map; see [13, 14]. Both approaches, however, rely on the possibility of accurately
finding the periodic solution by shooting, which is not always the case.

There are at least two approaches to the analysis of the limit cycle bifurcations
that are not directly based on the Poincaré map and its derivatives. Since it is known
which periodic solutions can bifurcate at generic codim 1 bifurcations of limit cycles,
one can compute the Taylor series for the period T (ε), for the corresponding parameter
α(ε), and for the bifurcating solution itself, as functions of the solution amplitude ε.
The solvability of the linear systems is guaranteed by the Fredholm alternative. This
approach, which is conceptually similar to the Lyapunov–Schmidt method, has been
successfully applied to all codim 1 bifurcations of limit cycles in [5, Chapter XI]. The
resulting asymptotic expressions use the derivatives of the right-hand side of (1.1)
with respect to u and α and involve solutions to linear boundary-value problems
(BVPs) (on the interval [0, T ] in the LPC (limit point of cycles) and NS cases and on
the interval [0, 2T ] for the PD bifurcation). They allow one to distinguish between
sub- and supercritical bifurcations. However, these formulas are rather involved—in
particular, for the NS case, where one has to distinguish between various subharmonic
and quasi-periodic solutions—and to our knowledge they have not been implemented
in bifurcation software.

There is another theoretical approach [8] for the analysis of limit cycle bifurcations
in (1.1), which avoids the Poincaré map reduction. First, in a neighborhood of Γ in
W c(Γ), normal coordinates can be chosen so that the restricted system (1.1) becomes
a nonautonomous T -periodic system in R

n−1. This periodic system can be considered
as an autonomous system with one cyclic variable (mod T ). Near the bifurcation,
this system can be restricted to an (nc + 1)-dimensional invariant center manifold
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W c(Γ), thus giving a periodic nc-dimensional system of ODEs. One can then apply
(in general, 2T -) periodic coordinate transformations to this system and write it as
the sum of an autonomous nc-dimensional normal form and higher-order periodic
terms. The autonomous part of this periodic normal form allows one to study local
and global bifurcations of (1.1) near the critical cycle. This approach is very useful
for the theoretical analysis of limit cycle bifurcations (see [8] and [4] for normal forms
for some codim 2 cases).

Since the late 1980s, an improvement of the latter approach is known [15], which
combines the computation of the center manifold with the normalization of the ODEs
restricted to this manifold. This technique leads to simple formulas for the compu-
tation of normal form coefficients in two codim 1 cases of equilibrium bifurcations
in ODEs (derived earlier with the Lyapunov–Schmidt method), as well as in all five
codim 2 cases (see [16]). Although a similar normalization technique was introduced
in [17] for time-periodic systems and in [18, 7] for limit cycle bifurcations, it has re-
mained mainly a theoretical tool up to now. There are no numerical algorithms for
the computation of the coefficients of the normal forms on W c(Γ) that are based on
this approach and that have been implemented in available bifurcation software.

Below we derive a powerful numerical normalization tool based on this technique.
In a sense, we combine the periodic normal forms derived in [18] with the Fredholm
alternative used in [5]. It should be noted that the idea to apply Fredholm’s solvability
condition to compute the normal form coefficients for time-periodic systems can be
traced back to [17]. The main difference between our approach and that of [17] and
[18] is that we avoid Fourier series solutions of the linear BVPs, instead solving them
numerically using orthogonal collocation for discretization as in auto [19]. This
leads to simple and explicit algorithms for the normal form coefficients. A further
simplification occurs because we consider only the critical normal forms, and therefore
we do not need derivatives of f(u, α) with respect to α. Our results fully agree with
the asymptotic expansions for the bifurcating solutions derived in [5].

This paper is organized as follows. In section 2 we fix notation and formulate
the periodic normalization on the center manifold. Then we apply this technique to
derive explicit formulas to compute the critical normal form coefficients for fold, PD,
and torus bifurcations of limit cycles. The formulas are independent of the dimension
of the phase space and involve solutions to certain BVPs on the interval [0, T ], where
T is the period of the critical cycle, as well as multilinear functions from the Taylor
expansion of the right-hand sides of (1.1) near the cycle. In section 3 we show that our
algorithms fit very well into the BVP-collocation framework of existing continuation
software such as auto [19], content [11], and matcont [20]. Three numerical
examples are given in section 4. Future work is discussed in section 5.

2. Periodic normalization on the center manifold. Write (1.1) at the crit-
ical parameter values as

u̇ = F (u),(2.1)

and suppose that it has a periodic solution u0(t) = u0(t + T ), where T > 0 is its
(minimal) period. Develop F (u0(t) + v) into the Taylor series

F (u0(t) + v) = F (u0(t)) + A(t)v +
1

2
B(t; v, v) +

1

6
C(t; v, v, v) + O(‖v‖4),(2.2)

where

A(t)v = Fu(u0(t))v, B(t, v, v) = Fuu(u0(t))[v, v], C(t; v, v, v) = Fuuu(u0(t))[v, v, v].
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The multilinear forms A,B, and C are periodic in t with period T .
Consider the initial-value problem for the fundamental matrix solution Y (t),

namely,

dY

dt
= A(t)Y, Y (0) = In,(2.3)

where In is the n×n identity matrix. The monodromy matrix M = Y (T ) always has
a “trivial” eigenvalue μn = 1. The cycle is hyperbolic if there are no other eigenvalues
with |μ| = 1 and is nonhyperbolic otherwise.

The cycle has a fold bifurcation if the eigenvalue μ1 = 1 of Y (T ) corresponds to
a two-dimensional Jordan block and if there are no other critical eigenvalues of the
monodromy matrix. The cycle has a period-doubling (flip) bifurcation if μ1 = −1
is simple and is the only nontrivial critical eigenvalue of Y (T ). Finally, at an NS
(torus) bifurcation, there is a simple pair of nonreal eigenvalues μ1,2 = e±iθ, such
that eiqθ �= 1 for q = 1, 2, 3, 4 (no strong resonances), and Y (T ) has no further critical
multipliers other than 1. We will refer to these conditions as the spectral assumptions.

To describe the periodic normal forms for the three critical cases mentioned above,
we parametrize the corresponding (nc +1)-dimensional center manifold W c(Γ) near Γ
by (τ, ξ), where τ ∈ [0, T ] or [0, 2T ], and ξ is a real or complex coordinate, depending
on the bifurcation. It follows from [18] that it is possible to select the ξ-coordinates
so that the restriction of (2.1) to the corresponding critical center manifold W c(Γ)
will take one of the following periodic normal forms.

The periodic normal form at the LPC bifurcation is⎧⎪⎪⎨
⎪⎪⎩

dτ

dt
= 1 − ξ + aξ2 + · · · ,

dξ

dt
= bξ2 + · · · ,

(2.4)

where τ ∈ [0, T ], ξ is a real coordinate on W c(Γ) that is transverse to Γ, a, b ∈ R, and
the dots denote nonautonomous T -periodic O(ξ3)-terms. One can show that b and
b̃ vanish together, where b̃ is obtained via the Poincaré map reduction and given by
(1.3).

The periodic normal form at the PD bifurcation is⎧⎪⎪⎨
⎪⎪⎩

dτ

dt
= 1 + aξ2 + · · · ,

dξ

dt
= cξ3 + · · · ,

(2.5)

where τ ∈ [0, 2T ], ξ is a real coordinate on W c(Γ) that is transverse to Γ, a, c ∈
R, and the dots denote nonautonomous 2T -periodic O(ξ4)-terms. The coefficient c
determines the stability of the critical cycle; if c �= 0, then sign c = sign c̃, where c̃ is
obtained via the Poincaré map reduction and given by (1.4).

In the absence of strong resonances, the periodic normal form at the NS bifurca-
tion is ⎧⎪⎪⎨

⎪⎪⎩

dτ

dt
= 1 + a|ξ|2 + · · · ,

dξ

dt
=

iθ

T
ξ + dξ|ξ|2 + · · · ,

(2.6)
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where τ ∈ [0, T ], ξ is a complex coordinate on W c(Γ) that is complementary to
τ , a ∈ R, d ∈ C, and the dots denote nonautonomous T -periodic O(|ξ|4)-terms. If
Re d �= 0, then sign(Re d) = sign(Re d̃), where d̃ is given by (1.5), obtained via the
Poincaré map reduction.

In view of the above, we can assume that a parametrization of the center manifold
W c(Γ) has been selected so that the restriction of (2.1) to this manifold has one of
the normal forms (2.4), (2.5), or (2.6). The Taylor expansions of T - or 2T -periodic
unknown functions involved in these parametrizations can be found by solving ap-
propriate BVPs on [0, T ] or [0, 2T ], respectively, so that (2.1) restricted to W c(Γ)
will have the corresponding periodic normal form. The coefficients a, b, and c arise
from the solvability conditions for the BVPs as integrals of scalar products over [0, T ],
involving quadratic and cubic terms of (2.1) near the periodic solution u0, as well as
the critical eigenfunctions.

The following (or similar) construction will often be used below. Denote by
Ck([a, b],Rn) the space of k times continuously differentiable functions on [a, b], with
values in R

n. Let ϕ ∈ C1([0, T ],Rn) be the only solution of the BVP

⎧⎨
⎩

ϕ̇(τ) −A(τ)ϕ(τ) = 0, τ ∈ [0, T ],
ϕ(T ) − ϕ(0) = 0,∫ T

0
〈ϕ(τ), ϕ(τ)〉dτ − 1 = 0,

and let ϕ∗ ∈ C1([0, T ],Rn) be a nontrivial solution of the adjoint BVP

{
ϕ̇∗(τ) + AT(τ)ϕ∗(τ) = 0, τ ∈ [0, T ],

ϕ∗(T ) − ϕ∗(0) = 0.
(2.7)

If h ∈ C1([0, T ],Rn) is a solution of the singular BVP

{
ḣ(τ) −A(τ)h(τ) = g(τ), τ ∈ [0, T ],

h(T ) − h(0) = 0,
(2.8)

then g ∈ C1([0, T ],Rn) satisfies

∫ T

0

〈ϕ∗(τ), g(τ)〉 dτ = 0.(2.9)

Indeed, taking into account (2.7), we see that this integral equals

∫ T

0

〈ϕ∗(τ), ḣ(τ) −A(τ)h(τ)〉 dτ = −
∫ T

0

〈ϕ̇∗(τ) + AT(τ)ϕ∗(τ), h(τ)〉 dτ = 0.

We will refer to (2.9) as the Fredholm solvability condition. If (2.9) holds, then the
problem (2.8) has a unique solution h, satisfying

∫ T

0

〈ϕ∗(τ), h(τ)〉 dτ = 0.

2.1. The fold bifurcation. The two-dimensional critical center manifold W c(Γ)
at the LPC bifurcation can be parametrized locally by (τ, ξ) as

u = u0(τ) + ξv(τ) + H(τ, ξ), τ ∈ [0, T ], ξ ∈ R,(2.10)
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where H satisfies H(T, ξ) = H(0, ξ) and has the Taylor expansion

H(τ, ξ) =
1

2
h2(τ)ξ2 + O(ξ3),(2.11)

with h2(T ) = h2(0), while

⎧⎨
⎩

v̇(τ) −A(τ)v(τ) − F (u0(τ)) = 0, τ ∈ [0, T ],
v(T ) − v(0) = 0,∫ T

0
〈v(τ), F (u0(τ))〉dτ = 0.

(2.12)

The function v exists due to Lemma 2 of [18]. Note that (2.12) implies

∫ T

0

〈ϕ∗(τ), F (u0(τ))〉 dτ = 0(2.13)

for any ϕ∗ satisfying (2.7). Moreover, due to the spectral assumptions at the LPC-
point, we can also assume that

∫ T

0

〈ϕ∗(τ), v(τ)〉dτ = 1.(2.14)

Therefore, ϕ∗ is the unique solution of the BVP

⎧⎨
⎩

ϕ̇∗(τ) + AT(τ)ϕ∗(τ) = 0, τ ∈ [0, T ],
ϕ∗(T ) − ϕ∗(0) = 0,∫ T

0
〈ϕ∗(τ), v(τ)〉dτ − 1 = 0.

(2.15)

The function h2(τ) can be found by solving an appropriate BVP, assuming that
(2.1) restricted to W c(Γ) has the periodic normal form (2.4). The coefficient b arises
from the solvability condition for the BVP as an integral over the interval [0, T ] of
scalar products. Specifically, these scalar products involve the quadratic terms of
(1.1) near the periodic solution u0, the (generalized) eigenfunction v, and the adjoint
eigenfunction ϕ∗ defined by (2.15).

Substitute (2.10) into (2.1), using (2.2), (2.4), and (2.11), as well as

du

dt
=

∂u

∂ξ

dξ

dt
+

∂u

∂τ

dτ

dt
.

Collecting the ξ0-terms in the resulting equation, we get the identity

u̇0 = F (u0),

where u0 is the periodic solution of (2.1).
The ξ1-terms provide another identity, namely,

v̇ −A(τ)v − u̇0 = 0,

due to (2.12).
Finally, collecting the ξ2-terms, we obtain the equation for h2,

ḣ2 −A(τ)h2 = B(τ ; v, v) − 2au̇0 + 2v̇ − 2bv,(2.16)
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to be solved in the space of vector-functions on [0, T ] satisfying h2(T ) = h2(0). The
differential operator d

dτ −A(τ) is singular in this space, with u̇0 as the eigenfunction
corresponding to zero eigenvalue. The null-eigenfunction ϕ∗ of the adjoint operator
− d

dτ − AT(τ) is defined by (2.15). Thus, the Fredholm solvability condition implies
that

∫ T

0

〈ϕ∗(τ), B(τ ; v(τ), v(τ)) − 2au̇0(τ) + 2v̇(τ) − 2bv(τ)〉 dτ = 0.

Using (2.13) and (2.14), we get the expression

b =
1

2

∫ T

0

〈ϕ∗(τ), B(τ ; v(τ), v(τ)) + 2A(τ)v(τ)〉 dτ.(2.17)

Here v and ϕ∗ are defined by (2.12) and (2.15), respectively. Therefore, the critical
coefficient b in the periodic normal form for the LPC bifurcation has been computed.
The bifurcation is nondegenerate if b �= 0. Note that the coefficient a does not enter
into (2.17) due to (2.13).

2.2. The period-doubling bifurcation. The two-dimensional critical center
manifold W c(Γ) at the PD bifurcation can be parametrized locally by (τ, ξ) as

u = u0(τ) + ξw(τ) + H(τ, ξ), τ ∈ [0, 2T ], ξ ∈ R,(2.18)

where the function H satisfies H(2T, ξ) = H(0, ξ). It has the Taylor expansion

H(τ, ξ) =
1

2
h2(τ)ξ2 +

1

6
h3(τ)ξ3 + O(ξ4),(2.19)

with hj(2T ) = hj(0), while

w(τ) =

{
v(τ), τ ∈ [0, T ],

−v(τ − T ), τ ∈ [T, 2T ],
(2.20)

with ⎧⎨
⎩

v̇(τ) −A(τ)v(τ) = 0, τ ∈ [0, T ],
v(T ) + v(0) = 0,∫ T

0
〈v(τ), v(τ)〉dτ − 1 = 0.

(2.21)

The function v exists due to Lemma 5 of [18].
The parametrization (2.18) provides a two-cover of W c(Γ) that is locally diffeo-

morphic to the Möbius band (see Figure 2.1).
The functions h2(τ) and h3(τ) can be found by solving appropriate BVPs, assum-

ing that (2.1) restricted to W c(Γ) has the periodic normal form (2.5). The coefficients
a and c arise from the solvability conditions for the BVPs as integrals of scalar prod-
ucts over the interval [0, T ]. Specifically, these scalar products involve the quadratic
and cubic terms of (1.1) near the periodic solution u0, the eigenfunction v, and a
similar adjoint eigenfunction v∗ satisfying

⎧⎨
⎩

v̇∗(τ) + AT(τ)v∗(τ) = 0, τ ∈ [0, T ],
v∗(T ) + v∗(0) = 0,∫ T

0
〈v∗(τ), v(τ)〉dτ − 1/2 = 0.

(2.22)
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τ

Γ

Wc(Γ)

ξ

Fig. 2.1. Center manifold W c(Γ) at the PD bifurcation.

Similarly to (2.20), define

w∗(τ) =

{
v∗(τ), τ ∈ [0, T ],

−v∗(τ − T ), τ ∈ [T, 2T ].
(2.23)

Note that ∫ 2T

0

〈w∗(τ), w(τ)〉dτ = 1.(2.24)

To derive the normal form coefficients, we proceed as in section 2.1, namely, we
substitute (2.18) into (2.1) and use (2.2), as well as (2.5) and (2.19).

Collecting the ξ0-terms in the resulting equation, we get the identity

u̇0 = F (u0),

where u0 is the T -periodic solution of (2.1).
The ξ1-terms provide the identity

ẇ = A(τ)w,

due to (2.20) and (2.21).
Collecting the ξ2-terms, we obtain the equation for h2,

ḣ2 −A(τ)h2 = B(τ ;w,w) − 2au̇0,(2.25)

to be solved in the space of functions on [0, 2T ] satisfying h2(2T ) = h2(0). In this
space, the differential operator d

dτ − A(τ) is singular with two linearly independent
null-functions: ψ = u̇0 and w.

Thus, two Fredholm solvability conditions are involved, namely,

∫ 2T

0

〈w∗(τ), B(τ ;w(τ), w(τ)) − 2au̇0(τ)〉 dτ = 0,

which holds automatically for any a, due to (2.23) and the T -periodicity of the right-
hand side of (2.25), and

∫ 2T

0

〈ψ∗(τ), B(τ ;w(τ), w(τ)) − 2au̇0(τ)〉 dτ = 0,
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where ψ∗ satisfies

⎧⎨
⎩

ψ̇∗(τ) + AT(τ)ψ∗(τ) = 0, τ ∈ [0, T ],
ψ∗(T ) − ψ∗(0) = 0,∫ T

0
〈ψ∗(τ), F (u0(τ))〉 dτ − 1/2 = 0,

(2.26)

and is extended to [T, 2T ] by periodicity. Note that
∫ 2T

0
〈ψ∗(τ), F (u0(τ))〉 dτ �= 0,

since 0 is a semisimple eigenvalue of the differential operator d
dτ − A(τ). This leads

to the expression

a =
1

2

∫ 2T

0

〈ψ∗(τ), B(τ ;w(τ), w(τ))〉 dτ

or, equivalently,

a =

∫ T

0

〈ψ∗(τ), B(τ ; v(τ), v(τ))〉 dτ,(2.27)

where v and ψ∗ are defined by (2.21) and (2.26), respectively.
With a defined in this way, let h2 be the unique solution of (2.25) in the space of

functions on [0, 2T ] satisfying h2(0) = h2(2T ), as well as two orthogonality conditions:

∫ 2T

0

〈w∗(τ), h2(τ)〉 dτ = 0,

which holds automatically, due to the T -periodicity of h2 (h2(0) = h2(T )), and

∫ 2T

0

〈ψ∗(τ), h2(τ)〉 dτ = 0,

which is equivalent to

∫ T

0

〈ψ∗(τ), h2(τ)〉 dτ = 0.

Thus h2 is the unique solution of the BVP

⎧⎨
⎩

ḣ2(τ) −A(τ)h2(τ) −B(τ ; v(τ), v(τ)) + 2aF (u0(τ)) = 0, τ ∈ [0, T ],
h2(T ) − h2(0) = 0,∫ T

0
〈ψ∗(τ), h2(τ)〉 dτ = 0,

(2.28)

extended by periodicity to [T, 2T ]. Collecting the ξ3-terms, we get the equation for
h3,

ḣ3 −A(τ)h3 = C(τ ;w,w,w) + 3B(τ ;w, h2) − 6aẇ − 6cw,(2.29)

which again must be solved in the space of functions on [0, 2T ] satisfying h3(2T ) =
h3(0). Its solvability implies

∫ 2T

0

〈w∗(τ), C(τ ;w(τ), w(τ), w(τ)) + 3B(τ ;w(τ), h2(τ)) − 6aẇ(τ) − 6cw(τ)〉 dτ = 0.
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Taking into account (2.24), we obtain

c =
1

6

∫ 2T

0

〈w∗(τ), C(τ ;w(τ), w(τ), w(τ)) + 3B(τ ;w(τ), h2(τ)) − 6aA(τ)w(τ)〉 dτ

and finally,

c =
1

3

∫ T

0

〈v∗(τ), C(τ ; v(τ), v(τ), v(τ)) + 3B(τ ; v(τ), h2(τ)) − 6aA(τ)v(τ)〉 dτ,

(2.30)

where a is defined by (2.27), h2 is the solution of (2.28), and v and v∗ are defined by
(2.21) and (2.22), respectively. Thus, the critical coefficient c in the periodic normal
form for the PD bifurcation has been computed. The critical cycle is stable within the
center manifold if c < 0 and is unstable if c > 0. In the former case, the bifurcation
is supercritical, while in the latter case it is subcritical.

2.3. The torus bifurcation. The three-dimensional critical center manifold
W c(Γ) at the NS bifurcation can be parametrized locally by (τ, ξ) as

u = u0(τ) + ξv(τ) + ξ̄v̄(τ) + H(τ, ξ, ξ̄), τ ∈ [0, T ], ξ ∈ C,(2.31)

where the real function H satisfies H(T, ξ, ξ̄) = H(0, ξ, ξ̄), and has the Taylor expan-
sion

H(τ, ξ, ξ̄) =
1

2
h20(τ)ξ2 + h11(τ)ξξ̄ +

1

2
h02(τ)ξ̄2

+
1

6
h30(τ)ξ3 +

1

2
h21(τ)ξ2ξ̄ +

1

2
h12(τ)ξξ̄2 +

1

6
h03(τ)ξ̄3(2.32)

+ O(|ξ|4),

with hij(T ) = hij(0) and hij = h̄ji so that h11 is real, while

⎧⎪⎨
⎪⎩

v̇(τ) −A(τ)v(τ) +
iθ

T
v(τ) = 0, τ ∈ [0, T ],

v(T ) − v(0) = 0,∫ T

0
〈v(τ), v(τ)〉dτ − 1 = 0.

(2.33)

The function v exists due to Lemma 2 of [18]. Recall that 〈u, v〉 = uHv = ūTv.
Note that

w(τ) = exp

(
iθτ

T

)
v(τ)

satisfies
⎧⎨
⎩

ẇ(τ) −A(τ)w(τ) = 0, τ ∈ [0, T ],
w(T ) − eiθw(0) = 0,∫ T

0
〈w(τ), w(τ)〉dτ − 1 = 0,

which is often used in the defining system for the NS bifurcation.
As in the previous cases, the functions hij(τ) can be found by solving appropriate

BVPs, assuming that (2.1) restricted to W c(Γ) has the periodic normal form (2.6).
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Also introduce the adjoint eigenfunction v∗ that satisfies

⎧⎪⎨
⎪⎩

v̇∗(τ) + AT(τ)v∗(τ) − iθ

T
v∗(τ) = 0, τ ∈ [0, T ],

v∗(T ) − v∗(0) = 0,∫ T

0
〈v∗(τ), v(τ)〉dτ − 1 = 0.

(2.34)

Substitute (2.31) into (2.1), using (2.2), (2.6), and (2.32), as well as

du

dt
=

∂u

∂ξ

dξ

dt
+

∂u

∂ξ̄

dξ̄

dt
+

∂u

∂τ

dτ

dt
.

The ξ-independent terms in the resulting equation give the usual identity

u̇0 = F (u0).

The ξ-terms give another identity, namely,

v̇ −A(τ)v +
iθ

T
v = 0,

while the ξ̄-terms lead to the corresponding complex-conjugate identity.
Collecting the coefficients of the ξ2- or ξ̄2-terms leads to the equation

ḣ20 −A(τ)h20 +
2iθ

T
h20 = B(τ ; v, v)(2.35)

or its complex-conjugate. This equation has a unique solution h20(τ) satisfying
h20(T ) = h20(0), since e2iθ is not a multiplier of the critical cycle by the spectral
assumptions. Thus, h20 can be found from the BVP

{
ḣ20(τ) −A(τ)h20(τ) +

2iθ

T
h20(τ) −B(τ ; v(τ), v(τ)) = 0, τ ∈ [0, T ],

h20(T ) − h20(0) = 0.
(2.36)

The |ξ|2-terms give

ḣ11 −A(τ)h11 = B(τ ; v, v̄) − au̇0,(2.37)

where h11(T ) = h11(0). The differential operator d
dτ − A(τ) has a nontrivial kernel

spanned by u̇0. The null-eigenfunction of the adjoint operator − d
dτ − AT(τ) is ϕ∗,

given by the equation

⎧⎨
⎩

ϕ̇∗(τ) + AT(τ)ϕ∗(τ) = 0, τ ∈ [0, T ],
ϕ∗(T ) − ϕ∗(0) = 0,∫ T

0
〈ϕ∗(τ), F (u0(τ))〉dτ − 1 = 0.

(2.38)

Note that
∫ T

0
〈ϕ∗(τ), F (u0(τ))〉dτ �= 0, since the trivial multiplier 1 is simple, due to

the spectral assumptions. The Fredholm solvability condition implies

a =

∫ T

0

〈ϕ∗(τ), B(τ ; v(τ), v̄(τ))〉 dτ.(2.39)
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With a defined in this way, let h11 be the unique solution of (2.37) satisfying h11(T ) =
h11(0) and

∫ T

0

〈ϕ∗(τ), h11(τ)〉 dτ = 0,

i.e.,

⎧⎨
⎩

ḣ11(τ) −A(τ)h11(τ) −B(τ ; v(τ), v̄(τ)) + aF (u0(τ)) = 0, τ ∈ [0, T ],
h11(T ) − h11(0) = 0,∫ T

0
〈ϕ∗(τ), h11(τ)〉 dτ = 0.

(2.40)

Other spectral conditions assure the solvability of linear equations for h30, h12, and
h03. Since these coefficients are not used below, we do not write the corresponding
equations explicitly.

Finally, the coefficients of the ξ2ξ̄-terms give the singular equation

ḣ21 −Ah21 +
iθ

T
h21 = 2B(τ ;h11, v) + B(τ ;h20, v̄) + C(τ ; v, v, v̄) − 2av̇ − 2dv.

If one takes into account (2.34), the Fredholm solvability condition implies

d =
1

2

∫ T

0

〈v∗(τ), B(τ ;h11(τ), v(τ)) + B(τ ;h20(τ), v̄(τ)) + C(τ ; v(τ), v(τ), v̄(τ))〉 dτ

− a

∫ T

0

〈v∗(τ), A(τ)v(τ)〉 dτ +
iaθ

T
,(2.41)

where a is defined by (2.39), h11 and h20 by (2.40) and (2.36), respectively, and v and
v∗ satisfy (2.33) and (2.34), respectively. Thus, the critical coefficient d in the periodic
normal form for the NS bifurcation has been computed. The critical cycle is stable
within the center manifold if Re d < 0 and is unstable if Re d > 0. In the former case,
the NS bifurcation is supercritical, while in the latter case it is subcritical.

3. Implementation issues. Numerical implementation of the formulas derived
in the preceding sections requires the evaluation of integrals of scalar functions over
[0, T ] and the solution of nonsingular linear BVPs with integral constraints. Such
tasks can be carried out with continuation software such as auto [19], content [11],
and matcont [20]. In these software packages, periodic solutions to (1.1) are com-
puted with the method of orthogonal collocation with piecewise polynomials applied
to properly formulated BVPs. The standard BVP for the periodic solutions is for-
mulated on the unit interval [0, 1], so that the period T becomes a parameter, and it
involves an integral phase condition:

⎧⎨
⎩

ẋ(τ) − Tf(x(τ), α) = 0, τ ∈ [0, 1],
x(0) − x(1) = 0,∫ 1

0
〈x(τ), ξ̇(τ)〉 dτ = 0,

(3.1)

where ξ is a previously calculated periodic solution, rescaled to [0, 1].

In the orthogonal collocation method [21], the problem (3.1) is replaced by the
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following discretization:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=0

xi,j �̇i,j(ζi,k) − Tf

⎛
⎝ m∑

j=0

xi,j�i,j(ζi,k), α

⎞
⎠ = 0,

x0,0 − xN−1,m = 0,

N−1∑
i=0

m−1∑
j=0

σi,j〈xi,j , ξ̇i,j〉 + σN,0〈xN,0, ξ̇N,0〉 = 0.

(3.2)

Here xi,j is the approximation of x(τ) at m + 1 equidistant mesh points

τi,j = τi +
j

m
(τi+1 − τi), j = 0, 1, . . . ,m,

on each of N intervals [τi, τi+1], where

0 = τ0 < τ1 < · · · < τN = 1.

The �i,j(τ)’s are the Lagrange basis polynomials, while ζi,j (j = 1, . . . ,m) are
Gauss points [2], i.e., the roots of the Legendre polynomial of degree m, all relative
to the interval [τi, τi+1].

With this choice of collocation points ζi,j , the approximation error at the mesh
points has order of accuracy m,

‖x(τi,j) − xi,j‖ = O(hm),

where h = maxi=1,2,...,N{ti}, ti = τi − τi−1 (i = 1, . . . , N), while for the main mesh
points τi it has order of accuracy 2m,

‖x(τi) − xi,0‖ = O(h2m)

(“superconvergence”).
The integration weight σi,j of τi,j is given by wj+1ti+1 for 0 ≤ i ≤ N − 1 and

0 < j < m. For i = 0, . . . , N−2, the integration weight of τi,m (τi,m = τi+1,0) is given
by σi,m = wm+1ti+1 + w1ti+2, and the integration weights of τ0 and τN are given
by w1t1 and wm+1tN , respectively. In the above expressions, wj+1 is the Lagrange
quadrature coefficient.

The numerical continuation of the solutions of (3.2) leads to structured, sparse
linear systems, which in auto [19] and content [11] are solved by an efficient,
specially adapted elimination algorithm that computes the multipliers as a by-product,
without explicitly using the Poincaré map. To detect codim 1 bifurcations, one can
specify test functions that are based on computing multipliers [22, 19] or on solving
appropriate bordered linear BVPs [23].

Once a codim 1 bifurcation has been detected, one can compute the normal form
coefficients using the formulas derived in the previous sections. All BVPs are reformu-
lated on the unit interval [0, 1], and all integrals are scaled accordingly. Moreover, if
the bordering methods from [23] are used to continue LPC, PD, and NS bifurcations
of limit cycles, then the computation of the normal form coefficients requires little
extra effort, since all necessary eigenfunctions have already been computed, either
while evaluating the test functionals or their gradients. These coefficients then serve
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as test functions for detecting codim 2 singularities of limit cycles due to nonlinear
degeneracies of LPC, PD, or NS bifurcations, i.e., the cusp (CPC), the degenerate
period-doubling (DP), and the degenerate NS or Chenciner (CH) bifurcation. By-
products of these computations are test functions for detecting certain codim 2 sin-
gularities of limit cycles due to linear degeneracies, namely, the strong 1:1 resonance
(R1), the strong 1:2 resonance (R2), the fold-Neimark–Sacker bifurcation (FN), and
the fold-flip bifurcation (FF).

3.1. Discretization symbols. It is convenient to discretize all computed func-
tions using the same mesh as in (3.2). For a given vector function η ∈ C1([0, 1],Rn)
we consider three different discretizations:

• ηM ∈ R
(Nm+1)n, the vector of the function values at the mesh points;

• ηC ∈ R
Nmn, the vector of the function values at the collocation points;

• ηW = [
ηW1
ηW2

] ∈ R
Nmn × R

n, where ηW1
is the vector of the function values

at the collocation points multiplied by the Gauss–Legendre weights and the
lengths of the corresponding mesh intervals, and ηW2 = η(0).

Formally we also introduce the structured sparse matrix LC×M that converts a
vector ηM of function values at the mesh points into a vector ηC of its values at the
collocation points, namely, ηC = LC×MηM . This matrix is never formed explicitly; its
entries are approximated by the �i,j(ζi,k)-coefficients in (3.2). We also need a matrix
AC×M such that AC×MηM = (A(t)η(t))C . Again this matrix need not be formed
explicitly. On the other hand, we do need the matrix (D − TA(t))C×M explicitly;
it is defined by (D − TA(t))C×MηM = (η̇(t) − TA(t)η(t))C . Finally, let the tensors
BC×M×M and CC×M×M×M be defined by BC×M×Mη1Mη2M = (B(t; η1(t), η2(t)))C
and

CC×M×M×Mη1Mη2Mη3M = (C(t; η1(t), η2(t), η3(t)))C

for all ηi ∈ C1([0, 1],Rn). (These tensors are not formed explicitly.)

Let f(t), g(t) ∈ C0([0, 1],R) be two scalar functions. Then the integral
∫ 1

0
f(t)dt

is represented by
∑N−1

i=0

∑m
j=1 ωj(fC)i,jti+1 =

∑N−1
i=0

∑m
j=1(fW1

)i,j , where (fC)i,j =

f(ζi,j) and ωj is the Gauss–Legendre quadrature coefficient. The integral
∫ 1

0
f(t)g(t)dt

is approximated with Gauss–Legendre by fT
W1

gC ≈ fT
W1

LC×MgM , where equality
holds if g(t) is a piecewise polynomial of degree m or less on the given mesh. For

vector functions f(t), g(t) ∈ C0([0, 1],Rn), the integral
∫ 1

0
〈f(t), g(t)〉 dt is formally

approximated by the same expression: fT
W1

gC ≈ fT
W1

LC×MgM , where again we have
equality if g(t) is a piecewise polynomial of degree m or less on the given mesh.
Concerning the accuracy of the quadrature formulas, we first note that accuracy is
not an important issue for the phase integral in (3.1), as this equation only selects a
specific solution from the continuum of solutions obtained by phase shifts. Similarly,
the discretization of the normalization integrals, for example, in (2.15), does not affect
the inherent accuracy, including superconvergence at the main mesh points τi of the
solution of the discretized BVP. Discretization of integrals, as specified above, follows
the standard Gauss quadrature error, which has order of accuracy 2m if, as mentioned,
the function g(t) is a piecewise polynomial of degree m or less on the given mesh and
if f(t) is sufficiently smooth (in a piecewise sense). Otherwise, still assuming sufficient
piecewise smoothness, the order of accuracy of the numerical integrals is m + 1 if m
is odd, and m + 2 if m is even. In particular, for the often used choice m = 4, the
integrals would then have order of accuracy 6.

We now consider the LPC, PD, and NS cases separately.
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3.2. LPC bifurcation. The first task is to rescale the computed functions to
the interval [0, 1]. We start by defining u1(t) = u0(Tt) for t ∈ [0, 1]. The linear BVPs
(2.12) and (2.15) are replaced by⎧⎨

⎩
v̇1(t) − TA(t)v1(t) − TF (u1(t)) = 0, t ∈ [0, 1],

v1(0) − v1(1) = 0,∫ 1

0
〈v1(t), F (u1(t))〉dt = 0,

(3.3)

where v(τ) = v1(τ/T ), and⎧⎨
⎩

ϕ̇∗
1(t) + TAT(t)ϕ∗

1(t) = 0, t ∈ [0, 1],
ϕ∗

1(0) − ϕ∗
1(1) = 0,∫ 1

0
〈ϕ∗

1(t), ϕ
∗
1(t)〉dt− 1 = 0,

(3.4)

respectively. We then compute I =
∫ 1

0
〈ϕ∗

1(t), v1(t)〉dt. If I = 0, then we have a strong
1:1 resonance (a limit cycle with two nontrivial multipliers equal to 1). If not, then we
rescale ϕ∗ so that I = 1. It then follows that ϕ∗(τ) = ϕ∗

1(τ/T )/T . Thus, we obtain

b =
1

2

∫ 1

0

〈ϕ∗
1(t), B(t; v1(t), v1(t)) + 2A(t)v1(t)〉 dt.(3.5)

We compute v1M by solving the discretization of (3.3)⎡
⎣ (D − TA(t))C×M

δ0 − δ1
(gW1

)TLC×M

⎤
⎦ v1M =

⎡
⎣ TgC

0
0

⎤
⎦ ,(3.6)

where g(t) = F (u1(t)).
It is more efficient to compute ϕ∗

1W than ϕ∗
1M , since ϕ∗

1 will be used only to

compute integrals of the form
∫ 1

0
〈ϕ∗

1(t), ζ(t)〉dt. Moreover, ϕ∗
1W can be computed

with the same matrix used in (3.6), thus saving factorization costs. Formally, the
computation of ϕ∗

1W is based on Proposition A.1 from the appendix. Instead of
approximating ϕ∗

1 by solving[
(D + TAT(t))C×M

δ0 − δ1

]
ϕ∗

1M = 0,

we remark that [
ϕ∗

1

ϕ∗
1(0)

] is orthogonal to the range of [D−TA(t)
δ0−δ1

]. By discretization we

obtain

(ϕ∗
1W )T

[
(D − TA(t))C×M

δ0 − δ1

]
= 0.

To normalize ϕ∗
1W1

, we require

N−1∑
i=0

m∑
j=1

∣∣(ϕ∗
1W1

)i,j
∣∣
1

= 1.(3.7)

Here |.|1 denotes the 1-norm (sum of absolute values) of a vector. This choice

is convenient for computational reasons. Then
∫ 1

0
〈ϕ∗

1(t), v1(t)〉dt is approximated
by (ϕ∗

1W1
)TLC×Mv1M , and if this quantity is nonzero, ϕ∗

1W is rescaled to ensure∫ 1

0
〈ϕ∗

1(t), v1(t)〉dt = 1.
The integral (3.5) is finally approximated by

b =
1

2
(ϕ∗

1W1
)T(BC×M×Mv1Mv1M + 2AC×Mv1M ).(3.8)
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3.3. PD bifurcation. Again, we rescale the computed quantities to the interval
[0, 1]. The linear BVPs (2.21) and (2.22) are replaced by

⎧⎨
⎩

v̇1(t) − TA(t)v1(t) = 0, t ∈ [0, 1],
v1(0) + v1(1) = 0,∫ 1

0
〈v1(t), v1(t)〉dt− 1 = 0,

(3.9)

where v(τ) = v1(τ/T )/
√
T , and

⎧⎨
⎩

v̇1
∗(t) + TAT(t)v∗1(t) = 0, t ∈ [0, 1],

v∗1(0) + v∗1(1) = 0,∫ 1

0
〈v∗1(t), v∗1(t)〉dt− 1/2 = 0,

(3.10)

respectively. We note that the last equation in (3.10) differs from the last equation in

(2.22). We then compute I =
∫ 1

0
〈v∗1(t), v1(t)〉dt. If I = 0, then we have a strong 1:2

resonance (a limit cycle with two multipliers equal to −1). If not, then we rescale v∗1
so that I = 1/2, which corresponds to the normalization condition used in (3.10). It
then follows that v∗(τ) = v∗1(τ/T )/

√
T .

We also replace (2.26) by

⎧⎨
⎩

ψ̇∗
1(t) + TAT(t)ψ∗

1(t) = 0, t ∈ [0, 1],
ψ∗

1(0) − ψ∗
1(1) = 0,∫ 1

0
〈ψ∗

1(t), ψ∗
1(t)〉 dt− 1 = 0.

(3.11)

Again, the last equation in (3.11) differs from the last equation in (2.26). We then

compute I =
∫ 1

0
〈ψ∗

1(t), F (u1(t))〉dt. If I = 0, then we have a fold-flip bifurcation. If
not, then we rescale ψ∗

1 so that I = 1. It then follows that ψ∗(τ) = ψ∗
1(τ/T )/T .

This leads to the expression

a1 =

∫ 1

0

〈ψ∗
1(t), B(t; v1(t), v1(t))〉 dt,(3.12)

where a1 = aT .
With a1 defined in this way, let h2,1 be the unique solution of the BVP

⎧⎨
⎩

ḣ2,1(t) − TA(t)h2,1(t) −B(t; v1(t), v1(t)) + 2a1F (u1(t)) = 0, t ∈ [0, 1],
h2,1(0) − h2,1(1) = 0,∫ 1

0
〈ψ∗

1(t), h2,1(t)〉 dt = 0,

(3.13)

where h2(τ) = h2,1(τ/T ).
Therefore we obtain

c =
1

3

∫ 1

0

〈
v∗1(t),

1

T
C(t; v1(t), v1(t), v1(t)) + 3B(t; v1(t), h2,1(t))

〉
dt

−2a1

T

∫ 1

0

〈v∗1(t), A(t)v1(t)〉 dt.
(3.14)

We compute v1M by solving[
(D − TA(t))C×M

δ0 + δ1

]
v1M = 0.(3.15)
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We normalize v1M by requiring
∑N−1

i=0

∑m
j=0 σj〈(v1M )i,j , (v1M )i,j〉 = 1, where σj is

the Lagrange quadrature coefficient.
As in the LPC case, it is more efficient to compute v∗1W , rather than v∗M , since

v∗1 will be used only to compute integrals of the form
∫ 1

0
〈v∗1(t), ζ(t)〉dt. Moreover,

v∗1W can be computed with the same matrix in (3.15), thus saving factorization costs.
Formally, the computation of v∗1W is based on Proposition A.2 (see the appendix).
Instead of approximating v∗1 by solving

[
(D + TAT(t))C×M

δ0 + δ1

]
v∗1M = 0,

we observe that [
v∗
1

v∗
1 (0)

] is orthogonal to the range of [D−TA(t)
δ0+δ1

]. By discretization we

obtain

(v∗1W )T
[

(D − TA(t))C×M

δ0 + δ1

]
= 0.

To normalize v∗1W1
, we require

∑N−1
i=0

∑m
j=1

∣∣(v∗1W1
)i,j

∣∣
1

= 1. Then
∫ 1

0
〈v∗1(t), v1(t)〉dt

is approximated by (v∗1W1
)TLC×Mv1M . If this quantity is nonzero, then v∗1W is

rescaled so that
∫ 1

0
〈v∗1(t), v1(t)〉dt = 1/2.

From Proposition A.1 it follows that we can approximate ψ∗
1 like v∗1 , namely, we

compute ψ∗
1W by solving

(ψ∗
1W )T

[
(D − TA(t))C×M

δ0 − δ1

]
= 0,

and normalize ψ∗
1W1

by requiring

N−1∑
i=0

m∑
j=1

∣∣(ψ∗
1W1

)i,j
∣∣
1

= 1.

Then
∫ 1

0
〈ψ∗

1(t), F (u1(t))〉dt is approximated by (ψ∗
1W1

)T(F (u1(t)))C and if this quan-

tity is nonzero, ψ∗
1W is rescaled so that

∫ 1

0
〈ψ∗

1(t), F (u1(t))〉dt = 1.
Having found v1M and ψ∗

1W , a1 can be computed using (3.12) as

a1 = (ψ∗
1W1

)TBC×M×Mv1Mv1M .

Next, (h2,1)M is found by solving the discretization of (3.13), namely,

⎡
⎣ (D − TA(t))C×M

δ0 − δ1
(ψ∗

W1
)TLC×M

⎤
⎦ (h2,1)M =

⎡
⎣ BC×M×Mv1Mv1M + 2a1gC

0
0

⎤
⎦ ,

where gC = (F (u1(t)))C .
Finally, (3.14) is approximated by

c =
1

3T
(v∗1W1

)T (CC×M×M×Mv1Mv1Mv1M + 3TBC×M×Mv1M (h2,1)M )

−2a1

T
(v∗1W1

)TAC×Mv1M .
(3.16)
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3.4. Torus bifurcation. As before, we first rescale the time variable to the unit
time interval. The linear BVPs (2.33) and (2.34) are replaced by

⎧⎨
⎩

v̇1(t) − TA(t)v1(t) + iθv1(t) = 0, t ∈ [0, 1],
v1(0) − v1(1) = 0,∫ 1

0
〈v1(t), v1(t)〉dt− 1 = 0,

(3.17)

where v(τ) = v1(τ/T )/
√
T , and

⎧⎨
⎩

v̇1
∗(t) + TAT(t)v∗1(t) − iθv∗1(t) = 0, t ∈ [0, 1],

v∗1(0) − v∗1(1) = 0,∫ 1

0
〈v∗1(t), v∗1(t)〉dt− 1 = 0,

(3.18)

respectively. Note that the last equation in (3.18) differs from the last equation in

(2.34). To rescale v∗1 we first compute I =
∫ 1

0
〈v∗1(t), v1(t)〉dt. If I �= 0, then we rescale

v∗1 so that I = 1. (The case I = 0 corresponds to a bifurcation of codimension three
or higher.) It then follows that v∗(τ) = v∗1(τ/T )/

√
T .

We also replace (2.38) by

⎧⎨
⎩

ϕ̇1
∗(t) + TAT(t)ϕ∗

1(τ) = 0, t ∈ [0, 1],
ϕ∗

1(0) − ϕ∗
1(1) = 0,∫ 1

0
〈ϕ∗

1(t), ϕ
∗
1(t)〉dt− 1 = 0.

(3.19)

Again, note that the last equation in (3.19) differs from the last equation in (2.38).

Now compute I =
∫ 1

0
〈ϕ∗

1(t), F (u1(t))〉dt. If I = 0, then we have a fold-Neimark–
Sacker bifurcation. If I �= 0, then we rescale ϕ∗

1 so that I = 1. It follows that
ϕ∗(τ) = ϕ∗

1(τ/T )/T . (2.36) is replaced by

{
ḣ20,1(t) −A(t)h20,1(t) + 2iθh20,1(t) −B(t; v1(t), v1(t)) = 0, t ∈ [0, 1],

h20,1(0) − h20,1(1) = 0,
(3.20)

where h20(τ) = h20,1(τ/T ). This leads to the expression

a1 =

∫ 1

0

〈ϕ∗
1(τ), B(t; v1(t), v̄1(t))〉 dt,(3.21)

where a = a1/T .
With a1 defined in this way, let h11,1 be the unique solution of the BVP

⎧⎨
⎩

ḣ11,1(t) −A(t)h11,1(t) −B(t; v1(t), v̄1(t)) + a1F (u1(t)) = 0, t ∈ [0, 1],
h11,1(0) − h11,1(1) = 0,∫ 1

0
〈ϕ∗

1(t), h11,1(t)〉 dt = 0,

(3.22)

where h11(τ) = h11,1(τ/T ).
Finally we obtain

d =
1

2

∫ 1

0

〈v∗1(t), B(t;h11,1(t), v1(t)) + B(t;h20,1(t), v̄1(t))〉 dt

+
1

2T

∫ 1

0

〈v∗1(t), C(t; v1(t), v1(t), v̄1(t))〉 dt−
a1

T

∫ 1

0

〈v∗1(t), A(t)v1(t)〉 dt +
ia1θ

T 2
.

(3.23)
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We compute v1M by solving[
(D − TA(t) + iθIn)C×M

δ0 − δ1

]
v1M = 0,(3.24)

where (D − TA(t) + iθIn)C×M is defined like (D − TA(t))C×M . We normalize v1M

by requiring that
∑N−1

i=0

∑m
j=0 σj〈(v1M )i,j , (v1M )i,j〉 = 1, where σj is the Lagrange

quadrature coefficient. Again, it is more efficient to compute v∗1W than v∗M , since v∗1
will be used only to compute integrals of the form

∫ 1

0
〈v∗1(t), ζ(t)〉dt. Moreover, v∗1W

can be computed with the same matrix in (3.23). Formally, the computation of v∗1W is
based on Proposition A.3 from the appendix. Instead of approximating v∗1 by solving[

(D + TAT(t) − iθIn)C×M

δ0 + δ1

]
v∗1M = 0,

we remark that [
v∗
1

v∗
1 (0)

] is orthogonal to the range of [D−TA(t)+iθ
δ0+δ1

]. By discretization

we obtain

(v∗1W )H
[

(D − TA(t) + iθIn)C×M

δ0 + δ1

]
= 0.

To normalize v∗1W1
we require that

∑N−1
i=0

∑m
j=1

∣∣(v∗1W1
)i,j

∣∣
1

= 1. Then
∫ 1

0
〈v∗1(t), v1(t)〉dt

is approximated by (v∗1W1
)TLC×Mv1M . If this quantity is nonzero, then v∗1W is

rescaled so that
∫ 1

0
〈v∗1(t), v1(t)〉dt = 1.

From Proposition A.1 it follows that we can approximate ϕ∗
1 like v∗1 . To be precise,

we compute ϕ∗
1W by solving

(ϕ∗
1W )T

[
(D − TA(t))C×M

δ0 − δ1

]
= 0,

and we normalize ϕ∗
1W1

by requiring that
∑N−1

i=0

∑m
j=1

∣∣(ϕ∗
1W1

)i,j
∣∣
1

= 1. Then the

integral
∫ 1

0
〈ϕ∗

1(t), F (u1(t))〉dt is approximated by (ϕ∗
1W1

)T(F (u1(t)))C . If this quan-

tity is nonzero, then ϕ∗
1W is rescaled, so that

∫ 1

0
〈ϕ∗

1(t), F (u1(t))〉dt = 1. We compute
(h20,1)M by solving[

(D − TA(t) + 2iθIn)C×M

δ0 − δ1

]
(h20,1)M =

[
BC×M×Mv1Mv1M

0

]
.

The coefficient a1 can be approximated using (3.21) as

a1 = (ϕ∗
W1

)TBC×M×Mv1M v̄1M ,

while (h11,1)M is found by solving the discretization of (3.22),⎡
⎣ (D − TA(t))C×M

δ0 − δ1
(ϕ∗

W1
)TLC×M

⎤
⎦ (h11,1)M =

⎡
⎣ BC×M×Mv1M v̄1M − a1(F (u1(t)))C

0
0

⎤
⎦ .

The normal form coefficient d defined by (3.23) is approximated by

d =
1

2
(v∗1W1

)T(BC×M×M (h11,1)Mv1M + BC×M×M (h20,1)M v̄1M )

+
1

2T
(v∗1W1

)TCC×M×M×Mv1Mv1M v̄1M − a1

T
(v∗1W1

)TAC×Mv1M +
ia1θ

T 2
.

(3.25)
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4. Examples. The computations in this section are done with matcont [20].
In particular, the bordering methods from [23] are used to continue the codim 1
bifurcations of limit cycles in two parameters. The algorithms described above for
computing the normal form coefficients are also implemented in the current version
of matcont.

4.1. The LPC normal form coefficient in the ABC-reaction. We have
computed the normal form coefficient b of (2.4) in a model of a continuously stirred
tank reactor, with consecutive A → B → C reactions, as studied by Doedel and
Heinemann [24]. It has three state variables, u1, u2, and u3, and five parameters,
p1, p2, p3, p4, and p5:

⎧⎨
⎩

u̇1 = −u1 + p1(1 − u1)e
u3 ,

u̇2 = −u2 + p1(1 − u1 − p5u2)e
u3 ,

u̇3 = −u3 − p3u3 + p1p4(1 − u1 + p2p5u2)e
u3 .

(4.1)

This model is used as a demo in the auto manual [19]. In the notation of [24], we
have u1 = y, where 1−y is the concentration of reactant A; u2 = z, the concentration
of reactant B; u3 = θ, the temperature; p1 = D, the Damkohler number; p2 = α, the
ratio of reaction heats; p3 = β, the heat transfer coefficient; p4 = B, the adiabatic
temperature rise; and p5 = σ, the selectivity ratio.

In Figure 4.1 the equilibrium curve computed with matcont is represented. The
parameter values are p2 = 1, p3 = 1.5, p4 = 8, p5 = 0.04, with free parameter p1,
starting from the equilibrium at p1 = 0.1, for which u1 ≈ 0.13304, u2 ≈ 0.13223,
and u3 ≈ 0.42833. The curve of equilibria contains four Hopf points, labeled by H,
which we call, from left to right, H1,H2,H3,H4, respectively. As shown in [24], in the
case p2 = 1, the Hopf points H1 and H4 are connected by a family of periodic solu-
tions, and H2 and H3 are similarly connected. The family of solutions that connects
H1 to H4 contains three fold bifurcations of periodic solutions, as also observed in
[24]. We continue the first fold bifurcation of periodic solutions numerically in two
parameters p1 and p2, with the discretization parameters N = 30 (mesh intervals)
and m = 4 (collocation points). This family contains a cusp point of periodic orbits
(CPC) detected in matcont as a zero of the coefficient b computed with (3.8). In
Figure 4.2(a)–(c) we present the normal form coefficient b, the first component u1 of
the state variables vector, and p2, respectively, as functions of p1.
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1
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H 

Fig. 4.1. Equilibrium curve of the A → B → C reaction for p2 = 1.
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Fig. 4.2.



NUMERICAL PERIODIC NORMALIZATION 1429

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

R2  

R2  

(a) PD curve with two 1 : 2 points

at α = 0.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α

β

R2  

R2  

(b) The family in the (α, β)-space.

Fig. 4.3.

4.2. The PD normal form coefficient in a feedback control system. We
have used (3.16) to compute the PD normal form coefficient c of (2.5) in a feedback
control system, described in [25, 9] and further used in [3, Example 5.4, p. 178]:⎧⎨

⎩
ẋ = y,
ẏ = z,
ż = −αz − βy − x + x2.

(4.2)

Due to the special structure of this system, a good approximation to the PD curve
can be found by the harmonic balance method; cf. [26, 27].

We have computed a family of periodic orbits of (4.2) numerically, as described
in the cl matcont manual and in [28], starting from the Hopf point for α = 1
and β = 1 at (0, 0, 0). We used N = 20 (mesh intervals) and m = 4 (collocation
points) for the discretization. We detected two PD points with period 6.36407 . . . at
α ≈ ±0.6303020, respectively. The noncritical multipliers at the first PD point are
inside the unit circle, so the periodic orbit could be stable. At the second PD point
there is one multiplier outside the unit circle, and therefore the orbit is unstable.
At the PD points the normal form coefficients c were computed. At the first PD
point we find that c ≈ −0.04267737 < 0. Therefore, the critical periodic orbit at the
first PD point is stable, and a stable limit cycle with approximately double period
exists for nearby parameter values. This was confirmed by computing the bifurcating
periodic orbit and its multipliers. At the second PD point the normal form coefficient
is c ≈ 0.04268605 > 0. Hence the periodic orbit with double period is unstable in
the center manifold. By computing the orbit with doubled period and monitoring the
multipliers near this second PD point, we found that it has indeed two multipliers
outside the unit circle. From the first PD point we computed the branch of PD cycles
(see Figure 4.3). The normal form coefficient c is used as a test function. We also use

I =
∫ 1

0
〈v∗1(t), v1(t)〉dt as another test function. We detected (at α = 0) two strong

1:2 resonances R2 on this curve, where there are two multipliers equal to −1.

4.3. The NS normal form coefficient in a chemical model. The following
model of the peroxidase-oxidase reaction was studied by Steinmetz and Larter [29]:⎧⎪⎪⎨

⎪⎪⎩

Ȧ = −k1ABX − k3ABY + k7 − k−7A,

Ḃ = −k1ABX − k3ABY + k8,

Ẋ = k1ABX − 2k2X
2 + 2k3ABY − k4X + k6,

Ẏ = −k3ABY + 2k2X
2 − k5Y,

(4.3)
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where A,B,X, Y are state variables and k1, k2, k3, k4, k5, k6, k7, k8, and k−7 are pa-
rameters. The following (approximate) values correspond to an unstable equilibrium
in (4.3):

Variable Value Parameter Value
A 31.78997 k1 0.1631021
B 1.45468 k2 1250
X 0.01524586 k3 0.046875
Y 0.1776113 k4 20

k5 1.104
k6 0.001
k7 4.235322
k8 0.5
k−7 0.1175
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(b) Orbits on a stable 2-torus.

Fig. 4.4.

We continued this equilibrium with decreasing k7, keeping all other parameters
fixed. We found a Hopf point at k7 ≈ 0.712475, where the first Lyapunov coefficient is
negative. We then computed the family of stable limit cycles that bifurcates from the
Hopf point. At k7 ≈ 0.716434 a torus (NS) bifurcation occurs. The real part of normal
form coefficient d of (2.6) at this point is Re d ≈ −1.405999 · 10−6, and therefore
the emanating tori would be stable, locally. If we start a time integration from a
point on the critical limit cycle, with a slightly increased parameter value, namely,
k7 = 0.7167, then after a transient period the orbit exhibits modulated oscillations
with two frequencies near the limit cycle (see Figure 4.4). This is a motion on a
stable two-dimensional torus that arises from the NS bifurcation. The NS point can
be used as a starting point for the two-parameter continuation of the corresponding
codim 1 bifurcation, using k7 and k8 as control parameters and N = 50, m = 4
as discretization parameters. We monitored Re d of the normal form coefficient d,
computed with (3.25), during this continuation; it vanishes in a Chenciner bifurcation
point (CH). The computed bifurcation curve is presented in Figures 4.5(a) and 4.5(b),
in the (A,B)-plane and in the (k7, k8)-plane, respectively. The NS curve contains two
additional codim 2 points, where a triple multiplier μ = 1 is present (also counting
the trivial multiplier). These are 1:1 strong resonance points [3] denoted by R1 in the
figure. Between the 1:1 points, the NS curve is a neutral saddle cycle curve. Near
such codim 2 points complicated homoclinic structures exist.
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Fig. 4.5.

It should be noted that the algorithm for the NS continuation, as implemented
in matcont, is sufficiently robust to pass through the 1:1 resonance points (within a
10−3 parameter-range).

5. Discussion. The formulas for the normal form coefficients derived in this
paper allow numerical verification of the nondegeneracy conditions (see [3]) for all
codim 1 limit cycle bifurcations. In particular, the coefficients for the PD and torus
bifurcations allow one to distinguish between sub- and supercritical cases.

These coefficients serve as test functions for detecting codim 2 bifurcations of
limit cycles. One may try to use them to set up defining equations for the corre-
sponding codim 2 bifurcations in three control parameters. However, any Newton-like
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continuation scheme would require the derivatives of the coefficients with respect to
parameters, period, and the discretization variables. This problem requires further
analysis.

The new algorithms fit very well into the BVP-framework (see [30, 23]) of auto

[19], content [11], and, particularly, matcont [20], which contains our current
prototype implementation.

The underlying technique can also be used to derive the coefficients of the periodic
normal forms for codim 2 singularities of limit cycles. Although periodic normal forms
are known in most of these codim 2 cases (see [8, 4]), substantial work remains to be
done on the derivation and implementation of formulas for their coefficients. When
implemented, such formulas will allow one to verify the nondegeneracy conditions for
the codim 2 bifurcations.

A comparison of the numerical periodic normalization proposed in the current
paper with the computation of normal form coefficients of the Poincaré map via
automatic differentiation is also a task in future work.

Appendix A. Kernels of some differential-difference operators. In sec-
tion 3 we used the orthogonality with respect to the following inner product: If
ζ1, ζ2 ∈ C0([0, 1],Cn) and η1, η2 ∈ C

n, then

〈[
ζ1
η1

]
,

[
ζ2
η2

]〉
=

∫ 1

0

〈ζ1(t), ζ2(t)〉 dt + 〈η1, η2〉 =

∫ 1

0

ζH
1 (t)ζ2(t)dt + ηH

1 η2.

If this inner product vanishes, then we say that the corresponding vectors are orthog-
onal and write

[
ζ1
η1

]
⊥
[

ζ2
η2

]
.

In section 3 we also used the following propositions.

Proposition A.1. Consider two differential-difference operators

φ1,2 : C1([0, 1],Rn) → C0([0, 1],Rn) × R
n,

where

φ1(ζ) =

[
ζ̇ − TAζ

ζ(0) − ζ(1)

]
, φ2(ζ) =

[
ζ̇ + TATζ
ζ(0) − ζ(1)

]
.

If ζ ∈ C1([0, 1],Rn), then ζ ∈ Ker(φ1) if and only if

[
ζ

ζ(0)

]
⊥ φ2(C1([0, 1],Rn)),

and ζ ∈ Ker(φ2) if and only if

[
ζ

ζ(0)

]
⊥ φ1(C1([0, 1],Rn)).
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Proof. If ζ is in the kernel of φ1, then ζ̇ − TA(t)ζ = 0 and ζ(0) − ζ(1) = 0. For
all g ∈ C1([0, 1],Rn) we have

∫ 1

0
g(t)Tζ̇(t)dt−

∫ 1

0
Tg(t)TA(t)ζ(t)dt = 0

⇒
g(t)Tζ(t)|10 −

∫ 1

0
ġ(t)Tζ(t)dt−

∫ 1

0
Tg(t)TA(t)ζ(t)dt = 0

⇒
g(1)Tζ(1) − g(0)Tζ(0) −

∫ 1

0
(ġ(t) + TA(t)Tg(t))Tζ(t)dt = 0

⇒
−(g(0) − g(1))Tζ(0) −

∫ 1

0
(ġ(t) + TA(t)Tg(t))Tζ(t)dt = 0

⇒ 〈[
ġ + TATg
g(0) − g(1)

]
,

[
ζ

ζ(0)

]〉
= 0.

Conversely, assume that 〈[ ζ
ζ(0) ], [

ġ+TATg
g(0)−g(1)

]〉 = 0 for all g ∈ C1([0, 1],Rn). Then

∫ 1

0
ζT(t)(ġ(t) + TA(t)Tg(t))dt + ζT(0)(g(0) − g(1)) = 0

⇒
ζ(1)Tg(1) − ζ(0)Tg(0) + ζ(0)T(g(0) − g(1)) −

∫ 1

0
(ζ̇(t) − TA(t)ζ(t))Tg(t)dt = 0

⇒
−(ζ(0) − ζ(1))Tg(1) −

∫ 1

0
(ζ̇(t) − TA(t)ζ(t))Tg(t)dt = 0.

If ζ̇(t) − TA(t)ζ(t) �= 0, then there exists a g(t) with g(1) = 0 such that

∫ 1

0

(ζ̇(t) − TA(t)ζ(t))Tg(t)dt �= 0.

This is impossible, so ζ̇(t) + TA(t)Tζ(t) = 0. Hence (ζ(0) − ζ(1))Tg(1) = 0 for all
g; hence ζ(0) − ζ(1) = 0. From ζ̇(t) − TA(t)ζ(t) = 0 and ζ(0) = ζ(1) it follows that
ζ ∈ Ker(φ1).

The proof of the second assertion is similar.
Proposition A.2. Consider φ1,2 : C1([0, 1],Rn) → C0([0, 1],Rn) × R

n, where

φ1(ζ) =

[
ζ̇ − TAζ

ζ(0) + ζ(1)

]
, φ2(ζ) =

[
ζ̇ + TATζ
ζ(0) + ζ(1)

]
.

If ζ ∈ C1([0, 1],Rn), then ζ ∈ Ker(φ1) if and only if

[
ζ

ζ(0)

]
⊥ φ2(C1([0, 1],Rn)),

and ζ ∈ Ker(φ2) if and only if

[
ζ

ζ(0)

]
⊥ φ1(C1([0, 1],Rn)).

Proof. The proof is as in Proposition A.1.
Proposition A.3. Consider φ1,2 : C1([0, 1],Cn) → C0([0, 1],Cn) × C

n, where

φ1(ζ) =

[
ζ̇ − TAζ + iθIn
ζ(0) − ζ(1)

]
, φ2(ζ) =

[
ζ̇ + TATζ − iθIn

ζ(0) − ζ(1)

]
.
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If ζ ∈ C1([0, 1],Cn), then ζ ∈ Ker(φ1) if and only if[
ζ

ζ(0)

]
⊥ φ2(C1([0, 1],Cn)),

and ζ ∈ Ker(φ2) if and only if[
ζ

ζ(0)

]
⊥ φ1(C1([0, 1],Cn)).

Proof. The proof is as in Proposition A.1.
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WEAK BV CONVERGENCE OF A MOVING FINITE-ELEMENT
METHOD FOR SINGULAR AXISYMMETRIC HARMONIC MAPS∗
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Abstract. We prove the convergence of a moving finite-element method for the minimization
of a relaxed Dirichlet energy among axisymmetric maps from the disc into the sphere. The optimal
mesh and the discrete minimizer exist for a discrete relaxed energy. Similarly to the true solution,
the discrete minimizer has a boundary layer. Because of the consistency error introduced by the
discretization of the energy, this discrete minimizer is nonconforming. We show that it converges
to the solution of the continuous problem in an appropriate BV space. The proof is done for three
different piecewise linear finite-element discretizations.

Key words. moving mesh, finite-element methods, harmonic maps, BV functions
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1. Introduction. Moving mesh methods have been developed in the past three
decades for problems whose solutions have sharp layers (see [3, 11, 17] and the refer-
ences therein). They consist in moving automatically the nodes of a given initial mesh
to new locations, the number and connectivity of nodes being fixed. For steady-state
problems in which the true solution minimizes an energy functional, there exists a
natural optimality criterion for the positioning of the nodes, which has been success-
fully used by several authors [5, 9, 10, 15]. The idea is to look for the triangulation
that minimizes the discrete energy obtained by a finite-element discretization (moving
finite elements). In other words, we deal with a constrained optimization problem:
the unknowns are, as usual, the values of the discrete solution at the nodes (for a
piecewise linear approximation), but also the position of the nodes; the constraints
are given by the topology of the triangulation.

From a computational point of view, one major difficulty is the strong nonlin-
earity of the problem with respect to the nodes; another difficulty is the possibility
of tangling. From a mathematical point of view, the existence of an optimal trian-
gulation is a consequence of the continuity of the energy, if one allows degenerate
triangles [4]; the optimal triangulation may not be unique. Furthermore, the discrete
solution computed together with the optimal mesh converges to the true solution as
the number of nodes tends to infinity. This assertion is an immediate consequence of
a density result, but it holds only when the elements are conforming and when the
energy is computed exactly. If the energy is computed with a quadrature formula,
as this happens most often, it may be false because of the consistency error. For
instance, if a discrete solution has a discrete energy level lower than the energy level
of the true solution, then for every optimal mesh, the discrete energy level will be
even lower. To our knowledge, there is no study of the convergence of an optimal
mesh method that takes into consideration the consistency error.
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The aim of this paper is precisely to prove the convergence of an optimal mesh
method in the presence of a consistency error. The solution of the continuous prob-
lem that we consider minimizes a relaxed Dirichlet energy among axisymmetric maps
from the disc into the sphere. It is defined on [0, 1] and has a “boundary layer of zero
thickness” at 0 or, equivalently, a discontinuity. Because of the consistency error in-
troduced by the discretization of the energy, the discrete minimizer is nonconforming;
the main difficulty is to find appropriate error estimators.

The continuous problem has been studied by Alouges and the author [2]. Har-
monic maps into the unit sphere are a simplified model for liquid crystals (see, for
instance, [1]). The singularities arising in the context of harmonic maps can be
roughly depicted as “boundary layers with zero thickness.” In order to describe
them, Giaquinta, Modica, and Souček [7, 8] have proposed to consider the graph of
the unknown as a Cartesian current and to understand the convergence of minimizing
currents. In our problem, we were able to simplify this approach by using weak BV
convergence (which, in codimension 1, is equivalent to the convergence of Cartesian
currents [7]).

In [2], we also computed the optimal mesh and we showed numerical evidence
of the convergence of the solution as the number of nodes tends to infinity. The
energy of the piecewise linear approximation could not be computed exactly because
of a cosine term, so we used two different quadrature formulas: the midpoint formula
(see Figures 4.1 and 4.2) and the Gaussian formula with two nodes. The optimal
mesh and the discrete minimizer exist for a discrete relaxed energy. Similarly to the
true solution, the graph of the discrete solution has a vertical part at 0. In order to
compute this, we used an appropriate change of variable for the mesh variables and
we implemented a projected conjugate gradient algorithm.

The paper is organized as follows. For the reader’s convenience, we sum up in
section 2 the main results obtained in [2] for the continuous problem. In section 3,
we prove the convergence of the moving finite-element method, under the assumption
that the discrete energy is computed exactly: the elements here are conforming. In
section 4, the elements are nonconforming because of the midpoint formula; we intro-
duce an external approximation [14] in the BV space, which allows us to prove the
convergence. In section 5, we deal with the midpoint formula for the S1 formulation
of the problem. In section 6, we sum up the main results and we discuss the extension
of the method in higher dimension.

2. The continuous problem. A map u : B2 → S2 from the unit disc into the
unit sphere is called axially symmetric if there exists an angle function θ : [0, 1] → R

(θ is the latitude) which depends only on r :=
√
x2 + y2 such that

u(x, y) =

(
cos θ(r)

x

r
, cos θ(r)

y

r
, sin θ(r)

)
∀(x, y) ∈ B2.

If u is axisymmetric with angle function θ(r), its Dirichlet energy is

E(θ) := π

∫ 1

0

cos2 θ

r
+ rθ′2dr =

1

2

∫
B2

|∇u|2dxdy =: E(u).(2.1)

Define the space of bounded energy functions with boundary condition α

Eα :=

{
θ ∈ C0(]0, 1]), θ(1) = α,

cos θ√
r

∈ L2(0, 1), and
√
rθ′ ∈ L2(0, 1)

}
.(2.2)
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For every θ ∈ Eα there exists k ∈ Z such that limr→0 θ(r) = −π/2 + kπ. The integer
k is called the 1d degree of θ. Thus Eα =

⋃
k∈Z

Eα,k, where

Eα,k := {θ ∈ Eα, θ(0) = −π/2 + kπ}.(2.3)

We consider the following minimization problem:

Minimize E(θ) in Eα,k.(2.4)

In general, the class Eα,k does not have a minimizer. The theory for the two-
dimensional Dirichlet problem (see [16] for instance) explains this by an energy con-
centration at r = 0 for minimizing sequences (bubbling). We were able to describe in
a BV space this phenomenon of loss of compactness by concentration.

Recall that if I = ]a, b[ is an open bounded interval,

BV (I) := {y ∈ L1(I), |y′|BV (I) < ∞},

where for all y ∈ L1(I), the total mass of y′ is defined by

|y′|BV (I) := sup

{∫
I

y(r)ϕ′(r)dr | ϕ ∈ C∞
c (I,R), ||ϕ||∞ ≤ 1

}
.

The space BV (I) is a Banach space for the norm ‖yn‖BV (I) = |y′|BV (I) + ‖y‖L1(I).
We will use the following.

Definition 2.1 (weak BV convergence). Let (yn)n be a sequence of func-
tions in BV (I) and let y ∈ BV (I). Then (yn)n converges weakly to y in BV (I)
if supn |y′n|BV (I) < ∞ and yn −−−→

n→∞
y strongly in L1(I). In this case, we have the

following bound: |y′|BV (I) ≤ lim infn |y′n|BV (I).
The injection BV (I) ⊂ L1(I) is compact [7], so every sequence (yn)n in BV (I)

such that supn ‖yn‖BV (I) < ∞ converges, up to a subsequence, weakly in BV (I) to
some y ∈ BV (I).

Turning back to (2.4), let F ∈ C1(R,R) be the change of variable defined by

F (0) = 0 and F ′(ϕ) = | cosϕ| ∀ϕ ∈ R.(2.5)

We recall that F (ϕ+ lπ) = (sinϕ)+2l for all ϕ ∈ [−π/2, π/2] and for all l ∈ Z. Then
a fundamental inequality is the lower bound of the energy by the degree.

Lemma 2.2 (Alouges and Pierre). For every θ ∈ Eα,k,

E(θ) ≥ 2π

∫ 1

0

|θ′ cos θ|dr ≥ 2π |F (−π/2 + kπ) − F (α)| .(2.6)

Moreover, Λα,k := infθ∈Eα,k
E(θ) = 2π |F (−π/2 + kπ) − F (α)|.

From (2.6) it is clear that F (θ) belongs to W 1,1(]0, 1[) ⊂ BV (]0, 1[) for every
θ ∈ Eα,k. In order to describe the concentration at r = 0 as the jump of a BV
function, we included [0, 1] in [−1, 1] by symmetrization. For all y := F ◦ θ with
θ ∈ Eα, its extension of degree k on [−1, 1] is the BV function built as

Pk(y)(r) :=

{
y(r) if r ∈ [0, 1],

−y(−r) + 4k − 2 if r ∈ [−1, 0[.

Notice that if θ ∈ Eα,k, then y := Pk ◦ F (θ) is continuous on [−1, 1]. Now we define
as subsets of BV (]−1, 1[) the class Eα,k and its “closure”:

Yα,k := Pk ◦ F (Eα,k) and Yα,k := Pk ◦ F (Eα).(2.7)
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The BV frame allowed us to introduce the following relaxed energy :

E(y) := inf
{

lim inf
n

E(yn) | yn ∈ Yα,k, yn ⇀ y weakly in BV (]−1, 1[)
}

∀y ∈ Yα,k.

(2.8)

The relaxed energy is a lower semicontinuous (l.s.c.) extension of E called the Lebesgue
extension of E [8]. In the following we use the notation y = yθ,k for every y ∈ Yα,k

such that y = Pk ◦ F (θ). In [2], we proved that

E(yθ,k) = E(θ) + 4|θ(0) − (−π/2 + kπ)| (yθ,k ∈ Yα,k).(2.9)

With these definitions we obtained the existence and uniqueness.

Theorem 2.3 (Alouges and Pierre). Let (α, k) ∈ [−π/2, 0] × Z. Then infy∈Yα,k

E(y) = infθ∈Eα,k
E(θ), and there exists a unique minimizer yθ,k for E in Yα,k. More-

over, if (yθn,k)n is a minimizing sequence for E in Yα,k, then yθn,k ⇀
n→∞

yθ,k weakly

in BV (]−1, 1[) and
√
rθ′n ⇀

n→∞

√
rθ′ weakly in L2(0, 1).

In Theorem 2.3 the solution yθ,k is regular (i.e., continuous on [−1, 1]) if and only
if (α, k) = (−π/2, 0) or (α, k) ∈ ]−π/2, 0] × {0, 1}. This corresponds exactly to the
cases where problem (2.4) has a solution. In this case any minimizing sequence (θn)n
in Eα,k converges strongly in the sense that E(θn) −−−→

n→∞
E(θ). We point out for the

latter purpose that the minimizer yθ,k is known explicitly. In particular, for α = −π/2
then θ ≡ −π/2. If α ∈ ]−π/2, 0], then θ = θα,1 for k ≥ 1 and θ = θα,0 for k ≤ 0,
where θα,1 and θα,0 can be computed from

θ′ = ε cos θ (0 < r ≤ 1), θ(1) = α,(2.10)

with ε = +1 for θα,1 and ε = −1 for θα,0, respectively.

3. Conforming moving finite elements.

3.1. Moving finite elements and discrete relaxed energy. We use moving
continuous P1 elements to discretize the space Eα,k. Let

EN
α,k :=

{
θN ∈ C0([0, 1]), θN (0) = −π

2
+ kπ, θN (1) = α, and there exist

r0 = 0 < · · · < rN = 1 such that θN is affine on every [ri, ri+1]

}
.

Since EN
α,k ⊂ Eα,k, the elements here are conforming [14]. A function θN ∈ EN

α,k

is uniquely defined by the values r0 = 0 < · · · < rN = 1 and θi := θN (ri) for
i ∈ {0, . . . , N}. Throughout section 3 we use the identification

θN � (r0, r1, . . . , rN , θ0, . . . , θN ).(3.1)

In particular, EN
α,k � DN , where DN ⊂ R

2N+2 is defined by

DN :=

{
r0 = 0 < r1 < · · · < rN = 1, θ0 = −π

2
+ kπ, θ1, . . . , θN = α

}
.(3.2)
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In the remainder of this paper, we define various discrete energies EN , which
are consistent approximations of the exact energy E. A numerical solution to prob-
lem (2.4) is a minimizer of EN (r0, r1, . . . , rN , θ0, θ1, . . . , θN ) in DN under the con-
straints r0 = 0 < r1 < · · · < rN = 1. In order to guarantee the existence of a
minimizer, we introduce an l.s.c. extension of EN on the closure

DN =

{
r0 = 0 ≤ r1 ≤ · · · ≤ rN = 1, θ0 = −π

2
+ kπ, θ1, . . . , θN = α

}
.(3.3)

The following well-known lemma [6] gives such an extension (compare with (2.8)).
Lemma 3.1. Let D ⊂ R

m and suppose E : D → [0,∞) is continuous on D. Then
E : D → [0,∞], defined on the closure of D in R

m by

E(x) := inf
{

lim inf
n

E(xn) | xn ∈ D, xn → x
}

(x ∈ D),

is an extension of E which is l.s.c. on D.
In the following we will extend the identification (3.1), in order to associate to

every element (r0, . . . , θN ) ∈ DN its “P1 interpolate” yN , which is a BV function as
in the continuous case.

3.2. Exact discretization. In the remainder of section 3 we suppose that EN

is exact. For every θN ∈ EN
α,k that corresponds to (r0, . . . , rN , θ0, . . . , θN ) ∈ DN , let

EN (θN ) := π

N−1∑
i=0

(∫ ri+1

ri

cos2 θN

r
dr

)
+

(θi+1 − θi)
2

2

(
ri+1 + ri
ri+1 − ri

)
.(3.4)

It is clear from (3.4) that EN is continuous on DN . Lemma 3.1 gives an l.s.c. extension

EN of EN on DN . Clearly,

EN (r0, . . . , θN ) ≥ π

2

N−1∑
i=0

(θi+1 − θi)
2,(3.5)

and by continuity of the right-hand side, the same estimate holds for EN . Thus, every
minimizing sequence for EN in DN is bounded, and converges up to a subsequence
to a minimizer. In particular, there exists a minimizer for EN in DN .

Extending the identification EN
α,k � DN , we want to see the minimizer for EN as

an element of BV (]−1, 1[) as in the continuous case (2.7). Let

YN
α,k := Pk ◦ F

(
EN
α,k

)
⊂ W 1,1(]−1, 1[)(3.6)

denote the class EN
α,k in coordinates y. For every yN ∈ YN

α,k we denote EN (yN ) :=

EN (θN ) where θN is the unique element in EN
α,k such that yN = Pk ◦ F (θN ). The

closure of YN
α,k is defined by

YN
α,k :=

{
yN ∈ Yα,k | ∃ yn ∈ YN

α,k, sup
n

EN (yn) < ∞(3.7)

and yn ⇀
n→∞

yN weakly in BV (]−1, 1[)
}
.

We can now see the discrete relaxed energy as an analogue of (2.8).
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Definition 3.2 (discrete relaxed energy). For every yN ∈ YN
α,k,

EN (yN ) := inf
{

lim inf
n

EN (yn) | yn ∈ YN
α,k, yn ⇀

n→∞
yN weakly in BV

}
.(3.8)

Since EN (θN ) = E(θN ) for all θN ∈ EN
α,k, it is clear that YN

α,k ⊂ Yα,k and

E(yN ) ≤ EN (yN ) for all yN ∈ YN
α,k. Moreover, by extending the identification EN

α,k �
DN it is easy to see that

YN
α,k �

{
(r0, . . . , θN ) ∈ DN | EN (r0, . . . , θN ) < ∞

}

and that both definitions for the relaxed energy are equivalent, i.e., EN (yN ) =

EN (r0, . . . , θN ) for all yN ∈ YN
α,k, which corresponds to (r0, . . . , θN ) ∈ DN . In the

following we denote EN = EN .
In order to prove that the discrete minimizer for the exact energy tends to the

continuous minimizer when N → ∞, we only need, by Theorem 2.3, to build a
minimizing sequence made of P1 elements. This is an easy density.

Lemma 3.3. There exists a minimizing sequence for E in Eα,k made of continuous
P1 finite elements.

Proof. By P1 interpolation [14], the energy of any regular function in Eα,k can
be approximated as closely as desired by a P1 function in Eα,k. Clearly, infEα,k

E =
infC2([0,1])∩Eα,k

E, and this concludes the proof.
As a consequence, we have the following proposition.

Proposition 3.4. For every integer N let yN be a minimizer for EN in YN
α,k.

Then (yN )N is a minimizing sequence for E in Yα,k. In particular, yN ⇀
N→∞

y weakly

in BV (]−1, 1[), where y is the unique minimizer for E in Yα,k.

4. Midpoint formula. We use the same notation as in section 3.1. The dif-
ficulty now is that the integral in formula (3.4) cannot be computed exactly. It is
necessary to use a quadrature formula, which introduces a consistency error. In sec-
tion 4 we choose the midpoint formula. For every θN ∈ EN

α,k, which corresponds to

(r0, . . . , θN ) ∈ DN ,

EN (θN ) := 2π

N−1∑
i=0

Ei(θ
N ),(4.1)

where for all i ∈ {0, . . . , N − 1}

Ei(θ
N ) :=

[
cos2

(
θi + θi+1

2

)(
ri+1 − ri
ri+1 + ri

)
+

(
θi+1 − θi

2

)2 (
ri+1 + ri
ri+1 − ri

)]
.(4.2)

The function Ei is defined on EN
α,k � DN and depends only on θi, θi+1 and the ratio

ti = ri/ri+1.
It is clear from (4.2) that EN is continuous on DN . Lemma 3.1 gives an l.s.c.

extension EN of EN on DN . By the same argument as in section 3.2, there exists
a minimizer for EN in DN . Figures 4.1 and 4.2 show the corresponding minimizer
obtained in [2] for α = −π/4, k = 3, N = 23 and α = −π/2, k = 1, N = 10,
respectively. Notice that a vertical part in the graph of the minimizer can only occur
at r = 0, since if ri = ri+1 > 0 and EN (θN ) < ∞, then θi = θi+1.
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Fig. 4.1. Midpoint for α = −π/4, k = 3, N = 23.
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Fig. 4.2. Midpoint for α = −π/2, k = 1, N = 10.

4.1. Discrete Euler–Lagrange equation. The first fundamental idea in the
rest of section 4 is the change of variable

Xi :=
ri+1 − ri
ri+1 + ri

=
1 − ti
1 + ti

.(4.3)

With this formulation,

Ei(Xi, θi, θi+1) = cos2
(
θi + θi+1

2

)
Xi +

(
θi+1 − θi

2

)2
1

Xi
.(4.4)
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We recall that the values r0 = 0, rN = 1, θ0 = −π/2 + kπ, and θN = α are fixed, so
t0 = 0 and X0 = 1. Thus EN is a function of (X1, . . . , XN−1, θ1, . . . , θN−1) denoted
EN

X and defined on ]0, 1[N−1×R
N−1. It is clear that the map

DN ∩ R
N−1 → ]0, 1[N−1,

(r1, . . . , rN−1) →
(
t1, . . . , ti =

ri
ri+1

, . . . , tN−1

)
(4.5)

is a smooth diffeomorphism: for all (t1, . . . , tN−1) ∈ ]0, 1[
N−1

the inverse in DN∩R
N−1

is computed by ri = tiri+1 for i = N − 1, N − 2, . . . , 1. Thus

inf
DN

EN (r0, . . . , θN ) = inf
]0,1[N−1×RN−1

EN
X (X1, . . . , XN−1, θ1, . . . , θN−1).(4.6)

The second fundamental idea is a well-known inequality, but we state it as a
lemma because of its importance. The proof is immediate.

Lemma 4.1. Let (a, b) ∈ R
2. Then

inf
X∈]0,1]

(
a2X +

b2

X

)
=

⎧⎨
⎩ 2|ab| if |a| > |b|, obtained for X =

|b|
|a|,

a2 + b2 if |a| ≤ |b|, obtained for X = 1.

In particular we have infXi∈]0,1[ Ei(Xi, θi, θi+1) = J(θi, θi+1) for all (θi, θi+1),
where J : R

2 → R is defined by

J(θ, θ̃) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
|θ̃ − θ|

2

∣∣∣∣∣cos

(
θ + θ̃

2

)∣∣∣∣∣ if
|θ̃ − θ|

2
≤

∣∣∣∣∣cos

(
θ + θ̃

2

)∣∣∣∣∣ ,(
θ̃ − θ

2

)2

+ cos2

(
θ + θ̃

2

)
if

|θ̃ − θ|
2

≥
∣∣∣∣∣cos

(
θ + θ̃

2

)∣∣∣∣∣ .
(4.7)

The following result is a discrete version of the Euler–Lagrange equation (2.10).

Proposition 4.2. Let (rNi , θNi )0≤i≤N be a minimizer for EN in DN , with θN =
α. Then for all i ∈ {0, . . . , N − 1} such that ri+1 > 0 and

(θi �= θi+1) or

(
θi = θi+1 �≡ π

2
(mod π)

)
,(4.8)

ri+1 − ri
ri+1 + ri

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|θi+1 − θi|

2
∣∣∣cos

(
θi+θi+1

2

)∣∣∣ if
|θi+1 − θi|

2
<

∣∣∣∣∣cos

(
θi + θi+1

2

)∣∣∣∣∣ ,

1 if
|θi+1 − θi|

2
≥

∣∣∣∣∣cos

(
θi + θi+1

2

)∣∣∣∣∣ .
(4.9)

Proof. Lemma 4.1 and equality (4.6) imply

EN (r0, . . . , θN ) = 2π

N−1∑
i=0

J(θi, θi+1).(4.10)
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For all i ∈ {0, . . . , N} let Ei be the l.s.c. extension of Ei on DN from Lemma 3.1. It

is clear from the definition that EN (r0, . . . , θN ) ≥ 2π
∑N−1

i=0 Ei(r0, . . . , θN ), and this
together with Lemma 4.1 implies Ei(r0, . . . , θN ) = J(θi, θi+1) for all i.

Now assume there exists i ∈ {0, . . . , N − 1} with ri+1 > 0 such that (4.8) is
satisfied and (4.9) is not satisfied. Necessarily, ri < ri+1, otherwise ri = ri+1 > 0
would imply θi = θi+1, with cos((θi + θi+1)/2) �= 0 by (4.8), and (4.9) would be
satisfied. So Xi belongs to ]0, 1]. We apply Lemma 4.1 by noticing that the minimizer
X ∈ ]0, 1] given in the lemma is unique except for a = b = 0. This is not possible
here by assumption (4.8) and Xi is not the minimizer since (4.9) is not satisfied,
so Ei(Xi, θi, θi+1) > J(θi, θi+1). It is clear by continuity that Ei(Xi, θi, θi+1) =
Ei(ri, ri+1, θi, θi+1), hence a contradiction, and this concludes the proof.

In agreement with Figure 4.2 we have the following.
Corollary 4.3. If α = −π/2 and (rNi , θNi )0≤i≤N is a minimizer for EN in DN ,

then r0 = r1 = · · · = riN = 0, where iN := max{i | θi �= −π/2}.
Proof. If riN+1 = 0, then the assertion is proved. Otherwise, riN+1 > 0, and

since θiN �= −π/2, θiN+1 = −π/2, we can apply Proposition 4.2 with i = iN . We find
(riN+1 − riN )/(riN+1 + riN ) = 1, so riN = 0 as expected.

Remark. The numerical computations show that (θNi )0≤i≤N is monotone, but we
have not been able to prove it.

4.2. Upper bound for the degree. Similarly to the continuous case (2.6), the
energy EN defined by the midpoint formula (4.1) is greater than the degree. The
proof of this assertion is based on the following (stronger) lemma. We recall that J
is defined by (4.7) and F by (2.5).

Lemma 4.4. Let (θ, θ̃) ∈ R
2. If θ �= θ̃, then J(θ, θ̃) > |F (θ) − F (θ̃)|.

Proof. First assume there exists l ∈ Z such that [θ, θ̃] ⊂ [π/2+ lπ, π/2+ (l+1)π].
Then |θ̃ − θ|/2 > | sin((θ̃ − θ)/2)| and cos((θ + θ̃)/2) �= 0, so by Lemma 4.1

J(θ, θ̃) > 2

∣∣∣∣∣sin
(
θ̃ − θ

2

)∣∣∣∣∣
∣∣∣∣∣cos

(
θ + θ̃

2

)∣∣∣∣∣ .(4.11)

The right-hand side of (4.11) being equal to | sin θ̃ − sin θ| = |F (θ) − F (θ̃)|, Lemma 4.4
is proved.

If the previous assumption is not satisfied, there exists l ∈ Z such that

π

2
+ lπ ∈ ]θ, θ̃[.(4.12)

Let m ≥ 1 denote the number of l ∈ Z that satisfy (4.12). Assume θ < θ̃ (the proof
for θ > θ̃ is similar). Then we have a monotone sequence

θ <
π

2
+ lπ <

π

2
+ (l + 1)π < · · · < π

2
+ (l + m− 1)π < θ̃,

where l is the smallest integer that satisfies (4.12). We define h := π/2 + lπ − θ and
k := θ̃ − (π/2 + (l + m− 1)π). Notice that h ∈ ]−0, π] and k ∈ ]0, π]. Then,

∣∣∣F (θ) − F (θ̃)
∣∣∣ = |1 − cosh| + 2(m− 1) + |1 − cos k|,(4.13)

= 2(m− 1) + 2 sin2
(h

2

)
+ 2 sin2

(k
2

)
.



WEAK BV CONVERGENCE OF MOVING FINITE ELEMENTS 1445

On the other hand,

J(θ, θ̃) = inf
X∈]0,1]

cos2
(
m
π

2
+

h− k

2

)
X +

(
h + k + (m− 1)π

2

)2
1

X
.

Case m = 1. Since sin2(h−k
2 ) ≤ |h−k

2 |2 ≤ (h+k
2 )2, from Lemma 4.1

J(θ, θ̃) = sin2

(
h− k

2

)
+

(
h + k

2

)2

.(4.14)

With (4.13) and (4.14), Lemma 4.5, which follows, concludes the proof for m = 1.
Case m ≥ 2. Since

cos2
(
mπ

2
+

h− k

2

)
≤ 1 ≤

(π
2

)2

≤
(
h + k + (m− 1)π

2

)2

,

with Lemma 4.1 we get

J(θ, θ̃) = cos2
(
mπ

2
+

h− k

2

)
+

(
h + k + (m− 1)π

2

)2

.(4.15)

If m = 2, then from (4.13) and (4.15), Lemma 4.6 which follows, concludes the proof.
If m ≥ 3, then by (4.15),

J(θ, θ̃) ≥
(

(m− 1)π

2

)2

> 2(m + 1) ≥ 2(m− 1) + 2 sin2

(
h

2

)
+ 2 sin2

(
k

2

)
.

The relation (4.13) concludes the proof.
Lemma 4.5. For all (h, k) ∈ [0, π]2 with (h, k) �= (0, 0),

sin2

(
h− k

2

)
+

(
h + k

2

)2

> 2 sin2

(
h

2

)
+ 2 sin2

(
k

2

)
.

Proof. Let G : R
2 → R be defined by

G(h, k) := sin2

(
h− k

2

)
+

(
h + k

2

)2

− 2 sin2

(
h

2

)
− 2 sin2

(
k

2

)
.

Let (h, k) be a minimizer for G in [0, π]× [0, π] and assume that (h, k) ∈ ]0, π[2. Then
(∂hG, ∂kG)(h, k) = (0, 0). A computation gives

∂hG(h, k) =
sin(h− k)

2
+

k − h

2
+ (h− sinh) ∀(h, k) ∈ [0, π]2.

If π ≥ k ≥ h > 0, then | sin(h− k)| ≤ (k − h) and h ≥ sinh, so ∂hG(h, k) ≥ k/2 > 0:
thus k < h. Using the symmetry G(h, k) = G(k, h) the condition ∂kG(h, k) = 0
implies this time k > h, hence a contradiction. Therefore (h, k) ∈ ∂

(
[0, π]2

)
. Now

from the preceding, we have ∂hG(h, π) ≥ 0 for all h ∈ [0, π], so G(h, π) ≥ G(0, π) > 0

for all h ∈ [0π]. Moreover, G(h, 0) = (h/2)
2 − sin2(h/2) > 0 for all h ∈ ]0, π]. By

symmetry G(h, k) > 0 on ∂
(
[0, π]2

)
− {(0, 0)} and this concludes the proof.

Lemma 4.6. For all (h, k) ∈ [0, π]2,

cos2
(
h− k

2

)
+

(
h + k + π

2

)2

> 2 + 2 sin2

(
h

2

)
+ 2 sin2

(
k

2

)
.
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Proof. The proof is similar to the previous one. Let G : R
2 → R be defined by

G(h, k) := cos2
(
h− k

2

)
+

(
h + k + π

2

)2

− 2 sin2

(
h

2

)
− 2 sin2

(
k

2

)
− 2.

Let (h, k) be a minimizer for G in [0, π] × [0, π]. Since for all (h, k) ∈ [0, π]2,

∂hG(h, k) = − sin(h− k)

2
+

h + k + π

2
− sinh,(4.16)

≥ π

2
− sin(h− k)

2
− sinh > 0,

necessarily (h, k) ∈ ∂
(
[0, π]2

)
. Moreover, from (4.16), G(h, 0) ≥ G(0, 0) > 0 and

G(h, π) ≥ G(0, π) > 0 for all h ∈ [0, π]. The symmetry G(h, k) = G(k, h) concludes
the proof.

Lemma 4.4 implies the upper bound on the degree (compare with Lemma 2.2).
Proposition 4.7. For all θN ∈ EN

α,k which corresponds to (r0, . . . , θN ) ∈ DN ,

EN (r0, . . . , θN ) ≥ 2π

∫ 1

0

|(θN )′ cos θN |dr ≥ Λα,k.(4.17)

Proof. Let θN ∈ EN
α,k. Recall that F (θ) is a primitive of | cos θ| on R. On [ri, ri+1],

(θN )′ is constant, so
∫ ri+1

ri
|(θN )′ cos θN |dr = |F (θi+1) − F (θi)|. On the other hand,

by Lemma 4.1, for all i ∈ {0, . . . , N − 1}, Ei(θ
N ) ≥ J(θi, θi+1). Together with

Lemma 4.4, a summation on all i ∈ {0, . . . , N − 1} concludes the proof (the value of
the infimum Λα,k := infEα,k

E is given in Lemma 2.2).
As a consequence, we have the following lemma.
Lemma 4.8. For EN given by the midpoint formula, infDN EN −−−−→

N→∞
Λα,k.

Proof. By Proposition 4.7, it is sufficient to find a sequence (θN )N , with θN ∈ EN
α,k

for every N , such that EN (θN ) −−−−→
N→∞

Λα,k. Let ε > 0. By Lemma 3.3, for N large

enough, there exists θN ∈ EN
α,k, which corresponds to (r0, . . . , θN ) ∈ DN , such that

E(θN ) < Λα,k + ε. Define IMθN as the P1 interpolate of θN with respect to the
uniform subdivision of each [ri, ri+1] into M segments. Then IMθN belongs to ENM

α,k

and for M large enough, ENM (IMθN ) ≤ E(θN ) + ε ≤ Λα,k + 2ε, and this concludes
the proof (recall that (infDN EN )N is nonincreasing).

4.3. Nonconforming moving elements. In order to see the minimizer for EN

as a BV function, we use the y coordinates as in section 3.2. Recall that YN
α,k (3.6)

denotes the class EN
α,k in the y coordinates. For every yN ∈ YN

α,k we denote EN (yN ) :=

EN (θN ), where θN ∈ EN
α,k satisfies yN = Pk ◦ F (θN ). We point out that, as a con-

sequence of Proposition 4.7,

2π

∫ 1

0

|(yN )′|dr ≤ EN (yN ) ∀yN ∈ YN
α,k.(4.18)

The closure of YN
α,k for the midpoint formula is defined by

YN
α,k :=

{
yN ∈ BV (]−1, 1[) | ∃ yn ∈ YN

α,k, sup
n

EN (yn) < ∞

and yn ⇀
n→∞

yN weakly in BV (]−1, 1[)
}
.
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In order to describe YN
α,k we introduce the following Hilbert space:

Vα :=
{
θ ∈ C0(]0, 1]) | θ(1) = α,

√
rθ′ ∈ L2(0, 1)

}
.(4.19)

The space Vα is an affine Hilbert space for the norm (θ2(1) +
∫ 1

0
rθ′2dr)1/2, which

is isomorphic to the space of radial functions in H1(B2) with Dirichlet boundary

condition α. The upper bound EN (θN ) ≥ 2π
∫ 1

0
r(θN )′2dr which is true for all θN ∈

EN
α,k implies that for all yN ∈ YN

α,k there exists a unique θ ∈ Vα such that yN = F ◦
Pk(θ). Moreover, θ is a continuous P1 element with respect to a subdivision consisting
of M segments for some M ≤ N ; θ is called the regular part of yN . Since EN �= E,

YN
α,k �⊂ Yα,k. The elements in YN

α,k are nonconforming. However, YN
α,k ⊂ F ◦ Pk (Vα)

for all N and Eα ⊂ Vα, so Yα,k ⊂ F ◦ Pk (Vα): we have an external approximation of
Yα,k [14].

We define the discrete relaxed energy as in the continuous case (2.8).

Definition 4.9 (discrete relaxed energy). For every yN ∈ YN
α,k

EN (yN ) := inf
{

lim inf
n

EN (yn) | yn ∈ YN
α,k, yn ⇀

n→∞
yN weakly in BV

}
.(4.20)

By extending the identification EN
α,k � DN it is easy to show that

YN
α,k �

{
(r0, . . . , θN ) ∈ DN | EN (r0, . . . , θN ) < ∞

}
,

and that Definition 4.9 is equivalent to the one given by Lemma 3.1, i.e., EN (yN ) =

EN (r0, . . . , θN ) for all yN ∈ YN
α,k, which corresponds to (r0, . . . , θN ) ∈ DN . In the

following we denote EN = EN .

4.4. Convergence analysis. We begin by proving an intermediate convergence
result.

Lemma 4.10. Let (rNi , θNi )0≤i≤N be a minimizer for EN in DN . Then

max
0≤i≤N

{
|θNi+1 − θNi |

}
−−−−→
N→∞

0.(4.21)

Proof. Assume (4.21) is false. Then there exist a subsequence
(
θN

′

i

)
0≤i≤N ′ and

β > 0 such that minN ′ max0≤i<N ′{|θN ′

i+1 − θN
′

i |} ≥ β. By definition (4.7), J is
continuous on R

2. Thus from Lemma 4.4 for every M > β > 0,

ε(β,M) := min
|θ̃−θ|≥β

|θ|≤M, |θ̃|≤M

{
J(θ, θ̃) − |F (θ̃) − F (θ)|

}
> 0.(4.22)

Now let M := supN ′ max0≤i≤N ′
∣∣θN ′

i

∣∣. Since the corresponding sequence (yN
′
)N ′

is uniformly bounded in BV (]−1, 1[) by (4.18), we have M < ∞. Using succes-
sively (4.10), Lemma 4.4, and (4.22), we obtain

EN ′
(
rN

′

0 , . . . , θN
′

N ′

)
≥ Λα,k + 2πε(β,M).

On the other hand, from Lemma 4.8 we get for N ′ large enough

EN ′(rN ′

0 , . . . , θN
′

N ′
)
< Λα,k + 2πε(β,M),
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a contradiction, and this concludes the proof of Lemma 4.10.
We can state the main convergence result as follows.

Theorem 4.11. For every integer N , let yN be a minimizer for EN in YN
α,k and

let θN ∈ Vα be the regular part of yN defined in section 4.3. Then,

EN (yN ) −−−−→
N→∞

Λα,k,(4.23)

yN ⇀ y weakly in BV (]−1, 1[),(4.24)
√
r(θN )′ ⇀

√
rθ′ weakly in L2(0, 1),(4.25)

where y = yθ,k is the unique minimizer for E in Yα,k.
Proof. Equation (4.23) is given by Lemma 4.8. Estimate (4.18) shows that (yN )N

is uniformly bounded in BV . Moreover,
√
r(θN )′ is uniformly bounded in L2. So

there exist θ ∈ Vα and y = Pk ◦ F (θ) ∈ BV such that, up to a subsequence,

yN ⇀
N→∞

y weakly in BV (]−1, 1[),(4.26)

√
r(θN )′ ⇀

N→∞

√
rθ′ weakly in L2(]0, 1[).

Case α = −π/2. Lemma 4.10 and Corollary 4.3 imply that θN converges uni-
formly to −π/2 on [0, 1], so θ ≡ −π/2, and the uniqueness concludes the proof.

Case α ∈ ]−π/2, π/2[. We assume k ≥ 1, the proof for k ≤ 0 being similar. The
idea is to pass at the limit in the discrete version of the Euler–Lagrange equation (4.9)
in order to prove the uniqueness of the limit. Define

r := max{r ∈ ]0, 1[, θ(r) = ±π/2} < 1(4.27)

(if θ(r) ∈ ]−π/2, π/2[ for all r ∈ ]0, 1], then we set r := 0).
We first show that r := 0. For all N let rN := max{r ∈ ]0, 1[, θN (r) = ±π/2} < 1.

Let (rN0 , . . . , rNN , θN0 , . . . , θNN ) ∈ DN be the minimizer in DN corresponding to yN ∈
YN
α,k. We define the important index

iN := min
{
i ∈ {0, . . . , N} | ri > rN

}
.(4.28)

The interest of iN is the following: from the proof of Lemma 4.4, iN is the unique
index such that rNiN > 0 and rNiN−1 = 0 (see Figure 4.1). Moreover, by Proposition 4.2

(
rNi+1 − rNi
rNi+1 + rNi

) ∣∣∣∣cos

(
θNi + θNi+1

2

)∣∣∣∣ =
|θNi+1 − θNi |

2
∀i ∈ {iN , . . . , N − 1}.(4.29)

Lemma 4.12, which follows the proof, gives a natural result concerning iN .
Let s ∈ ]r, 1[ and define

β(s) := min

{(
min

r∈[s,1]
θ(r) +

π

2

)
,

(
π

2
− max

[s,1]
θ(r)

)}
> 0.

The compact inclusion H1([s, 1]) ⊂ C0([s, 1]) implies that θN converges uniformly to
θ on [s, 1]. Thus for N large enough, θN (r) ∈ [−π/2 + β(s)/2, π/2 − β(s)/2] for all
r ∈ [s, 1]. In particular, min[s,1] cos θN ≥ sin(β(s)/2) > 0 for all N large enough.
Using (4.29) and Lemma 4.10 we obtain

max
i∈{0,...,N−1}

rNi ≥s

(rNi+1 − rNi ) −−−−→
N→∞

0.(4.30)



WEAK BV CONVERGENCE OF MOVING FINITE ELEMENTS 1449

This means that we have a family of subdivisions whose maximal mesh-size tends to
0 as N → ∞. More precisely, let is,N := min

{
i | rNi > s

}
≥ iN . It is clear by the

same proof as for Lemma 4.12 that rNis,N −−−−→
N→∞

s. Similarly, setting t ∈ ]s, 1[ and

letting it,N := min{i | rNi > t} ≥ is,N , we have rNit,N −−−−→
N→∞

t. Thus s < rNis,N < · · · <
rNit,N−1 ≤ t is a family of subdivisions of [s, t] whose maximum step-size tends to 0.

Now let i ∈ {is,N − 1, . . . , N − 1} such that rNi+1 > rNi (the case rNi+1 = rNi is not
a problem since θNi = θNi+1). On [rNi , rNi+1], (4.29) can be written

(
2

rNi + rNi+1

)
cos2

(
θNi + θNi+1

2

)
=

(
rNi + rNi+1

2

)
(θN )′2.(4.31)

Multiplying by (rNi+1 − rNi ) and summing on all is,N ≤ i < it,N , we obtain

∫ t

s

gN (r)dr =

∫ t

s

r(θN )′2dr + γ(s, t,N),(4.32)

where gN is the piecewise constant function given by the left-hand side of (4.31) on
every [ri, ri+1]. Here γ(s, t,N) corresponds to the integration on [s, rNis,N ]∪ [rNit,N−1, t]

and γ(s, t,N) −−−−→
N→∞

0 (s and t are fixed). The uniform convergence of θN on [s, 1],

Lemma 4.12, and (4.30) imply that gN −−−−→
N→∞

cos2 θ/r uniformly on [s, t]. On the

other hand,
√
r(θN )′ ⇀

√
rθ′ weakly in L2(0, 1), so by passing to the limit in (4.32)

and using l.s.c. of the L2 norm we get
∫ t

s
rθ′2dr ≤

∫ t

s
(cos2 θ/r)dr. This is true for

every r < s < t < 1, so rθ′2(r) ≤ cos2 θ(r)/r for a.e. r ∈ [r, 1].
This is equivalent to

−cos θ

r
≤ θ′ ≤ cos θ

r
for a.e. r ∈ [r, 1].(4.33)

The two solutions of the Cauchy problem corresponding to the two equality cases
in (4.33) with initial condition θ(1) = α are θα,0 and θα,1 (see (2.10)). The regularity
of (r,Θ) → cos Θ/r on ]0,∞[ × R implies θα,0(r) ≤ θ(r) ≤ θα,1(r) for all r ∈ [r, 1].
Since −π/2 < θα,0(r) < θα,1(r) < π/2 for all r ∈ ]0, 1] we obtain r = 0 as expected.

Now set ε > 0 and let iε,N := min{i | rNi > ε} again. Equality (4.10) yields

EN (yN )

2π
=

∑
i<iε,N

J(θNi , θNi+1) +
∑

i≥iε,N

J(θNi , θNi+1).(4.34)

Denote S+
ε,N the previous sum on the indexes i ≥ iε,N . Then, using the previous

function gN , (4.31), and the definition (4.7) of J
∫ 1

ε

gN (r)dr = 2
∑

i≥iε,N

(
rNi+1 − rNi
rNi+1 + rNi

)
cos2

(
θNi + θNi+1

2

)
+ γ(ε,N)

= S+
ε,N + γ(ε,N)

Here γ(ε,N) corresponds to the integration on [ε, rNiε,N ] so γ(ε,N) −−−−→
N→∞

0 (ε is fixed).

We deduce S+
ε,N ≤ EN (yN )/(2π) −

∣∣F (−π/2 + kπ) − F (θN (rNiε,N )
∣∣ from (4.34) and

Lemma 4.4. Letting N → ∞ and using the uniform convergence on [ε, 1],∫ 1

ε

cos2 θ

r
dr ≤ Λα,k

2π
−
∣∣∣∣F

(
− π

2
+ kπ

)
− F (θ(ε))

∣∣∣∣.
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In particular with (4.33), E(θ) ≤ 2π
∫ 1

0
cos2 θ/rdr ≤ Λα,k < ∞, so θ ∈ Eα,l with

necessarily l = 1 or l = 0 since r = 0. Moreover, using the continuity of θ at r = 0,

E(θ) ≤ Λα,k − 2π|F (−π/2 + kπ) − F (θ(0))|.

The case l = 0 is impossible since Λα,k − 2π|F (−π/2 + kπ) − F (−π/2)| < 0 (see the
remark following (2.6)). Thus l = 1, and since Λα,k−|F (−π/2+kπ)−F (π/2)| = Λα,1,
θ is a minimizer in Eα,1. In other words θ = θα,1. The uniqueness of the limit θ
concludes the proof.

Lemma 4.12. Let iN be defined by (4.28). Then rNiN −−−−→
N→∞

r.

Proof. First notice that the uniform convergence of θN on [r+ε, 1] for every ε > 0
implies that rN −−−−→

N→∞
r. Assume by contradiction that rNiN does not converge to r as

N tends to infinity. Since rN < rNiN ≤ 1, there exists a subsequence of indexes (iN ′)N ′

such that rN
′

iN′ −−−−→N ′→∞
b and θN

′

iN′−1 −−−−→
N ′→∞

ϕ, with r < b ≤ 1 and ϕ �∈ ]−π/2, π/2[.

Now θN
′

iN′ = θN
′
(rNiN′ ) tends to θ(b) ∈ ]−π/2, π/2[, so |θN ′

iN′−1−θN
′

iN′ | −−−−→N→∞
|ϕ−b| �= 0.

This contradicts Lemma 4.10 and concludes the proof.

5. The S1 formulation. In this section, we apply the moving finite-element
method to the S1 formulation of problem (2.4): the energy is a quadratic functional
of S1-valued maps. This shows how the method could apply to the Dirichlet problem
for S2-valued maps in dimension 2 or 3 of domain, as considered in [8].

5.1. The continuous formulation. Every function θ ∈ Eα,k can be seen as the
S1-valued map u : [0, 1] → S1 ⊂ R

2:

u(r) := (cos θ(r), sin θ(r)) =: (c(r), s(r)) ∀r ∈ [0, 1].

The Dirichlet energy with this formulation is given by

E(u) := π

∫ 1

0

c2(r)

r
+ r|u′(r)|2dr.(5.1)

This is a quadratic energy: it allows us to define the space of maps with bounded
energy

H1
axi :=

{
u = (c, s) ∈ C0(]0, 1],R2) | u(1) = (cosα, sinα), E(u) < ∞

}
,

which is an affine Hilbert space, isomorphic to the subspace of H1(B2,R3) made of
axisymmetric vector fields with boundary condition α. The identification θ � u allows
us to see Eα,k as a subset of H1

axi. We denote this subset by Uα,k.
One point of interest regarding this formulation is that Uα,k has the metric induced

by the norm in H1
axi (whereas Eα,k does not have a canonical metric). In fact, Uα,k is

connected and closed for the strong H1
axi topology, but it is not closed for the weak

H1
axi topology. By Theorem 2.3, E has a minimizer in the class Uα,k if and only

if (α, k) = (−π/2, 0) or (α, k) ∈ ]−π/2, 0] × {0, 1}. If (α, k) does not satisfy this
assumption, then a minimizing sequence in Uα,k converges weakly in H1

axi, but not
strongly: a part of the energy concentrates at 0.

For the extension to higher dimension and for numerical applications, the S1 for-
mulation is interesting. However, it is not convenient for the mathematical description
of the limit of minimizing sequences (singular minimizers). Since the codimension is
2, the boundary layer is not completely described by a discontinuity. The weak BV
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convergence would have to be replaced by the convergence in the sense of currents,
as in [8]. But even in this context, it is not clear how one could introduce the change
of variable F .

5.2. Midpoint formula, conforming element, and discrete degree. We
use a discretization based on P1 elements in H1

axi. The integer N is fixed. Let
r0 = 0 < · · · < rN = 1 be a subdivision of [0, 1] and let (ui)0≤i≤N ∈ (S1)N+1

represent a P1 element in H1
axi. For all i ∈ {0, . . . , N} we denote ui = (ci, si) ∈ R

2,

where c2i + s2
i = 1. We define EN (r0, . . . , uN ) := 2π

∑N−1
i=0 Ei(r0, . . . , uN ), where for

all i

Ei(r0, . . . , uN ) :=
(ci + ci+1)

2

|ui + ui+1|2

(
ri+1 − ri
ri+1 + ri

)
+

|ui − ui+1|2
|ui + ui+1|2

(
ri+1 + ri
ri+1 − ri

)
.(5.2)

Here | · | is the euclidean norm in R
2. The function Ei is defined on

DN
u := {r0 = 0 < · · · < rN = 1} ×

{
(ui)0≤i≤N ∈ (S1)N+1, ui+1 �= −ui

}
.(5.3)

Let uN = (cN , sN ) be the unique P1 element in H1
axi defined by the values

uN (ri) = ui for all i ∈ {0, . . . , N}, i.e., uN ∈ C0([0, 1],R2) and uN is affine on
every [ri, ri+1]. Assume ui+1 �= −ui for all i. Since |uN | ≥ |ui + ui+1|/2 > 0 on
[ri, ri+1], the map uN/|uN | belongs to C0([0, 1], S1). The discrete energy (5.2) is the
approximation of E(uN/|uN |) by the midpoint formula. Notice that the quadratic
energy E(uN ) does not have good properties for the optimal mesh method [13].

Now set α ∈ [−π/2, π/2] and assume uN (1) = (cosα, sinα) is given. Then,
the map uN/|uN | admits a unique lift θN ∈ C0([0, 1],R) such that θN (1) = α and
uN (r) = (cos θN (r), sin θN (r)). Since E(θN ) = E(uN ) < ∞, θN ∈ Eα,k for a unique
k ∈ Z. The integer k such that θN (0) = −π/2 + kπ is the degree of u.

Now, the discrete formulation of problem (2.4) is

Minimize EN on DN
u,α,k =

{
(r0, . . . , uN ) ∈ DN

u

∣∣ uN (1) = α and deg(u) = k
}
.(5.4)

The conditions ui+1 �= −ui and uN affine on [ri, ri+1] imply |θN (ri+1)− θN (ri)| < π,
so |θ(0)| < (N + 1)π. Conversely, it is possible to construct for all ε > 0 a function
θN ∈ C0([0, 1]) such that π > θN (ri+1) − θN (ri) ≥ π − ε, and for ε small enough
θ(0) ≥ α+Nπ−Nε ≥ −π/2+ (N − 1)π. Then k ≥ N − 1 (and similarly we can have
k ≤ −N +2). So for any k ∈ Z, if N is large enough, DN

u,α,k is not empty. Notice also

that by the identification uN � θN , every DN
u,α,k is connected (as in the continuous

case).
Figure 5.1 shows the numerical solution to (5.4) obtained by a projected gradient

algorithm with the change of variable Xi (4.3) for α = −π/4, k = 2, and N = 17;
the circles of radius 1 represent the cylinder [0, 1] × S1 in which the true solution
lives. The results are comparable to the computations with the midpoint formula in
codimension 1 (Figures 4.1 and 4.2).

5.3. Upper bound for the degree. The following lemma is the equivalent of
Lemma 4.4, which is itself the key of the proof of the convergence Theorem 4.11.
Therefore, seeing the discrete S1 energy EN (5.2) as a function of (r0, . . . , θN ), it is
possible to obtain a convergence result similar to Theorem 4.11 for any sequence of
minimizing lifts (θN )N .

Lemma 5.1. Let 0 ≤ ri < ri+1 ≤ 1 and let (θi, θi+1) ∈ R
2 such that

0 < |θi+1 − θi| < π. Define uj := (cos θj , sin θj) for j = i, i + 1.
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Fig. 5.1. Midpoint for S1 with α = −π/4, k = 2, N = 17.

Then Ei(ri, ri+1, ui, ui+1) > |F (θi+1) − F (θi)|.
In particular, EN (r0, . . . , uN ) ≥ Λα,k for all (r0, . . . , uN ) ∈ DN

u,α,k.
Proof. Assume [θi, θi+1] ⊂ [π/2+ lπ, π/2+(l+1)π] for some l ∈ Z. By Lemma 4.1

Ei(ri, ri+1, ui, ui+1) ≥ 2
|cos θi + cos θi+1| · |ui+1 − ui|

|ui + ui+1|2
|

≥ 2

∣∣∣cos
(

θi+1−θi
2

)∣∣∣ ·
∣∣∣sin(

θi+1−θi
2

)∣∣∣∣∣∣cos
(

θi+θi+1

2

)∣∣∣
> |sin θi+1 − sin θi| = |F (θi+1) − F (θi)|.

If the previous assumption is not satisfied, we assume without loss of generality
θi < θi+1. There exists l ∈ Z such that π/2 + (l − 1)π < θi < π/2 + lπ < θi+1 <
π/2 + (l + 1)π. We define h := π/2 + lπ − θi and k := θi+1 − (π/2 + lπ). Notice that
h ∈ ]0, π[, k ∈ ]0, π[, and h + k < π. Then with Xi = (ri+1 − ri)/(ri+1 + ri) ∈ ]0, 1[

Ei(ri, ri+1, ui, ui+1) =
|sinh− sin k|2

4 cos2
(
h+k

2

) Xi +

∣∣sin2
(
h+k

2

)∣∣
cos2

(
h+k

2

) 1

Xi
.

Using Lemmas 5.2 and 4.1

Ei(ri, ri+1, ui, ui+1) ≥
|sinh− sin k|2

4 cos2
(
k+h

2

) +
sin2

(
k+h

2

)
cos2

(
k+h

2

) .
On the other hand (4.13) yields |F (θi+1) − F (θi)| = 2 sin2(h/2) + 2 sin2(k/2). The
following lemma concludes the proof.

Lemma 5.2. For all (h, k) ∈ [0, π]2 such that h + k < π,
∣∣∣∣ sinh− sin k

2

∣∣∣∣
2

≤ sin2

(
h + k

2

)
.
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Proof. The proof is similar to the proof of Lemma 4.5.
Lemma 5.3. For all (h, k) ∈ [0, π]2 such that 0 < h + k < π,

|sinh− sin k|2

4 cos2
(
k+h

2

) +
sin2

(
k+h

2

)
cos2

(
k+h

2

) > 2 sin2
(h

2

)
+ 2 sin2

(k
2

)
.

Proof. Define K := {(h, k) ∈ [0, π]2 | h + k ≤ π and k ≤ h} and G : K → R by

G(h, k) =

(
sinh− sin k

2

)2

+sin2

(
h + k

2

)
−2

(
sin2

(
h

2

)
+sin2

(
k

2

))
cos2

(
h + k

2

)
.

Then G admits a minimizer (h, k) on K. We have

∂hG(h, k) = cos

(
h + k

2

)[
A(h, k) +

(
2 sin2

(
h

2

)
+ 2 sin2

(
k

2

))
sin

(
h + k

2

)]
,

with

A(h, k) := cos(h) sin

(
h− k

2

)
+ sin

(
h + k

2

)
− sin(h) cos

(
h + k

2

)
.

Now

A(h, k) = sin

(
h− k

2
− h

)
+ sin(h)

[
cos

(
h− k

2

)
− cos

(
h + k

2

)]
+ sin

(
h + k

2

)
,

so for all (h, k) ∈
◦
K, 0 < (h − k)/2 < (h + k)/2 < π/2 and ∂hG(h, k) > 0. Thus

(h, k) ∈ ∂K. We have ∂hG(h, k) > 0 for all (h, k) ∈ ∂K such that 0 < h + k < π and
this concludes the proof.

6. Conclusion. The main results in this paper are the convergence Theorem 4.11
for the midpoint formula and the external approximation by BV functions introduced
in section 4.3. They are based on the BV bound given by the discrete energy in
Proposition 4.7, which is the discrete equivalent of Lemma 2.2. Lemma 5.1 provides
the same BV bound for the S1 formulation discretized by the midpoint formula.
For the quadratic discretized energy obtained by suppressing the term |ui + ui+1|2
in formula (5.2), such a bound does not hold and the optimal mesh method does
not converge [13]. Thus, the discretized problem should mimic the properties of the
continuous problem. For the Gaussian quadrature with two nodes instead of the mid-
point formula, the numerical computations [2] indicate that minEα,k

EN > Λα,k, but
we have not been able to prove this.

As pointed out in the introduction, the results of section 3 apply directly in every
dimension to every steady-state problem in which the solution minimizes an energy
functional. Indeed, Lemma 3.1 provides an l.s.c. extension of the discrete energy, and
this guarantees the existence of a discrete minimizer in the closure of its domain of
definition, provided the discrete energy is coercive in the sense of (3.5). Assuming
that the elements are conforming and that the energy is exact, a density result is
enough to show the convergence of the method.

For a triangulation, closing the constraints means that we allow degenerate trian-
gles. Concerning the Poisson equation, the optimal mesh might have such degenerate
triangles, but the discrete minimizer is continuous [4]; for regular elliptic problems,
one expects the same behavior. For the two- or three-dimensional formulation of
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problem (2.4) as in [8], or the Plateau problem, which is similar, the graph of the
true solution may have a vertical part; one expects a similar vertical part for the
discrete solution; in particular, the optimal mesh would have degenerate triangles.
Using conforming elements as in section 5.2, we would obtain in two or three dimen-
sions a convergence result similar to Proposition 3.4: the minimizing sequence would
converge in the sense of currents (rather than in the weak BV sense), but only up to
a subsequence because the limit is not unique.

For practical reasons, we have not yet computed numerical solutions for the two-
or three-dimensional formulation of problem (2.4). However, we can refer the reader
to [9, 12] for numerical simulations concerning the Plateau problem and elliptic prob-
lems with large gradients.
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Abstract. In this paper, we formulate a time-discretization using the implicit Euler method for
contact conditions and the midpoint rule for the elastic part of the equations. The energy functional
is defined, and convergence for the time-discretization is investigated. Our time-discretization leads
to energy dissipation. Using this time discretization and the finite element method with B-spline
basis functions, we compute numerical solutions. We show that there is a converging subsequence,
and the limit of any such converging subsequence is a solution of the dynamic impact problem. In
order to solve the linear complementarity problem that arises in the numerical method, we use a
smoothed guarded Newton method. We also investigate numerically the question of whether the
numerical solutions converge strongly to their limit and if energy is conserved for the limit. Our
numerical results give some evidence that this is so.
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1. Introduction. The Euler–Bernoulli equation is an approximate equation for
a thin beam such as a rod. Combining this with Signorini contact conditions will give
our formulation of the Euler–Bernoulli beam with frictionless contact. The solution
u(x, t) of our formulation represents the vertical displacement of the rod from an
initially horizontal position for time t and position x along the beam. For small
displacements, we have a linear relationship between stress and strain. The Euler–
Bernoulli equation is

ρA
∂2u

∂t2
= −EI

∂4u

∂x4
+ f(x, t) in (0, L) × (0, T ],

where L is the length of the rod, A is the area of the cross-section of the rod, ρ
is the density of the rod, E is the Young modulus for the rod, and I is the second
moment of inertia. Note that I is given by I =

∫
A(y − y)2dx dy, where A is the

cross-section of the rod as a subset of the plane and y is the vertical center of area,
which is y =

∫
A y dx dy/

∫
A dx dy. The function f(x, t) is the body force applied to

the rod, and time t is between the initial time t = 0 and some fixed time t = T. We
denote vectors and matrices by bold letters.

This problem that we are considering is close to Schatzman’s model [13], which
has been studied in the literature. Her analysis is based on the use of characteristics,
and conservation of energy is shown. We note that Euler–Bernoulli beam’s boundary
conditions are different from those of Schatzman’s model.

In the purely elastic case, Euler–Bernoulli beams are not dissipative, and there
are no characteristics. While the question of whether there can be conservation of
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g
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Fig. 1. Euler–Bernoulli beam with frictionless contact.

energy for Signorini contact conditions is an open one, this paper gives some evidence
that energy is conserved generically.

The Euler–Bernoulli beam with Signorini contact conditions comes from the phys-
ical situation illustrated in Figure 1.

The boundary conditions can be identified from the figure. Suppose that the end
of the rod at x = 0 is clamped horizontally. Then the boundary condition of x = 0 has
the homogeneous essential boundary conditions, i.e., u(0, t) = ux(0, t) = 0. If the end
of rod is free, then we have the natural boundary conditions uxx(L, t) = uxxx(L, t) = 0.
Note that subscripts denote derivatives with respect to the subscripted variables.
These last two boundary conditions can be obtained from the usual variational tech-
niques.

If we impose frictionless Signorini contact conditions along the length of the rod,
we represent the equation of motion as

ρA
∂2u

∂t2
= −EI

∂4u

∂x4
+ f(x, t) + N(x, t),(1.1)

where from contact criterion, the magnitude of the vertical contact forces (pressures),
N(x, t) satisfy the linear complementary problem (LCP) with the complementarity
conditions

0 ≤ N(x, t) ⊥ u(x, t) + g(x) ≥ 0 for all x ∈ (0, L), t > 0.(1.2)

Note that ρA, EI, f , and g are given, while the unknowns are the functions u and N .
Note that g(x), called the gap function, displays a measure of the initial normalized
“gap” between the rod and the rigid foundation, where the position of the rod is on
the same as its clamped point of the rod horizontally. Note that for vectors a, b,
0 ≤ a ⊥ b ≥ 0 means that a, b ≥ 0 componentwise and aTb = 0. If a and b are
scalars, both are nonnegative and either a or b is zero. From the physical point of
view, the LCP condition can be interpreted in the following way: When there is a gap
between the rod and rigid foundation, i.e., the rod does not reach to rigid foundation,
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the contact force N must be zero; when there is a contact force, the rod touches the
rigid foundation, i.e., there is no gap between them. We assume that applied body
force f(x, t) = f(x). So the body force f and gap function g do not depend on time t.
We also assume that the gap function g(x) ≥ 0. Thus we are led to consider solving
the following PDE:

ρAutt = −EIuxxxx + f(x) + N(x, t) in (0, L) × (0, T ],(1.3)

0 ≤ N(x, t) ⊥ u(x, t) + g(x) ≥ 0 in (0, L) × (0, T ],(1.4)

u(0, t) = ux(0, t) = 0 on (0, T ],(1.5)

uxx(L, t) = uxxx(L, t) = 0 on (0, T ],(1.6)

u(x, 0) = u0(x) in (0, L),(1.7)

ut(x, 0) = v0(x) in (0, L).(1.8)

We will assume that f ∈ L2(0, L), u0 ∈ H2
cf (0, L), v0 ∈ L2(0, L), g ∈ C[0, L], and

that g(0) > 0. Note that H2
cf (0, L) is the subset of H2(0, L), which satisfies the

clamped end condition at x = 0 (“c” denotes “clamped,” while “f” denotes “free”).
In this paper, we focus on a numerical approach to the PDE, since the existence of
solutions to the PDE has been already shown in [1]. Note that (1.7), (1.8) are the
initial conditions for displacement and velocity, respectively.

2. Convergence of the time discretization. In this section we set up a
time-discretization. Also, the convergence for our semidiscretization is investigated.
The following section will consider discretization in both time and space. Note that
throughout this paper, C refers to a quantity that depends only on the data of the
problem and not on the parameters of the approximations used but that may be
different in each occurrence.

2.1. Formulation of the discrete-time problem. In order to obtain a nu-
merical formulation, we will employ a hybrid of two numerical schemes in time:

• Elasticity (uxxxx)—Midpoint rule is used,
• Contact condition—Implicit Euler is used.

First we consider a partition of time: 0 = t0 < t1 < t2 < · · · < tl < tl+1 < · · · < T.

We denote by ul(x) numerical solution of displacement u(x, tl) and by vl(x) nu-
merical solution of velocity v(x, tl) and N l(x) numerical solution of magnitude of
contact force, N(x, tl), respectively, at each discretized time tl = lh. Then the time
step size is h = tl+1 − tl for l ≥ 0. From (1.3), we take ρA = EI = 1 by proper
scaling.

Using our numerical scheme, we establish a numerical formulation:

vl+1 − vl

h
= −

(
ul+1
xxxx + ul

xxxx

2

)
+ f(x) + N l,(2.1)

ul+1 − ul

h
=

vl+1 + vl

2
,(2.2)

0 ≤ N l ⊥ ul+1 + g ≥ 0,(2.3)

where ul = ul(x), vl = vl(x), N l = N l(x) for each l ≥ 0.

2.2. Energy dissipation in the semidiscrete case. In this subsection, we
will see that numerical formulations (2.1–2.3) cause energy dissipation.
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Now we define the energy functional that is dependent on displacement u and
velocity v:

E(u, v) =
1

2

∫ L

0

(
|v|2 + |uxx|2

)
dx−

∫ L

0

f · u dx.(2.4)

The first term 1
2

∫ L

0
|v|2dx is the kinetic energy, the second term 1

2

∫ L

0
|uxx|2dx is the

elastic energy, and the last term −
∫ L

0
f · u dx is the external potential energy.

Lemma 2.1. In the semidiscrete case, energy is dissipated.
Proof. We want to show that E(ul+1, vl+1) ≤ E(ul, vl). Using (2.1)–(2.2), we

have

∫ L

0

|vl+1|2 − |vl|2
2h

dx = −
∫ L

0

(ul+1
xxxx + ul

xxxx)(ul+1 − ul)

2h
dx

+

∫ L

0

f · (ul+1 − ul)

h
dx +

∫ L

0

N l · (ul+1 − ul)

h
dx.(2.5)

Multiplying by h on both sides of (2.5) and using integration by parts and the bound-
ary conditions, we obtain

∫ L

0

|vl+1|2 − |vl|2
2

dx = −
∫ L

0

|ul+1
xx |2 − |ul

xx|2
2

dx

+

∫ L

0

f · (ul+1 − ul) dx +

∫ L

0

N l · (ul+1 − ul) dx.

Thus from the LCP condition (2.3),

1

2

∫ L

0

(
|vl+1|2 − |vl|2

)
dx = −1

2

∫ L

0

(
|ul+1

xx |2 − |ul
xx|2

)
dx +

∫ L

0

f · (ul+1 − ul) dx

+

∫ L

0

N l · (ul+1 + g) dx−
∫ L

0

N l · (ul + g) dx

≤ −1

2

∫ L

0

(
|ul+1

xx |2 − |ul
xx|2

)
dx +

∫ L

0

f · (ul+1 − ul) dx(2.6)

as
∫ L

0
N l · (ul+1 + g) dx = 0 by (2.3), but N l and ul + g ≥ 0 so

∫ L

0
N l · (ul + g) dx ≥ 0.

Therefore we have

E(ul+1, vl+1) =

(
1

2

∫ L

0

(
|vl+1|2 + |ul+1

xx |2
)
dx

)
−
∫ L

0

f · ul+1 dx

≤
(

1

2

∫ L

0

|vl|2 + |ul
xx|2 dx

)
−
∫ L

0

f · ul dx = E(ul, vl)

as desired.
From (2.6), we observe that the energy E is conserved if N l = 0 and energy is

dissipated by the LCP condition (2.3) if N l(x) > 0 for some x ∈ (0, L). Assume
that the initial energy is finite. Then Lemma 2.1 shows that vl ∈ L2(0, L) and ul ∈
H2

cf (0, L) for all l and h > 0 and that they are bounded in these spaces independently
of l and h > 0.
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2.3. Convergence of the semidiscrete scheme. Since the fourth-order dif-
ferential operator K = ∂4/∂x4 is an elliptic self-adjoint with our boundary con-
dition, we have orthonormal basis φi with ∂4φi/∂x

4 = λiφi satisfying the homo-
geneous boundary conditions φi(0) = φ′

i(0) = φ′′
i (L) = φ′′′

i (L) = 0. We order
the eigenvalues λi so that 0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · and limi→∞ λi = ∞.
Properties of these eigenfunctions are discussed in [1]. For the PDE system (1.3–
1.8), we can write the discrete-time solution quantities as ul(x) =

∑∞
i=1 u

l
iφi(x),

vl(x) =
∑∞

i=1 v
l
iφi(x), and N l(x) =

∑∞
i=1 N

l
iφi(x).

So using the above numerical solution expressions and the numerical formulation
(2.1–2.2), for any i ≥ 1 we have

vl+1
i − vli

h
= −λi

(
ul+1
i + ul

i

2

)
+ N l

i ,(2.7)

ul+1
i − ul

i

h
=

vl+1
i + vli

2
.(2.8)

Note that when we investigate the convergence of our numerical scheme, we will not
consider the external body force f(x).

Lemma 2.2. From (2.7) and (2.8), ul+1
i and vl+1

i are expressed in terms of ul
i and vli

for each i ≥ 1 and each l ≥ 0 in the following way:

[
ul+1
i

vl+1
i

]
=

[
1 0

0 λ
1/2
i

] [
cosχi sinχi

− sinχi cosχi

] [
1 0

0 λ
−1/2
i

] [
ul
i

vli

]

+
hN l

i

1 + h2λi/4

[
h
2
1

]
,(2.9)

where χi = χ(hλ
1/2
i ), i.e., function χi depends only on hλ

1/2
i .

Proof. From (2.8), we have

vl+1
i =

2

h
(ul+1

i − ul
i) − vli.(2.10)

Multiplying by h on (2.7) and plugging (2.10) into (2.7), we obtain

2

h
(ul+1

i − ul
i) − 2vli = −h

2
(λiu

l+1
i + λiu

l
i) + hN l

i .(2.11)

Thus multiplying by h/2 on (2.11), we have the discrete-time solution at the next
step:

ul+1
i = (1 + h2λi/4)−1

[
(1 − h2λi/4)ul

i + hvli + h2N l
i/2

]
.

Using (2.10), we obtain the next step’s velocity:

vl+1
i =

1

1 + h2λi/4

[
−hλiu

l
i + (1 − h2λi/4)vli + hN l

i

]
.

Therefore, solving the equations for ul+1 and vl+1 in terms of ul and vl gives

[
ul+1
i

vl+1
i

]
=

1

1 + h2λi/4

[
1 − h2λi/4 h

−hλi 1 − h2λi/4

] [
ul
i

vli

]
+

hN l
i

1 + h2λi/4

[
h
2
1

]
.
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The above system can be written as

[
ul+1
i

vl+1
i

]
=

1

1 + h2λi/4

[
1 0

0 λ
1
2
i

][
1 − h2

4 λi hλ
1
2
i

−hλ
1
2
i 1 − h2

4 λi

][
1 0

0 λ
− 1

2
i

] [
ul
i

vli

]

+
hN l

i

1 + h2λi/4

[
h
2
1

]
.

Note that we have

(
1 − h2λi/4

1 + h2λi/4

)2

+

(
hλ

1/2
i

1 + h2λi/4

)2

= 1.

So we can write

sinχi =
hλ

1/2
i

1 + h2λi/4
, cosχi =

1 − h2λi/4

1 + h2λi/4
,

where χi = χ(hλ
1/2
i ). Hence the result follows.

Indeed, we can require that χi be restricted to [0, π].
Remark 2.1. Consider a sequence of vectors zl+1 = Czl + bl, for l ∈ N. Then

we have

zl = Clz0 +

l−1∑
j=0

Cl−1−jbj .

It is easy to prove this formula using mathematical induction.
Lemma 2.3. From (2.7) and (2.8), ul

i for each l ≥ 1 can be expressed as

ul
i = u0

i cos(lχi) + v0
i sin(lχi)/λ

1/2
i

+
h

1 + h2λi/4

l−1∑
j=0

(
h cos ((l − 1 − j)χi)

2
+

sin ((l − 1 − j)χi)

λ
1/2
i

)
N j

i ,(2.12)

where u0
i and v0

i are coefficients for the initial displacement and velocity, respectively.
Proof. In order to apply Remark 2.1, we set

zl =

[
ul
i

vli

]
, C =

[
1 0

0 λ
1/2
i

] [
cosχi sinχi

− sinχi cosχi

] [
1 0

0 λ
−1/2
i

]
, bl =

[
h
2N

l
i

N l
i

]
.

So from Lemma 2.2, we have

[
ul
i

vli

]
=

([
1 0

0 λ
1/2
i

] [
cosχi sinχi

− sinχi cosχi

] [
1 0

0 λ
−1/2
i

])l [
u0
i

v0
i

]

+
h

1 + h2λi/4

l−1∑
j=0

([
1 0

0 λ
1/2
i

] [
cosχi sinχi

− sinχi cosχi

] [
1 0

0 λ
−1/2
i

])l−1−j [ h
2N

j
i

N j
i

]
.

By mathematical induction,

[
ul
i

vli

]
=

[
cos(lχi) λ

−1/2
i sin(lχi)

−λ
1/2
i sin(lχi) cos(lχi)

] [
u0
i

v0
i

]

+
h

1 + h2λi/4

l−1∑
j=0

[
cos ((l − 1 − j)χi) λ

−1/2
i sin ((l − 1 − j)χi)

−λ
1/2
i sin ((l − 1 − j)χi) cos ((l − 1 − j)χi)

] [
h
2N

j
i

N j
i

]
.
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Multiplying by row vector [1, 0] on both sides of the above system, the coefficient ul
i

of ul(x) is obtained as desired.
We define the impulse response function (or fundamental solution of the time-

discretization) for fixed x∗ ∈ (0, L) to be

wl(x) =

∞∑
i=1

wl
iφi(x),

where wl
i = (h cos(lχi)/2 + sin(lχi)/λ

1/2
i )/(1 + h2λi/4). Similar to the fundamental

solution of the PDE system, we extend wl
i = 0 for l < 0. Thus using this form of

impulse response function with Lemma 2.3, we have

ul
i = u0

i cos(lχi) + v0
i

sin(lχi)

λ
1/2
i

+ h

l−1∑
j=0

wl−j−1
i N j

i .(2.13)

Recalling the fundamental solution of the PDE system, we define the impulse response
function for fixed x∗ ∈ (0, L) as

wl(·, x∗) =

∞∑
i=1

wl
iφi(x

∗)φi(·).(2.14)

Lemma 2.4. Using the impulse response function wl(·), the discrete-time solution
ul(·) can be expressed as

ul(·) =

∞∑
i=1

u0
i cos(lχi) ·φi(·)+

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·)+h

l−1∑
j=0

∫ L

0

wl−j−1(·, x∗)N j(x∗)dx∗.

Proof. Employing (2.13) for fixed x∗ ∈ (0, L), we have

∞∑
i=1

ul
iφi(·) =

∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·) + h

l−1∑
j=0

∞∑
i=1

wl−j−1
i N j

i φi(·).

Since N j(·) =
∑∞

r=1 N
j
rφr(·) and φi is orthonormal basis in L2(0, L), we have

N j
i =

∫ L

0

∞∑
r=1

N j
rφr(x

∗)φi(x
∗)dx∗ =

∫ L

0

N j(x∗)φi(x
∗)dx∗.

Thus we obtain

ul(·)

=

∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·) + h

l−1∑
j=0

∞∑
i=1

wl−j−1
i φi(·)

∫ L

0

N j(x∗)φi(x
∗)dx∗

=

∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·) + h

l−1∑
j=0

∫ L

0

wl−j−1(·, x∗)N j(x∗)dx∗,

as required.
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We now need a lemma giving some basic bounds on the function χ(s). These basic
bounds will be used to establish a uniform Hölder continuity result for the discrete
fundamental solution w and then for the solution uh of the discrete-time problem.

Lemma 2.5. If cosχ(s) = (1− s2/4)/(1+ s2/4) and sinχ(s) = s/(1+ s2/4), then
χ(s) ≤ s for 0 ≤ s ≤ 2.

Proof. Taking a derivative sinχ(s) with respect to s, we have

d sinχ(s)

dχ

dχ

d s
=

d

d s

(
s

1 + s2/4

)
=

1

1 + s2/4
· 1 − s2/4

1 + s2/4
< cosχ(s) for s �= 2.

So if s �= 2, dχ/d s < 1. Since χ(0) = 0, we have χ(s) ≤ s for s ≥ 0, using Propo-
sition 3.7 in [1]. If s = 2, cosχ(2) = 0. Therefore χ(2) = π/2 < 2, and the result
follows.

Lemma 2.6. The following uniform Hölder continuity property holds for p = 2γ,
0 < p ≤ 1:

∣∣∣∣∣
sin

(
(l + r)χ(hλ1/2)

)
− sin

(
lχ(hλ1/2)

)
λγ

∣∣∣∣∣ ≤ Cp · (rh)p,

where Cp is independent of h and λ.
Proof. Suppose r ≥ 1. Then we have

∣∣∣∣∣
sin

(
(l + r)χ(hλ1/2)

)
− sin

(
lχ(hλ1/2)

)
λγ

∣∣∣∣∣ ≤
2

λγ

∣∣∣sin(rχ
2

)∣∣∣ .

Since rχ− sin(rχ/2) ≥ 0 for rχ ≥ 0, we have

λ−γ |sin ((l + r)χ) − sin(lχ)| ≤ 2λ−γ min(rχ, 1).

Applying Lemma 2.5 for hλ1/2 ≤ 2,

λ−γ |sin ((l + r)χ) − sin(lχ)| ≤ 2λ−γ min(rhλ1/2, 1),(2.15)

and for hλ1/2 ≥ 2, (2.15) also holds by inspection as rhλ1/2 > 1. Dividing by (rh)p

on both sides of (2.15),

λ−γ |sin ((l + r)χ) − sin (lχ)|
(rh)p

≤ 2λ−γ(rh)−p min(rhλ1/2, 1).(2.16)

Thus, from (2.16), if rhλ1/2 ≤ 1,

λ−γ |sin ((l + r)χ) − sin (lχ)| (rh)−p ≤ 2λ−γ(rh)−p(rhλ1/2)

= 2λ−γ+1/2(rh)1−p

≤ 2λ−γ+1/2λp/2−1/2 = 2λp/2−γ .

If rhλ1/2 ≥ 1, |λ−γ sin ((l + r)χ) − λ−γ sin (lχ)| (rh)−p ≤ 2λ−γ(rh)−p ≤ 2λp/2−γ .
Thus putting p = 2γ, we have

λ−γ
∣∣∣sin((l + r)χ(hλ1/2)

)
− sin

(
lχ(hλ1/2)

)∣∣∣ ≤ 2(rh)p,

as required.
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Let the value uh(·, t) be a continuous piecewise linear interpolant of uh(·, lh) = ul

and uh(·, (l + 1)h) = ul+1 for t ∈ [lh, (l + 1)h]. Then recalling Lemma 2.4, the value
of uh(·, lh) computed at step l is expressed as

uh(·, lh) =

∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·)

+ h

l−1∑
j=0

∫ L

0

wh(·, (l − j − 1)h, x∗)N j(x∗)dx∗,(2.17)

where wh(·, lh, x∗) =
∑∞

i=1(h cos(lχi)/2+sin(lχi)/λ
1/2
i )φi(·)φi(x

∗)/(1+h2λi/4). Now
we define the discrete-time contact force Nh(x, t) as

Nh(x, t) = h

�T/h�−1∑
j=0

δ(t− (j + 1)h)N j(x),

where δ is the Dirac-δ function and �T/h	 is the number of time steps. We also
identify Nh with a nonnegative Borel measure on [0, L] × [0, T ] by

Nh(B) =

∫
B

Nh(x, t) dx dt,

where B is any Borel set in [0, L] × [0, T ]. It can be shown easily that the Borel
measures Nh can be expressed in another way:

∫ T

0

∫ L

0

Nh(x, t) dx dt = h

�T/h�−1∑
l=0

∫ L

0

N l(x) dx.(2.18)

Lemma 2.7. The Borel measures Nh are uniformly bounded as measures on
[0, L] × [0, T ] as h ↓ 0 for v0 ∈ L2(0, L) and u0 ∈ H2

cf (0, L).

Proof. Multiplying h and x2/2 on both sides in (2.1) and taking integrals on both
sides in (2.1),

∫ L

0

x2

2
(vl+1 − vl)dx = −h

2

∫ L

0

x2

2
(ul+1

xxxx + ul
xxxx)dx + h

∫ L

0

x2

2
N ldx.

Note that we do not consider the body force f(x). Thus, taking the sum over l ≥ 0
and using an integration by parts,

h

�T/h�−1∑
l=0

∫ L

0

x2

2
N l(x) dx

=

�T/h�−1∑
l=0

∫ L

0

x2

2
(vl+1 − vl)dx +

h

2

�T/h�−1∑
l=0

∫ L

0

x2

2
(ul+1

xxxx + ul
xxxx)dx

=

�T/h�−1∑
l=0

∫ L

0

x2

2
(vl+1 − vl)dx +

h

2

�T/h�−1∑
l=0

∫ L

0

(ul+1
xx + ul

xx)dx

≤ L2

2
(‖v�T/h�‖L2(0,L) + ‖v0‖L2(0,L)) + TL1/2 · max

0≤l≤�T/h�
‖ul

xx‖L2(0,L).(2.19)
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We want to show that
∫ L

0
N ldx is bounded by

∫ L

0
x2

2 N ldx for all l ≥ 0. Since

g(0) > 0 and u(0, tl+1) = ∂u(0, tl+1)/∂x = 0 and ul+1 ∈ H2
cf (0, L), there is an η > 0

such that ul+1(x) > −g(x) for all x ∈ [0, η]. So by the LCP condition of the numerical
formulation, N l = 0 for 0 ≤ x ≤ η. Since N l ≥ 0 and x2/2 ≥ η2/2 > 0 for [η, L], we
have ∫ L

0

x2

2
N ldx =

∫ L

η

x2

2
N ldx ≥ η2

2

∫ L

η

N ldx =
η2

2

∫ L

0

N ldx.(2.20)

So by (2.18), the Borel measure Nh is bounded, independent of h as h ↓ 0. The
proof is complete.

Lemma 2.8. The discrete-time solution t �→ uh(·, t) is uniformly Hölder contin-
uous into Hβ(0, L) as h ↓ 0 with an exponent 0 < p ≤ 1 and β > 0 in the following
sense:

‖uh(·, (l + r)h) − uh(·, lh)‖Hβ(0,L) ≤ Cp(rh)p

for integers l and r, where β/2 + p < 3/4 and Cp is independent of h.
Proof. Applying (2.17), the last term of uh(·, (l + r)h) becomes

h

l+r−1∑
j=0

∫ L

0

wh(·, (l + r − j − 1)h, x∗)N j(x∗)dx∗.(2.21)

Similarly, the last term of uh(·, lh) becomes

l−1∑
j=0

∫ L

0

wh(·, (l − j − 1)h, x∗)N j(x∗)dx∗.(2.22)

We denote (2.21) by (I) and (2.22) by (II). Thus, using Lemma 2.4, we have

‖uh(·, (l + r)h) − uh(·, lh)‖Hβ(0,L)

≤
∥∥∥∥∥

∞∑
i=1

u0
i (cos ((l + r)χi) − cos(lχi))φi(x)

∥∥∥∥∥
Hβ(0,L)

+

∥∥∥∥∥
∞∑
i=1

v0
i

sin ((l + r)χi) − sin(lχi)

λ
1/2
i

φi(x)

∥∥∥∥∥
Hβ(0,L)

+ h

∥∥∥∥∥
∫ L

0

((I) − (II))dx∗

∥∥∥∥∥
Hβ(0,L)

.(2.23)

Using Lemma 2.6 and Proposition 3.3 in [1], in the first term of (2.23) we have∥∥∥∥∥
∞∑
i=1

u0
i (cos ((l + r)χi) − cos(lχi))φi(x)

∥∥∥∥∥
2

Hβ(0,L)

=

∞∑
i=1

(cos ((l + r)χi) − cos(lχi))
2
λ
β/2
i (u0

i )
2 +

∞∑
i=1

(cos ((l + r)χi) − cos(lχi))
2
(u0

i )
2

=

∞∑
i=1

[
cos ((l + r)χi) − cos(lχi)

λ
p/2
i

]2 (
λ
β/2+p−1
i · λi(u

0
i )

2 + λp−1
i · λi(u

0
i )

2
)

= (rh)2p
∞∑
i=1

λi(u
0
i )

2
[
λ
β/2+p−1
i + λp−1

i

]
.
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Similarly, in the second term of (2.23), we have

∥∥∥∥∥
∞∑
i=1

v0
i

sin ((l + r)χi) − sin(lχi)

λ
1/2
i

φi(x)

∥∥∥∥∥
2

Hβ(0,L)

= (rh)2p
∞∑
i=1

λi(v
0
i )

2
[
λ
β/2+p−1
i + λp−1

i

]
.

Note that since v0 ∈ L2(0, L) and u0 ∈ H2
cf (0, L), ‖v0‖2

L2(0.L) =
∑

i(v
0
i )

2 < ∞ and

|u0|2H2(0,L) =
∑

i λi(u
0
i )

2 < ∞. Similarly in the third term of (2.23),

∥∥∥∥∥
∫ L

0

((I) − (II))dx∗

∥∥∥∥∥
Hβ(0,L)

≤ h

∫ L

0

‖(I) − (II)‖Hβ(0,L)dx
∗

≤ h

∫ L

0

l−1∑
j=0

∥∥(wh(·, (l + r − j − 1)h, x∗) − wh(·, (l − j − 1)h, x∗))N j(x∗)
∥∥
Hβ(0,L)

dx∗

+ h

∫ L

0

l+r−1∑
j=l

∥∥wh(·, (l + r − j − 1)h, x∗)N j(x∗)
∥∥
Hβ(0,L)

dx∗.(2.24)

Recall that wh(·, lh, x∗) =
∑∞

i=1(h cos(lχi)/2+sin(lχi)/λ
1/2
i )φi(·)φi(x

∗)/(1+h2λi/4)

and max0≤x≤L |φi(x)| ≤ M as proved in Lemma 3.2 in [1]. Note that λ
1/2
i h/(1 +

λih
2/4) ≤ 1 and 1/(1 + λih

2/4) ≤ 1 for λ
1/2
i h ≥ 0. In the first term of (2.24) for

0 ≤ j ≤ l − 1, it can be shown that we have

‖ (wh(·, (l + r − j − 1)h, x∗) − wh(·, (l − j − 1)h, x∗)) N j(x∗)‖2
Hβ(0,L)

≤
(

5

4
+
√

2

)
M2|N j(x∗)|2(rh)2p

∞∑
i=1

(
λ
β/2+p−1
i + λp−1

i

)
.(2.25)

Similar to the second term of (2.24), for l ≤ j ≤ l + r − 1 we have

‖wh(·, (l + r − j − 1)h, x∗)N j(x∗)‖2
Hβ(0,L)

≤ C|N j(x∗)|2(rh)2p
∞∑
i=1

(
λ
β/2+p−1
i + λp−1

i

)
.(2.26)

Note that for sufficiently large i, there exist C > 0 such that λi ≤ Ci4. This was
shown in Lemma 3.2 of [1]. Therefore by (2.18) and Lemma 2.7 and integral test, the
result follows, provided that β/2 + p < 3/4.

Note that the condition of Lemma 2.8 is the same case as for the penalty method.
Lemma 2.9. In a certain subsequence with h ↓ 0, the time-discretized functions

uh, vh, and Nh converge to a solution, uh uniformly in C([0, L] × [0, T ]), vh weak*
in L∞(0, T ;L2(0, L)), and Nh weak* in the space of measures on [0, L] × [0, T ]. Fur-
thermore, the solution (u, N) converged by (uh, Nh) satisfies the complementarity
condition 0 ≤ u + g ⊥ N ≥ 0 in the weak sense.

Proof. By Lemma 2.7 and the Riesz representation theorem [8, Thm. 4.2, p. 268]
and Alaoglu’s theorem [12, Thm. 6.62, p. 203], a subsequence converges Nh ⇀∗ N
as measures. Since Nh ≥ 0, N ≥ 0. Then since Cp(0, T ;Hβ(0, L)) is compactly
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embedded in C([0, L] × [0, T ]), by the Arzela–Ascoli theorem [8, pp. 57–59] there
exists a suitable subsequence of uh corresponding to subsequence of Nh such that
uh → u in C([0, L] × [0, T ]). We also denote this subsequence by uh and restrict
our attention to this subsequence. Since uh + g ≥ 0 for each h > 0, it follows that
u + g ≥ 0.

Since vh is uniformly bounded in L∞(0, T ;L2(0, L)) and L∞(0, T ;L2(0, L)) �
L1(0, T ;L2(0, L))∗, by Alaoglu’s theorem there is a weak* converging subsequence,
also denoted vh, and we restrict our attention to this subsequence.

Since uh(·, t) is an interpolant of uh(·, lh) and uh(·, (l + 1)h), and Nh(x, t) =

h
∑�T/h�−1

j=0 δ(t− (j + 1)h)N j(x) for t ∈ [lh, (l + 1)h], we have

∫ T

0

∫ L

0

Nh(x, t)(uh(x, t) + g(x)) dx dt

= h

∫ T

0

∫ L

0

⎡
⎣�T/h�−1∑

j=0

δ(t− (j + 1)h)N j(x)

⎤
⎦ (uh(x, t) + g(x)) dxdt

= h

∫ L

0

⎡
⎣�T/h�−1∑

j=0

∫ T

0

δ(t− (j + 1)h)(uh(x, t) + g(x)) dt

⎤
⎦N j(x) dx

= h

∫ L

0

�T/h�−1∑
j=0

N j(x)(uj+1(x) + g(x)) dx = 0.

So taking limits in the subsequence gives

0 =

∫ T

0

∫ L

0

Nh(x, t)(uh(x, t) + g(x)) dxdt →
∫ T

0

∫ L

0

N(x, t)(u(x, t) + g(x)) dxdt = 0

as desired.

2.4. Do the discrete-time solutions converge strongly? While we cannot
fully answer this question at this time, we will lay the groundwork in this section for
the numerical evidence to be presented later for strong convergence.

We recall the expression of numerical solutions (discrete time solutions) ul(x) at

each discretized time tl such as ul(x) =
∑∞

i=1 u
l
iφi(x). Note that we write ul;h

i and vl;hi
instead of ul

i and vli, respectively, in order to show the dependence on h > 0 more
explicitly. Then we consider numerical trajectories uh(x, t) by piecewise continu-
ous linear interpolation of uh(x, tl) = ul;h(x) and vh(x, t) by the piecewise con-
stant interpolation of vh(x, tl) = vl;h(x) for each l ≥ 0. So we express these as
uh(x, t) =

∑∞
i=1 u

h
i (t)φi(x) and vh(x, t) =

∑∞
i=1 v

h
i (t)φi(x). Then the value of uh

i (t)

is the linear interpolant of uh
i (lh) = ul;h

i and uh
i ((l+1)h) = ul+1;h

i for t ∈ [lh, (l+1)h].

Let ul;h = (ul;h
1 , ul;h

2 , ul;h
3 , . . .), vl;h = (vl;h1 , vl;h2 , vl;h3 , . . .), and ωl;h = (ωl;h

1 , ωl;h
2 , ωl;h

3 ,

. . .), where ωl;h
i = λ

1/2
i ul;h

i for i ≥ 1. We use notation �2 as the Hilbert space of se-

quences x = (x1, x2, x3, . . .), where ‖x‖�2 =
√∑∞

i |xi|2 < ∞. Using the energy
functional, it can be shown easily that

E(ul, vl) =

∞∑
i=1

((
vl;hi

)2

+ λi

(
ul;h
i

)2
)

and ωl;h, vl;h are uniformly bounded in �2.
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Now suppose that we do not consider body force f in the energy function. Thus
by the energy boundedness we have

∞∑
i=1

λi

(
uh
i (t)

)2
and

∞∑
i=1

(
vhi (t)

)2
< ∞.

So ωh, vh ∈ �2 and are uniformly bounded in �2, where ωh = (ωh
1 (t), ωh

2 (t), ωh
3 (t), . . .)

and vh = (vh1 (t), vh2 (t), vh3 (t), . . .). Thus there are a subsequence of vh and a subse-
quence of ωh that are convergent to v(t) and ω(t), respectively, in �2, as h ↓ 0. These
facts induce Lemma 2.10.

By inspection of the eigenfunctions, the frequency of oscillation is proportional
on λ1/4. So high frequency modes correspond to large eigenvalues, and low frequency
modes correspond to small eigenvalues. Also, only the elastic energy defines the
modes, since they are eigenfunctions of the fourth-order operator K = ∂4/∂x4 in the
continuous case, or eigenvectors of M−1K in the fully discretized case, which will be
considered in the following section. In the next lemma, it is shown that the amount of
energy in the high frequency modes is negligible under the assumption of the strong
convergence. In the physical point of view, energy in the high frequency modes is
equivalent to heat. In section 3, the fact that ωl;h, vl;h are uniformly bounded in �2

will be supported by numerical evidence. The detailed argument will be presented in
subsections 3.5 and 3.6.

Lemma 2.10. Let t ∈ [lh, (l + 1)h] for any l ≥ 1. Suppose that ωl;h → ω(t) and
vl;h → v(t) (strongly) in �2, as h ↓ 0, lh → t. Then we have

lim
c→∞

lim sup
h↓0

1

2

∑
i;i≥c

(
|vl;hi |2 + λi|ul;h

i |2
)

= 0.

Proof. For the fixed l ≥ 1 and any c ≥ 1, we obtain

( ∞∑
i=c

|ωl;h
i |2

)1/2

≤
( ∞∑

i=c

|ωl;h
i − ωi(t)|2

)1/2

+

( ∞∑
i=c

|ωi(t)|2
)1/2

.

Since ‖ωl;h − ω(t)‖�2 → 0 as h ↓ 0, lh → t, we obtain

lim sup
h↓0

( ∞∑
i=c

|ωl;h
i |2

)1/2

≤ lim sup
h↓0

⎡
⎣
( ∞∑

i=c

|ωl;h
i − ωi(t)|2

)1/2

+

( ∞∑
i=c

|ωi(t)|2
)1/2

⎤
⎦

= lim sup
h↓0

( ∞∑
i=c

|ωi(t)|2
)1/2

.(2.27)

Since
∑∞

i=c |ωi(t)|2 = ‖ω(t)‖2
�2 −

∑c−1
i=1 |ωi(t)|2, we have

lim
c→∞

∞∑
i=c

|ωi(t)|2 = ‖ω(t)‖2
�2 − lim

c→∞

c−1∑
i=1

|ωi(t)|2 = ‖ω(t)‖2
�2− − ‖ω(t)‖2

�2 = 0.(2.28)

Thus, combining (2.27) with (2.28),

lim
c→∞

lim sup
h↓0

( ∞∑
i=c

|ωl;h
i |2

)1/2

≤ 0.
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Since |ωl;h
i |2 = λi|ul;h

i |2 ≥ 0 for each i ≥ 1, we have for elastic energy

lim
c→∞

lim sup
h↓0

∑
i;i≥c

|ωl;h
i |2 = lim

c→∞
lim sup

h↓0

∑
i;i≥c

λi|ul;h
i |2 = 0.

Similar to the above argument, we have for kinetic energy

lim
c→∞

lim sup
h↓0

∑
i;i≥c

|vl;hi |2 = 0.

Therefore the result follows.
We note that in general, ul ⇀ u in �p with 1 < p < ∞ if and only if liml→∞ ul

i =
ui for i ≥ 1 and sup1≤l<∞ ‖ul‖�p < ∞.

3. Discretization in time and space.

3.1. Finite element method and B-splines. The finite element method is
one of the most popular numerical methods for solving static elliptic boundary value
problems. So we will approximate the solution in the spatial domain [0, L], using the
finite element method [4, 6]. We partition the domain [0, L] into

0 = x0 < x1 < x2 < x3 < x4 < · · · < xm+1 = L.

We denote k = xi+1 − xi as size of subinterval [xi+1, xi] for i ≥ 1. Let

V = Hcf (0, L) = {w ∈ H2(0, L) | w(0) = w′(0) = 0},

where Hcf (0, L) is a subset of Sobolev space H2(0, L), using the same norm. We
choose B-spline functions ψi(x), 1 ≤ i ≤ m + 1 for the basis functions. The B-spline
will be a cubic spline [2, pp. 166–176] with nodes xi, i = 1, 2, 3, . . . , m + 1. Note
that unlike the usual piecewise continuous linear basis function, we need m + 1 basis
functions from the construction of a B-spline. Thus the finite element space becomes

Vk = span{ψi | 1 ≤ i ≤ m + 1 }.

These basis function will need to be in H2
cf . Thus we can construct the standard

B-spline function B(s), according to the property of B-splines and the condition that
B(0) = 1, B(s) = B(−s), and B′(0) = 0:

B(s) =
2

3

⎧⎨
⎩

1 + 3
4 |s|3 −

3
2 |s|2 if |s| ≤ 1,

1
4 (2 − |s|)3 if 1 ≤ |s| ≤ 2,

0 if |s| ≥ 2.

Thus B(s) is piecewise cubic on interval [i, i + 1] for i ∈ Z. For most basis functions
i = 2, 3, . . . ,m + 1, we use shifted B-splines:

ψi(x) = B
(x
k
− i

)
= B

(
x− xi

k

)
,

where xi = i k, 1 ≤ i ≤ m + 1. In order to satisfy essential boundary condition, we
need to change the first basis function:

ψ1(x) = 2
(
B
(x
k

+ 1
)

+ B
(x
k
− 1

))
−B

(x
k

)
.
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We write the approximate solution ul, vl, N l as

ul(x) =

m+1∑
i=1

ûl
iψi(x), vl(x) =

m+1∑
i=1

v̂liψi(x), and N l =

m+1∑
i=1

N̂ l
iψi(x).(3.1)

In this section we want to use ûl
i to indicate coefficients of the basis functions in the

finite elements, in contrast to ul
i, which indicate coefficients of the eigenfunctions.

Using (2.2), we have discrete-time equations of motion

2

h2
ul+1 +

1

2
ul+1
xxxx =

2

h2
ul − 1

2
ul
xxxx +

2

h
vl + f(x) + N l.(3.2)

First setting ul(x) =
∑m+1

i=1 ûl
iψi(x) and multiplying by basis function ψi(x) on both

sides of (3.2) and by integrating by parts, we obtain the Galerkin approximation for
one time step:(

M +
h2

4
K

)
ul+1 =

(
M − h2

4
K

)
ul + hMvl +

h2

2

(
f + MNl

)
,(3.3)

vl+1 =
2

h
(ul+1 − ul) − vl,(3.4)

where the mass (M) and stiffness matrices (K) have the following forms, respectively:

Mij =

∫ L

0

ψiψj dx and Kij =

∫ L

0

ψ′′
i ψ

′′
j dx.

From (3.3) and (3.4) we will obtain numerical solutions ul = (ûl
1, û

l
2, . . . , û

l
m+1)

T ,

vl = (v̂l1, v̂
l
2, . . . , v̂

l
m+1)

T , and Nl = (N̂ l
1, N̂

l
2, . . . , N̂

l
m+1)

T at each discretized time tl.

Also note that f = (f1, f2, . . . , fm+1) is the load vector, where fi =
∫ l

0
f(x)ψi(x) dx.

Recalling that each basis function is ψi(x) = B((x − xi)/k), the mass and stiffness
matrices are banded matrix with three subdiagonals and three superdiagonals. Note
that these matrices M and K are symmetric positive definite.

3.2. Energy dissipation in the fully discrete case. If the fully discrete
scheme has the same linear complementary condition as the semidiscrete case, energy
dissipation can fail to hold. This was indeed observed in some preliminary computa-
tions. So in the fully discrete case, we need to modify the complementarity condition
in order to guarantee energy dissipation. Following the definition of energy functional
(2.4) and (3.1), we can define energy functional in the fully discrete case:

E(ul,vl) =
1

2

(
(vl)TMvl + (ul)TKul

)
− f · ul.(3.5)

Lemma 3.1. If we have complementarity condition

0 ≤ MNl ⊥ ul+1 + g ≥ 0,(3.6)

where g = (g1, g2, . . . , gm+1)
T and gi = g(xi) and with the discrete equations of motion

(3.3), (3.4), then energy is dissipated.
Proof. Using numerical formulation (2.1)–(2.2) and (3.1), we have

1

2h

(
m+1∑
i=1

v̂ l+1
i ψi(x) −

m+1∑
i=1

v̂ l
i ψi(x)

)⎛
⎝m+1∑

j=1

v̂ l+1
j ψj(x) +

m+1∑
j=1

v̂ l
j ψj(x)

⎞
⎠
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= − 1

2h

(
m+1∑
i=1

û l+1
i ψ

′′′′

i (x) +

m+1∑
i=1

û l
i ψ

′′′′

i (x)

)⎛
⎝m+1∑

j=1

û l+1
j ψj(x) −

m+1∑
j=1

û l
j ψj(x)

⎞
⎠

+
1

h
f

⎛
⎝m+1∑

j=1

û l+1
j ψj(x) −

m+1∑
j=1

û l
j ψj(x)

⎞
⎠

+
1

h

m+1∑
i=1

N̂ l
i ψi(x)

⎛
⎝m+1∑

j=1

û l+1
j ψj(x) −

m+1∑
j=1

û l
j ψj(x)

⎞
⎠ .

Then taking the integral with respect to x and using integration by parts and using
mass and stiffness matrix,

1

2

(
(vl+1)TMvl − (vl)TMvl

)

= −1

2

(
(ul+1)TKul+1 − (ul)TKul

)
+ fT (ul+1 − ul) + (Nl)TM(ul+1 − ul)

= −1

2
((ul+1)TKul+1 − (ul)TKul) + fT (ul+1 − ul) + (Nl)TM(ul+1 + g − ul − g).

Thus by the complementarity condition (3.6), we have

E(ul+1,vl+1) =
1

2

(
(vl+1)TMvl + (ul+1)TKul+1

)
− f · ul+1

≤ 1

2

(
(vl)TMvl+1 + (ul)TKul

)
− f · ul = E(ul,vl),

as required.
Notice that we apply the complementarity condition in Lemma 3.1, when we

compute numerical solutions.

3.3. Convergence of the numerical scheme in time and space. In this
subsection, we investigate the convergence of contact force N in the fully discretiza-
tion. As we constructed the mass matrix M in subsection 3.1, we obtain the mass
matrix M = 4

9k · B, where B is a 3-banded matrix. In Lemma 3.2, we will see that
the inverse of B is bounded in the matrix 1-norm, based on the boundedness of its
spectrum [2, p. 588] and results on inverses of banded matrices [5]. Let [r1, r2], r1 > 0
be an interval containing the spectrum of B.

Lemma 3.2. Set r = r2/r1, q := q(r) := (
√
r−1) (

√
r+1), C0 = (1+r1/2)/(2r1r),

and � = q2/3. For any subinterval k > 0, we have

∥∥B−1
∥∥

1
≤ C

(
1 + 2

�

1 −�

)
,

where C := C(r1, r) := max{r−1
1 , C0}.

Proof. Using Propositions 2.1 and 2.2 in [5, p. 492], we have

∥∥B−1
∥∥

1
= max

1≤j≤m+1

m+1∑
i=1

∣∣B−1
ij

∣∣ ≤ C max
1≤j≤m+1

m+1∑
i=1

�|i−j|.(3.7)

To bound (3.7) simply, take m → ∞. Then since 0 < � < 1,

∥∥B−1
∥∥

1
≤ C max

j

∞∑
i=1

�|i−j| ≤ C

∞∑
i=−∞

�i = C

(
1 + 2

�

1 −�

)
,
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as required.
Recalling (2.18), let Borel measure Nh,k be

∫ T

0

∫ L

0

Nh,k(x, t) dx dt = h

�T/h�−1∑
l=0

∫ L

0

m+1∑
i=1

N̂ l
i ψi(x)dx.

Lemma 3.3. Suppose that (3.6) is satisfied. Then Borel measures Nh,k are uni-
formly bounded as measures on [0, L] × [0, T ] as h ↓ 0 and k ↓ 0, i.e.,

∫ T

0

∫ L

0

|Nh,k(x, t)| dx dt ≤ C,

where C does not depend on h, k.
Proof. Since x �→ x2/2 is a quadratic function that satisfies the clamped end

conditions at x = 0, we can take x2/2 =
∑m+1

i=1 αiψi(x) in the finite element space Vk

as it is a spanned by a set of B-splines. The coefficients αi can be exactly computed
to be

αi =

{
k2/6, i = 1,(

x2
i − k2/3

)
/2, i > 1.

As we can see, αi − x2
i /2 → 0 as k → 0. Using an argument similar to Lemma 2.7,

we have

∫ L

0

x2

2
N ldx =

∫ L

η

x2

2
N ldx =

∫ L

η

m+1∑
i=1

αiψi(x)

m+1∑
j=1

N̂ l
jψj(x)dx.

Since x2/2 ≥ η2/2 for x ∈ [η, L] and MNl ≥ 0, we obtain

∫ L

0

x2

2
N ldx ≥

∫ L

0

m+1∑
i=1

αiψi(x)

m+1∑
j=1

N̂ l
jψj(x) =

m+1∑
j=1

αi

∫ L

0

ψiψjdx N̂
l
j

=

m+1∑
j=1

αi

∫ L

0

ψiψjdx N̂
l
j =

m+1∑
i=1

αi

(
MNl

)
i
.

Since there is an η > 0 where ûl+1
i + g(xi) > 0 for all 0 ≤ xi ≤ η and all l, and

0 ≤ ul + g ⊥ MNl ≥ 0, we see that (MNl)i = 0 whenever 0 ≤ xi ≤ η. Thus

m+1∑
i=1

αi

(
MNl

)
i
≥ min

k i≥η
αi

∥∥MNl
∥∥

1
≥
(
η2

2
− k2

6

)∥∥MNl
∥∥

1
≥ η2

4

∥∥MNl
∥∥

1

for sufficiently small k > 0. From (2.19), hη2
∑�T/h�−1

l=0

∥∥MNl
∥∥

1
≤ C, where C does

not depend on h, k.
Therefore by Lemma 3.2,

h

�T/h�−1∑
l=0

∫ L

0

∣∣∣∣∣
m+1∑
i=1

N̂ l
iψi(x)

∣∣∣∣∣ dx ≤ h

�T/h�−1∑
l=0

m+1∑
i=1

∣∣∣N̂ l
i

∣∣∣ ‖ψi‖L1(0,L)

≤ O(k)h

�T/h�−1∑
l=0

∥∥Nl
∥∥

1
≤ O(k)h

�T/h�−1∑
l=0

∥∥M−1MNl
∥∥

1
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≤ O(k)
∥∥M−1

∥∥
1
h

�T/h�−1∑
l=0

∥∥MNl
∥∥

1

=
1

η2
O(k)O

(
1

k

)
= O(1),

as required.
We now need to show that any weak* limiting measure N is necessarily non-

negative. This is needed as the numerical method requires MNl ≥ 0 rather than
Nl ≥ 0.

Lemma 3.4. If N is a weak* limit of a subsequence Nh,k ⇀∗ N in the space of
measures on [0, T ] × [0, L], then N ≥ 0.

Proof. Suppose that Nh,k ⇀∗ N as measures on [0, T ]×[0, L]. Then for any contin-

uous ϕ: [0, T ] × [0, L] → R,
∫ T

0

∫ L

0
ϕ(x, t)Nh,k(x, t) dx dt →

∫ T

0

∫ L

0
ϕ(x, t)N(x, t) dx dt

in the subsequence with h, k → 0. To show that N ≥ 0 consider any ϕ: [0, T ]×[0, L] →
R+. Let ϕk(x, t) =

∑m+1
i=1 ϕ(xi, t)ψi(x), which is a pseudo-interpolant. Since ϕ is con-

tinuous on a compact set, it is uniformly continuous, and so for any ε > 0 there is
a δ > 0 such that if |x − x′| < δ and |t − t′| < δ then |ϕ(x, t) − ϕ(x′, t′)| < ε. If
xi ≤ x ≤ xi+1 then ψj(x) = 0 unless i− 1 ≤ j ≤ i + 2. Choosing 0 < k < δ/2, we see
that

|ϕ(x, t) − ϕk(x, t)| ≤
i+2∑

j=i−1

|ϕ(x, t) − ϕ(xj , t)|ψj(x) ≤
i+2∑

j=i−1

ε ψj(x) = ε.

Since this is true for all (x, t), ϕk → ϕ uniformly in C([0, T ]×[0, L]). Thus
∫∫

ϕkNh,k →∫∫
ϕN as h, k → 0 in a suitable subsequence. Now

∫ T

0

∫ L

0

ϕk(x, t)Nh,k(x, t) dx dt = h

�T/h�−1∑
l=0

∫ L

0

m+1∑
i=1

ϕ(xi, tl)ψi(x)

m+1∑
j=1

N l
jψj(x) dx

= h

�T/h�−1∑
l=0

m+1∑
i=1

ϕ(xi, tl)(MNl)i ≥ 0,

since MNl ≥ 0 and ϕ(xi, tl) ≥ 0 for all i and l. Taking the limit in the subsequence
gives

∫ T

0

∫ L

0

ϕ(x, t)N(x, t) dx dt ≥ 0.

Since this holds for all continuous nonnegative ϕ, it follows that N ≥ 0 in the sense
of measures.

From Lemmas 3.3 and 3.4 we see that there is a subsequence Nh,k that converges
weak* to a nonnegative measure N . It can also be shown that there are subsequences
in which uh,k ⇀∗ u in L∞(0, T ;H2

cf (0, L)) and vh,k ⇀∗ v in L∞(0, T ;L2(0, L)) with
ut = v and vt = −uxxxx + N(x, t) by integrating against sufficiently smooth func-
tions over [0, T ] × [0, L]. It is also clear that the numerical solutions uh,k are in a
compact subset of L2([0, T ] × [0, L]), and so uh,k + g ≥ 0 implies in the limit that
u+ g ≥ 0 (continuity of the limit ensures that this holds everywhere, not just almost
everywhere). To show that u + g ⊥ N in the limit, we need a compactness result.



AN EULER–BERNOULLI BEAM WITH DYNAMIC CONTACT 1473

Noting that duh,k/dt(t) = 1
2 (vh,k(t) + vh,k(t − h)) (with vh,k(t) = v0 for −h ≤

t < 0), we see that duh,k/dt is uniformly bounded in L∞(0, T ;L2(0, L)) while uh,k

is uniformly bounded in C(0, T ;H2
cf (0, L)). If we pick 0 < θ < 1 we can obtain

the following bounds in the interpolation space H2θ
cf (0, L) := [L2(0, L), H2

cf (0, L)]θ ⊆
H2θ(0, L) (see Kuttler [7, section 22.6, equation (62)], Triebel [16, Thm. 1.3.3(g)], and
Bramble and Zhang [3, Appendix A, Thms. A.1 and A.2]):

‖uh,k(t) − uh,k(s)‖H2θ(0,L) ≤ Cθ ‖uh,k(t) − uh,k(s)‖θH2(0,L) ‖uh,k(t) − uh,k(s)‖1−θ
L2(0,L)

≤ Cθ

(
‖uh,k(t)‖H2(0,L) + ‖uh,k(s)‖H2(0,L)

)θ

×
(∫ t

s

1

2
‖vh,k(τ) + vh,k(τ − h)‖L2(0,L) dτ

)1−θ

≤ Cθ

(
2
√

2E0
)θ (√

2E0
)1−θ

|t− s|1−θ

so that the numerical trajectories uh,k are uniformly Hölder continuous as functions
[0, T ] → H2θ(0, L). Note that E0 := E(u0, v0) is the initial energy. For 2θ > 1/2,
H2θ(0, L) is compactly embedded into C[0, L] [15, Props. 4.3 and 4.4], so by the
Arzela–Ascoli theorem [8, Thm. III.3.1, p. 57] there is a convergent subsequence in

C([0, T ] × [0, L]). Taking such a subsequence, we note that if gk(x) =
∑m+1

i=1 giψi(x),
gk → g uniformly and so

∫ T

0

∫ L

0

(uh,k(x, t) + gk(x))Nh,k(x, t) dx dt =

�T/h�−1∑
l=1

m+1∑
i,j=1

(
ûl+1
i + gi

)
N̂ l

j

∫ L

0

ψi(x)ψj(x) dxh

=

�T/h�−1∑
l=1

(ul+1 + g)TMNlh = 0

since 0 ≤ ul+1 + g ⊥ MNl ≥ 0. Taking the limit in the subsequence then gives

∫ T

0

∫ L

0

(u(x, t) + g(x))N(x, t) dx dt = 0

as desired. Thus there is a subsequence in which we get the desired convergence, and
the limit for any converging subsequence satisfies the conditions for a solution.

3.4. Nonsmooth Newton method. To solve the linear system (3.3) for one
time step with the linear complementarity condition (3.6), we consider using the
nonsmooth Newton method (see Qi and Sun [11] for details). In order to find the next
step solution ul+1 from the linear system (3.3) and the complementarity condition
(3.6), we consider the mapping F : Rm+1 → Rm+1:

F : ul+1 �→ min(MNl,ul+1 + g).(3.8)

Note that min(a,b) is meant componentwise for vectors a and b, and so min(a,b) = 0
is equivalent to 0 ≤ a ⊥ b ≥ 0. Thus the complementarity condition (3.6) is equivalent
to F(ul+1) = 0. Since MNl is implicitly a function of ul+1 via the linear system (3.3),
we can express MNl as

MNl =
2

h2

[(
M +

h2

4
K

)
ul+1 −

(
M − h2

4
K

)
ul − hMvl

]
− f .(3.9)
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Table 3.1

Average number of linear systems solved per time step.

k = 1/5 k = 1/25 k = 1/50 k = 1/500
h = 1/10 20.48 28.08 29.36 35.79
h = 1/20 19.68 25.95 26.99 27.23
h = 1/50 19.20 23.36 23.96 18.28
h = 1/100 19.19 22.79 23.01 19.14
h = 1/1000 19.28 22.87 19.87 14.60

We can find the next approximate solution ul+1 by using the nonsmooth Newton
method:

ul+1
n+1 = ul+1

n −∇F(ul+1
n )−1F (ul+1

n ) for n ≥ 0.

Even though F is a nonsmooth function, Newton’s method can still converge super-
linearly since F is a semismooth function [10, 9]. This is because max and min are
semismooth functions, and Newton’s method for semismooth function still converges
locally at a superlinear rate provided F is “BD regular” [11]. That is, it converges su-
perlinearly provided ∂BF(u) := { limj→∞ ∇F(uj) | limj→∞ uj = u } does not contain
any singular matrices.

In practice, in order to obtain computation, we use a smooth approximation
θα(a, b) to min(a, b)

θα(a, b) =
1

2
((a + b) − hα(a− b) + α) ,

where hα(y) =
√
y2 + α2 − α is an approximation to |y|. α > 0 is chosen by an

adaptive strategy reducing by a factor of 10 or increasing by a factor of 2 in order to
succeed the guarded Newton method. The number α is called a smoothing parameter.
Clearly, as α → 0, we have

θα(a, b) → min(a, b).(3.10)

At each stage we solve Fα(u) := θα(MNl,ul+1 + g) = 0 using a guarded Newton
method and then reduce α, usually by a factor of 10, and repeat the procedure until
α is sufficiently small. We use the function ‖Fα(u)‖2 as the merit function for the
guarded Newton method.

This method has proven to be quite efficient, typically requiring only 20 to 30
linear solves per time step, as can be seen in Table 3.1. This means that the time for
the computations per time step grows linearly with the size of the problem as shown
in Table 3.3.

3.5. Numerical evidence for strong convergence. In this subsection, we
present the numerical evidence that our numerical solutions converge strongly (via
Lemma 2.10), and our method of obtaining and assessing this evidence. Let φi be
the ith eigenvector with eigenvalue λi of the generalized eigenproblem (3.11). Then
we have

φT
i Mφi = 1 and Kφi = λiMφi,(3.11)

where φi = ((φi)1, (φi)2, (φi)3, . . . , (φi)m+1). Note that this is the Galerkin discretiza-

tion of the eigenfunction problem ∂4φi(x)/∂x4 = λiφi(x) and
∫ L

0
φi(x)2 = 1 with our
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boundary conditions. Also note that M−1K is self-adjoint with respect to the inner
products 〈z, w〉M = zTMw and 〈z, w〉K = zTKw. So for any given function β : R →
R, we can define β(M−1K) via β(M−1K)φi = β(λi)φi. In particular, let κ∗(λ) = 1 if
λ ≤ λc and κ∗(λ) = 0 otherwise. The κ∗(M−1K)z is the projection onto span{φi | i =
1, 2, . . . , and λi ≤ λc} that is orthogonal with respect to both 〈·, ·〉M and 〈·, ·〉K. The
elastic energy in the modes i with λi ≤ λc is therefore 1

2 (κ∗(M−1K)u)TKκ∗(M−1K)u
and the kinetic energy is 1

2 (κ∗(M−1K)v)TMκ∗(M−1K)v. Since κ∗(M−1K) is not
easily computable without performing a complete (and expensive) eigenvalue/eigen-
vector decomposition of M−1K , we will instead construct a rational approximation
to it.

Choosing λc > 0 for any cut-off c ≥ 1, we have (1/λc)M
−1Kφi = (λi/λc)φi.

Thus for any large integer p > 0,

(
I +

(
1

λc
M−1K

)2p
)−1

φi =
1

1 + (λi/λc)2p
φi.

Then we fix a continuous map κ of λ, which approximates the step function κ∗(λ):

κ(λ) =
1

(1 + (λ/λc)2p)
and then κ(M−1K) =

(
I +

(
1

λc
M−1K

)2p
)−1

.(3.12)

Employing (3.11), it can be proved that at each time step l ≥ 1, the energy in
the fully discrete case with no body force is

1

2

(
(vl)TMvl + (ul)TKul

)
=

1

2

m+1∑
i=1

(
|v̂li|2 + λi|ûl

i|2
)
.(3.13)

Using (3.13), we can demonstrate numerical evidence using Lemma 2.10 that the
convergence is strong. The ratio

(κ(M−1K)ul)TKκ(M−1K)ul + (κ(M−1K)vl)TMκ(M−1K)vl

(ul)TKul + (vl)TMvl

is the ratio of the elastic and kinetic energy in the modes with λi ≤ λc to the to-
tal elastic and kinetic energy for the numerical solution at time step l. Following
Lemma 2.10, this should go to one as λc ↑ ∞, uniformly in the numerical parameters
h > 0, l and k > 0. Of course, for fixed k > 0, this will happen as λc ↑ ∞ anyway. So
we need to first fix λc and then compute these ratios for k and h becoming small; from
the apparent limits of the energy ratios for several fixed λc, we observe the overall
trend as λc ↑ ∞. This will be done in subsection 3.6.

3.6. Computing κ(M−1K)z. In this subsection, we discuss how to efficiently
compute κ(M−1K)z. Note that we do not compute κ∗(M−1K) directly using an
eigendecomposition of M−1K, as this is computationally expensive. So we use a
rational function κ(λ) to approximate the step function κ∗(λ). We can then compute
κ(M−1K)z for any vector z. For simplicity we choose

κ(λ) =
1

1 + (λ/λc)2p
for p moderately large.
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Table 3.2

The ratio of energy Ec in low frequency modes to total energy E in actual computation.

The number of nodes c h = 1/10 h = 1/50 h = 1/100
10 0.650153 0.407755 0.380260

500 30 0.910487 0.812236 0.777214
100 0.997099 0.986641 0.972011
300 0.999846 0.999166 0.997870
10 0.653481 0.412869 0.378693

1000 30 0.917148 0.855211 0.755536
100 0.997575 0.981944 0.968371
300 0.999846 0.998196 0.997980

In fact, we implement this function for p = 5. The key to efficient computation
of κ(M−1K)z is the factorization of κ(λ). The zeros of the denominator (3.12) are
solutions of (λj/λc)

2p = −1. The solutions of this equation are

λj/λc = ζj := exp((2j + 1)πi/2p), j = 0, 1, 2, . . . , 2p− 1, where i =
√
−1.

Thus since κ(λ) = λ2p
c (λ− λcζ0)

−1(λ− λcζ1)
−1 · · · (λ− λcζ2p−1)

−1, we have

κ(M−1K) = λ2p
c (K − λcζ0M)−1M(K − λcζ1M)−1 · · ·M(K − λcζ2p−1M)−1M.

The right side of the linear system (K − λcζjM)z = w has matrices over the
complex numbers C. We can change the complex matrix into two real ones so that
we have an equivalent real banded matrix with double the bandwidth. Thus the linear
system (K−λcζjM)z = w can be solved as a banded system with an upper and lower
bandwidth of six, which can be done in O(m + 1) time. The matrix-vector products
Mz can also be computed in O(m + 1) time. Thus κ(M−1K)z can be computed in
just O(p(m + 1)) time.

The ratios contained in Table 3.2 are obtained as follows: Let E(ul,vl) be the to-
tal energy in actual computation and let Ec(u

l,vl) be the energy in the low frequency
modes. Then the ratio that we use is

τ =

∑�T/h�
l=0 Ec(u

l,vl)∑�T/h�
l=0 E(ul,vl)

.

Looking across the rows of Table 3.2, we note that there does seem to be some slow
convergence of the ratios as h goes to zero, and this ratio increases as m (the number of
grid nodes) increases; this limit seems to be very close to one for large λc. By picking
c = 100, i.e., the lowest 100 out of 500 or 1000 possible modes, we can account for
about 97 percent of the total kinetic and elastic energy. This implies that we can
account for almost all the energy in the bottom 100 frequency modes and account for
about 75 percent of the total energy in the bottom 30 modes. So Table 3.2 presents
substantial numerical evidence of the applicability of Lemma 2.10 and, therefore, of
strong convergence of the numerical solutions.

3.7. Numerical experiments and discussion of the results. The package
that we used for handling the matrices and vectors is Meschach [14], which uses the C
programming language. We took particular advantage of the banded matrix routines
in that package. Our numerical experiments were performed on a Hewlett-Packard
Visualize B2000.

In this subsection, we show our numerical simulation results. In our computation,
we take the length of the rod to be L = 20 and the initial displacement u0(x) = x2/4,
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Fig. 2. Energy function.

which is consistent with the essential boundary condition and the initial velocity
v0(x) = −2 · x and gap function g(x) = (x − 12)2, and the end time T = 10. We
assume that the rod is moving downward, in a negative direction in simulation. The
gap function g indicates the distance between the rigid foundation and the initial
position where the rod is located vertically. Note that the potential energy is not
included in our computation.

From the energy functional in (3.5) in the fully-discrete case, we obtain four
graphs for the total energy in Figure 2. According to those graphs, our numerical im-
plementation supports the energy dissipation that we anticipated theoretically. The
first graph shows that the energy function using 100 nodes is erratic. Indeed, we antic-
ipated that the smaller time step size h we used, the higher the energy. This appears
to be true for all the cases except for k = 0.2 and for h = 0.01 and h = 0.001. We
would conjecture that the reason is that the approximations are not sufficiently refined
for this value of k. On the other hand, other graphs show that energy conservation is
expected as step size h becomes smaller and smaller.

In Figure 3, the motion of the rod is presented. Each curve is the profile of the
rod at a given time. In this simulation, we used k = 1/1000 in space and a time step
of h = 1/100. According to our numerical experiments, that case brings the most
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Fig. 4. The velocity of the rod at each time step 141–220.

comfortable and solid result. An interesting point is that the end of the rod touches
the rigid foundation at some time step, and it oscillates very rapidly. See the pictures
at the top right and bottom left of Figure 3.

Figures 4 and 5 present the velocity of the rods. Particularly in Figure 4, high
frequencies appear when the rod touches the rigid foundation. So we would guess by
the phenomenon that the rate of deformation of the rod is very fast in the time steps.
Figure 5 shows the velocity after the rod bounces away from the rigid foundation.

Finally, we have 3-dimensional pictures showing the contact force in Figure 6.
When the end of the rod touches the rigid foundation, the contact force is largest
there. Even though the number of nodes in the two pictures are different and they
show different magnitudes for the contact force, the graphs have a similar shape.

Table 3.3 shows the speed of the computations. Note that in the case of k = 1/500
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Table 3.3

Computation time (u:user time, s:system time).

h \ k 2 × 10−1 4 × 10−2 1 × 10−2 2 × 10−3

1 × 10−1 0.783u 6.460u 19.892u 1083.158u
0.007s 0.041s 0.035s 2.931s

5 × 10−2 1.503u 11.082u 37.642u 1295.474u
0.003s 0.044s 0.113s 3.453s

2 × 10−2 3.632u 25.968u 81.783u 1633.937u
0.011s 0.033s 0.158s 3.597s

1 × 10−2 7.283u 47.621u 151.851u 3852.925u
0.039s 0.179s 0.255s 7.367s

1 × 10−3 73.242u 477.255u 1220.408u 29675.837u
0.390s 1.234s 2.054s 65.416s

we use the different convergence criterion ‖F(u)‖2 < ε for stopping. This was neces-
sary because of difficulties with roundoff and ill-conditioning in the stiffness matrix
K. So instead we used ‖∇F(u)−1F(u)‖2 < ε to avoid these numerical difficulties. So
in Table 3.3, we can see that the ratio of times differs from the other cases.

4. Conclusion. In this paper we consider semidiscrete and fully discrete approx-
imations to the motion of an Euler–Bernoulli beam with frictionless contact. For both
the semidiscrete and fully discrete approximations, we are able to show that there is
a subsequence of the discrete approximations that converges (albeit in a sufficiently
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weak sense) to a (weak) solution of the PDE and the Signorini contact conditions.
The fully discrete approximation was developed using the finite element method us-
ing B-splines to construct the basis functions. This scheme was implemented, and
the linear complementarity problems (LCPs) that arise at each time step were solved
using a smoothed guarded Newton method applied to a reformulation of the LCP
as a nonsmooth equation. These methods turn out to be quite efficient, especially
since the one-dimensional structure of the problem results in banded matrices when
handled properly. Furthermore, the number of linear systems solved per time-step
seems not to grow as the discretization parameters (h in time and k in space) go to
zero.

Open questions of particular interest to the authors are the question of strong
convergence of the solutions and the related question of whether the limiting solution
conserves energy or not. A numerical scheme is devised in this paper to test the
question of strong convergence in a computationally efficient manner. The results from
the computation give evidence that the numerical solutions for our problem do indeed
converge strongly, and, even though the time-discretization is dissipative, the limit
solution also conserves energy. No analytical demonstration of energy conservation is
given; it can be demonstrated to be false in general, but it may be true generically.

Acknowledgments. We would like to acknowledge the comments of an anony-
mous referee, which improved the presentation of this paper and prompted us to
complete the convergence proof for the discretization in both time and space.
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Abstract. This paper presents the natural framework to residual based a posteriori error
estimation of some cell-centered finite volume methods for the Laplace equation in Rd, d = 2 or
3. For that purpose we associate with the finite volume solution a reconstructed approximation,
which is a kind of Morley interpolant. The error is then the difference between the exact solution
and this Morley interpolant. The residual error estimator is based on the jump of normal and
tangential derivatives of the Morley interpolant. We then prove the equivalence between the discrete
H1 seminorm of the error and the residual error estimator. Numerical tests confirm our theoretical
results.
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1. Introduction. The finite volume method is a well-adapted method for the
discretization of various partial differential equations and is very popular in the engi-
neering community [24]. The mathematical community recently started to analyze it
in detail. Presently, existence and uniqueness results as well as a priori error estimates
are available for a quite large class of problems; we refer to [10] and the references
cited there. Contrary to the finite element methods [26], a posteriori error estimates
for finite volume methods are less developed, and until now only a few results have
been obtained in that direction. See [14, 22, 1, 12, 13] for cell-centered finite volume
methods, [17, 19, 25, 23] for vertex-centered methods, and [2, 3, 15, 16] for finite
volume element methods. Since finite volume methods have some similarities with
the finite element methods, we may hope that this gap will be filled soon.

The goal of our paper is to present the natural framework to residual based a
posteriori (efficient and reliable) error estimation of some cell-centered finite volume
methods for linear elliptic equations. In a first attempt we restrict ourselves to the
Laplace equation in R

d, d = 2 or 3. The case of diffusion–convection–reaction equa-
tions will be only sketched; for details, we refer to a forthcoming paper [20]. The key
idea is the reconstruction of a piecewise polynomial approximation of the finite volume
solution, its principal property being that the mean of its flux through any edge/face
of the mesh is equal to the numerical flux through that edge/face (this interpolant is
consequently smoother than the approximated solution). This reconstructed approx-
imation is then a kind of Morley interpolant of the finite volume solution. In general
a Morley interpolant is not in H1, and therefore the Morley interpolant may be con-
sidered as a nonconforming approximation of the exact solution. The second key idea
is to use the Helmholtz decomposition of the error, the difference between the exact
solution and this Morley interpolant, as was done in [7] for the a posteriori error anal-
ysis of a nonconforming finite element approximation of the Laplace equation. As in
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[7] the residual error estimator is then naturally based on the jump of normal and tan-
gential derivatives of the Morley interpolant. We finally show the equivalence between
the discrete H1 seminorm of the error and the residual error estimator. The proof of
the upper error bound uses the Helmholtz decomposition of the error and some quasi-
orthogonality relations obtained using the above-mentioned property of the Morley
interpolant. The proof of the lower error bound is more standard and simply uses
some Green’s formulas and inverse inequalities as for finite element methods [26].

Note that our purposes also require the introduction of new finite elements of
Morley type on rectangles and tetrahedra.

We further give explicitly the size of the constants appearing in the error esti-
mates by estimating the constants involved in the interpolation error estimates (using
some related eigenvalue problems and extension techniques) and in some inverse in-
equalities. In particular, we obtain constants in the upper error bound that are quite
close to unity.

The idea to interpolate the finite volume solution by a smoother function having
the above-mentioned property on the flux was presented in [12] in an L1 framework for
time-dependent nonlinear convection–diffusion equations in R

d × R
+. In that paper

the authors obtain a reliable estimator in an L1-norm, instead of the energy norm.
Furthermore, their interpolant is a piecewise linear Lagrange interpolant on a dual
mesh. As a consequence, to guarantee the property on the flux, the (primal) mesh
has to be admissible in the sense of [10, Def. 9.1], a deep obstacle for adaptivity. To
avoid this admissibility condition and use the energy norm framework, we need to
use the natural degrees of freedom on the mesh, namely, the mean of the flux on the
edges/faces, and consequently use higher order polynomials.

The outline of the paper is as follows: In section 2 we describe the so-called cell-
centered method for the Laplace equation on a mesh made of triangles, rectangles,
or tetrahedra. Some standard inverse inequalities and interpolation error estimates
are recalled in section 3, where some constants are specified as explicitly as possible.
Section 4 is devoted to the introduction of some finite elements of Morley type. In
section 5 we introduce the Morley interpolant of the approximated solution and prove
its main properties. The upper and lower error bounds are then deduced in section 6.
The upper error bound is based on the properties of the Morley interpolant and the
use of the Helmholtz decomposition of the error, while the lower error bound is proved
in a quite standard way. In section 7 we briefly describe how to extend our results
to diffusion–convection–reaction equations. Finally, section 8 is devoted to numerical
experiments that confirm our theoretical considerations.

2. Discretization of the Laplace equation. Let Ω be an open subset of R
d,

d = 2 or 3, with a polygonal (d = 2) or polyhedral (d = 3) boundary Γ.
As usual, we denote by L2(·) the Lebesgue spaces and by Hs(·), s ≥ 0, the

standard Sobolev spaces. If D is an open subset of R
d, d = 2 or 3, the usual norm

and seminorm of Hs(D) are denoted by ‖ · ‖s,D and | · |s,D. For brevity the L2(D)-
norm will be denoted by ‖ · ‖D and in the case D = Ω, we will drop the index Ω. The
space H1

0 (Ω) is defined, as usual, by H1
0 (Ω) := {v ∈ H1(Ω)/v = 0 on Γ}. In what

follows the symbol | · | will denote either the Euclidean norm in R
d, d = 2 or 3, or

the length of a line segment, or the area of a plane face, or finally the measure of a
domain of R

d.
We consider the standard elliptic problem: for f ∈ L2(Ω) let u ∈ H1

0 (Ω) be the
variational solution of

−Δu = f in Ω,(1)
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which means that u satisfies∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω).(2)

To approximate this problem by a finite volume scheme we fix a family of meshes
Th, h > 0, regular in Ciarlet’s sense [4, p. 124]. In two dimensions we assume that all
elements of Th are either triangles or rectangles, while in three dimensions the mesh
consists only of tetrahedra. For K ∈ Th we recall that hK is the diameter of K and
h = maxK∈Th

hK .
For any edge/face E of K, we denote by hE,K its height in K, namely, hE,K = d|K|

|E|
if K is a triangle or a tetrahedron and hE,K = |K|

|E| if K is a rectangle. For an edge/face
E, its mean height is hE = 1

2 (hE,K + hE,L), when E is the edge/face of K and L. The
regularity of the mesh implies in particular that for any edge/face E of K one has

σ1hE,K ≤ hK ≤ σ2hE,K ,(3)

σ3hE,K ≤ hE ≤ σ4hE,K(4)

for some positive constants σi, i = 1, . . . , 4, depending on the aspect ratio of Th.
Let us define Eh as the set of edges (d = 2) or faces (d = 3) of the triangulation

and set Eint
h = {E ∈ Eh/E ⊂ Ω} the set of interior edges/faces of Th, while Eext

h =
Eh \ Eint

h is the set of exterior edges/faces of Th.
For an edge E of a two-dimensional (2D) element K, introduce nK,E = (nx, ny)

the unit outward normal vector to K along E. Similarly for a face E of a tetrahedron
K, set nK,E = (nx, ny, nz) the unit outward normal vector to K on E. Furthermore,
for each edge/face E, we fix one of the two normal vectors and denote it by nE . In
two dimensions additionally introduce the tangent vector tK,E = n⊥

K,E := (−ny, nx)�

such that it is oriented positively (with respect to K); similarly set tE := n⊥
E .

The jump of some function v across an edge/face E at a point y ∈ E is defined
as

[[
v(y)

]]
E

:= lim
α→+0

v(y + αnE) − v(y − αnE) ∀E ∈ Eint
h ,

[[
v(y)

]]
E

:= v(y) ∀E ∈ Eext
h .

For any K ∈ Th or E ∈ Eh, we denote by MKχ and MEχ the mean of χ on K
and E, respectively, i.e.,

MKχ =
1

|K|

∫
K

χ(x) dx ∀K ∈ Th, MEχ =
1

|E|

∫
E

χ(x) ds(x) ∀E ∈ Eh.

Finally, we will need local subdomains (also called patches). As usual, let ωK be
the union of all elements having a common edge/face with K. Similarly let ωE be the
union of both elements having E as edge/face.

The finite volume approximation uh of u is piecewise constant on Th, i.e., uh :=
(uK)K∈Th

(uK being the approximation of u(xK) for K ∈ Th, xK being the “center”
of the box K). To deduce the approximated equation satisfied by uh, we first integrate
(1) on a control volume K and use the divergence formula to obtain

−
∑

E∈EK

∫
E

∇u · nK,E ds =

∫
K

f(x) dx ∀K ∈ Th,(5)
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where EK is the set of edges/faces of K. The diffusion flux
∫
E
∇u · nK,E is approx-

imated by a numerical diffusion flux FK,E(uh) obtained using quadrature rules and
finite differences (see, e.g., [10]) and is consequently a linear combination of some val-
ues of uh around E [10, 5, 6]. For our further uses we do not need its exact form but
the principle of conservation of flux is required: FK,E(uh) = −FL,E(uh) for E = K̄∩L̄.
These approximations lead to the following system. Find a solution uh := (uK)K∈Th

of

−
∑

E∈EK

FK,E(uh) =

∫
K

f(x) dx ∀K ∈ Th.(6)

K

L

× xL

× xK

nK,E

nL,E

E

Fig. 1. The standard orthogonality condition.

If the mesh Th is admissible in the sense of [10, Def. 9.1], i.e., satisfies standard
orthogonality conditions (see Figure 1), then the numerical diffusion flux is defined
by

FK,E(uh) :=
|E|(uL − uK)

d(xK , xL)
if E = K ∩ L,(7)

FK,E(uh) := − |E|uK

d(xK ,Γ)
if E ⊂ K ∩ ∂Ω.

For general meshes, a possible choice for FK,E(uh) is proposed in [5, 6] using the
diamond cell method.

From now on we suppose that system (6) is well defined. This is the case if the
mesh Th is admissible in the sense of [10] and if FK,E(uh) is given by (7) (see, for
instance, [10]); while for an arbitrary mesh and the choice of FK,E(uh) from [5, 6],
system (6) is well defined under some geometrical conditions on the mesh [5, 6].

3. Some analytic tools.

3.1. Bubble functions, extension operator, and inverse inequalities. For
our further analysis we require standard bubble functions and extension operators that
satisfy certain properties recalled here for the sake of completeness.

We need two types of bubble functions, namely, bK and bE associated with an ele-
ment K and an edge/face E, respectively. For a triangle or a tetrahedron K, denoting
by λaK

i
, i = 1, . . . , d + 1, the barycentric coordinates of K and by aEi , i = 1, . . . , d,
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the vertices of the edge/face E ⊂ ∂K, we recall that bK = (d + 1)d+1
∏d+1

i=1 λaK
i

and
bE = dd

∏d
i=1 λaE

i
.

For a rectangle K we here enumerate its vertices in a clockwise sense. Denoting
by λaK

i
, i = 1, . . . , 4, the “barycentric” coordinates of K, namely, λaK

i
is the unique

element in Q1(K) such that λaK
i

(aKj ) = δi,j , then we recall that bK = 8λaK
1
λaK

3
and

bE = 4λaK
1

(λaK
2

+ λaK
3

) if the endpoints of the edge E are aK1 and aK2 .
One recalls that bK = 0 on ∂K, bE = 0 on ∂ωE , ‖bK‖∞,K = ‖bE‖∞,ωE

= 1.
In two dimensions for an edge E ⊂ ∂K using temporarily the local coordinates

system (x, y) such that E is included into the x-axis, then the extension Fext(vE) of
vE ∈ C(E) to K is defined by Fext(vE)(x, y) = vE(x). We proceed similarly in three
dimensions.

Now we may recall the so-called inverse inequalities, whose proof uses classical
scaling techniques and the fact that all norms are equivalent in a finite-dimensional
space [26].

Lemma 3.1 (inverse inequalities). Let K ∈ Th, E ∈ EK , vK ∈ Pk0
(K), and vE ∈

Pk1(E) for some nonnegative integers k0 and k1. Then there exist positive constants
β0, β1 (resp., α0, α1, and α2) depending on the form of K (triangle, rectangle, or
tetrahedron), on the aspect ratio of the mesh Th, and on the polynomial degree k0

(resp., k1) such that

‖vKb
1/2
K ‖2

K ≤ ‖vK‖2
K ≤ β0‖vKb

1/2
K ‖2

K ,(8)

‖∇(vKbK)‖2
K ≤ β1h

−2
K ‖vK‖2

K ,(9)

‖vEb1/2E ‖2
E ≤ ‖vE‖2

E ≤ α0‖vEb1/2E ‖2
E ,(10)

‖Fext(vE)bE‖2
K ≤ α1hK‖vE‖2

E ,(11)

‖∇(Fext(vE)bE)‖2
K ≤ α2h

−1
K ‖vE‖2

E .(12)

Remark 3.2. In the above lemma, if K is a square and k1 = 2, then α0 =
10+

√
30

4 ≈ 1.967, α1 = 8(6+
√

21)
315 ≈ 0.269, α2 = 8(56+

√
881)

105 ≈ 6.528. These numbers
are obtained by reducing estimates (10)–(12) to an eigenvalue problem. Namely using
the standard basis of P2, estimate (12) is equivalent to (AX,X) ≤ α2(BX,X) for all
X ∈ R

3, where A and B are two explicit 3 × 3 matrices. Therefore, α2 is the largest
eigenvalue of the matrix B−1/2 ·A ·B1/2, or equivalently the largest eigenvalue of the
matrix B−1 ·A, since B is invertible. A direct calculation yields the value of α2. The
other estimates are proved in the same manner.

3.2. Interpolation error estimates. Here we collect some standard interpola-
tion error estimates but we specify as explicitly as possible the involved constants. As
usual we start with the reference elements, which are the unit triangle K̂ of vertices
(0, 0), (1, 0), (0, 1), the unit square K̂ of vertices (0, 0), (1, 0), (0, 1), (1, 1), or the unit
tetrahedron K̂ of vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).

Lemma 3.3. Let Ê be the edge/face of K̂ included in the axis/plane xd = 0. Then
there exist two positive constants μ and α such that for all v ∈ H1(K̂), the following
estimates hold:

‖v −MK̂v‖K̂ ≤ μ‖∇v‖K̂ ,(13)

‖v −MÊv‖Ê ≤ α‖∇v‖K̂ .(14)

If K̂ is the reference square, then μ = 1
π and α = 1√

π tanhπ
≈ 0.565244. If K̂ is

the reference triangle, then μ = 1
π and α = 1

μ1
, where μ2

1 is the first positive root of
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the transcendental equation

sinhx + tanx = 0.(15)

This means that α≈0.730276. If K̂ is the reference tetrahedron, then μ ≤ (2(11+4
√

6))1/4

√
3π

≈ 0.466715 and α≤ (2(11+4
√

6))1/4

√
π tanhπ

≈ 1.43549.
Proof. The two estimates are Poincaré-like inequalities and follow from the

Bramble–Hilbert lemma. But this argument does not give an estimate for μ and α.
Therefore, we argue as follows. For the first estimate, denote by λ2

1 the first positive
eigenvalue of the Laplace operator on K̂ with Neumann boundary conditions. Then
by the min-max principle, we know that λ2

1 = min v∈H1(K̂)
v �=0,M

K̂
v=0

‖∇v‖2

K̂

‖v‖2

K̂

. This identity is
equivalent to

λ2
1‖v‖2

K̂
≤ ‖∇v‖2

K̂
∀v ∈ H1(K̂) : MK̂v = 0.

We then obtain (13) with μ = λ−1
1 .

If K̂ is the unit square, it is well known that λ2
1 = π2 and consequently μ = 1

π .
If K̂ is the reference triangle, we use the following extension operator from K̂ to the
unit square (0, 1)2, temporarily denoted by Ŝ. Namely, for v ∈ H1(K̂), we define its
extension Ev to Ŝ by

Ev(y1, y2) = v(y1, y2) if (y1, y2) ∈ K̂,

Ev(y1, y2) = v(1 − y2, 1 − y1) if (y1, y2) ∈ Ŝ \ K̂.

Note that Ev ∈ H1(Ŝ) and from ‖v‖2
K̂

= ‖v‖2
Ŝ
, ‖∇v‖2

K̂
= ‖∇v‖2

Ŝ
, we easily get

min
v∈H1(K̂)

v �=0,M
K̂

v=0

‖∇v‖2
K̂

‖v‖2
K̂

≥ min
v∈H1(Ŝ)

v �=0,M
Ŝ

v=0

‖∇v‖2
Ŝ

‖v‖2
Ŝ

= π2.

On the other hand, one readily checks that the function ψ(x, y) =
√

2(cos(πx) +
cos(π(1 − y)) is an eigenvector of the eigenvalue π2 of the Laplace operator with
Neumann boundary conditions in K̂. Therefore, we actually have λ2

1 = π2.
We use a similar argument for the reference tetrahedron. Namely we use an

extension operator from K̂ to the standard reference pentahedron P̂ = Ê× (0, 1). For
that purpose denote by K̂2 and K̂3 the tetrahedra of vertices (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 0, 1) and (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), respectively. We remark that P̂ = K̂ ∪
K̂2 ∪ K̂3, that K̂ and K̂2 have a common face, and similarly that K̂2 and K̂3 have
a common face. Note further that |K̂| = |K̂2| = |K̂3| = 1

6 . Therefore, as before there
exists an affine transformation F1 which maps K̂ onto K̂2 and let their common face
be invariant. Similarly denote by F2 the affine transformation which maps K̂2 onto
K̂3 and let their common face be invariant. Denote by Ai, i = 1, 2, the 3× 3 matrices
and by bi ∈ R

3, i = 1, 2, such that Fi(x) = Aix + bi for all x ∈ R
3. Now we are able

to define the extension operator E: for v ∈ H1(K̂), we define

Ev(y) = v(y), if y ∈ K̂, Ev(y) = v(F−1
1 (y)) if y ∈ K̂2,

Ev(y) = v(F−1
1 (F−1

2 (y))) if y ∈ K̂3.

Using the above properties between the tetrahedra K̂, K̂2, and K̂3 and some changes of
variables, we readily check that Ev ∈ H1(P̂ ) and satisfies

∫
P̂
Ev(y) dy = 3

∫
K̂
v(x) dx,

and∫
P̂

|Ev(y)|2 dy = 3

∫
K̂

|v(x)|2 dx,
∫
P̂

|∇Ev(y)|2 dy =

∫
K̂

∇v(x)� · T · ∇v(x) dx,
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where the matrix T is given by

T = Id + (A�
1 A1)

−1 + A−1
1 (A�

2 A2)
−1A−�

1 =

⎛
⎝ 5 −2 0
−2 3 −1
0 −1 5

⎞
⎠ .

An easy calculation yields ‖T‖2 =
√

2(11 + 4
√

6) ≈ 6.44949.

These identities directly lead to

min
v∈H1(K̂)

v �=0,M
K̂

v=0

‖∇v‖2
K̂

‖v‖2
K̂

≥ 3

‖T‖2
min

v∈H1(P̂ )
v �=0,M

P̂
v=0

‖∇v‖2
P̂

‖v‖2
P̂

=
3π2

‖T‖2
.

We then conclude that μ ≤
√

‖T‖2

3π2 .

For the second estimate, we start with the following nonstandard eigenvalue prob-
lem in the unit square K̂ = (0, 1)2. Find λ2 and v ∈ H1(K̂) solution of

∫
K̂

∇v · ∇w = λ2

∫
Ê

vw ∀w ∈ H1(K̂).(16)

For this eigenvalue problem, let us show that the min-max principle holds at least for
the first positive eigenvalue λ̃2

1. Namely λ̃2
1 is characterized by

λ̃2
1 = min

v∈H1(K̂)
‖v‖

Ê
�=0,M

Ê
v=0

‖∇v‖2
K̂

‖v‖2
Ê

.(17)

Denote by m the above right-hand side. Consider a minimizing sequence vn of the
above minimum, namely, for all n ∈ N, let vn ∈ H1(K̂) be such that

MÊvn = 0, ‖vn‖Ê = 1, ‖∇vn‖2
K̂

→ m as n → ∞.

Since ‖∇v‖K̂ + ‖v‖Ê is a norm on H1(K̂) equivalent to the standard norm, the
sequence (vn)n is bounded in H1(K̂). Therefore, there exists a subsequence, still
denoted by (vn)n, such that

vn → v in H1(K̂) as n → ∞.

From the above properties of the sequence (vn)n, we deduce that v satisfies

MÊv = 0, ‖v‖Ê = 1, ‖∇v‖2
K̂

= m.

It remains to show that v is an eigenvector of problem (16) corresponding to the
eigenvalue m. For that purpose let us fix z ∈ H1(K̂) such that

MÊz = 0 and

∫
Ê

vz = 0.(18)

Consider the mapping

Φ : R → R : α →
‖∇(v + αz)‖2

K̂

1 + α2‖z‖2
K̂

.
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From the above minimization problem and the properties of v, the mapping Φ hits
its minimum at α = 0. Since Φ is smooth, we deduce that Φ′(0) = 0, or

∫
K̂

∇v · ∇z = 0.(19)

Since any w ∈ H1(K̂) such that MÊw = 0 may be written in the form w = βv + z,

with β ∈ R and z ∈ H1(K̂) satisfying (18), we deduce that
∫
K̂

∇v · ∇w = β

∫
K̂

∇v · ∇v +

∫
K̂

∇v · ∇z.

By the properties of v and identity (19), we conclude that
∫
K̂

∇v · ∇w = βm = m

∫
Ê

vw;

this last identity follows from (18).
To find the first eigenvalue of problem (16), we remark that its strong form is

⎧⎪⎨
⎪⎩
−Δv= 0 in K̂,
∂v
∂n = λ2v on Ê,
∂v
∂n = 0 on ∂K̂ \ Ê.

Using the standard argument of separation of variables, one finds a family of eigen-
values, its smallest one being π tanhπ ≈ 3.12988. In order to be sure that this value
is the smallest eigenvalue of problem (16), we penalize it by an integral term in K̂.
Namely, for any ε > 0, we consider the problem

∫
K̂

∇v · ∇w = λ2
ε

(∫
Ê

vw + ε

∫
K̂

vw

)
∀w ∈ H1(K̂).(20)

This problem is an eigenvalue problem related to a selfadjoint nonnegative operator.
For that problem one can find all the eigenvalues by separation of variables. Since the
eigenvalues of (20) depend continously on ε, the first positive eigenvalue λ̃2

1,ε tends to
the first eigenvalue of problem (16). By direct calculations one shows that

λ̃2
1,ε → π tanhπ.

We therefore conclude that λ̃2
1 = π tanhπ. By the above “min-max” principle (17),

we deduce that α = 1/λ̃1.
For the unit triangle, we start with the minization problem (17) (as before λ̃2

1 is
the first positive eigenvalue of problem (16)). Using the extension operator E from
K̂ to Ŝ, we deduce that

λ̃2
1 = min

v∈H1(K̂)
‖v‖

Ê
�=0,M

Ê
v=0

‖∇v‖2
K̂

‖v‖2
Ê

≥ min
v∈H1(Ŝ)

‖v‖
Ê

+‖v‖
F̂

�=0,M
Ê∪F̂

v=0

‖∇v‖2
Ŝ

‖v‖2
Ê

+ ‖v‖2
F̂

,

where F̂ is the edge of Ŝ included into the line x1 = 1. The right-hand side is related
to the eigenvalue problem: find λ2 and v ∈ H1(Ŝ) solution of

∫
Ŝ

∇v · ∇w = λ2

∫
Ê∪F̂

vw ∀w ∈ H1(Ŝ).(21)
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The same arguments as before give, as first positive eigenvalue μ2
1, the first positive

root of the transcendental equation (15).

As for the first estimate we deduce that μ2
1 is the first positive eigenvalue of

problem (16). Indeed, if w(x1, x2) is the eigenvector of problem (21) associated with
the eigenvalue μ2

1, then one readily checks that v(x1, x2) = w(x1, x2)−w(1−x2, 1−x1)
is an eigenvector of problem (16) associated with the eigenvalue μ2

1.

As before the situation is not so convenient for the unit tetrahedron Therefore,
we first state the following estimate on the reference prism P̂ :

‖v −MÊv‖Ê ≤ 1√
π tanhπ

‖∇v‖P̂ ∀v ∈ H1(P̂ ),

obtained as for the unit square. Now, using the extension operator E and this esti-
mate, we may write

‖v −MÊv‖Ê = ‖Ev −MÊEv‖Ê ≤ 1√
π tanhπ

‖∇Ev‖P̂ ≤ 1√
π tanhπ

√
‖T‖2‖∇v‖K̂ ;

this last estimate follows from the above properties of Ev.

Remark 3.4. To our knowledge, the exact value of μ is not explicitly known
for the unit tetrahedron. Numerical tests give for λ2

1 the approximated value λ2
1 ≈

14.444208445. This gives for μ the approximated value μ ≈ 0.26312, which is relatively
smaller than our theoretical upper bound. Similarly the exact value of α is not
explicitly known for the unit tetrahedron; an approximated value is 0.340355, and
therefore our theoretical upper bound is far from being optimal.

In the above arguments, the main difference between the unit triangle and the unit
tetrahedron concerns the extension operator. For the triangle, the extension operator
uses an orthogonal transformation, which is impossible for the unit tetrahedron. That
last case still requires more investigations.

The above lemma and scaling arguments lead to the following lemma.

Lemma 3.5. There exist two positive constants μ and α depending on K̂ such
that for all K ∈ Th and v ∈ H1(K), the following estimates hold:

‖v −MKv‖K ≤ μρ̂−1hK‖∇v‖K ,(22)

‖v −MEv‖E ≤ αρ̂−1h
−1/2
E,K hK‖∇v‖K ,(23)

where E is an edge/face of K, and ρ̂ is the diameter of the inscribed ball of K̂.

4. Some finite elements of Morley type. As already mentioned the main
idea of our a posteriori error analysis is to use an interpolant p satisfying

∫
E

∂p

∂nK,E
ds = FK,E(uh) ∀E ∈ EK .

This means that we need to use finite elements having as degrees of freedom the mean
of the normal derivative of p on each edge/face. The simplest element is the so-called
Morley triangle [18, 4] usually used for the approximation of the plate problem. For
our further uses we extend this kind of elements to rectangles and tetrahedra. We
start by recalling the Morley triangle as well as a recent extension due to Nilssen, Tai,
and Winther [21] and then introduce our new elements.
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4.1. Triangles. Here K is a (nondegenerate) triangle with vertices aKi , i =
1, 2, Nf := 3.

The standard Morley triangle is defined by the triple (K,PK ,ΣK) [18, 4], where
PK = P2(K) and

ΣK = {p(ai)}i=1,...,Nf
∪
{∫

E

∂p

∂nK,E
ds

}
E∈EK

.(24)

Note that this element is not a C0-element; an extension which has this property was
recently built in [21, sect. 4], where they take

PK = P2(K) ⊕ P1(K)bK = {q + pbK : q ∈ P2(K), p ∈ P1(K)},

ΣK = {p(aKi )}i=1,2,3 ∪ {p(mE)}E∈EK
∪
{∫

E

∂p

∂nK,E
ds

}
E∈EK

.

4.2. Rectangles. Here K is a (nondegenerate) rectangle of vertices aKi , i =
1, . . . , Nf := 4.

The first element is defined by PK = P2(K) ⊕ Span{x3 − 3xy2, y3 − 3yx2} with
degrees of freedom ΣK defined by (24). We readily check that the triple (K,PK ,ΣK)
is a finite element. The above choice is motivated by the fact that Δq ∈ R ∀q ∈ PK ,
since x3 − 3xy2 and y3 − 3yx2 are the unique homogeneous polynomials of degree 3
which are harmonic.

The second example is to take PK = Q2(K) and ΣK := {p(aKi )}i=1,...,5 ∪
{
∫
E

∂p
∂nK,E

ds}E∈EK
, where aK5 is the center of gravity of K.

4.3. Tetrahedra. Here K is a (nondegenerate) tetrahedron with vertices aKi ,
i = 1, 2, 3, Nf := 4.

Inspired from the second triangular example from [21] we choose PK = P1(K) ⊕
P1(K)bK = {q + pbK : p, q ∈ P1(K)}, and ΣK defined by (24).

Similar to Lemma 4.1 of [21] (adapted to our setting) we can prove the following
lemma.

Lemma 4.1. The above triple (K,PK ,ΣK) is a C0-finite element.

5. The Morley interpolant.

5.1. Definition. For any vertex a of the triangulation we fix (wK(a))K∈Th:a∈K

suitable weights of interpolation around K. Since our analysis below is independent
of their choice, we do not describe them. They may be obtained using a discrete
projection of piecewise constant functions over affine functions on ωa [5, 6], a standard
technique to get a recovered gradient at the vertex a, leading further to the P1-
exactness. Namely for any vertex a the weights wK(a) may be fixed such that w(a) =∑

K⊂ωa
wK(a)uK , where w ∈ P1(ωa) is the discrete projection of uh on P1(ωa), i.e.,

w ∈ P1(ωa) is the unique minimizer of

∑
K⊂ωa

|q(xK) − uK |2, q ∈ P1(ωa).

This choice implies that if uh were P1(ωa), then we would have w = uh in ωa. For
instance, if ωa is made of four squares, then this choice yields wK(a) = 1/4.
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We now introduce the Morley finite element space

Vh :=

{
vh ∈ L2(Ω) : vh|K ∈ PK ∀K ∈ Th,

vh|K(aKi ) = vh|L(aLj ) ∀K,L ∈ Th, i, j ∈ {1, . . . , Nf} : aKi = aLj ,

vh|K(aKi ) = 0 ∀K,L ∈ Th, i ∈ {1, . . . , Nf} : aKi ∈ Γ,∫
E

∂vh|K
∂nE

ds =

∫
E

∂vh|L
∂nE

ds ∀E ∈ Eh,K, L ∈ Th : E = K ∩ L

}
.

Since Vh is not necessarily included into H1
0 (Ω), the space Vh is equipped with

the norm | · |1,h := (
∑

K∈Th
| · |21,K)1/2. Notice that Vh is indeed included into H1

0 (Ω)
for the second-triangular example and for our three-dimensional (3D) example.

Definition 5.1. For uh = (uK)K∈Th
, we define its Morley interpolant IMuh as

the unique element vh in Vh satisfying

vh|K(aKi ) =
∑

L∈Th:aK
i
∈L

wL(aKi )uL ∀K ∈ Th, i ∈ {1, . . . , Nf} : aKi ∈ Ω,(25)

vh|K(aKi ) = 0 ∀K ∈ Th, i ∈ {1, . . . , Nf} : aKi ∈ Γ,(26) ∫
E

∂vh|K
∂nK,E

ds = FK,E(uh) ∀E ∈ EK , K ∈ Th.(27)

For the second triangular element we have to add the conditions

vh|K(mE) = vh|L(mE) = 1
2 (uK + uL) ∀E ∈ Eh, K, L ∈ Th : E = K ∩ L,

vh|K(mE) = 0 ∀E ∈ Eh, K ∈ Th : E ⊂ K ∩ Γ.

Similarly for the first-rectangular element we must add vh|K(aK5 ) = uK for all K ∈ Th.

5.2. Some useful properties. We first prove a basic property of the Morley
interpolant.

Lemma 5.2. If uh is solution of (6), then IMuh satisfies∫
K

Δ(IMuh) dx = −
∫
K

f(x) dx ∀K ∈ Th.(28)

Proof. By Green’s formula and property (27) satisfied by IMuh, we have∫
K

Δ(IMuh) dx =
∑

E∈EK

∫
E

∂(IMuh)

∂nK,E
ds =

∑
E∈EK

FK,E(uh),

and we conclude by (6).
Now we prove some quasi-orthogonality relations that will be used for the upper

error bound. We first define the gradient jump of IMuh in the normal and tangential
direction by

JE,n(uh) =
[[

∂
∂nE

(IMuh)
]]
E

∀E ∈ Eint
h ,

JE,t(uh) =

{[[
∂

∂tE
(IMuh)

]]
E

∀E ∈ Eh for nonconforming 2D cases,

0 ∀E ∈ Eh for conforming cases.

Lemma 5.3. If u is a solution of (2) and uh is a solution of (6), then

∑
K∈Th

∫
K

∇(u− IMuh) · ∇χdx=
∑

K∈Th

∫
K

(f + ΔIMuh)(χ−MKχ) dx(29)

−
∑

E∈Eint
h

∫
E

JE,n(uh)(χ−MEχ) ds ∀χ ∈ H1
0 (Ω).
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Proof. For brevity denote the left-hand side of (29) by I1(χ). By (2) and Green’s
formula on each triangle K, and recalling that χ ∈ H1

0 (Ω), we may write

I1(χ) =

∫
Ω

fχ dx +
∑

K∈Th

∫
K

Δ(IMuh)χdx−
∑

K∈Th

∫
∂K

∂(IMuh)

∂nK
χds

=
∑

K∈Th

∫
K

(f + Δ(IMuh))χdx−
∑

E∈Eint
h

∫
E

JE,n(uh)χds.

Using identity (28), we arrive at

I1(χ) =
∑

K∈Th

∫
K

(f + Δ(IMuh))(χ−MKχ) dx−
∑

E∈Eint
h

∫
E

JE,n(uh)χds.

The conclusion now follows from the fact that
∫
E
JE,n(uh) ds = 0, for all E ∈ Eint

h ,
due to (27) and the principle of conservation of flux, FK,E(uh) = −FL,E(uh), if
E = K ∩ L, K,L ∈ Th.

Corollary 5.4. Under the assumptions of Lemma 5.3 the next estimate holds

|I1(χ)| ≤
√

2
{μ2

ρ̂2

∑
K∈Th

h2
K‖f + Δ(IMuh)‖2

K(30)

+
α2Nf

4ρ̂2

∑
K∈Th

∑
E∈Eint

h
∩EK

h−1
E,Kh2

K‖JE,n(uh)‖2
E

}1/2|χ|1,Ω.

Proof. Identity (29) and Cauchy–Schwarz’s inequality yield

|I1(χ)| ≤
∑

K∈Th

‖f + Δ(IMuh)‖K‖χ−MKχ‖K +
∑

E∈Eint
h

‖JE,n(uh)‖E‖χ−MEχ‖E

≤
∑

K∈Th

‖f + Δ(IMuh)‖K‖χ−MKχ‖K

+
1

2

∑
K∈Th

∑
E∈Eint

h
∩EK

‖JE,n(uh)‖E‖χ−MEχ‖E .

By the interpolation error estimates (22) and (23), we obtain

|I1(χ)| ≤
∑

K∈Th

hK

(
μ

ρ̂
‖f + Δ(IMuh)‖K +

α

2ρ̂

∑
E∈Eint

h
∩EK

h
−1/2
E,K ‖JE,n(uh)‖E

)
|χ|1,K .

We conclude by the discrete Cauchy–Schwarz’s inequality and the well-known estimate
(
∑l

i=1 ai)
2 ≤ l

∑l
i=1 a

2
i , valid for l = 2, 3, 4 and all real numbers ai.

Lemma 5.5. Assume that d = 2. If u is the solution of (2) and uh is the solution
of (6), then

∑
K∈Th

∫
K

∇(u−IMuh)·curl g dx =
∑

E∈Eh

∫
E

JE,t(uh)(g−MEg) ds ∀g ∈ H1(Ω),(31)

where curl g = (∂2g,−∂1g)
� is the vectorial curl of g.
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Proof. Denote the left-hand side of (31) by I2(g). Green’s formula on each element
K leads to (see Theorem I.2.11 of [11])

I2(g) = −
∑

K∈Th

∫
∂K

∂

∂t
(u− IMuh)g ds =

∑
E∈Eh

∫
E

JE,t(uh)g ds,

since u ∈ H1
0 (Ω) and g ∈ H1(Ω). The conclusion follows from the property

∫
E

JE,t(uh) ds = 0.(32)

Indeed, if aiE , i = 1, 2, are the two extremities of E, we have
∫
E
JE,t(uh) ds =

[[
uh

]]
E

(a1
E)−

[[
uh

]]
E

(a2
E). Using properties (25) and (26), we have

[[
uh

]]
E

(aiE) = 0, i = 1, 2,
and therefore (32) holds.

Corollary 5.6. Under the assumptions of Lemma 5.5 the following estimate
holds:

|I2(g)| ≤
α

ρ̂

√
Nf

{ ∑
K∈Th

∑
E∈EK

h−1
E,Kh2

K‖JE,t(uh)‖2
E

}1/2

|g|1,Ω.(33)

Remark 5.7. The above fundamental properties are only based on the definition
of the scheme (6), the continuity of the interpolant at the interior nodes, the property
(26), and the interpolation property (27). Therefore, our further analysis works for
any finite element (K,PK ,ΣK) such that the associated interpolant satisfies these
properties. But the finite element and the definition of the interpolant should be well
chosen in order to guarantee the convergence of IMuh to the exact solution u. That
is the reason of the introduction of the weights wK(a) in (25) since it was shown in
[5, 6] that for a triangulation made of rectangles, the choice of the weights described
at the beginning of section 5.1 guarantees the convergence of uh to u. Convergence
analysis for arbitrary triangulations and appropriate weights is still to be done, but
it is outside the scope of this paper.

6. Error estimators.

6.1. Residual error estimators. The exact element residual is defined by
RK := f + ΔIMuh on K. As usual this exact residual is replaced by some finite-
dimensional approximation called approximate element residual rK ∈ Pk(K). A real-
istic choice is to take rK = MKf + ΔIMuh since in the case ΔIMuh ∈ R we have
(thanks to Lemma 5.2) rK = 0.

Definition 6.1 (residual error estimator). The local and global residual error
estimators and approximation terms are defined by

η2
K := h2

K

(
‖rK‖2

K +
∑

E∈EK∩Eint
h

h−1
E,K‖JE,n(uh)‖2

E +
∑

E∈EK

h−1
E,K‖JE,t(uh)‖2

E

)
,

η2 :=
∑

K∈Th

η2
K ,

ζ2
K :=

∑
K′⊂ωK

h2
K′‖RK′ − rK′‖2

K′ , ζ2 :=
∑

K∈Th

ζ2
K .
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6.2. Upper error bound.

Theorem 6.2. Let u be a solution of (2) and let uh be a solution of (6). Then
the error e := u− IMuh is bounded by

|e|1,h ≤ cup(η + ζ),(34)

where cup = 1
ρ̂ max{2μ, αN1/2

f }.
Proof. Denote by ∇he the brokent gradient of e, namely,

(∇he)|K = ∇e|K on K ∀K ∈ Th.

As in Theorem 3.1 of [7] we use its Helmholtz decomposition

∇he = ∇χ + curlψ,(35)

with χ ∈ H1
0 (Ω) and ψ ∈ H1(Ω) if d = 2 and χ = e and ψ = 0 if d = 3 such that

|χ|21,Ω + |ψ|21,Ω ≤ |e|21,h.(36)

This estimate is direct in three dimensions, while in two dimensions it directly follows
from the identity

∫
Ω
∇χ · curlψ = 0, a consequence of Green’s formula (recalling that

χ = 0 on the boundary).
Owing to identity (35) we may write (with the notation from Lemmas 5.3 and

5.5)

|e|21,h =

∫
Ω

|∇he|2 dx =

∫
Ω

∇he · (∇χ + curlψ) dx = I1(χ) + I2(ψ).

Using estimates (30) and (33), we obtain

|e|21,h ≤
√

2

(
μ2

ρ̂2
Ξ2 +

α2Nf

4ρ̂2
η2
n

)1/2

|χ|1,Ω +
αN

1/2
f

ρ̂
ηt|ψ|1,Ω,

where for brevity we set Ξ2 =
∑

K∈Th
h2
K‖f + Δ(IMuh)‖2

K and

η2
n =

∑
K∈Th

∑
E∈Eint

h
∩EK

h−1
E,Kh2

K‖JE,n(uh)‖2
E , η

2
t =

∑
K∈Th

∑
E∈EK

h−1
E,Kh2

K‖JE,t(uh)‖2
E .

By the discrete Cauchy–Schwarz inequality and estimate (36), we obtain

|e|21,h ≤ 2μ2

ρ̂2
Ξ2 +

α2Nf

2ρ̂2
η2
n +

α2Nf

ρ̂2
η2
t ≤ 4μ2

ρ̂2
ζ2

+
4μ2

ρ̂2

∑
K∈Th

h2
K‖rK‖2

K +
α2Nf

ρ̂2
(η2

n + η2
t );

this last estimate follows from the well-known estimate (a+ b)2 ≤ 2a2 + 2b2, valid for
all real numbers a, b. By the definition of cup and η the above estimate implies that
|e|1,h ≤ cup(ξ

2 + η2)1/2 ≤ cup(η + ξ).
Remark 6.3. Thanks to Lemma 3.3, we can estimate the constant cup ap-

pearing in the above upper bound. For a triangulation made of rectangles, then
cup = 2 max{ 1

π , α} = 2α ≈ 1.13049. For a triangulation made of triangles, then

cup = 1
ρ̂ max{ 2

π ,
√

3α} =
√

3α
ρ̂ ≈ 2.15928. Finally for a mesh made of tetrahedra, one

has cup ≤ 2 (2(11+4
√

6))1/4

√
π tanhπ

≈ 9.27912. For that last case, by Remark 3.4, a numerical

upper bound for cup is 2.20009. In both cases, the exact value, or the numerical upper
bound for the tetrahedral case, of cup is quite close to unity.



SERGE NICAISE 1495

6.3. Lower error bound.
Theorem 6.4. For all elements K, the following local lower error bound holds

ηK ≤ clow(‖∇he‖ωK
+ ζK),(37)

where c2low = max{2β2
0β1 + 2Nfα

2
0σ

−1
1 σ2

2σ3(3α2σ
−1
4 + 8α1β

2
0β1σ

−1
1 σ4), 2β

2
0

+ 8Nfα
2
0α1(1 +2β2

0)σ−1
1 σ2

2σ3σ4}.
Proof.
Element residual. For a fixed element K denote wK = rKbK which belongs to

H1
0 (K). From the definition of RK and integration by parts, we may write∫

K

rKwK =

∫
K

(rK −RK)wK −
∫
K

Δ(u− IMuh)wK

=

∫
K

(rK −RK)wK +

∫
K

∇e · ∇wK .

By Cauchy–Schwarz’s inequality and the inverse inequalities (8) and (9), we conclude
that

hK‖rK‖K ≤ β0(β
1/2
1 ‖∇e‖K + hK‖rK −RK‖K).(38)

Normal jump. Fix an arbitrary E ∈ Eint
h . Recall that JE,n(uh) ∈ Pk(E) for some

k ∈ N and set wE := Fext(JE,n(uh))bE ∈ H1
0 (ωE). By elementwise partial integration,

we get∫
E

JE,n(uh)wE = −
∑

K⊂ωE

∫
∂K

∂e

∂nK
wE = −

∑
K⊂ωE

∫
K

(∇e · ∇wE + ΔewE) dx

≤ ‖∇he‖ωE
‖∇wE‖ωE

+
∑

K⊂ωE

‖Δe‖K‖wE‖K .

Inequalities (10)–(12) and properties (3) and (4) in the previous estimate lead to

hE‖JE,n(uh)‖2
E ≤ 2α2

0σ
−1
1

(
2α2σ

−1
4 ‖∇he‖2

ωE
+ 2α1σ4

∑
K⊂ωE

h2
K‖RK‖2

K

)
.

By estimate (38) we arrive at

hE‖JE,n(uh)‖2
E ≤ 4α2

0σ
−1
1 (α2σ

−1
4 + 4α1σ4β

2
0β1)‖∇he‖2

ωE
(39)

+ 8α2
0α1σ

−1
1 σ4(1 + 2β2

0)
∑

K⊂ωE

h2
K‖RK − rK‖2

K .

Tangential jump (in two dimensions). For a fixed edge E set wE := Fext(JE,t(uh))
bE ∈ H1

0 (ωE). For u ∈ H1(ωE) and wE ∈ H1
0 (ωE), partial integration leads to

0 =

∫
∂ωE

∂u

∂t
wE = −

∫
ωE

∇u · curlwE .

For IMuh we integrate elementwise and obtain using the above identity∫
E

JE,t(uh)wE = −
∑

K⊂ωE

∫
∂K

∂(IMuh)

∂t
wE =

∑
K⊂ωE

∫
K

∇(IMuh) · curlwE

= −
∑

K⊂ωE

∫
K

∇(u− IMuh) · curlwE ≤ ‖∇he‖ωE
‖∇wE‖ωE

.
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The inverse inequalities (10) and (12), as well as (3) and (4), lead to

hE‖JE,t(uh)‖2
E ≤ 2α2

0α2σ
−1
1 σ−1

4 ‖∇he‖2
ωE

.(40)

The conclusion follows from estimates (38)–(40) and properties (3) and (4).
Remark 6.5. In the above proof, we see that if rK = 0, then the constant clow

reduces to c2low = 2Nfα
2
0σ

−1
1 σ2

2σ3 max{3α2σ
−1
4 , 2α1σ4}. Let us illustrate this constant

clow in the particular case considered in the next section. Take a triangulation made
of squares, build the Morley interpolant with the help of the first rectangular element
from section 4, and choose rK = 0. Then by Remark 3.2, we have clow =

√
24α2

0α2 ≈
24.622.

7. Diffusion–convection–reaction equations. In this section we describe how
to extend the above results to diffusion–convection–reaction equations; for details we
refer the reader to [20].

Consider the linearized diffusion–convection–reaction problem: for f ∈ L2(Ω) let
u ∈ H1

0 (Ω) be the unique solution of

Au := div (−ε∇u + vu) + bu = f in Ω,(41)

where ε is a fixed positive constant, v ∈ R
d, and b is a nonnegative real number.

Integrating (41) on a control volume K and using the divergence formula, we
obtain

∑
E∈EK

∫
E

(−ε∇u + vu) · nK,E ds +

∫
K

bu dx =

∫
K

f(x) dx ∀K ∈ Th.

The continuous diffusion flux −ε∇u · nK,E is approximated as before, the convection
flux vu ·nK,E by a first order upwind scheme, and the reaction term

∫
K
u by a simple

quadrature formula (see [10]). These approximations lead to the following system.
Find uh := (uK)K∈Th

, the solution of

∑
E∈EK

(
−εFK,E(uh) + vK,EF

C
E (uh)

)
+ bFR

K (uh) =

∫
K

f(x) dx ∀K ∈ Th,(42)

where vK,E = v · nK,E , the quantity FK,E(uh) is supposed to satisfy the principle
of conservation of flux, while the quantities FC

E (uh) and FR
K (uh) are, respectively,

defined by

FC
E (uh) := |E|uE,+,(43)

where for E ∈ Eint
h , uE,+ = uKE,+

, KE,+ being the upstream control volume, i.e.,
vKE,+,E ≥ 0; while for E ∈ K̄ ∩ Γ, uE,+ = uK if vK,E ≥ 0, and uE,+ = 0 else.
FR
K (uh) = |K|uK .

For a restricted admissible mesh in the sense of [10, Def. 9.4], if the numerical
diffusion fluxes FK,E(uh) are given by (7), then system (42) is well defined as proved
in [9]. For a general mesh as here, we simply assume that system (42) has a unique
solution.

As for the Laplace operator, we associate with the finite volume solution uh its
Morley interpolant IMuh. This interpolant is related to the quantities involved in
(42), namely, the diffusion and convection fluxes, and the reaction term. For that
purpose, for each element K, we build a C0-finite element (K,PK ,ΣK) having as
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degrees of freedom the mean of the normal derivative and of the function on each
edge, as well as the mean on K. For instance, if K is a triangle, we may take

PK = {q + (p + αbK)bK : q ∈ P2(K), p ∈ P1(K), α ∈ R},

ΣK =

{
p(aKi )

}
i=1,2,3

∪
{∫

K

p

}
∪
{∫

E

p ds

}
E∈EK

∪
{∫

E

∂p

∂nK,E
ds

}
E∈EK

.

Then for uh = (uK)K∈Th
, we define its interpolant IMuh as the unique element

vh in Vh ∩H1
0 (Ω) satisfying (25)–(27) and

∫
E

vh ds = FC
E (uh) ∀E ∈ Eint

h ,

∫
K

vh dx = FR
K (uh) ∀K ∈ Th.

The key point of our a posteriori analysis is the following basic property of the
Morley interpolant, obtained using Green’s formula and the above properties of IMuh.

Lemma 7.1. If uh is a solution of (42), then IMuh satisfies

∫
K

(A(IMuh) − f) dx = 0 ∀K ∈ Th : measd−1(K ∩ Γ) = 0.

This property and similar arguments to those used before allow us to prove the
following error bounds.

Theorem 7.2. Let u be a solution of (41), and let uh be a solution of (42). Then
the error is bounded by

∫
Ω

(
ε|∇e|2 +

(
1

2
div v + b

)
|e|2

)1/2

≤ c1(η + ζ),(44)

where c1 is a positive constant depending on the aspect ratio of the mesh and of the
size of ε.

For all elements K, the following local lower error bound holds:

ηK ≤ c2

((∫
ωK

(
ε|∇e|2 +

(
1

2
div v + b

)
|e|2

))1/2

+ ζK

)
,(45)

where c2 is a positive constant depending on the aspect ratio of the mesh and of the
size of ε.

Remark 7.3. 1. By modifying appropriately the estimator ηK , we may skip the
dependence of c1 with respect to ε and give explicitly the dependence of c2 on this
parameter; see [20].

2. In the case of a large Peclet number Pe ≡ ε−1|v| and/or large number Γ ≡ ε−1b,
problem (41) is singularly perturbed and the solution may generate sharp boundary
or interior layers, where the solution of the limit problem (corresponding to ε = 0)
is not smooth or does not satisfy the Dirichlet boundary condition. In that case, the
use of anisotropic meshes is recommended. This will be addressed in [20].

8. Numerical results. In this section we present two numerical tests that il-
lustrate the efficiency and reliability of our estimator. The second example further
indicates that our estimator is appropriate for adaptivity. Additionally, for both ex-
amples we provide the order of convergence of the error |e|1,h; both cases confirm that
IMuh is a good approximation of u.
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8.1. A smooth solution. The first example is for a smooth solution in the unit
square ]0, 1[2 and quasi-uniform meshes made of squares. Namely, we consider problem
(1) in ]0, 1[2 with the following prescribed exact solution u(x, y) = xy(1−x)(1−y). The
meshes are uniform ones made of squares of size h = 1/n for n = 4, 8, . . . , 256 obtained
by dividing each segment in n subintervals. Since the meshes are made of squares we
use the scheme (6) with the numerical diffusion flux given by (7); furthermore, the
Morley interpolant is built using the first-rectangular element from subsection 4.2 and
the weights wK(a) = 1/4.

We first investigate the order of convergence of the approximated solution uh as
well as its interpolant IMuh to the exact solution u in different norms. Namely, we
present in Figure 2 the following norms: ‖ū− uh‖ (where ū is piecewise constant on
Th and is equal to u(xK) on each K); |u− uh|1,Th

(where the mesh-depending norm
| · |1,Th

is defined in [10, Def. 9.3]); ‖u− IMuh‖; and |u− IMuh|1,h. These quantities
are illustrated in Figure 2 by lines 1–4, respectively, in a double logarithmic scale
so that the slope of the curve corresponds to the order of convergence. Theorem
9.3 of [10] yields the order of convergence 1 for |u − uh|1,Th

. Figure 2 even reveals
a better order of convergence of about 1.5, probably due to the smoothness of u.
For the L2-norms, we remark a quadratic order of convergence, a usual phenomenon.
On the other hand, for the discrete H1-norm of the reconstructed approximation,
we also see a quadratic order of convergence. This seems to be a superconvergence
effect, probably due to the smoothness of the solution and of the use of structured
meshes.

0.39 1.00 1.62 2.23 2.85 3.47 4.08 4.70 5.31 5.93 6.55
−15.11

−13.91

−12.72

−11.52

−10.33
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−6.74

−5.54

−4.35

−3.15

0.39 1.00 1.62 2.23 2.85 3.47 4.08 4.70 5.31 5.93 6.55
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−13.91

−12.72

−11.52

−10.33

−9.13

−7.94

−6.74

−5.54

−4.35

−3.15

(1)

(2)

(3)

(4)

1

2

1

1

log(n)

log(error)

Fig. 2. Illustration of different norms for test 1.

Now we investigate the main theoretical results which are the upper and lower
error bounds (34) and (37). In order to present them appropriately, we consider the
ratios

qup :=
|u− IMuh|1,h

η + ξ
as a function of | log n|,

qlow := max
K∈Th

ηK
‖∇(u− IMuh)‖ωK

+ ξK
as a function of | log n|.

The first ratio qup is frequently referred to as the effectivity index. It measures the
reliability of the estimator and is related to the global upper error bound. The second
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ratio is related to the local lower error bound and measures the efficiency of the
estimator. From our theoretical considerations, both ratios should be bounded from
above which is confirmed experimentally as shown in Figure 3. Hence our estimator
is reliable and efficient.

In Figure 4 we compare the discrete H1 seminorm |u − IMuh|1,h and the global
error estimator η with respect to n. We remark that the orders of convergence are the
same (namely, 2). This figure further confirms the equivalence between |u− IMuh|1,h
and η. All related quantities are summarized in Table 1.
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Fig. 3. qup (left) and qlow (right) in dependence of | logn| for test 1.
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−6.06
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1

2

log(n)

log(error)

Fig. 4. Comparison between − ln |u − IMuh|1,h (line (1)) and − ln η (line (2)) with respect to
lnn for test 1.

8.2. A nonsmooth solution. For the second example we use the L-shaped
domain Ω :=]− 1, 1[2 \ ]0, 1[×]− 1, 0[ with the exact singular solution given in polar
coordinates by u = r2/3 sin

(
2θ
3

)
considered as a solution of the Dirichlet problem with

nonhomogeneous Dirichlet boundary conditions. As before the domain is discretized
using uniform meshes made of squares of size h = 1/n for n = 4, 8, . . . , 256. Since
u presents singular behavior near the origin and uniform meshes are used, we have
a reduction of the order of convergence from 1 to 2/3 for the norm |u − uh|1,h (see
Theorem 2.4 of [8] and Figure 5). From Figure 5 we notice the same phenomenon of
reduction of the order of convergence for the other norms.
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Table 1

Data for test 1.

n ‖ū− uh‖0,Ω |u− uh|1,Th
‖u− IMuh‖0,Ω |u− IMuh|1,h η qlow qup

4 2.96e−03 1.57e−02 2.84e−03 1.37e−02 2.09e−02 0.4174 0.2753
8 7.57e−04 5.58e−03 8.58e−04 3.72e−03 6.43e−03 0.4875 0.2708
16 1.91e−04 1.99e−03 2.25e−04 9.53e−04 1.74e−03 0.5357 0.2665
32 4.77e−05 7.09e−04 5.68e−05 2.40e−04 4.48e−04 0.5513 0.2638
64 1.19e−05 2.51e−04 1.42e−05 6.00e−05 1.14e−04 0.5569 0.2636
128 2.99e−06 8.90e−05 3.56e−06 1.50e−05 2.86e−05 0.5580 0.2616
256 7.47e−07 3.15e−05 8.90e−07 3.75e−06 7.17e−06 0.5584 0.2612
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Fig. 5. Illustration of different norms for test 2.

Table 2

Data for tests 2.

n ‖ū− uh‖0,Ω |u− uh|1,Th
‖u− IMuh‖0,Ω |u− IMuh|1,h η qlow qup

4 1.63e−02 7.02e−02 1.66e−02 1.26e−01 4.26e−01 2.4949 0.2958
8 6.86e−03 4.52e−02 8.11e−03 8.11e−02 2.70e−01 2.4661 0.3003
16 2.81e−03 2.87e−02 3.59e−03 5.15e−02 1.71e−01 2.4527 0.3022
32 1.14e−03 1.82e−02 1.51e−03 3.26e−02 1.07e−01 2.4471 0.3030
64 4.56e−04 1.15e−02 6.21e−04 2.06e−02 6.78e−02 2.4448 0.3033
128 1.82e−04 7.23e−03 2.52e−04 1.30e−02 4.27e−02 2.4438 0.3035
256 7.25e−05 4.55e−03 1.01e−04 8.16e−03 2.69e−02 2.4435 0.3034

Again we have tested the rate of convergence of ‖ū − uh‖, |u − uh|1,Th
, ‖u −

IMuh‖, and |u−IMuh|1,h. Here we notice that both discrete H1-norms have a rate of
convergence of 2/3 and that the rate of convergence of the L2-norms is twice, namely,
4/3.

As before we further check the boundedness of the ratios qup and qlow. These
quantities are given in Table 2 and illustrated in Figures 6 and 7. From these figures
we can draw the same conclusion as before, namely, the efficiency and reliability of
our estimator.

From Tables 1 and 2, we see that the experimental bounds for qup and qlow are
quite smaller than the theoretical ones. This is quite realistic since the experimental
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Fig. 6. qup (left) and qlow (right) in dependence of | logn| for test 2.
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lnn for test 2.
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Fig. 8. Distribution of the local estimator for test 2 and n = 64.

values depend on the chosen solution, while the theoretical analysis always considers
the worse case.

Finally, in Figure 8 we give the distribution of the local residual error estimators
for our second example with the mesh corresponding to n = 64. From this figure we
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may conclude that our estimator is appropriate for adaptivity, since it detects the
region of large errors, namely, the neighborhood of the origin.

9. Conclusions. We have proposed and rigorously analyzed a new a posteriori
error estimator for a cell-centered finite volume method that is reliable and efficient.
This estimator is based on the construction of an appropriate interpolant of Morley
type and the use of a Helmholtz decomposition of the error. The size of the constants
appearing in the error estimates has been given as explicitly as possible, as a function
of the aspect ratio of the mesh and of the form of the elements (triangles, rectangles,
or tetrahedra). Some numerical experiments confirm our theoretical predictions and
show that our estimator is appropriate for adaptivity.

The extension of our method to diffusion–convection–reaction equations is briefly
described; the details are postponed to a forthcoming paper.

Adaptive algorithms are not considered here since they require more investiga-
tions. They will be considered in forthcoming works.
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NUMERICAL RECONSTRUCTION OF HEAT FLUXES∗
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Abstract. This paper studies the reconstruction of heat fluxes on an inner boundary of a
heat conductive system when the measurement of temperature in a small subregion near the outer
boundary of the physical domain is available. We will first consider two different regularization
formulations for this severely ill-posed inverse problem and justify their well-posedness; then we will
propose two fully discrete finite element methods to approximate the resultant nonlinear minimization
problems. The existence and uniqueness of the discrete minimizers and convergence of the finite
element solution are rigorously demonstrated. A conjugate gradient method is formulated to solve
the nonlinear finite element optimization problems. Numerical experiments are given to demonstrate
the stability and effectiveness of the proposed reconstruction methods.
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1. Introduction. Consider a heat conductive system which occupies an open
bounded domain Ω with an outer boundary Γo and an inner boundary Γi; see Figure 1.
We are interested in a heat conductive system which can be modeled by the parabolic
equation

∂u

∂t
= ∇ · (α(x, t)∇u) in Ω × (0, T ),(1.1)

assuming the initial condition

u(x, 0) = u0(x) in Ω(1.2)

and the heat flux exchanges through the outer and inner boundaries Γo and Γi as
follows:

−α(x, t)
∂u

∂n
= c(x, t)(u(x, t) − ua(x, t)) on Γo × (0, T ),(1.3)

−α(x, t)
∂u

∂n
= q(x, t) on Γi × (0, T ).(1.4)

Here α(x, t) is the heat conductivity, c(x, t) and ua(x, t) are specified functions, and
q(x, t) is the heat flux on the inner boundary Γi.

The forward initial-boundary value problem (1.1)–(1.4) has been well studied.
The focus of this paper is on a physically more interesting and challenging inverse
problem: Is it possible to effectively reconstruct the heat flux q(x, t) on the inner
boundary Γi for all time t ∈ [0, T ] when Γi is inaccessible?
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Fig. 1. Physical domain Ω = ω1 ∪ (ω̄ \ Γo).

In order to possibly reconstruct the heat flux q(x, t), some extra information on
the temperature u(x, t) is needed. One choice is to assume the temperature data
available in a small subregion ω near the outer boundary Γo (see Figure 1). Some
high furnaces in steel companies are such examples, where special small devices are
installed inside the furnaces but near the outer boundary to measure temperature.

This reconstruction problem is known to be a severely ill-posed inverse problem.
One of the main difficulties in the reconstruction comes from both the space and time
dependence of the heat flux q(x, t) and the fact that the inner boundary is away from
the small measurement subregion. The most severe instability of an inverse problem
is triggered when the reconstruction involves some profile at the initial time and on
some large boundary portion of a physical domain [7], [17], [19], [20], as is the case
encountered here. As far as ill-posed inverse problems are concerned, not much work is
found in the literature addressing numerical reconstructions of some physical profiles
of both space and time; even less work can be found on convergence and stability
analysis for numerical reconstruction methods. We refer readers to [1], [2], [3], [8],
[9], [18], and the references therein for numerical reconstructions of profiles of some
time-independent parameters in parabolic and elliptic systems.

The aim of this paper is to justify both theoretically and numerically the val-
idation and effectiveness of two regularization formulations for solving the afore-
mentioned severely ill-posed inverse problem of heat flux reconstruction. Indeed,
as will be seen from the theory, numerical analysis, and simulations developed in
what follows, the regularization methods are very stable and effective in numerical
reconstruction of heat fluxes, without any constraints enforced on the search space
of heat fluxes if appropriate regularizations are selected. In particular, the resulting
nonlinear finite element minimization systems can be efficiently solved by conjugate
gradient method.

The rest of this paper is organized as follows. In section 2, we investigate the
first formulation with an L2-regularization of both space and time for the heat flux
and validate the “true” well-posedness of the formulation under no constraints on
the search space of heat fluxes. In section 3, we study the ill-posedness of heat
flux reconstruction and the stability of the regularization. In section 4, we study
an alternative formulation of the inverse problem, which uses an L2-regularization
in space and H1-regularization in time. As will be seen, this formulation turns out
to be able to demonstrate much more satisfactory reconstructions. Regarding the
approximation of the regularized nonlinear minimization systems, it is very tricky and
essential to decide how to effectively discretize in both time and space the nonlinear



1506 JIANLI XIE AND JUN ZOU

optimizations and the associated parabolic equation so that the resulting fully discrete
schemes converge. For this purpose, two fully discrete finite element approximations
are proposed in sections 5 and 6, and the unique existence of discrete minimizers
and their convergence to the continuous minimizer are rigorously demonstrated. For
solving the nonlinear finite element minimization systems involved in the formulations,
a conjugate gradient method is formulated in section 7, and the numerical experiments
are presented in section 8 to verify the effectiveness of the proposed reconstruction
methods.

We end this section with some useful notation. We define

Hm(0, T ;B) =
{
u(t) ∈ B for a.e. t ∈ (0, T ) and ‖u‖Hm(0,T ;B) < ∞

}

for a Banach space B and m ≥ 0, with its norm given by

‖u‖Hm(0,T ;B) =

{
m∑

k=0

∫ T

0

‖u(k)(t)‖2
Bdt

}1/2

.

For a given domain O, Hm(O) stands for the standard Sobolev space of mth order
for any m ≥ 0. The norms and seminorms of Hm(O) are denoted by ‖ · ‖m,O and
| · |m,O, respectively. When m = 0, we write L2(O) = H0(O) with the norm ‖ · ‖0,O.
The domain O in the subindex will be dropped if O = Ω.

Further, C is frequently used to denote a generic constant, which depends only
on the given data such as domain Ω and coefficients in (1.1)–(1.4) and is independent
of unknown functions involved and the discrete time step τ and mesh size h.

2. First regularization formulation. Recall that the inverse problem of inter-
est here is to reconstruct the heat flux q(x, t) in (1.4) on the inner boundary Γi, given
the temperature measurement z(x, t) ≈ u(x, t) in the small subdomain ω (cf. Figure 1).
The first approach we will study for solving the inverse problem is to formulate it into
the following constrained minimizing process with L2-regularization in both space and
time for possible heat fluxes:

minJ(q) =
1

2

∫ T

0

∫
ω

(u(q) − z)2dxdt +
β

2

∫ T

0

∫
Γi

q2dsdt(2.1)

subject to q ∈ L2(0, T ;L2(Γi)) and u(q) ≡ u(q)(·, t) ∈ H1(Ω) satisfying

u(x, 0) = u0(x) in Ω,(2.2) ∫
Ω

∂u

∂t
vdx +

∫
Ω

α∇u · ∇vdx +

∫
Γo

c u vds =

∫
Γo

c uavds−
∫

Γi

q vds(2.3)

for all v ∈ H1(Ω) and for a.e. t ∈ (0, T ).
In what follows, we will demonstrate that the inverse problem for reconstruction

of heat flux is an ill-posed problem and that the formulation (2.1)–(2.3) is a true
regularization of the inverse problem; that is, the minimizer q not only exists uniquely,
but also depends on the observation data z continuously.

For the subsequent analysis, we often use the following compactness result (cf. [13]).
Lemma 2.1. Suppose that B0 ⊂ B ⊂ B1 are Banach spaces, B0 and B1 are

reflexive, and B0 is compactly embedded into B. Let

W =

{
v; v ∈ L2(0, T ;B0), v′ =

dv

dt
∈ L2(0, T ;B1)

}
,
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with the norm ‖v‖W = ‖v‖L2(0,T ;B0) +‖v′‖L2(0,T ;B1). Then W is compactly embedded
into L2(0, T ;B).

Throughout this section, the parameter functions α(x, t), c(x, t), and ua(x, t) in
(1.1)–(1.4) are assumed to satisfy the following natural conditions:

α(x, t) ≥ α0 > 0 for a.e. (x, t) ∈ Ω × (0, T ),

c(x, t) ≥ c0 > 0 for a.e. (x, t) ∈ Γo × (0, T ),(2.4)

α(x, t) ∈ L2(0, T ;L2(Ω)); c(x, t), ua(x, t) ∈ L2(0, T ;L2(Γo)).

We start with the following unique existence.
Theorem 2.2. There exists a unique minimizer to the optimization problem

(2.1)–(2.3).
Proof. Clearly minJ(q) is finite over L2(0, T ;L2(Γi)); thus there exists a mini-

mizing sequence {qn} such that

lim
n→∞

J(qn) = inf J(q).(2.5)

This implies the boundedness of {qn} in L2(0, T ;L2(Γi)) and thus the existence
of such a subsequence, still denoted1 as qn, and {qn} converges to q∗ weakly in
L2(0, T ;L2(Γi)). We now prove that this q∗ is the unique minimizer of (2.1)–(2.3).
We divide the proof into four steps.

Step 1. Letting un ≡ u(qn)(x, t), we show that there exists a subsequence of {un}
such that

un → u∗ weakly in L2(0, T ;H1(Ω)) and L2(0, T ;L2(Γo)).(2.6)

By the definition of u(qn) in (2.2)–(2.3), un ∈ H1(Ω) satisfies un(x, 0) = u0(x), and∫
Ω

∂un

∂t
vdx +

∫
Ω

α∇un · ∇vdx +

∫
Γo

c unvds =

∫
Γo

c uavds−
∫

Γi

qnvds(2.7)

holds for any v ∈ H1(Ω) and a.e. t ∈ (0, T ). Taking v = un in (2.7), we obtain

1

2

d

dt
‖un‖2

0 +

∫
Ω

α|∇un|2dx +

∫
Γo

c |un|2ds =

∫
Γo

c uau
nds−

∫
Γi

qnunds.(2.8)

Integrating over (0, t), we derive

1

2
‖un(·, t)‖2

0 +

∫ t

0

∫
Ω

α|∇un(x, t)|2dxdt +

∫ t

0

∫
Γo

c(x, t)|un(x, t)|2dsdt

=
1

2
‖u0‖2

0 +

∫ t

0

∫
Γo

c(x, t)ua(x, t)u
n(x, t)dsdt−

∫ t

0

∫
Γi

qn(x, t)un(x, t)dsdt;

then by the Cauchy–Schwarz inequality and assumptions in (2.4), we have

1

2
‖un(·, t)‖2

0 + α0‖∇un‖2
L2(0,t;L2(Ω)) + c0‖un‖2

L2(0,t;L2(Γo))

≤ 1

2
‖u0‖2

0 + ‖c ua‖L2(0,T ;L2(Γo))‖un‖L2(0,t;L2(Γo)) + ‖qn‖L2(0,T ;L2(Γi))‖un‖L2(0,t;L2(Γi))

≤ 1

2
‖u0‖2

0 + C
(
‖un‖L2(0,t;L2(Γo)) + ‖un‖L2(0,t;L2(Γi))

)
.

1Where no confusion exists, throughout this paper we shall always use the same notation to
denote a subsequence taken from some sequence.
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Using the Sobolev trace theorem, we can estimate the above last term as follows, a
technique that will be frequently used in the subsequent analysis:

‖un‖2
L2(0,t;L2(Γi))

=

∫ t

0

‖un(·, s)‖2
L2(Γi)

ds ≤
∫ t

0

‖un(·, s)‖2
H1/2(Γi)

ds

≤
∫ t

0

‖un(·, s)‖2
H1(Ω)ds

=

∫ t

0

‖un(·, s)‖2
L2(Ω)ds +

∫ t

0

‖∇un(·, s)‖2
L2(Ω)ds

≤
(
‖un‖L2(0,t;L2(Ω)) + ‖∇un‖L2(0,t;L2(Ω))

)2

.

Taking the square root on both sides, plugging the result into the previous estimate,
and then using Young’s inequality, we obtain

‖un(·, t)‖2
0 ≤ ‖un(·, t)‖2

0 + α0‖∇un‖2
L2(0,t;L2(Ω)) + c0‖un‖2

L2(0,t;L2(Γo))

≤ ‖u0‖2
0 + C +

∫ t

0

‖un(·, s)‖2
L2(Ω)ds.(2.9)

This gives the boundedness of {un} in L∞(0, T ;L2(Ω)) by applying Gronwall’s in-
equality; then using this bound one can get the boundedness of {un} in L2(0, T ;H1(Ω))
and L2(0, T ;L2(Γo)) from the second inequality in (2.9). Now the convergence in (2.6)
follows immediately from this boundedness.

Step 2. We prove u∗ = u(q∗). Taking any function Ψ(t) ∈ C1[0, T ] with Ψ(T ) = 0,
multiplying both sides of (2.7) by Ψ, and then integrating over t ∈ (0, T ), we get

∫ T

0

∫
Γo

c uavΨ(t)dsdt−
∫ T

0

∫
Γi

qnvΨ(t)dsdt

= −
∫ T

0

∫
Ω

unvΨ′(t)dxdt +

∫ T

0

∫
Ω

α∇un · ∇vΨ(t)dxdt

−
∫

Ω

Ψ(0)u0(x)vdx +

∫ T

0

∫
Γo

c unvΨ(t)dsdt.

By the weak convergence of qn and un, we deduce from above that

∫ T

0

∫
Γo

c uavΨ(t)dsdt−
∫ T

0

∫
Γi

q∗vΨ(t)dsdt

=

∫ T

0

∫
Ω

α∇u∗ · ∇vΨ(t)dxdt +

∫ T

0

∫
Γo

c u∗vΨ(t)dsdt(2.10)

−
∫

Ω

Ψ(0)u0(x)vdx−
∫ T

0

∫
Ω

u∗vΨ′(t)dxdt.

Noting that (2.10) is also true for any Ψ(t) ∈ C∞
0 (0, T ), by integration by parts over

t ∈ (0, T ) for the last term we have∫
Ω

∂u∗

∂t
vdx +

∫
Ω

α∇u∗ · ∇vdx +

∫
Γo

c u∗vds =

∫
Γo

c uavds−
∫

Γi

q∗vds ∀v ∈ H1(Ω)

for a.e. t ∈ (0, T ). Using this and integration by parts again for the last term in (2.10)
shows that u∗(x, 0) = u0(x). This verifies u∗ = u(q∗).
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Step 3. We prove the strong convergence

lim
n→∞

∫ T

0

∫
ω

|un − z|2dxdt =

∫ T

0

∫
ω

|u∗ − z|2dxdt.(2.11)

It suffices to prove the strong convergence of {un} in L2(0, T ;L2(Ω)). By Lemma 2.1,
we need only show the boundedness of {∂un

∂t } in L2(0, T ; (H1(Ω))′).
It follows from (2.7) that for any v ∈ L2(0, T ;H1(Ω)),

∣∣∣∣
〈
∂un

∂t
, v

〉∣∣∣∣ ≤ C(‖un‖H1(Ω) + ‖un‖L2(Γo) + ‖ua‖L2(Γo) + ‖qn‖L2(Γi))‖v‖H1(Ω);

(2.12)

this, along with the boundedness of {un} proved in Step 1, implies the boundedness
of {∂un

∂t } in L2(0, T ; (H1(Ω))′).
Step 4. We prove q∗ is a unique minimizer to the system (2.1)–(2.3). Using the

results in Step 3 and the lower semicontinuity of a norm, we have

J(q∗) =
1

2

∫ T

0

∫
ω

|u(q∗) − z|2dxdt +
β

2

∫ T

0

∫
Γi

|q∗|2dsdt

≤ lim
n→∞

∫ T

0

∫
ω

|u(qn) − z|2dxdt +
β

2
lim
n→∞

inf

∫ T

0

∫
Γi

|qn|2dsdt

≤ lim
n→∞

inf J(qn) = inf J(q),(2.13)

so q∗ is indeed a minimizer. The uniqueness of minimizers is a consequence of the
convexity of u(q) and the strict convexity of J(q).

Proposition 2.3. Assume that {qn}, with qn ∈ L2(0, T ;L2(Γi)), is a minimizing
sequence of J(q) in (2.1); then {qn} converges to the unique minimizer of J(q) strongly
in L2(0, T ;L2(Γi)).

Proof. From the proof of Theorem 2.2, we know any subsequence of {qn} has
a subsequence converging weakly to the unique minimizer of J(q). Thus the whole
sequence {qn} converges weakly to the unique minimizer of J(q). Further, one notices
from (2.5), (2.11), and (2.13) that

lim
n→∞

∫ T

0

∫
Γi

|qn|2dsdt =

∫ T

0

∫
Γi

|q∗|2dsdt;

thus the weak and norm convergences imply the strong convergence.

3. Ill-posedness of heat flux reconstruction and stability of the reg-
ularization. Next, we study the ill-posedness of heat flux reconstruction and sta-
bility of the regularization system (2.1)–(2.3). The following theorem confirms the
ill-posedness of the heat flux reconstruction problem (1.1)–(1.4).

Theorem 3.1. Let u(q) be a mapping from L2(0, T ;L2(Γi)) to L2(0, T ;L2(ω)),
defined by the system (2.2)–(2.3) associated with any given heat flux q in
L2(0, T ;L2(Γi)). Then there exists a sequence {qn} from L2(0, T ;L2(Γi)) such that
u(qn) → 0 but ‖qn‖L2(0,T ;L2(Γi)) → ∞, and the inverse of u(·) is unbounded.

Proof. From the proof of Theorem 2.2, we know for any bounded sequence {qn}∞n=1

there exists a subsequence {qnk}∞k=1 such that {u(qnk)}∞k=1 is strongly convergent in
L2(0, T ;L2(ω)). Therefore, as an operator from L2(0, T ;L2(Γi)) to L2(0, T ;L2(ω)),
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u(·) is compact. On the other hand, one can directly verify that u(·) is a one-to-one
mapping and can be decomposed into u(q) = w(q) + u(0), where w(q)(·, t) ∈ H1(Ω)
solves the parabolic system (1.1)–(1.4) with w(q)(x, 0) = 0 in Ω and ua ≡ 0. The rest
of the proof follows the routine procedure; for example, see [10, pp. 13–14].

The next theorem shows that the solution q to the regularization system (2.1)–
(2.3) depends continuously on the observation data z, so system (2.1)–(2.3) is a “true”
regularization to the original inverse problem u(q) = z. The detailed proof can be
found in [14].

Theorem 3.2. Let {zn} be a sequence such that

zn → z in L2(0,T; L2(ω)) as n → ∞,(3.1)

and let {qn} be the minimizers of problem (2.1)–(2.3) with z replaced by zn. Then the
whole sequence {qn} converges in L2(0, T ;L2(Γi)) to the unique minimizer of (2.1)–
(2.3).

4. An alternative formulation. In this section, we investigate an alternative
formulation for reconstruction of heat fluxes in the heat conductive system (1.1)–(1.4),
using an L2-regularization in space and H1-regularization in time for heat fluxes.
As one can see from numerical results in section 8, this new formulation is able to
generate more satisfactory reconstructions. This results in the following constrained
minimization:

minJ(q) =
1

2

∫ T

0

∫
ω

(u(q) − z)2dxdt +
β

2

(∫
Γi

q2(x, 0)ds +

∫ T

0

∫
Γi

|qt(x, t)|2dsdt
)(4.1)

subject to q ∈ H1(0, T ;L2(Γi)) and u(q) ≡ u(q)(·, t) ∈ H1(Ω) satisfying

u(x, 0) = u0(x) in Ω,(4.2)

∫
Ω

∂u

∂t
vdx +

∫
Ω

α∇u · ∇vdx +

∫
Γo

c u vds =

∫
Γo

c uavds−
∫

Γi

q vds(4.3)

for all v ∈ H1(Ω) and a.e. t ∈ (0, T ).
The following theorem justifies the well-posedness of the system (4.1)–(4.3) and

its stability with respect to the observation data.
Theorem 4.1. There exists a unique minimizer to the optimization problem

(4.1)–(4.3), and the minimizer depends on the observation data z continuously.
Proof. It is clear that minJ(q) is finite over H1(0, T ;L2(Γi)); thus there exists a

minimizing sequence {qn} such that

lim
n→∞

J(qn) = inf J(q).

This implies the boundedness of {qn} in H1(0, T ;L2(Γi)) and the existence of a sub-
sequence, still denoted as {qn}, such that

qn → q∗ weakly in L2(0, T ;L2(Γi)),

∂qn

∂t
→ p∗ weakly in L2(0, T ;L2(Γi)),

qn(x, 0) → q∗0 weakly in L2(Γi).
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We can show that p∗ = ∂q∗/∂t and q∗(x, 0) = q∗0 . In fact, taking any function
ϕ(x) ∈ L2(Γi) and ψ(t) ∈ C∞

0 (0, T ), we deduce

∫ T

0

∫
Γi

∂

∂t
qn(x, t)ϕ(x)ψ(t)dsdt = −

∫ T

0

∫
Γi

qn(x, t)ϕ(x)ψ′(t)dsdt.

Passing to the limit, we derive

∫ T

0

∫
Γi

p∗(x, t)ϕ(x)ψ(t)dsdt = −
∫ T

0

∫
Γi

q∗(x, t)ϕ(x)ψ′(t)dsdt.

This shows p∗ = ∂q∗/∂t.
Then letting ϕ(x) ∈ L2(Γi) and ψ(t) ∈ C∞(0, T ) with ψ(T ) = 0 and ψ(0) = 1,

we obtain

∫ T

0

∫
Γi

∂

∂t
qn(x, t)ϕ(x)ψ(t)dsdt =

∫
Γi

qn(x, 0)ϕ(x)ds−
∫ T

0

∫
Γi

qn(x, t)ϕ(x)ψ′(t)dsdt.

By the weak convergence of ∂qn/∂t, qn(x, 0), and qn, we deduce

∫ T

0

∫
Γi

∂

∂t
q∗(x, t)ϕ(x)ψ(t)dsdt =

∫
Γi

q∗0(x)ϕ(x)ds−
∫ T

0

∫
Γi

q∗(x, t)ϕ(x)ψ′(t)dsdt.

Integrating by parts the left-hand side, we obtain for any ϕ(x) ∈ L2(Γi) that

∫
Γi

q∗0(x)ϕ(x)ds =

∫
Γi

q∗(x, 0)ϕ(x)ds,

which implies q∗(x, 0) = q∗0 . The rest of the proof is similar to those of Theorems 2.2
and 3.2.

Similarly to Proposition 2.3, we have the following strong convergence (cf. [14]).
Proposition 4.2. Any minimizing sequence {qn} of J(q) in (4.1) over H1(0, T ;

L2(Γi)) converges to the unique minimizer of J(q) strongly in H1(0, T ;L2(Γi)).

5. Finite element approximation of system (2.1)–(2.3) and its conver-
gence. We now propose a fully discrete finite element method for solving the contin-
uous minimization problem (2.1)–(2.3). For the sake of exposition, we study in detail
the case where the outer and inner boundaries Γo and Γi are both circles centered
at the origin; see Figure 2. The subsequent results can be extended to more general
domains by combining the analysis used here and the finite element analysis for the
case when the approximation of the physical domain is involved [4].

Let us start with a triangulation of the domain Ω. To do so, we generate a set
of circles all centered at the origin, starting with Γi and ending with Γo. Next we
choose a set of quasi-uniformly distributed points on Γo, which are then connected to
the origin to yield a set of radial lines, and the intersections of these lines with all the
previous generated circles also yield a partition of each circle; see Figure 2. Now the
triangulation T h of Ω is formed by these sectorial elements. The arc segments on Γo

and Γi generate naturally two triangulations of Γo and Γi, respectively, denoted by
Γh
o and Γh

i .
For each sectorial element K, say K = {(r cos θ, r sin θ); r1 ≤ r ≤ r2, θ1 ≤ θ ≤

θ2}, there exists a one-to-one mapping F̂K : K̂ → K such that K = F̂K(K̂), where K̂
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Fig. 2. Circular partition of Ω and partition of each circle.

is a rectangular reference element. For example, if K̂ = [0, 1]× [0, 1], we can take F̂K

as {
x = (r r2 + (1 − r)r1) cos(θ θ2 + (1 − θ)θ1),
y = (r r2 + (1 − r)r1) sin(θ θ2 + (1 − θ)θ1).

(5.1)

Now we can define the finite element space V h to be

V h =
{
vh ∈ C(Ω̄); vh(x)

∣∣
K

= v̂ ◦ F̂−1
K (x) ∀v̂ ∈ Q1(K̂)

}
,

where Q1(K̂) is the space of bilinear functions on the reference element K̂, and V h
Γo

,

V h
Γi

are the restrictions of V h on Γo and Γi, respectively.
To fully discretize the system (2.1)–(2.3), we also need the time discretization.

For this, we divide the time interval [0, T ] into M equally spaced subintervals using
nodal points

Δ : 0 = t0 < t1 < · · · < tM = T(5.2)

with tn = nτ , τ = T/M . For a continuous mapping u : [0, T ] → L2(Ω), we define
un = u(·, tn) for 0 ≤ n ≤ M . For a given sequence {un}Mn=0 ⊂ L2(Ω), we define its
difference quotient and the averaging ūn of a function u(·, t) as follows:

∂τu
n =

un − un−1

τ
, ūn =

1

τ

∫ tn

tn−1

u(·, t)dt,(5.3)

where for n = 0, we let ū0 = u(·, 0).
In our subsequent convergence analysis, we need a crucial projection operator Qh

from L2(Ω) into V h defined on sectorial elements, which should possess the following
L2- and H1-stability and optimal L2-norm error estimate:

lim
h→0

‖v −Qhv‖1 = 0 ∀v ∈ H1(Ω),(5.4)

‖Qhv‖0 ≤ C‖v‖0, ‖Qhv‖1 ≤ C‖v‖1 ∀v ∈ H1(Ω),(5.5)

‖v −Qhv‖0 ≤ Ch‖v‖1 ∀v ∈ H1(Ω).(5.6)
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Noting that the transform F̂K : K̂ → K is not of polynomial type and that the func-
tions in V h may not be piecewise polynomials, the standard L2-projection operator
from L2(Ω) into V h (cf. [16]) does not satisfy these properties. Instead, we introduce
a novel weighted L2-projection operator Qh from L2(Ω) into V h as follows:

∑
K∈T h

∫
K

(Qhw) v |J−1
K (x, y)| dxdy =

∑
K∈T h

∫
K

w v |J−1
K (x, y)| dxdy ∀w ∈ L2(Ω), v ∈ V h,

where JK(x, y) = ĴK(r, θ) for all x, y and r, θ defined by (5.1) and ĴK(r, θ) is the
Jacobian determinant of the transform F̂K . One can show that this weighted operator
Qh is well-defined, and it possesses all the properties (5.4), (5.5), and (5.6). The
detailed proof was given in Xie [14].

Now we are ready to formulate the finite element approximation of the minimiza-
tion (2.1)–(2.3). We approximate the heat flux q(x, t) by a piecewise constant function
qh,τ (x, t) over the time partition Δ in (5.2):

qh,τ (x, t) =

M∑
n=1

χn(t)qnh(x),(5.7)

where qnh(x) ∈ V h
Γi

and χn(t) is the characteristic function on the interval (tn−1, tn).
Using the composite trapezoidal rule for the time discretization of the first integral

in (2.1) and the exact time integration for the second term, the fully discrete finite
element approximation to problem (2.1)–(2.3) can be formulated as follows:

minJh,τ (qh,τ ) =
τ

2

M∑
n=0

αn

∫
ω

(un
h − zn)2dx +

βτ

2

M∑
n=1

∫
Γi

|qnh |2ds(5.8)

over all qnh ∈ V h
Γi

with un
h ≡ un

h(qh,τ ) ∈ V h satisfying

u0
h = Qhu0(x),(5.9) ∫

Ω

∂τu
n
hφhdx +

∫
Ω

ᾱn∇un
h · ∇φhdx +

∫
Γo

c̄nun
hφhds

=

∫
Γo

c̄nūn
aφhds−

∫
Γi

qnhφhds ∀φh ∈ V h(5.10)

for n = 1, 2, . . . ,M. Here {αn} are the coefficients of the composite trapezoidal rule,
i.e., α0 = αM = 1

2 and αn = 1 for all n �= 0,M .
For convenience, the minimization of Jh,τ also shall be regarded as the minimiza-

tion over the product space
∏M

n=1 V
h
Γi

, and we will often write (5.8) as

minJh,τ ({q1
h, q

2
h, . . . , q

M
h }) =

τ

2

M∑
n=0

αn

∫
ω

(un
h − zn)2dx +

βτ

2

M∑
n=1

∫
Γi

|qnh |2ds.

(5.11)

Before verifying the existence of a unique minimizer to the finite element minimization
(5.8)–(5.10), we first derive some useful a priori estimates on the discrete solutions un

h

to the system (5.9)–(5.10).
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In the rest of this section, we assume on the functions α(x, t) and c(x, t) in (1.1)–
(1.4) that

α ∈ H1(0, T ;L∞(Ω)) and c ∈ H1(0, T ;L∞(Γo))

and introduce two related constants

C1 = ‖α‖H1(0,T ;L∞(Ω)), C2 = ‖c‖H1(0,T ;L∞(Γo)).

The following auxiliary lemma (cf. [14]) will be needed in the subsequent analysis.

Lemma 5.1. For any

f ∈ H1(0, T ;L∞(Ω)) and g ∈ L2(0, T ;L∞(Ω)),

we have the estimates

‖f̄n − f̄n−1‖L∞(Ω) ≤
√
τ‖ft‖L2(tn−2,tn;L∞(Ω)),(5.12)

‖f̄nḡn − fg
n‖L2(Ω) ≤

2

3
‖ft‖L2(tn−1,tn;L∞(Ω)) ‖g‖L2(tn−1,tn;L2(Ω)).(5.13)

Lemma 5.2. Assume that un
h is the solution of the finite element system (5.9)–

(5.10) corresponding to qh,τ . Then we have the following stability estimates:

max
1≤n≤M

‖un
h‖2

0 + τ

M∑
n=1

‖∇un
h‖2

0 + τ

M∑
n=1

‖un
h‖2

0,Γo

≤ C (‖u0‖2
0 + C2

2‖ua‖2
L2(0,T ;L2(Γo)) + ‖qh,τ‖2

L2(0,T ;L2(Γi))
),(5.14)

max
1≤n≤M

‖∇un
h‖2

0 + max
1≤n≤M

‖un
h‖2

0,Γo
+ τ

M∑
n=1

‖∂τun
h‖2

0

≤ C τ−1(‖u0‖2
1 + C2

2‖ua‖2
L2(0,T ;L2(Γo)) + ‖qh,τ‖2

L2(0,T ;L2(Γi))
),(5.15)

τ
M∑
n=1

‖∂τun
h‖2

(H1(Ω))′

≤ C (C2
1 + C2

2 + τ−1h2) (‖u0‖2
0 + C2

2‖ua‖2
L2(0,T ;L2(Γo)) + ‖qh,τ‖2

L2(0,T ;L2(Γi))
).(5.16)

Proof. The proof of (5.14) follows directly by taking φh = τun
h in (5.10) and then

applying the Sobolev trace theorem and Young’s and Gronwall’s inequalities.

Next, we show (5.15). Taking φh = τ∂τu
n
h = un

h − un−1
h in (5.10), we obtain

τ‖∂τun
h‖2

0 +

∫
Ω

ᾱn∇un
h · ∇(un

h − un−1
h )dx +

∫
Γo

c̄nun
h(un

h − un−1
h )ds

=

∫
Γo

c̄nūn
a(un

h − un−1
h )ds−

∫
Γi

qnh(un
h − un−1

h )ds.
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Summing up the above equation over n = 1, 2, . . . , k ≤ M , we obtain

τ

k∑
n=1

‖∂τun
h‖2

0 +
1

2

k∑
n=1

∫
Ω

ᾱn(|∇un
h|2 − |∇un−1

h |2)dx

+
1

2

k∑
n=1

∫
Γo

c̄n(|un
h|2 − |un−1

h |2)ds

≤
k∑

n=1

∫
Γo

c̄nūn
a(un

h − un−1
h )ds−

k∑
n=1

∫
Γi

qnh(un
h − un−1

h )ds.

Then using the discrete integration by parts formula

k∑
n=1

(an − an−1)bn = akbk − a0b0 −
k∑

n=1

an−1(bn − bn−1),(5.17)

where b0 appearing on the right-hand side can be any real number, we derive

τ

k∑
n=1

‖∂τun
h‖2

0 +
1

2
α0‖∇uk

h‖2
0 +

1

2
c0‖uk

h‖2
0,Γo

≤ 1

2

∫
Ω

ᾱ0|∇u0
h|2dx +

1

2

k∑
n=1

∫
Ω

(ᾱn − ᾱn−1)|∇un−1
h |2dx

+
1

2

∫
Γo

c̄0|u0
h|2ds +

1

2

k∑
n=1

∫
Γo

(c̄n − c̄n−1)|un−1
h |2ds

+

∫
Γo

c̄kūk
au

k
hds−

k∑
n=1

∫
Γo

(c̄nūn
a − c̄n−1ūn−1

a )un−1
h ds

−
∫

Γi

qkhu
k
hds +

k∑
n=1

∫
Γi

(qnh − qn−1
h )un−1

h ds,

where ū0
a and q0

h are taken to be 0. We now estimate the terms on the right-hand side
of the above inequality. First, for those terms without summation, we can deduce by
using the properties of Qh and the Sobolev trace theorem that

1

2

∫
Ω

ᾱ0|∇u0
h|2dx +

1

2

∫
Γo

c̄0|u0
h|2ds ≤ C (C1 + C2)‖u0‖2

1,

∫
Γo

c̄kūk
au

k
hds ≤

1

2
‖c̄kūk

a‖2
0,Γo

+
1

2
‖uk

h‖2
0,Γo

≤ τ−1

(
τ

k∑
n=1

‖c̄nūn
a‖2

0,Γo
+ τ

M∑
n=1

‖un
h‖2

0,Γo

)
,

∫
Γi

qkhu
k
hds ≤

1

2
‖qkh‖2

0,Γi
+

1

2
‖uk

h‖2
1 ≤ τ−1

(
‖qh,τ‖2

L2(0,T ;L2(Γi))
+ τ

M∑
n=1

‖un
h‖2

1

)
.

Using (5.12) we have the following estimates:

k∑
n=1

∫
Ω

(ᾱn − ᾱn−1)|∇un−1
h |2dx ≤ 4

3
C1

√
τ

k∑
n=1

‖∇un−1
h ‖2

0,

k∑
n=1

∫
Γo

(c̄n − c̄n−1)|un−1
h |2ds ≤ 4

3
C2

√
τ

k∑
n=1

‖un−1
h ‖2

0,Γo
.
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Applying the Cauchy–Schwarz inequality and the Sobolev trace theorem, we have

k∑
n=1

∫
Γo

(c̄nūn
a − c̄n−1ūn−1

a )un−1
h ds ≤

k∑
n=1

‖c̄nūn
a‖2

0,Γo
+

k∑
n=1

‖un−1
h ‖2

0,Γo
,

k∑
n=1

∫
Γi

(qnh − qn−1
h )un−1

h ds ≤
k∑

n=1

‖qnh‖2
0,Γi

+

k∑
n=1

‖un−1
h ‖2

1.

Combining all these estimates with (5.14), we obtain (5.15).
It remains to show (5.16). For any φ ∈ H1(Ω), taking φh = Qhφ in (5.10), we

have∫
Ω

∂τu
n
hQhφdx+

∫
Ω

ᾱn∇un
h∇Qhφdx+

∫
Γo

c̄nun
hQhφds =

∫
Γo

c̄nūn
aQhφds−

∫
Γi

qnhQhφds.

Using the property of Qh in (5.5) and the Cauchy–Schwarz inequality, we derive

∣∣∣
∫

Ω

∂τu
n
hQhφdx

∣∣∣ ≤ C (C1 ‖∇un
h‖0 + C2 ‖un

h‖0,Γo + C2 ‖ūn
a‖0,Γo + ‖qnh‖0,Γi) ‖φ‖1.

On the other hand, applying the Cauchy–Schwarz inequality and the property of Qh

in (5.6), we obtain

∣∣∣∣
∫

Ω

∂τu
n
h(φ−Qhφ)dx

∣∣∣∣ ≤ Ch‖∂τun
h‖0‖φ‖1.

It follows from the above two inequalities that for any φ ∈ H1(Ω),

∣∣∣∣
∫

Ω

∂τu
n
hφdx

∣∣∣∣ ≤ C (C1 ‖∇un
h‖0 + C2 ‖un

h‖0,Γo + C2 ‖ūn
a‖0,Γo

+ ‖qnh‖0,Γi
+ h‖∂τun

h‖0)‖φ‖1,

which implies

‖∂τun
h‖(H1(Ω))′ ≤ C (C1 ‖∇un

h‖0 + C2 ‖un
h‖0,Γo

+ C2 ‖ūn
a‖0,Γo

+ ‖qnh‖0,Γi
+ h‖∂τun

h‖0).

Taking squares on both sides and adding up over n = 1, . . . ,M , (5.16) then follows
from (5.14) and (5.15).

Remark 5.3. Fortunately, the unbounded factor τ−1 in the estimate (5.15) can
be cancelled in the subsequent convergence analysis; see (5.28) and the last estimate
in the proof of Lemma 5.5.

Based on the stability estimates (5.14)–(5.16), we are now ready to show the
existence and uniqueness of minimizers to the finite element system (5.9)–(5.11).

Theorem 5.4. There exists a unique minimizer to the finite element system
(5.9)–(5.11).

Proof. By the stability estimates of Lemma 5.2 and the same argument as in
Theorem 2.2, we know there exists a minimizing sequence {q1,k

h , q2,k
h , . . . , qM,k

h }∞k=1

such that

lim
k→∞

Jh,τ ({q1,k
h , q2,k

h , . . . , qM,k
h }) = inf

{qnh}M
n=1∈V h

Γ

Jh,τ ({q1
h, q

2
h, . . . , q

M
h }),
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and

qn,kh → qn,∗h in any norm for n = 1, 2, . . . ,M as k → ∞.

Next, we prove {q1,∗
h , q2,∗

h , . . . , qM,∗
h } is the unique minimizer of (5.9)–(5.11). Let

qkh,τ and q∗h,τ be the functions defined in (5.7) by {qn,kh }Mn=1 and {qn,∗h }Mn=1, respec-

tively; then un
h(qkh,τ ) and un

h(q∗h,τ ) are the finite element solutions to (5.9)–(5.10)

corresponding to qkh,τ and q∗h,τ , respectively.

Let wn,k
h = un

h(qkh,τ ) − un
h(q∗h,τ ); then w0,k

h = 0 and for n = 1, 2, . . . ,M , wn,k
h

solves ∫
Ω

∂τw
n,k
h φhdx +

∫
Ω

ᾱn∇wn,k
h · ∇φhdx +

∫
Γo

c̄nwn,k
h φhds

=

∫
Γi

(qn,∗h − qn,kh )φhds ∀φh ∈ V h.

Taking φh = τwn,k
h in the above equation, one can directly show by Gronwall’s in-

equality that

max
1≤n≤M

‖wn,k
h ‖2

0 ≤ Cτ

M∑
n=1

‖qn,∗h − qn,kh ‖2
0,Γi

.(5.18)

This proves wn,k
h → 0, and so we have un

h(qkh,τ ) → un
h(q∗h,τ ) as k → ∞.

The rest of the proof is basically the same as that of Theorem 2.2.
The remaining part of this section is devoted to one of the central issues of our

interest: Will the discrete minimizer of the system (5.8)–(5.10) converge to the global
minimizer of the continuous problem (2.1)–(2.3)? If yes, is the convergence only weak
or can it be strong in some norm? To answer this question, we need some preparations.

For a given function f ∈ C([0, T ];X), with X being a Banach space, we define a
step function approximation, based on the time partition (5.2):

SΔf(x, t) =

M∑
n=1

χn(t)f(x, tn).(5.19)

We know (cf. [21]) that

lim
τ→0

∫ T

0

‖SΔf(·, t) − f(·, t)‖2
Xdt = 0.(5.20)

Next, we shall demonstrate a most important and technical result in the paper:
for any weakly convergent sequence qh,τ in L2(0, T ;L2(Γi)) with respect to h and τ ,
the corresponding finite element solution un

h(qh,τ ) defined in (5.9)–(5.10) will converge
strongly in L2(0, T ;L2(ω)). More accurately, we have the following lemma.

Lemma 5.5. If qh,τ converges to some q weakly in L2(0, T ;L2(Γi)) as h and τ
tend to 0, then

τ

M∑
n=0

αn

∫
ω

(un
h(qh,τ ) − zn)2dx →

∫ T

0

∫
ω

(u(q) − z)2dxdt.
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Proof. For 1 ≤ n ≤ M , we shall use the following notation:

un
h = un

h(qh,τ ), un = u(q)(·, tn).

By (5.20), we can directly verify

lim
τ→0

τ

M∑
n=0

αn

∫
ω

(un − zn)2dx =

∫ T

0

∫
ω

(u(q) − z)2dxdt.

Therefore it suffices to show

lim
h→0
τ→0

τ

M∑
n=0

αn

∫
ω

(un
h − zn)2dx = lim

h→0
τ→0

τ

M∑
n=0

αn

∫
ω

(un − zn)2dx

or, equivalently,

lim
h→0
τ→0

τ

M∑
n=0

∫
ω

(un
h − un)2dx = 0.(5.21)

For this, we construct two interpolations based on {un
h}: the first one is the piecewise

linear interpolation over the time partition (5.2),

uh,τ (x, t) =
t− tn−1

τ
un
h +

tn − t

τ
un−1
h , t ∈ (tn−1, tn),

while the second one is the piecewise constant interpolation

ũh,τ (x, t) =

M∑
n=1

χn(t)un
h(x).

By straightforward computations, we have

‖ũh,τ‖2
L2(0,T ;H1(Ω)) = τ

M∑
n=1

‖un
h‖2

1,
∥∥∥ ∂

∂t
uh,τ

∥∥∥2

L2(0,T ;(H1(Ω))′)
= τ

M∑
n=1

‖∂τun
h‖2

(H1(Ω))′

and

‖uh,τ‖2
L2(0,T ;H1(Ω))

=
τ

3

M∑
n=1

∫
Ω

(|un
h|2 + |un−1

h |2 + un
hu

n−1
h + |∇un

h|2 + |∇un−1
h |2 + ∇un

h · ∇un−1
h )dx

≤ τ

M∑
n=0

‖un
h‖2

1.

These, together with the stability estimates (5.14)–(5.16), indicate that both {uh,τ}
and {ũh,τ} are bounded in L2(0, T ;H1(Ω)) and { ∂

∂tuh,τ} is bounded in L2(0, T ;
(H1(Ω))′). So by Lemma 2.1 there exist a subsequence of {uh,τ} such that

uh,τ → u∗ weakly in L2(0, T ;H1(Ω)) and strongly in L2(0, T ;L2(Ω)),(5.22)

∂

∂t
uh,τ → v∗ weakly in L2(0, T ; (H1(Ω))′),(5.23)
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and a subsequence of {ũh,τ} such that

ũh,τ → ũ∗ weakly in L2(0, T ;H1(Ω))(5.24)

for some u∗, ũ∗ ∈ L2(0, T ;H1(Ω)) and v∗ ∈ L2(0, T ; (H1(Ω))′).
From (5.23), we know for any ϕ(x) ∈ H1(Ω) and ψ(t) ∈ C∞

0 (0, T ),

lim
h→0
τ→0

∫ T

0

∫
Ω

∂uh,τ (x, t)

∂t
ϕ(x)ψ(t)dxdt =

∫ T

0

∫
Ω

v∗(x, t)ϕ(x)ψ(t)dxdt.(5.25)

Integrating by parts the left-hand side and using (5.22), we obtain

−
∫ T

0

∫
Ω

u∗(x, t)ϕ(x)ψ′(t)dxdt =

∫ T

0

∫
Ω

v∗(x, t)ϕ(x)ψ(t)dxdt,

which gives

v∗(x, t) =
∂u∗(x, t)

∂t
.(5.26)

Next, taking any ϕ(x) ∈ H1(Ω) and ψ(t) ∈ C1[0, T ] with ψ(T ) = 0, integrating by
parts to both sides of (5.25), and noting (5.26), we get

lim
h→0
τ→0

{
−
∫

Ω

Qhu0(x)ϕ(x)ψ(0)dx−
∫ T

0

∫
Ω

uh,τ (x, t)ϕ(x)ψ′(t)dxdt

}

= −
∫

Ω

u∗(x, 0)ϕ(x)ψ(0)dx−
∫ T

0

∫
Ω

u∗(x, t)ϕ(x)ψ′(t)dxdt.

By the convergence property of Qh and (5.22) we obtain

u∗(x, 0) = u0(x).(5.27)

Next, we show u∗(x, t) = ũ∗(x, t). In fact, by direct computing and (5.15), we obtain

∫ T

0

‖uh,τ (·, t) − ũh,τ (·, t)‖2
0dt =

τ3

3

M∑
n=1

‖∂τun
h‖2

0 ≤ Cτ ;(5.28)

this with (5.22) proves that ũh,τ converges to ũ∗ strongly in L2(0, T ;L2(Ω)) and
u∗(x, t) = ũ∗(x, t).

Below we will show u∗ = u(q). For any ϕ(x) ∈ H1(Ω) and ψ(t) ∈ C∞
0 (0, T ), let

φ(x, t) = ϕ(x)ψ(t) and φh,τ (x, t) =
∑M

n=1 χn(t)Qhφ(x, tn). Then we have

∫ T

0

‖φ(·, t) − φh,τ (·, t)‖2
1dt

≤ 2

∫ T

0

‖φ(·, t) − SΔφ(·, t)‖2
1dt + 2

∫ T

0

‖SΔφ(·, t) − φh,τ (·, t)‖2
1dt

≤ 2

∫ T

0

‖φ(·, t) − SΔφ(·, t)‖2
1dt + 2T max

0≤t≤T
|ψ(t)|2 ‖Qhϕ(·) − ϕ(·)‖2

1.

Therefore by (5.20) and the convergence property of Qh, we deduce

φh,τ converges to φ strongly in L2(0, T ;H1(Ω)).(5.29)
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By direct computations we have the following equalities:

∫ T

0

∫
Ω

∂

∂t
uh,τ (x, t)φh,τ (x, t)dxdt = τ

M∑
n=1

∫
Ω

∂τu
n
hQhφ(x, tn)dx,

∫ T

0

∫
Ω

α(x, t)∇ũh,τ (x, t)∇φh,τ (x, t)dxdt = τ

M∑
n=1

∫
Ω

ᾱn∇un
h∇Qhφ(x, tn)dx,

∫ T

0

∫
Γo

c(x, t)ũh,τ (x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γo

c̄nun
hQhφ(x, tn)ds,

−
∫ T

0

∫
Γo

c(x, t)ua(x, t)φh,τ (x, t)dsdt = −τ

M∑
n=1

∫
Γo

cun
aQhφ(x, tn)ds,

∫ T

0

∫
Γi

qh,τ (x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γi

qnhQhφ(x, tn)ds;

adding them together and using the discrete parabolic equation (5.10), we obtain∫ T

0

∫
Ω

∂

∂t
uh,τ (x, t)φh,τ (x, t)dxdt +

∫ T

0

∫
Ω

α(x, t)∇ũh,τ (x, t)∇φh,τ (x, t)dxdt

+

∫ T

0

∫
Γo

c(x, t)ũh,τ (x, t)φh,τ (x, t)dsdt−
∫ T

0

∫
Γo

c(x, t)ua(x, t)φh,τ (x, t)dsdt(5.30)

= −
∫ T

0

∫
Γi

qh,τ (x, t)φh,τ (x, t)dsdt + τ

M∑
n=1

∫
Γo

(c̄nūn
a − cun

a)Qhφ(x, tn)ds.

Taking the limit as h and τ tend to 0 and using the convergence (5.22)–(5.24) and
(5.29), we derive that for any ϕ(x) ∈ H1(Ω) and ψ(t) ∈ C∞

0 (0, T )∫ T

0

∫
Ω

∂u∗

∂t
ϕ(x)ψ(t)dxdt +

∫ T

0

∫
Ω

α∇u∗ · ∇ϕ(x)ψ(t)dxdt +

∫ T

0

∫
Γo

c u∗ϕ(x)ψ(t)dsdt

=

∫ T

0

∫
Γo

c uaϕ(x)ψ(t)dsdt−
∫ T

0

∫
Γi

q ϕ(x)ψ(t)dsdt,(5.31)

where we have used the limit

lim
h→0
τ→0

τ

M∑
n=1

∫
Γo

(c̄nūn
a − cun

a)Qhφ(x, tn)ds = 0.(5.32)

To see this, it follows from (5.13), the trace theorem, and the Cauchy–Schwarz in-
equality that

τ

M∑
n=1

∫
Γo

(c̄nūn
a − cun

a)Qhφ(x, tn)ds

≤ C τ max
0≤t≤T

|ψ(t)| ‖Qhϕ‖1

M∑
n=1

∥∥c̄nūn
a − cun

a

∥∥
0,Γo

≤ C τ max
0≤t≤T

|ψ(t)| ‖ϕ‖1

(
M∑
n=1

‖ct‖2
L2(tn−1,tn;L∞(Γo))

) 1
2
(

M∑
n=1

‖ua‖2
L2(tn−1,tn;L2(Γo))

) 1
2

≤ C τ max
0≤t≤T

|ψ(t)| ‖ϕ‖1 ‖ct‖L2(0,T ;L∞(Γo)) ‖ua‖L2(0,T ;L2(Γo)).
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Clearly, the fact that u∗ = u(q) follows then from (5.31).

Now we can show the desired relation (5.21). For this, setting f(x, t) = uh,τ (x, t)−
u(x, t), we can write and estimate using Lemma 5.2 as follows:

τ
M∑
n=1

∫
Ω

(un
h − un)2dx−

∫ T

0

‖uh,τ (·, t) − u(·, t)‖2
0dt

=

M∑
n=1

∫ tn

tn−1

∫
Ω

(
|f(x, tn)|2 − |f(x, t)|2

)
dxdt

≤
{

M∑
n=1

∫ tn

tn−1

‖f(·, tn) + f(·, t)‖2
0dt

} 1
2
{

M∑
n=1

∫ tn

tn−1

‖f(·, tn) − f(·, t)‖2
0dt

} 1
2

≤ C

{
M∑
n=1

∫ tn

tn−1

‖f(·, tn) − f(·, t)‖2
0dt

} 1
2

.

By (5.22), the second term at the left-hand side of the above inequality tends to 0 as
h, τ → 0. But the last term can be estimated as follows:

M∑
n=1

∫ tn

tn−1

‖f(·, tn) − f(·, t)‖2
0dt

=

M∑
n=1

∫ tn

tn−1

‖u− un + (tn − t)∂τu
n
h‖2

0dt

≤ 2

M∑
n=1

∫ tn

tn−1

‖u− un‖2
0dt + 2

M∑
n=1

∫ tn

tn−1

∫
Ω

(tn − t)2|∂τun
h|2dxdt

= 2

M∑
n=1

∫ tn

tn−1

‖u− un‖2
0dt +

2

3
τ3

M∑
n=1

‖∂τun
h‖2

0.

From (5.20) and (5.15), the last two terms both tend to 0, and (5.21) follows.

Finally, we are ready to show the main convergence results of this section.

Theorem 5.6. Let {q∗h,τ} be a sequence of minimizers to the finite element
minimization problem (5.8)–(5.10); then as h and τ tend to 0, the whole sequence
{q∗h,τ} converges strongly in L2(0, T ;L2(Γi)) to the unique minimizer of the continuous
problem (2.1)–(2.3).

Proof. Using the stability estimate (5.14), it is easy to know that Jh,τ (q
∗
h,τ ) ≤ C

for some constant C independent of h and τ . This implies that {q∗h,τ} is bounded in

L2(0, T ;L2(Γi)) and there exists a subsequence of {q∗h,τ}, still denoted as {q∗h,τ}, such

that q∗h,τ → q∗ weakly in L2(0, T ;L2(Γi)) as h, τ → 0.

Now for any q ∈ L2(0, T ;L2(Γi)) and any fixed ε > 0, by the density results there
exists a qε ∈ H1(0, T ;H1/2(Γi)) such that

‖q − qε‖L2(0,T ;L2(Γi)) ≤ ε.

Then we define an extension q̃ε of qε as follows: q̃ε ∈ H1(Ω) solves

−Δq̃ε = 0 in Ω, q̃ε = qε on Γi, q̃ε = 0 on Γo.
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One can verify that q̃ε ∈ H1(0, T ;H1(Ω)) and ‖q̃ε‖H1(0,T ;H1(Ω)) ≤ C‖qε‖H1(0,T ;H1/2(Γi)).
Define

q̃h,τε (x, t) =

M∑
n=1

χn(t)Qhq̃ε(x, tn).

Let qh,τε be the restriction of q̃h,τε on Γi; then qh,τε ∈ V h
Γi

and for any ε > 0,

‖qh,τε − qε‖2
L2(0,T ;L2(Γi))

≤ ‖qh,τε − qε‖2
L2(0,T ;H1/2(Γi))

≤ C‖q̃h,τε − q̃ε‖2
L2(0,T ;H1(Ω))

= C

M∑
n=1

∫ tn

tn−1

‖Qhq̃ε(·, tn) − q̃ε(·, t)‖2
1dt

≤ C

M∑
n=1

∫ tn

tn−1

‖Qhq̃ε(·, tn) −Qhq̃ε(·, t) + Qhq̃ε(·, t) − q̃ε(·, t)‖2
1dt

≤ C

∫ T

0

‖SΔq̃ε(·, t) − q̃ε(·, t)‖2
1dt + C

∫ T

0

‖Qhq̃ε(·, t) − q̃ε(·, t)‖2
1dt.

Thus qh,τε → qε in L2(0, T ;L2(Γi)) as h, τ → 0. Using this and Lemma 5.5, we can
derive

J(q∗) ≤ lim
h→0
τ→0

τ

2

M∑
n=0

αn

∫
ω

(un
h(q∗h,τ ) − zn)2dx +

β

2
lim
h→0
τ→0

inf

∫ T

0

∫
Γi

|q∗h,τ |2dsdt

≤ lim
h→0
τ→0

inf Jh,τ (q
∗
h,τ ) ≤ lim

h→0
τ→0

inf Jh,τ (q
h,τ
ε )

=
1

2

∫ T

0

∫
ω

(u(qε) − z)2dxdt +
β

2

∫ T

0

∫
Γi

q2
εdsdt

= J(qε).

Letting ε → 0, we deduce

J(q∗) ≤ J(q) ∀ q ∈ L2(0, T ;L2(Γi)),(5.33)

which indicates that q∗ is the unique minimizer of the continuous problem (2.1)–(2.3).
The strong convergence follows by the same trick as used in Proposition 2.3.
Remark 5.7. All the results obtained in this paper can be naturally extended

to a three-dimensional domain Ω with every two-dimensional cross-section being the
domain as in Figure 2.

6. Finite element approximation of system (4.1)–(4.3) and its conver-
gence. Next, we shall discuss the discretization of system (4.1)–(4.3). As we did for
system (2.1)–(2.3), we use the composite trapezoidal rule for the time discretization
of the first integral in (4.1) and the exact time integration for the second term. But as
the time derivative of the identifying parameter q(x, t) is involved in the regularization
term now, we cannot ensure the convergence of the resultant fully discrete scheme for
the entire system (4.1)–(4.3) if the backward Euler scheme is still used for approximat-
ing the parabolic problem (4.3). Instead we shall adopt the Crank–Nicolson scheme.
This results in the following finite element approximation of (4.1)–(4.3):

minJh,τ (qh,τ ) =
τ

2

M∑
n=0

αn

∫
ω

(un
h − zn)2dx +

β

2

(∫
Γi

|q0
h|2ds + τ

M∑
n=1

∫
Γi

|∂τqnh |2ds
)(6.1)
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over all qnh ∈ V h
Γi

with un
h ≡ un

h(qh,τ ) ∈ V h satisfying u0
h = Qhu0 in Ω and

∫
Ω

∂τu
n
hφhdx +

∫
Ω

ᾱn∇un
h + un−1

h

2
· ∇φhdx +

∫
Γo

c̄n
un
h + un−1

h

2
φhds

=

∫
Γo

c̄nūn
aφhds−

∫
Γi

qnh + qn−1
h

2
φhds ∀φh ∈ V h(6.2)

for n = 1, 2, . . . ,M . Here {αn} are the coefficients of the composite trapezoidal rule:
α0 = αM = 1

2 and αn = 1 for all n �= 0,M . The heat flux q is approximated by qh,τ ,
a piecewise linear interpolation based on {qnh} over the time partition Δ in (5.2):

qh,τ (x, t) =
t− tn−1

τ
qnh +

tn − t

τ
qn−1
h , t ∈ (tn−1, tn).(6.3)

For the fully discrete finite element scheme (6.1)–(6.2), we can show (cf. [14]) the
following theorem.

Theorem 6.1. There exists a unique minimizer to the finite element problem
(6.1)–(6.2).

In the rest of this section, we study the convergence of the discrete minimizer of
(6.1)–(6.2) to the global minimizer of the continuous problem (4.1)–(4.3). For this
purpose, we assume on functions α(x, t), c(x, t), and ua(x, t) in (1.1)–(1.4) that

α ∈ W 1,∞(0, T ;L∞(Ω)) and c, ua ∈ W 1,∞(0, T ;L∞(Γo))(6.4)

and introduce three related constants:

C1 = ‖α‖W 1,∞(0,T ;L∞(Ω)), C2 = ‖c‖W 1,∞(0,T ;L∞(Γo)), C3 = ‖ua‖W 1,∞(0,T ;L∞(Γo)).

(6.5)

Using these constants, we can derive the following estimates (cf. [14]):

‖ᾱn − ᾱn−1‖L∞(Ω) ≤ C1 τ, ‖c̄nūn
a − c̄n−1ūn−1

a ‖L∞(Γo) ≤
5

3
C2C3 τ.(6.6)

For the convergence analysis, we first establish some stability estimates of the
finite element solution to (6.2).

Lemma 6.2. Let un
h be the finite element solution of system (6.2) corresponding

to the given heat flux {qnh}Mn=0; then we have the following stability estimates:

max
1≤n≤M

‖un
h‖2

0 + τ

M∑
n=1

∥∥∥∥∇un
h + un−1

h

2

∥∥∥∥
2

0

+ τ

M∑
n=1

∥∥∥∥u
n
h + un−1

h

2

∥∥∥∥
2

0,Γo

≤ C

(
‖u0‖2

0 + C2
2C

2
3 + τ

M∑
n=0

‖qnh‖2
0,Γi

)
,(6.7)

τ
M∑
n=1

‖∂τun
h‖2

0 + max
1≤n≤M

‖∇un
h‖2

0 + max
1≤n≤M

‖un
h‖2

0,Γo

≤ C

(
‖u0‖2

1 + C2
2C

2
3 + max

1≤n≤k
‖qnh‖2

0,Γi
+ τ

M∑
n=1

‖∂τqnh‖2
0,Γi

+ τ

M∑
n=0

‖qnh‖2
0,Γi

)
.(6.8)
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Proof. Taking φh = τ
un
h+un−1

h

2 in (6.2), we have

1

2
‖un

h‖2
0 −

1

2
‖un−1

h ‖2
0 + α0τ

∥∥∥∥∇un
h + un−1

h

2

∥∥∥∥
2

0

+ c0τ

∥∥∥∥u
n
h + un−1

h

2

∥∥∥∥
2

0,Γo

≤ τ

∫
Γo

c̄nūn
a

un
h + un−1

h

2
ds− τ

∫
Γi

qnh + qn−1
h

2

un
h + un−1

h

2
ds.

Summing up the above equation over n = 1, 2, . . . , k ≤ M , we derive

1

2
‖uk

h‖2
0 −

1

2
‖u0

h‖2
0 + α0τ

k∑
n=1

∥∥∥∥∇un
h + un−1

h

2

∥∥∥∥
2

0

+ c0τ

k∑
n=1

∥∥∥∥u
n
h + un−1

h

2

∥∥∥∥
2

0,Γo

≤ τ

k∑
n=1

∫
Γo

c̄nūn
a

un
h + un−1

h

2
ds− τ

k∑
n=1

∫
Γi

qnh + qn−1
h

2

un
h + un−1

h

2
ds;

then (6.7) follows by applying the trace theorem and Young’s and Gronwall’s inequal-
ities.

Next, taking φh = τ∂τu
n
h in (6.2), we have

τ‖∂τun
h‖2

0 +
1

2

∫
Ω

ᾱn(|∇un
h|2 − |∇un−1

h |2)dx +
1

2

∫
Γo

c̄n(|un
h|2 − |un−1

h |2)ds

=

∫
Γo

c̄nūn
a(un

h − un−1
h )ds−

∫
Γi

qnh + qn−1
h

2
(un

h − un−1
h )ds.

Summing up the above equation over n = 1, 2, . . . , k ≤ M and using the formula
(5.17), we deduce

τ

k∑
n=1

‖∂τun
h‖2

0 +
1

2
α0‖∇uk

h‖2
0 +

1

2
c0‖uk

h‖2
0,Γo

≤ 1

2

∫
Ω

ᾱ0|∇u0
h|2dx +

1

2

k∑
n=1

∫
Ω

(ᾱn − ᾱn−1)|∇un−1
h |2dx

+
1

2

∫
Γo

c̄0|u0
h|2ds +

1

2

k∑
n=1

∫
Γo

(c̄n − c̄n−1)|un−1
h |2ds

+

∫
Γo

c̄kūk
au

k
hds−

∫
Γo

c̄0ū0
au

0
hds−

k∑
n=1

∫
Γo

(c̄nūn
a − c̄n−1ūn−1

a )un−1
h ds

−1

2

∫
Γi

(qkh + qk−1
h )uk

hds +
1

2

∫
Γi

q0
hu

0
hds

+
k∑

n=1

∫
Γi

(
qnh + qn−1

h

2
− qn−1

h + qn−2
h

2

)
un−1
h ds.

We now estimate all the terms on the right-hand side above. First, for those terms
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without summation, we can easily deduce

∫
Ω

ᾱ0|∇u0
h|2dx +

∫
Γo

c̄0|u0
h|2ds ≤ C (C1 + C2)‖u0‖2

1,∫
Γo

c̄0ū0
au

0
hds +

1

2

∫
Γi

q0
hu

0
hds ≤ C (C2C3 + ‖q0

h‖0,Γi)‖u0‖1,

∫
Γo

c̄kūk
au

k
hds ≤

1

4
c0‖uk

h‖2
0,Γo

+ C C2
2C

2
3 ,

−1

2

∫
Γi

(qkh + qk−1
h )uk

hds ≤
1

4
α0‖∇uk

h‖2
0 + C

(
max

1≤n≤M
‖un

h‖2
0 + max

1≤n≤M
‖qnh‖2

0,Γi

)
.

Using (6.6), we obtain the following estimates:

1

2

k∑
n=1

∫
Ω

(ᾱn − ᾱn−1)|∇un−1
h |2dx ≤ 1

2
C1 τ

k∑
n=1

‖∇un−1
h ‖2

0,

1

2

k∑
n=1

∫
Γo

(c̄n − c̄n−1)|un−1
h |2ds ≤ 1

2
C2 τ

k∑
n=1

‖un−1
h ‖2

0,Γo
,

−
k∑

n=1

∫
Γo

(c̄nūn
a − c̄n−1ūn−1

a )un−1
h ds ≤ C τ

k∑
n=1

‖un−1
h ‖2

0,Γo
+ C.

For the last term, we use the Cauchy–Schwarz inequality to obtain

k∑
n=1

∫
Γi

(
qnh + qn−1

h

2
− qn−1

h + qn−2
h

2

)
un−1
h ds

≤ 1

2
τ

k∑
n=1

‖un−1
h ‖2

0,Γi
+

1

8τ

k∑
n=1

∥∥∥(qnh + qn−1
h ) − (qn−1

h + qn−2
h )

∥∥∥2

0,Γi

≤ C τ

k∑
n=1

(
‖∇un−1

h ‖2
0 + ‖un−1

h ‖2
0 + ‖∂τqnh‖2

0,Γi

)
.

Now (6.8) follows by combining all of the above estimates and using Gronwall’s in-
equality.

As we did for the finite element system (5.8)–(5.10), we need the following crucial
technical result for the convergence of the finite element approximation (6.1)–(6.2).

Lemma 6.3. If qh,τ converges to some q weakly in H1(0, T ;L2(Γi)) as h and τ
tend to 0, then

lim
h→0
τ→0

τ

M∑
n=0

αn

∫
ω

(un
h(qnh) − zn)2dx =

∫ T

0

∫
ω

(u(q) − z)2dxdt.

Proof. As in the proof of Lemma 5.5, it suffices to show (5.21).
We first construct two interpolations based on {un

h}: one is a piecewise linear
interpolation over the time partition Δ,

uh,τ (x, t) =
t− tn−1

τ
un
h +

tn − t

τ
un−1
h , t ∈ (tn−1, tn) for n = 1, 2, . . . ,M,
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and the other is a piecewise constant interpolation,

ũh,τ (x, t) =
1

2
(un

h + un−1
h ), t ∈ (tn−1, tn) for n = 1, 2, . . . ,M.

Using the definition of qh,τ in (6.3) and the simple identity

qnh = τ

n∑
k=1

∂τq
k
h + q0

h,

we can directly see that

τ
M∑
n=1

‖∂τqnh‖2
0,Γi

= τ

M∑
n=1

∥∥∥∥ ∂

∂t
qh,τ

∥∥∥∥
2

0,Γi

=

∥∥∥∥ ∂

∂t
qh,τ

∥∥∥∥
2

L2(0,T ;L2(Γi)

,

‖qnh‖2
0,Γi

≤ 2τT

n∑
k=1

‖∂τqkh‖2
0,Γi

+ 2‖q0
h‖2

0,Γi
.

With these relations, the assumption on qh,τ , and the stability estimates (6.7)–(6.8),
we can easily check that both {uh,τ} and {ũh,τ} are bounded in L2(0, T ;H1(Ω)) and
that { ∂

∂tuh,τ} is bounded in L2(0, T ;L2(Ω)). So there exist a subsequence {uh,τ} such
that

uh,τ → u∗ weakly in L2(0, T ;H1(Ω)) and strongly in L2(0, T ;L2(Ω)),

∂

∂t
uh,τ → ∂u∗

∂t
weakly in L2(0, T ;L2(Ω)),

and a subsequence {ũh,τ} such that

ũh,τ → ũ∗ weakly in L2(0, T ;H1(Ω))(6.9)

for some u∗ ∈ H1(0, T ;L2(Ω)) and ũ∗ ∈ L2(0, T ;H1(Ω)). We can further show that
u∗(x, 0) = u0(x) and u∗ = ũ∗ using the fact that

∫ T

0

‖uh,τ (·, t) − ũh,τ (·, t)‖2
0dt =

τ3

12

M∑
n=1

‖∂τun
h‖2

0 → 0.(6.10)

Next, we show u∗ = u(q). Let φh,τ (x, t) be defined as in the proof of Lemma 5.5.
By simple computations we have the following equalities:

∫ T

0

∫
Ω

∂

∂t
uh,τ (x, t)φh,τ (x, t)dxdt = τ

M∑
n=1

∫
Ω

∂τu
n
hQhφ(x, tn)dx,

∫ T

0

∫
Ω

α(x, t)∇ũh,τ (x, t)∇φh,τ (x, t)dxdt = τ

M∑
n=1

∫
Ω

ᾱn∇un
h + un−1

h

2
∇Qhφ(x, tn)dx,

∫ T

0

∫
Γo

c(x, t)ũh,τ (x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γo

c̄n
un
h + un−1

h

2
Qhφ(x, tn)ds,

∫ T

0

∫
Γo

c(x, t)ua(x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γo

cun
aQhφ(x, tn)ds,

∫ T

0

∫
Γi

qh,τ (x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γi

qnh + qn−1
h

2
Qhφ(x, tn)ds.
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Adding them together and using (6.2), we obtain a similar equation to (5.30). The
rest of the proof is basically the same as that in Lemma 5.5.

By virtue of Lemma 6.3, we can show the convergence of the finite element ap-
proximation (6.1)–(6.2), following the same lines as for Theorem 5.6; see Xie [14].

Theorem 6.4. Let {q∗h,τ} be a sequence of minimizers to the discrete minimiza-
tion problem (6.1)–(6.2); then as h and τ tend to 0, the whole sequence {q∗h,τ} con-

verges strongly in H1(0, T ;L2(Γi)) to the unique minimizer of the continuous problem
(4.1)–(4.3).

7. Solutions of finite element minimizaton problems. In this section, we
shall formulate a conjugate gradient algorithm to solve the nonlinear finite element
minimization problems (5.8)–(5.10) and (6.1)–(6.2). We present details only for sys-
tem (6.1)–(6.2), while the algorithm for system (5.8)–(5.10) can be formulated simi-
larly; for details of the latter system, we refer to Xie [14].

We first derive the Gateaux derivative of the cost functional Jh,τ (qh,τ ) in (6.1), or
the form Jh,τ ({q0

h, . . . , q
M
h }). Let N = dim(V h

Γi
), and let {ψi}Ni=1 be the basis of V h

Γi
.

For any element from space V h
Γi

× · · · × V h
Γi

, say {q0
h, . . . , q

M
h }, let Un

h ≡ un
h(qh,τ )

′ph,τ
be the Gateaux derivative of solution un

h(qh,τ ) to (6.1)–(6.2) in the direction ph,τ , or
{p0

h, . . . , p
M
h }. We easily see that U0

h = 0, and for n = 1, 2, . . . ,M and any φh ∈ V h,
the derivative Un

h ∈ V h satisfies

∫
Ω

∂τUn
hφhdx +

∫
Ω

ᾱn∇Un
h + Un−1

h

2
· ∇φhdx +

∫
Γo

c̄n
Un
h + Un−1

h

2
φhds

= −
∫

Γi

pnh + pn−1
h

2
φhds.

This enables us to derive the first and second derivatives of the cost functional Jh,τ
in (6.1):

Jh,τ (qh,τ )
′ph,τ = τ

M∑
n=1

αn

∫
ω

(un
h − zn)Un

h dx(7.1)

+ β

(∫
Γi

q0
hp

0
hds + τ

M∑
n=1

∫
Γi

∂τq
n
h ∂τp

n
hds

)
,

Jh,τ (qh,τ )
′′ph,τrh,τ = τ

M∑
n=1

αn

∫
ω

(
un
h(qh,τ )

′ph,τ

)(
un
h(qh,τ )

′rh,τ

)
dx(7.2)

+ β

(∫
Γi

p0
hr

0
hds + τ

M∑
n=1

∫
Γi

∂τp
n
h ∂τr

n
hds

)
.

Clearly, evaluating the derivatives of Jh,τ at a given point qh,τ using formula (7.1)
is extremely expensive. To reduce the cost, we introduce an adjoint equation for the
Crank–Nicolson scheme (6.2), which seems to have not been studied in the literature
before. This needs to be done carefully in order to meet our final goal. A discrete
sequence {wn

h}Mn=0 is defined in such a way that wM
h = 0 and wn

h ∈ V h for n �= M solves

−
∫

Ω

wn
h − wn−1

h

τ
φhdx +

∫
Ω

ᾱn+1∇wn
h + ᾱn∇wn−1

h

2
· ∇φhdx

+

∫
Γo

c̄n+1wn
h + c̄nwn−1

h

2
φhds = αn

∫
ω

(un
h − zn)φhdx ∀φh ∈ V h.(7.3)
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Now taking φh = Un
h in (7.3), we can rewrite the first term in Jh,τ (qh,τ )

′ph,τ as

J1
h,τ = −

M∑
n=1

∫
Ω

wn
h − wn−1

h

τ
Un
h dx +

M∑
n=1

∫
Ω

ᾱn+1∇wn
h + ᾱn∇wn−1

h

2
· ∇Un

h dx

+
M∑
n=1

∫
Γo

c̄n+1wn
h + c̄nwn−1

h

2
Un
h ds.

Then using formula (5.17), the identity2

k∑
n=1

(an + an−1)bn = akbk − a0b0 +

k∑
n=1

an−1(bn + bn−1),

and the equation for Un
h , we obtain

J1
h,τ =

M∑
n=1

∫
Ω

Un
h − Un−1

h

τ
wn−1

h dx +

M∑
n=1

∫
Ω

ᾱn∇Un
h + Un−1

h

2
· ∇wn−1

h dx

+

M∑
n=1

∫
Γo

c̄n
Un
h + Un−1

h

2
wn−1

h ds

= −
M∑
n=1

∫
Γi

pnh + pn−1
h

2
wn−1

h ds.

This, along with (7.1), leads to a very simple formula for evaluating the derivative of
Jh,τ :

Jh,τ (qh,τ )
′ph,τ =

∫
Γi

(
βq0

hp
0
h +

M∑
n=1

{
β(qnh − qn−1

h )(pnh − pn−1
h )

τ

− τ(pnh + pn−1
h )wn−1

h

2

})
ds.(7.4)

Next, we are going to formulate the conjugate gradient method for the nonlin-
ear minimization (6.1). Let us first establish one-to-one correspondences between
finite element functions and their coefficient vectors. For any qjh ∈ V h

Γi
, we write its

representation in terms of the basis {ψi}Ni=1 as

qjh =

N∑
i=1

qjiψi.

Then each finite element function qh,τ or {q0
h, q

1
h, . . . , q

M
h } corresponds uniquely to an

(M + 1)N -dimensional vector

q = (q0
1 , . . . , q

0
N , q1

1 , . . . , q
1
N , q2

1 , . . . , q
2
N , . . . , qM1 , . . . , qMN )T .

2This crucial identity has not been seen in the literature before and has no continuous counterpart,
unlike the widely used identity (5.17) that is known as the discrete integration by parts formula.
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Letting f(q) = Jh,τ (qh,τ ), one can directly verify the relation for the first derivatives
of f(q),

∂f(q)

∂qji
= Jh,τ ({q0

h, q
1
h, . . . , q

M
h })′({0, . . . , ψi, . . . , 0}),

and the relation for the Hessian H = (hij),

hik :≡ ∂2f(q)

∂qji ∂q
l
k

= Jh,τ ({q0
h, q

1
h, . . . , q

M
h })′′({0, . . . , ψi, . . . , 0})({0, . . . , ψk, . . . , 0}).

This leads to the following expression:

f(q) =
1

2
qTHq + ∇f(0)Tq + f(0).

We see that the evaluation of the Hessian H is extremely expensive. Fortunately,
only its products with vectors are needed in the conjugate gradient method, and
such products can be done with much less cost by noting the identity that Hq =
∇f(q) −∇f(0) and the simple formula (7.4).

We are now ready to state the conjugate gradient algorithm for solving the discrete
minimization problem (6.1)–(6.2). We shall use (Jh,τ (qh,τ ))

′ for ∇f(q) to emphasize
the dependence of the first order derivatives on mesh size h and time step τ .

Conjugate Gradient Algorithm

Step 1. Given a tolerance ε, compute g̃0 = (Jh,τ (0))′.

Step 2. Given an initial guess q
(0)
h,τ , solve the direct problem (6.2) and the adjoint

equation (7.3), then compute g0 = (Jh,τ (q
(0)
h,τ ))

′ by using (7.4). Set d0 := −g0

and k := 0.
Step 3. Solve the one-dimensional problem

Jh,τ (q
(k)
h,τ + αkd

(k)
h,τ ) = min

α
Jh,τ (q

(k)
h,τ + αd

(k)
h,τ )

by computing

αk = − gT
k dk

dT
k ((Jh,τ (d

(k)
h,τ ))

′ − g̃0)
.

Set q
(k+1)
h,τ := q

(k)
h,τ + αkd

(k)
h,τ and k := k + 1. Compute

gk = (Jh,τ (q
(k)
h,τ ))

′,

βk =
gT
k gk

gT
k−1gk−1

,

dk = −gk + βkdk−1.

Step 4. If ‖gk‖ ≤ ε ‖g0‖, stop; otherwise goto Step 3.

8. Numerical experiments. In this section we show some numerical experi-
ments on heat flux reconstructions using the two regularization methods (5.8)–(5.10)
and (6.1)–(6.2). The physical domain Ω is taken to be Ω = {(x, y); ( 1

2 )2 ≤ x2 + y2 ≤
1}. The domain Ω is triangulated as in Figure 2 using sectorial elements, with each
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Fig. 3. Exact q.
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Fig. 4. Method (6.1) used, β = 7 × 10−6, iter = 21, error = 4.19 × 10−2.

circle divided into 60 arcs of equal length. The time interval [0, 1] is divided into 40
equally spaced subintervals. For the conjugate gradient method, we take the tolerance

ε = 10−4, and the initial guess q
(0)
h,τ of the heat flux is taken to be a constant zero

everywhere in the whole space-time domain. In all three-dimensional figures shown
below, the x-axis stands for the time interval varying from 0 to 1 and the y-axis
stands for the inner boundary Γi = {(x, y); x2 + y2 = ( 1

2 )2} represented by the polar
coordinate θ varying from 0 to 2π, while the z-axis shows the magnitude of the heat
flux at each point (t, θ). The errors listed under each figure are the relative L2-norm
errors between the exact and numerically reconstructed heat fluxes.

In our simulations, the coefficients α, c, and ua in (1.1) and (1.3) are taken to
be α(x, t) = 1, c(x, t) = 1, and ua(x, t) = 0. In order to select more general and
difficult profiles of heat fluxes for our tests, we add a source term f(x, t) in (1.1). As
our first example, we try the exact solution u(x, y, t) and the heat flux q(x, y, t) to be
reconstructed as follows:

u(x, y, t) = x2 + 2y2 + t + sin(xyt), q(x, y, t) = 4x2 + 8y2 + 4xyt cos(xyt).

Instead of the exact data u(x, y, t), we use the perturbed data of the form z(x, y, t) =
u(x, y, t) + δ u(x, y, t) as the measurement data, with the noise level δ = 1% (1%
relative noise pointwise). We first test the case when the measurement region is
taken to be ω = {(x, y); ( 3

4 )2 ≤ x2 +y2 ≤ 1}. Figure 3 plots the exact heat flux, while
Figure 4 shows the numerically reconstructed heat flux using the finite element method
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Fig. 5. Method (5.8) used, β = 2 × 10−6, iter = 5, error = 7.73 × 10−2.
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Fig. 6. Method (5.8) used, plots from the initial 4 and last 5 time points removed, error =
3.09 × 10−2.

(6.1) with L2-regularization in space but H1-regularization in time for heat fluxes.
From Figure 4 we see that the numerical reconstruction works very well, considering
the difficult oscillation of the heat flux in space. Also the conjugate gradient iteration
performs very stably for such an oscillating heat flux, starting with a very bad initial
guess of constant zero everywhere in the space-time domain. Figure 5 presents the
numerical reconstruction using the finite element method (5.8) with L2-regularization
in both space and time for heat fluxes. One finds that the quality of reconstruction
is far from satisfactory compared to the result we have seen in Figure 4 using the
finite element method (6.1); the reconstruction is especially bad near the initial and
terminal time. But interestingly, when we remove the bad reconstruction at a few
initial and terminal time points, the remaining reconstruction seems very satisfactory
again; see Figure 6.

We have also tried to see the effects of the measurement region. When the mea-
surement region is reduced to a smaller subdomain ω = {(x, y); ( 4

5 )2 ≤ x2 + y2 ≤ 1},
the numerical reconstructions are not affected too much; see Figures 7 and 8.

As our second example, we take the exact solutions u(x, y, t) and q(x, y, t) in (1.1)
and (1.4) as the following functions:

u(x, y, t) = sinπt(x cosπy + y sinπx),

q(x, y, t) = 2 sinπt(πxy(cosπx− sinπy) + x cosπy + y sinπx).
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Fig. 7. Method (6.1) used, β = 10−5, iter = 23, error = 5.25 × 10−2.
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Fig. 8. Method (5.8) used, β = 6 × 10−6, iter = 13, plots from the initial 4 and last 5 time
points removed, error = 3.57 × 10−2.

Again, the perturbed data z(x, y, t) = u(x, y, t)+ δ u(x, y, t), with 1% noise pointwise,
is taken to be the measurement data in ω. We first test the case when the measure-
ment region is taken to be ω = {(x, y); ( 3

4 )2 ≤ x2 + y2 ≤ 1}. Figure 9 plots the exact
heat flux q, which appears to be very challenging for numerical reconstruction as it
oscillates widely in both time and space direction. Figure 10 shows the numerically
reconstructed heat flux using the finite element method (6.1) with L2-regularization in
space but H1-regularization in time for heat fluxes. This demonstrates very satisfac-
tory performance of the numerical reconstruction algorithm, especially the stability
and effectiveness of the conjugate gradient iteration, considering that it is such an
oscillating heat flux and that it starts with a very bad initial guess of constant zero
everywhere in the space-time domain. Figure 11 presents the numerical reconstruc-
tion using the finite element method (5.8) with L2-regularization in both space and
time for heat fluxes. Again its quality of reconstruction is not as good as the one
obtained using the finite element method (6.1), and the accuracy is much worse.

When the measurement subregion is reduced to a smaller subdomain ω =
{(x, y); ( 4

5 )2 ≤ x2 + y2 ≤ 1}, again the numerical reconstructions have not been
affected much, as we have seen in the first example.

9. Concluding remarks. The inverse problem of reconstructing profiles of both
time- and space-dependent heat fluxes on an inner boundary of a heat conductive
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Fig. 9. The exact q.
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Fig. 10. Method (6.1) used, β = 10−9, iter = 30, error = 3.68 × 10−2.
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Fig. 11. Method (5.8) used, β = 4 × 10−8, iter = 29, error = 11.59 × 10−2.

system is investigated. The reconstruction problem is severely ill-posed as it involves
the heat flux profile at the initial time and on the inner boundary. Validation and
effectiveness of two regularization formulations are justified both theoretically and
numerically for the reconstruction, without any constraints enforced on the search
spaces of heat fluxes when appropriate regularizations are selected. Regarding the
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approximation of the regularized nonlinear minimization systems, it is very tricky
and essential to decide how to effectively discretize in both time and space the non-
linear optimizations and the associated parabolic equation and its adjoint so that the
resulting fully discrete schemes converge. Two such discrete approaches are proposed
to approximate two nonlinear minimization formulations: the first uses the backward
Euler scheme in time, while the second requires the Crank–Nicolson scheme, with both
adopting piecewise linear finite elements for space approximation and the trapezoidal
and midpoint rules for discretization of the cost functionals. A novel weighted discrete
projection operator Qh is introduced which possesses both L2- and H1-stability and
L2-optimal error estimate, crucial to the success of convergence analysis of two fully
discrete schemes. The resulting nonlinear finite element minimization systems are
shown to be well suited for the solutions by conjugate gradient method. Numerical
experiments have demonstrated the stability and effectiveness of the reconstruction
algorithms.

There exists little work on numerical reconstruction of both time- and space-
dependent physical profiles, and even less on convergence analysis of numerical recon-
struction methods. As we have seen, the convergence analyses of the fully discrete
schemes are much more difficult and trickier than the cases with only space-dependent
profiles. This paper provides a relatively complete study on reconstruction of both
time- and space-dependent heat fluxes, including well-posedness of the regularized sys-
tems, convergence of fully discrete approximations, numerical algorithms for solving
discrete nonlinear minimizations, and numerical experiments. Most technical tools
should be useful in theoretical and numerical analysis of regularization methods for
other inverse problems.
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Abstract. In this paper, we consider a Lagrange–Galerkin scheme to approximate a two-
dimensional fluid-rigid body problem. The equations of the system are the Navier–Stokes equations
in the fluid part, coupled with ordinary differential equations for the dynamics of the rigid body.
In this problem, the equations of the fluid are written in a domain whose variation is one of the
unknowns. We introduce a numerical method based on the use of characteristics and on finite
elements with a fixed mesh. Our main result asserts the convergence of this scheme.
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1. Introduction. The aim of this paper is to analyze a Lagrange–Galerkin ap-
proximation of the equations modelling the motion of a two-dimensional rigid body
immersed in a fluid. We first briefly describe the equations modelling this system.
Assume that the system fluid-rigid body occupies a bounded domain O in R

2 with
a regular boundary ∂O. The solid is supposed to occupy at each instant t a closed
connected subset B(t) ⊂ O which is surrounded by a viscous homogeneous fluid filling
the domain Ω(t) = O\B(t).

The motion of the fluid is described by the classical Navier–Stokes equations,
whereas the motion of the rigid body is governed by the balance equations for linear
and angular momentum (Newton’s laws). More precisely, we consider the following
system coupling partial differential and ordinary differential equations:

ρf
∂u

∂t
− νΔu + ρf (u · ∇)u + ∇p = ρf f , x ∈ Ω(t), t ∈ [0, T ],(1.1)

divu = 0, x ∈ Ω(t), t ∈ [0, T ],(1.2)

u = 0, x ∈ ∂O, t ∈ [0, T ],(1.3)

u = ζ′(t) + ω(t)(x − ζ(t))⊥, x ∈ ∂B(t), t ∈ [0, T ],(1.4)

Mζ′′(t) = −
∫
∂B(t)

σn dΓ + ρs

∫
B(t)

f(x, t) dx, t ∈ [0, T ],(1.5)

∗Received by the editors November 29, 2003; accepted for publication (in revised form) January
19, 2005; published electronically October 31, 2005.

http://www.siam.org/journals/sinum/43-4/43816.html
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Jω′(t) = −
∫
∂B(t)

(x − ζ(t))⊥ · σn dΓ + ρs

∫
B(t)

(x − ζ(t))⊥ · f(x, t) dx, t ∈ [0, T ],

(1.6)

u(x, 0) = u0(x), x ∈ Ω(0),(1.7)

ζ(0) = ζ0 ∈ R
2, ζ′(0) = ζ1 ∈ R

2, ω(0) = ω0 ∈ R.(1.8)

In the above equations the unknowns are u(x, t) (the Eulerian velocity field of
the fluid), p(x, t) (the pressure of the fluid), ζ(t) (the position of the mass center of
the rigid body), and ω(t) (the angular velocity of the rigid body). The domain B(t)
is defined by

B(t) = {R−θ(t)y + ζ(t), y ∈ B},

where

θ(t) =

∫ t

0

ω(s) ds,(1.9)

B = B(0), and Rθ is the rotation matrix of angle θ. Moreover, we have denoted by
∂B(t) the boundary of the rigid body at instant t and by n(x, t) the unit normal to
∂B(t) at the point x directed to the interior of the rigid body.

The constants ρf and ρs are, respectively, the density of the fluid and the density
of the rigid body. In what follows, we assume that the densities of the fluid and of
the solid are equal, that is

ρf = ρs = 1,(1.10)

and that the rigid body is a ball in R
2. Assumption (1.10) is clearly restrictive but

it is important for the forthcoming analysis (see Remarks 2.1 and 2.4 below). On the
contrary, the assumption that the rigid body is a ball is not essential but avoids some
technicalities.

The constants M and J are the mass and the moment of inertia of the rigid body,
and the positive constant ν is the viscosity of the fluid. Moreover, f(x, t) is the applied
force (per unit mass).

For all x =
(
x1

x2

)
, we denote by x⊥ the vector x⊥ =

(
x2

−x1

)
. If x, y ∈ R

2, then x ·y
stands for the inner product of x and y and |x| stands for the corresponding norm.
We have also denoted by w′ and w′′ the derivatives of a function w depending only
on the time t.

Finally, the stress tensor (also called the Cauchy stress) is defined by

σ(x, t) = −p(x, t)Id + 2νD(u),(1.11)

where Id is the identity matrix and D(u) is the tensor field defined by

D(u)k,l =
1

2

(
∂uk

∂xl
+

∂ul

∂xk

)
.

The main difficulties of this problem are that
• the equations of the structure are coupled with those of the fluid,
• the domain of the fluid is variable, and it is one of the unknowns of the

problem (we thus have a free boundary problem).
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The well-posedness of this type of system has been recently studied in a large
number of papers (see, for instance, Desjardins and Esteban [6], Gunzburger, Lee,
and Seregin [17], San Mart́ın, Starovoitov, and Tucsnak [25], Grandmont and Maday
[16], Takahashi [27], and the references therein).

The literature on the numerical approximation of the solution of (1.1)–(1.8) also
contains a large number of recent papers. Some of these papers are based on an arbi-
trary Lagrangian Eulerian (ALE) formulation; see, for example, Grandmont, Guimet,
and Maday [15], Nobile [22], Maury and Glowinski [21], Maury [19], [20], Formaggia
and Nobile [9], and Farhat, Geuzaine, and Grandmont [8]. In the ALE method, at
each time step, the mesh is moved with an arbitrary velocity in the fluid to follow the
motion of the rigid body. The stability of the ALE method is studied in [9] (in the
case of the finite element context) and in [8] (in the case of the finite volume context).
We also mention the work of Gastaldi [11], where, in the case of an advection-diffusion
equation in a moving two-dimensional domain, a priori error estimates that are opti-
mal both in space and time have been obtained.

Another approach, developed by Glowinski et al. [14], [13] is based on a fictitious
domain formulation: the rigid bodies are filled by the surrounding fluid, and the
constraint of rigid body motion is relaxed by introducing a distributed Lagrange
multiplier.

As far as we know, the only proof of the convergence of one of these methods
is given in [15] for a simplified problem in one space dimension. The main novelty
brought in by our paper consists of the fact that we construct a new approximation
method using a fixed mesh and that we prove a convergence result. This method
is inspired by the Galerkin–Lagrange approximation, which is commonly used for
Navier–Stokes equations (see Pironneau [23] and Süli [26]).

The remaining part of this paper is organized as follows. In section 2 we introduce
some function spaces and semidiscretize our problem with respect to the time variable.
In section 3 we give the full discretization of the problem and state the main result.
Section 4 is devoted to the study of the finite element spaces that were introduced in
the previous section. Section 5 is devoted to the study of a change of variables that
plays an important role in the proof of the main result. In section 6 we prove the
consistency of our scheme. Finally, in section 7 we give the proof of the main result.

2. Notation and preliminaries.

2.1. Notation and function spaces. Throughout this paper, we shall use the
classical Sobolev spaces Hs(Ω), Hs

0(Ω), H−s(Ω), s � 0, and the space of Lipschitz
continuous functions C0,1(Ω) on the closure of Ω. We also define

L2
0(Ω) =

{
f ∈ L2(Ω)

∣∣∣∣
∫

Ω

f dx = 0

}

and denote by L2
0(Ω), Hs(Ω), Hs

0(Ω), H−s(Ω), s � 0, the spaces
[
L2

0(Ω)
]2

, [Hs(Ω)]
2
,

[Hs
0(Ω)]

2
, [H−s(Ω)]

2
. The usual inner product in L2(O) will be denoted by

(u,v) =

∫
O

u · v dx ∀u,v ∈ L2(O).(2.1)

If A is a matrix, we denote by A∗ its transpose. For any 2×2 matrices A,B ∈ M2×2,
we denote by A : B their inner product A : B = Trace(A∗B), and by |A| the
corresponding norm. For convenience, we use the same notation as in (2.1) for the
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inner product in L2(O,M2×2), that is,

(A,B) =

∫
O

A : B dx ∀A,B ∈ L2(O,M2×2).(2.2)

We also define the spaces

K(ζ) = {u ∈ H1
0(O) | D(u) = 0 in B(ζ)}(2.3)

and

K̂(ζ) = {u ∈ H1
0(O) | divu = 0 in O, D(u) = 0 in B(ζ)},(2.4)

where ζ ∈ R
2 and B(ζ) = {x ∈ R

2, |x − ζ| � 1}. According to Lemma 1.1 of [29, p.
18], for any u ∈ K(ζ), there exist lu ∈ R

2 and ωu ∈ R such that

u(y) = lu + ωu (y − ζ)⊥ ∀y ∈ B(ζ).

These spaces are specific to our problem. In fact, if the solution u of (1.1)–(1.8) is
extended by

u(x, t) = ζ′(t) + ω(t)(x − ζ(t))⊥ ∀x ∈ B(ζ(t)),

then we easily see that u(t) ∈ K̂(ζ(t)).
In what follows, the solution u of (1.1)–(1.8) will be extended as above.
We also notice that, by using (1.10), for any u,v ∈ K(ζ) we have

(u,v) =

∫
O\B(ζ)

u · v dx + M lu · lv + Jωu ωv.(2.5)

Remark 2.1. In the case of different densities ρF �= ρS , the natural inner product
to be used seems to be

〈u,v〉ζ = ρF

∫
O\B(ζ)

u · v dx + M lu · lv + Jωu ωv,

which clearly depends on the position of the ball. This fact would considerably com-
plicate the further analysis.

An important ingredient of the numerical method we use is given by the charac-
teristic functions whose level lines are the integral curves of the velocity field. More
precisely (see, for instance, [23], [26]), the characteristic function ψ̃ : [0, T ]2 ×O → O
is defined as the solution of the initial value problem

⎧⎪⎨
⎪⎩

d

dt
ψ̃(t; s,x) = u(ψ̃(t; s,x), t),

ψ̃(s; s,x) = x.

(2.6)

It is well known that the material derivative Dtu = ∂u/∂t + (u · ∇)u of u at instant
t0 satisfies

Dtu(x, t0) =
d

dt

[
u(ψ̃(t; t0,x), t)

]
|t=t0

.(2.7)
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Remark 2.2. By using a classical result of Liouville (see, for instance, Arnold [1,
p. 251]), if

ζ ∈ H2(0, T ), ω ∈ H1(0, T ), u ∈ C([0, T ]; K̂(ζ(t))),

then we have that

detJ
ψ̃

= 1,(2.8)

where we have denoted by

J
ψ̃

=

(
∂ψ̃i

∂yj

)

i,j

the jacobian matrix of the transformation y 
→ ψ̃(y).

2.2. Weak form and semidiscretization scheme. In this subsection we give
a weak form of (1.1)–(1.8) which is then used to discretize the problem with respect
to time.

The fact that (2.9) is called a “weak formulation” of the system (1.1)–(1.8) is
justified by the following result.

Lemma 2.3. Assume that

u ∈ L2(0, T ;H2(Ω(t))) ∩H1(0, T ;L2(Ω(t))) ∩ C([0, T ];H1(Ω(t))),

p ∈ L2(0, T ;H1(Ω(t))),

ζ ∈ H2(0, T ), ω ∈ H1(0, T )

and that u is extended by

u(x, t) = ζ′(t) + ω(t)(x − ζ(t))⊥ ∀x ∈ B(ζ(t)).

Then (u, p, ζ, ω) is the solution of (1.1)–(1.8) if and only if u(t) ∈ K̂(ζ(t)) for all t
and (u, p) satisfies

(2.9)

(
d

dt

[
u ◦ ψ̃

]
(t),ϕ

)
+ 2ν (D(u(t)),D(ϕ)) −

∫
Ω(t)

(divϕ)p(t) dx

= (f(t),ϕ) ∀ϕ ∈ K(ζ(t)).

We skip the proof of Lemma 2.3 since it is similar to the proof of the corresponding
result for the classical Navier–Stokes system (see, for instance, [24, Chap. 12]).

Remark 2.4. In the case of different densities ρF �= ρS , a similar weak statement
can be obtained (see, for instance, [5]). In this case u in the first term of (2.9) should
be replaced by ρu, where ρ = ρF in the fluid and ρ = ρS in the moving solid. Thus
ρ would depend on the time and a transport equation for ρ should be added to the
system.

By using the weak formulation given above we can derive a semidiscrete version
of our system. For N ∈ N

∗ we denote Δt = T/N and tk = kΔt for k = 0, . . . , N .

Denote by (uk, ζk) ∈ K̂(ζk) × R
2 the approximation of the solution of (1.1)–(1.8) at

the time t = tk. We approximate the position of the rigid ball at instant tk+1 by
ζk+1, which is defined by the relation

ζk+1 = ζk + uk(ζk)Δt.(2.10)
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We then define characteristic function ψ associated to the semidiscretized velocity
field as the solution of⎧⎨

⎩
d

dt
ψ(t; tk+1,x) = uk(ψ(t; tk+1,x)),

ψ(tk+1; tk+1,x) = x,

(2.11)

and we denote

X
k
(x) = ψ(tk; tk+1,x) ∀x ∈ O.(2.12)

One can easily check that X
k
(O) = O.

We next define uk+1 ∈ K̂(ζk+1) as the solution of the following Stokes type
system:(

uk+1 − uk ◦ X
k

Δt
,ϕ

)
+ 2ν

(
D(uk+1),D(ϕ)

)
= (fk+1,ϕ) ∀ϕ ∈ K̂(ζk+1),(2.13)

where fk+1 = f(tk+1).
The above equation can be rewritten by using a mixed formulation. To achieve

this, we first define

M(ζ) =
{
p ∈ L2

0(O) | p = 0 in B(ζ)
}
,(2.14)

a(u,v) = 2ν

∫
O

D(u) : D(v) dx ∀u,v ∈ H1(O),(2.15)

b(u, p) = −
∫
O

div(u)p dx ∀u ∈ H1(O), ∀p ∈ L2
0(O).(2.16)

With the above notation, it is clear that (2.13) is equivalent to the system

(
uk+1 − uk ◦ X

k

Δt
,ϕ

)
+ a(uk+1,ϕ) + b(ϕ, pk+1) = (fk+1,ϕ) ∀ϕ ∈ K(ζk+1),

(2.17)

b(uk+1, q) = 0 ∀q ∈ M(ζk+1)(2.18)

of unknowns (uk+1, pk+1) ∈ K(ζk+1) ×M(ζk+1).
Remark 2.5. The requirement p = 0 in B(ζ) for the definition of M(ζ) allows us

to define the form b on the whole domain O. This extension does not affect the form
b since div(u) = 0 in B(ζ) for all u ∈ K(ζ).

It is well known (see, for example, [12, Corollary I.4.1., p. 61]) that the mixed
formulation (2.17), (2.18) is a well-posed problem, provided that the spaces K(ζ),
M(ζ) and the bilinear form b satisfy an inf-sup condition. The fact that this inf-sup
condition is satisfied in our case follows from the result below.

Lemma 2.6. Suppose that ζ ∈ O is such that d(ζ, ∂O) = 1 + η, with η > 0.
Then there exists a constant β > 0, depending only on η and on O, such that for all
q ∈ M(ζ) there exists u ∈ K(ζ) with∫

O
div(u) q dx ≥ β‖u‖H1(O)‖q‖L2(O).(2.19)

The proof of the above result can be obtained by slightly modifying the approach
used for the mixed formulation of the standard Stokes system (see, for instance [12,
p. 81]), so it is left to the reader.
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3. Full discretization and statement of the main result. In order to dis-
cretize the problem (2.17), (2.18) with respect to the space variable we introduce two
families of finite element spaces. We first define a family of finite element spaces that
approximate the space K(ζ) defined in (2.3). Let h denote a discretization parameter,
0 < h < 1, and let P1 be the space of all affine functions in R

2.
Consider a quasi-uniform triangulation Th of O, as defined, for instance, in [2, p.

106] (this assumption will be accepted in the remainder of this paper and will allow
us to make use of inverse estimates). If T ∈ Th is a triangle of vertices x1, x2, and
x3, we denote by ϕ1(x), ϕ2(x), and ϕ3(x) the corresponding barycentric coordinates
of x ∈ R

2 with respect to the vertices x1, x2, and x3 (see, for instance, [4, p. 45]
for the definition of barycentric coordinates). We associate to this triangulation two
classical approximation spaces used in the mixed finite element methods for the Stokes
system. The first space, classically used for the approximation of the velocity field in
the mixed statement of the Stokes system, is denoted by Wh and is defined as the
subspace of H1

0(O) formed by the P1-bubble finite elements associated to Th. More
precisely, ϕ ∈ Wh if and only if

ϕ(x) = ϕ1(x)α1 + ϕ2(x)α2 + ϕ3(x)α3 +
ϕ1(x)ϕ2(x)ϕ3(x)∫

T

ϕ1ϕ2ϕ3 dx

λ ∀ x ∈ T

for some constant vectors α1, α2, α3, λ ∈ R
2. We may notice that all functions in

Wh are continuous.
The second space, classically used for the approximation of the pressure in mixed

statements of the Stokes system, is denoted by Eh and is defined by

Eh =
{
q ∈ C(O)

∣∣ q|T ∈ P1(T )
}
.(3.1)

For our problem we use two spaces that are related to the presence of the rigid
body. The first one, which is used for the approximation of the velocity field, is
denoted by Kh(ζ) and defined by

Kh(ζ) = Wh ∩ K(ζ) ∀ζ ∈ O.

The second one, which is used for the approximation of the pressure, is denoted by
Mh(ζ) and defined by

Mh(ζ) = Eh ∩M(ζ) ∀ζ ∈ O.

We also define the finite element space (see [23])

Rh = {rot ϕh, ϕh ∈ Eh, ϕh = 0 on ∂O}.

We denote by P the orthogonal projection from L2 onto Rh. More precisely, if
u ∈ L2(O), then Pu ∈ Rh satisfies

(u − Pu, rh) = 0 ∀rh ∈ Rh.

Let N be a positive integer. We denote Δt = T/N and tk = kΔt. Assume that
the approximate solution (uk

h, p
k
h, ζ

k
h) of (1.1)–(1.8) at t = tk is known. We describe

below the numerical scheme allowing us to determinate the approximate solution
(uk+1

h , pk+1
h , ζk+1

h ) at t = tk+1. First, we compute ζk+1
h ∈ R

2 by

ζk+1
h = ζk

h + uk
h(ζk

h)Δt.(3.2)
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We denote by Puk
h the projection of uk

h onto Rh. Then we define the characteristic

function ψ
k

h associated to the fully discretized velocity field as the solution of

⎧⎪⎨
⎪⎩

d

dt
ψ

k

h(t; tk+1,x) = Puk
h(ψ

k

h(t; tk+1,x)),

ψ
k

h(tk+1; tk+1,x) = x.

(3.3)

We also define

X
k

h(x) = ψ
k

h(tk; tk+1,x) ∀x ∈ O,(3.4)

and as for the problem (2.11), one can check that X
k

h(O) = O (see Remark 3.1 below).

Then we define (uk+1
h , pk+1

h ) ∈ Kh(ζk+1
h )×Mh(ζk+1

h ) as the solution of the prob-
lem

(
uk+1
h − uk

h ◦ X
k

h

Δt
,ϕ

)
+ a(uk+1

h ,ϕ) + b(ϕ, pk+1
h ) = (fk+1

h ,ϕ) ∀ϕ ∈ Kh(ζk+1
h ),

(3.5)

b(uk+1
h , q) = 0 ∀q ∈ Mh(ζk+1

h ),(3.6)

where fk+1
h is the L2-projection of fk+1 = f(tk+1) on (Eh)2. We take ζ0

h = ζ0, and

the initial approximate velocity u0
h is the H1

0-projection of u0 onto Kh(ζ0
h).

Remark 3.1. In (3.3), we use the projection of uk
h on Rh rather than the function

uk
h itself because div(Puk

h) = 0 in O. By using a classical result of Liouville, this
implies that detJ

ψ
k

h

= 1 and in particular that detJ
X

k

h

= 1. This property, combined

with the fact that the velocity field Puk
h vanishes along the boundary ∂O, entails the

invariance property of the whole domain O through X
k

h, i.e., X
k

h(O) = O. Moreover,
since Puk

h is constant in each triangle, the initial value problem (3.3) can be solved
exactly.

In what follows, we suppose that

f ∈ C([0, T ];H1(O)), u0 ∈ H2(Ω), div(u0) = 0 in Ω,

u0 = 0 on ∂O, u0(y) = ζ1 + ω0(y − ζ0)
⊥ on ∂B.

(3.7)

The corresponding solution (u, p, ζ, ω) of problem (1.1)–(1.8) will be assumed to sat-
isfy the following regularity hypotheses:

⎧⎪⎨
⎪⎩

u ∈ C([0, T ];H2(Ω(t))) ∩H1(0, T ;L2(Ω(t))),

D2
tu ∈ L2(0, T ;L2(Ω(t))), u ∈ C([0, T ]; C0,1(O))

p ∈ C([0, T ];H1(Ω(t))), ζ ∈ H3(0, T ), ω ∈ H2(0, T ).

(3.8)

Moreover, we assume that

dist(B(t), ∂O) > 0 ∀t ∈ [0, T ].(3.9)

The hypotheses (3.8) and (3.9) imply the existence of η > 0 such that

dist(B(t), ∂O) > 3η ∀t ∈ [0, T ].(3.10)
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Theorem 3.2. Let C0 > 0 be a fixed constant. Suppose that O is the interior of
a convex polygon and that (u, p, ζ, ω) is a solution of (1.1)–(1.8) satisfying (3.8) and

(3.9). Moreover, assume that f and u0 satisfy (3.7). Consider the functions ζk
h, uk

h,
and pkh defined in this section. Then there exist two positive constants C and τ∗ not

depending on h and Δt such that for all 0 < Δt � τ∗ and for all h � C0 (Δt)
2

we
have

sup
1�k�N

(
|ζ(tk) − ζk

h| + ‖u(tk) − uk
h‖L2(O)

)
� CΔt.

Remark 3.3. For the Navier–Stokes system, the same type of result is obtained
in [23] for h � C0Δt and in [26] for h2 � C0Δt � C1h

σ and σ > 1/2 (for h and Δt
small enough).

Remark 3.4. It can be easily checked, by using the fact that detJ
ψ

k

h

= 1, that

our method is unconditionally stable.

4. Some properties of the finite element spaces. Next we give some techni-
cal results on the finite element spaces introduced above. Throughout this section we
consider ζ ∈ O such that dist(B(ζ), ∂O) > 2η and we suppose that h < η. Therefore,
we have that

dist(B(ζ), ∂O) > 2h.(4.1)

Notice that, by definition, if q ∈ Mh(ζ), then q = 0 in B(ζ). Since q is a P1 function
in each triangle, it follows that q|Ah

= 0, where

Ah =
⋃

T∈Th
◦
T∩

◦
B(ζ) �=∅

T.

Moreover, if we denote by Qh the union of all triangles T ∈ Th such that the three
vertices of T are contained in Ah, then, by using again the fact that q is a P1 function
in each triangle, it follows that

q|Qh
= 0 ∀ q ∈ Mh(ζ).

A similar argument shows that

D(u)|Ah
= 0 ∀ u ∈ Kh(ζ).

In order to study the properties of the spaces Kh(ζ) and Mh(ζ) defined above we
divide the triangles in Th into four categories. These categories are defined as follows
(see Figure 1):

• F1 is the subset of Th formed by all triangles T ∈ Th such that T ⊂ B(ζ).
• F2 is the subset formed by all triangles T ∈ Th \ F1 such that T ⊂ Qh.
• F3 is the subset formed by all triangles T ∈ Th such that T ∩ Qh �= ∅ and
T �⊂ Qh.

• F4 = Th \ (F1 ∪ F2 ∪ F3).
Lemma 4.1. There exists a positive constant C1 (not depending on the position

of B(ζ)) such that

inf
vh∈Kh(ζ)

‖v − vh‖L2(O) � C1h
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,

inf
vh∈Kh(ζ)

‖v − vh‖H1(O) � C1

√
h
(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,

for all v ∈ K(ζ) ∩H2(O \B(ζ)).
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F
F

F3

1
2 

F4 

F1

F2

F3

F4

This kind of triangle is
not included in Ah since
T ∩ B = ∅, but it is
included in Qh since its
three vertices are in Ah.

Fig. 1. Splitting of the triangulation into four families of triangles.

Proof. Let v ∈ K(ζ) ∩H2(O \B(ζ)). This means, in particular, that

v(x) = l + ωx⊥ ∀ x ∈ B(ζ),

for some l ∈ R
2 and ω ∈ R. In the remaining part of this section we denote

R(x) = l + ωx⊥ ∀ x ∈ R
2.

We denote by vIh the unique function in (Eh)
2

which agrees with v at every node
xj of the triangulation Th (recall the definition of Eh in (3.1)). Then we consider the

function vh ∈ (Eh)
2

whose value in a node xj of Th is defined by

vh(xj) =

{
R(xj) if xj ∈ Ah,
vIh(xj) if xj �∈ Ah.

Since vh is affine in each triangle, it follows that

vh(x) = R(x) ∀ x ∈ Qh.(4.2)

We will show that there exists a positive constant C1 (not depending on the
position of B(ζ)) such that

‖v − vh‖L2(O) � C1h
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,(4.3)

‖v − vh‖H1(O) � C1

√
h
(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.4)

In order to prove the above inequalities, we divide the domain O into four parts:

O = B(ζ) ∪ (Qh \B(ζ)) ∪
( ⋃

T∈F3

T

)
∪
( ⋃

T∈F4

T

)
.

Let us first remark that

v = R in B(ζ).(4.5)



1546 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

On the other hand it is clear that Qh is contained in the closed ball of center ζ and
radius 1 + h, denoted by Bh(ζ). Let us remark that the ball Bh(ζ) is included in the
domain O due to condition (4.1). According to a classical result (see, for instance,
Lemma 5.11 in Fujita and Sauer [10]), there exists a universal constant C > 0, such
that for all ϕ ∈ H1(O \B(ζ)),

‖ϕ‖L2(Bh(ζ)\B(ζ)) ≤ C
(√

h‖ϕ‖L2(∂B(ζ)) + h‖∇ϕ‖[L2(Bh(ζ)\B(ζ))]4

)
.(4.6)

The above relation with ϕ = v − R and (4.5) imply that

‖v − R‖L2(Bh(ζ)\B(ζ)) � Ch ‖∇ (v − R)‖[L2(Bh(ζ)\B(ζ))]4 .(4.7)

By again applying Lemma 5.11 in [10] (this time for the function ∇ (v − R)), we
obtain that

‖∇ (v − R)‖[L2(Bh(ζ)\B(ζ))]4 � C
(√

h ‖∇ (v − R)‖[L2(∂B(ζ))]4

+ h ‖∇ (v − R)‖[H1(O\B(ζ))]4

)
.

The above inequality, combined with the trace theorem in Sobolev spaces, gives that

‖∇ (v − R)‖[L2(Bh(ζ)\B(ζ))]4 ≤ C
√
h‖v − R‖H2(O\B(ζ)).(4.8)

From (4.7) and (4.8) it follows that

‖v − R‖L2(Bh(ζ)\B(ζ)) � Ch
3
2 ‖v − R‖H2(O\B(ζ)).(4.9)

The above relation implies, by using the fact that Qh ⊂ Bh(ζ) and (4.2), that

‖v − vh‖L2(Qh\B(ζ)) ≤ Ch
3
2 ‖v − R‖H2(O\B(ζ)).(4.10)

Consequently, we have that

‖v − vh‖L2(Qh\B(ζ)) � C1h
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.11)

On the other hand, (4.8) and (4.9) imply that

‖v − R‖H1(Bh(ζ)\B(ζ)) ≤ Ch
1
2 ‖v − R‖H2(O\B(ζ)).

The above relation implies, by using the fact that Qh ⊂ Bh(ζ) and (4.2), that

‖v − vh‖H1(Qh\B(ζ)) ≤ Ch
1
2 ‖v − R‖H2(O\B(ζ)),

which clearly implies

‖v − vh‖H1(Qh\B(ζ)) ≤ C
√
h
(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.12)

Let us now consider a triangle T ∈ F3. In order to estimate the restriction of
v − vh to T we use the interpolating function vIh. More precisely, we have

‖v − vh‖α ≤ ‖v − vIh‖α + ‖vIh − vh‖α, α ∈ {0, 1},(4.13)
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where ‖ · ‖α stands for the L2-norm or the H1-norm on T . We first estimate the
second term in the right-hand side of (4.13). Since the function vIh − vh is affine in
T , we have

vIh(x) − vh(x) =

3∑
i=1

(vIh(xi) − vh(xi))ϕi(x),

where (xi) are the nodes of T and (ϕi) are the corresponding Lagrange barycentric
functions. We have

‖vIh − vh‖α ≤
3∑

i=1

|vIh(xi) − vh(xi)| ‖ϕi‖α.(4.14)

A simple calculation shows that

‖ϕi‖L2(T ) ≤ Ch(4.15)

and

‖∇ϕi‖L2(T ) ≤ C.(4.16)

Since the mesh is quasi-uniform, the constant C can be chosen independent of the
triangle. We now estimate |vIh(xi) − vh(xi)|. Since T �⊂ Qh, it follows that T has
at most two nodes in Qh and, consequently, at least one node such that vIh(xi) −
vh(xi) = 0. Therefore we tackle only the nodes in Qh. If xi is a node in Qh, then

|vIh(xi) − vh(xi)| = |v(xi) − R(xi)| .(4.17)

Relations (4.14), (4.15), and (4.17) imply that

‖vIh − vh‖L2(T ) � Ch ‖v − R‖L∞(T )

� Ch
(
‖v − vIh‖L∞(T ) + ‖vIh − R‖L∞(T )

)
.

By using a classical interpolation error (see, for example, [2, Corollary 4.4.7]) and
an inverse estimate (see, for example, [2, Lemma 4.5.3]), the above inequality yields

‖vIh − vh‖L2(T ) � Ch
(
h ‖v‖H2(T ) + h−1 ‖vIh − R‖L2(T )

)
,

which implies that

‖vIh − vh‖L2(T ) � C
(
h2 ‖v‖H2(T ) + ‖vIh − v‖L2(T ) + ‖v − R‖L2(T )

)

� C
(
h2 ‖v‖H2(T ) + ‖v − R‖L2(T )

)
.

Above we have used again a classical result on the interpolation error (see, for example,
[2, Theorem 4.4.4]).

Now, summing up the above relation for all triangles T ∈ F3 we obtain that

‖vIh − vh‖
L2

(⋃
T∈F3

T

) � C

⎛
⎝h2 ‖v‖H2(O\B(ζ)) + ‖v − R‖

L2

(⋃
T∈F3

T

)
⎞
⎠ .(4.18)
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In order to estimate the last term in the right-hand side of (4.18) we proceed as
previously by introducing the closed ball B2h(ζ) of center ζ and radius 1 + 2h. This
ball is included in O thanks to (4.1). It is clear that all triangles of F3 are contained
in B2h(ζ) \ B(ζ). Then we can once again use Lemma 5.11 in Fujita and Sauer [10]
and prove an estimate similar to (4.9), namely,

‖v − R‖L2(B2h(ζ)\B(ζ)) � Ch
3
2 ‖v − R‖H2(O\B(ζ)).(4.19)

From (4.18) and (4.19) we deduce that

‖vIh − vh‖
L2

(⋃
T∈F3

T

) � Ch
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.20)

The above relation, combined with (4.13) and with an interpolation error estimate
(see [2, Theorem 4.4.4]), implies that

‖v − vh‖
L2

(⋃
T∈F3

T

) � Ch
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.21)

Now we turn to the H1-estimate for the family F3 of triangles. From the usual inverse
inequality (see [2, Lemma 4.5.3]) and the L2-estimate (4.20) we obtain

‖∇ (vIh − vh)‖[
L2

(⋃
T∈F3

T

)]4 ≤ C1h
1
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,(4.22)

which implies, together with (4.13) and an interpolation error estimate (see [2, The-
orem 4.4.4]), that

‖∇ (v − vh)‖[
L2

(⋃
T∈F3

T

)]4 ≤ C1h
1
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.23)

Finally, we consider the case of the triangle family F4. Interpolation error esti-
mates lead to

‖v − vh‖
L2

(⋃
T∈F4

T

) ≤ C1h
2‖v‖H2(O\B(ζ))(4.24)

and

‖∇ (v − vh)‖
L2

(⋃
T∈F4

T

) ≤ C1h‖v‖H2(O\B(ζ)).(4.25)

Relations (4.11), (4.21), (4.24) and the fact that v = vh in B(ζ) imply (4.3). More-
over, (4.12), (4.23), (4.25) and the fact that v = vh in B(ζ) imply (4.4).

Lemma 4.2. There exists a positive constant C2 (independent of the position of
B(ζ)) such that

inf
qh∈Mh(ζ)

‖q − qh‖L2(O) � C2h
1
2 ‖q‖H1(O\B(ζ))(4.26)

for all q ∈ M(ζ) ∩H1(O \B(ζ)).
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Proof. The proof of this lemma is similar to that of Lemma 4.1. Consider a
function q ∈ M(ζ) ∩H1(O \B(ζ)). According to a classical result (see, for example,
[3, Theorem IX.7]), there exists q̃ ∈ H1(O) such that

q̃|O\B(ζ) = q, ‖q̃‖H1(O) ≤ C‖q‖H1(O\B(ζ)),(4.27)

and it can be proved that we can choose the constant C independent of the position of
B(ζ). Moreover, by a classical interpolation argument (see, for example, [2, Theorem
4.4.4]), there exists q̃h ∈ Eh such that

‖q̃ − q̃h‖L2(O) ≤ Ch‖q̃‖H1(O).

The above relation and (4.27) clearly imply that there exists a constant C > 0 such
that

‖q − q̃h‖L2(O\B(ζ)) ≤ Ch‖q‖H1(O\B(ζ)).(4.28)

Denote by qh the function in Eh satisfying the conditions

qh(xi) = 0 if xi ∈ Ah,

qh(xi) = q̃h(xi) if xi ∈ Th \Ah.

Then as in the proof of Lemma 4.1, we can show that

‖q − qh‖L2(O) � C2h
1
2 ‖q‖H1(O\B(ζ)).

We next show that the finite element spaces Kh(ζ), Mh(ζ) and the bilinear form
b satisfy a discrete inf-sup condition. This proves in particular that the approximate
problem (3.5)–(3.6) is well-posed (see [12, Theorem II.1.1., p. 114]). More precisely,
the following result holds.

Lemma 4.3. There exists a constant β∗ > 0 such that for all qh ∈ Mh(ζ) there
exists uh ∈ Kh(ζ) with

∫
O

div(uh)qh dx � β∗‖uh‖H1(O)‖qh‖L2(O).(4.29)

Proof. Let qh ∈ Mh(ζ). Since Mh(ζ) ⊂ M(ζ), Lemma 2.6 yields the existence of
u ∈ K(ζ) such that

∫
O

div(u)qh dx � β‖u‖H1(O)‖qh‖L2(O),

with β independent of qh. In order to prove the conclusion of the lemma it suffices to
show the existence of uh ∈ Kh(ζ) such that

∫
O

div(uh)qh dx =

∫
O

div(u)qh dx,(4.30)

‖uh‖H1(O) � C‖u‖H1(O),(4.31)

where C is a constant independent of qh.
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Note that (4.30) is equivalent to

∫
O

uh · ∇qh dx =

∫
O

u · ∇qh dx.

Since ∇qh is constant in each triangle and vanishes in any triangle from F1 ∪ F2, in
order to check (4.30), it suffices to show that

∫
T

uh dx =

∫
T

u dx ∀ T ∈ F3 ∪ F4.(4.32)

Note first that if uh ∈ Kh(ζ), then for any triangle T ∈ Th of vertices x1, x2, x3 and
of corresponding barycentric functions ϕ1, ϕ2, ϕ3, we have

uh(x) = uh(x) +
ϕ1(x)ϕ2(x)ϕ3(x)∫

T

ϕ1ϕ2ϕ3 dx

λ ∀ x ∈ T,(4.33)

where uh ∈ C(O) satisfies

uh(x) = ϕ1(x)α1 + ϕ2(x)α2 + ϕ3(x)α3 ∀ x ∈ T,(4.34)

for some constant vectors α1, α2, α3, λ ∈ R
2 (these constants depend on the triangle

T ). Notice that, since the restriction of uh to triangles in F1 ∪ F2 is a rigid velocity
field, the constant λ in (4.33) is equal to zero for all triangles in F1∪F2. If uh satisfies
(4.34) and T ∈ F3 ∪ F4, then condition (4.32) holds provided that

λ =

∫
T

(u − uh) dx ∀ T ∈ F3 ∪ F4.(4.35)

Some simple calculations show that there exists a constant C > 0 (independent of the
triangle) such that

∥∥∥∥∥∥∥∥
ϕ1ϕ2ϕ3∫

T

ϕ1ϕ2ϕ3 dx

∥∥∥∥∥∥∥∥
H1(T )

� C

h2
.(4.36)

Moreover, (4.35) and the Cauchy–Schwarz inequality imply that

|λ| � Ch‖u − uh‖L2(T ) ∀ T ∈ F3 ∪ F4,(4.37)

for some constant C. From (4.33), (4.36), and (4.37) it follows that

‖uh‖H1(T ) � ‖uh‖H1(T ) +
C

h
‖u − uh‖L2(T ) ∀ T ∈ F3 ∪ F4.(4.38)

The remaining part of the proof is devoted to the construction of uh such that uh

satisfies (4.31). According to a classical result (see, for instance, [12, Theorem I.A.2.,
p. 101]), there exists a function uc

h ∈ C(O) which is affine in each triangle T ∈ Th
such that

‖u − uc
h‖L2(T ) ≤ Ch‖u‖H1(T ),(4.39)
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‖uc
h‖H1(T ) ≤ C‖u‖H1(T ),(4.40)

with the constant C independent of h. We are now in a position to define uh. This
function is defined by

uh(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uc
h(x) if x ∈

⋃
T∈F4

T ,

R(x) if x ∈
⋃

T∈F1∪F2

T,
(4.41)

where R is the extension of u|B(ζ) (which is a rigid velocity field) to R
2. We remark

that relation (4.41) also defines the values of uh in the triangles of F3. Indeed, the
vertices of each triangle in F3 are also vertices of a triangle in either F2 or in F4. In
order to prove (4.31) we estimate the terms in the right-hand side of (4.38). We first
consider a triangle T ∈ F4. By using the fact that uh = uc

h in T , (4.39), and (4.40),
we obtain that

‖uh‖H1(T ) +
1

h
‖u − uh‖L2(T ) ≤ C‖u‖H1(T ) ∀ T ∈ F4,(4.42)

with the constant C independent of u. We next consider a triangle T ∈ F3. We first
notice that

(4.43) ‖uh‖H1(T ) +
1

h
‖u − uh‖L2(T ) ≤ ‖uc

h‖H1(T ) +
1

h
‖u − uc

h‖L2(T )

+ ‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) ∀ T ∈ F3.

The first two terms in the right-hand side of (4.43) can be directly estimated by using
(4.39) and (4.40). Moreover, by using inverse estimates (see, for example, [2, Lemma
4.5.3]), there exists a positive constant C independent of h such that

‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) � C ‖uc
h − uh‖L∞(T ) ∀ T ∈ F3.

The above relation and the fact that uh is equal either to R or to uc
h in the vertices

of a triangle T ∈ F3 imply that

‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) ≤ C ‖uc
h − R‖L∞(T ) ∀ T ∈ F3.

The above inequality, combined once again with an inverse inequality, implies that

‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) ≤
C

h
‖uc

h − R‖L2(T ) ∀ T ∈ F3.(4.44)

On the other hand,

‖uc
h − R‖L2(T ) ≤ ‖uc

h − u‖L2(T ) + ‖u − R‖L2(T ) ∀ T ∈ F3.(4.45)

Combining (4.39), (4.45), (4.44), and (4.43), we obtain

‖uh‖H1(T ) +
1

h
‖u − uh‖L2(T ) ≤ C‖u‖H1(T ) +

C

h
‖u − R‖L2(T ) ∀ T ∈ F3.

(4.46)
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We recall that all triangles of F3 are contained in B2h(ζ)\B(ζ). Therefore, by taking
the sum of the above relations for all T ∈ F3 and by using (4.6), combined with the
fact that u = R on ∂B(ζ), we obtain

‖uh‖
H1

(⋃
T∈F3

T

) +
1

h
‖u − uh‖

L2

(⋃
T∈F3

T

) ≤ C‖u‖H1(B2h(ζ)\B(ζ)).(4.47)

Now by combining (4.42) and (4.47) in (4.38), we obtain

‖uh‖
H1

(⋃
T∈F3∪F4

T

) ≤ C‖u‖H1(O\B(ζ)).(4.48)

We next consider the triangles T ∈ F1 ∪F2. By using the fact that uh = uh = R
in T , we obtain that

‖uh‖
H1

(⋃
T∈F1∪F2

T

) = ‖R‖
H1

(⋃
T∈F1∪F2

T

).

A simple calculation shows that the right-hand side of the above relation is bounded
by C‖u‖H1(B(ζ)), where C is a constant independent of h. We thus obtain

‖uh‖
H1

(⋃
T∈F1∪F2

T

) ≤ C‖u‖H1(B(ζ)).(4.49)

If we join (4.48) and (4.49), we see that the function uh satisfies (4.31). This concludes
the proof of the lemma.

Now, we are in position to introduce a projector in Kh(ζ)×Mh(ζ) that will be a
key ingredient in the proof of the convergence result.

Lemma 4.4. Suppose that V ∈ K(ζ) and that P ∈ M(ζ). Then there exists a
unique couple (Vh, Ph) in Kh(ζ) ×Mh(ζ) such that

{
a (V − Vh,ϕ) + b (ϕ, P − Ph) = 0 ∀ ϕ ∈ Kh(ζ),

b (V − Vh, q) = 0 ∀ q ∈ Mh(ζ).
(4.50)

Moreover, if we suppose in addition that V|O\B(ζ) ∈ H2 (O \B(ζ)) and that P|O\B(ζ) ∈
H1 (O \B(ζ)), then there exists a positive constant C such that

‖V − Vh‖L2(O) � Ch.

Proof. The result in Lemma 4.3 combined with Theorem 1.1 in [12, p. 114] implies
the existence and uniqueness of (Vh, Ph) in Kh(ζ)×Mh(ζ), satisfying (4.50) together
with

‖V−Vh‖H1(O)+‖P−Ph‖L2(O) � C

{
inf

v∈Kh(ζ)
‖V − v‖H1(O) + inf

q∈Mh(ζ)
‖P − q‖L2(O)

}
.

Using Lemmas 4.1 and 4.2, we obtain

‖V − Vh‖H1(O) + ‖P − Ph‖L2(O) � Ch1/2
{
‖V‖H2(O\B) + ‖V‖H2(B) + ‖P‖H1(O)

}
.

Moreover, by applying the usual Aubin–Nitsche duality argument (see, for example,
[12, p. 119]), one can easily prove

‖V − Vh‖L2(O) � Ch
{
‖V‖H2(O\B) + ‖V‖H2(B) + ‖P‖H1(O)

}
.
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5. Definition and properties of the change of variables. In order to prove
Theorem 3.2, we should be able to compare the exact solution, which is rigid in the
ball B(ζ(tk)), with the approximate solution, which is rigid in the ball B(ζk

h). This
will be achieved by the use of a change of variables that maps the exact ball onto the
approximate one. This section is devoted to the description and main properties of
this transformation.

5.1. Change of variables. In this section, we suppose that O is convex. In
what follows, we need a change of variables, transforming a function in K̂(ζ1) into a

function in K̂(ζ2), where ζi ∈ O are such that

dist(ζi, ∂O) > 1 + 2η, i ∈ {1, 2}, with η > 0.(5.1)

In this case, B(ζi) is contained in O and the distance between B(ζi) and ∂O is greater
than 2η. Let ξ ∈ C∞(R2,R) be a compactly supported function such that

• ξ = 1 if x ∈ O and dist(x, ∂O) > 2η,
• ξ = 0 if x �∈ O or dist(x, ∂O) � η.

Let Λ be the mapping defined by

Λ(x) =
[
(ζ1 − ζ2) · x⊥] (rot ξ) + ξ(ζ1 − ζ2) ∀x ∈ R

2.(5.2)

We need several properties of the field Λ and of the associated flow. Since these
properties are similar to those proved in [27] we state them here without proof.

Lemma 5.1. Let Λ be the mapping defined by (5.2). Then we have
(i) Λ = 0 outside O,
(ii) divΛ = 0 in R

2,
(iii) Λ(x) = ζ1 − ζ2 if x ∈ O and if dist(x, ∂O) > 2η.
In other words, the restriction of Λ to a neighborhood of ∂O is zero and Λ is a

translation when restricted to points of O at distance to ∂O larger than 2η.
We consider next the initial value problem⎧⎪⎨

⎪⎩
d

dλ
ψ(λ) = Λ(ψ(λ)), λ > 0,

ψ(0) = y,

(5.3)

with Λ given by (5.2).
Lemma 5.2. For all y ∈ R

2, the initial value problem (5.3) admits a unique
solution ψ(λ,y) on [0, 1]. Denote

Xζ2,ζ1
(y) = X(y) = ψ(1,y).(5.4)

Then X is a C∞-diffeomorphism from O onto itself, and X(B(ζ2)) = B(ζ1). If we
denote by

JX =

(
∂Xi

∂yj

)
i,j

the jacobian matrix of the transformation y 
→ X(y), then the above change of vari-
ables satisfies

detJX(y) = 1 ∀y ∈ R
2.(5.5)

We denote by

Yζ2,ζ1
= Y = X−1(5.6)

the inverse of X on O.
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5.2. Properties of the change of variables. In this subsection, we use the
change of variables defined by the mapping X in Lemma 5.2 to transform functions
in K̂(ζ1) (resp., K(ζ1), M(ζ1)) into functions in K̂(ζ2) (resp., K(ζ2), M(ζ2)). We
also give the expressions of Δu and ∇p after the transformation.

Consider (u, p) ∈ H1(O) × L2(O) and define as in [18] the functions (U, P ) ∈
H1(O) × L2(O) by

U(y) = JY(X(y))u(X(y)) ∀y ∈ O,(5.7)

P (y) = p(X(y)) ∀y ∈ O.(5.8)

We can easily check, by using the definition of Λ, that

X(y) = y + ζ1 − ζ2 ∀y ∈ B(ζ2),(5.9)

Y(x) = x − ζ1 + ζ2 ∀x ∈ B(ζ1),(5.10)

Consequently, if u ∈ K(ζ1), then U ∈ K(ζ2) and if p ∈ M(ζ1), then P ∈ M(ζ2).
By using (5.5), we obtain the following result (see, for instance, [18, Proposition

2.4]).
Lemma 5.3. If X is defined by (5.4), then for all u ∈ H1(O), the function U

defined as above satisfies the relation

div [U(y)] = div [u(X(y))] ∀y ∈ O.

This lemma implies in particular that if u ∈ K̂(ζ1), then U ∈ K̂(ζ2).
In order to write down the expressions of Δu and ∇p after the change of variables,

we define (see [18])

(5.11) [LU]i =
∑
j,k

∂

∂yj

(
gjk

∂Ui

∂yk

)
+ 2
∑
j,k,l

gklΓi
jk

∂Uj

∂yl

+
∑
j,k,l

{
∂

∂yk
(gklΓi

jl) +
∑
m

gklΓm
jlΓ

i
km

}
Uj ,

[GP ]i =

2∑
j=1

gij
∂P

∂yj
,(5.12)

where we denote (see, for instance, [7])

gij =
∑
k

∂Yi

∂xk

∂Yj

∂xk
(metric contravariant tensor),(5.13)

gij =
∑
k

∂Xk

∂yi

∂Xk

∂yj
(metric covariant tensor),(5.14)

and

Γk
ij =

1

2

∑
l

gkl
{
∂gil
∂yj

+
∂gjl
∂yi

− ∂gij
∂yl

}
(Christoffel symbol).(5.15)

We are now in position to write down the expressions of Δu and ∇p after the
change of variables (see again [18] for details).
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Proposition 5.4. Suppose that

(u, p) ∈ H2(O \B(ζ1)) ×H1(O \B(ζ1)).

Then, we have that

(U, P ) ∈ H2(O \B(ζ2)) ×H1(O \B(ζ2)).

Moreover, for all y ∈ O \B(ζ2), we have that

[LU](y) = JY(X(y)) [(Δu) ◦ X] (y), [GP ](y) = JY(X(y)) [(∇p) ◦ X] (y).

In the remaining part of this section, we denote by C a positive constant which
may depend only on ξ and O. We give below (without proofs) several estimates of
the dependence of the change of variables defined in (5.4) on the points ζ1 and ζ2.
For the proofs of these estimates, we refer to [27] and [28].

Lemma 5.5. Let Λ be the function defined by (5.2). Then, for all ζ1, ζ2 ∈ O
satisfying (5.1) we have

‖Λ‖L∞(O) � C |ζ1 − ζ2| , ‖∇Λ‖[L∞(O)]4 � C |ζ1 − ζ2| ,

∥∥∥∥ ∂2Λ

∂xi∂xj

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| ,
∥∥∥∥ ∂3Λ

∂xi∂xj∂xk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| .

Lemma 5.6. Let Λ, ζ1, ζ2 be as in Lemma 5.5. Then the functions X and Y
defined by (5.4) and (5.6) satisfy the following inequalities:

‖X‖L∞(O) � C, ‖Y‖L∞(O) � C,

‖JX − Id‖[L∞(O)]4 � C |ζ1 − ζ2| , ‖JY − Id‖[L∞(O)]4 � C |ζ1 − ζ2| ,∥∥∥∥ ∂2Yi

∂xj∂xk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| ,
∥∥∥∥ ∂2Xi

∂yj∂yk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| ,

∥∥∥∥ ∂3Yi

∂xj∂xl∂xk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| ,
∥∥∥∥ ∂3Xi

∂yj∂yl∂yk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| .

Lemma 5.7. Let Λ, ζ1, ζ2 be as in Lemma 5.5. Moreover, suppose that

(U, P ) ∈ H2(O \B(ζ2)) ×H1(O \B(ζ2))

and that L and G are given by (5.11) and (5.12). Then we have

(i) ‖ν[(L − Δ)U]‖L2(O\B(ζ2))
� C |ζ1 − ζ2| ‖U‖H2(O\B(ζ2))

,
(ii) ‖[(∇− G)P ]‖L2(O\B(ζ2))

� C |ζ1 − ζ2| ‖P‖H1(O\B(ζ2))
.

6. Consistency of the fully discretized scheme. This section is devoted
to the consistency of our fully discretized scheme. The main result in this section
asserts that the solution (u, p, ζ, ω) of (1.1)–(1.8) satisfies the scheme (3.2)–(3.6) with
consistency errors that will be estimated. Since (u(tk), p(tk)) belongs to K(ζ(tk)) ×
M(ζ(tk)) and not to K(ζk

h) ×M(ζk
h), we need the change of variables introduced in

the previous section.
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6.1. Consistency in time. In this subsection we show that the exact values
at instants t = tk of a strong solution of (1.1)–(1.8) satisfy a perturbed version
of the semidiscretized problem introduced in subsection 2.2 and we estimate these
perturbations with respect to the time step. The precise statement is given in Lemma
6.1 below.

Consider the solution (u, p, ζ, ω) of (1.1)–(1.8) and assume that (3.8) and (3.10)
hold. In what follows, we will use the notation

X̃(x) = ψ̃(tk; tk+1,x) ∀x ∈ O,(6.1)

where ψ̃ is defined by relation (2.6). Note that X̃(O) = O.
Let εk, δk, αk, βk, γk be quantities defined by

εk = ζ(tk+1) − ζ(tk) − ζ′(tk)Δt,(6.2)

δk(t,x) = u(ψ̃(t; tk+1,x), t) − u(ψ̃(t; tk+1,x), tk),(6.3)

αk =
u(tk+1) − u(tk) ◦ X̃

Δt
− d

dt

[
u ◦ ψ̃

]
(tk+1),(6.4)

βk =
ζ′(tk+1) − ζ′(tk)

Δt
− ζ′′(tk+1),(6.5)

γk =
ω′(tk+1) − ω′(tk)

Δt
− ω′′(tk+1).(6.6)

By using the fact that u (ζ(tk), tk) = ζ′(tk) and relations (2.6), (1.1), (1.5), and
(1.6) together with the above definitions, we infer that the exact solution (u, p, ζ, ω)
satisfies

ζ(tk+1) = ζ(tk) + u (ζ(tk), tk)Δt + εk,(6.7)

⎧⎪⎨
⎪⎩

d

dt
ψ̃(t; tk+1,x) = u

(
ψ̃(t; tk+1,x), tk

)
+ δk(t,x),

ψ̃(tk+1; tk+1,x) = x

(6.8)

for all x ∈ O and for all t ∈ [tk, tk+1], together with

u(tk+1) − u(tk) ◦ X̃

Δt
− νΔu(tk+1) + ∇p(tk+1) = fk+1 + αk in O \B(ζ(tk+1)),

(6.9)

M
ζ′(tk+1) − ζ′(tk)

Δt
= −

∫
∂B(ζ(tk+1))

σ(tk+1)n dΓ +

∫
B(ζ(tk+1))

fk+1 dx + βk,

(6.10)

(6.11) J
ω(tk+1) − ω(tk)

Δt
= −

∫
∂B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · σ(tk+1)n dΓ

+

∫
B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · fk+1 dx + γk.
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Moreover, if we denote

θ(t) =

∫ t

0

ω(s) ds

and by Rθ the rotation matrix of angle θ, then we also define the matrix Ek by

Rθ(tk+1)−θ(tk) = Id − Δt ω(tk+1)R−π/2 + Ek.(6.12)

By using the Taylor–Lagrange inequality, we easily obtain the following consis-
tency error estimates.

Lemma 6.1. The elements αk, βk, γk, δk, εk, and Ek defined by (6.2)–(6.6)
satisfy the following inequalities:

|εk| � C (Δt)
2
, ‖δk‖L2(O×(tk,tk+1)) � CΔt

∥∥∥∥∂u∂t
∥∥∥∥
L2(O×(tk,tk+1))

,

‖αk‖L2(O) � C
√

Δt

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

,

|βk| � CΔt, |γk| � CΔt, |Ek| � C (Δt)
2
.

(6.13)

6.2. Transformed system. We need to compare u(tk) ∈ K(ζ(tk)), which is a
rigid velocity field in B(ζ(tk)), with uk

h ∈ K(ζk
h), which is a rigid velocity field in

B(ζk
h). This will be done by using the change of variables introduced in section 5.1.

To this end, we suppose that |ζk
h − ζ(tk)| < η. This hypothesis and (3.10) imply that

dist(B(ζ(tk)), ∂O) > 2η.(6.14)

With this assumption, we can transform u(tk) by using the change of variables intro-
duced in section 5.1: we denote (see (5.4), (5.6))

Xk = Xζk
h
,ζ(tk), Yk = Yζk

h
,ζ(tk).(6.15)

We also define (see (5.7) and (5.8))

Uk(y) = JYk(Xk(y))u
(
Xk(y), tk

)
, P k(y) = pk(Xk(y)),

Sk = −P k Id + 2νD(Uk), Fk(y) = JYk(Xk(y))f(Xk(y), tk).
(6.16)

We recall that, according to Lemma 5.3, Uk ∈ K̂(ζk
h) and P k ∈ M(ζk

h). We introduce
the following notation that will be useful in what follows:

X̂ = Yk ◦ X̃ ◦ Xk+1(6.17)

and

Ĵ =
(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
.(6.18)

Before stating the main result of this section, we give some properties on the
characteristics. First note that, according to Lemma 5.2, we have

Xk+1(B(ζk+1
h )) = B(ζ(tk+1)),(6.19)
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Yk(B(ζ(tk))) = B(ζk
h).

Moreover, we can easily check that the function X̃ defined by (6.1) satisfies

X̃(x) = ζ(tk) + Rθ(tk+1)−θ(tk)(x − ζ(tk+1)) ∀x ∈ B(ζ(tk+1)).(6.20)

Consequently, we have

X̃(B(ζ(tk+1))) = B(ζ(tk)),

and therefore, we obtain

X̂(B(ζk+1
h )) = B(ζk

h).(6.21)

We summarize some of the above properties in the following diagram:

B(ζk+1
h )

Xk+1

−−−−→ B(ζ(tk+1))

X̂

⏐⏐'
⏐⏐'X̃

B(ζk
h) ←−−−−

Yk
B(ζ(tk))

Next, we turn to the main result of this subsection: we show that Uk+1 and P k+1

satisfy a mixed weak formulation with test functions in K(ζk+1
h ) and M(ζk+1

h ).
Proposition 6.2. The functions (Uk+1, P k+1) defined by (6.16) satisfy

(6.22)

(
1

Δt

[
Uk+1 − Ĵ

(
Uk ◦ X̂

)]
,ϕ

)
+ a(Uk+1,ϕ) + b(ϕ, P k+1)

= (fk+1
h ,ϕ) + (Ak,ϕ) ∀ϕ ∈ K(ζk+1

h ),

b(Uk+1, q) = 0 ∀q ∈ M(ζk+1
h ),(6.23)

with

‖Ak‖L2(O) � C

(
|ζ(tk+1) − ζk+1

h | + h + Δt + C
√

Δt

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
.

(6.24)

Proof.
First step. We transform (6.9).
By using Proposition 5.4, we have that Uk+1 and P k+1 satisfy

(
JYk+1 ◦ Xk+1

) u(tk+1) − u(tk) ◦ X̃

Δt
◦ Xk+1 − ν[Lk+1Uk+1] + [Gk+1P k+1]

=
(
JYk+1 ◦ Xk+1

)
(f(Xk+1, tk+1)) +

(
JYk+1 ◦ Xk+1

)
(αk+1 ◦ Xk+1),

in O \B(ζk+1
h ).

The above relation and (6.16) imply

(6.25)
1

Δt

[
Uk+1 −

(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)(
Uk ◦ X̂

)]
− νΔUk+1 + ∇P k+1

= ν[(Lk+1 −Δ)Uk+1] + [(∇−Gk+1)P k+1] +Fk+1 +
(
JYk+1 ◦ Xk+1

)
(αk+1 ◦Xk+1),

in O \B(ζk+1
h ),
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where X̂ is defined by (6.17).
By taking the inner product of the previous equation with ϕ ∈ K(ζk+1

h ) and by
using (6.18), we obtain

(6.26)

∫
O\B(ζk+1

h
)

(
1

Δt

[
Uk+1 − Ĵ

(
Uk ◦ X̂

)]
· ϕ
)

dy

−
∫
O\B(ζk+1

h
)

(
divSk+1 · ϕ

)
dy =

∫
O\B(ζk+1

h
)

Fk+1 · ϕ dy + A1

with

(6.27) A1 =

∫
O\B(ζk+1

h
)

(
ν[(Lk+1 − Δ)Uk+1] + [(∇− Gk+1)P k+1]

)
· ϕ dy

+

∫
O\B(ζk+1

h
)

(
JYk+1 ◦ Xk+1

) (
αk+1 ◦ Xk+1

)
· ϕ dy.

Second step. We transform the integral

∫
B(ζk+1

h
)

Uk+1 − Ĵ
(
Uk ◦ X̂

)
Δt

· ϕ dy

by using (6.10)–(6.11). From (5.3) (with Yk+1 as in (6.15)), combined with (5.9) and
with (5.10), we obtain that

JYk+1(x) = Id ∀x ∈ B(ζ(tk+1)).(6.28)

The above relation, (6.16), and (5.9) imply that for all y ∈ B(ζk+1
h ),

Uk+1(y) = u
(
y + ζ(tk+1) − ζk+1

h , tk+1

)
.(6.29)

In particular, we have that

Uk+1(y) = ζ′(tk+1) + ω(tk+1)(y − ζk+1
h )⊥ ∀y ∈ B(ζk+1

h ).(6.30)

Similarly, we have

Uk(y) = ζ′(tk) + ω(tk)(y − ζk
h)⊥ ∀y ∈ B(ζk

h).(6.31)

Relations (6.19) and (6.21) yield

(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
= Id in B(ζk+1

h ).(6.32)

Simple calculations combined with relations (5.9) and (6.20) yield

X̂(y) = Rθ(tk+1)−θ(tk)(y − ζk+1
h ) + ζk

h ∀y ∈ B(ζk+1
h ).

The above relation, (6.32), and (6.31) imply that for all y ∈ B(ζk+1
h ), we have that

Ĵ(Uk ◦ X̂)(y) = ζ′(tk) + ω(tk)Rθ(tk+1)−θ(tk)(y − ζk+1
h )⊥.
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By using (6.12), the previous equality can be written as

Ĵ(Uk ◦ X̂)(y) = ζ′(tk) + ω(tk)(y − ζk+1
h )⊥

+ Δt ω(tk)ω(tk+1)(y − ζk+1
h ) + ω(tk)Ek(y − ζk+1

h )⊥ ∀y ∈ B(ζk+1
h ).

By taking the inner product of the above relation with ϕ ∈ K(ζk+1
h ) and by integrating

on B(ζk+1
h ), we obtain that

(6.33)

∫
B(ζk+1

h
)

Ĵ(Uk ◦ X̂)(y) · ϕ dy = M lϕ · ζ′(tk) + Jω(tk)ωϕ

+ ω(tk)

∫
B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy.

Relation (6.30) implies that, for all ϕ ∈ K(ζk+1
h ), we have

∫
B(ζk+1

h
)

Uk+1 · ϕ dy = M lϕ · ζ′(tk+1) + Jω(tk+1)ωϕ.

The above equality and (6.33) yield that, for all ϕ ∈ K(ζk+1
h ), we have

∫
B(ζk+1

h
)

Uk+1 − Ĵ(Uk ◦ X̂)

Δt
· ϕ dy = M lϕ · ζ′(tk+1) − ζ′(tk)

Δt

+ J
ω(tk+1) − ω(tk)

Δt
ωϕ − ω(tk)

Δt

∫
B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy.

The above relation and (6.10)–(6.11) imply that

(6.34)

∫
B(ζk+1

h
)

Uk+1 − Ĵ(Uk ◦ X̂)

Δt
· ϕ dy = −lϕ ·

∫
∂B(ζ(tk+1))

σk+1n dΓ

− ωϕ

∫
∂B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · σk+1n dΓ + lϕ ·

∫
B(ζ(tk+1))

fk+1 dx

+ ωϕ

∫
B(ζ(tk+1))

(x − ζ(tk+1))
⊥ · fk+1(x) dx

+ lϕ · βk + ωϕγk − ω(tk)

Δt

∫
B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy.

On the other hand, by using relations (5.9), (5.10), and (6.28), we easily obtain that

∫
∂B(ζk+1

h
)

Sk+1n dΓ =

∫
∂B(ζ(tk+1))

σk+1n dΓ

and that

∫
∂B(ζk+1

h
)

(y − ζk+1
h )⊥ · Sk+1n dΓ =

∫
∂B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · σk+1n dΓ.
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The above relations and (6.34) yield that

(6.35)

∫
B(ζk+1

h
)

Uk+1 − Ĵ(Uk ◦ X̂)

Δt
· ϕ dy = −

∫
∂B(ζk+1

h
)

(
Sk+1n

)
· ϕ dΓ

+

∫
B(ζk+1

h
)

Fk+1 · ϕ dy + lϕ · βk + ωϕγk − ω(tk)

Δt

∫
B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy.

Third step. By integrating by parts, we have that

(6.36) 2ν

∫
O\B(ζk+1

h
)

D(Uk+1) : D(ϕ) dy −
∫
O\B(ζk+1

h
)

P k+1 div(ϕ) dy

=

∫
∂B(ζk+1

h
)

(
Sk+1n

)
· ϕ dΓ −

∫
O\B(ζk+1

h
)

div(Sk+1) · ϕ dy.

Summing (6.36), (6.35), and (6.26) yields (6.22) with

(Ak,ϕ) = (Fk+1 − fk+1
h ,ϕ)+ lϕ ·βk +ωϕγk −

ω(tk)

Δt

∫
B(ζk+1

h
)

Ek(y− ζk+1
h )⊥ ·ϕ dy

+

∫
O\B(ζk+1

h
)

(
ν[(Lk+1 − Δ)Uk+1] + [(∇− Gk+1)P k+1]

)
· ϕ dy

+

∫
O\B(ζk+1

h
)

(
JYk+1 ◦ Xk+1

)
(αk+1 ◦ Xk+1) · ϕ dy.

The above relation, combined with relation (3.7) and Lemmas 5.6, 5.7, and 6.1, implies
the proposition.

6.3. Some results on characteristics. In this subsection, we give some results

on the functions Xk, X̂, and X
k

h that will be used in the proof of the main result.
Lemma 6.3. There exists a positive constant C independent of h and k such that

‖Xk+1 − Xk‖L∞(O) � C
(
‖uk

h − Uk‖L2(O)Δt + |εk|
)
.

Proof. We denote by Λk (resp., Λk+1) the mapping defined by (5.2) with ζ1 =
ζ(tk) and ζ2 = ζk

h (resp., ζ1 = ζ(tk+1) and ζ2 = ζk+1
h ). Let ψk and ψk+1 be the

solution of (5.3) corresponding to the velocity fields Λk and Λk+1, respectively.
By using (5.3), we have that

(ψk+1 − ψk)(λ) =

∫ λ

0

Λk+1(ψk+1(μ)) − Λk(ψk(μ)) dμ.

Therefore, by Lemma 5.5, there exists a positive constant C such that for all λ ∈ [0, 1],
we have that

∣∣∣(ψk+1 − ψk)(λ)
∣∣∣ � ‖Λk+1 − Λk‖L∞(O) + C

∫ λ

0

∣∣∣(ψk+1(μ) − ψk(μ))
∣∣∣ dμ.

The above inequality and Gronwall’s lemma yield

∣∣∣(ψk+1 − ψk)(λ)
∣∣∣ � C‖Λk+1 − Λk‖L∞(O)
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for all λ ∈ [0, 1]. In particular, for λ = 1, we have that

‖Xk+1 − Xk‖L∞(O) � C‖Λk+1 − Λk‖L∞(O).(6.37)

By using relation (5.2), there exists a positive constant C such that

‖Λk+1 − Λk‖L∞(O) � C|ζ(tk+1) − ζk+1
h − ζ(tk) + ζk

h|.

The above relation, combined with (3.2) and (6.7), yields

‖Λk+1 − Λk‖L∞(O) � C|uk
h(ζk

h) − u (ζ(tk), tk)|Δt + C|εk|.(6.38)

On the other hand, by (6.29), we have u (ζ(tk), tk) = Uk(ζk
h) and, moreover, uk

h −
Uk ∈ K(ζk

h). Then, owing to (2.5), we readily check that

|uk
h(ζk

h) − Uk(ζk
h)| � 1√

M
‖uk

h − Uk‖L2(O).(6.39)

Therefore, the above relation and (6.38) imply that

‖Λk+1 − Λk‖L∞(O) � C‖uk
h − Uk‖L2(O)Δt + C|εk|.(6.40)

Relations (6.37) and (6.40) yield the conclusion of the lemma.
A similar estimate holds for the jacobian matrices JXk+1 and JXk . Since the

proof of this estimate is completely similar to the proof of Lemma 6.3, we give below
only its statement and skip the proof.

Lemma 6.4. There exists a positive constant C independent of k and h such that

‖JXk+1 − JXk‖L∞(O) � C
(
‖uk

h − Uk‖L2(O)Δt + |εk|
)
.

The functions X̂ and X
k

h are close to the identity in the sense made precise below.

Lemma 6.5. The functions X̂ and X
k

h defined by (6.17) and (3.4) satisfy the
following estimates:

‖X̂ − Id‖L2(O) � C
(
|εk| + Δt‖Uk − uk

h‖L2(O) +
√

Δt‖δk‖L2(O×(tk,tk+1)) + Δt
)
,

(6.41)

‖X̂ − X
k

h‖L2(O) � C
(
|εk| + Δt‖Uk − uk

h‖L2(O) +
√

Δt‖δk‖L2(O×(tk,tk+1)) + hΔt
)
.

(6.42)

Proof. Let us define

ψ̂(t; tk+1,y) = Yk(ψ̃(t; tk+1,X
k+1(y))),(6.43)

where ψ̃ is defined by (2.6). Note that ψ̂(tk; tk+1,y) = X̂(y) for all y ∈ O.
We have that

d

dt
ψ̂(t; tk+1,y) = JYk(ψ̃(t; tk+1,X

k+1(y)))
d

dt
ψ̃(t; tk+1,X

k+1(y)).

By using (6.8) we obtain that

d

dt
ψ̂(t; tk+1,y) =

[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
u
(
Xk
(
ψ̂(t; tk+1,y)

)
, tk

)]

+
[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
δk

(
t,Xk

(
ψ̂(t; tk+1,y)

))]
.
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The above relation and (6.16) yield

(6.44)
d

dt
ψ̂(t; tk+1,y) = Uk(ψ̂(t; tk+1,y))

+
[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
δk

(
t,Xk

(
ψ̂(t; tk+1,y)

))]
.

On the other hand, we have that

ψ̂(tk+1; tk+1,y) = Yk ◦ Xk+1(y).(6.45)

Therefore, by using (6.44) and (6.45), we get

X̂(y) − y = Yk ◦ Xk+1(y) − y −
∫ tk+1

tk

Uk(ψ̂(t; tk+1,y)) dt

−
∫ tk+1

tk

[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
δk

(
t,Xk

(
ψ̂(t; tk+1,y)

))]
dt,

which yields

(6.46) ‖X̂ − Id‖L2(O) � ‖Yk ◦ Xk+1 − Id‖L2(O)

+

∫ tk+1

tk

∥∥∥Uk(ψ̂(s))
∥∥∥
L2(O)

ds + C
√

Δt‖δk‖L2(O×(tk,tk+1)).

By Lemma 5.6, there exists a positive constant C such that

‖Yk ◦ Xk+1 − Id‖L2(O) � C‖Xk+1 − Xk‖L∞(O).

The above relation and Lemma 6.3 yield

‖Yk ◦ Xk+1 − Id‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk|
)
.(6.47)

Relations (6.46) and (6.47), together with (3.8) and (6.16), imply

‖X̂ − Id‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk|
)

+ CΔt +
√

Δt‖δk‖L2(O×(tk,tk+1)).

Therefore, we deduce (6.41).
Now we turn to the proof of (6.42): by using (3.3), (6.44), and (6.45), we obtain

ψ̂(t; tk+1,y) − ψ
k

h(t; tk+1,y) = Yk ◦ Xk+1(y) − y

−
∫ tk+1

t

(
Uk(ψ̂(s; tk+1,y)) − Puk

h(ψ
k

h(s; tk+1,y))
)

ds

−
∫ tk+1

t

(JYk ◦ Xk)(ψ̂(s; tk+1,y))
[
δk

(
s,Xk

(
ψ̂(s; tk+1,y)

))]
ds,

which yields

(6.48) ‖ψ̂(t) − ψ
k

h(t)‖L2(O) � ‖Yk ◦ Xk+1 − Id‖L2(O)

+

∫ tk+1

t

∥∥∥Uk(ψ̂(s)) − Puk
h(ψ

k

h(s))
∥∥∥
L2(O)

ds + C
√

Δt‖δk‖L2(O×(tk,tk+1)).
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Relations (6.48) and (6.47) imply

‖ψ̂(t) − ψ
k

h(t)‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk|
)

+

∫ tk+1

t

∥∥∥Uk(ψ̂(s)) − Puk
h(ψ

k

h(s))
∥∥∥
L2(O)

ds + C
√

Δt‖δk‖L2(O×(tk,tk+1)).

By using (3.8) and Remark 3.1, we have that

‖ψ̂(t) − ψ
k

h(t)‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk| + Δt‖Uk − Puk
h‖L2(O)

)

+ C

∫ tk+1

t

∥∥∥ψ̂(s) − ψ
k

h(s)
∥∥∥
L2(O)

ds + C
√

Δt‖δk‖L2(O×(tk,tk+1)).

Therefore, by Gronwall’s lemma, we get that

‖ψ̂(t) − ψ
k

h(t)‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk| + Δt‖Uk − Puk
h‖L2(O)

+
√

Δt‖δk‖L2(O×(tk,tk+1))

)
.

In particular for t = tk, we obtain that

(6.49) ‖X̂ − X
k

h‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk| + Δt‖Uk − Puk
h‖L2(O)

+
√

Δt‖δk‖L2(O×(tk,tk+1))

)
.

Since P is an orthogonal projection in L2(O), we have that

‖Uk − Puk
h‖L2(O) � ‖Uk − uk

h‖L2(O) + ‖PUk − Uk‖L2(O).(6.50)

Now, since Uk ∈ H1
0(O) and div(Uk) = 0, there exists a stream function ψ ∈

H2(O)∩H1
0 (O) of Uk, i.e., Uk = rot ψ. Let ψh be the Lagrange interpolated function

of ψ on the triangulation Th. We denote Ũk
h = rot ψh. Since Ũk

h ∈ Rh, we have that

‖PUk − Uk‖L2(O) � ‖Ũk
h − Uk‖L2(O) = ‖rot (ψ − ψh)‖L2(O)

� Ch‖ψ‖H2(O) � Ch‖Uk‖H1(O).

The above equation, (6.49), and (6.50) imply the result.

7. Proof of the main result. We can now prove Theorem 3.2.
First step. Assume that h ≤ C(Δt)2. We first show that if (3.10) holds and if

dist(B(ζk
h), ∂O) > 2η, dist(B(ζk+1

h ), ∂O) > 2η,(7.1)

then there exist two positive constants C0 and C1 independent of Δt and h such that
the error ekh = ‖Uk − uk

h‖L2(O) + |ζ(tk) − ζk
h| satisfies the following inequality:

ek+1
h � ekh(1 + C0Δt) + C0Δtβk

h,(7.2)

where

N∑
k=0

βk
h � C1.
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Let us remark that assumption (7.1) together with (3.10) allows us to perform
the change of variables defined in section 5 and to define Uk, Uk+1, and P k+1 (see
(6.16)).

By using (4.50), there exists (Uk+1
h , P k+1

h ) ∈ Kh(ζk+1
h ) ×Mh(ζk+1

h ) such that

{
a
(
Uk+1 − Uk+1

h ,ϕ
)

+ b
(
ϕ, P k+1 − P k+1

h

)
= 0 ∀ϕ ∈ Kh(ζk+1

h )

b
(
Uk+1 − Uk+1

h , q
)

= 0 ∀q ∈ Mh(ζk+1
h ).

(7.3)

Subtracting (7.3) and (3.5) from (6.22) yields

1

Δt

(
Uk+1 − uk+1

h ,ϕ
)

+ a(Uk+1
h − uk+1

h ,ϕ) + b(ϕ, P k+1
h − pk+1

h )

=
1

Δt

(
Ĵ
(
Uk ◦ X̂

)
− uk

h ◦ X
k

h,ϕ
)

+ (Ak,ϕ) ∀ϕ ∈ K(ζk+1
h ),

b(Uk+1
h − uk+1

h , q) = 0 ∀q ∈ Mh(ζk+1
h ).

In particular, for ϕ = Uk+1
h − uk+1

h and q = P k+1
h − pk+1

h , we easily obtain that

∥∥Uk+1
h − uk+1

h

∥∥
L2(O)

�
∥∥∥Ĵ(Uk ◦ X̂

)
− uk

h ◦ X
k

h

∥∥∥
L2(O)

+ Δt‖Ak‖L2(O) +
∥∥Uk+1 − Uk+1

h

∥∥
L2(O)

.(7.4)

On the other hand, since

Ĵ =
(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
,

we have that∥∥∥Ĵ(Uk ◦ X̂
)
− uk

h ◦ X
k

h

∥∥∥
L2(O)

� C
∥∥∥(JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
− Id

∥∥∥
L2(O)

+
∥∥∥Uk ◦ X̂ − Uk ◦ X

k

h

∥∥∥
L2(O)

+
∥∥∥Uk ◦ X

k

h − uk
h ◦ X

k

h

∥∥∥
L2(O)

.(7.5)

Since
(
JYk+1 ◦ Xk+1

)
JXk+1 = Id , we infer from Lemma 5.6 that

∥∥∥(JYk+1 ◦ Xk+1
) (

JXk ◦ X̂
)
− Id

∥∥∥
L2(O)

� C‖X̂ − Id‖L2(O) |ζ(tk) − ζk
h|

+C‖JXk − JXk+1‖L2(O).

By using Lemmas 6.4 and 6.5 and the above inequality, we obtain that

(7.6)
∥∥∥(JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
− Id

∥∥∥
L2(O)

� C
(
Δt|ζ(tk) − ζk

h|

+ Δt‖uk
h − Uk‖L2(O) +

√
Δt‖δk‖L2(O×(tk,tk+1)) + |εk|

)
.

By using (3.8) and Lemma 5.6, we easily check that

‖Uk ◦ X̂ − Uk ◦ X
k

h‖L2(O) � C‖X̂ − X
k

h‖L2(O).
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The above inequality, relations (7.4), (7.5), and (7.6), Lemma 6.5, and the fact that
detJ

X
k

h

= 1 imply that

(7.7) ‖Uk+1
h − uk+1

h ‖L2(O) � C
(
Δt|ζ(tk) − ζk

h| + Δt‖uk
h − Uk‖L2(O)

+
√

Δt‖δk‖L2(O×(tk,tk+1)) + |εk| + hΔt
)

+ ‖Uk − uk
h‖L2(O) + Δt‖Ak‖L2(O) + ‖Uk+1 − Uk+1

h ‖L2(O).

By using Lemma 4.4, Proposition 6.2, and Lemma 6.1, we have the following inequal-
ities:

‖Uk+1 − Uk+1
h ‖L2(O) � Ch,

‖Ak‖L2(O) � C

(
|ζ(tk+1) − ζk+1

h | + h + Δt + C
√

Δt

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
,

‖δk‖L2(O×(tk,tk+1)) � CΔt

∥∥∥∥∂u∂t
∥∥∥∥
L2(O×(tk,tk+1))

,

|εk| � C (Δt)
2
.

The above inequalities and (7.7) yield that

(7.8) ‖Uk+1 − uk+1
h ‖L2(O) � ‖Uk − uk

h‖L2(O) + C

(
(Δt)

2
+ hΔt + h

+ Δt|ζ(tk+1) − ζk+1
h | + Δt‖Uk − uk

h‖L2(O)

+ (Δt)3/2
∥∥∥∥∂u∂t

∥∥∥∥
L2(O×(tk,tk+1))

+ (Δt)3/2
∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
.

On the other hand, (3.2), (6.7), (6.31), and (6.39) imply that

|ζ(tk+1) − ζk+1
h | � |ζ(tk) − ζk

h| + Δt|uk
h(ζk

h) − u (ζ(tk), tk)| + |εk|
� |ζ(tk) − ζk

h| + CΔt‖uk
h − Uk‖L2(O) + |εk|.(7.9)

Combining (7.8) and (7.9), we obtain that

‖Uk+1 − uk+1
h ‖L2(O) + |ζ(tk+1) − ζk+1

h |

� (1 + CΔt)
(
|ζ(tk) − ζk

h| + ‖uk
h − Uk‖L2(O)

)

+ C

(
h + (Δt)

2
+ hΔt + (Δt)3/2

∥∥∥∥∂u∂t
∥∥∥∥
L2(O×(tk,tk+1))

+ (Δt)3/2
∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
.

The above inequality and the hypothesis h � C (Δt)
2

imply the existence of a positive
constant C0 such that

‖Uk+1 − uk+1
h ‖L2(O) + |ζ(tk+1) − ζk+1

h |

� (1 + C0Δt)
(
|ζ(tk) − ζk

h| + ‖uk
h − Uk‖L2(O)

)

+ C0Δt

(
Δt +

∥∥∥∥∂u∂t
∥∥∥∥

2

L2(O×(tk,tk+1))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(tk,tk+1))

)
,
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which is exactly (7.2).
Second step. We show that if Δt is small enough, then the error ekh = ‖Uk −

uk
h‖L2(O) + |ζ(tk)− ζk

h| satisfies ekh � C1Δt with a constant C1 independent of k, Δt,
and h. This fact implies, in particular, that (7.1) holds.

Define

C1 = C0 exp (C0T )

(∥∥∥∥∂u∂t
∥∥∥∥

2

L2(O×(0,T ))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(0,T ))

)
+ exp (C0T ).

It can be easily checked that

(1 + C0Δt)
n
C0

(∥∥∥∥∂u∂t
∥∥∥∥

2

L2(O×(0,T ))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(0,T ))

)

+ (1 + C0Δt)
n − 1 � C1 ∀n ∈ {0, . . . , N}.

Moreover, there exists a positive constant C2 such that

‖Uk‖L2(O) � C2.

Let N0 ∈ N be such that (2C1 + C2)Δt < η for all N � N0. Next we prove by
induction over k that for N � N0 and for k ∈ {0, . . . , N} we have

(7.10) |ζ(tk) − ζk
h| + ‖uk

h − Uk‖L2(O) �
[
(1 + C0Δt)k − 1

+ C0 (1 + C0Δt)
k

(∥∥∥∥∂u∂t
∥∥∥∥

2

L2(O×(0,tk))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(0,tk))

)]
Δt.

The relation (7.10) is true for k = 0. Suppose that we have shown (7.10) for a given
k � 0. Then, we deduce that

|ζ(tk) − ζk
h| � C1Δt < η(7.11)

and therefore, by using (3.10), we have that dist(B(ζk
h), ∂O) > 2η.

By using (3.2) and (3.10), we also have that

|ζk+1
h − ζk

h| � 1√
π

(
‖Uk − uk

h‖L2(O) + ‖Uk‖L2(O)

)
Δt

� C1 + C2√
π

Δt.

The above relation, the fact that (2C1 + C2)Δt < η, and (7.11) imply that

dist(B(ζk+1
h ), ∂O) > 2η.

Thus, we can apply the first step of the proof to obtain that

|ζ(tk+1) − ζk+1
h | + ‖uk+1

h − Uk+1‖L2(O)

� (1 + C0Δt)
(
|ζ(tk) − ζk

h| + ‖uk
h − Uk‖L2(O)

)

+ C0Δt

(
Δt +

∥∥∥∥∂u∂t
∥∥∥∥

2

L2(O×(tk,tk+1))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(tk,tk+1))

)
.
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Fig. 2. Initial position and mesh.

The above relation and (7.10) imply that

|ζ(tk+1) − ζk+1
h | + ‖uk+1

h − Uk+1‖L2(O) � (1 + C0Δt)[(1 + C0Δt)k − 1]Δt

+ C0(1 + C0Δt)k+1

(∥∥∥∥∂u∂t
∥∥∥∥

2

L2(O×(0,tk))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(0,tk))

)
Δt

+ C0Δt

(
Δt +

∥∥∥∥∂u∂t
∥∥∥∥

2

L2(O×(tk,tk+1))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(tk,tk+1))

)
,

which implies (7.10) for k + 1.
Third step. From the previous steps we conclude that if Δt is small enough and

if h � C(Δt)2, then

|ζ(tk) − ζk
h| + ‖uk

h − Uk‖L2(O) � C1Δt ∀ k ∈ {0, . . . , N}.

The above relation, Lemma 5.6, (3.8), and Lemma 4.4 imply that if Δt is small enough
and if h � C(Δt)2, then

|ζ(tk) − ζk
h| + ‖uk

h − u(tk)‖L2(O) � CΔt ∀ k ∈ {0, . . . , N},

which is the conclusion of the theorem. �
8. Concluding remarks. We implemented the numerical method we proposed,

and several numerical tests have been performed. Let us briefly describe the results
obtained in the case of a rigid ball falling vertically under the action of a vertical force
oriented downward. At instant t = 0 the velocity field in the fluids and in the solid is
supposed to vanish.

We use a mesh with 1432 triangles and 752 vertices (see Figure 2).
Far from the ball the space discretization parameter is h1 ≈ 0.57, whereas in the

neighborhood of the ball it is given by h2 ≈ 0.12. For the time discretization, we
choose the time step Δt = 0.1. Moreover, we choose the radius of the ball equal
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k=460,   t=46.0,   Vmax=0.021087

Fig. 3. Position and velocity field at time t = 46.0.
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Fig. 4. Position of the ball.

to 0.3, the viscosity μ = 1, and the downward force of intensity equal to one (all
quantities are given in International System (IS) units). In Figure 3 we represent the
configuration of the system for k = 460 (corresponding to t = 46.0).

We repeated the calculation twice by dividing each mesh size by two (this means
that each triangle was each time divided into four smaller triangles). More precisely,
we used the meshes described in the table below.
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h Triangles Vertices CPU time

Mesh 1 0.12 1432 752 3 hours
Mesh 2 0.06 5728 2935 11 hours
Mesh 3 0.03 22912 11597 8 days

The last column represents the time used by a Pentium IV computer with a 2.4
GHz CPU clock to achieve the calculation.

In Figure 4 we represented the height of the center of the ball versus the time t
for the different meshes.
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Abstract. In this paper we provide an error analysis of a subgrid scale eddy viscosity method
using discontinuous polynomial approximations for the numerical solution of the incompressible
Navier–Stokes equations. Optimal continuous in time error estimates of the velocity are derived.
The analysis is completed with some error estimates for two fully discrete schemes, which are first
and second order in time, respectively.

Key words. error analysis, Navier–Stokes, discontinuous Galerkin, fully discrete scheme, high
order method

AMS subject classifications. 76F65, 74S05

DOI. 10.1137/S0036142903434862

1. Introduction. The goal of this paper is to formulate and analyze a subgrid
eddy viscosity method for solving the incompressible time-dependent Navier–Stokes
equations. If the separation point between large and small scales is held fixed, the
model can be viewed as a large eddy simulation (LES) model. On the other hand,
if the separation point is decreased as the mesh size tends to zero, the model can be
viewed (and analyzed, as herein) as a numerical regularization of the Navier–Stokes
equations.

For many flows in nature, capturing all the scales in a numerical simulation is
an impossible task, since the scale separation may span several orders of magnitude.
Global diffusion is the traditional phenomenology to model the dispersive effects of
unresolved scales on resolved scales. The traditional approach for incorporating the
effects of unresolved scales on the resolved ones for the Navier–Stokes equations utilizes
eddy viscosity models. These models, first formulated by Boussinesq [5] and developed
by Taylor and Prandlt [10], introduce a dissipation mechanism (Smagorinsky [29]).
Standard eddy viscosity models act on all scales of motion, and their effects can be too
diffusive on the coarse scales (Lewandowski [26] and Iliescu and Layton [19]). The idea
of applying the eddy viscosity models on only the small scales results in the subgrid
eddy viscosity method, introduced and analyzed by Guermond [14], Layton [24], and
John and Kaya [20]. This subgrid eddy viscosity method can also be thought of as
an extension to general domains and boundary conditions of the spectral vanishing
viscosity idea of Maday and Tadmor [27]. Recently, Hughes, Mazzei, and Jansen [17]
proposed a variational multiscale method (VMM) in which the diffusion acts only
at the finest resolved scales. VMM is a promising approach in multiscale turbulence
modelling. There are different choices on how to define coarse and small scales within
the VMM framework. One approach is to define fluctuations via bubble functions and
means via L2 projection (Guermond [14] and Hughes [16]). Another possibility is to
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define fluctuations via the finest resolved scales in a hierarchy of finite element spaces,
and means via elliptic or Stokes projection (Layton [24], Kaya and Layton [22], and
Hughes [18]).

For any numerical method, the error equation arising from the Navier–Stokes
equations contains a convection-like term and a reaction (or stretching) term. Dis-
continuous Galerkin (DG) methods, first introduced in the work of Reed and Hill [28]
and Lesaint and Raviart [25], are particularly efficient in controlling convective er-
ror terms. On the other hand, (generally nonlinear) eddy viscosity models are, in a
sense, intended to give some control of the error’s reaction-like terms. Indeed, the
exponential sensitivity of trajectories of the Navier–Stokes equations (arising from
reaction-like terms) is widely believed to be limited to the small scales. It is thus con-
jectured that by modelling their action on the large scales, the exponential sensitivity
introduced by the reaction-like terms will be contained.

DG methods have recently become more popular in the science and engineering
community. They use piecewise polynomial functions with no continuity constraint
across element interfaces. As a result, variational formulations must include jump
terms across interfaces [31]. The DG methods offers several advantages, including (i)
flexibility in the design of the meshes and in the construction of trial and test spaces,
(ii) local conservation of mass, (iii) h-p adaptivity, and (iv) higher order local approxi-
mations. DG methods have become widely used for solving computational fluid prob-
lems, especially diffusion and pure convection problems [3]. The reader should refer
to Cockburn, Karniadakis, and Shu [6] for a historical review of DG methods. For the
steady-state Navier–Stokes equations, a totally discontinuous finite element method is
formulated in [12], while in [21], the velocity is approximated by discontinuous polyno-
mials that are pointwise divergence-free, and the pressure by continuous polynomials.

Combining DG and eddy viscosity techniques is clearly advantageous. While
convective effects are accurately modelled by DG, the dispersive effects of small scales
on the large scales are correctly taken into account with the eddy viscosity model.
Besides, due to the absence of continuity constraints, one can select various basis
functions (such as hierarchical basis functions) for the coarse and refined scales. As
an appropriate first step, we consider in this paper the combination of DG methods
with a linear eddy viscosity model. We show that the errors are optimal with respect
to the mesh size and depend on the Reynolds number in a reasonable fashion. The
particular eddy viscosity model considered here was introduced in [24], and complete
numerical analysis for Navier–Stokes equations was performed in [20] where it was
combined with the classical finite element method.

The outline of the paper is as follows. The model problem and notation are pre-
sented in section 2. In section 3, a variational formulation and scheme are introduced.
Section 4 contains the continuous in time algorithm, some stability results, and some
error estimates. In section 5 , two fully discrete schemes are formulated and analyzed.
Conclusions are given in the last section.

2. Notation and preliminaries. We consider the time-dependent Navier–
Stokes equations for incompressible flow as follows:

ut − νΔu + u · ∇u + ∇p = f in Ω for 0 < t ≤ T,(2.1)

∇ · u = 0 in Ω for 0 < t ≤ T,(2.2)

u = u0 in Ω for t = 0,(2.3)

u = 0 on ∂Ω for 0 < t ≤ T,(2.4)
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where u is the fluid velocity, p the pressure, f the external force, ν > 0 the kinematic
viscosity, and Ω ⊂ R

2 a bounded, simply connected domain with polygonal boundary
∂Ω. We also impose the usual normalization condition on the pressure, namely, that∫
Ω
p = 0.
Let Kh = {Ej , j = 1, . . . , Nh} denote a nondegenerate triangulation of the domain

Ω. Let h denote the maximum diameter of the elements Ej in Kh. We denote the
edges of Kh by {e1, e2, . . . , ePh

, ePh+1, . . . , eMh
}, where ek ⊂ Ω for 1 ≤ k ≤ Ph and

ek ⊂ ∂Ω for Ph+1 ≤ k ≤ Mh. With each edge we associate a normal unit vector nk.
For k > Ph, the unit vector nk is taken to be outward normal to ∂Ω. Let ek be an
edge shared by elements Ei and Ej with nk exterior to Ei. We define the jump [φ]
and average {φ} of a function φ by

[φ] = (φ|Ei)|ek − (φ|Ej )|ek , {φ} =
1

2
(φ|Ei)|ek +

1

2
(φ|Ej )|ek .

If e belongs to the boundary ∂Ω, the jump and average of φ coincide with its trace on
e. We shall use standard notation for Sobolev spaces [1]. For any nonnegative integer
s and r ≥ 1, the classical Sobolev space on a domain E ⊂ R

2 is

W s,r(E) = {v ∈ Lr(E) : ∀ |m| ≤ s, ∂mv ∈ Lr(E)},

where ∂mv are the partial derivatives of v of order |m|. The usual norm in W s,r(E)
is denoted by ‖·‖s,r,E and the seminorm by | · |s,r,E . The L2 inner-product is denoted

by (·, ·)E and by (·, ·) if E = Ω. For the Hilbert space Hs(E) = W s,2(E), the
norm is denoted by ‖·‖s,E . By H1

0 (E) we shall understand the subspace of H1(E)
functions that vanish on ∂E. Throughout the paper, boldface characters denote vector
quantities. Define

V = {v ∈ H1
0(Ω) : ∇ · v = 0}, H = {v ∈ L2(Ω)2 : ∇ · v = 0,v = 0}.

For any function φ that depends on time t and space x, denote

φ(t)(x) = φ(t,x) ∀t ∈ [0, T ],∀x ∈ Ω.

If Y denotes a functional space in the space variable with the norm ‖ · ‖Y and if
φ = φ(t,x), then for s > 0

‖φ‖Ls(0,T ;Y ) =

[∫ T

0

‖φ(t)‖sY dt
]1/s

, ‖φ‖L∞(0,T ;Y ) = max
0≤t≤T

‖φ(t)‖Y .

Recall that for a vector function φ, the tensor ∇φ is defined as (∇φ)i,j = ∂φi

∂xj
and

the tensor product of two tensors T and S is defined as T : S =
∑

i,j TijSij . We
define the following broken norm for positive s:

||| · |||s =

⎡
⎣Nh∑
j=1

‖·‖2
s,Ej

⎤
⎦

1/2

.

From [30], if f ∈ L2(0, T ; V ′) and u0 ∈ H, there exists a solution (u, p) of (2.1)–
(2.4) such that u ∈ L∞(0, T ;L2(Ω)2) ∩ L2(0, T ; V ). In addition, we will assume that

u ∈ L∞(0, T ; W 2,4/3(Ω)) and p ∈ L∞(0, T ;W 1,4/3(Ω)) for the DG formulation to be



SUBGRID EDDY DISCONTINUOUS GALERKIN METHOD 1575

well defined. For the analysis obtained in sections 4 and 5, we require extra regularity
on the solution: u ∈ L∞(0, T ; H2(Ω)), p ∈ L2(0, T ;H1(Ω)). This assumption is valid
if the data is more regular [30]: f ∈ L∞(0, T ; H),f t ∈ L2(0, T ; V ′),f(0) ∈ H,
u0 ∈ H2(Ω) ∩ V . The following functional spaces are defined:

X = {v ∈ (L2(Ω))2 : v|Ej ∈ W 2,4/3(Ej) ∀Ej ∈ Kh},
Q = {q ∈ L2

0(Ω) : q|Ej
∈ W 1,4/3(Ej) ∀Ej ∈ Kh},

where L2
0(Ω) is given by

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q = 0

}
.

We associate to (X, Q) the following norms:

‖v‖X = (|||∇v|||20 + J(v,v))
1
2 ∀v ∈ X, ‖q‖Q = ‖q‖0,Ω ∀q ∈ Q,

where the jump term J is defined as

J(u,v) =

Mh∑
k=1

σ

|e|

∫
ek

[u] · [v].(2.5)

In this jump term, |e| denotes the measure of the edge e and σ is a constant parameter
that will be specified later.

Recall the following property of norm ‖ · ‖X [12]: for each real number p ∈ [2,∞)
there exists a constant C(p) such that

‖v‖Lp(Ω) ≤ C(p)‖v‖X ∀v ∈ X.(2.6)

For any positive integer r, the finite-dimensional subspaces are

Xh = {vh ∈ X : vh ∈ (Pr(Ej))
2 ∀Ej ∈ Kh},

Qh = {qh ∈ Q : qh ∈ Pr−1(Ej) ∀Ej ∈ Kh}.

We assume that for each integer r ≥ 1, there exists an operator Rh ∈ L(H1(Ω); Xh)
such that

‖Rh(v) − v‖X ≤ Chr|v|r+1,Ω ∀v ∈ Hr+1(Ω) ∩ H1
0(Ω),(2.7)

‖v − Rh(v)‖0,Ej ≤ Chr+1
Ej

|v|r+1,ΔEj
∀v ∈ Hr+1(Ω), 1 ≤ j ≤ Nh,(2.8)

where ΔEj
is a suitable macro element containing Ej . Note that for r = 1, 2, and 3,

the existence of this interpolant follows from [8, 7, 9]. The bounds (2.7) and (2.8) are
proved in [12] and in [13], respectively.

Also, for each integer r ≥ 1, there is an operator rh ∈ L(L2
0(Ω);Qh) such that for

any Ej in Kh

∫
Ej

zh(rh(q) − q) = 0 ∀zh ∈ Pr−1(Ej),∀q ∈ L2
0(Ω),(2.9)

‖q − rh(q)‖m,Ej
≤ Chr−m

Ej
|q|r,Ej

∀q ∈ Hr(Ω) ∩ L2
0(Ω),m = 0, 1.(2.10)
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Finally, we recall some standard trace and inverse inequalities, which hold true on
each element E in Kh, with diameter hE (see [11]):

‖v‖0,e ≤ C(h
−1/2
E ‖v‖0,E + h

1/2
E ‖∇v‖0,E) ∀e ∈ ∂E, ∀v ∈ X,(2.11)

‖∇v‖0,e ≤ C(h
−1/2
E ‖∇v‖0,E + h

1/2
E ‖∇2v‖0,E) ∀e ∈ ∂E, ∀v ∈ X,(2.12)

‖v‖L4(e) ≤ Ch
−3/4
E (‖v‖0,E + hE‖∇v‖0,E) ∀e ∈ ∂E, ∀v ∈ X,(2.13)

‖vh‖0,e ≤ Ch
−1/2
E ‖vh‖0,E ∀e ∈ ∂E, ∀vh ∈ Xh,(2.14)

‖∇vh‖0,e ≤ Ch
−1/2
E ‖∇vh‖0,E ∀e ∈ ∂E, ∀vh ∈ Xh,(2.15)

‖∇vh‖0,E ≤ Ch−1
E ‖vh‖0,E ∀vh ∈ Xh,(2.16)

‖vh‖L4(E) ≤ Ch
−1/2
E ‖vh‖0,E ∀vh ∈ Xh.(2.17)

3. Variational formulation and scheme. Let us first define the bilinear forms
a : X × X → R and b : X ×Q → R:

a(v,w) =

Nh∑
j=1

∫
Ej

∇v : ∇w −
Mh∑
k=1

∫
ek

({∇v}nk · [w] − ε0{∇w}nk · [v]),(3.1)

b(v, q) = −
Nh∑
j=1

∫
Ej

q∇ · v +

Mh∑
k=1

∫
ek

{p}[v] · nk,(3.2)

where ε0 takes the constant value 1 or −1. Throughout the paper, we will assume
the following hypothesis: if ε0 = 1, the jump parameter σ is chosen to be equal to 1;
if ε0 = −1, the jump parameter σ is bounded below by σ0 > 0 and σ0 is sufficiently
large. Based on this assumption, we can easily prove the following lemma.

Lemma 3.1. There is a constant κ > 0 such that

a(vh,vh) + J(vh,vh) ≥ κ‖vh‖2
X ∀vh ∈ Xh.(3.3)

In addition to these bilinear forms, we consider the following upwind discretization
of the term u · ∇z:

c(u,z,θ) =

Nh∑
j=1

(∫
Ej

(u · ∇z) · θ +

∫
∂E−

j

|{u} · nEj |(zint − zext) · θint

)

+
1

2

Nh∑
j=1

∫
Ej

(∇ · u)z · θ − 1

2

Mh∑
k=1

∫
ek

[u] · nk{z · θ}(3.4)

for all u,z,θ in X and where on each element the inflow boundary is

∂E−
j = {x ∈ ∂Ej : {u} · nEj < 0},

and the superscript int (resp., ext) refers to the trace of the function on a side of Ej

coming from the interior of Ej (resp., coming from the exterior of Ej on that side).
Note that the form c is not linear with respect to its first argument but is linear with
respect to its second and third arguments. To avoid any confusion, if necessary, in the
analysis, we will explicitly write c(u,z,θ) = cw(u,z,θ) when the inflow boundaries
∂E−

j are defined with respect to the velocity {w}. We finally recall the positivity of
c proved in [12]:

c(u,z,z) ≥ 0 ∀u,z ∈ X.(3.5)
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With these forms, we consider a variational problem of (2.1)–(2.4): for all t > 0 find
u(t) ∈ X and p(t) ∈ Q satisfying

(ut(t),v) + ν(a(u(t),v) + J(u(t),v))

+ c(u(t),u(t),v) + b(v, p(t)) = (f(t),v) ∀v ∈ X,(3.6)

b(u(t), q) = 0 ∀q ∈ Q,(3.7)

(u(0),v) = (u0,v) ∀v ∈ X.(3.8)

We shall now show the equivalence of the strong and weak solutions.
Lemma 3.2. Every strong solution of (2.1)–(2.4) is also a solution of (3.6)–(3.8)

and conversely.
Proof. Fix t > 0. Let (u, p) be the solution of (2.1)–(2.4). Since u(t) ∈ H1

0(Ω),
by the trace theorem [u(t)] · nk = 0 on each edge. Also, ∇ · u(t) = 0; thus u
satisfies (3.7). Multiplying the Navier–Stokes equation (2.1) by v ∈ X, integrating
over each element, and summing over all elements yield

Nh∑
j=1

∫
Ej

(ut · v + ν∇u : ∇v) − ν

Mh∑
k=1

∫
ek

[∇unk · v] +

Nh∑
j=1

∫
Ej

u · ∇u · v

−
Nh∑
j=1

∫
Ej

p∇ · v +

Mh∑
k=1

∫
ek

[pv · nk] =

∫
Ω

f · v.

The boundary terms are rewritten as

Mh∑
k=1

∫
ek

[∇unk.v] =

Mh∑
k=1

∫
ek

{∇u}nk · [v] +

Mh∑
k=1

∫
ek

[∇u]nk · {v}.

The first part of the lemma is then obtained because the jumps of u,∇unk, and p
are zero almost everywhere.

Conversely, let (u, p) be a solution to (3.6)–(3.8). First, let E belong to Kh and
choose v ∈ D(E)2, extended by zero outside E. Then, (u, p) satisfy in the sense of
distributions

ut − νΔu + u · ∇u + ∇p = f , ∇ · u = 0 in E.(3.9)

Next consider v ∈ C1(Ē) such that v = 0 on ∂E, extended by zero outside E, and
∇v · n = 0 on ∂E except on one side ek. We multiply (3.9) by v and integrate by
parts. We then obtain

∫
ek

{∇v}nk · [u] = 0,

which implies that [u] = 0 almost everywhere on ek. If ek belongs to the boundary
∂Ω, this implies that u|ek = 0. Thus, u ∈ H1

0(Ω). Finally, choose v ∈ C1(Ē), with
v = 0 on ∂E except on one side ek, extended by zero outside of E. Multiplying (3.9)
by v and integrating by parts, we have

∫
ek

(−ν∇unE + pnE) · v =

∫
ek

{−ν∇unE + pnE} · v.
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Since v is arbitrary, this means that the quantity −ν∇unk +pnk is continuous across
ek. Therefore, (3.9) is satisfied over the entire domain Ω. The initial condition (2.3)
is straightforward.

We recall a discrete inf-sup condition and a property satisfied by Rh (see [12]).
Lemma 3.3. There exists a positive constant β0, independent of h such that

inf
qh∈Qh

sup
vh∈Xh

b(vh, qh)

‖vh‖X ‖qh‖0

≥ β0.(3.10)

Furthermore, the operator Rh satisfies

b(Rh(v) − v, qh) = 0 ∀qh ∈ Qh, ∀v ∈ H1
0(Ω).(3.11)

In order to subtract the artificial diffusion introduced by the eddy viscosity on
the coarse grid, we consider a coarsening of the mesh Kh, namely KH , such that the
fine mesh Kh is a refinement of KH (so typically h � H). Denote by L the space of
tensors L2(Ω)2×2 and consider the finite-dimensional subspace of L:

LH = {S ∈ L : Sij |Σ ∈ Pr−1(Σ)∀Σ ∈ KH}.

Let PH : L → LH denote the L2 orthogonal projection on LH and let I denote the
identity mapping. Since PH is a projection, we have the following properties:

‖I − PH‖ ≤ 1,(3.12)

‖(I − PH)∇v‖0,Ω ≤ CHr|v|r+1,Ω ∀v ∈ Hr+1(Ω).(3.13)

Throughout the paper, the variable C will denote a generic positive constant that will
take different values at different places but will be independent of h,H, ν, and νT .
Define the following bilinear g : X × X → R:

g(v,w) =

Nh∑
j=1

∫
Ej

(I − PH)∇v : (I − PH)∇w ∀v,w ∈ X.

For all t > 0, we seek a discontinuous approximation (uh(t), ph(t)) ∈ Xh × Qh such
that

(uh
t (t),vh) + ν(a(uh(t),vh) + J(uh(t),vh)) + νT g(u

h(t),vh)

+ c(uh(t),uh(t),vh) + b(vh, ph(t)) = (f(t),vh) ∀vh ∈ Xh,(3.14)

b(uh(t), qh) = 0 ∀qh ∈ Qh,(3.15)

(uh(0),vh) = (u0,v
h) ∀vh ∈ Xh.(3.16)

Lemma 3.4. There exists a unique solution to (3.14)–(3.16).
Proof. Equations (3.14) and (3.15) reduce to the ordinary differential system

duh

dt
+ νAuh + Buh + νTGuh = F.

By continuity, a solution exists. To prove uniqueness, we choose vh = uh in (3.14)
and qh = ph in (3.15); we apply the coercivity equation (3.3) and the generalized
Cauchy–Schwarz

1

2

d

dt
‖uh‖2

0,Ω + νκ‖uh‖2
X ≤ ‖f‖L4/3(Ω)‖uh‖L4(Ω) ≤

νκ

2
‖uh‖2

X +
C

νκ
‖f‖2

L4/3(Ω).



SUBGRID EDDY DISCONTINUOUS GALERKIN METHOD 1579

Integrating over [0, t] yields

‖uh(t)‖2
L∞(0,T ;L2(Ω)) + νκ‖uh‖2

L2(0,T ;X) ≤ ‖uh(0)‖2
0 +

C

νκ
‖f‖2

L2(0,T ;L4/3(Ω)).

Since uh is bounded in L∞(0, T ;L2(Ω)2), it is unique [4]. The existence and unique-
ness of ph are obtained from the inf-sup condition stated above.

Remark 1. From a continuum mechanics point of view, it might be advantageous
to consider the symmetrized velocity tensor. In this case, the bilinear form a is
replaced by

a(v,w) =

Nh∑
j=1

∫
Ej

∇sv : ∇sw −
Mh∑
k=1

∫
ek

({∇sv}nk · [w] − ε0{∇sw}nk · [v]),

where ∇sv = 0.5(∇v + ∇vT ) and the term relating the coarse and refined meshes is

replaced by
∑Nh

j=1

∫
Ej

(I − PH)∇su : (I − PH)∇svh. It is easy to check that all the

results proved in this paper also hold true for the symmetrized tensor formulation.

4. Semidiscrete a priori error estimate. In this section, a priori error esti-
mates for the continuous in time problem are derived. The estimates are optimal in
the fine mesh size h. The effects of the coarse scale appear as higher order terms.

Theorem 4.1. Let (u, p) be the solution of (2.1)–(2.4) satisfying u ∈ L∞(0, T ;
H2(Ω)), p ∈ L2(0, T ;H1(Ω)). In addition, we assume that ut ∈ L2(0, T ; Hr+1(Ω)),
u ∈ L∞(0, T ; Hr+1(Ω)), and p ∈ L2(0, T ; Hr(Ω)). Then, the continuous in time
solution uh satisfies

‖u − uh‖L∞(0,T ;L2(Ω)) + κ1/2ν1/2‖u − uh‖L2(0,T ;X)

+ ν
1/2
T ‖(I − PH)∇(u − uh)‖L2(0,T ;L2(Ω))

≤ CeCT (ν−1+1)[hr((ν + ν−1 + νT )1/2|u|L2(0,T ;Hr+1(Ω)) + ν−1/2|p|L2(0,T ;Hr(Ω))

+ |ut|L2(0,T ;Hr+1(Ω))) + ν
1/2
T Hr|u|L2(0,T ;Hr+1(Ω))] + Chr|u0|r+1,Ω,

where C is a positive constant independent of h,H, ν and νT .
Proof. We fix t > 0 and for simplicity, we drop the argument in t. Defining

eh = u−uh and subtracting (3.14), (3.15), (3.16) from (3.6), (3.7), (3.8), respectively,
yields

(eh
t ,v

h) + νa(eh,vh) + νJ(eh,vh) + νT g(e
h,vh) + c(u,u,vh)

− c(uh,uh,vh) = −b(vh, p− ph) + νT g(u,v
h) ∀vh ∈ Xh, ∀t > 0,(4.1)

b(eh, qh) = 0 ∀qh ∈ Qh, ∀t > 0,(4.2)

(eh(0),vh) = 0, ∀vh ∈ Xh.(4.3)

Decompose the error eh = η−φh, where φh = uh−Rh(u) and η is the interpolation
error η = u −Rh(u). Set vh = φh in (4.1) and qh = rh(p) − ph in (4.2):

(φh
t ,φ

h) + νa(φh,φh) + νJ(φh,φh) + νT g(φ
h,φh)

+ cuh(uh,uh,φh) − cu(u,u,φh) = (ηt,φ
h) + νa(η,φh) + νJ(η,φh)

+ νT g(η,φ
h) + b(φh, p− rh(p)) − νT g(u,φ

h) ∀t > 0.(4.4)
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We now bound the terms on the right hand-side of (4.4). The first three terms are
rewritten as

(ηt,φ
h) + νa(η,φh) + νJ(η,φh) = (ηt,φ

h) + ν

Nh∑
j=1

∫
Ej

∇η : ∇φh

− ν

Mh∑
k=1

∫
ek

{∇η}nk · [φh] + νε0

Mh∑
k=1

∫
ek

{∇φh}nk · [η] + νJ(η,φh)

= S1 + · · · + S5.

Using the Cauchy–Schwarz and Young’s inequalities and the approximation result
(2.7), the first two terms are bounded as follows:

S1 ≤ ‖ηt‖0,Ω‖φh‖0,Ω ≤ 1

2
‖φh‖2

0,Ω + Ch2r+2|ut|2r+1,Ω,

S2 ≤ ν

Nh∑
j=1

‖∇η‖0,Ej
‖∇φh‖0,Ej ≤ κν

8
‖∇φh‖2

0 + Cνh2r|u|2r+1,Ω.

To bound the third term, we insert the standard Lagrange interpolant of degree r,
denoted by Lh(u):

− ν

Mh∑
k=1

∫
ek

{∇η}nk · [φh] = − ν

Mh∑
k=1

∫
ek

{∇(u − Lh(u))}nk · [φh]

− ν

Mh∑
k=1

∫
ek

{∇(Lh(u) −Rh(u))}nk · [φh].

By using inequalities (2.12) and (2.15), the definition of the jump (2.5), and the
approximation results (2.7), the third term can be bounded by

S3 ≤ κν

12
J(φh,φh) + Cνh2r|u|2r+1,Ω.

Then, from the trace inequalities (2.11) and (2.15) and the approximation result (2.7),
we have

S4 ≤ Cν

(
Mh∑
k=1

σ

|e| ‖[η]‖2
0,ek

)1/2 (Mh∑
k=1

|e|
σ
‖{∇φh}‖2

0,ek

)1/2

≤ κν

8
|||∇φh|||20 + Cνh2r|u|2r+1,Ω.

The jump term is bounded by the approximation result (2.7) as follows:

S5 ≤ κν

12
J(φh,φh) + CνJ(η,η) ≤ κν

12
J(φh,φh) + Cνh2r|u|2r+1,Ω.

The eddy viscosity term in the right-hand side of (4.4) is bounded by (3.12) and (2.7):

νT g(η,φ
h) ≤ νT

4
|||(I − PH)∇φh|||20 + CνTh

2r|u|2r+1,Ω.
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Because of (2.9), the pressure term is reduced to

b(φh, p− rh(p)) =

Mh∑
k=1

∫
ek

{p− rh(p)}[φh] · nk,

which is bounded by using the Cauchy–Schwarz inequality, trace inequality (2.11),
and the approximation result (2.10):

b(φh, p− rh(p)) ≤ C

⎛
⎝‖p− rh(p)‖2

0 +

Nh∑
j=1

h2
Ej

|p− rh(p)|21,Ej

⎞
⎠

1/2

J(φh,φh)1/2

≤ κν

12
J(φh,φh) + C

h2r

ν
|p|2r,Ω.

The last term on the right-hand side of (4.4), corresponding to the consistency error,
is bounded using the Cauchy–Schwarz inequality and the bound (3.13):

νT g(u,φ
h) ≤ νT

4
|||(I − PH)∇φh|||20 + CνTH

2r|u|2r+1,Ω.

Thus far, the terms in the right-hand side of (4.4) are bounded by

1

2
‖φh‖2

0 + Ch2r|ut|2r+1,Ω + C(ν + νT )h2r|u|2r+1,Ω + C
h2r

ν
|p|2r,Ω

+CνTH
2r|u|2r+1,Ω +

κν

4
‖φh‖2

X +
νT
2
|||(I − PH)∇φh|||20.

Consider now the nonlinear terms in (4.4). We first note that since u is continuous,
the second term in (3.4) vanishes and can be replaced by a similar quantity with a
different domain of integration:

cu(u,u,φh) = cuh(u,u,φh).

Therefore, adding and subtracting the interpolant Rh(u) yields

cuh(uh,uh,φh) − cuh(u,u,φh) = cuh(uh,φh,φh) + cuh(φh,u,φh)

− cuh(φh,η,φh) − cuh(η, Rh(u),φh) − cuh(u,η,φh).

To simplify the writing, we drop the subscript uh and write c(·, ·, ·) for cuh
(·, ·, ·).

From inequality (3.5), the first term is positive. We then bound the other terms. We
first note that we can rewrite the form c as

c(φh,u,φh) =

Nh∑
j=1

∫
Ej

(φh · ∇u) · φh − 1

2
b(φh,u · φh).(4.5)

The first term, using the Lp bound (2.6), is bounded by

Nh∑
j=1

∫
Ej

(φh · ∇u) · φh ≤ ‖φh‖L4(Ω)‖∇u‖L4(Ω)‖φh‖L2(Ω)

≤ κν

64
‖φh‖2

X +
C

ν
‖u‖2

L∞(0,T ;W 2,4/3(Ω))‖φ
h‖2

0,Ω.
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Let c1 and c2 be the piecewise constant vectors such that

c1|Ej =
1

|Ej |

∫
Ej

u, c2|Ej =
1

|Ej |

∫
Ej

φh, 1 ≤ j ≤ Nh.

We rewrite using (4.2) and (3.11):

b(φh,u · φh) = b(φh,u · φh − c1 · c2) = b(φh, (u − c1) · φh) + b(φh, c1 · (φh − c2)).

Then, expanding the first term,

b(φh, (u − c1) · φh) = −
Nh∑
j=1

∫
E

(u − c1) · φh∇ · φh

+

Mh∑
k=1

∫
ek

{(u − c1) · φh}[φh] · nk = S6 + S7.

The first term is bounded, for s > 2, using the inverse inequality (2.16) and (2.6):

S6 ≤ C

Nh∑
j=1

‖u − c1‖Ls(Ej)‖φ
h‖

L
2s

s−2 (Ej)
‖∇φh‖L2(Ej)

≤ C‖φh‖0,Ω|u|W 1,s(Ω)‖φh‖
L

2s
s−2 (Ω)

≤ C‖φh‖0,Ω|u|W 1,s(Ω)‖φh‖X ≤ κν

64
‖φh‖2

X +
C

ν
‖u‖2

L∞(0,T ;W 2,4/3(Ω))‖φ
h‖2

0.

The bound for the second term is more technical. First, passing to the reference
element Ê and using the trace inequality (2.14), we obtain

S7 ≤ C

Mh∑
k=1

|ek||E|−1/2‖φh‖0,E‖(û − ĉ1) · φ̂
h‖ê

≤ C

Mh∑
k=1

|ek||E|−1/2‖φh‖0,E(‖(û − ĉ1) · φ̂
h‖0,Ê + ‖∇̂((û − ĉ1) · φ̂

h
)‖0,Ê).

The L2 term is bounded, for s > 2, as

‖(û − ĉ1) · φ̂
h‖0,Ê ≤ ‖û − ĉ1‖Ls(Ê)‖φ̂

h‖
L

2s
s−2 (Ê)

≤ h|E|−1/s−(s−2)/(2s)|u|W 1,s(E)‖φh‖
L

2s
s−2 (E)

≤ C|u|W 1,s(E)‖φh‖
L

2s
s−2 (E)

.

Note that for the gradient term we write

‖∇̂((û − ĉ1) · φ̂
h
)‖0,Ê = ‖(∇̂û · φ̂h

+ (û − ĉ1) · ∇φ̂
h
)‖.

Let us first bound

‖∇̂û · φ̂h‖0,Ê ≤ ‖∇̂û‖Ls(Ê)‖φ̂
h‖

L
2s

s−2 (Ê)

≤ Ch|E|−1/s‖∇u‖Ls(E)|E|−(s−2)/2s‖φh‖
L

2s
s−2 (E)

≤ C‖∇u‖Ls(E)‖φh‖
L

2s
s−2 (E)

.
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Now the other term is

‖(û − ĉ1) · ∇̂φ̂
h‖0,Ê ≤ ‖û − ĉ1‖L∞(Ê)‖∇̂φ̂

h‖0,Ê ≤ Ch‖u‖L∞(E)‖∇φh‖0,E .

Combining all the bounds above and using (2.6), we have

S7 ≤ C

Nh∑
j=1

‖φh‖0,Ej

[
|u|W 1,s(Ej)‖φ

h‖
L

2s
s−2 (Ej)

+ ‖∇u‖Ls(Ej)‖φ
h‖

L
2s

s−2 (Ej)
+ h|u|L∞(Ej)‖∇φh‖L2(Ej)

]
≤ κν

32
‖φh‖2

X +
C

ν
‖φh‖2

0.

Now,

b(φh, c1 · (φh − c2)) = −
Nh∑
j=1

∫
E

c1 · (φh − c2)∇ · φh

+

Mh∑
k=1

∫
ek

{c1 · (φh − c2)}[φh] · nk = S8 + S9.

The first term is bounded by (2.16):

S8 ≤ C

Nh∑
j=1

‖c1‖‖φh − c2‖0,Ejh
−1‖φh‖0,Ej

≤ C

Nh∑
j=1

‖c1‖‖∇φh‖0,Ej‖φh‖0,Ej ≤ κν

64
‖φh‖2

X +
C

ν
‖u‖2

L∞([0,T ]×Ω)‖φ
h‖2

0,Ω.

Similarly, the second term is bounded as

S9 ≤ C

Nh∑
j=1

‖c1‖‖∇φh‖0,Ej
‖φh‖0,Ej

≤ κν

64
‖φh‖2

X +
C

ν
‖u‖2

L∞([0,T ]×Ω)‖φ
h‖2

0,Ω.

Thus,

c(φh,u,φh) ≤ 5κν

64
‖φh‖2

X +
C

ν
‖φh‖2

0,Ω.

Let us now bound c(φh,η,φh):

c(φh,η,φh) =

Nh∑
j=1

(∫
Ej

(φh · ∇η) · φh +

∫
∂E−

j

|{φh} · nEj
|(ηint − ηext) · φh,int

)

− 1

2
b(φh,η · φh).

The first term is easily bounded:

Nh∑
j=1

∫
Ej

(φh · ∇η) · φh ≤
Nh∑
j=1

‖φh‖0,Ej‖φh‖L4(Ej)‖∇η‖L4(Ej)

≤ κν

32
‖φh‖2

X +
C

ν
‖u‖2

L∞(0,T ;W 2,4/3(Ω))‖φ
h‖2

0,Ω.
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The second term is bounded using inequalities (2.13), (2.16), (2.6), and (2.8):

Nh∑
j=1

∫
∂E−

j

|{φh} · nEj |(ηint − ηext) · φh,int ≤ C

Nh∑
j=1

‖φh‖L4(∂Ej)‖η‖L4(∂Ej)‖φ
h‖L2(∂Ej)

≤ C

Nh∑
j=1

h−3/2hr+1|u|r+1,Ω‖φh‖2
0,Ω ≤ κν

64
‖φh‖2

X + C‖u‖2
L∞(0,T ;Hr+1(Ω))‖φ

h‖2
0,Ω.

The last term in c(φh,η,φh) is bounded like the terms S6, S7, S8, and S9 of c(φh,u,φh).
The remaining nonlinear terms are bounded in a similar fashion:

cuh(η, Rh(u),φh) =

Nh∑
j=1

∫
Ej

(η · ∇Rh(u)) · φh

+

Nh∑
j=1

∫
∂E−

j

|{η} · nEj |(Rh(u)int −Rh(u)ext) · φh,int +
1

2

Nh∑
j=1

∫
Ej

(∇ · η)Rh(u) · φh

− 1

2

Mh∑
k=1

∫
ek

[η] · nk{Rh(u) · φh} = S10 + · · · + S13.

Using the bound (2.6) and the approximation result (2.7), we have

S10 ≤ ‖η‖L2(Ω)‖∇Rh(u)‖L4(Ω)‖φh‖L4(Ω) ≤
κν

64
‖φh‖2

X + C‖u‖2
L∞([0,T ]×Ω)h

2r|u|2r+1,Ω.

The inequalities (2.11), (2.14), and (2.6) and the approximation result (2.7) yield

S11 ≤ C

Nh∑
j=1

h
−1/2
Ej

(‖η‖0,Ej + hEj
‖∇η‖0,Ej )h

−1/2
Ej

‖φh‖0,Ej

≤ C‖φh‖2
0,Ω + C‖u‖2

L∞([0,T ]×Ω)h
2r|u|2r+1,Ω.

Similarly, we have

S12 ≤
Nh∑
j=1

‖u‖L∞([0,T ]×Ω)‖φh‖0,Ej‖∇ · η‖0,Ej

≤ C‖φh‖2
0,Ω + C‖u‖2

L∞([0,T ]×Ω)h
2r|u|2r+1,Ω.

Note that S13 is bounded exactly like S11. The other nonlinear term is bounded using
(2.7) and (2.14):

cuh(u,η,φh) =

Nh∑
j=1

∫
Ej

(u · ∇η) · φh +

Nh∑
j=1

∫
∂E−

j

|{u} · nEj
|(ηint − ηext) · φh,int

≤ C

Nh∑
j=1

‖u‖L∞([0,T ]×Ω)‖∇η‖0,Ej‖φh‖0,Ej + C

Nh∑
j=1

‖u‖L∞([0,T ]×Ω)‖η‖0,∂Ej‖φh‖0,∂Ej

≤ C‖φh‖2
0,Ω + C‖u‖2

L∞([0,T ]×Ω)h
2r|u|2r+1,Ω.
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Combining all bounds above and using (3.3), we obtain

1

2

d

dt
‖φh‖2

0 +
κν

2
‖φh‖2

X +
νT
2
‖(I − PH)∇φh‖2

0 ≤ C

(
1

ν
+ 1

)
‖φh‖2

0

+Ch2r

(
ν +

1

ν
+ νT

)
|u|2r+1,Ω + C

h2r

ν
|p|2r,Ω + Ch2r|ut|2r+1,Ω + CνTH

2r|u|2r+1,Ω.

Integrating from 0 to t, noting that ‖φh(0)‖0 is of the order hr, and using Gronwall’s
lemma, yield

‖φh(t)‖2
0 + κν‖φh‖2

L2(0,t;X) + νT ‖(I − PH)∇φh‖2
L2(0,t;L2(Ω))

≤ CeC(1+ν−1)h2r[(ν + ν−1 + νT )|u|2L2(0,T ;Hr+1(Ω)) + ν−1|p|2L2(0,T ;Hr(Ω))

+|ut|2L2(0,T ;Hr+1(Ω)) + νTH
2r|u|2L2(0,T ;Hr+1(Ω))] + Chr|u0|2r+1,Ω,

where the constant C is independent of ν, νT , h,H but depends on ‖u‖L∞(0,T ;W 2,4/3(Ω)).
The theorem is obtained using the approximation results (2.7) and (2.8) and the fol-
lowing inequality:

‖u(t) − uh(t)‖2
0 + κν‖u(t) − uh(t)‖2

L2(0,T ;X) + νT ‖(I − PH)∇(u(t) − uh(t))‖2
L2(0,T ;L2(Ω))

≤ ‖φh(t)‖2
0 + κν‖φh‖2

L2(0,T ;X) + νT ‖(I − PH)∇φh‖2
L2(0,T ;L2(Ω))

+ ‖η(t)‖2
0 + κν‖η‖2

L2(0,T ;X) + νT ‖(I − PH)∇η‖2
L2(0,T ;L2(Ω)).

Remark 2. One of the most important properties of Theorem 4.1 is that the new
method improves its robustness with respect to the Reynolds number. In most cases,
error estimations of Navier–Stokes equations give a Gronwall constant that depends
on the Reynolds number as 1/ν3. In contrast, this approach leads to a better error
estimate with a Gronwall constant depending on 1/ν. Optimal convergence rates
are obtained for Theorem 4.1 if νT and H are appropriately chosen.

Corollary 4.2. Assume that νT = hβ and H = h1/α. If the relation β ≥
2r(α− 1)/α is satisfied, then the estimate becomes

‖u − uh‖L∞(0,T ;L2(Ω)) + ‖u − uh‖L2(0,T ;X) = O(hr).

For example, one may choose for a linear approximation the pair (νT , H) =
(h, h1/2), for quadratic approximation (νT , H) = (h, h3/4) or (νT , H) = (h2, h1/2),
and for cubic approximation (νT , H) = (h, h5/6) or (νT , H) = (h2, h2/3).

Theorem 4.3. Under the assumptions of Theorem 4.1 and if a(·, ·) is symmetric
(ε0 = −1), the following estimate holds true:

‖ut − uh
t ‖L2(0,T ;L2(Ω)) + ν1/2‖u − uh‖L∞(0,T ;X) ≤ CeCTν−1

[hr|u0|r+1,Ω

+hr|u|L2(0,T ;Hr+1(Ω)) + hr|ut|L2(0,T ;Hr+1(Ω)) + CνTH
rh−1|u|L2(0,T ;Hr+1(Ω))],

where C is a positive constant independent of h,H, ν and νT . If a(·, ·) is nonsymmetric
(ε0 = 1), the estimate is suboptimal, of order hr−1.

Proof. We just give the outline of the proof. We introduce the modified Stokes
problem: for any t > 0, find (uS(t), pS(t)) ∈ Xh ×Qh such that

ν(a(uS(t),vh) + J(uS(t),vh)) + νT g(u
S(t),vh) + b(vh, pS(t))

= ν(a(u(t),vh) + J(u(t),vh)) + νT g(u(t),vh) + b(vh, p(t)) ∀vh ∈ Xh,(4.6)

b(uS(t), qh) = 0 ∀qh ∈ Qh.(4.7)
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For any t > 0, there exists a unique solution to (4.6), (4.7). Furthermore, it is easy
to show that the solution satisfies the error estimate

κ1/2ν1/2‖u(t) − uS(t)‖X + ν
1/2
T ‖(I − PH)∇(u − uS)‖0,Ω

≤ hr((ν + ν−1 + νT )1/2|u|r+1,Ω + ν−1/2|p|r,Ω + |ut|r+1,Ω) + ν
1/2
T Hr|u|r+1,Ω ∀t > 0.

Define η = u − uS and ξ = uh − uS , and choose the test function vh = ξt. The
resulting error equation is

‖ξt‖2
0,Ω + νa(ξ, ξt) +

ν

2

d

dt
J(ξ, ξ) +

νT
2

d

dt
g(ξ, ξ)

= (ηt, ξt) − νT g(u, ξt) + c(u,u, ξt) − c(uh,uh, ξt).(4.8)

The first two terms in the right-hand side of (4.8) are bounded as in Theorem 4.1. A
detailed argument is given in [23]. Let us rewrite the nonlinear terms

c(u,u, ξt) − c(uh,uh, ξt) = c(ξ, ξ, ξt) − c(ξ,η, ξt) + c(ξ,u, ξt)

− c(η,uh, ξt) + c(u, ξ, ξt) − c(u,η, ξt).

We assume that ξ belongs to L∞((0, T ) × Ω). Lp bounds, inverse inequality, and
approximation results give the bounds for each nonlinear term as in Theorem 4.1.
Collecting all the bounds with (4.8) gives

‖ξt‖2
0,Ω + νa(ξ, ξt) +

ν

2

d

dt
J(ξ, ξ) +

νT
2

d

dt
g(ξ, ξ)

≤ 1

2
‖ξt‖2

0,Ω + C‖ξ‖2
X + Ch2r|u|2r+1,Ω + Ch2r|ut|2r+1,Ω + Cν2

TH
2rh−2|u|2r+1,Ω.(4.9)

In the case where the bilinear form a is symmetric (ε0 = −1), the inequality becomes

1

2
‖ξt‖2

0,Ω +
ν

2

d

dt
‖ξ‖2

X +
νT
2

d

dt
g(ξ, ξ)

≤ C‖ξ‖2
X + Ch2r|u|2r+1,Ω + Ch2r|ut|2r+1,Ω + Cν2

TH
2rh−2|u|2r+1,Ω.(4.10)

Integrating from 0 to t and using Gronwall’s lemma yield

‖ξt‖2
L2(0,T ;L2(Ω)) + ν‖ξ‖2

L∞(0,T ;X) + νT max
0≤t≤T

g(ξ, ξ) ≤ CeCTν−1

[h2r|u0|2r+1,Ω

+Ch2r|u|2L2(0,T ;Hr+1(Ω)) + Ch2r|ut|2L2(0,T ;Hr+1(Ω)) + Cν2
TH

2rh−2|u|2L2(0,T ;Hr+1(Ω))].

In the case where the bilinear form a is nonsymmetric, we rewrite (4.9) as

a(ξ, ξt) =
1

2

d

dt
|||∇ξ|||20 −

Mh∑
k=1

∫
ek

{∇ξ}nk · [ξt] +

Mh∑
k=1

∫
ek

{∇ξt}nk · [ξ].

The bound is then suboptimal: O(hr−1).

We now derive an error estimate for the pressure.

Theorem 4.4. We keep the assumptions of Theorem 4.1 and we consider the
case where a(·, ·) is symmetric (ε0 = −1) and ν ≤ 1. Then the solution ph satisfies
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the following error estimate:

‖ph − rh(p)‖L2(0,T ;L2(Ω)) ≤ CeCTν−1

[νhr|u0|r+1,Ω

+ νhr|u|L2(0,T ;Hr+1(Ω)) + νhr|ut|L2(0,T ;Hr+1(Ω)) + CννTH
rh−1|u|L2(0,T ;Hr+1(Ω))]

+Cν1/2hr|u0|r+1,Ω + Cνhr|u|L2(0,T ;Hr+1(Ω)) + Cνhr|p|L2(0,T ;Hr(Ω))

+CνTH
r|u|L2(0,T ;Hr+1(Ω))

+CeCT (ν−1+1)[hr((ν + ν−1 + νT )1/2|u|L2(0,T ;Hr+1(Ω)) + ν−1/2|p|L2(0,T ;Hr(Ω))

+ |ut|L2(0,T ;Hr+1(Ω))) + ν
1/2
T Hr|u|L2(0,T ;Hr+1(Ω))] + Chr|u0|r+1,Ω,

where C is independent of h,H, ν, and νT . Again, if a(·, ·) is nonsymmetric (ε0 = 1),
the estimate is suboptimal.

Proof. The error equation can be written for all vh in Xh:

− b(vh, ph − rh(p)) = (uh
t − ut,v

h) + νa(uh − u,vh) + νJ(uh − u,vh)

+ νT g(u
h − u,vh) + c(uh,uh,vh) − c(u,u,vh) + νT g(u,v

h) − b(vh, p− rh(p)).

From the inf-sup condition (3.10), there is vh ∈ Xh such that

b(vh, ph − rh(p)) = −‖ph − rh(p)‖2
0, ‖vh‖X ≤ 1

β0
‖ph − rh(p)‖0,Ω.

Thus, we have

‖ph − rh(p)‖2
0,Ω = (uh

t − ut,v
h) + ν

Nh∑
j=1

∫
Ej

∇(uh − u) : ∇vh

− ν

Mh∑
k=1

∫
ek

{∇(uh − u)}nk · [vh] + νε0

Mh∑
k=1

∫
ek

{∇vh}nk · [uh − u] + νJ(uh − u,vh)

+ νT g(u
h − u,vh) + c(uh,uh,vh) − c(u,u,vh) + νT g(u,v

h) − b(vh, p− rh(p)).

All the terms above can be handled as in Theorem 4.1. The resulting inequality is

‖ph − rh(p)‖2
0,Ω ≤ Cν2‖uh

t − ut‖2
0,Ω + Cν2‖uh − u‖2

X + Cν2h2r|u|2r+1,Ω

+Cν2h2r|p|2r,Ω + Cν2
TH

2r|u|2r+1,Ω + Cν2
T g(u

h − u,uh − u) + C‖uh − u‖2
0,Ω.

We now integrate from 0 to T and use Theorem 4.1 and Theorem 4.3 to conclude.

5. Fully discrete scheme. In this section, we formulate two fully discrete finite
element schemes for the discontinuous eddy viscosity method. Let Δt denote the time
step, let M = T/Δt, and let 0 = t0 < t1 < · · · < tM = T be a subdivision of the
interval (0, T ). We denote the function φ evaluated at the time tm by φm and the
average of φ at two successive time levels by φm+ 1

2
= 1

2 (φm + φm+1).

Scheme 1: Given uh
0 , find (uh

m)m≥1 in Xh and (phm)m≥1 in Qh such that

1

Δt
(uh

m+1 − uh
m,vh) + ν(a(uh

m+1,v
h) + J(uh

m+1,v
h)) + c(uh

m,uh
m+1,v

h)

+ νT g(u
h
m+1,v

h) + b(vh, phm+1) = (fm+1,v
h) ∀vh ∈ Xh,(5.1)

b(uh
m+1, q

h) = 0 ∀qh ∈ Qh.(5.2)
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Scheme 2: Given ũh
0 , ũ

h
1 , p̃

h
1 , find (ũh

m)m≥2 in Xh and (p̃hm)m≥2 in Qh such that

1

Δt
(ũh

m+1 − ũh
m,vh) + ν(a(ũh

m+ 1
2
,vh) + J(ũh

m+ 1
2
,vh)) + c(ũh

m+ 1
2
, ũh

m+ 1
2
,vh)

+ νT g(ũ
h
m+ 1

2
,vh) + b(vh, p̃hm+ 1

2
) = (fm+ 1

2
,vh) ∀vh ∈ Xh,(5.3)

b(ũh
m+1, q

h) = 0 ∀qh ∈ Qh.(5.4)

For both schemes, the initial velocity is defined to be the L2 projection of u0. Scheme
1 is based on a backward Euler discretization. Scheme 2 is based on a Crank–Nicolson
discretization, and requires the velocity and pressure at the first step. The approxi-
mations ũh

1 and p̃h1 can be obtained by a first order scheme (see [2]). We will show
that Scheme 1 is first order in time and Scheme 2 is second order in time. First, we
prove the stability of the schemes.

Lemma 5.1. The solution (uh
m)m of (5.1), (5.2) remains bounded in the following

sense:

‖uh
m‖2

0,Ω ≤ K, m = 0, . . . ,M,

Δt

M−1∑
m=0

‖uh
m+1‖2

X ≤ K

2ν
, Δt

M−1∑
m=0

|||(I − PH)∇uh
m+1|||20 ≤ K

2νT
,

where K = ‖u0‖2
0,Ω + ‖f‖2

L2([0,T ]×Ω).

The solution (ũh
m)m of (5.3), (5.4) remains bounded in the following sense:

‖ũh
m‖2

0,Ω ≤ K̃, m = 0, . . . ,M,

Δt

M−1∑
m=0

‖ũh
m+1‖2

X ≤ K̃

2ν
, Δt

M−1∑
m=0

‖(I − PH)∇ũh
m+1‖2

0,Ω ≤ K̃

2νT
,

where K̃ = ‖u0‖2
0,Ω + 2‖f‖2

L2([0,T ]×Ω).

Proof. Choose vh = uh
m+1 in (5.1) and qh = phm+1 in (5.2). We multiply by 2Δt

and sum over m. Then, from the positivity of c and (3.3), we have

‖uh
m‖2

0,Ω − ‖uh
0‖2

0,Ω + 2κνΔt

m−1∑
j=0

‖uh
j+1‖2

X + 2νTΔt

m−1∑
j=0

|||(I − PH)∇uh
j+1|||20

≤ Δt

m−1∑
j=0

‖f j+1‖2
0,Ω + Δt

m−1∑
j=0

‖uh
j+1‖2

0,Ω.

The result is obtained by using a discrete version of Gronwall’s lemma [15] and the
fact that ‖uh

0‖0,Ω ≤ ‖u0‖0,Ω.

For Scheme 2, the proof is similar. Choose vh = ũm+ 1
2

in (5.3) and qh = p̃hm+ 1
2

in (5.4). The rest of the proof follows as above. See [23] for more details.
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Theorem 5.2. Under the assumptions of Theorem 4.1 and if ut and utt belong
to L∞(0, T ;L2(Ω)), there is a constant C independent of h,H, ν, and νT such that

max
m=0,...,M

‖um − uh
m‖0,Ω +

(
νκΔt

M−1∑
m=0

‖um+1 − uh
m+1‖2

X

)1/2

+

(
νTΔt

M∑
m=0

|||(I − PH)(∇um+1 − uh
m+1)|||20

)1/2

≤ Chr|u0|r+1,Ω

+CeCTν−1

[hr(ν + ν−1 + νT )1/2|u|L2(0,T ;Hr+1(Ω)) + ν
1/2
T Hr|u|L2(0,T ;Hr+1(Ω))

+ ν−1/2Δt(‖ut‖L∞(0,T ;L2(Ω)) + ‖utt‖L∞(0,T ;L2(Ω))) + hrν−1/2|p|L2(0,T ;Hr(Ω)].

Proof. As in the continuous case, we set em = um −uh
m. We subtract from (5.1)

and (5.2) equations (3.14) and (3.15) evaluated at time t = tm+1.

(ut(tm+1),v
h) − 1

Δt
(uh

m+1 − uh
m,vh) + ν[a(em+1,v

h) + J(em+1,v
h)]

+ νT g(em+1,v
h) + c(um+1,um+1,v

h) − c(uh
m,uh

m+1,v
h)

+ b(vh, pm+1 − phm+1) = νT g(um+1,v
h) ∀vh ∈ Xh,(5.5)

b(em+1, q
h) = 0 ∀qh ∈ Qh.(5.6)

Define φm = uh
m − (Rh(u))m, ηm = um − (Rh(u))m. Choose vh = φm+1 in (5.5)

and qh = phm+1 in (5.6). Adding and subtracting the interpolant and using (3.3) yield
the following error equation:

1

2Δt
(‖φm+1‖2

0,Ω − ‖φm‖2
0,Ω) + νκ‖φm+1‖2

X + νT |||(I − PH)∇φm+1|||20
+ c(uh

m,uh
m+1,φm+1) − c(um+1,um+1,φm+1) + b(φm+1, p

h
m+1 − pm+1)

≤
∥∥∥∥∂u

∂t
(tm+1) −

1

Δt
(um+1 − um)

∥∥∥∥
0,Ω

‖φm+1‖0,Ω +
1

Δt

∥∥ηm+1 − ηm

∥∥
0,Ω

‖φm+1‖0,Ω

+ ν|a(ηm+1,φm+1) + J(ηm+1,φm+1)| + νT |||(I − PH)∇ηm+1|||0|||(I − PH)∇φm+1|||0
+ νT |||(I − PH)∇um+1|||0|||(I − PH)∇φm+1|||0.

We rewrite the nonlinear terms

cuh
m

(uh
m,uh

m+1,φm+1) − cum+1
(um+1,um+1,φm+1)

= cuh
m

(uh
m,uh

m+1,φm+1) − cuh
m

(um+1,um+1,φm+1).

We now drop the subscript uh
m:

cuh
m

(uh
m,uh

m+1,φm+1) − cuh
m

(um+1,um+1,φm+1)

= c(uh
m,φm+1,φm+1) − c(φm,ηm+1,φm+1) + c(φm,um+1,φm+1)

− c(ηm,uI
m+1,φm+1) − c(um,ηm+1,φm+1) − c(um+1 − um,um+1,φm+1).
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Thus, we rewrite the error equation as

1

2Δt
(‖φm+1‖2

0,Ω − ‖φm‖2
0,Ω) + νκ‖φm+1‖2

X + νT |||(I − PH)∇φm+1|||20
+ c(uh

m,φm+1,φm+1) ≤ |c(φm,ηm+1,φm+1)| + |c(φm,um+1,φm+1)|
+ |c(ηm,uI

m+1,φm+1)| + |c(um,ηm+1,φm+1)| + |c(um+1 − um,um+1,φm+1)|

+ |b(φm+1, p
h
m+1 − pm+1)| +

∥∥∥∥∂u

∂t
(tm+1) −

1

Δt
(um+1 − um)

∥∥∥∥
0,Ω

‖φm+1‖0,Ω

+
1

Δt
‖ηm+1 − ηm‖0,Ω‖φm+1‖0,Ω + ν|a(ηm+1,φm+1) + J(ηm+1,φm+1)|

+ νT |||(I − PH)∇ηm+1|||0|||(I − PH)∇φm+1|||0
+ νT |||(I − PH)∇um+1|||0|||(I − PH)∇φm+1|||0 ≤ |T0| + · · · + |T10|.

We want to bound the terms T0, T2, . . . , T10. T0 can be handled as in Theorem 4.1.
Then, T0 is bounded as

T0 ≤ κν

6
‖φm+1‖2

X + Cν−1(‖u‖2
L∞(0,T ;Hr+1(Ω)) + ‖u‖2

L∞(0,T ;W 2,4/3(Ω)))‖φm‖2
0,Ω.

Also, the term T1 is bounded exactly like the term (4.5) in the proof of Theorem 4.1.
Here, the constant vectors are

c1 =
1

|Ej |

∫
Ej

um+1, c2 =
1

|Ej |

∫
Ej

φm+1.

Then, T1 can be rewritten as

T1 =

Nh∑
j=1

∫
Ej

(φm · ∇um+1) · φm+1 −
1

2
b(φm, (um+1 − c1) · φm+1)

− 1

2
b(φm, c1 · (φm+1 − c2)) ≤

κν

24
‖φm+1‖2

X + Cν−1‖φm‖2
0,Ω.

Expanding T2, we obtain

T2 =

Nh∑
j=1

∫
Ej

(ηm · ∇uI
m+1) · φm+1 +

Nh∑
j=1

∫
∂E−

j

|{ηm} · nEj |(u
I,int
m+1 − uI,ext

m+1) · φint
m+1

+
1

2

Nh∑
j=1

∫
Ej

(∇ · ηm)uI
m+1 · φm+1 −

1

2

Ph∑
k=1

∫
ek

[ηm] · nk{uI
m+1 · φm+1}

= T21 + · · · + T24.

The bound for T21 is obtained using (2.6) and (2.8):

T21 ≤ ‖ηm‖0,Ω‖∇uI
m+1‖L4(Ω)‖φm+1‖L4(Ω)

≤ κν

24
‖φm+1‖2

X + Cν−1h2r‖u‖2
L∞(0,T ;W 2,4/3(Ω))|um|2r+1,Ω.

Similarly for the term T22, the inequalities (2.7) and (2.14) give

T22 ≤ C

Nh∑
j=1

‖ηm‖L2(∂Ej)‖uI
m+1‖L∞(Ω)‖φm+1‖L2(∂Ej)

≤ κν

24
‖φm+1‖2

X + Cν−1h2r‖u‖2
L∞([0,T ]×Ω)|um|2r+1,Ω.
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The estimate of T23 is obtained by using a bound on interpolant, the Cauchy–Schwarz
inequality, the approximation result (2.7), Young’s inequality, and Lp bound (2.6):

T23 ≤ κν

24
‖φm+1‖2

X + Cν−1h2r‖u‖2
L∞([0,T ]×Ω)|um|2r+1,Ω.

The term T24 is bounded exactly as for T22. Because of the regularity of u and the
approximation result (2.7), we can bound T3:

T3 ≤ C‖um‖L∞(Ω)h
r|um+1|r+1,Ω‖φm+1‖0,Ω

≤ κν

24
‖φm+1‖2

X + Cν−1h2r‖u‖2
L∞([0,T ]×Ω)|um|2r+1,Ω.

The term T4 is bounded using the estimate (2.6):

T4 ≤ Δt‖ut‖L∞(tm,tm+1;L2(Ω))‖∇um+1‖L4(Ω)‖φm+1‖L4(Ω)

≤ κν

24
‖φm+1‖2

X + Cν−1Δt2‖ut‖2
L∞(tm,tm+1;L2(Ω))‖u‖2

L∞(0,T ;W 2,4/3(Ω)).

By property of the interpolant (3.11) and properties of rh(p), (2.9), and (2.10), we
now bound T5:

T5 = b(φm+1, p
h
m+1 − (rh(p))m+1) − b(φm+1, pm+1 − (rh(p))m+1)

= − b(φm+1, pm+1 − (rh(p))m+1) =

Mh∑
k=1

∫
ek

{pm+1 − (rh(p))m+1}[φm+1] · nk

≤
Mh∑
k=1

‖[φm+1]‖0,ek |ek|1/2−1/2‖pm+1‖0,ek ≤ κν

24
‖φm+1‖2

X + Cν−1h2r|pm+1|2r,Ω.

From a Taylor expansion, we have

T6 ≤ CΔt‖φm+1‖X‖utt(t
∗)‖0,Ω ≤ κν

24
‖φm+1‖2

X + Cν−1Δt2‖uTm‖2
L∞(0,T ;L2(Ω)).

To bound T7, we assume that h ≤ Δt and we use (2.8) and (2.6):

T7 ≤ κν

24
‖φm+1‖2

X + Cν−1h
2r+2

Δt2
(|um+1|2r+1,Ω + |um|2r+1,Ω)

≤ κν

24
‖φm+1‖2

X + Cν−1h2r(|um+1|2r+1,Ω + |um|2r+1,Ω).

The terms T8, T9, and T10 are exactly bounded as in Theorem 4.1. (See [23] for
details.) Combining all the bounds of the terms T0, . . . , T10, multiplying by 2Δt, and
summing over m, we obtain

‖φm+1‖2
0,Ω − ‖φ0‖2

0,Ω + νκΔt

m∑
i=0

‖φi+1‖2
X + νTΔt

m∑
i=0

|||(I − PH)∇φi+1|||20

≤ CeCTν−1

[h2r(ν + ν−1 + νT )|u|2L2(0,T ;Hr+1(Ω)) + νTH
2r|u|2L2(0,T ;Hr+1(Ω))

+ ν−1Δt2(‖ut‖2
L∞(0,T ;L2(Ω)) + ‖utt‖2

L∞(0,T ;L2(Ω))) + h2rν−1|p|2L2(0,T ;Hr(Ω)].

The final result is obtained by noting that ‖φ0‖0,Ω is of order hr and by using ap-
proximation results and a triangle inequality.
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Theorem 5.3. Assume that utt ∈ L∞(0, T ; (H1(Ω))2), ptt ∈ L∞(0, T ;H1(Ω)),
uttt ∈ L∞(0, T ; (H2(Ω))2), and f tt ∈ L∞(0, T ; (L2(Ω))2). Under the assumptions of
Theorem 4.1, there is a constant C independent of h,H, ν, and νT such that

max
m=0,...,M

‖um − ũm‖0,Ω +

(
νκΔt

M−1∑
m=0

‖um+1 − ũm+1‖2
X

)1/2

+

(
νTΔt

M−1∑
m=0

|||(I − PH)∇um+1 − ũm+1|||20

)1/2

≤ CeCTν−1

[hrν−1/2‖p‖L2(0,T ;Hr(Ω))

+hr(ν + ν−1 + νT )1/2‖u‖L2(0,T ;Hr+1(Ω)) + Δt2ν1/2‖uttt‖L∞(0,T ;H2(Ω))

+ Δt2ν−1/2(‖utt‖L∞(0,T ;H1(Ω)) + ‖ptt‖L∞(0,T ;H1(Ω)) + ‖uttt‖L∞(0,T ;L2(Ω))

+ ‖f tt‖L∞(0,T ;L2(Ω))) + ν
1/2
T Hr|u|L2(0,T ;Hr+1(Ω))] + Chr|u0|r+1,Ω.

Proof. The proof is derived in a similar fashion as for the backward Euler scheme.
Using the same notation, the error equation is obtained by subtracting (3.6) evalu-
ated at the time t = tm+1/2 from (5.3) and adding and subtracting the interpolant
(Rh(u))m+1/2. After some manipulation, we obtain

1

2Δt
(‖φm+1‖2

0,Ω − ‖φm‖2
0,Ω) + νκ‖φm+ 1

2
‖2
X + νT |||(I − PH)∇φm+ 1

2
|||20

+ c(ũh
m+ 1

2
,φh

m+ 1
2
,φm+ 1

2
) ≤ |c(φm+ 1

2
,ηm+ 1

2
,φm+ 1

2
)| + |c(φm+ 1

2
,um+ 1

2
,φm+ 1

2
)|

+ |c(ηm+ 1
2
,uI

m+ 1
2
,φm+ 1

2
)| + |c(um+ 1

2
,ηm+ 1

2
,φm+ 1

2
)|

+ |c(um+ 1
2
− u(tm+ 1

2
),um+ 1

2
,φm+ 1

2
)| + |c(u(tm+ 1

2
),um+ 1

2
− u(tm+ 1

2
),φm+ 1

2
)|

+ |b(φm+ 1
2
, p̃hm+ 1

2
− p(tm+ 1

2
))| +

∥∥∥∥ut(tm+ 1
2
) − 1

Δt
(um+1 − um)

∥∥∥∥
0,Ω

‖φm+ 1
2
‖0,Ω

+
1

Δt
‖ηm+1 − ηm‖0,Ω‖φm+ 1

2
‖0,Ω + ‖fm+ 1

2
− f(tm+ 1

2
)‖0,Ω‖φm+ 1

2
‖0,Ω

+ ν|a(u(tm+ 1
2
) − uI

m+ 1
2
,φm+1) + J(u(tm+ 1

2
) − uI

m+ 1
2
,φm+1)|

+ νT |||(I − PH)∇ηm+ 1
2
|||0|||(I − PH)∇φm+ 1

2
|||0

+ νT |||(I − PH)∇um+ 1
2
|||0|||(I − PH)∇φm+ 1

2
|||0 ≤ A0 + · · · + A13.

The terms A0, A1, A2, A3, A8, A11, and A12 are bounded exactly like the terms T0, T1, T2,
T3, T7, T9, and T10, respectively. From a Taylor expansion, we bound the terms A4

and A5:

A4 + A5 =

Nh∑
j=1

∫
Ej

((um+ 1
2
− u(tm+ 1

2
)) · ∇um+ 1

2
) · φm+ 1

2

+

Nh∑
j=1

∫
Ej

u(tm+ 1
2
) · ∇(um+ 1

2
− u(tm+ 1

2
)) · φm+ 1

2

=
Δt2

8

Nh∑
j=1

∫
Ej

(utt(t
∗) · ∇um+ 1

2
) · φm+ 1

2
+

Δt2

8

Nh∑
j=1

∫
Ej

u(tm+ 1
2
) · ∇(utt(t

∗)) · φm+ 1
2

≤ κν

64
‖φm+ 1

2
‖2
X + Cν−1Δt4‖utt‖2

L∞(0,T ;H1(Ω))‖u‖2
L∞(0,T ;W 2,4/3(Ω)).
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With (3.7), (3.11), and (5.4), the pressure term can be rewritten as

A6 = b(φm+ 1
2
, p̃hm+ 1

2
− pm+ 1

2
) + b(φm+ 1

2
, pm+ 1

2
− p(tm+ 1

2
))

= − b(φm+ 1
2
, pm+ 1

2
− (rh(p))m+ 1

2
) + b(φm+ 1

2
, pm+ 1

2
− p(tm+ 1

2
))

=

Mh∑
k=1

∫
ek

{pm+ 1
2
− (rh(p))m+ 1

2
}[φm+ 1

2
] · nk −

Nh∑
j=1

∫
Ej

(pm+ 1
2
− p(tm+ 1

2
))∇ · φm+ 1

2

+

Mh∑
k=1

∫
ek

{pm+ 1
2
− p(tm+ 1

2
)}[φm+ 1

2
] · nk

≤ κν

64
‖φm+ 1

2
‖2
X + Cν−1h2r(|pm+1|2r,Ω + |pm|2r,Ω) + Cν−1Δt4‖ptt‖2

L∞(0,T ;H1(Ω)).

We now bound A7, using a Taylor expansion:

A7 ≤ CΔt2‖uttt(t
∗)‖0,Ω‖φm+ 1

2
‖0,Ω ≤ κν

64
‖φm+ 1

2
‖2
X + Cν−1Δt4‖uttt‖2

L∞(0,T ;L2(Ω)).

Also using a Taylor expansion, we bound A9:

A9 ≤ Cν−1Δt4‖f tt‖2
L∞(0,T ;L2(Ω)) +

κν

64
‖φm+ 1

2
‖2
X .

Finally the last term A10 is handled as follows:

A10 = ν[a(ηm+ 1
2
,φm+ 1

2
) + J(ηm+ 1

2
,φm+ 1

2
)]

+ ν[a(u(tm+ 1
2
) − um+ 1

2
,φm+ 1

2
) + J(u(tm+ 1

2
) − um+ 1

2
,φm+ 1

2
)] = A101 + A102.

The term A101 is bounded like T8. The term A102 reduces to

A102 = ν

Nh∑
j=1

∫
Ej

∇(u(tm+ 1
2
) − um+ 1

2
) : ∇φm+ 1

2

− ν

Mh∑
k=1

∫
ek

{∇(u(tm+ 1
2
) − um+ 1

2
)nk}[φm+ 1

2
] ≤ κν

64
‖φm+ 1

2
‖2
X

+CνΔt4‖utt‖2
L∞(0,T ;H2(Ω)).

Combining all the bounds above yields

1

2Δt
(‖φm+1‖2

0,Ω − ‖φm‖2
0,Ω) +

νκ

2
‖φm+ 1

2
‖2
X +

νT
2
|||(I − PH)∇φm+ 1

2
|||20

≤ Cν−1(‖φm‖2
0,Ω + ‖φm+1‖2

0,Ω) + Ch2r(ν + ν−1 + νT )(|um+1|2r+1,Ω + |um|2r+1,Ω)

+Ch2rν−1(|pm+1|2r,Ω + |pm|2r,Ω) + CΔt4ν‖uttt‖2
L∞(0,T ;H2(Ω))

+CΔt4ν−1(‖utt‖2
L∞(0,T ;H1(Ω)) + ‖ptt‖2

L∞(0,T ;H1(Ω)) + ‖uttt‖2
L∞(0,T ;L2(Ω))

+ ‖f tt‖2
L∞(0,T ;L2(Ω))) + CνTH

2r(|um+1|2r+1,Ω + |um|2r+1,Ω).

The end of the proof is similar to that of Theorem 5.2.
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Corollary 5.4. Assume that νT = hβ and H = h1/α, where β ≥ 2r(α − 1)/α
(see Corollary 4.2); then the estimates in Theorems 5.2 and 5.3 are optimal:

max
m=0,...,M

‖um − uh
m‖0,Ω +

(
Δt

M−1∑
m=0

‖um+1 − uh
m+1‖2

X

)1/2

= O(hr + Δt),

max
m=0,...,M

‖um − ũm‖0,Ω +

(
Δt

M−1∑
m=0

‖um+1 − ũm+1‖2
X

)1/2

= O(hr + Δt2).

Remark 3. The analysis presented in this paper is applicable to the three-dimen-
sional Navier–Stokes equations assuming that the Lp bound (2.6) and the inf-sup
condition (3.10) hold true.

6. Conclusion. In this paper, we have analyzed the stability and convergence of
totally discontinuous schemes for solving the time-dependent Navier–Stokes equations.
Both semidiscrete approximation and fully discrete approximation are constructed
for velocity. In addition, semidiscrete approximation of pressure is obtained. We
showed that these estimations are optimal. Numerical experiments are currently
under investigation.
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A FINITE DIFFERENCE SCHEME FOR OPTION PRICING IN
JUMP DIFFUSION AND EXPONENTIAL LÉVY MODELS∗

RAMA CONT† AND EKATERINA VOLTCHKOVA†

Abstract. We present a finite difference method for solving parabolic partial integro-differential
equations with possibly singular kernels which arise in option pricing theory when the random evo-
lution of the underlying asset is driven by a Lévy process or, more generally, a time-inhomogeneous
jump-diffusion process. We discuss localization to a finite domain and provide an estimate for the
localization error under an integrability condition on the Lévy measure. We propose an explicit-
implicit finite difference scheme which can be used to price European and barrier options in such
models. We study stability and convergence of the scheme proposed and, under additional condi-
tions, provide estimates on the rate of convergence. Numerical tests are performed with smooth and
nonsmooth initial conditions.

Key words. parabolic integro-differential equations, finite difference methods, Lévy process,
jump-diffusion models, option pricing, viscosity solutions
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1. Introduction. The shortcomings of diffusion models in representing the risk
related to large market movements have led to the development of various option pric-
ing models with jumps, where large returns are represented as discontinuities in prices
as a function of time. Models with jumps allow for a more realistic representation of
price dynamics and greater flexibility in modelling and have been the focus of much
recent work [11].

Exponential Lévy models, where the market price of an asset is represented as
the exponential St = exp(rt + Xt) of a Lévy process Xt, offer analytically tractable
examples of positive jump processes which are simple enough to allow a detailed study
both in terms of statistical properties and as models for risk-neutral dynamics, i.e.,
option pricing models. Option pricing with exponential Lévy models is discussed in
[11, 17, 24]. The flexibility of choice of the Lévy process X allows us to calibrate the
model to market prices of options and reproduce a wide variety of implied volatility
skews/smiles [12]. The Markov property of the price allows us to express prices
of European and barrier options in terms of solutions of partial integro-differential
equations (PIDEs) that involve, in addition to a (possibly degenerate) second-order
differential operator, a nonlocal integral term that requires specific treatment at both
the theoretical and numerical levels [13].

In this paper, we propose a finite difference scheme for solving such PIDEs. Our
numerical solution is based on splitting the operator into a local and a nonlocal
part: we treat the local term using an implicit step and the nonlocal term using an
explicit step. This idea, previously used for nonlinear PDEs [3], allows for an efficient
numerical implementation. Some difficulties arise due to the nonlocal character of the
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integral operator, nonsmoothness of initial conditions, the singularity at zero of the
integral kernel, and the possible degeneracy of the diffusion coefficient. We resolve
these difficulties in the framework of viscosity solutions and provide error estimates in
each case, under assumptions which are easily verified on the Lévy density. We study
the consistency and stability of this scheme, show its convergence to the solution of
the PIDE, and study its numerical performance in two examples, the Merton model
with Gaussian jumps and the infinite activity variance Gamma model. Our scheme
can be used for European and barrier options and can also be extended to the case of
nonconstant coefficients.

1.1. Relation to previous literature. Various numerical methods for solving
such parabolic integro-differential equations have been proposed in the recent litera-
ture [2, 25, 16, 31]. In the case where the characteristic function of the log-price is
known analytically, the fast Fourier transform of Carr and Madan [9] can be used for
pricing European options. Though our finite difference method requires more opera-
tions than the fast Fourier transform [9], our method does not require a closed form
expression for the characteristic function of the log-price and can also handle barrier
options (i.e., boundary value problems).

Finite difference schemes for PIDEs have been proposed in [2, 16, 30], but a
rigorous analysis of consistency, stability, and convergence is absent from these studies.
By appealing to the formalism of viscosity solutions, our analysis allows fairly general
hypotheses on the model and applies to models based on pure-jump Lévy processes
such as the variance Gamma model [23], hyperbolic models [17], and the normal
inverse Gaussian (NIG) model [7].

For jump-diffusion models with finite jump intensity, Andersen and Andreasen [2]
proposed an operator splitting method where the differential part is treated using a
Crank–Nicholson step and the jump integral is computed using an explicit time step.
Our method applies more generally to models with infinite activity, i.e., singular inte-
gral kernels; in addition, we propose an analysis of the convergence of our algorithm,
which is absent in [2].

Using a variational formulation of the integro-differential equation, Zhang [31]
studied a finite difference scheme in the case of jump-diffusion models having finite
intensity and possessing all exponential moments (see also [16]). These conditions rule
out all models in the literature except the Merton model: our analysis does not require
such restrictive conditions. The variational formulation has been recently extended
by Matache, von Petersdorff, and Schwab [25] to the infinite activity case using a
wavelet Galerkin method. While the approach of [25] is more general than the above
approaches, it does not allow us to treat singular cases such as the variance Gamma
model [23].

1.2. Outline. Section 2 starts by recalling facts about Lévy processes and ex-
ponential Lévy models. In section 3 we briefly discuss, following [13], the characteri-
zation of prices of European and barrier options in exponential Lévy models in terms
of viscosity solutions of PIDEs.

Solving such PIDEs by finite difference methods involves several approximations:
localization of the equation to a bounded domain, treatment of the singularity due to
small jumps, discretization of the equation in space, and iteration in time. We discuss
localization errors in section 4 and provide an estimate for the localization errors under
an integrability condition on the Lévy measure. In section 5 we propose an explicit-
implicit finite difference scheme and study consistency, stability, and convergence of
the scheme proposed. Convergence properties of the scheme are studied in section
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6: we show that the scheme is monotone, unconditionally stable, and consistent and
exhibit conditions for its convergence to the solution of the PIDE. Under further
conditions on the scheme, we are able to give an estimate of the rate of convergence
in section 6.4. Finally, in section 7, numerical tests are performed for smooth and
nonsmooth initial conditions to assess the effect of various numerical parameters on
the accuracy of the scheme.

2. Exponential Lévy models. We consider here the class of exponential Lévy
models: the risk-neutral dynamics of the underlying asset is given by St = exp(rt +
Xt), where Xt is a time-homogeneous jump-diffusion (Lévy) process.

2.1. Lévy processes: Definitions. A Lévy process is a stochastic process Xt

with stationary independent increments which is continuous in probability. Without
loss of generality we assume that X0 = 0. The characteristic function of Xt has the
following form, called the Lévy–Khinchin representation [27]:

(2.1)

E[eizXt ] = e−tψ(z) = exp

{
t

(
−σ2z2

2
+ iγz +

∫ ∞

−∞
(eizx − 1 − izx1|x|≤1)ν(dx)

)}
,

where σ > 0 and γ are real constants and ν is a positive measure verifying

∫ +1

−1

x2ν(dx) < ∞,

∫
|x|>1

ν(dx) < ∞.(2.2)

The random process X can be interpreted as the superposition of a Brownian mo-
tion with drift and an infinite superposition of independent (compensated) Poisson
processes with various jump sizes x, ν(dx) being the intensity of jumps of size x.
In general ν is not a finite measure:

∫
ν(dx) need not be finite. In the case where

λ =
∫
ν(dx) < +∞, the measure ν can be normalized to define a probability measure

μ, which can now be interpreted as the distribution of jump sizes:

μ(dx) =
ν(dx)

λ
.

The jumps of X are then described by a compound Poisson process with λ as jump
intensity (average number of jumps per unit time) and μ(.) as jump size distribution.
In this case the truncation of small jumps is not needed, and the Lévy–Khinchin
representation reduces to

E[eizXt ] = exp

{
t

(
−σ2z2

2
+ iγ0(ν)z +

∫ ∞

−∞
(eizx − 1)ν(dx)

)}
.

A Lévy process is a Markov process; its infinitesimal generator LX : f → LXf is
an integro-differential operator defined by the expression

(2.3) LXf(x) = lim
t→0

E[f(x + Xt)] − f(x)

t

=
σ2

2

∂2f

∂x2
+ γ

∂f

∂x
+

∫
ν(dy)

[
f(x + y) − f(x) − y1{|y|≤1}

∂f

∂x
(x)

]
,

which is well defined for f ∈ C2(R) with compact support.
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2.2. Exponential Lévy models. Let (St)t∈[0,T ] be the price of a financial asset
modelled as a stochastic process on a filtered probability space (Ω,F ,Ft,Q). Under
the hypothesis of absence of arbitrage there exists a measure equivalent to Q under
which (St) is a martingale. We will assume in what follows that Q is a martingale
measure.

Exponential Lévy models assume that the (risk-neutral) dynamics of St under Q

is represented as the exponential of a Lévy process:

St = S0e
rt+Xt .(2.4)

Here Xt is a Lévy process with characteristic triplet (σ,γ,ν), and the interest rate
r is included for ease of notation. Different exponential Lévy models proposed in
the financial modelling literature simply correspond to different choices for the Lévy
measure ν; see [11, Chap. 3] for a review. The absence of arbitrage then imposes that
Ŝt = Ste

−rt = expXt is a martingale, which is equivalent to the following conditions
on the triplet (σ,γ,ν):∫

|y|>1

ν(dy)ey < ∞,(2.5)

γ = γ(σ, ν) = −σ2

2
−
∫

(ey − 1 − y1|y|≤1)ν(dy).(2.6)

We will assume this relation holds in what follows. The infinitesimal generator LX

then becomes

(2.7) LXf(x) =
σ2

2

[
∂2f

∂x2
− ∂f

∂x

]
+

∫ ∞

−∞
ν(dy)

[
f(x + y) − f(x) − (ey − 1)

∂f

∂x
(x)

]
.

We will also use the notation Yt = rt + Xt. The infinitesimal generator of Yt is

Lf = LXf + r
∂f

∂x
.(2.8)

3. Partial integro-differential equation for option prices. The value of an
option is defined as a discounted conditional expectation of its terminal payoff HT un-
der the risk-adjusted martingale measure (sometimes called risk-neutral probability)
Q:

Ct = E[e−r(T−t)HT |Ft].

For a European call or put, HT = H(ST ). From the Markov property, Ct =
C(t, S), where

C(t, S) = E[e−r(T−t)H(ST )|St = S].(3.1)

Introducing the change of variable τ = T − t, x = ln(S/S0), and defining h(x) =
H(S0e

x) and u(τ, x) = erτC(T − τ, S0e
x), then

u(τ, x) = E[h(x + Yτ )].(3.2)

If u is sufficiently smooth—for example, u ∈ C1,2 with bounded derivatives—then
by applying Ito’s formula to u(t,Xt) between 0 and T one can show [8] that it is a
classical solution of the Cauchy problem:

∂u

∂τ
= Lu on (0, T ] × R, u(0, x) = h(x), x ∈ R.(3.3)
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Barrier options lead to initial-boundary value problems. Consider, for instance, an
up-and-out call option with maturity T , strike K, and (upper) barrier U > S0. The
terminal payoff is given by

HT = (ST −K)+1T<θ,

where θ = inf{t ≥ 0 | St ≥ U}, the first moment when the barrier is crossed. Due to
the strong Markov property of Lévy processes, it is possible to express the value of
the option Ct = e−r(T−t)E[HT |Ft] as a deterministic function of time t and current
stock value St before the barrier is crossed. Namely, for any (t, S) ∈ [0, T ] × (0,∞)
we can define

Cb(t, S) = e−r(T−t) E[H(SeYT−t)1T<θt ],(3.4)

where H(S) = (S−K)+, {Ys−t, s ≥ t} is a Lévy process, and θt = inf{s ≥ t | SeYs−t ≥
U}, the first exit time after t. Then,

Ct = Cb(t, St)1t≤θ(3.5)

for all t ≤ T . Note that outside of the set {t ≤ θ} the objects Ct and Cb(t, St) are
different: if the barrier has already been crossed, Ct will always be zero, but Cb(t, St)
may become positive if the stock returns to the region below the barrier. By going to
the log variables we define

ub(τ, x) = erτCb(T − τ, S0e
x).(3.6)

Again, if ub is smooth the Itô formula can be used to show [8] that ub is a solution of
the following initial-boundary value problem:

∂u

∂τ
= Lu on (0, T ] × (−∞, log(U/S0)),

u(0, x) = h(x), x < log(U/S0); u(τ, x) = 0, x ≥ log(U/S0).

Prices of down-and-out or double barrier options are defined similarly. In the case
of pure jump models where σ = 0, these smoothness conditions can fail to hold;
counterexamples are given in [13]. In this case the option price should be seen as a
viscosity solution of the PIDE, as discussed below.

3.1. Viscosity solutions for integro-differential equations. Existence and
uniqueness of (classical) solutions for the PIDEs considered above in Sobolev–Hölder
spaces have been studied in [8, 18] in the case where the diffusion component is
nondegenerate: for a Lévy process this simply means σ > 0, but more generally these
results apply to jump diffusion where the diffusion coefficient is bounded away from
zero. However, many of the models in the financial modelling literature are pure
jump models with σ = 0, for which such results are not available. In fact, in pure
jump models with finite variation (3.3) is formally a first order in the price variable
so the effect of the jump term is more like a convection term rather than a diffusion
term. A notion of solution that yields existence and uniqueness for such equations
without requiring nondegeneracy of coefficients or a priori knowledge of smoothness
of solutions is the notion of viscosity solution, introduced by Crandall and Lions for
PDEs (see [14]) and extended to integro-differential equations of the type considered
here in [1, 4, 26, 28, 29].



FINITE DIFFERENCE SCHEMES FOR PIDEs 1601

Denote by USC (respectively, LSC) the class of upper semicontinuous (respec-
tively, lower semicontinuous) functions u : (0, T ] × R → R and by C+

p ([0, T ] × R) the
set of measurable functions on [0, T ] × R with polynomial growth of degree p at +∞
and bounded on [0, T ] × R

−:

ϕ ∈ C+
p ([0, T ] × R) ⇐⇒ ∃C > 0, |ϕ(t, x)| ≤ C(1 + |x|p 1x>0).(3.7)

Let O = (l, u) ⊆ R be an open interval, ∂O = {l, u} its boundary, and g ∈ C+
p ([0, T ]×

R \O) a continuous function. Consider the following initial-boundary value problem
on [0, T ] × R:

∂u

∂τ
= Lu on (0, T ] ×O,(3.8)

u(0, x) = h(x), x ∈ O; u(τ, x) = g(τ, x), x /∈ O.(3.9)

Definition 3.1 (viscosity solution). A function u ∈ USC is a viscosity subso-
lution of (3.8)–(3.9) if for any test function ϕ ∈ C2([0, T ] × R) ∩ C+

p ([0, T ] × R) and
any global maximum point (τ, x) ∈ [0, T ] × R of u − ϕ, the following properties are
verified:

if (τ, x) ∈ (0, T ] ×O,

(
∂ϕ

∂τ
− Lϕ

)
(τ, x) ≤ 0,(3.10)

if τ = 0, x ∈ O, min

{(
∂ϕ

∂τ
− Lϕ

)
(τ, x), u(τ, x) − h(x)

}
≤ 0,

if τ ∈ (0, T ], x ∈ ∂O, min

{(
∂ϕ

∂τ
− Lϕ

)
(τ, x), u(τ, x) − g(τ, x)

}
≤ 0,

if x /∈ O, u(τ, x) ≤ g(τ, x).(3.11)

A function u ∈ LSC is a viscosity supersolution of (3.8)–(3.9) if, for any test function
ϕ ∈ C2([0, T ]× R) ∩C+

p ([0, T ]× R) and any global minimum point (τ, x) ∈ [0, T ]× R

of u− ϕ, we have

if (τ, x) ∈ (0, T ] ×O,

(
∂ϕ

∂τ
− Lϕ

)
(τ, x) ≥ 0,

if τ = 0, x ∈ O, max

{(
∂ϕ

∂τ
− Lϕ

)
(τ, x), u(τ, x) − h(x)

}
≥ 0,

if τ ∈ (0, T ], x ∈ ∂O, max

{(
∂ϕ

∂τ
− Lϕ

)
(τ, x), u(τ, x) − g(τ, x)

}
≥ 0,

if x /∈ O, u(τ, x) ≥ g(τ, x).

A function u ∈ C+
p ([0, T ] × R) is called a viscosity solution of (3.8)–(3.9) if it is

both a subsolution and a supersolution. This function is then continuous on (0, T ]×R.
Note that the initial and boundary conditions are verified in a viscosity sense.

The definition also includes the case of initial value problems: O = R. Existence and
uniqueness of viscosity solutions for such parabolic integro-differential equations in
the case O = R are discussed in [1] in the case where ν is a finite measure and in [4]
and [26] for general Lévy measures. Growth conditions other than u ∈ C+

p can be
considered (see, e.g., [1, 4]) with additional conditions on the Lévy measure ν. The
main tool for showing uniqueness is the comparison principle: if u, v are viscosity
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solutions and u(0, x) ≥ v(0, x), then for all τ ∈ [0, T ], u(τ, x) ≥ v(τ, x). This property
can be extended to subsolutions and supersolutions in the following sense [1, 20].

Proposition 3.2 (comparison principle for semicontinuous solutions [1, 20]). If
u ∈ USC is a subsolution and v ∈ LSC is a supersolution of (3.8)–(3.9) with O = R

and h is a continuous function, then u ≤ v on [0, T ] × R.

Proofs and extensions can be found in [1] for the case where ν is a bounded
measure; the case of a general Lévy measure has recently been treated in [20].

3.2. Option prices as viscosity solutions of PIDEs. The following result,
whose proof in a more general setting is given in [13], shows that values of Euro-
pean and barrier options with Lipschitz payoff function can be expressed in terms of
(viscosity) solutions of (3.8)–(3.9).

Proposition 3.3 (option prices as viscosity solutions). Let the payoff function
H verify the Lipschitz condition on its domain of definition,

|H(S1) −H(S2)| ≤ C|S1 − S2| ∀S1, S2 ∈ (S0e
l, S0e

u),(3.12)

and let h(x) = H(S0e
x) have polynomial growth at infinity. Then the following hold:

1. The forward value of a European option u(τ, x) defined by (3.2) is the unique
viscosity solution of the Cauchy problem (3.3).

2. If the forward value ub(τ, x) of a knockout (single or double) barrier option
defined by (3.6) is continuous, then it is a viscosity solution of (3.8)–(3.9)
(with g ≡ 0).

The assumptions on the payoff function apply to put options, single-barrier knock-
out puts, double barrier knockout options and also to the log-contract. One can then
retrieve call options by put-call parity. For barrier options, continuity holds in par-
ticular if ν(R) < ∞ and σ > 0 but also in pure jump models with infinite activity
[13]. For barrier options with rebate, the zero boundary condition has to be replaced
by the value of the rebate, as in the case of diffusion models.

4. Localization estimates. In order to solve numerically the PIDE, we first
localize the variables and the integral term to bounded domains. This section discusses
estimates for the localization error using a probabilistic approach.

4.1. Localization to a bounded domain. To solve numerically the initial-
boundary value problem (3.8)–(3.9) in the case of an unbounded domain O, we first
truncate the domain to an interval x ∈ (−A,A). Usually, this leads us to define
some boundary conditions at x = −A and x = A. As noted above, the operator L is
nonlocal: computing the integral term at a point x ∈ (−A,A) requires knowledge of
u(τ, ·) on {x+ y | y ∈ supp ν}, which in most examples is equal to the whole real line
R. In the case of knock-out barrier options, a natural boundary condition is given by
the zero extension (or the rebate). In other cases, this extension is done by imposing a
numerical boundary condition. Choosing u(τ, x) = g(τ, x) for some given continuous
function g with polynomial growth will lead to a probabilistic interpretation of the
solution of the localized problem.

Although many choices are possible for the boundary condition g, we will consider
here two cases. The simplest choice is g = 0, i.e., extend the solution by zero outside
the domain. Another extension is given by the payoff function (the initial condition)
itself, g(τ, x) = h(x), which is asymptotically close to the solution at infinity. We will
see that both choices lead to a localization error that exponentially decreases with
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the domain size. Let us define uA(τ, x) as the solution of the localized problem

∂uA

∂τ
= LuA, (0, T ] × (−A,A),(4.1)

uA(0, x) = h(x), x ∈ (−A,A); uA(τ, x) = g(τ, x), x /∈ (−A,A),

where g = 0 or g(τ, x) = h(x).
Proposition 4.1. Assume that h is bounded (||h||∞ < ∞) and

∃α > 0,

∫
|x|>1

eα|x|ν(dx) < ∞.(4.2)

Let u(τ, x) be the solution of (3.3) and let uA(τ, x) be the (viscosity) solution of (4.1)
with boundary condition g = 0 or g(τ, x) = h(x). Then

|u(τ, x) − uA(τ, x)| ≤ 2Cτ,α||h||∞e−α(A−|x|) ∀x ∈ (−A,A),(4.3)

where the constant Cτ,α does not depend on A.
Proof. The proof is based on the probabilistic representation [8, 13] of the solutions

of (5.1) and (4.1). Let us define Mx
τ = supt∈[0,τ ] |Yt + x|. Then

u(τ, x) = E[h(Yτ + x)],

uA(τ, x) = E[h(Yτ + x)1{Mx
τ <A}] if g = 0,

or uA(τ, x) = E[h(Yτ + x)1{Mx
τ <A} + h(Yθ(x) + x)1{Mx

τ ≥A}],

where θ(x) = inf{t ≥ 0, |Yt + x| ≥ A} is the first exit time of Yt + x from [−A,A].
Subtracting uA from u gives

|u(τ, x) − uA(τ, x)| = |Eh(Yτ + x)1{Mx
τ ≥A}|

≤ ||h||∞Q(Mx
τ ≥ A) for g = 0,

and in the case g(τ, x) = h(x) we obtain

|u(τ, x) − uA(τ, x)| ≤ E|h(Yτ + x)1{Mx
τ ≥A}| + E|h(Yθ(x) + x)1{Mx

τ ≥A}|
≤ 2||h||∞Q(Mx

τ ≥ A).

So, in both cases

|u(τ, x) − uA(τ, x)| ≤ 2||h||∞Q(Mx
τ ≥ A).(4.4)

Theorem 25.18 of [27] together with (4.2) implies

Cτ,α = EeαM
0
τ < ∞.(4.5)

Therefore, Chebyshev’s inequality applies, and we obtain

Q(M0
τ ≥ A) ≤ Cτ,αe

−αA.(4.6)

Now, to pass from M0
τ to Mx

τ , we use the following implications:

sup |Yt + x| ≤ sup |Yt| + |x|
⇒ (sup |Yt + x| ≥ A ⇒ sup |Yt| + |x| ≥ A)

⇒ Q(Mx
τ ≥ A) ≤ Q(M0

τ ≥ A− |x|)
≤ Cτ,αe

−α(A−|x|) by (4.6).
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Combining the last inequality with (4.4) gives the desired result.
Remark 1. In the case of a put option, ‖h‖∞ < ∞ and Proposition 4.1 applies.

In other examples, h may be unbounded; in this case it is still possible to obtain an
exponentially decreasing localization error under additional restrictions on ν. Note
that for the call option, although the payoff grows exponentially, one can transform
the problem into pricing a put using put-call parity in order to obtain a smaller
localization error.

Remark 2. An exponential bound on localization error in the L2-norm is given
in [25] using analytical methods. The advantage of the probabilistic approach is to
provide a local (pointwise) estimate. For instance, our estimate (4.3) reflects the
intuitive fact that the localization error is more pronounced near the boundary.

The above result implies that the localization error decreases uniformly on each
closed subinterval of (−A,A):

|u(τ, x) − uA(τ, x)| ≤ ke−αδA for |x| ≤ (1 − δ)A,

where 0 < δ < 1.
Assumption (4.2) means that the tails of ν have to decrease exponentially, which

is true in all examples considered in the option pricing literature (except Carr and
Wu’s log-stable model [10]). Note that in an exponential Lévy model we already have∫ +∞
1

eαxν(dx) < ∞ for all α ≤ 1, because of the martingale condition, so (4.2) is a
condition on the negative jumps.

4.2. Truncation of the integral. To compute numerically the integral term,
we need to reduce the region of integration to a bounded interval. In terms of the
jump process, this amounts to the truncation of large jumps. We will now give an
estimate for the error resulting from this approximation. Recall that the solution of
the Cauchy problem (3.3) (in the European case where O = R) for a Lipschitz payoff
function H is

u(τ, x) = E[H(S0e
x+rτ+Xτ )],(4.7)

where Xτ is a Lévy process with the triplet (γ, σ, ν). Let us define a new process X̃τ

characterized by the Lévy triplet (γ̃, σ, ν1x∈[Bl,Br]), where γ̃ is such that exp(rt+ X̃t)
remains a martingale:

γ̃ = −σ2

2
−
∫ Br

Bl

(ey − 1 − y1|y|≤1)ν(dy).

We now define

ũ(τ, x) = E[H(S0e
x+rτ+X̃τ )](4.8)

and we estimate the difference between ũ and the true solution u.
Proposition 4.2. Let H be Lipschitz: |H(S1)−H(S2)| ≤ c|S1−S2|. Assume that

there exists αr, αl > 0, such that
∫∞
1

e(1+αr)yν(dy) < ∞ and
∫ −1

−∞ |y|eαl|y|ν(dy) < ∞.
If u and ũ are defined by (4.7) and (4.8), respectively, then

|u(τ, x) − ũ(τ, x)| ≤ 2c S0e
x+rττ(C1e

−αl|Bl| + C2e
−αr|Br|).(4.9)

Proof. Let us denote Rτ=Xτ − X̃τ , Rτ ⊥⊥ X̃τ . We have

|u(τ, x) − ũ(τ, x)| = |E[H(S0e
x+rτ+X̃τ+Rτ )] − E[H(S0e

x+rτ+X̃τ )]|
≤ c S0e

x+rτ
E[eX̃τ |eRτ − 1|] = c S0e

x+rτ
E|eRτ − 1|.
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By construction, E[eRτ − 1] = 0. Since |eRτ − 1| = (eRτ − 1) + 2(1 − eRτ )+ and
(1 − eRτ )+ ≤ |Rτ |, we obtain

|u(τ, x) − ũ(τ, x)| ≤ 2c S0e
x+rτ

E|eRτ |.(4.10)

The Lévy triplet of Rτ is (γ − γ̃, 0, ν1x/∈[Bl,Br]) with

γ − γ̃ = −
∫
y/∈[Bl,Br]

(ey − 1)ν(dy).

One can write Rτ = Pτ + Nτ , where Pτ and Nτ are characterized by (
∫ Bl

−∞(1 −
ey)ν(dy), 0, ν1x>Br ) and (−

∫∞
Br

(ey − 1)ν(dy), 0, ν1x<Bl
), respectively. We assume

without loss of generality that Bl < −1, Br > 1.1 Since Pτ has nonnegative drift, no
Brownian component, and only positive jumps bounded from below by Br > 0, we
have Pτ ≥ 0 (recall that P0 = 0). Conversely, Nτ has only negative jumps (bounded
from above by Bl < 0) and nonpositive drift. In consequence, Nτ ≤ 0. Therefore,

E|Rτ | ≤ E|Pτ | + E|Nτ | = EPτ − ENτ

= τ

[∫ Bl

−∞
(1 − ey − y)ν(dy) +

∫ ∞

Br

(ey − 1 + y)ν(dy)

]

≤ τ

[
2

∫ Bl

−∞
|y|ν(dy) + 2

∫ ∞

Br

eyν(dy)

]
.(4.11)

Using the hypotheses on ν, we obtain

E|Rτ | ≤ τ

(
2e−αl|Bl|

∫ Bl

−∞
|y|eαl|y|ν(dy) + 2e−αr|Br|

∫ ∞

Br

e(1+αr)yν(dy)

)

≤ τ(C1e
−αl|Bl| + C2e

−αr|Br|),

which we substitute into (4.10).

Remark 3. The hypotheses on ν in Proposition 4.2 are a little stronger than (4.2).
We require them to obtain an exponential decay of the truncation error. However, we
can use estimate (4.11) directly. In other words, existence of the integrals in (4.11)
suffices to obtain a convergence of ũ to u as |Bl| and |Br| grow to infinity, but this
convergence does not necessarily occur at an exponential rate.

Remark 4. The requirements are different for the left and right tails of ν. For
example, in the variance Gamma model with ν(x) = a exp(−η±|x|)/|x| one needs η+

to be greater than 1, and η− only positive. Proposition 4.9 then applies with αl < η−
and αr < η+ − 1.

Using Propositions 4.1 and 4.2 we can fix in advance [−A,A] and [Bl, Br] to have
a given bound on the respective errors. In what follows we will assume this has been
done and concentrate on the numerical solution of the localized problem.

1Clearly, if (4.9) is true for such values, it is true for all Bl, Br, up to change of the constants.
On the other hand, this estimate is not useful if ν has a bounded support. For example, if there are
only negative jumps, we will take Br = 0, but in this case ν1x≤Br = ν, and there is no truncation
error due to Br.
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5. An explicit-implicit finite difference scheme. We now present a numer-
ical procedure for solving the PIDE:

∂u

∂τ
= Lu, (0, T ] ×O,(5.1)

u(τ, x) = g(τ, x), x ∈ Oc,(5.2)

u(0, x) = h(x), x ∈ O,(5.3)

where L is defined by (2.8), Oc = R \ O, and g ∈ C+
p ([0, T ] × R \ O) is a continuous

function.
Our method is based on splitting the operator L into two parts:

∂u

∂τ
= Du + Ju,

where D and J stand for the differential and integral parts of L, respectively. We
replace Du with a finite difference approximation DΔu and Ju with the trapezoidal
quadrature approximation JΔu and use the following explicit-implicit time-stepping
scheme:

un+1 − un

Δt
= DΔun+1 + JΔun.

We treat the integral part in an explicit time stepping in order to avoid the inversion
of the nonsparse matrix JΔ. We show that this does not affect the stability of the
scheme: it is unconditionally stable like the fully implicit scheme but does not require
us to invert the dense matrix JΔ. We first describe the space discretization and the
time-stepping scheme in the case of a jump-diffusion model where the jump intensity
is finite. Next, we deal with the singular case ν(R) = +∞ using an approach similar
to the “vanishing viscosity” method [14].

5.1. Explicit-implicit scheme: Finite intensity case. We suppose here that
ν(R) = λ < +∞. Then the integro-differential operator can be written as Lu ≡
Du + Ju, where

Du =
σ2

2

∂2u

∂x2
−
(
σ2

2
− r + α

)
∂u

∂x
− λu, Ju =

∫ Br

Bl

ν(dy)u(τ, x + y),(5.4)

and α =
∫ Br

Bl
(ey − 1)ν(dy).

We introduce a uniform grid on [0, T ] × [−A,A]: τn = nΔt, n = 0, . . . ,M ,
xi = −A + iΔx, i ∈ {0, . . . , N}, with Δt = T/M , Δx = 2A/N . Let {un

i } be the
solution of the numerical scheme, to be defined below.

To approximate the integral terms we use the trapezoidal quadrature rule with
the same step Δx. Let Kl, Kr be such that [Bl, Br] ⊂ [(Kl − 1/2)Δx, (Kr +1/2)Δx].
Then

∫ Br

Bl

ν(dy)u(τ, xi + y) ≈
Kr∑

j=Kl

νjui+j ,λ ≈ λ̂ =

Kr∑
j=Kl

νj ,

α ≈ α̂ =

Kr∑
j=Kl

(eyj − 1)νj , where νj =

∫ (j+1/2)Δx

(j−1/2)Δx

ν(dy).(5.5)
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The space derivatives are discretized using finite differences:

(
∂2u

∂x2

)
i

≈ ui+1 − 2ui + ui−1

(Δx)2
,(5.6)

(
∂u

∂x

)
i

≈
{ ui+1−ui

Δx if σ2/2 − r + α̂ < 0
ui−ui−1

Δx if σ2/2 − r + α̂ ≥ 0.
(5.7)

The choice of approximation for the first-order derivative is determined by stability
requirement and will be discussed later (section 6). Since the two cases are treated
similarly, let us suppose without loss of generality that σ2/2 − r + α̂ < 0.

Using (5.5)–(5.7) we obtain Du ≈ DΔu, Ju ≈ JΔu, where

(DΔu)i =
σ2

2

ui+1 − 2ui + ui−1

(Δx)2
−
(
σ2

2
− r + α̂

)
ui+1 − ui

Δx
− λ̂ui,(5.8)

(JΔu)i =

Kr∑
j=Kl

νjui+j .(5.9)

Finally, we replace problem (4.1) with the following time-stepping scheme:

Initialization:

u0
i = h(xi), i ∈ {0, . . . , N},(5.10)

u0
i = g(0, xi) otherwise.(5.11)

(S) For n = 0, . . . ,M − 1,

un+1
i − un

i

Δt
= (DΔun+1)i + (JΔun)i if i ∈ {0, . . . , N},(5.12)

un+1
i = g( (n + 1)Δt, xi) if i /∈ {0, . . . , N}.(5.13)

5.2. Explicit-implicit scheme: Infinite intensity case. If ν(R) = +∞, the
above method cannot be applied directly. The idea is to come down to a nonsingular
case by approximating the process Xτ by an appropriate finite activity process with
a modified diffusion coefficient.

The procedure is similar to the one described in section 4.2, but this time we deal
with small jumps. Given ε > 0 let us define a process Xε

τ characterized by the Lévy
triplet (γ(ε),

√
σ2 + σ2(ε), ν1|x|≥ε), where

σ2(ε) =

∫ ε

−ε

y2ν(dy),

and γ(ε) is determined by the martingale condition

γ(ε) = −σ2 + σ2(ε)

2
−
∫
|y|≥ε

(ey − 1 − y1|y|≤1)ν(dy).

This means that we replace the jumps of size smaller than ε by a Brownian motion
σ(ε)Wτ . Therefore, Xε

τ has jumps of finite intensity. The function uε defined as

uε(τ, x) = E[h(x + rτ + Xε
τ )] ≡ E[h(x + Y ε

τ )](5.14)
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satisfies the following Cauchy problem:

∂uε

∂τ
= Lεuε, (0, T ] × R,(5.15)

uε(0, x) = h(x), x ∈ R,

where

(5.16) Lεf =
σ2 + σ2(ε)

2

∂2f

∂x2
−

(
σ2 + σ2(ε)

2
− r + α(ε)

)
∂f

∂x
− λ(ε)f(x)

+

∫
|y|≥ε

ν(dy)f(x + y),

and α(ε) =
∫
|y|≥ε

(ey − 1)ν(dy), λ(ε) =
∫
|y|≥ε

ν(dy).

Note that even if σ = 0, Lε contains a nonzero diffusion term, as in the vanish-
ing viscosity method, with the difference that we also have additional terms in the
first- and zeroth-order terms in order to conserve the martingale property. The next
theorem gives an estimate of the rate of convergence for this “compensated vanishing
viscosity” approximation.

Theorem 5.1. Let h be Lipschitz: |h(x) − h(y)| ≤ c |x − y|. Let u and uε be
defined by (4.7) and (5.14), respectively. Then

|u(τ, x) − uε(τ, x)| ≤ C

∫ ε

−ε
|y|3ν(dy)

σ2(ε)
.(5.17)

Proof. We essentially use [11, Proposition 6.2] with the only difference being that
we also adjust the drift parameter γ to preserve the martingale property. Let us define
Zτ = Yτ − (γ − γ(ε))τ . Then,

(5.18) |u(τ, x) − uε(τ, x)| = |E[h(x + Yτ )] − E[h(x + Y ε
τ )]|

≤ |E[h(x + Zτ )] − E[h(x + Y ε
τ )]| +

+ |E[h(x + Zτ + (γ − γ(ε))τ)] − E[h(x + Zτ )]|.

Since h is Lipschitz, it is almost everywhere differentiable with |h′| ≤ c. By [11,
Proposition 6.2] we have

|E[h(x + Zτ )] − E[h(x + Y ε
τ )]| ≤ K c

∫ ε

−ε
|y|3ν(dy)

σ2(ε)
(5.19)

with K < 16.5. The second term may be estimated as follows:

|E[h(x + Zτ + (γ − γ(ε))τ)] − E[h(x + Zτ )]| ≤ c |γ − γ(ε)|τ,

where

(5.20) |γ − γ(ε)| =

∣∣∣∣∣
σ2(ε)

2
−
∫
|y|<ε

(ey − 1 − y)ν(dy)

∣∣∣∣∣
=

∣∣∣∣∣
1

2

∫
|y|<ε

ν(dy)

∫ y

0

es(y − s)2ds

∣∣∣∣∣ ≤
eε

6

∫ ε

−ε

|y|3ν(dy).
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Since σ2(ε) → 0 as ε → 0, (5.20) converges faster than (5.19) and therefore may be
neglected.

Remark 5. If limx→0 ν(x)|x|1+β = a > 0 , with 0 ≤ β < 2, then (5.17) gives

|u(τ, x) − uε(τ, x)| ≤ C(β)ε,

so the approximation error is proportional to ε. This case includes all practical ex-
amples used in option pricing such as variance Gamma, NIG, and tempered stable
processes.

6. Convergence. We study in this section the convergence of the finite differ-
ence scheme presented above. In the usual approach to the convergence of finite
difference schemes for PDEs, consistency and stability ensure convergence under reg-
ularity assumptions on the solution such as uniform boundedness of the derivatives.
This approach is not feasible here because, even for a European put option, the second
derivative (Gamma of the option) is never uniformly bounded in t.

6.1. Monotonicity. Monotonicity is an important property for pricing appli-
cations: it guarantees that a (discrete) comparison principle holds for the numerical
solution so arbitrage inequalities will be verified exactly and not only as Δt,Δx → 0,
leading to arbitrage-free approximations. The following result shows that the scheme
above is monotone.

Proposition 6.1 (monotonicity). Scheme (S) is monotone: if u0, v0 are two
bounded initial conditions, then

u0 ≥ v0 ⇒ ∀n ≥ 1, un ≥ vn.

Proof. We start by rewriting (5.12) in the following form:

−cΔtun+1
i−1 + (1 + aΔt)un+1

i − bΔtun+1
i+1 = un

i + Δt
∑
j

νju
n
i+j ,(6.1)

where2

a =
σ2

(Δx)2
−
(
σ2

2
− r + α̂

)
1

Δx
+ λ̂ ≥ 0,

b =
σ2

2(Δx)2
−
(
σ2

2
− r + α̂

)
1

Δx
≥ 0,

c =
σ2

2(Δx)2
≥ 0.(6.2)

Notice that a = b + c + λ̂.

Let un and vn be two solutions of (S) corresponding to the initial conditions h(x)
and f(x), respectively, and let h(x) ≥ f(x) for all x ∈ R. Let us show by induction
that wn = un − vn ≥ 0 for all n ≥ 0. We have w0

i = h(xi) − f(xi) ≥ 0 for all
i ∈ Z. Let wn ≥ 0 and suppose that infi∈Z wn+1

i < 0. Since for all i ∈ Z\{0, . . . , N},

2We recall that the case σ2/2 − r + α̂ < 0 is considered. If σ2/2 − r + α̂ ≥ 0, we change the
approximation of the first-order derivative (see (5.7)) to have a, b, c ≥ 0, which is needed for stability
and monotonicity.
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wn+1
i = h(xi) − f(xi) ≥ 0, this implies that there exists i0 ∈ {0, . . . , N}, such that

wn+1
i0

= infi∈Z wn+1
i . Using (6.1) we obtain that

inf
i∈Z

wn+1
i = wn+1

i0
= −cΔtwn+1

i0
+ (1 + aΔt)wn+1

i0
− bΔtwn+1

i0
− λ̂Δtwn+1

i0

≥ −cΔtwn+1
i0−1 + (1 + aΔt)wn+1

i0
− bΔtwn+1

i0+1

= wn
i0 + Δt

∑
j

νjw
n
i0+j ≥ 0,(6.3)

which contradicts the assumption. Therefore, infi∈Z wn+1
i ≥ 0, and, consequently

wn+1 ≥ 0.

It is convenient to rewrite the scheme as follows:

u(τn, xi) = FΔ[u(τn − Δt, ·)](xi), n = 1, . . . ,M, i ∈ {0, . . . , N},(6.4)

u(τn, xi) = g(τn, xi), n = 0, . . . ,M, i /∈ {0, . . . , N},
u(0, xi) = h(xi), i ∈ {0, . . . , N}.

Let uΔ be the solution of the scheme (6.4) defined on the grid QΔ = {(τn, xi) | n =
0, . . . ,M, i ∈ Z}. One can define super- and subsolutions for the scheme by analogy
with the definitions in section 3.

Definition 6.2. A function wΔ defined on QΔ is a supersolution of the scheme
(6.4) if

wΔ(τn, xi) ≥ FΔ[wΔ(τn − Δt, ·)](xi), n = 1, . . . ,M, i ∈ {0, . . . , N},
wΔ(τn, xi) ≥ g(τn, xi), n = 0, . . . ,M, i /∈ {0, . . . , N},

wΔ(0, xi) ≥ h(xi), i ∈ {0, . . . , N}.

A function zΔ on QΔ is a subsolution of (6.4) if

zΔ(τn, xi) ≤ FΔ[zΔ(τn − Δt, ·)](xi), n = 1, . . . ,M, i ∈ {0, . . . , N},
zΔ(τn, xi) ≤ g(τn, xi), n = 0, . . . ,M, i /∈ {0, . . . , N},

zΔ(0, xi) ≤ h(xi), i ∈ {0, . . . , N}.

In particular, the scheme is unconditionally stable in the sup norm. The following
result extends the discrete comparison principle to sub- and supersolutions.

Lemma 1. For any supersolution w and any subsolution z of (6.4) we have

zΔ ≤ uΔ ≤ wΔ on QΔ.

Proof. For n = 0 or i /∈ {0, . . . , N} the above inequalities are satisfied by def-
inition. For n > 0, i ∈ {0, . . . , N}, they follow directly from the monotonicity of
the scheme. Indeed, if zΔ(τn − Δt, ·) ≤ uΔ(τn − Δt, ·) ≤ wΔ(τn − Δt, ·), then, for
i ∈ {0, . . . , N}, we obtain

zΔ(τn, xi) ≤ FΔ[zΔ(τn − Δt, ·)](xi) ≤ FΔ[uΔ(τn − Δt, ·)](xi) = uΔ(τn, xi)

= FΔ[uΔ(τn − Δt, ·)](xi) ≤ FΔ[wΔ(τn − Δt, ·)](xi) ≤ wΔ(τn, xi).
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6.2. Consistency. We now show the consistency of the scheme in the uniform
norm for the following class of test functions v : [0, T ] × R �→ R:

H =

{
v ∈ C1,2((0, T ] ×O), v uniformly continuous on[0, T ] × R,

∂v

∂τ
,
∂v

∂x
,
∂2v

∂x2
uniformly continuous on(0, T ] ×O

}
.(6.5)

Proposition 6.3 (consistency in the uniform norm). For any v ∈ H and any
ε > 0,

∃Δ > 0,

∣∣∣∣v(τn, xi) − v(τn−1, xi)

Δt
− LΔv(τn, xi) −

(
∂v

∂τ
− Lv

)
(τ, x)

∣∣∣∣ < ε(6.6)

for all Δt, Δx > 0, (τ, x) ∈ (0, T ]×O, n ≥ 1, i ∈ {0, . . . , N}, such that sup{Δt,Δx, |τn−
τ |, |xi − x|} < Δ.

Proof. Let sup{Δt,Δx, |τn − τ |, |xi − x|} < Δ. We have to prove that the
expression in (6.6) is bounded by α(Δ) independently of (τ, x), (τn, xi) ∈ (0, T ] × O,
such that α(Δ) → 0 as Δ → 0. We have

(6.7)

∣∣∣∣v(τn, xi) − v(τn−1, xi)

Δt
− ∂v

∂τ
(τ, x)

∣∣∣∣ =

∣∣∣∣∣
1

Δt

∫ τn

τn−1

(
∂v

∂τ
(t, xi) −

∂v

∂τ
(τ, x)

)
dt

∣∣∣∣∣
≤ sup

t∈(τn−1,τn)

∣∣∣∣∂v∂τ (t, xi) −
∂v

∂τ
(τ, x)

∣∣∣∣ ≤ sup
t, τ ∈ (0, T ], y, x ∈ O
|t − τ| ≤ 2Δ
|y − x| ≤ Δ

∣∣∣∣∂v∂τ (t, y) − ∂v

∂τ
(τ, x)

∣∣∣∣ Δ↓0−→ 0,

since ∂v
∂τ is uniformly continuous by assumption.

Consider now the terms in Dv (the differential part of Lv). Using Taylor expan-
sion up to the second order we obtain

∣∣∣∣v(τn, xi−1) − 2v(τn, xi) + v(τn, xi+1)

Δx2
− ∂2v

∂x2
(τ, x)

∣∣∣∣
=

∣∣∣∣∣
1

Δx2

∫ xi+1

xi−1

(
∂2v

∂x2
(τn, y) −

∂2v

∂x2
(τ, x)

)
(Δx− |xi − y|)dy

∣∣∣∣∣
≤ 2 sup

y∈(xi−1,xi+1)

∣∣∣∣∂
2v

∂x2
(τn, y) −

∂2v

∂x2
(τ, x)

∣∣∣∣
≤ 2 sup

t, τ ∈ (0, T ], y, x ∈ O
|t − τ| ≤ Δ
|y − x| ≤ 2Δ

∣∣∣∣∂
2v

∂x2
(t, y) − ∂2v

∂x2
(τ, x)

∣∣∣∣ Δ↓0−→ 0,

as ∂2v
∂x2 is uniformly continuous on (0, T ] ×O. In the same way, we show that

∣∣∣∣v(τn, xi+1) − v(τn, xi)

Δx
− ∂v

∂x
(τ, x)

∣∣∣∣ =

∣∣∣∣ 1

Δx

∫ xi+1

xi

(
∂v

∂x
(τn, y) −

∂v

∂x
(τ, x)

)
dy

∣∣∣∣
≤ sup

t, τ ∈ (0, T ], y, x ∈ O
|t − τ| ≤ Δ
|y − x| ≤ 2Δ

∣∣∣∣∂v∂x (t, y) − ∂v

∂x
(τ, x)

∣∣∣∣ Δ↓0−→ 0.
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Since |1 − eyj−y| ≤ Δx if Δx ≤ 1 and |yj − y| ≤ Δx/2, we also have

(6.8) |α− α̂| =

∣∣∣∣∣∣
∫ Br

Bl

(ey − 1)ν(dy) −
Kr∑

j=Kl

(eyj − 1)νj

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Kr∑

j=Kl

∫ (j+1/2)Δx

(j−1/2)Δx

(1 − eyj−y)eyν(dy)

∣∣∣∣∣∣ ≤ Δx

∣∣∣∣∣∣
Kr∑

j=Kl

∫ (j+1/2)Δx

(j−1/2)Δx

eyν(dy)

∣∣∣∣∣∣
= Δx

∫ Br

Bl

eyν(dy) = (α + λ)Δx.

Therefore, using previous estimates and uniform boundedness of ∂v
∂x on (0, T ]×O, we

obtain

|(DΔv)(τn, xi) − (Dv)(τ, x)| =

∣∣∣∣σ
2

2

[
v(τn, xi−1) − 2v(τn, xi) + v(τn, xi+1)

Δx2
− ∂2v

∂x2
(τ, x)

]

+

(
σ2

2
− r + α̂

)[
v(τn, xi+1) − v(τn, xi)

Δx
− ∂v

∂x
(τ, x)

]
+ (α− α̂)

∂v

∂x
(τ, x)

∣∣∣∣ Δ↓0−→ 0.

The integral part can be estimated as follows:

(6.9)

|(JΔv)(τn−1, xi) − (Jv)(τ, x)| =

∣∣∣∣∣∣
Kr∑

j=Kl

v(τn−1, xi + yj)νj −
∫ Br

Bl

v(τ, x + y)ν(dy)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Kr∑

j=Kl

∫ (j+1/2)Δx

(j−1/2)Δx

(v(τn−1, xi + yj) − v(τ, x + y))ν(dy)

∣∣∣∣∣∣
≤ λΔ sup

θ1, θ2 ∈ [0, T ], ξ1, ξ2 ∈ R

|θ1 − θ2| ≤ 2Δ
|ξ1 − ξ2| ≤ 3Δ/2

|v(θ1, ξ1) − v(θ2, ξ2)|
Δ↓0−→ 0,

since v is uniformly continuous on [0, T ] × R. Combining all these estimates gives
(6.6).

6.3. Convergence. A general approach for obtaining convergence of finite dif-
ference schemes in the case of nonsmooth solutions was developed by Barles and
Souganidis [6] who showed that, when subsolutions/supersolutions verify a strong
comparison principle, the solution of any monotone, locally consistent scheme con-
verges uniformly on compact sets to the solution of the limit equation. The idea of
[6] is to show that the pointwise limits

u(τ, x) = lim inf
(Δt,Δx)→0 (τn,xi)→(τ,x)

u(Δt,Δx)(τn, xi),(6.10)

u(τ, x) = lim sup
(Δt,Δx)→0 (τn,xi)→(τ,x)

u(Δt,Δx)(τn, xi)(6.11)

define sub-/supersolutions and then apply the comparison principle to conclude u =
u = u. As noted above, our scheme (5.12) is monotone and locally consistent, but the
comparison principles [1, 20] available for the PIDEs considered here require uniform
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continuity properties which may not hold for u and u defined as in (6.10)–(6.11).
Therefore we cannot directly apply the Barles–Souganidis result to obtain conver-
gence.3

We avoid this problem by considering smooth sub-/supersolutions and deriving
inequalities linking them with u, u.

Definition 6.4. A function w ∈ H is a smooth supersolution of the problem
(5.1)–(5.3) if it verifies the following inequalities:

∂w

∂τ
(τ, x) − Lu(τ, x) ≥ 0, (τ, x) ∈ (0, T ] ×O,(6.12)

w(τ, x) ≥ g(τ, x), x ∈ Oc,(6.13)

w(0, x) ≥ h(x), x ∈ O.(6.14)

A function z ∈ H is a smooth subsolution of the problem (5.1)–(5.3) if it satisfies
(6.12)–(6.14) with the reverse inequalities.

Lemma 2. Let w(τ, x) be a smooth supersolution and let z(τ, x) be a smooth
subsolution of the problem (5.1)–(5.3). Then for all ε > 0, there exists Δ > 0 such
that

∀Δt,Δx ≤ Δ,∀n ≥ 0,∀i ∈ Z, z(τn, xi) − ε < uΔ(τn, xi) < w(τn, xi) + ε.(6.15)

Proof. Choose b such that 0 < b(T + 1) < ε and let w̄(τ, x) = w(τ, x) + b(τ + 1).
If i /∈ {0, . . . , N}, we have

w̄(τn, xi) = w(τn, xi) + b(τn + 1) ≥ g(τn, xi) + b(τn, xi) ≥ g(τn, xi).(6.16)

If i ∈ {0, . . . , N},

w̄(0, xi) = w(0, xi) + b ≥ h(xi) + b ≥ h(xi).(6.17)

If n ≥ 1, i ∈ {0, . . . , N}, we obtain by Proposition 6.3

(6.18)
w̄(τn, xi) − w̄(τn − Δt, xi)

Δt
− LΔw̄(τn, xi)

=
w(τn, xi) − w(τn − Δt, xi)

Δt
− LΔw(τn, xi) + b(1 + λ̂Δt)

→
(
∂w

∂τ
(τ, x) − Lu(τ, x)

)
+ b > 0,

as Δt,Δx → 0, (τn, xi) → (τ, x), uniformly on (0, T ] × O. Therefore, for any suffi-
ciently small Δ > 0, for all Δt,Δx ≤ Δ, we have

w̄(τn, xi) − w̄(τn − Δt, xi)

Δt
− LΔw̄(τn, xi) ≥ 0

or, equivalently,

w̄(τn, xi) ≥ FΔ[w̄(τn − Δt, ·)](xi) ∀n ≥ 1, ∀i ∈ {0, . . . , N}.(6.19)

3Note also that the Barles–Souganidis method does not yield a rate of convergence either: this
issue is treated in section 6.4 below.
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By (6.16), (6.17), and (6.19), the function w̄ is a supersolution of (6.4). So, Lemma 1
implies that

uΔ(τn, xi) ≤ w̄(τn, xi) ≤ w(τn, xi) + b(T + 1) < w(τn, xi) + ε ∀n ≥ 0, ∀i ∈ Z,

which is the desired property. The lower bound z(τn, xi) − ε can be proved in the
same manner.

Corollary 6.5. Let u and u be the functions defined by (6.10)–(6.11). For any
smooth subsolution z(τ, x) and any supersolution w(τ, x) of the problem (5.1)–(5.3),
we have, for all (τ, x) ∈ [0, T ] × R,

z(τ, x) ≤ u(τ, x) ≤ u(τ, x) ≤ w(τ, x).(6.20)

Proof. By the definition of upper and lower limits, (6.15) implies (6.20).

We are now ready to give our main result on the convergence of the scheme. We
assume σ > 0 since, as explained in section 5.2, the scheme introduces a viscosity
term σ(ε) > 0 even in the pure jump case where σ = 0.

Theorem 6.6. In the European case (O = R) with σ > 0, if h is a bounded
piecewise continuous function on R, then for all τ > 0 and all x ∈ R, the discrete
solution converges to the solution of the continuous problem:

lim
(Δt,Δx)→0 (τn,xi)→(τ,x)

u(Δt,Δx)(τn, xi) = u(τ, x).

Proof. If h, h ∈ C∞(R) are such that h ≤ h ≤ h, then z(τ, x) = E[h(x + Yτ )]
and w(τ, x) = E[h(x + Yτ )] are solutions in H of (5.1) and therefore, respectively, a
subsolution and a supersolution of the Cauchy problem (5.1), (5.3). By Corollary 6.5,
we obtain (6.20). If w(τ, x) − u(τ, x) and u(τ, x) − z(τ, x) could be made arbitrarily
small, this would imply that there exists a limit of u(Δt,Δx)(τn, xi) equal to u(τ, x).
So, it remains to construct appropriate smooth approximations h and h of h.

Let ξ1, . . . , ξI be the discontinuity points of h. We will suppose that the jumps of
h are bounded by K. Given ε > 0, we choose h, h ∈ C∞(R) such that

h(x) ≤ h(x) ≤ h(x) ∀x ∈ R,

|h(x) − h(x)| ≤ ε ∀x /∈
I⋃

i=1

(ξi − ε, ξi + ε),

|h(x) − h(x)| ≤ K ∀x ∈
I⋃

i=1

(ξi − ε, ξi + ε).

Then we have

(6.21) w(τ, x) − z(τ, x) = E[h(x + Yτ ) − h(x + Yτ )]

≤ εQ

(
x + Yτ /∈

I⋃
i=1

(ξi − ε, ξi + ε)

)
+ KQ

(
x + Yτ ∈

I⋃
i=1

(ξi − ε, ξi + ε)

)

≤ ε + KQ

(
x + Yτ ∈

I⋃
i=1

(ξi − ε, ξi + ε)

)
.
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Denoting Ωε = {x + Yτ ∈
⋃I

i=1(ξi − ε, ξi + ε)} we obtain
⋂

ε>0 Ωε = {x + Yτ ∈
{ξ1, . . . , ξI}}. Since σ is strictly positive, Yτ has an absolutely continuous distribution
for τ > 0, so we have Q(x + Yτ ∈ {ξ1, . . . , ξI}) = 0. Consequently,

Q

(
x + Yτ ∈

I⋃
i=1

(ξi − ε, ξi + ε)

)
ε↓0−→ 0.

We have shown that the expression in (6.21) goes to zero as ε → 0. The inequalities
(6.20) together with z(τ, x) ≤ u(τ, x) ≤ w(τ, x) then imply that u(τ, x) = u(τ, x) =
u(τ, x). The proof is complete.

Remark 6. If τ = 0, we obtain

Q

(
x + Yτ ∈

I⋃
i=1

(ξi − ε, ξi + ε)

)
ε↓0−→ Q(x ∈ {ξ1, . . . , ξI}) = 1{x∈{ξ1,...,ξI}}.

So, the scheme does not converge to the initial condition at the discontinuity points
of h. However, this has no practical importance since we do not need to calculate the
solution numerically at τ = 0.

Together with Proposition 5.1, Theorem 6.6 allows us to compute option prices in
all the examples of exponential Lévy models given in section 2. Theorem 6.6 does not
yield the rate of convergence; we now use a different approach to obtain an estimate
on the rate of convergence under a further condition on the scheme.

6.4. Rate of convergence. In the viscosity solution framework, results on con-
vergence rates for numerical schemes have been obtained by Crandall and Lions [15]
for first-order equations and by Krylov [21, 22] for second-order parabolic PDEs; see
also [5]. Our approach is inspired by [22] but is somewhat simpler and yields better
bounds, given that we are dealing with a linear equation.

First, let us write the scheme in the following form: u(τn, xi) = u(τn−1, xi) +
LΔu(τn, xi)Δt, where (in the case σ2/2 − r + α̂ < 0)

LΔu(τ, x) =
σ2

2

u(τ, x + Δx) − 2u(τ, x) + u(τ, x− Δx)

Δx2

−
(
σ2

2
− r + α̂

)
u(τ, x + Δx) − u(τ, x)

Δx
− λ̂u(τ, x) +

Kr∑
j=Kl

νju(τ − Δt, x + jΔx).

As previously, we assume σ > 0.4

Consider the grid {(τn, xi), n = 0, . . . ,M, i ∈ N}, where τn = nΔt, xi = x0 +
iΔx. Given J ⊂ {0, . . . ,M}, we denote by BJ×N the space of bounded functions on
{(τn, xi), n ∈ J, i ∈ N} with the norm

‖v‖J = sup
n∈J, i∈N

|v(τn, xi)|.(6.22)

For (v(xi), i ∈ N) we write

‖v‖ = sup
i∈N

|v(xi)|.(6.23)

The following (see appendix) is a slightly improved version of a result in [22].

4The infinite activity pure-jump case being reduced to this one; see section 5.2.
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Lemma 3. Consider, for ξ ∈ B{1,...,M}×N, the problem

v(0, xi) = h(xi), i ∈ N,(6.24)

v(τn, xi) = v(τn−1, xi) + LΔv(τn, xi)Δt + ξ(τn, xi), n = 1, . . . ,M, i ∈ N.(6.25)

(i) For any ξ ∈ B{1,...,M}×N the problem (6.24)–(6.25) has a unique solution
v(ξ) ∈ B{0,...,M}×N.

(ii) If vi = v(ξi), where ξi ∈ B{1,...,M}×N, i = 1, 2, then

‖v1(τn, ·) − v2(τn, ·)‖ ≤
n∑

k=1

‖ξ1(τk, ·) − ξ2(τk, ·)‖, n = 1, . . . ,M.(6.26)

We will consider payoff functions h which verify the following conditions.
Assumption 6.1. h : R �→ R is continuous on R and there exists ξ1, . . . , ξI ∈ R

such that h is C∞ on ]ξi, ξi+1[ for i = 0, . . . , I − 1 and for all n ≥ 0, for all x /∈
{ξ1, . . . , ξI}, |h(n)(x)| ≤ K.

For example, the payoff of a put option h(x) = (1−ex)+ verifies these conditions.
Lemma 4. Let h verify Assumption 6.1 and let u(τ, x) = E[h(x + Xτ )] be the

viscosity solution of the problem

∂u

∂τ
(τ, x) = Lu(τ, x), (τ, x) ∈ (0, T ] × R,(6.27)

u(0, x) = h(x), x ∈ R.(6.28)

Then, for all τ > 0 and m,n ∈ N, m + n > 0, we have∥∥∥∥ ∂m+nu

∂τm∂xn
(τ, ·)

∥∥∥∥ ≤ C

(
√
τ)2m+n−1

.(6.29)

The constant C depends only on m, n, K, T , and coefficients of the operator L (σ,
r, α, and λ).

Using this lemma we prove the following consistency result.
Lemma 5. If u solves (6.27)–(6.28), then, for all k ≥ 1,

(6.30) ‖Lu(τk, ·) − LΔu(τk, ·)‖ ≤ C

[
Δx2

τ
3/2
k

+
Δx

τ
1/2
k

+ Δx + 2(
√
τk −√

τk−1)

]
,

with C = C(K,T, r, σ, λ, α).
Under a CFL-type condition, we obtain the following rate of convergence.
Theorem 6.7. Assume that the initial condition h verifies Assumption 6.1. Let

u be the unique solution of (6.27)–(6.28) and let uΔ be the solution of (6.24)–(6.25)
with ξ = 0. If c1 ≤ Δt/Δx2 ≤ c2, then

‖u− uΔ‖{0,...,M} ≤ CΔx,(6.31)

where C depends only on T , K, and coefficients of the operator L (σ, r, α, and λ).
Proof. The function u(τn, xi) solves (6.24)–(6.25) with ξ(τk, xi) =

∫ τk
τk−1

Lu(s, xi)ds−
LΔu(τk, xi)Δt. From Lemma 3,

(6.32) ‖u(τn, ·) − uΔ(τn, ·)‖ ≤
n∑

k=1

∥∥∥∥∥
∫ τk

τk−1

Lu(s, ·)ds− LΔu(τk, ·)Δt

∥∥∥∥∥
≤

n∑
k=1

∥∥∥∥∥
∫ τk

τk−1

(Lu(s, ·) − Lu(τk, ·))ds
∥∥∥∥∥ +

n∑
k=1

‖Lu(τk, ·) − LΔu(τk, ·)‖Δt.
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Let us look at the first term:∣∣∣∣∣
∫ τk

τk−1

(Lu(s, x) − Lu(τk, x))ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ τk

τk−1

ds

∫ τk

s

∂2u

∂τ2
(θ, x)dθ

∣∣∣∣∣
≤ C

∫ τk

τk−1

ds

∫ τk

s

dθ

θ3/2
≤ CΔt

∫ τk

τk−1

ds

s3/2

by Lemma 4. Therefore,

n∑
k=1

∥∥∥∥∥
∫ τk

τk−1

(Lu(s, ·) − Lu(τk, ·))ds
∥∥∥∥∥ ≤ C

[∫ Δt

0

ds

∫ Δt

s

dθ

θ3/2
+ Δt

∫ T

Δt

ds

s3/2

]

= C

[
2Δt + Δt

2(
√
T −

√
Δt)√

T
√

Δt

]
≤ 4C

√
Δt.(6.33)

To estimate the second term in (6.32), note that

n∑
k=1

Δt
√
τk

=

n∑
k=1

∫ τk

τk−1

ds
√
τk

≤
n∑

k=1

∫ τk

τk−1

ds√
s

= 2
√
τn

and
n∑

k=1

Δt

τ
3/2
k

=
1√
Δt

n∑
k=1

1

k3/2
≤ C√

Δt
,

since the series
∑∞

k=1 1/k3/2 converges. Using Lemma 5, we obtain

(6.34)
n∑

k=1

‖Lu(τk, ·) − LΔu(τk, ·)‖Δt ≤ C
[
Δx2/

√
Δt + 2

√
τnΔx + τnΔx + 2

√
τnΔt

]

≤ C
[
Δx2/

√
Δt + Δx + Δt

]
.

If c1 ≤ Δt/Δx2 ≤ c2, the estimates (6.32), (6.33), and (6.34) imply (6.31).

7. Numerical results. We now illustrate the performance of the scheme pro-
posed above with two examples. The computations were done in variance Gamma
models with Lévy density

ν(x) = a
exp(−η±|x|)

|x|

and two sets of parameters: a = 6.25, η− = 14.4, η+ = 60.2 (VG1) and a = 0.5, η− =
2.7, η+ = 5.9 (VG2), and a Merton model with Gaussian jumps in log-price with
volatility σ = 15% and Lévy density

ν(x) = 0.1
e−x2/2

√
2π

for a put of maturity of T = 1 year. Both of these models satisfy the hypotheses
of sections 4.1 and 4.2: the Lévy densities have exponentially decreasing tails. The
Black–Scholes implied volatilities computed from prices of put options are shown in
Figure 7.1: as expected, they display a “smile” (convex) feature as a function of the
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Fig. 7.1. Black–Scholes implied volatilities for put options, as a function of strike and maturity.
Left: variance Gamma model. Right: Merton jump-diffusion model.
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Fig. 7.2. Influence of domain size on localization error for the explicit-implicit finite difference
scheme. Left: smooth initial condition h(x) = sin(x) in Merton jump-diffusion model. Right: put
option in Merton jump-diffusion model.

strike of the option, which flattens out with increasing maturity. These two models
have been chosen since in each case there is an alternative method for computing
the solution of the PIDE: in the Merton model the solution can be expressed as a
series expansion, and in the variance Gamma model a closed form expression for the
characteristic function is available, so one can use Carr and Madan’s FFT method
[9]. Comparing our finite difference solution to these alternative solutions (computed
with high precision) allows us to study the behavior of various error terms in relation
with the parameters of the scheme.

The error metric which is relevant from the point of view of financial applications
is the error in terms of Black–Scholes implied volatility:

ε(τ, x) = |ΣPIDE(τ, x) − ΣFFT(τ, x)| in %,

where Σ denotes the Black–Scholes implied volatility computed by inverting the
Black–Scholes formula with respect to the volatility parameter and applying it to
the computed option price. We have computed both pointwise errors at x = 0
(i.e., forward at-the-money options) and uniform errors on the computational range
x ∈ [log(2/3), log(2)]. This range contains all options prices quoted on the market.

The localization error is shown in Figure 7.2 for the Merton model: domain
size A is represented in terms of its ratio to the standard deviation of XT . An
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Fig. 7.3. Influence of domain size on localization error for the explicit-implicit finite difference
scheme: put option in tempered stable, Merton, and variance Gamma models.
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Fig. 7.4. Numerical accuracy for a put option in the Merton model. Left: influence of number
of time steps M , Δx = 0.05, Δt = T/M . Right: influence of number of space steps N , Δx = 2A/N ,
Δt = 0.02.

acceptable level is obtained for values of order � 5. Notice that as soon as this ratio
is greater than or equal to 3, the uniform and pointwise errors are quite close to each
other, indicating that we are out of the zone of influence of the numerical boundary
conditions. Figure 7.3 shows the same analysis for the variance Gamma model.

Figure 7.4 illustrates the decay of numerical error when Δt,Δx → 0, i.e., when
the number of time/space steps is increased. The behavior is quite similar to the case
of the Black–Scholes model.

Figure 7.5 illustrates the behavior of the error (for a fixed grid size) as a func-
tion of maturity for two initial conditions: a smooth one (forward contract) and a
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Fig. 7.5. Decrease of error with maturity in the Merton model. Left: nonsmooth initial condi-
tion (put option) h(x) = (1 − ex)+. Right: smooth initial condition h(x) = ex.
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Fig. 7.6. Influence of truncation of small jumps on numerical error in various variance Gamma
models. Put option.

nonsmooth one (put option). We observe that a nonsmooth initial condition leads
to a lack of accuracy for small T . This phenomenon, which is not specific to models
with jumps, can be overcome using an irregular time-stepping scheme which exploits
the smoothness in time of the solution. Matache, von Petersdorff, and Schwab [25]
have suggested using irregularly (logarithmically) spaced time stepping, more refined
near maturity, in order to improve this convergence. Note that scheme introduces a
“numerical viscosity” σ(ε), so even when the underlying model is a pure-jump Lévy
process this numerical diffusion term has a regularizing effect.

In the case of infinite activity models, an additional parameter which influences
the solution is the truncation parameter ε for the small jumps. Whereas the error in
Proposition 5.1 vanishes when ε → 0, for a fixed Δx the discretization error increases
as ε → 0: the constant in (6.31) is of order λ(ε), which increases with ε. This suggests
that there is an optimal choice ε(Δx) > 0 for a given Δx. The optimal choice of ε is
not universal and depends on the growth of the Lévy density near zero. Figure 7.6
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Fig. 7.7. Left: at-the-money double-barrier put price as a function of the number of space
steps. Barrier levels: L = 0.8, H = 1.2. Right: up-and-out call price in the Merton model. Barrier
level: H = 1.2.

Table 7.1

Examples of numerical values for at-the-money option prices. S = K = 100, T = 1, A =

5
√

σ2 +
∫

y2ν(dy), dt = 0.02, dx = 0.01. The truncation parameter ε is chosen according to

Figure 7.6.

Model Put t Up-and-out call t Double-barrier put t
sec. H = 120 sec. L = 80, H = 120 sec.

VG1 6.72 0.5 2.73 0.2 2.42 0.1
VG2 8.38 0.9 3.34 0.5 1.68 0.1

Merton 11.04 1.2 1.17 0.5 3.35 4

illustrates this phenomenon for the variance Gamma model.

The last two figures give examples of boundary value problems for barrier options
in the Merton model. Figure 7.7 (right) shows the price of an up-and-out call. Fig-
ure 7.7 (left) illustrates the numerical convergence of a double-barrier put price as the
number N of space steps increases.

In Table 7.1, we give some examples of option values obtained with our numerical
scheme as well as the corresponding computation time in seconds.

Appendix A. Proofs of lemmas.

A.1. Proof of Lemma 3. To prove (i), we rewrite (6.24)–(6.25) as v(τ, x) =
ΨΔv(τ, x), where ΨΔ is a contraction, and apply the fixed point theorem. Define

pΔ =
1

Δt
+

σ2

Δx2
+

∣∣∣∣σ
2

2
− r + α̂

∣∣∣∣ + λ̂ + 1 ≥ 1

such that ΦΔv(τn, xi) = −v(τn,xi)−v(τn−1,xi)
Δt +LΔv(τn, xi) + pΔv(τn, xi) is monotone:

if v ≥ 0, then ΦΔv ≥ 0. ΦΔ verifies

ΦΔe−2τ = e−2τ

[
pΔ − (1 − e−2Δt)

(
1

Δt
+ λ̂

)]
≤ e−2τ (pΔ − 1)(A.1)
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for small Δt (for example, this property holds as soon as Δt ≤ 0.7). We now define
ṽ(τ, x) = e2τv(τ, x), ξ̃(τ, x) = (Δt)−1p−1

Δ e2τξ(τ, x) and rewrite (6.24)–(6.25) as

ṽ(0, xi) = h(xi), i ∈ N,

ṽ(τn, xi) = p−1
Δ e2τnΦΔ[e−2τn ṽ(τn, xi)] + ξ̃(τn, xi), n = 1, . . . ,M, i ∈ N,(A.2)

or, equivalently, ṽ(τn, xi) = ΨΔṽ(τn, xi), n = 0, . . . ,M, i ∈ N, with

ΨΔṽ(τn, xi) = 1n∈{1,...,M}(p
−1
Δ e2τnΦΔ[e−2τn ṽ(τn, xi)] + ξ̃(τn, xi)) + 1n=0h(xi).

ΨΔ defines an operator on B{0,...,M}×N. Moreover, ΨΔ is a contraction,

|ΨΔṽ1(τn, xi) − ΨΔṽ2(τn, xi)| = 1n∈{1,...,M}p
−1
Δ e2τn |ΦΔ[e−2τn(ṽ1 − ṽ2)](τn, xi)|

≤ 1n∈{1,...,M}p
−1
Δ e2τn‖ṽ1 − ṽ2‖{0,...,M}ΦΔ[e−2τn ],

since v1 − v2 ≤ ‖ṽ1 − ṽ2‖{0,...,M} and ΦΔ is monotone. Using (A.1), we obtain

‖ΨΔṽ1 − ΨΔṽ2‖{0,...,M} ≤ (1 − p−1
Δ )‖ṽ1 − ṽ2‖{0,...,M},

so ΨΔ is a contraction and the fixed point theorem entails (i).
To prove (ii), first assume that for all k, i, ξ1(τk, xi) ≥ ξ2(τk, xi) and show that in

this case, v1 ≥ v2. Let v = v1−v2. We have v(0, xi) = 0. Suppose that v(τn−1, xi) ≥ 0.
Given ε > 0, let us take i(ε) such that v(τn, xi(ε)) ≤ infi v(τn, xi) + ε ≤ v(τn, xi) + ε,
for all i. Then, for all i ∈ N, we have

inf
i
v(τn, xi) ≥ v(τn, xi(ε)) − ε

= −cΔtv(τn, xi(ε)) + (1 + aΔt)v(τn, xi(ε)) − bΔtv(τn, xi(ε)) − λ̂Δtv(τn, xi(ε)) − ε

≥ −cΔt(v(τn, xi(ε)−1) + ε) + (1 + aΔt)v(τn, xi(ε)) − bΔt(v(τn, xi(ε)+1) + ε)

−λ̂Δt(inf
i
v(τn, xi) + ε) − ε

= v(τn−1, xi(ε)) + Δt
∑
j

νjv(τn−1, xi(ε)+j) + (ξ1 − ξ2)(τn, xi(ε)) − λ̂Δt inf
i
v(τn, xi)

−(1 + aΔt)ε ≥ −λ̂Δt inf
i
v(τn, xi) − (1 + aΔt)ε.

Therefore infi v(τn, xi) ≥ − 1+aΔt
1+λ̂Δt

ε.

Taking the limit ε → 0, we obtain infi v(τn, xi) ≥ 0, so v = v1 − v2 ≥ 0.
Consider now the general case. Let v(τn, xi) = v1(τn, xi) +

∑n
k=1 ‖ξ1(τk, ·) −

ξ2(τk, ·)‖. Then v solves (6.24)–(6.25) with ξ(τn, xi) = v(τn, xi) − v(τn−1, xi) −
LΔv(τn, xi)Δt. We have

ξ(τn, xi) = ξ1(τn, xi) + ‖ξ1(τn, ·) − ξ2(τn, ·)‖ − LΔ

[
n∑

k=1

‖ξ1(τk, ·) − ξ2(τk, ·)‖
]

Δt

= ξ1(τn, xi) + (1 + λ̂Δt)‖ξ1(τn, ·) − ξ2(τn, ·)‖ ≥ ξ2(τn, xi).

But as shown above this implies v(τn, xi) ≥ v2(τn, xi), so

v2(τn, xi) − v1(τn, xi) ≤
n∑

k=1

‖ξ1(τk, ·) − ξ2(τk, ·)‖.

Interchanging v1 with v2, we obtain (6.26).
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A.2. Proof of Lemma 4. By definition,

u(τ, x) = h(x) ∗ p̃τ (x) = h(x) ∗ p̃Wτ (x) ∗ p̃(X−W )
τ (x),(A.3)

where pτ (x) = p̃τ (−x) is the density of Xτ , and p̃Wτ (−x), p̃
(X−W )
τ (−x) are densities

of the processes σWτ and (Xτ − σWτ ), respectively. Therefore,∥∥∥∥ ∂m+nu

∂τm∂xn
(τ, ·)

∥∥∥∥ ≤
∥∥∥∥∂

m+n(h ∗ p̃Wτ )

∂τm∂xn

∥∥∥∥ .(A.4)

The derivatives of h may have jumps at ξ1, . . . , ξI ; denote these jumps by a
(n)
i =

h(n)(ξi+) − h(n)(ξi−). Then, for all n ≥ 1, i = 1, . . . , I, |a(n)
i | ≤ 2K. Using standard

properties of convolution products we obtain

(A.5)

∂n(h ∗ p̃Wτ )

∂xn
(x) = (h(n) ∗ p̃Wτ )(x) +

I∑
i=1

[
a
(n−1)
i p̃Wτ (x− ξi) + a

(n−2)
i

∂p̃Wτ
∂x

(x− ξi) +

· · · + a
(1)
i

∂n−2p̃Wτ
∂xn−2

(x− ξi)

]
,

where h(n) is the nth pointwise derivative of h. For all n ≥ 0, we have

∂np̃Wτ
∂xn

(x) =
1

(
√
τ)n+1

∂np̃W1
∂xn

(
x√
τ

)
.(A.6)

Consequently, for all n ≥ 1,
∥∥∥∥∂

n(h ∗ p̃Wτ )

∂xn

∥∥∥∥ ≤ ‖h(n)‖ + 2KI

(
‖p̃Wτ ‖ +

∥∥∥∥∂p̃
W
τ

∂x

∥∥∥∥ + · · · +
∥∥∥∥∂

n−2p̃Wτ
∂xn−2

∥∥∥∥
)

≤ K + 2KI

(
1√
τ
‖p̃W1 ‖ +

1

(
√
τ)2

∥∥∥∥∂p̃
W
1

∂x

∥∥∥∥ + · · · + 1

(
√
τ)n−1

∥∥∥∥∂
n−2p̃W1
∂xn−2

∥∥∥∥
)

≤ K

(
√
τ)n−1

[
T

n−1
2 + 2I

(
T

n−2
2 ‖p̃W1 ‖ + T

n−1
2

∥∥∥∥∂p̃
W
1

∂x

∥∥∥∥ + · · · +
∥∥∥∥∂

n−2p̃W1
∂xn−2

∥∥∥∥
)]

=
C

(
√
τ)n−1

,

so (6.29) is verified for m = 0 and n ≥ 1. Proceed by induction on m: assume (6.29)
for m− 1 and n ≥ 1. For any f ∈ C∞(R), we have

|Lf(x)| =

∣∣∣∣∣
σ2

2

∂2f

∂x2
(x) −

(
σ2

2
− r + α

)
∂f

∂x
(x) − λf(x) +

∫ Br

Bl

ν(dy)f(x + y)

∣∣∣∣∣
≤ σ2

2

∣∣∣∣∂
2f

∂x2
(x)

∣∣∣∣ + |σ2/2 − r + α|
∣∣∣∣∂f∂x (x)

∣∣∣∣ + 2λ‖f‖.

Applying this result to f = ∂m+n−1u(μ)/∂τm−1∂xn and using ∂τu = Lu, we obtain
∣∣∣∣ ∂

m+nu

∂τm∂xn
(τ, x)

∣∣∣∣ =

∣∣∣∣ ∂∂τ
(

∂m−1+nu

∂τm−1∂xn

)
(τ, x)

∣∣∣∣ =

∣∣∣∣L
(

∂m−1+nu

∂τm−1∂xn

)
(τ, x)

∣∣∣∣
≤ σ2

2

∥∥∥∥ ∂m−1+n+2u

∂τm−1∂xn+2
(τ, ·)

∥∥∥∥+

∣∣∣∣σ
2

2
− r + α

∣∣∣∣
∥∥∥∥ ∂m−1+n+1u

∂τm−1∂xn+1
(τ, ·)

∥∥∥∥+2λ

∥∥∥∥ ∂m−1+nu

∂τm−1∂xn
(τ, ·)

∥∥∥∥
≤ C(K,T,m, n, r, σ, λ, α)

(
√
τ)2(m−1)+(n+2)−1

=
C

(
√
τ)2m+n−1

.
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We have thus shown (6.29) for m ≥ 0, n ≥ 1. For m ≥ 1, n = 0, we proceed similarly,
by induction on m starting from

∥∥∥∥∂u∂τ (τ, ·)
∥∥∥∥ = ‖Lu(τ, ·)‖ ≤ σ2

2

∥∥∥∥∂
2u

∂x2
(τ, ·)

∥∥∥∥+

∣∣∣∣σ
2

2
− r + α

∣∣∣∣
∥∥∥∥∂u∂x (τ, ·)

∥∥∥∥+2λ ‖u(τ, ·)‖ ≤ C√
τ
,

since ‖u(τ, ·)‖ = ‖h ∗ p̃Wτ ‖ ≤ ‖h‖ ≤ K.

A.3. Proof of Lemma 5. We have

|Lu(τk, xi) − LΔu(τk, xi)| ≤ |Du(τk, xi) −DΔu(τk, xi)| + |Ju(τk, xi) − JΔu(τk−1, xi)|,

where D and J are the differential and integral parts of L defined by (5.4), and DΔ,
JΔ are their approximations given by (5.8)–(5.9). Recall that |α − α̂| ≤ (α + λ)Δx
by (6.8). From Taylor’s formula, there exist ξ1, η1, ξ2 ∈ [xi−1, xi+1] such that

|Du(τk, xi) −DΔu(τk, xi)| =

∣∣∣∣σ
2

2

Δx2

24

[
∂4u

∂x4
(τk, ξ1) +

∂4u

∂x4
(τk, η1)

]

+

(
σ2

2
− r + α̂

)
Δx

2

∂2u

∂x2
(τk, ξ2) + (α− α̂)

∂u

∂x
(τk, xi)

∣∣∣∣
≤ Δx2

12

σ2

2

∥∥∥∥∂
4u

∂x4
(τk, ·)

∥∥∥∥ +
Δx

2
|σ2/2 − r + α|

∥∥∥∥∂
2u

∂x2
(τk, ·)

∥∥∥∥ + Δx(α + λ)

∥∥∥∥∂u∂x (τk, ·)
∥∥∥∥

≤ C[Δx2/τ
3/2
k + Δx/τ

1/2
k + Δx]

by Lemma 4. The integral part can be estimated as follows:

|Ju(τk, xi) − JΔu(τk−1, xi)| =

∣∣∣∣∣∣
Kr∑

j=Kl

u(τk−1, xi+j)νj −
∫ Br

Bl

u(τk, xi + y)ν(dy)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Kr∑

j=Kl

∫ yj+1/2

yj−1/2

[u(τk−1, xi + yj) − u(τk, xi + y)]ν(dy)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
Kr∑

j=Kl

[u(τk−1, xi + yj) − u(τk, xi + yj)]νj

∣∣∣∣∣∣ +

∣∣∣∣∣∣
Kr∑

j=Kl

∫ yj+1/2

yj−1/2

[u(τk, xi + yj)

− u(τk, xi + y)]ν(dy)

∣∣∣∣∣

≤

∣∣∣∣∣∣
Kr∑

j=Kl

νj

∫ τk

τk−1

∂u

∂τ
(s, xi + yj)ds

∣∣∣∣∣∣ +

∣∣∣∣∣∣
Kr∑

j=Kl

∫ yj+1/2

yj−1/2

ν(dy)

∫ xi+y

xi+yj

∂u

∂x
(τk, ξ)dξ

∣∣∣∣∣∣
≤ λ

∫ τk

τk−1

∥∥∥∥∂u∂τ (s, ·)
∥∥∥∥ ds +

λΔx

2

∥∥∥∥∂u∂x (τk, ·)
∥∥∥∥ ≤ C

[∫ τk

τk−1

ds√
s

+ Δx

]

= C
[
2(
√
τk −√

τk−1) + Δx
]
.

Assembling the various terms we obtain (6.30).
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INCOMPRESSIBLE FINITE ELEMENTS VIA HYBRIDIZATION.
PART I: THE STOKES SYSTEM IN TWO SPACE DIMENSIONS∗

BERNARDO COCKBURN† AND JAYADEEP GOPALAKRISHNAN‡

Abstract. In this paper, we introduce a new and efficient way to compute exactly divergence-free
velocity approximations for the Stokes equations in two space dimensions. We begin by consider-
ing a mixed method that provides an exactly divergence-free approximation of the velocity and a
continuous approximation of the vorticity. We then rewrite this method solely in terms of the tan-
gential fluid velocity and the pressure on mesh edges by means of a new hybridization technique.
This novel formulation bypasses the difficult task of constructing an exactly divergence-free basis for
velocity approximations. Moreover, the discrete system resulting from our method has fewer degrees
of freedom than the original mixed method since the pressure and the tangential velocity variables
are defined just on the mesh edges. Once these variables are computed, the velocity approximation
satisfying the incompressibility condition exactly, as well as the continuous numerical approximation
of the vorticity, can at once be obtained locally. Moreover, a discontinuous numerical approximation
of the pressure within elements can also be obtained locally. We show how to compute the matrix
system for our tangential velocity-pressure formulation on general meshes and present in full detail
such computations for the lowest-order case of our method.

Key words. divergence-free finite element, mixed method, velocity, vorticity, pressure, hy-
bridized method, fluid flow, Stokes flow, Lagrange multipliers

AMS subject classifications. 65N30, 76D07

DOI. 10.1137/04061060X

1. Introduction. In this paper, we introduce a new and efficient way to com-
pute exactly divergence-free velocity approximations for the Stokes equations in two
space dimensions. We proceed as follows. First, we consider the mixed method for the
Stokes equations studied in [12, 13, 20]. This method provides a continuous approxi-
mation for the vorticity and an exactly divergence-free approximation of the velocity.
Then we introduce a new hybridization technique that allows us to reduce the original
method to a mixed method for the Lagrange multipliers arising from the hybridization,
namely, the tangential fluid velocity and the pressure along mesh edges. This novel
implementation of the method requires neither the introduction of stream function
variables (as in [12, 13, 20]) nor the construction of a globally divergence-free finite el-
ement basis. We thus avoid the difficulties in construction of a globally divergence-free
basis as well as the increase in degrees of freedom that accompanies the introduction
of the stream function. Our new tangential velocity-pressure formulation has fewer
degrees of freedom as both the unknowns are defined only on mesh edges. More-
over, after solving for these unknowns, the original exactly divergence-free numerical
approximation of the fluid velocity and the original continuous numerical approxima-
tion of the vorticity can be easily computed in an element-by-element fashion. An
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approximation to the pressure inside the elements can also be computed in this way,
a feature made possible by the hybridization procedure.

Let us describe the hybridization technique we propose. Recall that the Stokes
equations couple the fluid velocity u and the pressure p by the equations

−Δu + grad p = f on Ω,(1.1)

div u = 0 on Ω,(1.2)

u = g on ∂Ω.(1.3)

Here, f ∈ L2(Ω)2 and g ∈ H1/2(∂Ω)2 are given data. For simplicity, we assume that
Ω ⊆ R

2 is a (bounded connected) polygon. To define the mixed method, we introduce
the vorticity

ω = curlu :=
∂

∂x
uy −

∂

∂y
ux,

where u = (ux, uy), and rewrite the Stokes system as

ω − curlu = 0 on Ω,(1.4)

curlω + grad p = f on Ω,(1.5)

div u = 0 on Ω,(1.6)

u · t = gt on ∂Ω,(1.7)

u · n = gn on ∂Ω.(1.8)

Here, gt = g · t and gn = g · n, where n denotes the outward unit normal on ∂Ω and
t the unit tangent vector on ∂Ω oriented such that Ω is on the left as we move in the
direction of t along ∂Ω. Note that to obtain (1.5), we made use of the identity

−Δu = curl curlu − graddiv u,

where

curlω =

(
∂ω

∂y
,−∂ω

∂x

)
.

To give a weak formulation of the above problem, define the spaces

W = H1(Ω),

V = {v ∈ H(div,Ω) : div v = 0},
V(b) = {v ∈ V : v · n|∂Ω = b}

for any b ∈ H−1/2(∂Ω). The weak formulation seeks the pair of functions satisfying

(ω, τ)Ω − (u, curl τ)Ω = (gt, τ)∂Ω for all τ ∈ W,(1.9)

(v, curlω)Ω = (f ,v)Ω for all v ∈ V(0).(1.10)

Here, (·, ·)Ω denotes the L2(Ω) (or L2(Ω)2) inner product. Note that since the velocity
test functions are taken in the space V(0), the pressure is no longer present in this
variational formulation. By classical existence results for the Stokes system, it is easy
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to show that there is a unique solution for the above system of equations, provided
that the compatibility condition

(gn, 1)∂Ω = 0(1.11)

is satisfied. We assume throughout that (1.11) holds.
Now the approximate solution is sought in the finite element subspaces of the

above defined spaces:

Wh = {w ∈ W : w|K ∈ Pk+1(K) for all K ∈ T},
Vh = {v ∈ V : v|K ∈ Pk(K)2 for all K ∈ T}.

Here T denotes a finite element triangulation of Ω. Let Vh(b) = V(b) ∩ Vh and gn,h
be the L2(∂Ω)-orthogonal projection of the boundary data gn onto the space

{vh · n|∂Ω : vh ∈ Vh}.

Then the discrete mixed formulation seeks (ωh,uh) in Wh × Vh(gn,h) satisfying

(ωh, τ)Ω − (uh, curl τ)Ω = (gt, τ)∂Ω for all τ ∈ Wh,(1.12)

(v, curlωh)Ω = (f ,v)Ω for all v ∈ Vh(0).(1.13)

We assume that the latter space is nonempty. A three-dimensional version of the
above mixed discretization was studied in [12, 13, 20, 22], where the existence of a
unique solution was established. Note that this is a conforming method since

Wh × Vh(0) ⊂ W × V(0) ⊂ H1(Ω) × V.

This implies, in particular, that in order to implement the method in the above form,
we must face the difficult task of constructing bases for the finite-dimensional space
of globally divergence-free velocities Vh(0).

The construction of an exactly divergence-free finite element basis has been a long-
standing research question [14]. Piecewise divergence-free approximations have been
investigated in [2, 17, 18], but their normal components are not continuous in general.
Basis functions for finite-dimensional spaces of weakly divergence-free functions were
constructed in [15, 16, 24]. However, this construction proved to be extremely difficult
to extend to spaces of polynomials of higher degree. Exactly divergence-free finite
element spaces have been studied, but known results require the use of polynomials of
degree four or higher for the two-dimensional case [19, 23], and no similar result exists
for the three-dimensional case. The difficulty of constructing exactly incompressible
finite element spaces was overcome in [12] by setting the divergence-free spaces as
the curl of an appropriate space of stream functions. Unfortunately, the introduction
of the stream function increases degrees of freedom. In contrast, our approach to
overcoming this difficulty via hybridization actually results in a reduction in degrees
of freedom.

Recently, globally divergence-free approximations were devised by using discon-
tinuous Galerkin methods with polynomials of degree one or higher in the framework
of the Navier–Stokes equations [10]. To achieve this, the fact that the divergence-free
condition is enforced element-by-element is exploited to construct an element-by-
element postprocessing of the discontinuous approximation that automatically results
in an exactly divergence-free velocity. A similar technique in the framework of discon-
tinuous Galerkin methods for Darcy flow was developed in [3]. Unfortunately, such
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approaches cannot be used for conforming mixed methods since they rely on the fact
that the discontinuous Galerkin methods enforce the equations element-by-element.

The main idea of our procedure is to look for approximations in discrete spaces
that have no continuity constraints across mesh interfaces and introduce new sets
of equations that guarantee that the new approximation coincides with the original
approximation (ωh,uh) given by (1.12)–(1.13). This approach is inspired by hy-
bridization techniques used in the context of mixed methods for second-order elliptic
problems [1, 5, 8, 11]. We proceed in two steps. The objective of the first step is to
circumvent construction of divergence-free finite element bases. Hence, in this step,
we relax the continuity of the normal components of the approximate velocity across
interelement boundaries and use a velocity space of functions with no interelement
continuity. As a direct consequence, the pressure reappears in the equations, but
only on the edges if the approximate velocities are divergence-free inside each ele-
ment. Then, new equations are introduced to enforce the continuity of the normal
component of the velocity across interelement boundaries. A similar hybridization
technique, but in the framework of discontinuous Galerkin methods for the Stokes
problem, is explored in [7].

The objective of the second step is the eventual elimination of both the original
unknowns (velocity and vorticity) from the equations. To do this, we must develop
a new hybridization technique for the vorticity. Such a hybridization is far more
involved than the previous one since the vorticity is continuous across interelement
boundaries. Indeed, all the previously known hybridization procedures relaxed conti-
nuity of spaces with edge (or face in three dimensions) degrees of freedom. Examples
include hybridization techniques for the Raviart–Thomas and Brezzi–Douglas–Marini
(BDM) methods for scalar second-order elliptic problems which involve finite element
subspaces of H(div,Ω). Hybridization of the Morley element method for the bihar-
monic problem [1] also involved such spaces with edge degrees of freedom. However,
hybridization techniques to relax continuity constraints of finite element subspaces of
H1(Ω) with vertex degrees of freedom have remained unknown until now. While this
may have led to a widespread belief that methods using spaces of this type are not
amenable to hybridization, in this paper we show otherwise. We show how one can ap-
proximate vorticity in a space of functions which have no continuity conditions across
element interfaces while imposing the natural continuity properties of the vorticity as
an equation of the method.

After the above mentioned hybridizations, we proceed to adapt the methodology
introduced in [8] to eliminate the vorticity and velocity from the hybridized method.
This elimination is far from obvious but is greatly facilitated by the fact that both the
vorticity and the velocity are in spaces of functions with no interelement continuity
and by the fact that both the pressure and the tangential velocity are defined only on
the mesh edges. This allows us to express the vorticity and velocity in terms of the
pressure and tangential velocity. Then, we show how to characterize these Lagrange
multipliers as the only solution of a new mixed method. We view this method as
a “tangential velocity-pressure discretization” for the Stokes equation wherein the
unknowns are all on the mesh edges.

Notice that since the unknowns are defined only on the edges, this system is
smaller than the original one. Moreover, once the Lagrange multipliers are obtained,
vorticity and velocity approximations can be obtained by local element-by-element
computations. An interesting feature of our mixed method for the Lagrange multipli-
ers is that it is possible to further eliminate the pressure Lagrange multiplier and form
one Schur complement equation for the tangential velocity Lagrange multiplier. This
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equation can be easily solved using well-established iterative techniques for symmetric
positive definite systems.

We should note that ours is not the first paper to give hybridized methods for
the Stokes problem. A hybrid formulation involving deviatoric stresses, hydrostatic
pressure, and velocity was given in [6, 25]. Note also that some domain decomposition
methods result from hybridization performed at the subdomain level. For example, in
[4], the method gives rise to an indefinite system for the velocity nodes on the subdo-
main boundaries and the mean values of the pressure on the subdomains. However,
none of the above mentioned methods provide incompressible velocities.

The paper is organized as follows. In section 2, we give a detailed description
of the hybridization of the original conforming mixed method. The resulting method
is written as a method for the two original variables and two additional Lagrange
multipliers. Then, in section 3, we show how to eliminate the former two variables
from the equations and characterize the Lagrange multipliers alone as the unique
solution of a mixed method. This characterization (Theorem 3.1) is an extension to the
Stokes system of what was done for hybridized mixed methods for second-order elliptic
problems in [8] and is one of our main results. In section 4, we construct the bases
for the Lagrange multipliers, and in section 5, we discuss some key implementation
aspects of the method. These include the construction of the Schur complement
matrix for the tangential velocity and the detailed computation of the matrices of the
method for the lowest-order case. Section 6 concludes the paper.

2. The hybridized mixed method. In this section, we present the hybridiza-
tion of the mixed method in full detail as described in the introduction. Let us
emphasize once again that this is carried out in two steps. The objective of the first
is to avoid having to construct finite-dimensional spaces of divergence-free velocities.
The objective of the second is the eventual elimination of the original variables from
the equations. Note that the actual elimination is not carried out until section 3.

2.1. First hybridization: Introduction of pressure on the mesh edges.
We begin by relaxing the continuity of the normal component of the approximate
velocity uh across interelement boundaries. Thus, instead of seeking velocity approx-
imations in the space Vh, we seek approximations in the space

Vh = {v : v|K ∈ Pk(K)2 and div(v|K) = 0 for all K ∈ T}.

This forces us to weakly impose (1.5) in a different way. Indeed, if we multiply (1.5)
by a test function vh ∈ Vh and integrate over the element K, we obtain

(curlω,vh)K + (grad p,vh)K = (f ,vh)K ,

and hence,

(curlω,vh)K + (p,vh · n)∂K = (f ,vh)K .

Replacing ω and p by their respective approximations, ωh and ph, and adding over
the elements of the triangulation, we obtain one equation of the method:

(vh, curlωh)Ω +
∑
e∈E

(ph, [[vh · n]])e = (f ,vh)Ω for all vh ∈ Vh.

Here, we are using the following notation: For v ∈ Vh the jump of the normal com-
ponent of v across interelement boundaries, denoted by [[v · n]], is defined on the set
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Fig. 1. Notation for elements, normals, and tangents near an edge e.

E of all edges of the triangulation T as follows. On every interior edge e in E shared
by two mesh triangles K+

e and K−
e we define

[[v · n]]e = v+
e · n+

e + v−
e · n−

e ,

where n+
e and n−

e denote the outward unit normals on the boundaries of K+
e and

K−
e , respectively (see Figure 1) and v±

e (x) = limε↓0 v(x − εn±
e ). On edges e ⊂ ∂Ω,

we set [[v · n]]e = v|∂Ω · n. By [[v · n]] (without any subscript) we mean the function
that is defined on the union of all edges in E and equals [[v · n]]e on each edge e ∈ E.

Now, in accordance with the hybridization paradigm, we impose the continuity
of the normal component of the velocity uh across interelement boundaries through
the equation

∑
e∈E

(qh, [[uh · n]])e = (gn, qh)∂Ω for all qh ∈ Ph,

where Ph is defined naturally by

Ph = {p : p = [[v · n]] for some v ∈ Vh}.(2.1)

Notice that in the above equation, we are also incorporating the boundary condition
on the normal component of the velocity.

Thus, after the first hybridization of the mixed method, we are seeking an ap-
proximation (ωh,uh, ph) ∈ Wh × Vh × Ph satisfying

(ωh, τh)Ω − (uh, curl τh)Ω = (gt, τh)∂Ω for all τh ∈ Wh,(2.2)

(vh, curlωh)Ω +
∑
e∈E

(ph, [[vh · n]])e = (f ,vh)Ω for all vh ∈ Vh,(2.3)

∑
e∈E

(qh, [[uh · n]])e = (gn, qh)∂Ω for all qh ∈ Ph.(2.4)

Note that although the original mixed method (1.12)–(1.13) did not involve the pres-
sure variable, the pressure reappears upon hybridization, but only along the mesh
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edges. We shall call ph the “pressure Lagrange multiplier.” The above discrete for-
mulation has a unique solution, as we show next.

Proposition 2.1. There is a unique solution (ωh,uh, ph) ∈ Wh × Vh × Ph for
the hybridized mixed method (2.2)–(2.4), and the solution components ωh and uh are
the same as the solution of (1.12)–(1.13).

Proof. We show that if gn, gt, and f are equal to zero, then ωh,uh, and ph are
also zero. First, (2.4) implies uh ∈ Vh(0). Moreover, (2.2)–(2.3) implies that ωh and
uh satisfy (1.12)–(1.13) with zero data. By uniqueness of solutions of (1.12)–(1.13),
we find that ωh = 0 and uh = 0. This together with (2.3) implies that ph is zero.
Hence there is a unique solution for (2.2)–(2.4). It is easy to see that if ωh and uh

satisfy (2.2)–(2.4), then they also satisfy (1.12)–(1.13); hence the equivalence of both
problems.

Before proceeding to describe the second hybridization, let us point out that the
first allows us to recover an approximation for the pressure inside the elements in an
element-by-element fashion. To define such an approximation, we follow a technique
of [7]. We define the pressure πh on the triangle K as the element of Pk(K) such that

−(πh,div v)K = (f ,v)K − (curlωh,v)K − (v · n, ph)∂K(2.5)

for all v in Pk(K)2 + xPk(K), where n denotes the outward unit normal to K. That
(2.5) uniquely defines πh follows from two facts:

(i) div : Pk(K)2 + xPk(K) �→ Pk(K) is a surjection;
(ii) If div v = 0 for a v in Pk(K)2+xPk(K), then v ∈ Pk(K)2 and the right-hand

side of the above equation is zero by the definition of the hybridized method.
The idea of recovering pressure approximations a posteriori as in (2.5) from approxi-
mations of other variables is old (see, e.g., [15]), but because hybridization provides ph,
we are able to compute πh locally in our case. Thus our method can simultaneously
provide approximations to the velocity, vorticity, and pressure.

2.2. Second hybridization: Introduction of the tangential velocity vari-
able. Now we relax the continuity of the approximate vorticity ωh across mesh edges
in the interior of the domain. Thus, instead of considering continuous approximations
in the space Wh, we formulate a method using the space

Wh = {w : w|K ∈ Pk+1(K) for all K ∈ T}.

This forces us to weakly impose (1.4) in a different way. Indeed, if we multiply that
equation by a test function τh ∈ Wh and integrate over the element K, we obtain

(ω, τh)K − (u, curl τh)K − (u · t, τh)∂K = 0,

where t denotes the unit tangent vector along ∂K oriented as in Figure 1. Here and
elsewhere to simplify notation, we do not explicitly indicate the dependence of t on
the underlying boundary (such as ∂K above). Denoting the tangential component of
the velocity u on the interelement boundaries by

λ = (u · t) t,

we can rewrite the above equation as

(ω, τh)K − (u, curl τh)K − (λ, τht)∂K = 0.
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Next, replacing ω, u, and λ by their respective approximations ωh, uh, and λh, we
obtain, after adding over the elements K of the triangulation,

(ωh, τh)Ω − (uh, curl τh)Ω −
∑

e∈E\∂Ω

(λh, [[τht]]e)e = (gt, τh)∂Ω.(2.6)

Here, the “tangential jump” of τ across interelement boundaries, [[τt]], is defined as
follows. For every interior edge e ∈ E shared by triangles K+

e and K−
e , let

[[τt]]e = τ+
e t+ + τ−e t−,

where, as before, τ±e (x) = limε↓0 τ(x− εn±
e ), and t+ and t− are unit tangent vectors

along the boundaries of K+
e and K−

e , respectively, oriented in accordance with our
previous notation: Unit tangent vectors along the boundary of a domain are given
the orientation that leaves the domain on its left (see Figure 1). Hence t+ = −t− on
e. It is convenient to adopt the convention that the jump [[τt]] on the boundary of Ω
vanishes:

[[τt]]e = 0 for edges e ⊂ ∂Ω.

By [[τt]] (without any subscript), we mean the function defined on the union of all
edges in E that equals [[τt]]e on each edge e ∈ E. With these conventions, we can now
write (2.6) as

(ωh, τh)Ω − (uh, curl τh)Ω −
∑
e∈E

(λh, [[τht]])e = (gt, τh)∂Ω.

Now, proceeding as in the first hybridization, we impose the continuity of the
vorticity by using the equation

∑
e∈E

(μh, [[ωht]])e = 0 for all μh ∈ Mh,(2.7)

where the space Mh is given by

Mh = {μ : μ = [[τt]] for some τ ∈ Wh}.

The above choice is dictated by the fact that a function w ∈ Wh is continuous if
and only if [[wt]] = 0. Clearly, if ωh satisfies (2.7), then it belongs to the space
Wh ⊂ H1(Ω).

Summarizing our considerations so far, the hybridized mixed method gives an
approximation (ωh,uh,λh, ph) ∈ Wh × Vh ×Mh × Ph defined by

(ωh, τh)Ω − (uh, curl τh)Ω −
∑
e∈E

(λh, [[τht]])e = (gt, τh)∂Ω,(2.8)

(vh, curlωh)Ω +
∑
e∈E

(ph, [[vh · n]])e = (f ,vh)Ω,(2.9)

∑
e∈E

(qh, [[uh · n]])e = (gn, qh)∂Ω,(2.10)

∑
e∈E

(μh, [[ωht]])e = 0(2.11)
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for all τh ∈ Wh,vh ∈ Vh, qh ∈ Ph, and μh ∈ Mh. By arguments similar to those used
in the proof of Proposition 2.1, it is easy to prove the following result.

Proposition 2.2. There is a unique solution (ωh,uh,λh, ph) ∈ Wh×Vh×Mh×
Ph for the hybridized mixed method (2.8)–(2.11), and the solution components ωh and
uh satisfy (1.12)–(1.13).

At this point, the number of unknowns of our method seems to have proliferated,
and it is far from evident that the hybridization we just described has any advantage
at all. However, in the next section we show that the structure of this hybridized
method allows us to easily eliminate the velocity uh and the vorticity ωh from the
above equations.

3. A characterization of the Lagrange multipliers. In this section, we elim-
inate the velocity and vorticity unknowns from the equations of the previously given
hybridized mixed method using the methodology developed in [8]. As a result, we
obtain a characterization of the tangential velocity and pressure Lagrange multipliers.

3.1. The main result. We begin by defining local maps that lift functions de-
fined on the boundary of the elements of the triangulation into functions on the
domain Ω: Define (w(λ),u(λ)) ∈ Wh × Vh and (W(p),u(p)) ∈ Wh × Vh by

(w(λ), τ)K − (u(λ), curl τ)K = (λ, τt)∂K for all τ ∈ Wh,(3.1)

(v, curl w(λ))K = 0 for all v ∈ Vh,(3.2)

(W(p), τ)K − (u(p), curl τ)K = 0 for all τ ∈ Wh,(3.3)

(v, curl W(p))K = −(p,v · n)∂K for all v ∈ Vh.(3.4)

In addition it is convenient to define the local mappings (w(gt),u(gt)) and (w(f),u(f))
in Wh × Vh as follows:

(w(gt), τ)K − (u(gt), curl τ)K = (gt, τ)∂K∩∂Ω for all τ ∈ Wh,(3.5)

(v, curl w(gt))K = 0 for all v ∈ Vh,(3.6)

(w(f), τ)K − (u(f), curl τ)K = 0 for all τ ∈ Wh,(3.7)

(v, curl w(f))K = (f ,v)K for all v ∈ Vh.(3.8)

Note that all four pairs of local maps above are given as solutions of a single mixed
problem, but with different right-hand sides. That all four maps are well defined
follows from the unique solvability of the mixed problem (which is the original mixed
problem restricted to one element). Although all four maps use the same mixed
problem, we have chosen to explicitly distinguish each of them so as to delineate the
dependence of the final solution on the data components and the Lagrange multipliers.

The main result of this section characterizes the Lagrange multipliers as the
unique solution of a variational equation involving the bilinear forms

a(λ,μ) = (w(λ), w(μ))Ω,(3.9)

b(μ, p) = −
∑
K∈T

(u(μ), curl W(p))K ,(3.10)

c(p, q) = (W(p),W(q))Ω(3.11)

and the linear functionals

�1(μ) = (f ,u(μ))Ω − (gt, w(μ))∂Ω,(3.12)

�2(q) = (f ,u(q))Ω + (gn, q)∂Ω − (gt,W(q))∂Ω.(3.13)
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Theorem 3.1. The Lagrange multiplier (λh, ph) ∈ Mh × Ph of the hybridized
mixed method (2.8)–(2.11) is the unique solution of

a(λh,μ) + b(μ, ph) = �1(μ) for all μ ∈ Mh and(3.14)

b(λh, q) − c(ph, q) = �2(q) for all q ∈ Ph.(3.15)

Moreover, the solution components ωh and uh of the hybridized mixed method (2.8)–
(2.11) can be determined locally as follows:

ωh = w(λh) + W(ph) + w(gt) + w(f),(3.16)

uh = u(λh) + u(ph) + u(gt) + u(f).(3.17)

3.2. Proof. To prove the above result, we follow the approach introduced in
[8]. Accordingly, the first step will be to use the local maps to rewrite the first two
equations of the hybridized method, namely (2.8) and (2.9). This will yield (3.16) and
(3.17). Next, the two remaining equations of the hybridized method, namely (2.10)
and (2.11), will be used to characterize the pressure and tangential velocity Lagrange
multipliers of the method. In order to carry out these steps, we need to obtain a few
identities involving the local mappings. This is done in the first lemma below. Then,
in a second lemma, we show how to rewrite (2.10) and (2.11) solely in terms of the
multipliers. In this way, we eliminate the vorticity and velocity and at the same time
obtain a variational characterization of the Lagrange multipliers. Let us now state
and prove the lemmas.

Lemma 3.2 (elementary identities). On any mesh element K ∈ T, for any
λ ∈ Mh,μ ∈ Mh, p ∈ Ph, and q ∈ Ph, we have the following orthogonality properties
for the local vorticity maps:

(w(λ),W(p))K = 0,(3.18)

(w(λ),w(f))K = 0,(3.19)

(w(gt),W(p))K = 0,(3.20)

(w(gt),w(f))K = 0.(3.21)

Moreover, we have the following identities for the bilinear forms a, b, and c:

aK(λ,μ) := (w(λ), w(μ))K = (λ, w(μ)t)∂K ,(3.22)

bK(λ, p) := −(u(λ), curl W(p))K = (u(λ) · n, p)∂K = (λ,W(p)t)∂K ,(3.23)

cK(p, q) := (W(p),W(q))K = −(q,u(p) · n)∂K .(3.24)

Finally, we have the following identities related to the linear forms �1 and �2:

(f ,u(μ))K = −(w(f)t,μ)∂K ,(3.25)

(w(μ), gt)∂K∩∂Ω = (μ, w(gt) t)∂K ,(3.26)

(f ,u(q))K = −(u(f) · n, q)∂K ,(3.27)

(W(q), gt)∂K∩∂Ω = (q,u(gt) · n)∂K .(3.28)

Proof. Let us begin by proving the orthogonality identities. Equation (3.18) is
obtained by setting τ = w(λ) in (3.3) and using (3.2). The proof of (3.19) is analogous.
Equations (3.20) and (3.21) follow from similar arguments, as the equations defining
the liftings of gt and λ have the same structure.
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Next, let us prove the identities associated with the bilinear forms a(·, ·), b(·, ·),
and c(·, ·). Equation (3.22) is obtained as follows. Setting τ = w(μ) in the definition
of the liftings (3.1), we get

(w(λ),w(μ))K = (u(λ), curl w(μ))K + (λ, w(μ) t)∂K

= (λ, w(μ) t)∂K ,

by (3.2) with λ = μ and v = u(λ). Let us prove (3.23). Taking v = u(λ) in (3.4),
we get

(u(λ) · n, p)∂K = −(u(λ), curl W(p))K

= (λ,W(p) t)∂K − (w(λ),W(p))K by (3.1) with τ = W(p),

= (λ,W(p) t)∂K ,

by the orthogonality property (3.18). Now let us prove (3.24). We have, by (3.3) with
τ = W(q),

(W(p),W(q))K = (u(p), curl W(q))K

= −(q,u(p) · n)∂K ,

by (3.4) with p = q and v = u(p).
Finally, let us consider the last set of identities. We first prove (3.25). Setting

v = u(μ) in (3.8), we get

(f ,u(μ))K = (u(μ), curl w(f))K

= (w(μ),w(f))K − (μ,w(f) t)∂K ,

by (3.1) with λ = μ and τ = w(f). The desired equation follows by using the already
established orthogonality property (3.19). Next, let us prove (3.26). Setting τ = w(μ)
in (3.5) and then using (3.2), we get

(gt, w(μ))∂K∩∂Ω = (w(μ), w(gt))K

= (μ, w(gt)t)∂K + (u(μ), curl (w(gt)))K ,

by (3.1) with λ = μ and τ = w(gt). Equation (3.26) follows from (3.6). Equa-
tion (3.27) is obtained as follows:

(f ,u(q))K = (u(q), curl w(f))K by (3.8) with v = u(q),

= (W(q),w(f))K by (3.3) with p = q and τ = w(f),

= (u(f), curl W(q))K by (3.7) with τ = W(q),

= −(q,u(f))K ,

by (3.4) with p = q and v = u(f). Finally, let us prove (3.28). By (3.5) with τ = W(q),
we have

(W(q), gt)∂K∪∂Ω = (w(gt),W(q))K − (u(gt), curl W(q))K ,

= −(u(gt), curl W(q))K by (3.20),

= (q,u(gt) · n)∂K ,

by (3.4) with p = q and v = u(gt). This completes the proof.
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Lemma 3.3 (the jump conditions). For arbitrary λ ∈ Mh and p ∈ Ph set

ω̃λ,p
h = w(λ) + W(p) + w(gt) + w(f),

ũλ,p
h = u(λ) + u(p) + u(gt) + u(f).

Let (ωh,uh,λh, ph) be the unique solution of (2.8)–(2.11). Then the following state-
ments are equivalent:

A. For all μ ∈ Mh and q ∈ Ph,∑
e∈E

(μ, [[ω̃λ,p
h t]])e = 0 and

∑
e∈E

(q, [[ũλ,p
h · n]])e = (gn, q)∂Ω.

B. ω̃λ,p
h = ωh and ũλ,p

h = uh.
C. λ = λh and p = ph.
D. a(λ,μ) + b(μ, p) = �1(μ) for all μ ∈ Mh and

b(λ, q) − c(p, q) = �2(q) for all q ∈ Ph.
Proof. A =⇒ B: By adding the equations defining (w(λ),u(λ)), (W(p),u(p)),

(w(f),u(f)), and (w(gt),u(gt)), we find that ω̃λ,p
h and ũλ,p

h satisfy the first two equa-
tions of our hybridized mixed method, i.e.,

(ω̃λ,p
h , τh)Ω − (ũλ,p

h , curl τh)Ω −
∑
e∈E

(λ, [[τht]])e = (gt, τh)∂Ω,

(vh, curl ω̃λ,p
h )Ω +

∑
e∈E

(p, [[vh · n]])e = (f ,vh)Ω,

for all τh ∈ Wh and vh ∈ Vh. Since statement A holds, they also satisfy the remaining
equations of the method. By uniqueness of solutions of the hybridized mixed method
(as given by Proposition 2.2) we get statement B.

B =⇒ C: By linear superposition,

ωh = w(λh) + W(ph) + w(gt) + w(f),(3.29)

uh = u(λh) + u(ph) + u(gt) + u(f).(3.30)

Comparing these equations with the definitions of ω̃λ,p
h and ũλ,p

h , we find that state-
ment B implies

w(λh) + W(ph) = w(λ) + W(p),(3.31)

u(λh) + u(ph) = u(λ) + u(p).(3.32)

In particular,

w(λh − λ) + W(ph − p) = 0.

Since the two terms on the left-hand side above are L2(Ω)-orthogonal by (3.18), they
both must vanish. Moreover, by the definition of u(·) (see (3.3)), w(λh − λ) = 0
implies

(u(ph − p), curl τ)K = 0 for all K ∈ T, τ ∈ Wh.

Hence u(ph − p) = 0. By (3.32) we also get u(λh − λ) = 0. Thus,

w(λh − λ) = W(ph − p) = 0, u(λh − λ) = u(ph − p) = 0,
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so λh − λ = 0 and ph − p = 0.
C =⇒ D: We know by (3.29)–(3.30) and the last two equations of the hybridized

mixed method that

Θ :=
∑
e∈E

(
μ, [[

(
w(λh) + W(ph) + w(f) + w(gt)

)
t]]
)
e

= 0,

Ψ :=
∑
e∈E

(
q, [[

(
u(λh) + u(ph) + u(f) + u(gt)

)
· n]]

)
e
− (gn, q)∂Ω = 0.

Hence, it suffices to show that

Θ = a(λ,μ) + b(μ, p) − �1(μ),(3.33)

Ψ = b(λ, q) − c(p, q) − �2(q).(3.34)

To do this, let us split Θ =: θ1 + θ2 + θ3 + θ4, where

θ1 :=
∑
e∈E

(
μ, [[w(λ)]]t

)
e

= (w(λ), w(μ))Ω by (3.22),

θ2 :=
∑
e∈E

(
μ, [[W(p)t]]

)
e

= −
∑
K∈T

(u(μ), curl W(p))K by (3.23),

θ3 :=
∑
e∈E

(
μ, [[w(f)t]]

)
e

= −(f ,u(μ))Ω by (3.25),

θ4 :=
∑
e∈E

(
μ, [[w(gt)t]]

)
e

= (gt, w(μ))∂Ω by (3.26).

Hence

θ1 = a(λ,μ) by (3.9),

θ2 = b(μ, p) by (3.10),

θ3 + θ4 = −�1(μ) by (3.12).

This proves (3.33).
To prove (3.34), we split Ψ =: ψ1 + ψ2 + ψ3 + ψ4 + ψ5, where

ψ1 :=
∑
e∈E

(
q, [[u(λ) · n]]

)
e

= −
∑
K∈T

(u(λ), curl W(q))K by (3.23),

ψ2 :=
∑
e∈E

(
q, [[u(p) · n]]

)
e

= −(w(p), w(q))Ω by (3.24),

ψ3 :=
∑
e∈E

(
q, [[u(f) · n]]

)
e

= −(f ,u(q))Ω by (3.27),

ψ4 :=
∑
e∈E

(
q, [[u(gt) · n]]

)
e

= (gt,W(q))∂Ω by (3.28),

ψ5 := −(gn, q)∂Ω.

Hence

ψ1 = b(λ, q) by (3.10),

ψ2 = −c(p, q) by (3.11),

ψ3 + ψ4 + ψ5 = −�2(μ) by (3.13).
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Adding the above equations, we obtain (3.34).
D =⇒ A: If statement D holds, then, by the previous step, we have

∑
e∈E

(
μ, [[

(
w(λ) + W(p) + w(f) + w(gt)

)
t]]
)
e

= 0,

∑
e∈E

(
q, [[

(
u(λ) + u(p) + u(f) + u(gt)

)
· n]]

)
e

= (gn, q)∂Ω,

which is statement A.
Proof of Theorem 3.1. The proof of the theorem is immediate from the pre-

vious lemmas: The first assertion of the theorem follows from the equivalence of
statements C and D of Lemma 3.3. The second follows from the first by linear super-
position. Thus Theorem 3.1 is proved.

4. Local bases for Lagrange multipliers. For the hybridized method to be of
practical use, it is imperative that we develop computable bases of locally supported
functions for the multiplier spaces Ph and Mh.

4.1. The pressure space. We begin with a characterization of the space of
pressure Lagrange multipliers arising from the first hybridization.

Proposition 4.1. The space Ph defined in (2.1) is characterized by

Ph =

{
p : p|e ∈ Pk(e) for all e ∈ E and

∑
e∈E

(p, 1)e = 0

}
.

Proof. Let Qh denote the set in the right-hand side above. To show that Ph ⊆ Qh,
consider any vh ∈ Vh and let ph = [[vh · n]]. Then [[vh · n]]e ∈ Pk(e) and

∑
e∈E

(ph, 1)e ds =
∑
K∈T

(vh · n, 1)∂K =
∑
K∈T

(div vh, 1)K = 0.

Hence Ph ⊆ Qh.
To show the reverse inclusion, consider any ph ∈ Qh. Then there is a function

ṽh ∈ Ṽh := {r : r|K = xpk(x)+qk for some pk ∈ Pk(K) and qk ∈ Pk(K)2} such that

[[ṽh · n]]e = ph|e for all e ∈ E.

Note that div(ṽh|K) is not zero in general. Let Sh be the space of functions whose
average on Ω is zero and whose restriction to each mesh element K ∈ T is in Pk(K).
The function sh(x), defined by

sh|K = div(ṽh|K) for all K ∈ T,

is in Sh because ph is in Qh:

(sh, 1)Ω =
∑
K∈T

(div ṽh, 1)K =
∑
K∈T

(ṽh · n, 1) =
∑
e∈E

(ph, 1)e = 0.

Now, the space Ṽh ∩H0(div,Ω) is a standard Raviart–Thomas space, and by its well-

known properties, div : Ṽh ∩ H0(div,Ω) �→ Sh is a surjection. Hence, there is a

zh ∈ Ṽh ∩H0(div,Ω) such that

div zh = sh.
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Then vh = ṽh − zh is in Vh and [[vh ·n]]e = [[ṽh ·n]]e = ph|e. Hence Qh ⊆ Ph.
In view of Proposition 4.1, the function qh belongs to the space Ph if and only if

it belongs to

P̃h = {p : p|e ∈ Pk(e) for all e ∈ E}

and satisfies ∑
e∈E

(qh, 1)e = 0.(4.1)

Thus we need only construct a local basis for P̃h and then enforce the last equation.
Obviously, we can construct a basis for P̃h by taking the union of local bases for Pk(e),
say Legendre polynomials, on every edge e ∈ E. In practice, the constraint (4.1) can
be handled a posteriori in a very simple way, as shown in section 5.

4.2. The lowest-order tangential velocity space. In the remainder of this
section, we construct a local basis for the space Mh of tangential velocity Lagrange
multipliers. In this subsection, we study the lowest-order case. In the next, we show
how our considerations here generalize to the higher-order case.

In order to explicitly give a local basis for Mh, we introduce some more notation.
Let K be a mesh triangle and let x be one of its vertices. We denote by Λx,K the
union of the two edges of K that are connected to the vertex x. Let

Λ̂h = {Λx,K : x is a vertex of T and K ∈ T}.

For all Λ ∈ Λ̂h, we denote by KΛ the (unique) triangle K ∈ T such that Λ ⊆ ∂K,
and by xΛ we denote the common vertex of Λ and KΛ. Let φΛ denote the function
(that is discontinuous in general) which vanishes on all K ∈ T except on KΛ, where
it equals the linear function that is one on xΛ and zero on the remaining two vertices
of KΛ. We define a basis for Mh using the functions

ψΛ = [[φΛ t]].

Obviously ψΛ ∈ Mh, but not all of ψΛ, Λ ∈ Λ̂h, are linearly independent; e.g., the
functions ψΛ for all Λ connected to one vertex are linked by one equation. Therefore,
for every mesh vertex x (including x ∈ ∂Ω), we arbitrarily pick one element Λ ∈ Λ̂h

with vertex xΛ = x, denote it by �x (see Figure 2), and “omit” it: Define

Λh = Λ̂h \ {�x : for all mesh vertices x}.

Proposition 4.2. The set B = {ψΛ : Λ ∈ Λh} is a basis for Mh when k = 0.
Proof. Obviously the span of B is contained in Mh. Hence it suffices to prove

that

card B = dimMh(4.2)

and

B is a linearly independent set.(4.3)

To prove (4.2), let us first count the dimension of Mh. Defining Th : Wh �→ Mh

by

Thτ = [[τt]],
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Fig. 2. Construction of basis functions supported near a mesh vertex x.

we note that Mh is the range of Th. Since the null space of Th is Wh, by the rank-
nullity theorem, we find that

dim(Mh) = rank(Th) = dim(Wh) − dim(Wh).(4.4)

In the lowest-order case, this easily gives

dim(Mh) = 3nK − nV ,

where nK and nV are the number of triangles and vertices of the mesh, respectively.
Now, since

card B = cardΛh = card Λ̂h − nV = 3nK − nV ,

we immediately see that (4.2) holds.
To prove (4.3), let μ be any linear combination of the basis elements:

μ =
∑
Λ∈Λh

cΛψΛ.(4.5)

Then, consider μ|�x for any mesh vertex x (including x ∈ ∂Ω). Enumerate all
Λ ∈ Λh with vertex x as Λ1

x, Λ
2
x, . . . , Λ

Nx
x and all edges in E connected to x as

E1
x, E

2
x, . . . E

Nx+1
x , as in Figure 2. The enumerations are such that the two edges

of Λj
x are Ej

x and Ej+1
x . Let μi

x be the function defined on Ei
x that equals the magni-

tude of μ|Ei
x
. Observe that the limit of μ1

x(y) as y approaches x along the edge E1
x is

|cΛ1
x
|. Similarly, the limit of μNx

x (y) as y approaches x along the edge ENx+1
x is |cΛNx

x
|.

Also note that the limit of μj
x(y) as y approaches x along the edge Ej

x is |cΛj
x
− cΛj−1

x
|

for all j = 2, 3, . . . , Nx − 1.
Now suppose μ ≡ 0. We have to show that all the coefficients cΛ in (4.5) are

zero. Since μ vanishes everywhere, in particular, for a mesh vertex x, the function
μj
x(y) vanishes on the edge Ej

x. Hence its limit as y approaches x along the edge Ej
x
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equals zero. Thus,

|cΛ1
x
| = |cΛNx

x
| = 0 and

|cΛj
x
− cΛj−1

x
| = 0 for all j = 2, . . . , Nx − 1.

This implies that cΛj
x

= 0 for all j. The above argument applies to every mesh vertex,

so all the coefficients cΛ in (4.5) are zero. Hence (4.3) follows.

4.3. Basis for the space of tangential velocities. By augmenting the basis
B for the lowest-order case constructed above with some locally supported functions,

it is possible to construct a basis for Mh of any order. Define B
(k+1)
e to be any basis

for the set of polynomials on edge e of degree at most k + 1 that vanishes at both
endpoints of e. Let E0 denote the set of all interior edges of the mesh T. Then we
have the following result.

Theorem 4.3. The set

B(k+1) =

( ⋃
e∈E0

B(k+1)
e

)
∪ B

is a basis for Mh.

Proof. It is easy to see that each element of B
(k+1)
e can be written as [[φt]] for

some φ ∈ Wh. Hence the span of B(k+1) is contained in Mh. As in the proof of
Proposition 4.2, it now suffices to prove that

card B(k+1) = dim(Mh)(4.6)

and that B(k+1) is a linearly independent set. Since functions in B
(k+1)
e vanish at

endpoints of their edge of support, by a minor modification of the arguments in the
proof of Proposition 4.2, the linear independence of B(k+1) follows.

To prove (4.6), observe that cardB
(k+1)
e = dim(Pk+1(e)) − 2 = k. Since

card E0 = 3nK − nE ,

where nE denotes the number of all edges of T (including boundary edges), we have

card B(k+1) = cardB +
∑
e∈E0

card B(k+1)
e

= (3nK − nV ) + (3nK − nE)k

= 3nK(k + 1) − nV − knE .(4.7)

Now, let us show that this equals dim(Mh). Since, by (4.4), dim(Mh) = dim(Wh)−
dim(Wh), we need to compute the dimension of the spaces Wh and Wh. The number
of degrees of freedom of Wh can be computed by splitting them into vertex degrees of
freedom (one per vertex), edge degrees of freedom (k per edge), and interior degrees
of freedom (dim(P k−2) per triangle):

dim(Wh) = nK

(
1

2
(k − 1)k

)
+ knE + nV .

Now, since

dim(Wh) = nK
1

2
(k + 2)(k + 3) = nK

(
3(k + 1) +

1

2
(k − 1)k

)
,

the dimension of Mh can immediately be seen to be equal to card B(k+1), as calculated
in (4.7). Hence (4.6) follows.
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5. Some implementation aspects. In this section, we first point out some
general issues in implementing the Lagrange multiplier system. Afterward we special-
ize to a detailed discussion of the lowest-order case. We exhibit explicit expressions
for all the local mappings in the lowest-order case. We also show how traditional finite
element ideas such as matrix assembly through local element stiffness matrices ap-
ply for the Lagrange multiplier system, provided that the local matrices are properly
defined.

5.1. The matrix equations. In order to solve for λh and ph satisfying (3.14)–

(3.15), we use the previously introduced local basis. Let ψ(i), i = 1, 2, . . . , NM , be an
enumeration of the basis for Mh introduced in section 4. Let p(l), l = 1, 2, . . . , NP ,
denote any basis for P̃h with the property that a basis function is supported on just
one edge. With respect to these bases, let A, B, and C denote the matrices associated
to the bilinear forms a(·, ·), b(·, ·), and c(·, ·), respectively:

Aij = (w(ψ(j)), w(ψ(i)))Ω,

Blj = −(curl W(p(l)),u(ψ(j)))Ω,

Clm = (W(p(m)),W(p(l)))Ω.

Then the Lagrange multiplier system (3.14)–(3.15) takes the following matrix form:

[
A Bt

B −C

] [
Λ
P

]
=

[
L1

L2

]
.(5.1)

Here the Λ and P are vectors of coefficients of λh and ph, respectively, i.e.,

λh =

NM∑
i=1

Λi ψ
(i) and ph =

NP∑
l=1

Pl p
(l).

Notice that we have used a basis for the space P̃h and not for the space Ph. In view of
Proposition 4.1, we therefore anticipate the pressure to be given only up to a constant.
This, of course, reflects the fact that the pressure in the Stokes system is also defined
up to a constant.

To clarify how one can deal with this in practical implementations, let us examine
the null space of

M :=

[
A Bt

B −C

]
.

If M
[

Λ
P

]
= 0, then

a(λh,μ) + b(μ, ph) = 0 for all μ ∈ Mh and(5.2)

b(λh, q) − c(ph, q) = 0 for all q ∈ P̃h.(5.3)

Now, an immediate consequence of the definition of the liftings is that for any constant
function κ ∈ P̃h

W(κ) = 0 and u(κ) = 0.(5.4)

Any q ∈ P̃h can be decomposed as q = q̊+ q̄, where q̊ ∈ Ph and q̄ is a constant function
(q̄ equals the global mean of q). Decomposing both ph and q this way in (5.2)–(5.3),
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we find that

a(λh,μ) + b(μ, p̊h) = 0 for all μ ∈ Mh and

b(λh, q̊) − c(p̊h, q̊) = 0 for all q̊ ∈ Ph.

By the unique solvability of (3.14)–(3.15) asserted by Theorem 3.1, we conclude that
both λh and p̊h vanish. Thus, M

[
Λ
P

]
= 0 if and only if λh = 0 and ph equals a

constant function. The null space of M is therefore equal to the span of
[

0
1P

]
, where

1P denotes the vector of coefficients of κ ≡ 1 ∈ P̃h. Note that if b denotes the vector[
L1

L2

]
on the right-hand side of (5.1), then by (5.4),

b ·
[

0
1P

]
= �1(0) + �2(κ) = 0.

Thus (5.1) has a solution, and if
[

Λ
P

]
is a solution, then all solutions are of the form[

Λ
P

]
+ α

[
0
1P

]
for some α ∈ R.

To compute one solution to (5.1), one can now apply variations of standard tech-
niques. For example, if one uses a Krylov space iteration such as MINRES for solv-
ing (5.1), then the nth iterate xn is in x0 + span{r0,Mr0,M

2r0, . . . ,M
n−1r0}, where

r0 = b − Mx0 and x0 is the initial iterate. Since
[

0
1P

]
· (Mjr0) = 0 for all j ≥ 0, if the

initial iterate x0 satisfies x0 ·
[

0
1P

]
= 0, then all further iterates xn satisfy xn ·

[
0
1P

]
= 0.

Hence by adjusting the final pressure iterate by a scalar multiple of 1P, we can obtain
the pressure Lagrange multiplier of zero mean. If one uses a direct solver instead, one
can convert (5.1) to an invertible system by simply deleting the row and column of
M corresponding to one fixed pressure degree of freedom.

5.2. The Schur complement matrix for the tangential velocity. Many
standard stable choices of mixed finite elements for Stokes equations result in a
velocity-pressure discretization of the form (5.1). There is often a preference for solv-
ing the discrete system using a positive definite Schur complement system obtained by
eliminating the velocity variable (the Schur complement matrix being C + BA−1Bt),
because iterative solvers for positive definite systems are well developed. However,
this is not feasible for our method, because in contrast to the standard methods, our
matrix A in (5.1) is not invertible in general.

But we can obtain an alternate Schur complement system for our discretization
by utilizing a feature of our method that is usually not found in standard methods
for Stokes equations, namely, the invertibility of the other diagonal block (C) on a
subspace. More precisely, we have the following result.

Proposition 5.1. For any qh ∈ P̃h, c(qh, qh) = 0 if and only if qh is constant.
Proof. It is obvious from (5.4) that if qh is constant, then c(qh, qh) = 0. To prove

the converse, we observe that c(qh, qh) = 0 implies W(qh) = 0, so from (3.4) it follows
that ∑

e∈E

(qh, [[v · n]])e =
∑
e∈E

(qh − q̄h, [[v · n]])e = 0 for all v ∈ Vh,(5.5)

where

q̄h =

∑
e∈E

∫
e
qh ds∑

e∈E

∫
e

ds

is the global mean of qh. By Proposition 4.1, there is a v ∈ Vh such that qh − q̄h =
[[v · n]]. Hence (5.5) implies that qh − q̄h ≡ 0.
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The above proposition readily implies that the matrix C restricted to the orthog-
onal complement 1⊥P := {Q : Q · 1P = 0} is invertible. Therefore, rewriting (5.1)
as

[
C −B

−Bt −A

] [
P
Λ

]
= −

[
L2

L1

]
(5.6)

and eliminating P, we get an alternate Schur complement system:

(BtC−1B + A)Λ = L1 + BtC−1L2.(5.7)

Note that the two applications of C−1 above make sense because Range(B) ⊆ 1⊥P
(since 1P · BΛ = b(λh, κ) = 0) and L2 ∈ 1⊥P (since 1P · L2 = �2(κ) = 0). The
Schur complement matrix in (5.7) is invertible because (5.6) uniquely determines Λ.
Thus (5.7) is a symmetric and positive definite system, well suited to solution by
minimization algorithms such as conjugate gradients.

5.3. The local mappings for lowest-order case. We now give explicit ex-
pressions for the local maps which define the Lagrange multiplier bilinear forms in
the lowest-order case, i.e., k = 0. A simple computation gives that, on any triangle
T , we have

w(λ) =
1

|T |

∫
∂T\∂Ω

λ · t ds, u(λ) =
1

|T |

∫
∂T\∂Ω

λ · t (x − xT )⊥ ds,

w(gt) =
1

|T |

∫
∂T∩∂Ω

gt ds, u(gt) =
1

|T |

∫
∂T∩∂Ω

gt (x − xT )⊥ ds,

W(p) = W
T
p × (x − xT ), u(p) = − 1

|T |

∫
T

(x − xT )⊥ W(p) dx,

w(f) = wT
f × (x − xT ), u(f) = − 1

|T |

∫
T

(x − xT )⊥ w(f) dx,

where the point xT denotes the barycenter of the triangle T ,

W
T
p = − 1

|T |

∫
∂T

pn ds, wT
f =

1

|T |

∫
T

f dx.

We have used standard notation for vector operations above, e.g., for vectors a =
(a1, a2) and b = (b1, b2),

a × b = a1 b2 − a2 b1, a⊥ = (−a2, a1).

It is easy to simplify the above expressions to obtain the local mappings of our
Lagrange multiplier basis functions. We first give the liftings of ψΛ for a basis function
ψΛ associated with a Λ ∈ Λh. Let K be the triangle formed by vertices x1,x2, and
x3. Let ei denote the edge of K opposite to vertex xi, and let ni denote the outward
unit normal of K on edge ei. These notations, when superscripted by L, R, −, or +,
denote the corresponding geometrical parameters of adjacent triangles KL, KR, K−

e ,
or K ≡ K+

e , respectively, as illustrated in Figure 3.

Consider the basis function associated to Λ ∈ Λh with vertex x3 and Λ ⊆ ∂K as
marked in Figure 3. The liftings wΛ := w(ψΛ) and uΛ := u(ψΛ) are supported on
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e
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n+
e ≡ n3
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n−
2

n−
1

e−2 e−1

Fig. 3. Illustration of triangles where liftings associated to a wedge Λ and an edge e are nonzero.

K ∪KR ∪KL and are given by

wΛ =
|e1| + |e2|

2|K| , uΛ =
|e1|
6|K| (x3 − x1)

⊥ +
|e2|
6|K| (x3 − x2)

⊥ on K,

wΛ = − |e2|
2|KL| , uΛ = − |e2|

6|KL| (x3 − xL
2 )⊥ on KL,

wΛ = − |e1|
2|KR| , uΛ = − |e1|

6|KR| (x3 − xR
1 )⊥ on KR.

Here, |e| denotes the length of the edge e and |K| denotes the area of the triangle K.
The points xR

1 and xL
2 are shown in Figure 3.

Next, let us display the liftings associated with the pressure. To treat this case,
consider an edge e shared by K ≡ K+

e and another triangle K−
e . Let pe denote the

indicator function of edge e. The liftings We := W(pe) and ue := u(pe) are supported
on K+

e ∪ K−
e . Using the notation of Figure 3 wherein e ≡ e3, we can express the
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Fig. 4. Geometry in local element matrix calculations.

liftings on K±
e by

We(x) = W
±
e × (x − xK±

e
), ue(x) =

1

36

3∑
�=1

(W
±
e · E±

� )E±
� ,

where, in accordance with our previous notation, xK±
e

denotes the barycenter of K±
e ,

W
±
e = − 1

|K±
e |

n±
e |e|,

and E±
� = n±

� |e
±
� |. Here n±

e is as illustrated in Figures 1 and 3.
Finally, we give formulae for the local mappings associated with the body force

on the triangle K. If f is supported only on K, then w(f) and u(f) are supported
only on K. Their values on K are given by

w(f) = w × (x − xK), u(f) =
1

36

3∑
�=1

(w · E�)E�,

where, as before, E� = |e�|n� and

w =
1

|K|

∫
K

f dx.

5.4. The local element matrices for the lowest-order case. It is possible
to “assemble” the global stiffness matrix of the Lagrange multiplier equations (3.14)–
(3.15) just as one does for traditional finite element methods, provided that appro-
priate local element stiffness matrices are defined for our method. We illustrate this
in the lowest-order case.

First, we enumerate the degrees of freedom local to an element as in Figure 4. In
this enumeration, we include the omitted elements of Λ̂h. The omissions can be taken
care of during assembly simply by not assembling the rows and columns corresponding
to the omitted elements of Λ̂h (just as one would handle zero Dirichlet boundary
conditions when solving the Dirichlet problem with standard finite elements). Figure 4
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shows nine elements of Λ̂h connected to K, which we have enumerated as Λ1, Λ2,
Λ3, Λ12, Λ21, Λ13, Λ31, Λ23, and Λ32, or in short, ΛI for all I in the index set
I := {1, 2, 3, 12, 21, 13, 31, 23, 32}. The local matrices are made using nine functions
in Mh whose local mappings are nonzero on K, namely ψΛI

for all I ∈ I. The local
stiffness matrix of an element K has the form[

A(K) (B(K))t

B(K) −C(K)

]
,

where

A
(K)
IJ =

∫
K

w(ψΛI
)w(ψΛJ

) dx, I, J ∈ I,

B
(K)
LJ = −

∫
K

curl W(pL) · u(ψΛJ
) dx, J ∈ I, L ∈ {1, 2, 3},

C
(K)
LM =

∫
K

W(pL) W(pM ) dx, L,M ∈ {1, 2, 3}.

Here pL denotes the characteristic function of the edge eL in Figure 4. We can
calculate the integrals above after substituting the previously given expressions for
the liftings of the basis functions in the integrands.

In order to give explicit expressions for A(K),B(K), and C(K), suppose that {i, j, k}
is any permutation of {1, 2, 3}. Let σj equal zero if the edge ej is contained in the
boundary ∂Ω, and let σj equal one otherwise. Define

WI =

{
σi|ei| + σj |ej |
−|ek|

if I = k,
if I = ij,

U I =

{
σi|ei|(xk − xi)

⊥ + σj |ej |(xk − xj)
⊥

−|ek|(xi − xk)
⊥

if I = k,
if I = ij.

Then,

A
(K)
IJ =

1

4|K|WIWJ ,

B
(K)
LJ =

1

6|K|EL · UJ ,

C
(K)
LM =

1

36|K|

3∑
�=1

(EL · E�)(EM · E�),

where, as before, EL = nL|eL| for all L ∈ {1, 2, 3}. With these local matrices, one
can assemble all the global matrices of our method as simply as those of any other
finite element method.

6. Conclusion. We have developed new hybridization techniques which, when
applied to a well-known conforming mixed method for the Stokes problem, result in a
new “tangential velocity-pressure” discretization. The advantages of the new method
include fewer globally coupled degrees of freedom and numerical velocity approxima-
tions that satisfy the incompressibility condition exactly. Our results are achieved
by using the methodology introduced in [8] to study hybridized mixed methods for
second-order elliptic problems.

In a forthcoming sequel [9], we will discuss the extension of the ideas here to
the Stokes problem in three space dimensions, variable degree incompressible finite
elements, and other boundary conditions.
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[6] C. Brătianu and S. N. Atluri, A hybrid finite element method for Stokes flow. I. Formulation
and numerical studies, Comput. Methods Appl. Mech. Engrg., 36 (1983), pp. 23–37.
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INCOMPRESSIBLE FINITE ELEMENTS VIA HYBRIDIZATION.
PART II: THE STOKES SYSTEM IN THREE SPACE DIMENSIONS∗

BERNARDO COCKBURN† AND JAYADEEP GOPALAKRISHNAN‡

Abstract. We introduce a method that gives exactly incompressible velocity approximations
to Stokes flow in three space dimensions. The method is designed by extending the ideas in Part I
[B. Cockburn and J. Gopalakrishnan, SIAM J. Numer. Anal., 43 (2005), pp. 1627–1650] of this
series, where the Stokes system in two space dimensions was considered. Thus we hybridize a
vorticity-velocity formulation to obtain a new mixed method coupling approximations of tangential
velocity and pressure on mesh faces. Once this relatively small tangential velocity-pressure system is
solved, it is possible to recover a globally divergence-free numerical approximation of the fluid velocity,
an approximation of the vorticity whose tangential component is continuous across interelement
boundaries, and a discontinuous numerical approximation of the pressure. The main difference
between our method here and that of the two-dimensional case treated in Part I is in the use of Nédélec
elements, which necessitates development of new hybridization techniques. We also generalize the
method to allow for varying polynomial degrees on different mesh elements and to incorporate certain
nonstandard but physically relevant boundary conditions.

Key words. divergence-free finite element, mixed method, hybridized method, Nédélec element,
fluid flow, Stokes flow, velocity, vorticity, pressure, Lagrange multipliers
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1. Introduction. This is a sequel to our paper [7] in which we introduced a
new hybridized method for the Stokes equations in two space dimensions. Here we
generalize the ideas presented in [7] to the Stokes system in three space dimensions.
We also extend the method to allow variable degrees of approximation on different
mesh elements. As in [7], the three-dimensional version of our method simultaneously
yields an exactly divergence-free numerical approximation of the fluid velocity and
a continuous numerical approximation of the vorticity. A discontinuous numerical
approximation of the pressure can also be recovered separately. These three approx-
imations are obtained in an element-by-element fashion after one global system for
certain Lagrange multipliers arising from the hybridization is solved. This global
system represents a new “tangential velocity-pressure” discretization of the Stokes
system on the mesh faces because the Lagrange multipliers are approximations to the
pressure and tangential fluid velocity on element interfaces.

We are hybridizing a mixed formulation that has previously appeared in the lit-
erature [9, 14] (cf. [1, 3]). However, the previous works resort to introduction of a
stream function variable to obtain exactly divergence-free numerical velocities. This
approach is beset with significant difficulties in three dimensions: (i) While the stream
function is a scalar function in two dimensions, in three dimensions it is a vector func-
tion, so its introduction into the method, as in [14], leads to a significant increase in
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number of degrees of freedom. (ii) The stream function is not uniquely defined. While
in two dimensions it is defined up to a constant, in three dimensions one has to impose
a nontrivial “gauge condition.” (iii) The definition of the stream function must take
into account the topology of the three-dimensional domain. For domains that are
not simply connected, one must find “cuts” and base the definition of finite element
spaces for the stream function on them (see [1]). Finding such cuts in automatic
computation is not easy. (iv) Formulations involving the stream function alone lead
to fourth-order problems (see, e.g., [1, 9]) and hence to badly conditioned matrices.
Notwithstanding these difficulties, the use of the stream function has hitherto been
the only successful approach in obtaining exactly incompressible approximations of
all orders in three dimensions. The search for exactly incompressible numerical ap-
proximations to Stokes flow has a rich history. References to some previous attempts
can be found in [4, 7, 11].

All the above-mentioned difficulties disappear in our approach via hybridization.
Because we do not introduce the stream function, our method requires nothing special
to be done when the computational domain has nontrivial topology. For the same
reason we never encounter a fourth-order operator—our matrices represent discretiza-
tions of operators of second order only. Moreover, while the introduction of the stream
function results in an increase in degrees of freedom in some of the previous works,
our approach using hybridization actually results in a decrease in degrees of freedom,
as we shall see in section 3.

As we move from two to three space dimensions, the main difference we en-
counter is in the treatment of vorticity. When considering finite element approxima-
tions to vorticity, we now have to use the H(curl ,Ω)-conforming Nédélec elements
[13], while in two dimensions we used the simpler H1(Ω)-conforming finite elements.
However, the velocity approximation is treated in exactly the same way as in the
two-dimensional case—it continues to be in an H(div,Ω)-conforming subspace of ex-
actly divergence-free functions. Another important similarity between the two- and
three-dimensional cases is in the structure of the method and equations, so we are
able to easily adapt the elimination procedure which we developed in [7] to three
dimensions. The result is a Lagrange multiplier system that is completely analogous
to the two-dimensional case.

The introduction of Nédélec spaces necessitates development of new hybridization
techniques in three dimensions. Indeed, the Nédélec space has edge degrees of freedom,
and none of the existing hybridization techniques handle them. To elaborate, consider
the following sequence of spaces:

H1(Ω)/R
grad−−−−→ H(curl ,Ω)

curl−−−−→ H(div,Ω)
div−−−−→ L2(Ω).

As we traverse the sequence from right to left, the continuity conditions on the spaces
become more complex. Finite element subspaces of H(div,Ω) consist of functions
whose normal component is continuous across element interfaces. Hybridization tech-
niques to relax such continuity are well known, and they are the basis for the hy-
bridized Raviart–Thomas and Brezzi–Douglas–Marini (BDM)-type methods [2, 5].
Such hybridizations relaxed continuity of finite element subspaces across interior mesh
faces using traces from (just) two elements sharing an interior mesh face. However,
once we move on to finite element subspaces of H(curl ,Ω), the continuity constraints
are more complicated, as reflected by the fact that these spaces have edge degrees of
freedom which are connected to multiple elements. Moving further left to H1(Ω), we
find finite element subspaces having vertex degrees of freedom, adding another layer
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of complexity. Since all previously known hybridization techniques relaxed continuity
across mesh faces, we find a widespread belief that methods using edge and vertex de-
grees of freedom are not amenable to hybridization. In this paper, we dispel this belief
by hybridizing a method that uses Nédélec spaces having edge degrees of freedom. It
is also possible to hybridize methods that use H1(Ω)-subspaces, as we demonstrated
in [7].

We make two other extensions in this paper. The first extends to the Stokes
system what was done for second-order elliptic equations in [6]. Thus, we exploit the
ease of construction of variable degree methods via hybridization to give a variable
degree version of the original mixed method. Our hybridized variable degree method
does not require one to implement transition elements. This is quite convenient con-
sidering that transitional Nédélec elements are not trivial to implement. Second, we
show how one can incorporate boundary conditions involving the pressure and tan-
gential vorticity into our method. Although such boundary conditions are physically
relevant, few methods are known that can incorporate them naturally.

We have kept the organization of this paper very similar to that of Part I [7] to
render the analogies and differences with the two-dimensional case transparent. We
introduce the variable degree method in section 2. In section 3, we briefly present the
elimination strategy to obtain a reduced Lagrange multiplier system. A computable
basis for the space of Lagrange multipliers of variable degree is given in section 4, and
full details of the lowest-order case are given in section 5. Finally, in section 6, we
show how to incorporate other boundary conditions.

2. The variable degree hybridized mixed method. The three-dimensional
Stokes problem is to find a fluid velocity field u and pressure p satisfying

−Δu + grad p = f on Ω,(2.1)

div u = 0 on Ω,(2.2)

u = g on ∂Ω.(2.3)

Here we assume that Ω is a bounded connected domain with polyhedral boundary
∂Ω such that Ω lies on only one side of ∂Ω locally, the data f is in L2(Ω)3, and
g ∈ H1/2(∂Ω)3. We do not assume that Ω is simply connected. We also do not
assume that ∂Ω is connected. We require the data g to satisfy the compatibility
condition

(gn, 1)∂Ω = 0,

where gn = g ·n and n is the outward unit normal on ∂Ω. Under this assumption, it
is well known that the Stokes problem has a unique solution.

Let us reformulate the Stokes problem by introducing vorticity ω = curlu. Using
the identity

−Δu = curl curlu − graddiv u,

the Stokes system (2.1)–(2.3) can be rewritten as

ω − curlu = 0 on Ω,(2.4)

curlω + grad p = f on Ω,(2.5)

div u = 0 on Ω,(2.6)

uᵀ = gᵀ on ∂Ω,(2.7)

u · n = g · n on ∂Ω,(2.8)
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where we have split (2.3) into two equations, one in the direction of the outward unit
normal n on ∂Ω, and the other in the tangent plane; i.e., gᵀ := g − (g · n)n denotes
the tangential component of g.

There is a well-known weak problem based on this reformulation. Define W =
H(curl ,Ω) and

V(b) = {v ∈ H(div,Ω) : div v = 0 and v · n|∂Ω = b}

for any b ∈ H−1/2(∂Ω). Then (ω,u) is the only element of W × V(gn) satisfying

(ω, τ )Ω − (u, curl τ )Ω = (gᵀ, τ )∂Ω for all τ ∈ W,(2.9)

(v, curlω)Ω = (f ,v)Ω for all v ∈ V(0).(2.10)

Here (·, ·)Ω denotes the L2(Ω) (or L2(Ω)3) innerproduct. Note that the pressure has
disappeared in this mixed formulation.

One way to develop a hybridized mixed method that discretizes (2.9)–(2.10) is to
first approximate the weak formulation by a conforming mixed method and then relax
the continuity constraints of the discrete spaces. Here, we motivate the construction
of our variable degree hybridized mixed method (2.9)–(2.10) by another equivalent
approach using the differential problem (2.4)–(2.8). Suppose the domain Ω is meshed
by a tetrahedral mesh T (satisfying the usual finite element assumptions). To each
tetrahedron K we associate a degree k(K) and the following pair of spaces:

W (K) = Pk(K)(K)3 ⊕ Sk(K)+1(K),

V (K) = {v ∈ Pk(K)(K)3 : div v = 0},

where P�(K)3 denotes the set of vector functions whose (three) components are poly-
nomials of degree at most � and S�(K) is the set of all vector functions p�(x) whose
components are homogeneous polynomials of degree � satisfying p�(x) ·x = 0. Define
the variable degree Nédélec space with no continuity conditions by

Wh = {w : w|K ∈ W (K) for all K ∈ T}.

While the vorticity is approximated in Wh, the velocity is approximated in

Vh = {v : v|K ∈ V (K) for all K ∈ T}.

The numerical method is motivated by requiring that (2.4) and (2.5) be satisfied
weakly on each element K: Multiplying (2.4) and (2.5) by test functions τ ∈ W (K)
and v ∈ V (K) and integrating by parts,

(ω, τ )K−(u, curl τ )K − (uᵀ,n × τ )∂K = 0,

(v, curlω)K + (v · n, p)∂K = (f ,v)K ,

where uᵀ denotes the tangential component of u on ∂K. Therefore we require that
the discrete approximations to vorticity and velocity, namely, ωh and uh, respectively,
satisfy

(ωh, τ )K − (uh, curl τ )K − (λh,n × τ )∂K = 0,

(v, curlωh)K + (v · n, ph)∂K = (f ,v)K ,
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where we have introduced two additional approximations λh ≈ uᵀ and ph ≈ p,
which we shall call Lagrange multiplier approximations of the tangential velocity and
pressure, respectively.

The description of the method is completed by adding appropriate continuity con-
ditions for ωh and uh at the element interfaces. Since ωh and uh are to approximate
ω and u in (2.9)–(2.10), the functional setting of (2.9)–(2.10) clarifies the continuity
constraints to be put on ωh and uh. To make this precise, let us introduce some more
notation: Let F denote the set of all faces of the triangulation T. On every interior
face in F ∈ F shared by two tetrahedra K+

F and K−
F we define

[[v · n]]F = v+
F · n+

F + v−
F · n−

F ,

[[n × v]]F = n+
F × v+

F + n−
F × v−

F ,

where n+
F and n−

F denote the outward unit normals on the boundaries of K+
F and

K−
F , respectively, and v±

F (x) = limε↓0 v(x − εn±
F ). On faces e ⊂ ∂Ω we set

[[v · n]]F = v|∂Ω · n and [[n × v]]F = 0.

By [[v · n]] (without subscripts) we mean the function that is defined on the union of
all the faces and equals [[v ·n]]F on each face e ∈ F. The function [[n×v]] is similarly
defined. Then here are our spaces of Lagrange multipliers:

Ph = {p : p = [[v · n]] for some v ∈ Vh},(2.11)

Mh = {μ : μ = [[n × v]] for some v ∈ Wh}.(2.12)

They are ideal for imposing the natural continuity conditions of the Sobolev spaces
W and V on the discrete approximations ωh and vh; e.g.,

∑
F∈F

(μ, [[n × ωh]])F = 0 for all μ ∈ Mh

implies that ωh ∈ H(curl ).
Thus we have motivated the following definition of our variable degree hybridized

mixed method: Find (ωh,uh,λh, ph) ∈ Wh × Vh ×Mh × Ph satisfying

(ωh, τh)Ω − (uh, curl τh)Ω −
∑
F∈F

(λh, [[n × τh]])F = (gᵀ,n × τh)∂Ω,(2.13)

(vh, curlωh)Ω +
∑
F∈F

(ph, [[vh · n]])F = (f ,vh)Ω,(2.14)

∑
F∈F

(qh, [[uh · n]])F = (gn, qh)∂Ω,(2.15)

∑
F∈F

(μh, [[n × ωh]])F = 0(2.16)

for all τh ∈ Wh, vh ∈ Vh, qh ∈ Ph, and μh ∈ Mh.
Proposition 2.1. There is a unique solution for the system (2.13)–(2.16).
Proof. Since the system is square, we need only verify that when f and g are

zero, all solution components vanish. Zero data implies that ωh and uh lie in the
following two spaces, respectively:

Wh = Wh ∩W, Vh(0) = Vh ∩V(0).
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Therefore we find from (2.13) and (2.14) that

(ωh, τh)Ω − (uh, curl τh)Ω = 0 for all τh ∈ Wh,(2.17)

(vh, curlωh)Ω = 0 for all vh ∈ Vh(0).(2.18)

Note that for the mixed method (2.17)–(2.18) to make sense, the spaces therein must
be nonempty, as we have tacitly assumed. Setting vh = uh in (2.18) and adding
these equations, one immediately finds that (ωh, τh)Ω = 0 for all τh ∈ Wh, and thus
ωh = 0. Now that ωh vanishes from (2.17), we have

(uh, curl τh)Ω = 0 for all τh ∈ Wh.(2.19)

By a well-known property of the Nédélec space, we have that on each element curl
W (K) = V (K). Moreover, [[n · curlw]]F = 0 whenever [[n × w]]F = 0 for every
interior mesh face F . Hence, it is easy to see that for the variable degree spaces Wh

and Vh(0) we have (cf. [9, Lemma III.5.1])

Vh(0) ⊂ curl Wh.

Therefore, in (2.19) we can choose τh such that curl τh = uh, and thus uh vanishes.
Finally, since ωh and uh vanish from (2.13) and (2.14), we find that the Lagrange
multipliers λh and ph must vanish as well.

In the uniform degree case, our hybridized mixed method is equivalent to the
mixed method considered in [14] in the following sense: Our ωh and uh coincide with
vorticity and velocity approximations discussed there. Therefore, the error estimates
proven there apply to our solution components ωh and uh. It may appear at this point
that our method has too many unknowns. But as we shall see in the next section, it
is possible to eliminate all but the Lagrange multiplier variables from (2.13)–(2.16),
thus making our formulation more attractive.

Before proceeding to the above-mentioned elimination, let us note one advantage
that results from hybridization: Since hybridization provides an approximation to the
pressure on the mesh faces through the Lagrange multiplier ph, we can compute an
approximation to the pressure inside mesh elements in a completely local (element-
by-element) fashion. Borrowing an idea from [4], we define the pressure πh on the
triangle K as the element of Pk(K)(K) such that

−(πh,div v)K = (f ,v)K − (curlωh,v)K − (v · n, ph)∂K(2.20)

for all v in Pk(K)(K)3 + xPk(K)(K), where n denotes the outward unit normal to
K. That (2.20) uniquely defines πh follows from two facts: (i) div : Pk(K)(K)3 +
xPk(K)(K) �→ Pk(K)(K) is a surjection, and (ii) if div v = 0 for a v in Pk(K)(K)3 +
xPk(K)(K), then v ∈ Pk(K)(K)3 and the right-hand side of (2.20) is zero by the
definition of the hybridized method. Thus our method can simultaneously provide
approximations to the velocity, vorticity, and pressure.

3. A characterization of the Lagrange multipliers.

3.1. The Lagrange multiplier equation. We now show how one can eliminate
the vorticity as well as the velocity variables from our hybridized mixed method (2.13)–
(2.16) and arrive at a system of equations involving the Lagrange multipliers alone.
Our arguments here are a straightforward generalization of the arguments in [7].
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We define lifting maps that map functions defined on element interfaces into
functions on Ω: Define (w(λ),u(λ)) ∈ Wh×Vh and (W(p),u(p)) ∈ Wh×Vh element-
by-element as follows:

(w(λ), τ )K − (u(λ), curl τ )K = (λ,n × τ )∂K for all τ ∈ W (K),(3.1)

(v, curl w(λ))K = 0 for all v ∈ V (K),(3.2)

(W(p), τ )K − (u(p), curl τ )K = 0 for all τ ∈ W (K),(3.3)

(v, curl W(p))K = −(p,v · n)∂K for all v ∈ V (K).(3.4)

In addition, define (w(f),u(f)) and (w(gᵀ),u(gᵀ)) in Wh × Vh by

(w(f), τ )K − (u(f), curl τ )K = 0 for all τ ∈ W (K),(3.5)

(v, curl w(f))K = (f ,v)K for all v ∈ V (K),(3.6)

(w(gᵀ), τ )K − (u(gᵀ), curl τ )K = (gᵀ,n × τ )∂K∩∂Ω for all τ ∈ W (K),(3.7)

(v, curl w(gᵀ))K = 0 for all v ∈ V (K).(3.8)

Note that all of the above local problems are uniquely solvable. Hence, these local
maps are well defined.

The main result of this section characterizes the Lagrange multipliers as the
unique solution of a variational equation involving the bilinear forms

a(λ,μ) = (w(λ),w(μ))Ω,

c(p, q) = (W(p),W(q))Ω,

b(μ, p) = −
∑
K∈T

(u(μ), curl W(p))K

and the functionals

�1(μ) = (f ,u(μ))Ω − (gᵀ,w(μ))∂Ω,(3.9)

�2(q) = (f ,u(q))Ω + (gn, q)∂Ω − (gᵀ,W(q))∂Ω.(3.10)

Theorem 3.1. The Lagrange multiplier (λh, ph) ∈ Mh × Ph of the hybridized
mixed method (2.13)–(2.16) is the unique solution of

a(λh,μ) + b(μ, ph) = �1(μ) for all μ ∈ Mh and(3.11)

b(λh, q) − c(ph, q) = �2(q) for all q ∈ Ph.(3.12)

Moreover, the solution components ωh and uh of the hybridized mixed method (2.13)–
(2.16) can be determined locally as follows:

ωh = w(λh) + W(ph) + w(gt) + w(f),(3.13)

uh = u(λh) + u(ph) + u(gt) + u(f).(3.14)

The proof of this theorem proceeds exactly along the lines of the proof of the
analogous theorem in [7].
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4. Local bases for Lagrange multipliers. It is clear from section 3 that
one should, in practice, implement our hybridized mixed method not in its direct
form (2.13)–(2.16), but rather in the reduced form (3.11)–(3.12). This requires a
computable basis for the Lagrange multiplier spaces Mh and Ph. Local bases for Wh

and Vh are obvious as they do not have continuity constraints across mesh faces. But
bases for the Lagrange multiplier spaces are not immediate from their definition, so
we develop local bases for Ph and Mh in this section. Note that the construction
of the basis for the space of tangential velocities in three space dimensions differs
significantly from that of the two-dimensional case.

4.1. The space of interface pressures. We begin with a characterization of
the space of pressure Lagrange multipliers arising from the first hybridization. To
state it, define

k(F ) = max{k(K) : K ∈ T and K has F as a face}(4.1)

for every F ∈ F, and set P (F ) equal to the space of polynomials of degree at most
k(F ) on the face F .

Proposition 4.1. The space Ph defined in (2.11) is characterized by

Ph =

{
p : p|F ∈ P (F ) for all F ∈ F and

∑
F∈F

(p, 1)F = 0

}
.

Note that the use of variable degree spaces requires the pressure Lagrange multi-
plier to have the maximum of the degrees from adjacent elements.

The proof of this proposition is quite similar to that of the two-dimensional case
considered in [7]. The two main steps of the proof are as follows. In the first, one
constructs a local extension ṽh of any given p ∈ Ph into the Raviart–Thomas space

Rh = {r : r|K = xp(x) + q for some p ∈ Pk(K)(K) and q ∈ Pk(K)(K)3}

such that [[ṽh ·n]] = p. In the second, one uses a global correction zh ∈ Rh∩H0(div,Ω)
such that vh = ṽh − zh is in Vh and satisfies [[vh · n]] = p. This is possible by the
surjectivity of the divergence map

div : Rh ∩H0(div,Ω) �→ Sh,

where Sh = {v : v|K ∈ Pk(K)(K) and average of v on Ω is zero}. While this sur-
jectivity is a well-known property for uniform degree spaces, for the variable degree
Raviart–Thomas space, it follows from our results in [6]. The remaining details of
the proof of Proposition 4.1 are identical to its two-dimensional analogue in [7], so we
omit them.

By Proposition 4.1, the Lagrange multiplier space Ph can be identified with P̃h/R,
where

P̃h = {p : p|F ∈ Pk(F ) for all F ∈ F}.

Obviously, we can construct a basis for P̃h by taking the union of local bases for
Pk(F ), say Legendre polynomials, on every edge F ∈ F. It is enough to construct
such a basis in computations.
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F 1
�

F 2
�

F 3
�

F 4
�

F 5
�

�

Fig. 1. Construction of basis functions supported near a mesh edge �.

4.2. The lowest-order tangential velocity space. Now, we begin the con-
struction of a local basis for the space Mh of tangential velocity Lagrange multipliers.
In this subsection, we study the lowest-order case, which is easier to describe. In the
next subsection, we consider the general case.

In order to explicitly give a local basis for Mh, we introduce some more notation.
Let K be a tetrahedron in T and let � be one of its edges. We denote by Λ�,K the
union of the two faces of K that share the edge �. Define the collection of such wedges
by

Λ̂h = {Λ�,K : � is an edge of T and K ∈ T}.

For all Λ ∈ Λ̂h, we denote by KΛ the (unique) tetrahedron K ∈ T such that Λ ⊆ ∂K.
The edge of a wedge Λ is the common edge of the two faces that form Λ. This edge
is denoted by �Λ. Let βi and βj be the barycentric coordinate functions (with respect
to the tetrahedron KΛ) associated with the two endpoints of �Λ. Set

φΛ =

{
βi ∇βj − βj ∇βi on KΛ,

0 on all other K ∈ T.

We define a basis for Mh using the functions

ψΛ = [[n × φΛ]].

Since φΛ ∈ Wh, the functions ψΛ are in Mh by definition. But not all of ψΛ, Λ ∈ Λ̂h

are linearly independent; e.g., the functions ψΛ for all Λ connected to one edge are
linked by one equation. Therefore, for every mesh edge � (including edges � ⊂ ∂Ω),
we arbitrarily pick one wedge Λ ∈ Λ̂h with edge �Λ = �, denote it by �� (see Figure 1),
and “omit” it: Define

Λh = Λ̂h \ {�� : for all mesh edges �}.

Proposition 4.2. The set B0 = {ψΛ : Λ ∈ Λh} is a basis for Mh whenever
k(K) = 0 for all K ∈ T.
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Proof. Since the span of B0 is contained in Mh, it suffices to prove that

card B0 = dimMh(4.2)

and

B0 is a linearly independent set.(4.3)

To prove (4.2), let us first count the dimension of Mh. Defining Th : Wh �→ Mh

by

Thτ = [[n × τ ]],

we note that Mh is the range of Th. Since the null space of Th is Wh, by the rank-
nullity theorem, we find that

dim(Mh) = rank(Th) = dim(Wh) − dim(Wh).(4.4)

Now, W (K) in the lowest-order case is a space of dimension six. Since the number
of degrees of freedom of the conforming lowest-order Nédélec space Wh equals the
number of edges nE in the mesh, we find that

dim(Mh) = 6nK − nE ,

where nK is the number of tetrahedra in the mesh T. Thus

card B0 = cardΛh = card Λ̂h − nE = 6nK − nE ,

which coincides with dimMh.
Now, let us prove (4.3). We want to show that if

μ =
∑
Λ∈Λh

cΛψΛ(4.5)

vanishes, then all the coefficients cΛ are zero. Notice that the function μ, in general, is
not well defined at the edge �, as the limits of μ from various faces sharing the edge �
can differ. In order to examine these limits, we introduce the following notation.
Enumerate all Λ ∈ Λh with edge � as Λ1

� , Λ
2
� , . . . , Λ

N�

� and all faces in F sharing the

edge � as F 1
� , F

2
� , . . . , F

N�+1
� (see Figure 1) in such a way that the two faces of Λj

� are

F j
� and F j+1

� , and the two faces of �� are F 1
� and FN�+1

� . Let tF be the unit tangent
vector along ∂F fixed by arbitrarily choosing one of the two possible orientations. Let
nF be a unit vector normal to F chosen by the right-hand rule and

νF = tF × nF .(4.6)

Note that both the choices of orientation for tF yield the same νF , which represents
the outward unit normal of F relative to the plane containing F .

Our proof proceeds by examining the following functions on the edge �:

μi
� :=

(
μ|F i

�

)
· νF i

�

∣∣
�
=

∑
Λ∈Λh

cΛ

(
ψΛ|F i

�
· νF i

�

)∣∣∣∣
�

.
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Now, there are at most five Λ ∈ Λh such that ψΛ is nonzero on the face F 1
� . Moreover,

only one of them has nonzero normal trace ψΛ · νF i
�

on �, namely, ψΛ1
�
. Hence

μ1
� = cΛ1

�

(
ψΛ1

�
|F i

�
· νF 1

�

)∣∣∣∣
�

.

It then follows that

|μ1
� | =

∣∣νF 1
�
· (cΛ1

�
ψΛ1

�
)
∣∣
�

∣∣ =
∣∣cΛ1

�
(νF 1

�
× nF 1

�
) · φΛ1

�

∣∣
�

∣∣ =
∣∣cΛ1

�
(tF 1

�
· φΛ1

�
)
∣∣
�

∣∣ =
1

h�

∣∣cΛ1
�

∣∣,
where h� denotes the length of the edge �. Similarly, we also find that |μN�+1

� | =

|cN�+1
Λ | and

|μj
� | =

1

h�
|cΛj

x
− cΛj−1

x
| for all j = 2, . . . , N�.

If μ vanishes everywhere, then for any mesh edge � the function μj
� defined above

must vanish on the edge �. Hence

|cΛ1
�
| = |c

Λ
N�+1

�

| = 0, and

|cΛj
�
− cΛj+1

�
| = 0 for all j = 2, . . . , N�.

Hence cΛj
�

= 0 for all j. This argument applies to every mesh edge, so all the coeffi-

cients cΛ in (4.5) are zero. Hence (4.3) follows.

4.3. The higher-order space of tangential velocities. In this subsection we
show how to construct a local basis for the Lagrange multiplier space Mh in the general
case of the higher-order spaces and the variable degree method. Here there is one
important difference compared to the two-dimensional case. In the two-dimensional
case [7], we were able to obtain a basis for the higher-order space by augmenting
the lowest-order basis with some edge basis functions. In the three-dimensional case,
however, we cannot expect to get a basis for the higher-order space by just augmenting
B0 with some face basis functions. This is because while in two dimensions a vertex
represents at most one degree of freedom, in three dimensions an edge can have more
than one degree of freedom associated to it. Thus we must add to B0 functions that
represent face degrees of freedom as well as functions that represent the additional
edge degrees of freedom.

In order to give a basis explicitly, as well as to understand the nature of our space
of tangential velocities, it is convenient to recall a basis for the Nédélec space given
in [10]. For any integer k ≥ 0 and any N -simplex D (N = 2 or 3 for our purposes),
the Nédélec space is

Wk(D) = Pk(D)N ⊕ Sk+1(D).

Let β1, . . . , βN+1 denote the N+1 barycentric coordinate functions of the N -simplex D.
Let Ilm(N, k) denote the set of all multi-indices α := (α1, . . . , αN ) (where αi are non-
negative integers) such that αi = 0 for all i not equal to l or m and αl + αm = k.
Similarly, Ilmn(N, k) is the set of multi-indices α with αi = 0 for all i not equal to
l, m, or n, and αl + αm + αn = k. Using powers of barycentric coordinates (for
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α = (α1, . . . , αN+1), we define βα := βα1
1 . . . β

αN+1

N+1 ), we introduce the following sets
of functions:

B
(D)
lm =

⋃
α∈Ilm(N+1,k)

{
βα(βl ∇βm − βm ∇βl)

}
,(4.7)

B
(D)
lmn =

⋃
α∈Ilmn(N+1,k−1)

{
βα(βlβm ∇βn − βmβn ∇βl),(4.8)

βα(βmβn ∇βl − βnβl ∇βm)
}
.

From the results of [10], it now follows that if D is a triangle, then the union of

the sets B
(D)
12 , B

(D)
23 , B

(D)
31 , and B

(D)
123 forms a basis for the Nédélec space Wk(D). If

D is a tetrahedron instead, then a basis for Wk(D) is

B
(D)
12 ∪ B

(D)
13 ∪ B

(D)
14 ∪ B

(D)
23 ∪ B

(D)
24 ∪ B

(D)
34 ∪ B

(D)
123 ∪ B

(D)
124 ∪ B

(D)
134 ∪ B

(D)
234 ∪ B

(D)
1234,

where

B
(D)
1234 :=

⋃
{βα(β1β2β3 ∇β4 − β2β3β4 ∇β1),β

α(β2β3β4 ∇β1 − β3β4β1 ∇β2),

βα(β3β4β1 ∇β2 − β4β3β2 ∇β1) : α ∈ I1234(N + 1, k − 2)}.

Note that the basis functions in (4.7) are “edge” basis functions, those in (4.8) are

“face” basis functions, and those in B
(D)
1234 are “interior” basis functions, in the sense

explained in [10].
Since the Lagrange multiplier space Mh is obtained using the tangential traces of

functions in Wh, it is instructive to study the space of tangential traces of the Nédélec
space on one tetrahedron K. Let a1, a2, a3, and a4 be the vertices of K; let Flmn

be the face formed by al, am, and an; and let eij be the edge formed by ai and aj .
We denote by n ×Wk(K) the space of functions on ∂K of the form n × w for some
w ∈ Wk(K). Recall that for any N -dimensional domain D, the Raviart–Thomas
space of polynomials is Rk(D) = xPk(D)+Pk(D)N , where x is the coordinate vector
on D. Define the Raviart–Thomas space on the manifold ∂K by

Rk(∂K) = {r : r|Fijl
∈ Rk(Fijl) and

(r|Fijl
) · νFijl

+ (r|Fijm) · νFijm = 0 on eij for all i, j, l,m},

where we have used the notation in (4.6). Then we have the following result.
Proposition 4.3. The space of tangential traces of the Nédélec space n×Wk(K)

is the Raviart–Thomas space Rk(∂K).
Proof. We begin by proving that n × Wk(K) ⊆ Rk(∂K). Let the tangential

component of w ∈ Wk(K) on ∂K be denoted by wᵀ. We first prove that wᵀ on face
Flmn is in Rk(Flmn). It is easy to see from the structure of the basis functions in (4.7)

that if w ∈ B
(K)
ij , then wᵀ|Flmn

is zero if i or j does not belong to {l,m, n}. If both

i and j are in {l,m, n}, then wᵀ|Flmn
∈ B

(Flmn)
ij . Therefore, we find that wᵀ|Flmn

is
in the Nédélec space Wk(Flmn).

In two dimensions, the Nédélec space is the “rotated” Raviart–Thomas space.
Indeed, if D is a triangle in the x-y plane, then

Wk(D) = Pk(K)2 ⊕ Sk+1(K) = Pk(K)2 ⊕
(
−y
x

)
Pk(K).
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Since n×w|Flmn
is wᵀ|Flmn

rotated (by an angle of π/2), it follows that the tangential
trace n × w on Flmn is in the Raviart–Thomas space Rk(Flmn).

To show the continuity of the normal components of n × w across edges of ∂K,
consider an edge eij shared by two faces Fijl and Fijm. Then by (4.6) and the
continuity of the tangential components of the Nédélec space, we have the following
equalities on eij :

(n × w)|Fijl
· νFijl

= (νFijl
× n) · w|Fijl = −tFijl

· w|Fijl

= tFijm
· w|Fijm = −(n × w)|Fijm · νFijm

.

Thus n × w is in Rk(∂K) whenever w ∈ Wk(K). It is easy to see that all functions
in Rk(∂K) can be obtained as tangential traces of Wk(K).

Now we are ready to describe the building blocks of a basis for the general higher-
order Mh arising from the variable degree Nédélec spaces. The basis is divided into two
parts: one corresponding to the interior faces of the mesh and another corresponding
to the wedges in Λh. The former is easy to describe: Let F0 denote the set of all
interior faces of the mesh T. For any face F ∈ F0, define

V̊ (F ) = {w ∈ Rk(F )(F ) : w|∂F · νF = 0 on ∂F},

where k(F ) is the maximum of the degrees from either side of F , as defined in (4.1).

Let B̊F be a basis for V̊ (F ).

To describe the wedge basis functions, recall the notations introduced in the
previous subsection. Now we additionally require that for every mesh edge �, the
“omitted wedge” �� is associated to a tetrahedron (having � as an edge and) having
the minimal degree: More precisely, we choose �� such that

k(K��
) = min

i=1,...,N�

k(KΛi
�
).(4.9)

For all the remaining Λ ∈ Λh, we define the following Raviart–Thomas-type space:

R(Λ) = {r ∈ Rk(KΛ)(∂KΛ) : r is supported on Λ}.

Just as we decompose the standard Raviart–Thomas space, we can decompose R(Λ)
into subspaces corresponding to interior and boundary degrees of freedom: If F+

Λ and

F−
Λ denote the two faces of Λ and R̊(F±

Λ ) = {r ∈ Rk(KΛ)(∂KΛ) : r is supported on

F±
Λ }, we can decompose R(Λ) = R̊(F+

Λ ) ⊕ R̊(F−
Λ ) ⊕ V (Λ), where V (Λ) is a subspace

that is linearly independent, to R̊(F+
Λ ) ⊕ R̊(F−

Λ ); e.g., we can choose V (Λ) to be the

L2(Λ)-orthogonal complement of R̊(F+
Λ ) ⊕ R̊(F−

Λ ) in R(Λ). (Another alternative is
suggested in the next paragraph.) Let BΛ be a basis for V (Λ). Our next theorem
shows that such wedge basis functions together with the face basis functions form a
basis for the global space Mh.

Particular examples of BΛ and B̊F are easy to exhibit. We give one conveniently
implementable choice that follows from the previous results of [10]. Let Λ ∈ Λh and
let βi, i = 1, 2, 3, 4, denote the barycentric coordinates of KΛ such that βi and βj are
associated to the two endpoints of the edge �Λ. Define

φ
(α)
Λ =

{
βα(βi ∇βj − βj ∇βi) on KΛ,

0 on all other K ∈ T
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for all α ∈ Iij(4, k(KΛ)) and

ψ
(α)
Λ = [[n × φ

(α)
Λ ]].

We can choose

BΛ = {ψ(α)
Λ : α ∈ Iij(4, k(KΛ))}.

For an example of a face basis, let F ∈ F0. If βi, βj , and βk are the three barycentric
coordinate functions of the face F , then we may choose

B̊F =
⋃

α∈Iijk(3,k(F )−1)

{
βα(βiβj ∇βk − βjβk ∇βi) × nF ,

βα(βjβk ∇βi − βkβi ∇βj) × nF

}
.

(4.10)

The following theorem gives a basis for Mh.
Theorem 4.4. The set

B =

( ⋃
Λ∈Λh

BΛ

)
∪
( ⋃

F∈F0

B̊F

)

is a basis for Mh.
Proof. It follows from Proposition 4.3 that elements of B̊F and BΛ can be written

as [[n×φ]] for some φ ∈ Wh. Hence the span of B is contained in Mh. It now suffices
to prove that

card B = dim(Mh)(4.11)

and that B is a linearly independent set. For any μ ∈ B̊F , the normal trace from F
on ∂F vanishes:

(μ|∂F ) · νF = 0.

The normal traces of functions in BΛ from Λ on �Λ are linearly independent. Hence
by a minor modification of the arguments in the proof of Proposition 4.2, the lin-
ear independence of B follows from the linear independence of functions within BΛ

and B̊F .
To prove (4.11), let us first count the number of elements in B. The dimension

of V̊ (F ) can be calculated easily (either directly or using (4.10)). It equals

card B̊F = 2 card I123(3, k(F ) − 1) = k(F )
(
k(F ) + 1

)
.

Moreover,

card BΛ = card I12(4, k(KΛ)) = k(KΛ) + 1.

Thus,

card B =
∑
Λ∈Λh

(k(KΛ) + 1) +
∑
F∈F0

k(F )
(
k(F ) + 1

)
.(4.12)
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Now let us compute the dimension of Mh by using the identity (see (4.4))

dim(Mh) = dim(Wh) − dim(Wh).

By the tangential continuity conditions on the variable degree space Wh, we find that
the space of traces nF × w on a face F ∈ F for w ∈ Wh is Rk˜(F )(F ), where

k˜(F ) = min{k(K) : K ∈ T and K has F as a face}.

Furthermore, the tangential component w · t on an edge E is in Pk˜(E)(E), where

k˜(E) = min{k(K) : K ∈ T and K has E as an edge}.

Splitting the global degrees of freedom of Wh as edge degrees of freedom, face degrees
of freedom, and interior degrees of freedom, we find that

dim(Wh) =
∑
E∈E

(
k˜(E) + 1

)
+

∑
F∈F

k˜(F )
(
k˜(F ) + 1

)
+

∑
K∈T

1

2

(
k(K) − 1

)
k(K)

(
k(K) + 1

)
.

Consequently,

dim(Wh) − dim(Wh) =

(∑
K∈T

6
(
k(K) + 1

)
−

∑
E∈E

(
k˜(E) + 1

))

+

(∑
K∈T

4k(K)
(
k(K) + 1

)
−

∑
F∈F

k˜(F )
(
k˜(F ) + 1

))
.

(4.13)

Because of (4.4), it suffices to show that the above equals card B.
In order to do this, we simplify the right-hand side of (4.13). Observe that by

rearrangement,

∑
K∈T

4k(K)
(
k(K) + 1

)
=

∑
F∈F

(
k(K+

F )
(
k(K+

F ) + 1
)

+ k(K−
F )

(
k(K−

F ) + 1
))

,

where K±
F is as defined earlier and one of k(K±

F ) is understood to vanish if F ⊆ ∂Ω.
Hence ∑

K∈T

4k(K)
(
k(K) + 1

)
−

∑
F∈F

k˜(F )
(
k˜(F ) + 1

)
=

∑
F∈F0

k(F )
(
k(F ) + 1

)
.

Similarly, denoting by Ki
�, i = 1, 2, . . . , N�, the tetrahedra in T which have � as an

edge, the rearrangement

∑
K∈T

6
(
k(K) + 1

)
=

∑
�∈E

N�∑
i=1

(
k(Ki

�) + 1
)

implies, in view of (4.9), that

∑
K∈T

6
(
k(K) + 1

)
−

∑
E∈E

(
k˜(E) + 1

)
=

∑
�∈E

(
N�∑
i=1

k(Ki
�) + 1

)
−
∑
�∈E

(
k(K��

) + 1
)

=
∑
Λ∈Λh

(
k(KΛ) + 1

)
.
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Using these identities in (4.13), we obtain

dim(Wh) − dim(Wh) =
∑
Λ∈Λh

(
k(KΛ) + 1

)
+

∑
F∈F0

k(F )
(
k(F ) + 1

)
,

which coincides with cardB as computed in (4.12). Hence (4.11) follows.

5. Formulae for the lowest-order case. In [7], we discussed a few imple-
mentation techniques to implement and solve the two-dimensional analogue of the
Lagrange multiplier system (3.11)–(3.12). The considerations there apply to the three-
dimensional case as well. In particular, one can form the stiffness matrix of (3.11)–
(3.12) and then perform one further elimination (of the pressure multiplier) to obtain
a Schur complement system involving the tangential velocity variable λh alone. We
do not repeat this and other details discussed in [7]. However, since the formulae for
the liftings change in three dimensions, we give here new formulae for the liftings as
well as local stiffness matrices for the lowest-order case.

First, consider the local maps which define the linear and bilinear forms in (3.11)–
(3.12) for the lowest-order case (i.e., k(K) = 0 for all K ∈ T). Let K be any tetrahe-
dron in T. Simple computations show that

w(λ) =
1

|K|

∫
∂K\∂Ω

λ × n ds, u(λ) =
1

2|K|

∫
∂K\∂Ω

(x − xK) × (n × λ) ds,

w(gᵀ) =
1

|K|

∫
∂K∩∂Ω

gᵀ × n ds, u(gᵀ) =
1

2|K|

∫
∂K∩∂Ω

(x − xK) × (n × gᵀ) ds,

W(p) = W
K
p × (x − xK), u(p) =

1

2|K|

∫
K

(x − xK) × W(p) dx,

w(f) = wK
f × (x − xK), u(f) =

1

2|K|

∫
K

(x − xK) × w(f) dx,

where the point xK denotes the barycenter of the tetrahedron K,

W
K
p = − 1

2|K|

∫
∂K

pn ds, and wK
f =

1

2|K|

∫
K

f dx.

Here and elsewhere we use |X| to denote the measure of X.

In order to implement (3.11)–(3.12), one uses the basis for Mh and Ph described
previously, applies the above local lifting maps to the basis functions, and forms local
stiffness matrices of the bilinear forms of a(·, ·) and b(·, ·). In line with these steps,
we next simplify the above expressions in the case of a lowest-order basis function of
Mh and Ph. Let K be the tetrahedron formed by vertices x1, x2, x3, and x4. Let Fi

denote the face of K opposite to vertex xi, and let ni denote the outward unit normal
of K on the face Fi. We first give the lifting of ψΛ, a basis function associated with
Λ ∈ Λh with KΛ = K (see Figure 2). Since we are considering the lowest-order case,
by definition,

ψΛ =

⎧⎪⎨
⎪⎩

n3 × (β1 ∇β2 − β2 ∇β1) on face F3,

n4 × (β1 ∇β2 − β2 ∇β1) on face F4,

0 on all other mesh faces.
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Λ

K

KL

KR

xL

xR

x1

x2

x3

x4

n3

n4

Fig. 2. The lifting of the basis function from Λ is supported on three mesh tetrahedra K, KL,
and KR.

It is easily seen that the above expression is equal to the following:

ψΛ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1

2|F3|
(x − x4) on face F3,

− 1

2|F4|
(x − x3) on face F4,

0 on all other mesh faces.

The computations are simplified by working with the latter expression for ψΛ, which
also illustrates the connection of the tangential traces with the Raviart–Thomas space.
The liftings wΛ := w(ψΛ) and uΛ := u(ψΛ) are supported on three tetrahedra,
unless Λ intersects ∂Ω. Since the formulae one obtains when Λ intersects ∂Ω are
similar to the remaining cases, we consider only the case shown in Figure 2, where the
lifting is supported on the three tetrahedra shown, namely, K, KL, and KR. Letting
xij = xi − xj for any subscripts i and j, we have

wΛ = − (x31 + x32) × n4

6|KL|
and

uΛ =
−1

48|KL|

[
(x13 × n4) × xL1 + (x23 × n4) × xL2

]
on KL,

wΛ = − (x41 + x42) × n3

6|KR|
and

uΛ =
−1

48|KR|

[
(x14 × n3) × xR1 + (x24 × n3) × xR2

]
on KR,

wΛ =

[
(x31 + x32) × n4

6|K| +
(x41 + x42) × n3

6|K|

]
and

uΛ =
1

48|K|

[
(x13 × n4) × x41 + (x23 × n4) × x42 + (x14 × n3) × x31

+ (x24 × n3) × x32

]
on K.
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K+
F

K−
F

F

n−
F

n+
F

Fig. 3. The lifting of the pressure basis function from a face F is supported on the tetrahedra
adjacent to the face F .

Next, let us derive the liftings associated with the pressure. To treat this case,
consider a face F (shared by the tetrahedra K+

F and K−
F ; see Figure 3). Let pF

denote the indicator function of edge F . The liftings WF := W(pF ) and uF := u(pF )
are supported on K+

F ∪ K−
F . Let x±

i , i = 1, . . . , 4, denote any enumeration of the
four vertices of K±

F . In accordance with our previous notation, set xK±
F

equal to the

barycenter of K±
F and xiK = x±

i − xK±
F

. We can express the liftings on K±
F by

WF (x)|K±
F

= W
± × (x − xK±

F
), uF (x)|K±

F
=

1

40

4∑
i=1

xiK × (W
± × xiK),

where

W
± = − |F |

2|K±
F |

n±
F

and n±
F denotes the outward unit normal of K±

F on F (see Figure 3).
The formulae for the maps associated with the body force are similar. If f is

supported only on K, then w(f) and u(f) are supported only on K. Their values on
K are given by

w(f) = w × (x − xK), u(f) =
1

40

4∑
i=1

xiK × (w × xiK),

where

w =
1

2|K|

∫
K

f dx.

Now that we have expressions for the liftings of the basis functions, we can easily
compute the local stiffness matrices of the bilinear forms a(·, ·) and b(·, ·) with respect
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to the basis. Once the local matrices are made, one assembles them to get the global
matrices in much the same way as one does for standard finite element methods. To
compute the local stiffness matrix, we first list the degrees of freedom local to an
element. In this list, we include the omitted elements of Λ̂h. The omissions can be
taken care of after assembly by simply deleting the rows and columns corresponding
to the omitted elements of Λ̂h. To geometrically identify the degrees of freedom on
an element K, let xi denote the vertices of K and let Eij denote the edge of K with
endpoints xi and xj . There are six wedge degrees of freedom interior to K, which
we denote by Λij for ij ∈ I0 := {12, 13, 14, 23, 24, 34}. The wedge Λij is geometrically
identified as the wedge contained in ∂K with edge Eij . In addition, there are twelve
degrees of freedom from wedges “exterior” to K that contribute to the local stiffness
matrix of K. We denote these as Λijk for ijk ∈ I1 := {ijk : ij ∈ I0 and k does not
equal i or j} (cf. [7, Figure 4]). The wedge Λijk is the (unique) wedge with edge Eij ,
whose one face coincides with the face of K formed by vertices xi, xj , and xk, and
whose other face is not contained in ∂K. Thus all wedge degrees of freedom within
an element can be identified using the index set I = I0 ∪ I1. The pressure degrees
of freedom are easier to enumerate: There is one for each face of K, so they can be
identified using the index set L := {1, 2, 3, 4}. The local stiffness matrices associated
to an element K can now be given by

A
(K)
IJ =

∫
K

w(ψΛI
) · w(ψΛJ

) dx, I, J ∈ I,

B
(K)
LJ = −

∫
K

curl W(pL) · u(ψΛJ
) dx, J ∈ I, L ∈ L,

C
(K)
LM =

∫
K

W(pL) · W(pM ) dx, L,M ∈ L.

Here, as before, pL denotes the characteristic function of the face FL for all L ∈ L.
We can calculate the integrals above after substituting the previously given ex-

pressions for the liftings of the basis functions into the integrands. To take into
account modifications required near the boundary ∂Ω, let σj equal zero if the face
Fj is contained in the boundary ∂Ω and let σj equal one otherwise. The simplified
expressions for A(K), B(K), and C(K) for any element K are given below. Suppose
that {i, j, k, l} is any permutation of {1, 2, 3, 4}. Then define

W I =

{
σl(xki + xkj) × nl + σk(xli + xlj) × nk if I = ij,

−σl(xki + xkj) × nl if I = ijk,

U I =

⎧⎪⎨
⎪⎩
σl(xik × nl) × xli + (xjk × nl) × xkj

+σk(xil × nk) × xki + (xjl × nk) × xlj if I = ij,

−σl(xik × nl) × xli + (xjk × nl) × xkj if I = ijk.

After a few simplifications, one finds that

A
(K)
IJ =

1

36|K|W I · W J ,

B
(K)
LJ =

1

48|K|EL · UJ ,

C
(K)
LM =

1

80|K|

4∑
�=1

(EL × x�K) · (EM × x�K),
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where EL = nL|FL| for all L ∈ L. Using these local matrices, it is quite easy to
implement the lowest-order case of our method, even for general tetrahedral meshes.
For the variable degree and higher-order cases, one would need to select a good basis
for the polynomial spaces involved on one element and then perform the above steps
within a computer implementation. Our calculations above, besides showing the
essential simplicity of our discretization in the lowest-order case, also clarify the data
structures one would need in implementing the method.

6. Extension to other boundary conditions. Although the previously con-
sidered Dirichlet boundary condition on velocity is the most commonly occurring
boundary condition in the Stokes problem, other types of boundary conditions are
also encountered in practice. One can have boundary conditions on pressure of the
form

p = s

and boundary conditions on tangential vorticity of the form

n × ω = r.

Here s and r are functions prescribed on parts of the boundary ∂Ω. We now show
how one may incorporate such boundary conditions into our hybridized discretization.
Note that the above types of boundary conditions are difficult to impose in a natural
fashion in many existing methods—see remarks in [11, section 4.3] and [12]. They are
often practically important. For example, pressure is often used as an outflow condi-
tion. The tangential vorticity boundary condition is useful when matching an exterior
potential flow since vorticity is known to decay faster than velocity. The tangential
vorticity boundary condition has been considered previously in [8] in formulations
with the stream function.

Assume that the polyhedral boundary ∂Ω is partitioned into three disjoint subsets
Γ1, Γ2, and Γ3 such that each mesh face F ∈ F on the boundary ∂Ω is contained in
one and only one of these three subsets. We consider the Stokes equations (2.1)–(2.2)
with the following boundary conditions:

u = g on Γ1,

n × ω = r

u · n = gn

}
on Γ2,

p = s

uᵀ = gᵀ

}
on Γ3.

A straightforward generalization of our method can be obtained in this case.
To describe this generalization, we first redefine the jump-functions as follows:

The functions [[n ·v]] and [[n× τ ]] are defined just as before on the interior faces, but
for mesh faces F on the boundary we set

[[n · v]]F =

{
0 for all faces F ⊆ Γ3,

n · v for the remaining faces F ⊆ ∂Ω \ Γ3

and

[[n × τ ]]F =

{
0 for all faces F ⊆ Γ3 ∪ Γ1,

n × τ for the remaining faces F ⊆ ∂Ω \ (Γ3 ∪ Γ1).
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Then along the lines of the derivation of (2.13)–(2.16), we can derive the following
hybridized mixed formulation: Find (ωh,uh,λh, ph) ∈ Wh × Vh ×Mh ×Ph satisfying

(ωh, τh)Ω − (uh, curl τh)Ω −
∑
F∈F

(λh, [[n × τh]])F = (gᵀ,n × τh)Γ1∪Γ3 ,

(vh, curlωh)Ω +
∑
F∈F

(ph, [[vh · n]])F = (f ,vh)Ω − (s,vh · n)Γ3
,

∑
F∈F

(qh, [[uh · n]])F = (gn, qh)Γ1∪Γ2
,

∑
F∈F

(μh, [[n × ωh]])F = (μh, r)Γ2

for all τh ∈ Wh,vh ∈ Vh, qh ∈ Ph,μh ∈ Mh. Here Wh and Vh are the same spaces
as before. The spaces of Lagrange multipliers Ph and Mh continue to be defined
by (2.11) and (2.12), but now with the revised definition of jump-functions.

For this formulation, we can prove, by a minor modification of the argument used
in Proposition 2.1, that there is one and only one solution. Moreover, the entire
analysis of section 3 goes through with minor changes. We obtain a reduced Lagrange
multiplier system and can formulate a theorem entirely analogous to Theorem 3.1.
The discussion of the liftings and the basis functions in the previous sections continues
to apply for these boundary conditions.

The method we presented in this paper gives a powerful alternative for problems in
computational fluid mechanics which require exactly divergence-free solutions for their
successful treatment. Applications to such problems, the error analysis of the method,
and the design of good preconditioners for solving the resulting matrix equations are
subjects of ongoing work.
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FINITE VOLUME METHODS ON SPHERES AND
SPHERICAL CENTROIDAL VORONOI MESHES∗
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Abstract. We study in this paper a finite volume approximation of linear convection-
diffusion equations defined on a sphere using the spherical Voronoi meshes, in particular the spheri-
cal centroidal Voronoi meshes. The high quality of spherical centroidal Voronoi meshes is illustrated
through both theoretical analysis and computational experiments. In particular, we show that the
L2 error of the approximate solution is of quadratic order when the underlying mesh is given by
a spherical centroidal Voronoi mesh. We also demonstrate numerically the high accuracy and the
superconvergence of the approximate solutions.

Key words. finite volume method, spherical Voronoi tessellations, spherical centroidal Voronoi
tessellations, error estimates, convection-diffusion equations
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1. Introduction. The numerical solution of partial differential equations de-
fined on spheres is an active research subject in the scientific community. The subject
is related to a number of important applications such as weather forecasting and cli-
mate modeling. For example, the numerical solution of linear convection-diffusion
equations and nonlinear shallow water equations in spherical geometry can be used to
test numerical algorithms for more complex atmospheric circulation models. Though
these models were often solved with spectral methods or traditional finite difference
methods in spherical coordinates, methods that use quasi-uniform tessellations of the
sphere are gradually gaining popularity as the grid-based methods offer great potential
when combined with massive parallelism and local adaptivity.

To get efficient and accurate numerical solutions of PDEs, it is well known that
grid quality plays an important role and high quality grid generation is often a signifi-
cant part of the overall solution process. In this regard, there were many recent studies
on the approximations of PDEs defined on spheres using various spherical grids, such
as grids based on Bucky-balls [19], icosahedral grids [2, 32, 33], skipped grids [22],
grids from a gnomonic (cubed sphere) mapping [24], etc. In standard Euclidean ge-
ometry, the so-called Voronoi–Delaunay grids have always been very popular grids
used in both finite element and finite volume methods [28]. Other spherical grids
have also been studied; see, for example, [16].

In [8, 9], we proposed a high quality spherical grid based on the spherical cen-
troidal Voronoi tessellation (SCVT), which can be used for both data assimilation
purposes and for the numerical solution of PDEs on spheres. A very recent study
made in [31] on both the global and the local uniformity of spherical grids indicated
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that the SCVT grid with a uniform density measures better than many other vari-
ations, and, when used to discretize a model Poisson equation on the sphere, the
SCVT-based grid tends to produces the smallest local truncation errors among all the
grids under consideration. In [9], a finite volume approximation to a second order lin-
ear elliptic equation using the spherical Voronoi meshes was studied, and a first order
error estimate for the discrete H1 norm was obtained under some grid regularity as-
sumptions. Preliminary numerical experiments demonstrated the good performance
of the finite volume scheme when implemented with the spherical centroidal Voronoi
meshes (SCVMs) that include both the SCVT and its dual (Delaunay) triangular
grid. The SCVM enjoys some optimization properties [8] and they can also be de-
fined with a nonuniform density function. They offer excellent local grid regularity
and global mesh conformity as well as flexible mesh adaptivity. Thus, the SCVM
naturally becomes an optimal grid in some sense, or at least a practically safe choice
for discretizing PDEs on the sphere.

In this paper, we make further attempts to substantiate the optimality of SCVMs
both theoretically and computationally. Our main results include a carefully designed
finite volume scheme for a general second order convection-diffusion equation defined
on a sphere. When implemented with the SCVM, we present a rigorous quadratic
order L2 error estimate for such a discrete scheme whose proof relies critically on
the geometric properties of the SCVT. We further demonstrate through experiments
the superconvergent properties of the numerical solutions and their gradients solved
using our modified finite volume scheme and the SCVT-based grid. All these findings
provide compelling reasons for regarding the SCVTs with the uniform density as
arguably the best alternative for near uniform partitions of the sphere and the SCVT-
based grids the optimal triangular grids to use for the numerical solution of many
PDEs defined on spheres.

We point out that the conclusions given in this paper can be readily adapted to
problems defined on the two-dimensional (2d) Euclidean plane. The analysis for the
spherical case is somewhat more involved than the planar case since we must deal
with the differences between spherical triangles and planar triangles.

The paper is organized as follows: we first introduce the model equation, along
with some notation used in the paper. Then in section 2, we briefly recall the basic
theory of the spherical centroidal Voronoi meshes. Some discrete function spaces and
a finite volume scheme for linear convection-diffusion equations on the sphere given
in [9] are discussed in section 3. With a suitable modification to the finite volume
scheme, a rigorous L2 error estimate is given in section 4 for SCVMs. In section 5,
a superconvergent gradient recovery scheme is provided, and in section 6 we present
some numerical experiments. Some concluding remarks are given in section 7.

We now introduce the model equation to be considered. First, let S
2 denote the

sphere (surface of the ball) having radius r > 0, i.e., S
2 =

{
x ∈ R

3 | |x| = r
}
. Let ∇s

denote the tangential gradient operator [13, 17] on S
2 defined by

∇su(x) = (∇s,1,∇s,2,∇s,3)u(x) = ∇u(x) − (∇u(x) · �nS2,x)�nS2,x ,

where ∇ = (D1, D2, D3) denotes the general gradient operator in R
3 and �nS2,x is the

unit outer normal vector to S
2 at x = (x1, x2, x3). We consider the second order

elliptic equation on the sphere given by

∇s ·
(
− a(x)∇su(x) + �v(x)u(x)

)
+ b(x)u(x) = f(x) for x ∈ S

2 .(1.1)

Note that since S
2 has no boundary, there is no boundary condition imposed.
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We use the standard notation Lp(S2), Wm,p(S2) for Sobolev spaces on S
2 (viewed

as a compact, 2d Riemannian manifold) [17], equipped with norms ‖ · ‖Lp(S2) and
‖·‖Wm,p(S2). We set Hm(S2) = Wm,2(S2) and use the standard inner product (u, v) =∫

S2 u(x)v(x) ds(x) for u, v ∈ L2(S2).
Let the data in (1.1) satisfy the following assumptions.
Assumption 1. f ∈ L2(S2), a ∈ C1(S2), b ∈ L∞(S2), and �v ∈ C1(S2,R3) such

that a(x) ≥ α1 > 0, b(x) ≥ 0, and ∇s · �v(x) + b(x) ≥ α2 > 0, a.e.
For any u, v ∈ H1(S2), define the bilinear functional A such that

A(u, v) =

∫
S2

a(x)
(
∇su(x) · ∇sv(x)

)
+ u(x)

(
�v(x) · ∇sv(x)

)
ds(x)

+

∫
S2

b(x)u(x)v(x) ds(x).
(1.2)

We easily see, for some constant C > 0, that

A(u, v) ≤ C‖u‖H1(S2)‖v‖H1(S2).

The problem (1.1) has a unique weak solution u ∈ H2(S2) such that

A(u, v) = (f, v), ∀ v ∈ H1(S2)(1.3)

and u satisfies the H2 regularity estimate ‖u‖H2(S2) ≤ C‖f‖L2(S2) for some constant
C > 0. Though the same conclusion holds under weaker conditions on �v and b (and
∇s · �v(x) + b(x)), for simplicity Assumption 1 is made throughout the paper.

2. Spherical centroidal Voronoi meshes. Let d(x,y) denote the geodesic
distance between x and y on S

2, i.e., d(x,y) = r arccos[(x · y)/r2], where arccos
denotes the inverse cosine. We also use m(·) to denote the standard measure (surface
area or curve length) of the argument. Given a set of distinct points {xi}ni=1 ⊂ S

2,
the corresponding spherical Voronoi regions {Vi}ni=1 are defined by

Vi =
{
x ∈ S

2 | d(xi,x) < d(xj ,x) for j = 1, . . . , n and j 	= i
}
, 1 ≤ i ≤ n .

{Vi}ni=1 forms a Voronoi tessellation or Voronoi diagram of S
2 associated with the

generators {xi}n1 . Each Voronoi cell Vi is an open convex spherical polygon on S
2

with geodesic arcs making up its boundary. It is also well known that the dual
tessellation (in a graph-theoretical sense) to a Voronoi tessellation of S

2 consists of
spherical triangles which form the Delaunay triangulation.

Given a density function ρ defined on S
2, for any spherical region V ⊂ S

2, the
constrained mass centroid xc of V on S

2 is given by the solution of

min
x∈V

F (x) , where F (x) =

∫
V

ρ(y)|y − x|2 ds(y) .(2.1)

As in [7, 8, 9], a Voronoi tessellation of S
2 is called a constrained centroidal

Voronoi tessellation (CCVT) of S
2 or, specifically, SCVT if and only if the points

{xi}mi=1 which serve as the generators of the associated spherical Voronoi tessellation
{Vi}ki=1 are also the constrained mass centroids of those Voronoi regions. For any set

of points {x̃i}ni=1 on S
2 and any spherical tessellation {Ṽi}ni=1 of S

2, the corresponding
energy

K
(
{x̃i, Ṽi}ni=1

)
=

n∑
i=1

∫
Ṽi

ρ(x)‖x − x̃i‖2 ds(x)
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is minimized only if {x̃i, Ṽi}ni=1 are a SCVT [8]. Consequently, SCVMs have many
good geometric properties [8, 9]. A constant density function ρ leads to uniformly
distributed SCVTs, and a nonconstant density function provides systematically a
nonuniform distribution of points while the accumulation of SCVT generators still
remains locally regular.

Constructing a constrained mass centroid from (2.1) may be cumbersome. In
[8], it has been shown that one can compute first the standard centroid x∗

i of Vi in
R

3, then compute xc
i using the fact that it is the projection of x∗

i onto S
2 along the

normal direction at xc
i . We refer to [8, 9, 21] for both deterministic and probabilistic

algorithms for the construction of SCVTs. Figure 2.1 shows some examples of SCVTs
associated with a constant density. More examples, including SCVTs with nonuniform
densities, can be found in [9].
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Fig. 2.1. SCVTs for a constant density function with 162, 642, and 2562 generators, and an
illustration of a spherical Voronoi region and its dual triangles.

Given a spherical Voronoi mesh W = {xi, Vi}ni=1, following [9], we refer to a pair
of generators xi and xj as neighbors if and only if Γi,j = V i ∩ V j 	= ∅. For Voronoi
meshes, Γi,j can only be a point or a geodesic arc on the sphere. For each xi, let χi

be the set of the indices of its neighbors xj ’s such that m(Γi,j) > 0. Let xixj be the
vector from xi to xj , and let x̃ixj be the geodesic arc joining xi and xj . From the
construction of spherical Voronoi tessellations, it is known that x̃ixj is perpendicular
to Γij and the plane determined by Γi,j and the origin bisects x̃ixj at its midpoint
xij [9]; see Figure 2.1. Thus, |xi − x| = |xj − x| for x ∈ Γij and for k = i, j, �nx,Vk

is
parallel to xixj where �nx,Vk

is the outer unit normal vector to the boundary of Vk,
taken to lie in the tangent plane of S

2 at x.
Let hi = maxy∈Vi

d(xi,y), and we define the mesh quality norm by h = maxi hi.
h gives the maximum geodesic distance between any particular generator xi and
the points in its associated cell Vi, and it has been used in [8] for the polynomial
interpolation on the sphere.

Given a Voronoi mesh W = {xi, Vi}mi=1, we define the mesh regularity norm σ by

σ = min
1≤i≤n

σi, where σi = min
j∈χi

σij and σij = d(xi,xj)/(2hi) .(2.2)

If xi,xj , and xk are neighbors for each other in W, we denote by T̃ijk the spherical
triangle determined by xi,xj , and xk, and by Tijk the corresponding planar triangle

(see Figure 2.1). In addition, let T̃ = {T̃ijk | ijk ∈ Σ}, T = {Tijk | ijk ∈ Σ} where

Σ = { ijk | i, j, k are neighbors in W}. T̃ gives the spherical Delaunay triangulation
of S

2 associated with the generators {xi}ni=1.
Meshes of the type W = {xi, Vi}ni=1 are used as control (or finite) volumes for

the discretization method discussed below. Our use of these meshes is particularly
motivated by the covolume mesh approaches in the numerical solution of PDEs [28, 29]
and for applications to nonlinear problems [6, 12, 30].
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3. A finite volume method on spherical Voronoi tessellations. Without
loss of generality, we consider the case of the unit sphere S2 in what follows.

3.1. Some definitions and geometric properties. For any x, let P(x) =
x/|x| be the projection onto the unit sphere S2. P is also a one-to-one smooth
function that maps S∗ = ∪Tijk∈T Tijk to S

2 = ∪T̃ijk∈T̃ T̃ijk.

Clearly, S∗ ∩ S
2 = {xi}ni=1. Moreover, for any x ∈ S

2 and x′,x′′ ∈ T̃ijk, we have
⎧⎪⎨
⎪⎩

|x − P−1(x)| ≤ ch2,

(1 − ch2)d(x′,x′′) ≤ |P−1(x′) − P−1(x′′)| ≤ (1 + ch2)d(x′,x′′),

m(Tijk) ≤ m(T̃ijk) ≤ (1 + ch2)m(Tijk),

(3.1)

where c is a generic constant for h small.
Let Ω = {x | 1 − ch2 < |x| < 1 + ch2}; then ∪Tijk ⊂ Ω and ∪T̃ijk ⊂ Ω. For any

u ∈ H2(S2), define the function Eu, the extension of u in Ω, by Eu(y) = u(y/|y|) for
any y ∈ Ω. The following results have been shown in [9].

Proposition 1. For any y ∈ Ω and x = y/|y| ∈ S
2, and i, j = 1, 2, 3,{

∇su(x) = ∇Eu(x), ∇(DiEu)(x) = ∇s(∇s,iu)(x) − (∇s,iu(x))�nS2,x,

|y| ∇Eu(y) = ∇Eu(x), |y|2DiDjEu(y) = DiDjEu(x).
(3.2)

By (3.1) and Proposition 1, the following result can be obtained using a proof
similar to that used in Lemma 1 in [13].

Proposition 2. There exists a generic constant c > 0 such that for any ijk ∈ Σ,⎧⎪⎨
⎪⎩

C1‖u‖L2(T̃ijk) ≤ ‖Eu|S∗‖L2(Tijk) ≤ C2‖u‖L2(T̃ijk),

C3‖u‖H1(T̃ijk) ≤ ‖Eu|S∗‖H1(Tijk) ≤ C4‖u‖H1(T̃ijk),

‖Eu|S∗‖H2(Tijk) ≤ C5‖u‖H2(T̃ijk).

(3.3)

We call uL a piecewise linear function on S∗ if and only if

uL(x∗) = λiu
L(xi) + λju

L(xj) + λku
L(xk), ∀ x∗ ∈ Tijk,

where λi, λj , λk are the barycentric coordinates of x∗ in the planar triangle Tijk.
Let VW be the space of piecewise constant functions associated with a spherical

Voronoi mesh W = {xi, Vi}ni=1,

VW = {u | u(x) is constant on each cell Vi},(3.4)

and denote by UW the space of all functions uh on S
2 such that uh(x) = uL(P−1(x))

for x ∈ S
2, where uL is a piecewise linear function on S∗ with {uL(xi) = uh(xi)}ni=1,

i.e., Euh(x∗) = uL(x∗) for any x∗ ∈ S∗.
If we interpret the Sobolev space on S∗ in the piecewise sense, then it is easy to

get uh ∈ H1(S2) for any uh ∈ UW using (3.2) and the fact that Euh = uL ∈ H1(S∗).
We now state some standard estimates on PU (u) and PV(u) which are the inter-

polants on UW and VW , respectively, of a function u defined on S
2.

Proposition 3. For any u ∈ H2(S2), there exists a generic constant C > 0 such
that {

‖u− PU (u)‖L2(S2) + h‖u− PU (u)‖H1(S2) ≤ Ch2‖u‖H2(S2),

‖u− PV(u)‖L2(S2) ≤ Ch‖u‖H2(S2).
(3.5)



1678 QIANG DU AND LILI JU

Proof. Note that PU (u)(x) = uL(P−1(x)) with

uL(x∗) = λiu(xi) + λju(xj) + λku(xk) ∀ x∗ ∈ Tijk.

Using the estimate for the linear interpolation on planar triangles and the relation

u(x) − PU (u)(x) = ũ(P−1(x)) − uL(P−1(x)),

where ũ = Eu|S∗ , we obtain by (3.1) and Proposition 2 that

‖u− PU (u)‖L2(S2) =

( ∑
T̃ijk∈T̃

∫
T̃ijk

|u(x) − PU (u)(x)|2 ds(x)

)1/2

=

( ∑
T̃ijk∈T̃

∫
T̃ijk

|ũ(P−1(x)) − uL(P−1(x))|2 ds(x)

)1/2

≤ C

( ∑
Tijk∈T

∫
Tijk

|ũ(x∗) − uL(x∗)|2 ds(x∗)

)1/2

(3.6)

≤ Ch2

( ∑
Tijk∈T

‖ũ‖2
H2(Tijk)

)1/2

≤ Ch2

( ∑
T̃ijk∈T̃

‖u‖2
H2(T̃ijk)

)1/2

= Ch2‖u‖H2(S2) .

The other estimates can be proved in similar manners. We omit the details.
For given functions u, v ∈ VW , or UW , we define, similar to [27], the discrete inner

products and norms associated with a spherical Voronoi mesh W = {xi, Vi}ni=1 by the
following:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(u, v)W =

n∑
i=1

m(Vi)u(xi)v(xi) , ‖u‖2
0,W = (u, u)W ,

|u|21,W =
1

2

n∑
i=1

∑
j∈χi

m(Γij)d(xi,xj)

(
u(xi) − u(xj)

|xi − xj |

)2

,

‖u‖2
1,W = ‖u‖2

0,W + |u|21,W .

Norms for general function spaces can also be defined.
We conclude with some norm equivalence results under mesh regularity assump-

tions. For convenience, we assume that all three angles of Tijk are less than 90◦. This
is generally valid for the triangles in the SCVMs with sufficiently large (no smaller
than 42, for example, for the constant density) number of vertices (generators) or,
equivalently, sufficient small h. Using (3.1), Propositions 1 and 2, and similar argu-
ments as those in Proposition 1 of section 2.1 in [26], we have the following.

Proposition 4. For any uh ∈ UW , there exist some constants {Ci > 0}4
i=1,{

C1‖uh‖0,W ≤ ‖uh‖L2(S2) ≤ C2‖uh‖0,W ,
C3‖uh‖1,W ≤ ‖uh‖H1(S2) ≤ C4‖uh‖1,W .

(3.7)
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The results of Proposition 4 are in fact valid for more general Voronoi–Delaunay
meshes that satisfy the local mesh regular properties. Let l(T̃ijk) be the maximum

number of spherical Voronoi regions Vm having nonempty intersection Vm∩T̃ijk for any

spherical triangle T̃ijk, and let l(Vm) be the maximum number of spherical triangles

T̃ijk needed to cover any spherical Voronoi region Vm; we need all the {l(T̃ijk)} and
{l(Vm)} to be bounded above by a constant integer independent of h. Under those con-
ditions and the mesh regularity conditions, the above equivalence of norms still holds.

3.2. A finite volume discretization scheme. Based on Green’s formula, a
finite volume method for (1.1) was proposed in [9]. Set {uh

i = uh(xi)}ni=1 and let the
approximate flux Fij be defined by

Fij = −m(Γij)aij
uh
j − uh

i

|xj − xi|
≈

∫
Γij

(−a(x)∇su(x)) · �nx,Vi dγ(x) ,(3.8)

where aijm(Γij) =
∫
Γij

a(x) dγ(x). An up-wind approximate convection flux Vi,j was

defined in [18] by

Vij = β+
iju

h
i + β−

iju
h
j ≈

∫
Γij

(�v(x)u(x)) · �nx,Vi
dγ(x) ,(3.9)

where β+
ij = (βij + |βij |)/2, β−

ij = (βij − |βij |)/2, and βij =
∫
Γij

�v(x) · �nx,Vi dγ(x).

For all Vi, let fi and bi denote, respectively, the mean value of f and b on Vi; i.e.,

fi =
1

m(Vi)

∫
Vi

f(x) ds(x) and bi =
1

m(Vi)

∫
Vi

b(x) ds(x) .(3.10)

The finite volume scheme given in [9] is defined as follows: find uh ∈ VW such
that

(Lhuh)i =
1

m(Vi)

∑
j∈χi

(
Fij + Vij

)
+ biu

h
i = fi for i = 1, . . . , n .(3.11)

Since Fij = −Fji and Vij = −Vji for neighboring xi and xj with m(Γij) > 0, the
above scheme satisfies the discrete conservation law

n∑
i=1

∑
j∈χi

(Fij + Vij) = 0 .

Note that an approximate convection flux of the form Vi,j = (uh
i + uh

j )βij/2 leads to
a central difference scheme. A stability condition such as

Pi = max
j∈χi

|βij | · |xi − xj |
2m(Γij)aij

≤ 1 for i = 1, . . . , n

is needed in such a case. Pi is called the local Peclet number [18, 27].

3.3. Previous results and a modified scheme. Assuming that W is regular
in the sense that σ is not too small, i.e., it remains bounded from below as h → 0,
then the following result has been proved in [9].

Theorem 1. Let Assumption 1 be satisfied and the mesh be regular, and let Fij,
Vij, fi, and bi be defined by (3.8)–(3.10). Then the discrete system (3.11) has a unique
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solution uh ∈ VW . Furthermore, assume that the unique solution u of (1.1) belongs
to H2(S2); then there exists a constant C > 0 only depending on a, �v, b, and σ such
that

‖eh‖1,W ≤ Ch‖u‖H2(S2) ,(3.12)

where eh = {ehi = u(xi) − uh
i }.

Note that Theorem 1 holds for general regular spherical Voronoi meshes. For more
existing studies on the finite volume methods, especially when applied to solve second
order elliptic on the 2d plane, we refer to [1, 3, 4, 5, 12, 14, 15, 20, 26, 25, 28, 29, 34, 35].

To get second order accuracy for the L2 estimates, the order of approximation
for the convection term used in the original scheme needs to be improved with better
integration rules. For this purpose, let us define the bilinear functionals A∗ and AW
such that

A∗(u, vh) =

n∑
i=1

vh(xi)A∗(u, ψi) , AW(u, vh) =

n∑
i=1

vh(xi)AW(u, ψi)(3.13)

for any u ∈ H2(S2) ∪ UW and vh ∈ VW , where

A∗(u, ψi) =

∫
∂Vi

(−∇su(x) + �v(x)u(x)) · �nx,Vi dγ(x) +

∫
Vi

b(x)PV(u)(x) ds(x) ,

AW(u, ψi) =
∑
j∈χi

Fij(u) +

∫
∂Vi

PU (u)(x)(�v(x) · �nx,Vi) dγ(x) + m(Vi)biu(xi) .

Comparing AW with the finite volume scheme (3.11), we have in fact replaced only the
convection term Vij by

∫
∂Vi

PU (u)(x)(�v(x)·�nx,Vi
) dγ(x). Note that no change is made

for a pure diffusion problem containing only the second order terms ∇s ·(a(x)∇su(x)).
Our discrete problem here is then as follows: find uh ∈ UW such that

AW(uh, v
h) = (f, vh) ∀ vh ∈ VW ,(3.14)

i.e.,

AW(uh, ψi) = fi for i = 1, 2, . . . , n.

Formulations like the above for finite volume methods have been used, for instance,
in [26]. Combining Proposition 3 and Proposition 4, it can be shown that the error
estimate of Theorem 1 still holds for the above uh using analysis similar to that used
in [9].

Theorem 2. Suppose that Assumption 1 is satisfied. Let Fij be defined by (3.8).
Then the discrete system (3.14) has a unique solution uh ∈ UW . Furthermore, assume
that the unique solution u of (1.1) belongs to H2(S2); then there exists a constant
C > 0 only depending on a, �v, b, and σ such that for eh = u− uh, we have

‖eh‖H1(S2) ≤ Ch‖u‖H2(S2) .(3.15)

Proof. Notice that ‖PU (u) − uh‖1,W = ‖eh‖1,W ; then we have

‖eh‖H1(S2) = ‖u− uh‖H1(S2)

≤ ‖u− PU (u)‖H1(S2) + ‖PU (u) − uh‖H1(S2)

≤ C1h‖u‖H2(S2) + C2‖PU (u) − uh‖1,W

= C1h‖u‖H2(S2) + C2‖eh‖1,W ≤ Ch‖u‖H2(S2),
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where the conclusion of Theorem 1 has been used.

4. L2 error estimate on SCVMs. An improved error estimate in the L2 norm
is generally expected for our finite volume approximations of second order elliptic
equations. However, it is shown here that the quadratic order error estimate can only
be proved when the grid satisfies certain geometric constraints. In fact, a part of the
estimate depends critically on the property that if W = {xi, Vi}ni=1 is an SCVT of S

2

corresponding to a density function ρ, then

∫
Vi

ρ(x)(x∗
i − x) ds(x) = 0, ∀ i = 1, 2, . . . , n,

where x∗
i is the standard mass centroid of Vi, whose projection xc

i (through the stan-
dard map P) onto the sphere coincides with xi. We note that so far we have not
been able to extend the elegant analysis of the covolume schemes for planar Poisson
equations in [28, 29] to our context, nor we have found any improvement of the results
there for the SCVT-based meshes. Thus, we resort to a more traditional approach of
obtaining estimates through appropriate weak forms.

For the rest of the section, only those schemes based on SCVMs are analyzed.

4.1. A technical lemma. For the interpolation operator PV , we present a bet-
ter approximation result that requires the properties of the SCVMs.

Lemma 1. Suppose that W = {xi, Vi}ni=1 is an SCVT of S
2 with the density

function ρ satisfying ρ ∈ C1(S2) and ρ(x) > 0 for any x ∈ S
2. Then, for any

w ∈ H2(S2), there exits a constant C > 0 such that

∣∣∣∣
∫
Vi

(w − PV(w)) ds(x)

∣∣∣∣ ≤ Ch2m(Vi)
1/2‖w‖H2(Vi), i = 1, . . . , n.(4.1)

Proof. Let us assume that w ∈ C2(S2); then it is easy to see that Ew ∈ C2(Ω).
Consider the spherical Voronoi region Vi associated with xi, for any x ∈ Vi. We have

w(xi) − w(x) = Ew(xi) − Ew(x)

= ∇Ew(x) · (xi − x) +

∫ 1

0

H(Ew)(tx + (1 − t)xi)(xi − x) · (xi − x)tdt,

where H(Ew)(x) denotes the Hessian matrix of Ew at x. Thus

∣∣∣∣
∫
Vi

w − PV(w) ds(x)

∣∣∣∣ ≤ E1 + E2 + E3,

where, with x∗
i being the mass centroid of Vi in R3 with the density ρ, we have

E1 =

∣∣∣∣
∫
Vi

∇Ew(x) · (x∗
i − x) ds(x)

∣∣∣∣ =

∣∣∣∣
∫
Vi

∇sw(x) · (x∗
i − x) ds(x)

∣∣∣∣ ,
E2 =

∣∣∣∣
∫
Vi

∇Ew(x) · (xi − x∗
i ) ds(x)

∣∣∣∣ =

∣∣∣∣
∫
Vi

∇sw(x) · (xi − x∗
i ) ds(x)

∣∣∣∣ ,
E3 =

∫
Vi

∫ 1

0

|H(Ew)(tx + (1 − t)xi)(xi − x) · (xi − x)|tdt ds(x).
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Using the property of the SCVT that
∫
Vi

ρ(x)(x∗
i − x) ds(x) = 0, we have

E1 =

∣∣∣∣
∫
Vi

∇sw(x) · (x∗
i − x) − ρ(x)

ρ(xi)
ΠV(∇sw) · (x∗

i − x) ds(x)

∣∣∣∣
≤

∣∣∣∣
∫
Vi

ρ(x) − ρ(xi)

ρ(xi)
∇sw(x) · (x∗

i − x) ds(x)

∣∣∣∣
+

∣∣∣∣
∫
Vi

ρ(x)

ρ(xi)
(∇sw(x) − ΠV(∇sw)) · (x∗

i − x) ds(x)

∣∣∣∣,
where ΠV denotes the L2 projection on VW . Denoting the two terms on the right-hand
side of the last equation by E4 and E5, respectively, we have

E4 ≤ h

∫
Vi

maxx∈Ω |∇Eρ(x)|
|ρ(xi)|

|∇sw(x)| ‖x∗
i − x‖ ds(x)

≤ 2h2

∫
Vi

maxx∈Ω |∇sρ(x)|
|ρ(xi)|

|∇sw(x)| ds(x)(4.2)

≤ Ch2

∫
Vi

|∇sw(x)| ds(x) ≤ Ch2m(Vi)
1/2‖w‖H2(Vi)

and

E5 ≤
∫
Vi

maxx∈Ω |ρ(x)|
|ρ(xi)|

|∇sw(x) − ΠV(∇sw)| ‖x∗
i − x‖ ds(x)|

≤ C‖∇sw − ΠV(∇sw)‖L2(Vi)

(∫
Vi

‖x∗
i − x‖2 ds(x)

)1/2

(4.3)

≤ Ch2m(Vi)
1/2‖w‖H2(Vi).

Combining (4.2) and (4.3), we get

E1 ≤ Ch2m(Vi)
1/2‖w‖H2(Vi) .(4.4)

Consider E2. Since xi = x∗
i /|x∗

i |, by (3.1) we know that |xi − x∗
i | < ch2. Thus

E2 ≤ Ch2

(∫
Vi

|∇sw(x)|2 ds(x)

)1/2(∫
Vi

ds(x)

)1/2

(4.5)

≤ Ch2m(Vi)
1/2‖w‖H1(Vi).

On the other hand, for E3, let V t
i = {x∗ = tx + (1 − t)xi | x ∈ Vi}. By changing

variable x∗ = tx + (1 − t)xi and using ds(x) ≤ 2ds(x∗)/t2, we get

E3 ≤ 2h2

∫ 1

0

∫
V t
i

(|H(Ew)|/t) ds(x∗)dt .

Obviously, m(V t
i ) ≤ t2m(Vi). By a proof similar to that given in [9], we get

E3 ≤ 2h2

∫ 1

0

(∫
V t
i

|H(Ew)|2 ds(x∗)

)1/2

m(Vi)
1/2dt

≤ Ch2m(Vi)
1/2‖w‖H2(Vi) .(4.6)

Finally, we obtain (4.1) for u ∈ H2(S2) by combining (4.4) and (4.5) with (4.6)
and invoking a density argument.

Note that in the planar case we have E2 = 0 instead of (4.5).
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4.2. Estimates for the weak forms. For simplicity, we assume a(x) = 1. We
first compare the bilinear forms (1.2) and (3.13). Let �nx,T̃ijk

be the unit outer normal

at x ∈ ∂T̃ijk of the boundary of T̃ijk that is tangent to S
2. By Green’s formula, for

W ∈ H2(S2) we have

A(u− uh,PU (w)) =

∫
S2

∇s(u− uh) · ∇sPU (w) ds(x)

=
∑

T̃ijk∈T̃

(∫
T̃ijk

∇s(u− uh) · ∇sPU (w) + (u− uh)(�v · ∇sPU (w)) ds(x)

)

+

∫
S2

b(u− uh)PU (w) ds(x)

=
∑

T̃ijk∈T̃

(∫
T̃ijk

−�s(u− uh)PU (w) + (∇s · (u− uh)�v)PU (w) ds(x)

+

∫
∂T̃ijk

(∇s(u− uh) · �nx,T̃ijk
)PU (w) − (u− uh)(�v · �nx,T̃ijk

)PU (w) dγ(x)

)

+

∫
S2

b(u− uh)PU (w) ds(x) ,(4.7)

A∗(u− uh,PV(w)) =

n∑
i=1

PV(w)(xi)A∗(u− uh, ψi)

=
∑

T̃ijk∈T̃

(∫
T̃ijk

−�s(u− uh)PV(w) + (∇s · (u− uh)�v)PV(w) ds(x)

+

∫
∂T̃ijk

(∇s(u− uh) · �nx,T̃ijk
)PV(w) − (u− uh)(�v · �nx,T̃ijk

)PV(w) dγ(x)

)

+

∫
S2

bPV(u− uh)PV(w) ds(x).(4.8)

We now compare the first term of each functional.
Lemma 2. There is a constant C > 0 such that for u ∈ H3(S2) and w ∈ H2(S2),∣∣∣∣∣

∑
T̃ijk∈T̃

∫
T̃ijk

�su(PU (w) − PV(w)) ds(x)

∣∣∣∣∣ ≤ Ch2‖u‖H3(S2)‖w‖H2(S2) .(4.9)

Proof. Letting E denote the left-hand side of (4.9), we have

(4.10)

E =

∣∣∣∣∣
∑

T̃ijk∈T̃

∫
T̃ijk

�su(PU (w) − PV(w)) ds(x)

∣∣∣∣∣

≤
∣∣∣∣∣

∑
T̃ijk∈T̃

∫
T̃ijk

�su(PU (w) − w) ds(x)

∣∣∣∣∣ +

∣∣∣∣∣
∑

T̃ijk∈T̃

∫
T̃ijk

�su(PV(w) − w) ds(x)

∣∣∣∣∣

≤
∣∣∣∣∣

∑
T̃ijk∈T̃

∫
T̃ijk

�su(PU (w) − w) ds(x)

∣∣∣∣∣ +

∣∣∣∣∣
n∑

i=1

∫
Vi

ΠV(�su)(PV(w) − w) ds(x)

∣∣∣∣∣

+

∣∣∣∣∣
n∑

i=1

∫
Vi

(�su(x) − ΠV(�su))(PV(w) − w) ds(x)

∣∣∣∣∣,
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where ΠV denotes the L2 projection on VW . Using Proposition 3 and the Cauchy–
Schwarz inequality, we get∣∣∣∣∣

∑
T̃ijk∈T̃

∫
T̃ijk

�su(PU (w) − w) ds(x)

∣∣∣∣∣ ≤ Ch2‖u‖H2(S2)‖w‖H2(S2).

Using Lemma 1, we have∣∣∣∣∣
n∑

i=1

∫
Vi

ΠV(�su)(PV(w) − w) ds(x)

∣∣∣∣∣ ≤ Ch2
n∑

i=1

|ΠV(�su)|Vi
|m(Vi)

1/2‖w‖H2(Vi)

= Ch2‖ΠV(�su)‖L2(S2)‖w‖2
H2(S2)

≤ Ch2‖u‖H2(S2)‖w‖H2(S2)

∣∣∣∣∣
n∑

i=1

∫
Vi

(�su(x) − ΠV(�su))(PV(w) − w) ds(x)

∣∣∣∣∣ ≤ Ch2‖u‖H3(S2)‖w‖H2(S2) .

Thus we obtain the estimate (4.9) in the lemma.
Now we are ready to show the following.
Lemma 3. Let uh ∈ UW be the unique solution of the discrete system (3.14) and

assume that the unique variational solution u of (1.1) belongs to H3(S2). Then, for
any w ∈ H2(S2), there exists a constant C > 0 such that

|A(u− uh,PU (w)) −A∗(u− uh,PV(w))| ≤ Ch2‖u‖H3(S2)‖w‖H2(S2).(4.11)

Proof. By equation (4.8) we obtain

A(u− uh,PU (w)) −A∗(u− uh,PV(w)) = E1 + E2 + E3 + E4 + E5 + E6,(4.12)

where

E1 = −
∑

T̃ijk∈T̃

∫
T̃ijk

�su(PU (w) − PV(w)) ds(x) ,

E2 =
∑

T̃ijk∈T̃

∫
T̃ijk

�suh(PU (w) − PV(w)) ds(x) ,

E3 =
∑

T̃ijk∈T̃

∫
∂T̃ijk

(∇s(u− uh) · �nx,T̃ijk
)(PV(w) − PU (w)) dγ(x) ,

E4 =
∑

T̃ijk∈T̃

∫
T̃ijk

(∇s · (u− uh)�v)(PU (w) − PV(w)) ds(x) ,

E5 =
∑

T̃ijk∈T̃

∫
∂T̃ijk

(u− uh)(�v · �nx,T̃ijk
)(PV(w) − PU (w)) dγ(x) ,

E6 =

∫
S2

b((u− uh)PU (w) − PV(u− uh)PV(w)) ds(x) .

Consider E1. By Lemma 2 we have

|E1| ≤ Ch2‖u‖H3(S2)‖w‖H2(S2).(4.13)
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As for E2, using Proposition 3 and Theorem 2 we have

|E2| ≤
∑

T̃ijk∈T̃

∫
T̃ijk

|�suh(PU (w) − PV(w))| ds(x)

≤ Ch
∑

T̃ijk∈T̃

∫
T̃ijk

|∇suh| |(PU (w) − PV(w))| ds(x)(4.14)

≤ Ch2‖uh‖H1(S2)‖w‖H2(S2) ≤ Ch2‖u‖H2(S2)‖w‖H2(S2).

According to the continuity of ∇su on each ∂T̃ijk, we have

∑
T̃ijk∈T̃

∫
∂T̃ijk

(∇su · �nx,T̃ijk
)(PV(w) − PU (w)) dγ(x) = 0,

and thus we get

E3 =
∑

T̃ijk∈T̃

∫
∂T̃ijk

(∇suh · �nx,T̃ijk
)(PV(w) − PU (w)) dγ(x) .(4.15)

Additionally, on each edge L̃ of T̃ijk, by symmetry with respect to the midpoint of L̃,

we have that ∇suh(z1) · �nx,T̃ijk
is an even function for x ∈ L̃ while PV(w)−PU (w) is

odd. Thus, ∫
L̃

(∇suh · �nx,T̃ijk
)(PV(w) − PU (w)) dγ(x) = 0.

Thus we have

E3 = 0.(4.16)

About E4, we have by Theorem 2 that

|E4| ≤
∑

T̃ijk∈T̃

∫
T̃ijk

|(∇s · (u− uh)�v)(PU (w) − PV(w))| ds(x)

≤ sup
x∈S2

(|�v| + |∇s�v|)
∑

T̃ijk∈T̃

∫
T̃ijk

|∇s(u− uh)| |PU (w) − PV(w)| ds(x)(4.17)

≤ Ch‖u− uh‖H1(S2)‖w‖H2(S2) ≤ Ch2‖u‖H2(S2)‖w‖H2(S2).

About E5, using Trace theorem [17] and Theorem 2 we have

|E5| ≤
∑

T̃ijk∈T̃

∫
∂T̃ijk

|(u− uh)(�v · �nx,T̃ijk
)(PV(w) − PU (w))| dγ(x)

≤ sup
x∈S2

(|�v|)
( ∑

T̃ijk∈T̃

∫
∂T̃ijk

|u− uh|2 dγ(x)

)1/2

·
( ∑

T̃ijk∈T̃

∫
∂T̃ijk

|PV(w) − PU (w)|2 dγ(x)

)1/2

(4.18)

≤ C

( ∑
T̃ijk∈T̃

‖u− uh‖2
H1(T̃ijk)

)1/2( ∑
T̃ijk∈T̃

h2‖w‖2
H2(T̃ijk)

)1/2

.

≤ Ch‖u− uh‖H1(S2)‖w‖H2(S2) ≤ Ch2‖u‖H2(S2)‖w‖H2(S2).
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About E6, by Proposition 3 and Theorem 2 we have

|E6| ≤
∣∣∣∣∣
∫

S2

b(u− uh)(PU (w) − PV(w)) ds(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫

S2

b((u− uh) − PV(u− uh))(PV(w)) ds(x)

∣∣∣∣∣
≤ C‖u− uh‖L2(S2) ‖PU (w) − PV(w)‖L2(S2)(4.19)

+Ch‖u− uh‖H1(S2) ‖PV(w)‖L2(S2)

≤ Ch2‖u‖H2(S2)‖w‖H2(S2).

Combining (4.12)–(4.14) and (4.16)–(4.19), we get (4.11).
We see from the above proof that the extra regularity of u ∈ H3(S2) is only

required for estimating the term E1 (which is given in Lemma 2); the other terms
merely require u ∈ H2(S2).

Lemma 4. Let uh ∈ UW be the unique solution of the discrete system (3.14) and
assume that the unique variational solution u of (1.1) belongs to H2(S2). Then, for
any w ∈ H2(S2), there exists a constant C > 0 such that

|AW(uh,PV(w)) −A∗(uh,PV(w))| ≤ Ch2‖u‖H2(S2)‖w‖H2(S2) .(4.20)

Proof. Since PV(uh)|Vi
= uh(xi) and PV(w)|Vi = w(xi) , we have

n∑
i=1

∫
∂Vi

(uh − PU (uh))(�v · nx,Vi)PV(w) dγ(x) = 0,

n∑
i=1

(∫
Vi

bPV(uh)PV(w) ds(x) −m(Vi)biuh(xi)w(xi)

)
= 0.

Thus

A∗(uh,PV(w)) −AW(uh,PV(w))

=

n∑
i=1

(∫
∂Vi

(−∇suh(x) · �nx,Vi
)PV(w) dγ(x) −

∑
j∈χi

Fij(uh)PV(w)

)
(4.21)

=

n∑
i=1

∑
j∈χi

m(Γij)ξijw(xi) ,

with

ξij = − 1

m(Γij)

∫
∂Γij

∇suh(x) · �nx,Vi dγ(x) +
uh(xi) − uh(xj)

|xi − xj |

= − 1

m(Γij)

∫
∂Γij

∇suh(x) · �nx,Vi dγ(x) + ∇Euh(x∗) · �nx,Vi ,

for any x ∈ Γij , x∗ = P−1(x). Since |x − x∗| ≤ Ch2, by Proposition 1

|∇Euh(x∗) −∇suh(x)| ≤ Ch2|∇Euh(x∗)|.

Then we get

ξij ≤
Ch2|uh(xi) − uh(xj)|

|xi − xj |
.(4.22)
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It is also easy to find that

E =

n∑
i=1

∑
j∈χi

m(Γij)ξijw(xi) = −1

2

n∑
i=1

∑
j∈χi

m(Γij)ξij |xi − xj |
w(xi) − w(xj)

|xi − xj |
.

By Proposition 4 and Theorem 2 we have that

|E| ≤
n∑

i=1

∑
j∈χi

m(Γij)ξijd(xi,xj)
|w(xi) − w(xj)|

|xi − xj |

≤ 2

(
1

2

n∑
i=1

∑
j∈χi

m(Γij)d(xi,xj)ξ
2
ij

)1/2

·
(

1

2

n∑
i=1

∑
j∈χi

m(Γij)d(xi,xj)

(
w(xi) − w(xj)

|xi − xj |

)2)1/2

(4.23)

≤ Ch2|uh|1,W |w|1,W ≤ Ch2‖uh‖H1(S2)‖PU (w)‖H1(S2)

≤ Ch2‖u‖H2(S2)‖w‖H2(S2).

Combining (4.21) and (4.23), we thus get (4.20).
We note that the results of the above lemmas hold for more general a = a(x) as

well, but some slight modifications of the proofs are needed.

4.3. Main result. We now present our main result on the L2 error estimate.
Theorem 3. Let Assumption 1 be satisfied and additionally we assume that

b ∈ H1(S2). Suppose that W = {xi, Vi}ni=1 is an SCVM of S
2 with the density function

ρ satisfying ρ ∈ C1(S2) and ρ(x) > 0 for any x ∈ S
2. Let Fij be defined by (3.8).

Then the discrete system (3.14) has a unique solution uh ∈ UW . Furthermore, assume
that the unique solution u of (1.1) belongs to H3(S2). Then there exists a constant
C > 0 only depending on ρ, a, �v, b, and σ such that

‖eh‖L2(S2) ≤ Ch2‖u‖H3(S2),(4.24)

where eh(x) = u(x) − uh(x).
Proof. Since u − uh ∈ H1(S2), according to (1.3) we know that there exists a

weak solution w ∈ H2(S2) satisfying

A(w, v) = (u− uh, v) ∀ v ∈ H1(S2).

Putting v = u− uh in the above equality, we get

||u− uh||2L2(S2) = (u− uh, u− uh) = A(w, u− uh).(4.25)

Furthermore, from the H2 regularity estimate, we have

||w||H2(S2) ≤ C||u− uh||L2(S2)(4.26)

for some constant C > 0.
For the interpolants PU (w) and PV(w), we have

A∗(u,PV(w)) +

∫
S2

b(u− PV(u))PV(w) ds(x) = (f,PV(w))
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and

AW(uh,PV(w)) = (f,PV(w)) .

Consequently, we get

‖u− uh‖2
L2(S2) ≤ |A(u− uh, w − PU (w))|

+ |A(u− uh,PU (w)) −A∗(u− uh,PV(w))|
+ |A∗(uh,PV(w)) −AW(uh,PV(w))|

+

∣∣∣∣
∫

S2

b(u− PV(u))PV(w) ds(x)

∣∣∣∣.
(4.27)

According to Theorem 2, Proposition 3, and (4.26), we get

|A(u− uh, w − PU (w))| ≤ C‖u− uh‖H1(S2) ‖w − PU (w)‖H1(S2)

≤ Ch2‖u‖H2(S2) ‖w||H2(S2)(4.28)

≤ Ch2‖u‖H2(S2) ‖u− uh‖L2(S2).

By Lemma 3 and (4.26), we get

|A(u− uh,PU (w)) −A∗(u− uh,PV(w))| ≤ Ch2‖u‖H3(S2)‖w‖H2(S2)

≤ Ch2‖u‖H3(S2)‖u− uh‖L2(S2) .(4.29)

Again, by Lemma 4 and (4.26), we have

|AW(uh,PV(w)) −A∗(uh,PV(w))| ≤ Ch2‖u‖H2(S2)‖w‖H2(S2)

≤ Ch2‖u‖H2(S2)‖u− uh‖L2(S2) .(4.30)

It is easy to see that∣∣∣∣∣
∫

S2

b(u− PV(u))PV(w) ds(x)

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

∫
Vi

b(u− PV(u))PV(w) ds(x)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

∫
Vi

ΠV(b)(u− PV(u))PV(w) ds(x)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

∫
Vi

(b− ΠV(b))(u− PV(u))PV(w) ds(x)

∣∣∣∣∣.
Using a proof similar to Lemmas 1 and 2, we can get∣∣∣∣

∫
S2

b(u− PV(u))PV(w) ds(x)

∣∣∣∣ ≤ Ch2‖u‖H2(S2)‖w‖H2(S2)

≤ Ch2‖u‖H2(S2)‖u− uh‖L2(S2).(4.31)

Combining (4.28), (4.29), and (4.30), we get

‖u− uh‖2
L2(S2) ≤ Ch2‖u‖H3(S2)‖u− uh‖L2(S2),

which means

‖eh‖L2(S2) = ‖u− uh‖L2(S2) ≤ Ch2‖u‖H3(S2).
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We end the proof by noting that the case of general a(x) can be verified
similarly.

Remark 1. Extra regularity on the exact solution is required to get the quadratic
order error estimates, though in the standard finite element literature such a require-
ment is not needed in general. This is seen as a consequence of the quadrature ap-
proximations to the standard weak forms of the equations. From the proof of Lemma
3, it is easy to see that the regularity in H3(S2) can in fact be further weakened to,
for instance, W 3,p(S2) for p > 1.

Remark 2. The quadratic order error estimates depend critically on the properties
of the SCVMs. The proof is not valid for a general spherical Voronoi mesh. Such an
L2 error estimate has not been given in the literature even for the planar finite volume
methods based on the general Voronoi–Delaunay meshes. With other choices of the
covolumes which are not of the Voronoi–Delaunay type, a quadratic order estimate
has been proved in [26] for 2d diffusion equations. A first order L2 error estimate has
been given in [20].

5. Superconvergent gradient recovery. In this section, we discuss how to
postprocess the finite volume solutions to obtain their tangential gradients in the
longitude and latitude directions. Let us rewrite (1.1) in the spherical coordinate
system (φ, θ) defined by x = (r sinφ cos θ, r sinφ sin θ, r cosφ) for φ ∈ [0, π] and θ ∈
[0, 2π). Ignoring the radial component, we may denote �v(φ, θ) = (v1(φ, θ), v2(φ, θ)),
where v1 and v2 are the (orthogonal) components of �v in the φ and θ directions,
respectively, on the tangential surface of S

2 at x. We also have

∇su(φ, θ) =

(
1

r

∂u

∂φ
,

1

r sinφ

∂u

∂θ

)
, ∇s · �v(φ, θ) =

1

r sinφ

(
∂

∂φ
(v1 sinφ) +

∂v2

∂θ

)
.

For any generator xi in W, let Vxi
= ∪xi∈Tijk

Tijk and �nN,xi
be the unit vector on

Sxi along the φ direction. A map Hxi : Vxi → R
2 is defined by first projecting Vxi

onto the tangential plane Sxi of S
2 at xi (Sxi ⊥ �nS2,xi

at xi) and then moving Sxi to
the (x, y)-plane via an affine map such that �nS2,xi

is mapped to the z-axis and �nN,xi

to the x-axis; see Figure 5.1. Let V ′
i = Hxi(Vxi).

nN,x i
,xx

V

xk

j

ix

n S 2, x i
n S 2, x i

xk

xj

x
xi

nN,x i

Vx

i

i x

y

z

’ ’

’
’

Fig. 5.1. The mapping Hxi .

On each planar triangle �x′
ix

′
jx

′
k = Hxi

(Tijk), we uniquely determine a linear
function uTijk

by setting uTijk
(x′

i) = uh(xi), uTijk
(x′

j) = uh(xj), and uTijk
(x′

k) =
uh(xk). Now we define

∇suh(xi) =
1

q

∑
Tijk⊂Vxi

(
∂uTijk

∂x
,
∂uTijk

∂y

)
,(5.1)
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where q = Card({Tijk | Tijk ⊂ Vxi
}). We also let

D(u, uh) =

(∑
i∈I

|∇su(xi) −∇suh(xi)|2m(Vi)

)1/2

.(5.2)

The index set I may be taken to be the set of all Voronoi generators or a large
portion of the generator set. In light of the recent studies on the finite element
gradient recovery [36] at mesh symmetric points, the close relationship between finite
element and finite volume schemes [3, 34], and the nice properties of SCVMs, we
expect that for the finite volume solution with SCVMs, there exists the estimate
D(u, uh) = O(h2). Such results are to be numerically investigated in the next section.

6. Numerical experiments. Let S
2 be the unit sphere. We now present nu-

merical results that are summarized in the following two examples, with each example
containing two separate experiments (corresponding to two different exact solutions)
but with one identical exact solution. In our experiments, the finite volume meshes
are taken to be the SCVMs corresponding to a constant density function with various
different numbers of generators.

For our first example, we choose the exact solution to be

u1(φ, θ) = sin2 φ cos2 θ(6.1)

and study two different model problems whose data are given in Table 6.1.

Table 6.1

Data for model problems a(φ, θ) v1(φ, θ) v2(φ, θ) b(φ, θ)

I no convection 1 0 0 1

II convection dominated 0.05 1 + sinφ 1 + sin θ 3.0 + sin2 φ

Approximate solutions were obtained using the finite volume scheme (3.11) with
the central difference scheme and the uniformly distributed SCVM based on the con-
stant density function ρ = 1 (as in Figure 2.1). In Table 6.2, errors in the approximate
solution are listed against the number of generators.

Table 6.2

n ‖u1 − u1,h‖L2(S2) D(u1, u1,h) ‖u2 − u2,h‖L2(S2) D(u2, u2,h)

162 I 4.038E-02 1.331E-01 4.032E-01 4.313E-00

II 6.406E-02 1.655E-01 5.962E-01 4.314E-00

642 I 1.021E-02 3.444E-02 1.370E-01 1.178E-00

II 1.612E-02 4.214E-02 1.241E-01 1.115E-00

2562 I 2.556E-03 8.788E-03 2.687E-02 3.115E-01

II 3.994E-03 1.161E-02 3.033E-02 2.908E-01

10242 I 6.362E-04 2.221E-03 7.445E-03 7.902E-02

II 1.004E-03 3.072E-03 7.577E-03 7.346E-02

40962 I 1.631E-04 5.269E-04 2.080E-04 1.745E-02

II 2.375E-04 8.132E-04 2.072E-04 1.797E-02

For the second example, the exact solution of (1.1) is chosen to be

u2(φ, θ)) = sin2(2φ) cos(4θ).(6.2)
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Errors in the approximate solution are again given in Table 6.2. As the exact so-
lution (6.2) is more complex than (6.1), the largest 2% of the pointwise gradient
errors |∇su2(xi) − ∇su2,h(xi)| was removed from the estimate when computing the
D(u2, u2,h). These relatively larger errors concentrate near the 12 defect points of the
SCVM (i.e., those Voronoi cells with only 5 neighbors) where the mesh lacks perfect
symmetry.

From the numerical values given in the tables we see that, for both the L2 errors
and the gradient recovery errors D(u, uh), the trend of quadratic order convergence
is very evident as we refine the mesh.

7. Conclusion. High quality spherical grids have many applications. Many
strategies have already been studied in atmospheric and geophysical simulations for
producing good spherical grids [31]. Though many of these choices produce good
quality grids, in general the recently proposed concept of SCVT [8, 9] yields grids
superior to most of existing ones. Our study here on a finite volume approximation of
linear convection diffusion equations based on the SCVM demonstrated further their
optimality from both theoretical and computational standpoints.

Further studies can be carried out to explore the local energy equipartition prop-
erty and hierarchical SCVMs for multiresolution analysis, to validate superconver-
gent gradient recovery through analytical means. The application of the SCVM to
Ginzburg–Landau models has been studied recently [10, 11] and we expect to find
many more applications to other complex physical problems in the future.
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Abstract. The use of reduced-order models to describe a dynamical system is pervasive in
science and engineering. Often these models are used without an estimate of their error or range
of validity. In this paper we consider dynamical systems and reduced models built using proper
orthogonal decomposition. We show how to compute estimates and bounds for these errors by a
combination of small sample statistical condition estimation and error estimation using the adjoint
method. Most importantly, the proposed approach allows the assessment of regions of validity for
reduced models, i.e., ranges of perturbations in the original system over which the reduced model is
still appropriate. Numerical examples validate our approach: the error norm estimates approximate
well the forward error, while the derived bounds are within an order of magnitude.
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1. Introduction. Model reduction of dynamical systems described by differen-
tial equations is ubiquitous in science and engineering [2]. Reduced models are used
for efficient simulation [17, 31] and control [18, 28]. Moreover, the process of creating
low-order models forces the researcher to isolate and quantify the dominant physical
mechanisms, revealing effective design decisions that would not have been identified
through numerical simulation, experiments, or “black box” optimization methods [30].

The proper orthogonal decomposition (POD) method has been used extensively
in a variety of fields including fluid dynamics [23], identification of coherent struc-
tures [12, 21], and control [27] and inverse problems [19]. The method has been em-
ployed for industrial applications such as supersonic jet modeling [5], turbine flows [6],
thermal processing of foods [3], and study of the dynamic wind pressures acting on
buildings [16], to name only a few.

Depending on the field of research, POD is also known as principal component
analysis (statistics [14]), Karhunen–Loève decomposition (signal analysis and pat-
tern recognition [9]), and the method of empirical orthogonal functions (EOFs) in
geophysical fluid dynamics [7, 24] and meteorology [1, 8, 29]. Principal components
related techniques (PCAs) are the main dimension-reduction methods in analysis of
multivariate data, addressing the need to compress or decompose data for eliminating
the redundancy of high throughput measurements such as spatial, spectra, or image
data. PCA involves a mathematical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncorrelated variables called principal

∗Received by the editors January 26, 2004; accepted for publication (in revised form) February
28, 2005; published electronically November 22, 2005. This work was supported by grants DOE
DE-FG03-00ER25430, NSF/NCSA ACI-9619019, and NSF/ITR ACI-0086061.

http://www.siam.org/journals/sinum/43-4/060354.html
†Department of Computer Science, University of California, Santa Barbara, CA 93106 (homescu@

cs.ucsb.edu, petzold@engineering.ucsb.edu).
‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,

CA 94551 (radu@llnl.gov). The work of this author was performed under the auspices of the U.S.
Department of Energy by the University of California, Lawrence Livermore National Laboratory
under contract W-7405-Eng-48.

1693



1694 CHRIS HOMESCU, LINDA R. PETZOLD, AND RADU SERBAN

components. The PCA components account for as much of the variability in the data
as possible. The EOFs form a set of basis functions which specify a transformation
on a set of empirical signals. The result is a set of signals that, phenomenologically
speaking, are statistically independent, i.e., have maximum variance. Thus, informa-
tion is evenly distributed among the signals, as well as the equally measurable values
of each signal, resulting in maximum information entropy and robustness to noise.

All the above reduction methods attempt to maximize the expectation of the
energy in a basis set. It was shown that such an optimal basis is given by the eigen-
functions of the integral equation whose kernel is the averaged autocorrelation func-
tion. In practice, the covariance matrix is constructed based on measurements of the
state, and the existing model projected onto those eigenvectors which correspond to
the largest eigenvalues. Assessing the optimality of these reduction methods (POD,
PCA, and EOF) is a norm dependent statement. For example, it was shown in [12]
that for a given number of modes, POD is the most efficient choice among all linear
decompositions in the sense that it retains, on average, the greatest possible kinetic
energy.

As soon as one contemplates the use of a reduced model, questions concerning
the quality of the approximation become paramount. To judge the quality of the
reduced model, it is important to estimate its error. An algorithm for estimating the
error of a class of reduction methods based on projection techniques was presented in
[32]. In this approach, the original problem is linearized around the initial time. The
resulting first-order error estimates are valid for only a small number of time steps
(during which the Jacobian matrix can be considered constant). First-order estimates
of POD errors were used in [20] to extend the concept of domain decomposition as
a dynamic a posteriori verification and, if necessary, correction of the approximate
solution. Error estimates for reduced models, more precisely the error for certain
functionals of the solution, were obtained in [25]. The authors employed the dual-
weighted-residual method, which makes use of the solution of an adjoint system.

In the context of fluid dynamics, bounds for the errors resulting from POD model
reduction of 2-dimensional (2-D) Navier–Stokes equations were computed in [19]. In
that work, the approximation error was decomposed into a contribution that arises
due to the POD spatial approximation (measured in terms of the spectral properties
specifying the POD basis) and the approximation error due to the backward Euler
scheme for time integration. The resulting estimates made use of certain inequalities
that, although valid for the nonlinear evolution problem considered, may not be sat-
isfied for other examples. For models that contain discontinuities, for example, if the
solution involves shocks, it was found in [22] that the POD reduced model was able
to represent a shock in a given location only if one of the snapshots used to build the
model has a discontinuity in the same location. This may require an unacceptably
large number of snapshots to achieve sufficient accuracy of the approximate solution.
To overcome this limitation a domain decomposition technique was introduced, using
a reduced-order model over the majority of the computational domain while solving
the full equations in a small region. Given an approximate solution (with unknown
accuracy) generated with a set of POD basis functions, the error is estimated by aug-
menting the POD basis with top hat basis functions and computing the first-order
change in the solution due to the additional basis functions. By comparing against
the results from a solution of known accuracy, such as one of the snapshots used to
generate the POD basis, the need for domain decomposition and its spatial extent
can be determined.
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Bounds of POD errors, but not estimates, were considered in [26], as well as
effects (on the reduced-order model) of small perturbations in the ensemble of data
from which the POD-reduced order model was constructed.

In the present work we take the analysis of reduced models one step further by
analyzing the influence of perturbations to the original system on the quality of the
approximation given by the reduced model. This question is of particular interest
in applications (such as control and inverse problems) in which reduced models are
used not just to approximate the solution of the original system that provided the
data used in constructing the reduced model, but rather to approximate the solution
of systems perturbed from the original one. To the best of our knowledge, there are
no published results to address the estimation of the model reduction error of such
perturbed systems.

We base our approach on a combination of the small sample statistical condition
estimation (SCE) method [15] and error estimation using the adjoint method. Using
this framework, we define regions of validity of the reduced models, that is, ranges of
perturbations in the original system over which the reduced model is still appropriate.
We consider perturbations in both the initial conditions and in parameters describing
the dynamical system itself. The proposed approach is particularly attractive because
the resulting error bounds do not rely on the solution of the perturbed system. In
this sense, we provide an a priori assessment of the validity of the model-reduction
approximation. We note that our approach is based on linearization. For large enough
perturbations, knowledge of the solution of the perturbed system would be required.

Unlike the method presented in [32], our estimates and bounds are valid over the
entire time interval considered, not in a neighborhood of the initial time. Moreover,
we obtain estimates for the continuous error, as opposed to its discrete approxima-
tion. Although we study only a particular projection-based model reduction technique
(POD) among those considered in [32], the methodology developed here for POD can
be easily extended to other types of projection. Compared to the approach taken
in [19], our method is applicable to a larger class of problems, our main requirement
being that the norm of the POD-based error is small enough for the linearized error
equation to be a good enough approximation. Furthermore, our estimates are inde-
pendent of the time integration method. We note also that our use of adjoint models
for error estimation is similar to that employed in [25]. However, as will be seen below,
the use of the SCE method enables the derivation of error “condition numbers” and
allows effective treatment of the region of validity problem.

In the context of integration of ordinary differential equations (ODE), the SCE
method combined with the adjoint approach has been used in [4] for estimation and
control of the global integration error.

The remainder of this paper is organized as follows. In sections 2 and 3 we briefly
describe the use of POD for model reduction and, respectively, the SCE method for
norm estimation. In section 3.1 we motivate our proposed approach of using SCE,
combined with error estimation using the adjoint method, to estimate the errors due
to the use of a reduced-order model. In section 4 we analyze errors arising purely from
the model reduction itself: the total approximation error and the subspace integration
error. In section 5 we analyze regions of validity of POD reduced models. In section 6
we present numerical results for two example problems. The first one is obtained from
the semidiscretization of time-dependent partial differential equation (PDE), namely
advection-diffusion, while the second example models a pollution chemical reaction
mechanism. Finally, section 7 summarizes our results and describes our plans for
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future research.

2. POD-based reduced models. POD provides a method for finding the best
approximating affine subspace to a given set of data. When using POD for model
reduction of dynamical systems, the data are time snapshots of the solution obtained
via numerical simulations or from experiments. Consider the ODE system

dy

dt
= f(y, t) , y(t0) = y0 ,(2.1)

for t ∈ [t0, tf ], with y, y0 ∈ Rn and f : Rn × R → Rn. Consider next the solutions
of (2.1) at m time points, collected in the n × m matrix Y = [y(t1) − ȳ, y(t2) −
ȳ, . . . y(tm) − ȳ], where ȳ is the mean of these observations. POD seeks a subspace
S ∈ Rn and the corresponding projection matrix PS so that the total square distance

‖Y − PY‖2 =

m∑
i=1

‖ (y(ti) − ȳ) − P (y(ti) − ȳ) ‖2

is minimized. Let λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 be the ordered eigenvalues of the correla-
tion matrix R = YYT . Then the minimum value of ‖Y −PY‖2 over all k-dimensional
subspaces S, with k ≤ n, is given by

∑n
j=k+1 λj . Moreover, the minimizing S is

the invariant subspace corresponding to the eigenvalues λ1, . . . , λk. Using the sin-
gular value decomposition (SVD) [10] of the observation matrix, UTYV = Σ, the
projection matrix corresponding to the optimal POD subspace S is obtained as

P = ρρT ∈ Rn×n ,(2.2)

where ρ is the matrix of projection onto S, the subspace spanned by the reduced basis
obtained from the SVD. The matrix ρ ∈ Rn×k consists of the columns Vi (i = 1, . . . , k),
the singular vectors corresponding to the k largest singular values.

Without loss of generality, for the sake of simplicity in presentation we assume in
what follows that ȳ = 0.

In a coordinate system embedded in S, the projection of a point y ∈ Rn onto S is
represented by z = ρTy ∈ Rk, while in the full space the same projection is expressed
as ρz = Py ∈ Rn.

A POD-based reduced model that approximates the original problem (2.1) can
then be constructed [26] by projecting onto S the vector field f(y, t) at each point
y ∈ S. Therefore

dz

dt
= ρTf(ρz, t) , z(t0) = ρTy0 .(2.3)

In full space, the approximate solution
∼
y is the solution of the ODE initial-value

problem (IVP)

d
∼
y

dt
= Pf(

∼
y, t) ,

∼
y(t0) = Py0 .(2.4)

3. Small sample statistical method for condition estimation. The SCE
method, originally proposed in [15], offers an efficient means for condition estimation
for general matrix functions, at the cost of allowing moderate relative errors in the
estimate. The basic idea is described below (for complete details, see [11, 15]).
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For any vector x ∈ Rn, if u is selected uniformly and randomly from the unit
sphere Sn−1, the expected value of uTx is proportional to the norm of x:

E(|uTx|) = Wn‖x‖ .

The Wallis factor Wn is defined as

W1 = 1 , Wn =

⎧⎪⎪⎨
⎪⎪⎩

1 · 3 · · · (n− 2)

2 · 4 · · · (n− 1)
n odd

2

π

2 · 4 · · · (n− 2)

1 · 3 · · · (n− 1)
n even

and can be approximated with Wn ≈
√

2/(π(n− 1/2)). Therefore ξ = |uTx|/Wn

is an estimate for the norm ‖x‖. This estimate is first order in the sense that the
probability of a relative error in the estimate is inversely proportional to the size of
the error. That is, for γ > 1,

Pr

(
‖x‖
γ

≤ ξ ≤ γ‖x‖
)

≥ 1 − 2

πγ
+ O

(
γ−2

)
.

Additional function evaluations can improve the estimation procedure. Suppose that
we obtain estimates ξ1, ξ2, . . . , ξq corresponding to orthogonal vectors u1, u2, . . . , uq

selected uniformly and randomly from the unit sphere Sn−1. The expected value of
the norm of the projection of x onto the span U generated by u1, u2, . . . , uq is

E

(√
|uT

1 x|2 + |uT
2 x|2 + · · · + |uT

q x|2
)

=
Wn

Wq
‖x‖ .

The analysis in [15] shows that the estimate ν(q) = (Wq/Wn)
√
|uT

1 x|2 + · · · + |uT
q x|2

is qth order accurate; i.e., a relative error of size γ in the estimate occurs with prob-
ability proportional to γ−q. For example,

Pr

(
‖x‖
γ

≤ ν(2) ≤ γ‖x‖
)

≈ 1 − π

4γ2
,

Pr

(
‖x‖
γ

≤ ν(3) ≤ γ‖x‖
)

≈ 1 − 32

3π2γ3
,

Pr

(
‖x‖
γ

≤ ν(4) ≤ γ‖x‖
)

≈ 1 − 81π2

512γ4
.

3.1. SCE for estimation of approximation errors in model reduction.
All error estimates derived in this paper begin with the linearizations of one of the
ODEs, (2.1), (2.3), or (2.4), or perturbations of these. Thus the error estimates are
based on solutions of linear error equations. To estimate the norm ‖e(tf )‖ of an error
vector e(t) ∈ Rn at t = tf , we need to evaluate quantities uT

j e(tf ) for some random
vector uj selected uniformly from the unit sphere Sn−1. The norm estimate is then

||e(tf )|| ≈ Wq

Wn

√√√√ q∑
j=1

|uT
j e(tf )|2 .(3.1)
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Fig. 4.1. Solution and error components for POD-reduced models. y is the solution of the

original ODE, z = ρTy is its projection on the subspace S, and
∼
y is the solution of the reduced

model. The error component e⊥ ∈ S⊥, while the subspace integration error component eS ∈ S.

The scalar products uT
j e(tf ) can be computed efficiently using an adjoint model (to

the corresponding linear error equation) with final conditions at tf based on the vector
uj . However, this approach naturally raises the question: “What is the advantage of
using (typically more than one) solution(s) of the adjoint system to estimate the norm
of a quantity that can be otherwise obtained with only one forward ODE solution (of
the error equation)?” Our method is motivated by the fact that we are interested not
only in estimating the error for one given ODE system, but rather in estimating (as
efficiently as possible) the behavior of such errors for families of related ODE systems,
based on different values of problem parameters. In section 5 we study the concept
of regions of validity of reduced models, i.e., the range of perturbations in the original
ODE (2.1) over which the reduced model (2.3) is still appropriate. An approach based
on forward error equations involves solving repeatedly such error equations (for each
value of interest of the perturbation). On the other hand, an approach combining
SCE estimates and adjoint models (as described in our paper) can be used to define
what we term “condition numbers” for these error equations. While these condition
numbers can provide only approximate upper bounds for the norms of the errors under
investigation, they have the undeniable advantage of allowing a priori estimates of the
errors induced by perturbations, i.e., before having to solve such a perturbed system
(or even a reduced perturbed system).

4. Estimation of the approximation error. We begin by estimating the
difference between the solution of the POD-reduced model (2.4) and the solution of

the original equation (2.1). The total approximation error e =
∼
y − y can be split [26]

into the subspace approximation error e⊥ = ρTy − y and the error introduced by the
integration in the subspace S, eS =

∼
y − ρTy:

e =
∼
y − y =

(
∼
y − ρTy

)
+
(
ρTy − y

)
= eS + e⊥ .(4.1)

The error component e⊥ is orthogonal to S, while the component eS is parallel to S
(see Figure 4.1). Algebraically, this is expressed as Pe⊥(t) = 0 and PeS(t) = eS(t).

4.1. Total approximation error. Subtracting (2.1) from (2.4) yields an equa-
tion for the total error e,

de

dt
= Pf(

∼
y, t) − f(y, t) = Pf(

∼
y, t) − f(

∼
y, t) + f(

∼
y, t) − f(y, t)
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= (P − I)f(
∼
y, t) − J(

∼
y, t)(y − ∼

y) + O(‖e‖) ,

where J is the Jacobian of the function f , i.e., J = ∂f/∂y, and we define Q = I − P .
Thus, to a first-order approximation, the error function satisfies

de

dt
= J(

∼
y, t)e(t) −Qf(

∼
y, t) , e(t0) = −Qy0 .(4.2)

Let the matrix function Φ(t) ∈ Rn×n satisfy

dΦ

dt
= J(

∼
y, t)Φ , Φ(t0) = In .

Then

e(tf ) = −
∫ tf

t0

Φ(tf )Φ−1(τ)Qf(
∼
y (τ), τ) dτ − Φ(tf )Qy0 .

For a random vector u uniformly selected from the unit sphere Sn−1, we have

uT e(tf ) = −
∫ tf

t0

uTΦ(tf )Φ−1(τ)Qf(
∼
y (τ), τ) dτ − uTΦ(tf )Qy0 .

It is straightforward to verify that the solution λ ∈ Rn of the adjoint system,

dλ

dt
= −JT (

∼
y, t)λ , λ(tf ) = u,(4.3)

satisfies λT (s) = uTΦ(tf )Φ−1(s) and λT (t0) = zTΦ(tf ). Therefore the quantity
uT e(tf ) is simply

uT e(tf ) = −
∫ tf

t0

λT (τ)Qf(
∼
y (τ), τ) dτ − λT (t0)Qy0 .(4.4)

The SCE estimate for the norm of e(tf ) is obtained by combining (3.1) and (4.4):

‖e(tf )‖ ≈ Wq

Wn

√√√√ q∑
j=1

∣∣∣∣
∫ tf

t0

λT (τ)Qf(
∼
y (τ), τ) dτ + λT (t0)TQy0

∣∣∣∣
2

.(4.5)

The value of the integral is ξ(t0), where ξ satisfies the quadrature equation

dξ

dt
= −λT (t)Qf(

∼
y (t), t) , ξ(tf ) = 0 .(4.6)

Algorithm 1 summarizes our approach.
It may seem more efficient to compute the SCE norm estimate using a POD-

reduced adjoint system to evaluate λ in (4.5). Although the same projection can
be used to model-reduce the adjoint system, this approach still requires knowledge
of the mean of the adjoint solution, which is unavailable without a solution of the
adjoint system (4.3). In other words, the approximation subspace is parallel to S
but not identical to it. This issue can be circumvented if we are not considering
error components outside the subspace S. This estimate is presented next. Its main
advantage is given by the fact that the differential equations are solved in a space of
dimension k � n, where n is the dimension of the solution for the original problem.
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Algorithm 1 Estimate for the total approximation error

Provide the matrix of measurement data Y
Set the POD dimension k
Construct POD projection matrices ρ and P
Select uniformly and randomly q orthogonal vectors ui from the unit sphere Sn−1

Solve (2.3) for z and compute
∼
y(t) = ρz(t)

Initialize s = 0
for i = 1 to q do

Set λ(tf ) = ui and ξ(tf ) = 0
Solve (4.3)+(4.6) for λ and ξ

Update s ← s +
[
ψ(t0) + λT (t0)

TQy0

]2
end for
Compute Wallis factors Wq and Wn

Compute the SCE norm estimate ‖e‖ = (Wq/Wn) ·
√
s

4.2. Subspace integration error. Starting with its definition, eS =
∼
y − ρTy,

the subspace integration error is readily found to obey, in a first-order approximation,
the following ODE:

deS
dt

=
d

∼
y

dt
− P

dy

dt
= P

(
f(

∼
y, t) − f(y, t)

)

≈ PJ(
∼
y, t)e(t) = PJ(

∼
y, t) (eS + e⊥) .

The starting point
∼
y (t0) is the projection ρTy(t0) of y(t0) onto S, yielding the

initial condition eS(t0) = 0. Thus, the subspace integration error is governed by an
ODE with the subspace approximation error e⊥(t) as forcing term,

deS
dt

= PJ(
∼
y, t)eS + PJ(

∼
y, t)e⊥ , eS(t− 0) = 0 .(4.7)

We note that the linearization in (4.7) is directly related (through the projection

matrix P ) to the linearization of the full model, f(
∼
y, t) − f(y, t) ≈ J(

∼
y, t)(

∼
y −y).

Since we assume that we operate in a region where the full model linearization is
valid, this implies that the linearization in (4.7) is valid for the region considered.

If h are the S-coordinates of eS , i.e., h = ρTeS ∈ Rk, we have eS = ρh and
therefore

dh

dt
= ρTJ(

∼
y, t)ρh + ρTJ(

∼
y, t)e⊥ , h(t0) = 0 ,(4.8)

where we have used that ρTρ = Ik. Now let ψ ∈ Rk×k be the fundamental matrix of
(4.8); i.e,

dψ

dt
= ρTJ(

∼
y, t)ρψ , ψ(t0) = Ik .

Then, for a random vector v uniformly selected from the unit sphere Sk−1, we have

vTh(tf ) =

∫ tf

t0

vTψ(tf )ψ−1(τ)ρTJ(
∼
y (τ), τ)e⊥(τ) dτ .

The solution μ of the adjoint system

dμ

dt
= −ρTJT (

∼
y, t)ρμ , μ(tf ) = v,(4.9)
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satisfies μT (τ) = vTψ(tf )ψ−1(τ), for all τ ∈ [t0, tf ], and therefore

vTh(tf ) =

∫ tf

t0

μT (τ)ρTJ(
∼
y (τ), τ)e⊥(τ) dτ ,

yielding the following SCE estimate for the norm of the subspace integration error:

‖eS(tf )‖ = ‖h(tf )‖ ≈ Wq

Wn

√√√√ q∑
j=1

∣∣∣∣
∫ tf

t0

μT
j (τ)ρTJ(

∼
y (τ), τ)e⊥(τ) dτ

∣∣∣∣
2

,(4.10)

where μj is the solution of (4.9) with final condition μ(tf ) = vj .
Bounds for the subspace integration error can be obtained as follows. We have

∣∣∣∣
∫ tf

t0

μT (τ)ρTJ(
∼
y (τ), τ)e⊥(τ) dτ

∣∣∣∣ ≤
∫ tf

t0

∣∣∣μT (τ)ρTJ(
∼
y (τ), τ)e⊥(τ)

∣∣∣ dτ
≤ ‖JT ρμ‖L1

· ‖e⊥‖L∞ ,

where the last inequality is Hölder’s inequality, ‖fT g‖L1
≤ ‖f‖Lp

·‖g‖Lq
, 1/p+1/q = 1,

for p = 1 and q = ∞, applied to vector-valued functions f, g : [t0, tf ] → Rn for which
the Lp norm is defined as

||f ||Lp
=

(∫ tf

t0

||f(τ)||pp dτ
)1/p

, where ||f(τ)||p =

(
n∑

i=1

|fi(τ)|p
)1/p

.

Therefore

‖eS(tf )‖ ≤ κ(eS) · ‖e⊥‖L∞ ,(4.11)

where

κ(eS) =
Wq

Wn

√√√√ q∑
j=1

‖JT ρμj‖2
L1

=

√√√√ q∑
j=1

(∫ tf

t0

∣∣∣JT (
∼
y (τ), τ)ρμj(τ)

∣∣∣ dτ
)2

.

The quantity κ(eS) can be seen as a “condition number” for the subspace integration
error.

The expressions derived above require knowledge of the projection error e⊥ at all
times in [t0, tf ]. While the projection error may not be readily available, its norm can
be easily related to the error associated with the choice of the POD subspace. For
this, a more convenient formulation of the POD approximation is to find a subspace
S ⊂ Rn which minimizes the total square distance defined as

d2 = ‖y − Py‖2
L2

=

∫ tf

t0

‖y(τ) − Py(τ)‖2
2 dτ .(4.12)

The solution to this problem requires the construction of the correlation matrix R =∫ tf
t0

y(τ)y(τ)T dτ . If λ1 ≥ · · · ≥ λm ≥ 0 are the ordered eigenvalues of the symmetric

positive semidefinite matrix R, then the minimum value of d2 over all k-dimensional
affine subspaces S passing through ȳ is given by

∑n
j=k+1 λj . The minimizing S is the

invariant subspace corresponding to the eigenvalues λ1, . . . , λk, while the projection
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matrix ρ consists of the unit eigenvectors corresponding to these k largest eigenvalues.
We also have that

||e⊥||L∞ ≤ ||e⊥||L2
≡

√√√√ n∑
j=k+1

λj .

Employing observations as data points for a trapezoidal approximation for the integral
(4.12) leads to the same subspace S as the one obtained with the POD definition in
section 2, while the corresponding optimal total square distances will be proportional.

5. Regions of validity for POD-reduced models. Once a reduced model is
constructed, we wish to apply it to simulate systems that are close in some sense to
the system that was used for generating the reduced model. This raises the issue of
defining the range of initial conditions and parameters over which the reduced model
can be used with acceptable accuracy.

In the following section we denote by a small letter (e.g., y) any solution of the
unperturbed system and by a capital letter (e.g., Y ) any solution of a perturbed
system.

If Y ∈ Rn is the solution of an ODE obtained by applying a perturbation to
(2.1), either in the initial conditions or in the right-hand side, the issue of the errors
introduced by this perturbation, in addition to the model reduction error e(t), can be
addressed from two different perspectives:

• When the reduced model, with a POD projection matrix based on the solution
of the unperturbed ODE, is used to approximate the perturbed solution Y ,

it is of interest to estimate the error E1 =
∼
Y − Y , where

∼
Y is the solution of

an ODE of the form (2.4), with P based on y.
• Alternatively, we may want estimates for the cumulative error (due to the

POD model reduction and the perturbation in the original ODE), E2 =
∼
Y−y.

Note that calculating E2 =
∼
Y−y is completely equivalent to computing

∼
y−Y

(by considering y to be a perturbation to Y ).

It is important to realize that useful estimates should not rely on the solution Y (or
∼
Y) of the perturbed system (or its POD reduction). Indeed, such error estimates are
desired with the sole objective of deciding whether or not to solve these systems.

In this section we begin by analyzing the errors E1 and E2 induced by a pertur-
bation δy0 in the initial conditions of (2.1) and then by treating the case of pertur-
bations δp in model parameters affecting the right-hand side. For each of these two
cases, Figure 5.1 illustrates the solutions of the unperturbed and perturbed full- and
reduced-order models, as well as the corresponding errors e, E1, and E2.

5.1. Perturbations in initial conditions. Here, Y and
∼
Y are solutions of the

ODEs

dY

dt
= f(Y, t) , Y (t0) = Y0 = y0 + δy0 ,(5.1)

d
∼
Y

dt
= Pf(

∼
Y, t) ,

∼
Y (t0) = PY0 = P (y0 + δy0),(5.2)

which were obtained by perturbing the initial conditions of (2.1).



ERROR ESTIMATION FOR REDUCED-ORDER MODELS 1703

yδ
0

y~

Y
~

yTρ

Y

y

S

E

E 2

1

YTρ

(a) Perturbation in initial conditions
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(b) Perturbation in right-hand side

Fig. 5.1. Error components in model reduction of perturbed systems. The solution of the

perturbed system and the solution of the reduced perturbed system are denoted by Y and
∼
Y, respec-

tively. The error E1 represents the error committed in reducing the perturbed model, while E2 is
the cumulative error (perturbation + model reduction).

5.1.1. Estimation of E1 =
∼
Y −Y . An SCE estimate like (4.5) is not useful in

the sense described above, as it would be based on the error equation

dE1

dt
= J(

∼
Y, t)E1 −Qf(

∼
Y, t) , E1(t0) = −Q(y0 + δy0 − ȳ) ,(5.3)

which is a linearization around the (unknown) trajectory
∼
Y (t).

Instead, let us focus on estimating the norm of Δ(tf ) = E1(tf )−e(tf ), with which
the norm ‖E1(tf )‖ could be bounded by

|‖e(tf )‖ − ‖Δ(tf )‖| ≤ ‖E1(tf )‖ ≤ ‖e(tf )‖ + ‖Δ(tf )‖ .(5.4)

Any estimates of ‖Δ(tf )‖ would require solving the POD-reduced perturbed system
(5.2). However, as in section 4.2, this problem can be circumvented by splitting the
error Δ into two components: Δ⊥ orthogonal to S and ΔS parallel to S. Using the



1704 CHRIS HOMESCU, LINDA R. PETZOLD, AND RADU SERBAN

fact that Q
∼
Y = Q

∼
y= 0, we have

Δ⊥ = QΔ = Q(
∼
Y − ∼

y) − (Y − y) = −Q(Y − y)

and

ΔS = Δ − Δ⊥ = (
∼
Y − ∼

y) − P (Y − y) .

We evaluate the influence of δy0 on each component separately. Retaining only the
first-order term of a Taylor series for Δ⊥ around δy0 = 0 and using the fact that
Δ⊥ = 0 for δy0 = 0, we get

Δ⊥ = −Q
dY

dδy0

∣∣∣∣
δy0=0

δy0 .

The sensitivity matrix dY/dy0 is nothing but the fundamental matrix corresponding
to the linearization of (2.1). It is then easy to see that if λ is now the solution of

dλ

dt
= −JT (y, t)λ , λ(tf ) = Qu, for some u ∈ Rn ,(5.5)

then uTΔ⊥(tf ) = −λT (t0) · δy0.
Therefore, an SCE estimate of ‖Δ⊥(tf )‖ can be based on the solutions of systems

(5.5) with vectors uj uniformly and randomly selected from the unit sphere Sn−1.
However, taking into account that Δ⊥ is orthogonal to S, a more accurate estimate
can be obtained by using vectors from the sphere Sn−k−1 embedded in S⊥, instead of
selecting vectors u ∈ Sn−1 and projecting them onto S⊥, the orthogonal complement
of S. If u′ is the representation in Rn of such a vector, then Qu′ = u′. Thus we
have the same adjoint system (5.5), but the probability that the estimate lies within
a given factor γ of the true norm ‖Δ⊥(tf )‖ is now higher (see section 3).

In practice we use the approximation y ≈ ∼
y in evaluating the Jacobian in (5.5),

with
∼
y computed from the solution z of the k-dimensional ODE (2.3) and obtain the

following SCE estimate:

‖Δ⊥(tf )‖ ≈ Wq

Wn

√√√√ q∑
j=1

|u′T
j Δ⊥(tf )|2 =

Wq

Wn

√√√√ q∑
j=1

|λT (t0)δy0|2 ,

where λ is the solution of dλ/dt = −JT (
∼
y, t)λ, λ(tf ) = Qu′

j . Hölder’s inequality (for

p = q = 2) gives |λT (t0)δy0| ≤ ‖λ(t0)‖2 · ‖δy0‖2, which implies

‖Δ⊥(tf )‖ ≤ κ1 · ‖δy0‖ ,(5.6)

where the “condition number” for the orthogonal component of Δ is defined as

κ1 =
Wq

Wn

√√√√ q∑
j=1

‖λ(t0)‖2
2 .

With the assumption J(y, t) ≈ J(
∼
y, t), the Δ component parallel to S, ΔS =

Δ − Δ⊥ = (
∼
Y − ∼

y ) − P (Y − y), satisfies, up to first order,

dΔS

dt
=

(
Pf(

∼
Y, t) − Pf(

∼
y, t)

)
− P (f(Y, t) − f(y, t)) ≈ PJ(

∼
y, t)ΔS .
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Since at the initial time ΔS(t0) = 0, to a first-order approximation ΔS(t) = 0 for
all t ≥ t0. In other words, a perturbation to the initial conditions of the original
ODE does not introduce additional subspace integration errors. As a consequence,
Δ(tf ) ≈ Δ⊥(tf ) and, combining (5.4) and (5.6), we have

‖E1(tf )‖ ≤ ‖e(tf )‖ + κ1 · ‖δy0‖ .(5.7)

Note that when using SCE estimates for the norms involved in the above bounds, the
true value of ‖E1(tf )‖ may not be bracketed by these bounds.

5.1.2. Estimation of E2 =
∼
y − Y . Subtracting the ODEs satisfied by

∼
y and

Y , the error E2 satisfies, to a first-order approximation,

dE2

dt
= J(

∼
y, t)E2 −Qf(

∼
y, t) , E2(t0) = −Qy0 − δy0 .(5.8)

For a uniformly selected random vector u ∈ Sn−1 and with λ the solution of (4.3), we
have

uTE2(tf ) = −
∫ tf

t0

λT (τ)Qf(
∼
y (τ), τ) dτ − λT (t0) (Qy0 + δy0)

(5.9)
= uT e(tf ) − λT (t0)δy0 ,

where e(tf ) is the approximation error for the original system, defined by (4.1).
Straightforward calculations yield

‖E2(tf )‖ ≤ ‖e(tf )‖ + κ2 · ‖δy0‖ ,(5.10)

where

κ2 =
Wq

Wn

√√√√ q∑
j=1

‖λ(t0)‖2
2 .

We first note that the new condition number κ2 has the exact same form as κ1

obtained in section 5.1.1, the only difference being in the final conditions used for the
adjoint variables λj . Secondly, the SCE bound estimate (5.10) is more accurate than
the SCE bound estimate for the norm of E1(tf ) (which is based on the additional

approximation E1 ≈ e + Δ⊥, ignoring ΔS and using y ≈ ∼
y in the adjoint system).

Furthermore, as seen from (5.9), an SCE estimate for ‖E2(tf )‖ can be computed

without need for Y or
∼
Y, unlike for ‖E1(tf )‖.

5.2. Perturbations in model parameters. Now let Y be the solution of the
ODE system

dY

dt
= f(Y, t, p + δp) , Y (t0) = y0 ,(5.11)

representing a perturbation in some model parameters affecting the right-hand side

of (2.1). As in section 5.1, let
∼
Y be the solution of a POD-based reduced-order model

obtained from (5.11) using the same POD projection matrix as for the model reduction

of the unperturbed system. Then
∼
Y satisfies

d
∼
Y

dt
= Pf(

∼
Y, t, p + δp) ,

∼
Y (t0) = Py0 .
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5.2.1. Estimation of E1 =
∼
Y−Y . Similar to section 5.1.1, we decompose the

error Δ = E1 − e into its components Δ⊥ ∈ S⊥ and ΔS ∈ S. We retain only the
first-order term from the Taylor expansion of Δ⊥ around δp = 0,

Δ⊥ = −Q
dY

dδp

∣∣∣∣
δp=0

δp .

The sensitivity matrix Ψ = dY/dδp satisfies

dΨ

dt
= J(y, t, p)Ψ + K(y, t, p) , Ψ(t0) = 0 ,

where K = ∂f/∂p is the Jacobian of f with respect to p. In terms of the fundamental
matrix Φ of the linearization of (2.1), we have

Ψ(tf ) =

∫ tf

t0

Φ(tf )Φ−1(τ)K(y(τ), τ, p) dτ,

and thus

uTΔ⊥(tf ) = −
(∫ tf

t0

λT (τ)K(y(τ), τ, p) dτ

)
· δp ,

where λ is the solution of (5.5) and u ∈ Rn.
The observations in section 5.1.1 remain valid: (a) using vectors u′ from the

Sn−k−1 sphere embedded in S⊥ gives a more accurate SCE error norm estimate; (b)

a more efficient adjoint solution can be obtained assuming J(y, t, p) ≈ J(
∼
y, t, p) and

K(y, t, p) ≈ K(
∼
y, t, p).

The SCE estimate of the norm of Δ⊥ is then

‖Δ⊥(tf )‖ ≈ Wq

Wn

√√√√ q∑
j=1

∣∣∣∣
∫ tf

t0

λT (τ)K(
∼
y (τ), τ, p) δp dτ

∣∣∣∣
2

,

bounded by ‖Δ⊥(tf )‖ ≤ κ1 · ‖δp‖, where κ1 is now defined as

κ1 =
Wq

Wn

q∑
j=1

‖λTK‖2
L1
.

In complete analogy with section 5.1.1, if J(y, t, p) ≈ J(
∼
y, t, p) and K(y, t, p) ≈

K(
∼
y, t, p), the component ΔS parallel to S satisfies to a first-order approximation

dΔS

dt
= PJ(

∼
y, t, p)ΔS , ΔS(t0) = 0,

and therefore ΔS(t) = 0, for all t ≥ t0. As a consequence, Δ(tf ) ≈ Δ⊥(tf ) and

‖E1(tf )‖ ≤ ‖e(tf )‖ + κ1 · ‖δp‖∞ .

5.2.2. Estimation of E2 =
∼
y − Y . Following a similar approach to section

5.2.1, for a uniformly selected random vector u ∈ Sn−1 and with λ∼
y

the solution of
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(4.3),

uTE2(tf ) = −
∫ tf

t0

λT(τ)
[
Qf(

∼
y (τ), τ, p) + K(

∼
y (τ), τ, p) δp

]
dτ

−λT(t0)Qy0(5.12)

= uTe(tf ) −
∫ tf

t0

λT(τ)K(
∼
y (τ), τ, p) δp dτ ,

where e(tf ) is the approximation error for the original system, defined by (4.1). As
in section 5.1.2, it follows that

‖E2(tf )‖ ≤ ‖e(tf )‖ + κ2 · ‖δp‖∞ ,(5.13)

where the condition number κ2 is now

κ2 =
Wq

Wn

√√√√ q∑
j=1

‖λTK‖2
L1
.

The above SCE bound estimate for the norm of E2(tf ) is again more accurate than
the one derived in section 5.2.1 for the bound on the norm of E1(tf ). Furthermore,
starting from (5.12), an SCE estimate for ‖E2(tf )‖ can be computed without need

for Y or
∼
Y, unlike for ‖E1(tf )‖ in section 5.2.1.

6. Examples. We consider reduced-order ODE examples that are representative
of problems derived from spatial discretization of PDEs (linear advection-diffusion) or
directly obtained from physical phenomena (a pollution model). Additional examples
are described in [13].

For each example, two figures with numerical results are provided (Figures 6.2 and
6.3 for the first example and Figures 6.4 and 6.5 for the second one). The estimates
(and bounds) were obtained using q = 1 (blue), q = 2 (green), and q = 3 (red), where
q is the number of orthogonal vectors used by the SCE.

Figure 6.2 contains POD approximation errors as functions of the dimension of
the subspace S. The norm of the total approximation error at the final time, ‖e(tf )‖ =

‖∼y(tf ) − y(tf )‖, is given in plot (a), while the norm of the subspace integration error
at the final time, computed in the subspace S, i.e., ‖eS(tf )‖, is presented in plot (b).
The solid (black) lines represent the corresponding norms computed by the forward
integration of the error equations (4.2) and (4.8), respectively. The dotted (colored)
lines describe SCE estimates (4.5) and (4.10), respectively, for different values of q.
The dashed (colored) lines appear only in plot (b) and represent the bounds of (4.11)
for different values of q.

The first four plots in Figure 6.3 contain estimates of errors induced by a perturba-
tion δy0 in the initial conditions. Plot (a) presents the norm of the total approximation

error of the perturbed system at the final time, ‖E1(tf )‖ = ‖
∼
Y (tf ) − Y (tf )‖, as a

function of the subspace dimension k. Plot (b) contains the norm of the cumulative

error of the perturbed system at the final time, ‖E2(tf )‖ = ‖∼y(tf ) − Y (tf )‖, as a
function of the subspace dimension k. Plots (c) and (d) present the error bounds for
‖E1(tf )‖ and ‖E2(tf )‖, respectively, as predicted by the condition numbers κ1 and κ2

over a range of perturbations δy0, for a given value of k. The solid (black) line repre-
sents the norm computed by the forward integration of the error equations (5.3) and
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Table 6.1

The sum of ignored eigenvalues Λk and their relative size Λ.

Example 1: Advection-diffusion Example 2: Pollution model
k Λk Λ Λk Λ
5 1.803561e-01 5.890413e-06 6.341930e-13 2.652438e-12
6 2.831234e-02 9.246781e-07 6.971282e-14 2.915657e-13
7 4.193422e-03 1.369567e-07 1.139176e-15 4.764470e-15
8 5.662276e-04 1.849294e-08 1.175776e-16 4.917547e-16
9 6.944298e-05 2.268001e-09 4.938977e-17 2.065669e-16

10 7.716002e-06 2.520038e-10 9.158667e-18 3.830506e-17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10– 3

10– 2

10– 1

100

time

k=5
k=6
k=7

(a) 1-D advection-diffusion example

0 0.2 0.4 0.6 0.8 1
10– 9

10– 8

10– 7

10– 6

10– 5

time

k=7
k=8
k=9

(b) Pollution example

Fig. 6.1. The norm of the total model-reduction error ‖e‖ = ‖y−
∼
y ‖ vs. time, with y the

solution of the full model and
∼
y the solution of the reduced model.

(5.8), respectively. For different values of q, the dashed (colored) lines represent SCE
estimates of the upper bound of (5.7) in plots (a) and (b), and of (5.10) in plots (c)
and (d). For different values of q, the dotted (colored) lines represent SCE estimates
for ‖E1(tf )‖ in plot (a) and for ‖E2(tf )‖ in plot (b).

The last four plots in Figure 6.3 contain estimates of errors induced by a pertur-
bation δp in the model parameters. The corresponding plots (e), (f), (g), and (h) are
in a format which is analogous to the one above.

The (blue) line made of circles represents the norm of the true (nonlinear) error,

e(t) =
∼
y(t) − y(t), where

∼
y is the solution of (2.4) and y is the solution of (2.1).

Dimension of the POD subspace. Let Λk =
∑n

i=k+1 λi be the sum of the eigenvalues
ignored in the construction of the POD-reduced model and Λ = Λk/

∑n
i=1 λi be its

relative size compared to the sum of all eigenvalues. The POD subspace dimension k
is selected such that the relative error is very close to one, yet k is sufficiently small. A
relative error near zero means that a high percentage of the energy for the full model
was captured by the reduced-order model. The values of Λk and Λ, for the numerical
examples considered in this paper, are presented in Table 6.1.

To assess how well the full model is approximated by the POD-based reduced
model, we present in Figure 6.1 the behavior of the norm of the total error over the
given time interval for both examples considered in the paper. The dimension of the
POD subspace is denoted by k and has values (5, 6, 7) for the 1-D advection-diffusion
example and (7, 8, 9) for the pollution example.
Number of orthogonal vectors for the SCE estimate. We considered one, two, and three
SCE vectors for our numerical examples. As expected, having just one SCE vector
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yielded the worst estimate in most of the cases. Nevertheless, even that estimate was,
in many cases, good enough to warrant its inclusion in our results.

6.1. Linear advection-diffusion model. We consider the 1-D problem

ut = p1uxx + p2ux

with BC u(0, t) = u(2, t) = 0

and IC u(x, 0) = u0(x) = x(2 − x)e2x .

The PDE is discretized on a uniform grid of size n+2 with central differencing. With
yi(t) = u(xi, t) and eliminating boundary values, we obtain the following size n ODE
system:

dyi
dt

= p1
yi+1 − 2yi + yi−1

Δx2
+ p2

yi+1 − yi−1

2Δx
, yi(0) = u0(xi) .

The problem parameters were p1 = 0.5, p2 = 1.0, and N = 100. Results for this
problem are shown in Figures 6.2 and 6.3. The POD projection matrices were based on
m = 100 data points equally spaced in the interval [t0, tf ] = [0.0, 0.3]. The estimate of
the total error is consistently close to the exact value, with the estimates corresponding
to q = 2, 3 almost identical to the subspace integration error. The bounds are within
an order of magnitude for both IC and RHS perturbations. The RHS perturbation
increases the distance between the bounds and the forward error. That was expected,
since the RHS perturbation changes the advection coefficient p2, which is dominant
for the time window considered.
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(a) Total error
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z
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adj + SCE (N
z
=3)

(b) Subspace integration error

Fig. 6.2. 1-D advection-diffusion example. Model-reduction error.

6.2. Pollution model. Next we consider the chemical reactions from an air pol-
lution model described in [33]. This is a highly nonlinear stiff ODE system consisting
of 25 reactions and 20 species. The problem is of the form

dy

dt
= f(y) , y(0) = y0, y ∈ R20 ,

where the function f(y) is defined by
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Fig. 6.3. 1-D advection-diffusion example. Regions of validity.
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f1 = −
∑

j∈{1,10,14,23,24} rj +
∑

j∈{2,3,9,11,12,22,25} rj f12 = r9
f2 = −r2 − r3 − r9 − r12 + r1 + r21 f14 = −r13 + r12
f3 = −r15 + r1 + r17 + r19 + r22 f18 = r20
f4 = −r2 − r16 − r17 − r23 + r15 f13 = −r11 + r10
f5 = −r3 + r4 + r4 + r6 + r7 + r13 + r20 f17 = −r20
f6 = −r6 − r8 − r14 − r20 + r3 + 2r18 f15 = r14
f7 = −r4 − r5 − r6 + r13 f16 = −r18 − r19 + r16
f8 = r4 + r5 + r6 + r7 f10 = −r12 + r7 + r9
f11 = −r9 − r10 + r8 + r11 f9 = −r7 − r8
f19 = −r21 − r22 + r22 − r24 + r25 f20 = −r25 + r24

and y0 = [0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0.0, 0, 0, 0, 0, 0, 0.007, 0, 0, 0]T . The auxiliary
variables rj and the model parameters kj are given in Table 6.2.

Table 6.2

Auxiliary variables (rj) and model parameters (kj) for the pollution model.

r1 = k1y1 r7 = k7y9 r13 = k13y14 r19 = k19y16

r2 = k2y2y4 r8 = k8y9y6 r14 = k14y1y6 r20 = k20y17y6

r3 = k3y5y2 r9 = k9y11y2 r15 = k15y3 r21 = k21y19

r4 = k4y7 r10 = k10y11y1 r16 = k16y4 r22 = k22y19

r5 = k5y7 r11 = k11y13 r17 = k17y4 r23 = k23y1y4

r6 = k6y7y6 r12 = k12y10y2 r18 = k18y16 r24 = k24y19y1

r25 = k25y20

k1 = 0.350 · 100 k7 = .130 · 10−3 k13 = .188 · 101 k19 = .444 · 1012

k2 = 0.266 · 102 k8 = .240 · 105 k14 = .163 · 105 k20 = .124 · 104

k3 = .123 · 105 k9 = .165 · 105 k15 = .480 · 107 k21 = .210 · 101

k4 = .860 · 10−3 k10 = .900 · 104 k16 = .350 · 10−3 k22 = .578 · 101

k5 = .820 · 10−3 k11 = .220 · 10−1 k17 = .175 · 10−1 k23 = .474 · 10−1

k6 = .150 · 105 k12 = .120 · 105 k18 = .100 · 109 k24 = .178 · 104

k25 = .312 · 101

Numerical results depicting the approximation errors and the regions of validity at
tf = 1.0 are presented in Figures 6.4 and 6.5, respectively. The POD projection matrix
was based on m = 1000 data points equally spaced in the interval [t0, tf ] = [0.0, 1.0].
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Fig. 6.4. Pollution example. Model-reduction error.

For k = 5, 6, 7 the total error and the subspace integration error are very well
approximated by estimates corresponding to q = 2 or 3. For k = 8, 9, 10 the estimates
are not as good, although they remain within an order of magnitude. We believe that
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Fig. 6.5. Pollution example. Regions of validity.
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this behavior is related to the fact that the POD error (either absolute or relative)
is very small. We note that the problem was solved using relative tolerances of 10−4

and absolute tolerance of 10−7. Thus one can expect a less uniform behavior if the
results are in the neighborhood of 10−7.

Finally, we note that due to the fact that the problem parameters kj have orders
of magnitude ranging from 10−3 to 1012, we have limited the RHS perturbation only
to perturbations in k4, k5, and k7.

6.3. More examples. In [13] we include more test problems derived from spa-
tial discretization of PDEs (Burgers’s PDE or the Brusselator PDE) or directly ob-
tained from physical phenomena (HIRES High Irradiance Response). The results
obtained for those examples confirm our approach, in the sense that the SCE esti-
mates offer a good approximation for the errors of the POD-reduced models. For
more details, the reader may consult [13], which is available online.

7. Conclusions and future work. We have presented effective methods for
estimating approximation errors due to the use of POD-based reduced-order models
and for evaluating regions of validity of such reduced models. The bounds defining
these regions of validity are a priori, in the sense that they do not rely on the solution
of the perturbed system. The proposed approach, based on SCE norm estimates
combined with the adjoint method, allows the definition and construction of so-called
error condition numbers which can be used to assess the size of errors induced by
perturbations (in initial conditions or in the model itself) without having to solve the
perturbed system. The effectiveness of the proposed methods was demonstrated on
several test problems.

We are currently investigating the applicability of this technique to the estimation
of errors from other types of reduced-order models, as well as considering more com-
plex models than those presented both in this paper and in [13]. Thus we will consider
models which exhibit more interesting (e.g., oscillatory or chaotic) behavior in their
POD-reduced model. For example, we think that our method to efficiently compute
the error corresponding to different perturbations may be useful in conjunction with
reduced models in oceanography or atmospheric sciences (recent advances [21] present
POD-based reduced models that can approximate well even the bifurcation behavior
of the flow).
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Abstract. We introduce a general format of numerical ODE-solvers which include many of
the recently proposed exponential integrators. We derive a general order theory for these schemes
in terms of B-series and bicolored rooted trees. To ease the construction of specific schemes we
generalize an idea of Zennaro [Math. Comp., 46 (1986), pp. 119–133] and define natural continuous
extensions in the context of exponential integrators. This leads to a relatively easy derivation of
some of the most popular recently proposed schemes. The general format of schemes considered here
makes use of coefficient functions which will usually be selected from some finite dimensional function
spaces. We will derive lower bounds for the dimension of these spaces in terms of the order of the
resulting schemes. Finally, we illustrate the presented ideas by giving examples of new exponential
integrators of orders 4 and 5.
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Kutta schemes
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1. Introduction. Numerical integration schemes which use the matrix exponen-
tial go back all the way to Certaine [4], but there are also early papers by Lawson [15],
Nørsett [20], Ehle and Lawson [6], and Friedli [7] to mention just a few. Recently there
has been a revived interest in these schemes, in particular for the solution of nonlinear
partial differential equations; see for instance [11, 17, 5, 3, 14, 13]. For a thorough
review of the history of exponential integrators; see [16] and the references therein.
The integrators found in these papers are derived in rather different ways, and they
are formulated for different types of systems of differential equations. On this note,
we consider the autonomous nonlinear system of ordinary differential equations

u̇ = Lu + N(u), u(0) = u0.(1.1)

Here L is a matrix and N(u) a nonlinear mapping. The order theory we consider is
valid for a large class of exponential integrators, including the Runge–Kutta–Munthe-
Kaas (RKMK) schemes [17], the commutator-free Lie group integrators [3], and those
schemes of Cox and Matthews [5], as well as Krogstad [14] which reduce to classical
Runge–Kutta schemes when L = 0.

We present the general format for integrators of (1.1) as

Nr = N
(
exp(crhL)u0 + h

s∑
j=1

ajr(hL)Nj

)
, r = 1, . . . , s(1.2)

u1 = exp(hL)u0 + h

s∑
r=1

br(hL)Nr.(1.3)
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Here we assume that the functions ajr(z) and br(z) are at least p times continuously
differentiable at z = 0 for integration schemes of order p.

Table 1

Examples of schemes in general format for exponential integrators.

(a) RKMK, order 4

0

1
2

1
2
φ0(z/2)

1
2

z
8
φ0(z/2) 1

2
(1 − z

4
)φ0(z/2)

1 φ0(z)

1
6
φ0(z)(1 + z

2
) 1

3
φ0(z) 1

3
φ0(z) 1

6
φ0(z)(1 − z

2
)

(b) Commutator-free, order 4

0

1
2

1
2
φ0(z/2)

1
2

1
2
φ0(z/2)

1 z
4
φ0(z/2)2 φ0(z/2)

1
2
φ0(z) − 1

3
φ0(z/2) 1

3
φ0(z) 1

3
φ0(z) − 1

6
φ0(z) + 1

3
φ0(z/2)

Table 1 gives the coefficient functions ajr(z) and br(z) for the fourth order RKMK
scheme introduced in [18] in this general format when applied to the problem (1.1)
with an affine Lie group action, and the commutator-free scheme of order 4 from [3];
in both tables φ0(z) = (ez − 1)/z.

For deriving order conditions, we expand the coefficient functions in powers of z,

ajr(z) =
∑
k≥0

αj,k
r zk and br(z) =

∑
k≥0

βr,kzk,

where the sum may terminate with a remainder term. For the schemes we consider
here, these functions are in fact all entire. If N(u) = 0 in (1.1), then any scheme in
the above class will reproduce the exact solution in every step. Whereas if L = 0,
the scheme (1.2)–(1.3) reduces to a classical Runge–Kutta method with coefficients
ajr = αj,0

r and br = βr,0. This scheme is henceforth called the underlying Runge–Kutta
scheme. We will always assume that cr =

∑
j α

j,0
r , 1 ≤ r ≤ s.

The schemes proposed by Friedli [7] closely resemble the format (1.2)–(1.3), the
difference being that the coefficient functions arj (resp. br) are evaluated in crhL
rather than in hL, thus a nontrivial discrepancy may occur whenever cr = 0. And
even though Friedli explicitly requires that the functions arj(z) and br(z) be of the
form ∫ 1

0

e(1−θ)zp(θ) dθ, p(θ) polynomial,

his analysis holds also for the case of more general coefficient functions, so that the
order conditions he obtains for p ≤ 4 are almost identical to those derived in section
2 here. However, the order theory presented here is general.

We will discuss conditions on the coefficients αj,k
r and βr,k under which the scheme

(1.2)–(1.3) has order of consistency p for problems of the type (1.1). We will use the
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well known approach involving rooted trees; see, for instance, [9, 2]. The conditions
we find will depend only on the first αj,k

r for k ≤ p− 2 and on βj,k for k ≤ p− 1. On
this note we will not address issues related to the behavior of the coefficient functions
ajr(z) and br(z) for large values of z.

In the recent paper [12], an order theory for explicit exponential integrators is
presented and its application to semilinear parabolic problems is discussed. While
classical or nonstiff order conditions are usually derived by assuming that a Lipschitz
constant exists, one needs to account for the unboundedness of the operator L when-
ever PDEs are considered. It is found that a set of additional order conditions must
be satisfied to guarantee convergence order p under suitable assumptions; one requires
the linear operator L to be the infinitesimal generator of an analytic semigroup, and
that the nonlinear function satisfies a Lipschitz condition. The authors are also able
to give an example where order reduction is seen numerically for schemes not satis-
fying the additional conditions. But the conditions are rather restrictive, and in [13]
exponential integrators of (nonstiff) order four are tried out numerically for a number
of well-known semilinear PDEs, and no order reduction is seen, despite the fact that
these integrators do not satisfy all the required conditions for order four as given
in [12]. This shows that the issue of determining the order behavior of exponential
integrators for PDEs is indeed a subtle one, and remains today in an unsatisfactory
state of nonresolution.

2. B-series and order conditions. Repeated differentiation of (1.1) with re-
spect to time yields

d2u

dt2
= Lu̇ + N ′(u̇)

= L2u + LN + N ′(Lu) + N ′(N)

d3u

dt3
= L3u + L2N + LN ′(Lu) + LN ′(N)

+ N ′′(Lu,Lu) + 2N ′′(Lu,N) + N ′(L2u)

+ N ′(LN) + N ′′(N,N) + N ′N ′(Lu) + N ′N ′(N),

etc. The exact solution of (1.1) has a formal expansion

u(h) =

∞∑
q=0

hq

q!

dq

dhq

∣∣∣∣
h=0

u(h),

where each term in the qth derivative corresponds in an obvious way to a rooted
bicolored tree. Let for instance • ∼ F (•) = N(u) and ◦ ∼ F (◦) = Lu be the two
trees with one node. Next, define B+ as the operation which takes a finite set of
trees {τ1, . . . , τμ} and connects their roots to a new common black root. Similarly,
τ = W+(τ ′) connects the root of τ ′ to a new white root resulting in the tree τ
associated to F (τ) = L · F (τ ′). It suffices here to allow W+ to act on a single tree
and not on a set of trees. To each tree τ with q nodes formed this way, there exists
precisely one term, F (τ) called an elementary differential, in the qth derivative of the
solution of (1.1). For q > 1 it is defined recursively as

F (B+(τ1, . . . , τμ))(u) = N (μ)(F (τ1), . . . , F (τμ))(u)(2.1)

F (W+(τ ′))(u) = LF (τ ′)(u).(2.2)
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We may denote by T the set of all bicolored trees such that each white node has
at most one child, and set T = Tb ∪ Tw the union of trees with black and white
roots, respectively. Introducing the empty set ∅, and using the convention B+(∅) =
•, W+(∅) = ◦, we may write

T ∪ ∅ =
⋃
m≥0

Wm
+ (Tb ∪ ∅), Tw =

⋃
m≥1

Wm
+ (Tb ∪ ∅).(2.3)

The same bicolored trees used here also appear in the linearly implicit
W -methods; see Steihaug and Wolfbrandt [21] as well as the text [10] by Hairer
and Wanner. Following, for instance, the text by Hairer, Lubich, and Wanner [8],
we may work with formal B-series. For an arbitrary map c : T ∪ ∅ → R, we let the
formal series

B(c, u) = c(∅)u +
∑
τ∈T

h|τ |

σ(τ)
c(τ)F (τ)(u)(2.4)

be a B-series, where σ(τ) is the symmetry coefficient defined as σ(•) = σ(◦) = 1, and
for τ = B+(τ1, . . . , τμ),

σ(τ) = σ(τ1) · · ·σ(τμ)m1! ·m2! · · · ,

where the mis count the number of equal trees among τ1, . . . , τμ.
The further derivation of order conditions is based on the assumption that both

the exact and numerical solution possess B-series of the form (2.4), say B(e, u0) and
B(u1, u0), respectively. We refer to [1] for details, and present only the final result.

Theorem 2.1. Let T ′ ⊂ T be the set of bicolored rooted trees such that every
white node has precisely one child. An exponential integrator defined by (1.2)–(1.3)
has order of consistency p if

u1(τ) =
1

γ(τ)
for all τ ∈ T ′ such that |τ | ≤ p,

where

u1(∅) = Ur(∅) = 1, 1 ≤ r ≤ s,

u1(W
m
+ B+(τ1, . . . , τμ)) =

s∑
r=1

βr,mUr(τ1) · · ·Ur(τμ)

Ur(W
m
+ B+(τ1, . . . , τμ)) =

s∑
j=1

αj,m
r Uj(τ1) · · ·Uj(τμ).

The trees in T ′ with at most four nodes are listed in Table 2. Note that even
though all trees in the set T feature in the B-series for the exact and numerical
solutions, it suffices to consider a subset T ′ consisting of all trees in T except those
with a terminal white node. There is an interesting connection between the set of trees
T ′ and the trees used to develop the order theory for composition methods in [19].
White nodes appear as connected strings of nodes which, except for the root, have
exactly one parent and one child, and always terminate in a black node. Therefore
one can remove all white nodes and assign to the terminating black node the number
of removed nodes plus one. Black nodes not connected to a white node are assigned
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the number one. These multilabelled trees are precisely those appearing in [19], they
can also be identified as the set of rooted trees of nonempty sets. The generating
function for these trees is well known,

M(x) =
x

1 − x
exp

(
M(x) +

M(x2)

2
+

M(x3)

3
+ · · ·

)
.

The number of order conditions for each order 1 to 9 is 1, 2, 5, 13, 37, 108, 332, 1042,
and 3360.

3. Construction of exponential integrators. The schemes of Lawson [15] are
exponential integrators derived simply by introducing a change of variable, w(t) =
e−tL u(t) in (1.1), and by applying a standard Runge–Kutta scheme to the resulting
ODE. This approach results in a formula for w1 in terms of w0. By setting un = etL wn

one gets a scheme of the form (1.2)–(1.3) in which

ajr(z) = αj,0
r e(cr−cj)z and br(z) = βr,0 e(1−cr)z,

as noted by Lawson in [15].
This scheme has order p if the underlying scheme determined by αj,0

r and βr,0 is of
order p. This gives us a very useful tool for constructing exponential integrators with
given underlying Runge–Kutta schemes. We express this in the following proposition.

Proposition 3.1. Suppose that the coefficients αj,0
r and βr,0, 1 ≤ r, j ≤ s define

a Runge–Kutta scheme of order p. Then, any exponential integrator of the form
(1.2)–(1.3) satisfying

αj,m
r =

1

m!
(ajr)

(m)(0) =
1

m!
αj,0
r (cr − cj)

m, 0 ≤ m ≤ p− 2,(3.1)

βr,m =
1

m!
(bjr)

(m)(0) =
1

m!
βr,0(1 − cr)

m, 0 ≤ m ≤ p− 1,(3.2)

is of order p. In the above expression we use 00 := 1.
Proof. Order conditions for exponential integrators of order p involve αj,m

r for
0 ≤ m ≤ p− 2 and βr,m for 0 ≤ m ≤ p− 1. On the other hand, the Lawson schemes
must satisfy the order conditions for exponential integrators, and their values for these
coefficients are precisely those specified in the proposition.

It is convenient to introduce finite dimensional function spaces Va and Vb to which
the respective coefficient functions ajr(z) and br(z) will belong. For the purpose of
calculations, it is also useful to work with basis functions ψk for these spaces,

ajr(z) =

Ka−1∑
k=0

Aj,k
r ψk(z) and br(z) =

Kb−1∑
k=0

Br,kψk(z),(3.3)

where Ka = dim(Va) and Kb = dim(Vb). There is a technical assumption that we will
adopt to the end of this note.

Assumption 3.2. Any finite dimensional function space V of dimension K used
for coefficient functions ajr(z) or br(z) has the property that the map from V to RK

defined by

f 
→ (f(0), f ′(0), . . . , f (K−1)(0))T

is injective. Equivalently, any function in V is uniquely determined by its first K
Taylor coefficients.



1720 H. BERLAND, B. OWREN, AND B. SKAFLESTAD

Table 2

Trees, elementary differentials and coefficients for τ ∈ T ′ with |τ | ≤ 4.

|τ | Tree F (τ) γ(τ) u1(τ) σ(τ)

1 1 N 1
∑

r β
r,0 1

2 2 N ′N 2
∑

r β
r,0cr 1

3 2 LN 2
∑

r β
r,1 1

4 3 N ′′(N,N) 3
∑

r β
r,0c2r 2

5 3 N ′N ′N 6
∑

r,j β
r,0αj,0

r cj 1

6 3 N ′(LN) 6
∑

r,j β
r,0αj,1

r 1

7 3 LN ′N 6
∑

r β
r,1cr 1

8 3 L2N 6
∑

r β
r,2 1

9 4 N ′′′(N,N,N) 4
∑

r β
r,0c3r 6

10 4 N ′′(N ′N,N) 8
∑

r,j β
r,0αj,0

r cjcr 1

11 4 N ′′(LN,N) 8
∑

r,j β
r,0αj,1

r cr 1

12 4 N ′N ′′(N,N) 12
∑

r,j β
r,0αj,0

r c2j 2

13 4 LN ′′(N,N) 12
∑

r β
r,1c2r 2

14 4 N ′N ′N ′N 24
∑

r,j,k βr,0αj,0
r αk,0

j ck 1

15 4 N ′N ′(LN) 24
∑

r,j,k βr,0αj,0
r αk,1

j 1

16 4 N ′(LN ′N) 24
∑

r,j β
r,0αj,1

r cj 1

17 4 N ′(L2N) 24
∑

r,j β
r,0αj,2

r 1

18 4 LN ′N ′N 24
∑

r,j β
r,1αj,0

r cj 1

19 4 LN ′(LN) 24
∑

r,j β
r,1αj,1

r 1

20 4 L2N ′N 24
∑

r β
r,2cr 1

21 4 L3N 24
∑

r β
r,3 1

3.1. Deriving schemes with natural continuous extensions. The approach
of Krogstad in [14] is to approximate the nonlinear function N(u(t0 + θh)), 0 < θ < 1
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with a polynomial in θ. Assuming that the functions ajr(z) for the internal stages are
given, one lets N(u(tn + θh)) be approximated by

N̄(t0 + θh) =

s∑
r=1

w′
r(θ)Nr,(3.4)

where Nr = N(Ur) are the stage derivatives and wr(θ) are polynomials of degree
d, with w(0) = 0, such that N̄(t0 + θh) approximates N(u(t0 + θh)) uniformly for
0 < θ < 1 to a given order. Replacing the exact problem with the approximate one,
v̇ = Lv + N̄(t), v(t0) = u0 one finds

u1 := v(t0 + h) = ehLu0 +

s∑
r=1

br(hL)Nr, where br(z) =

∫ 1

0

e(1−θ)zw′
r(θ) dθ;

we then define the functions

φk(z) =

∫ 1

0

e(1−θ)zθk dθ, k = 0, 1, . . . .(3.5)

Thus, here the function space Vb = span{φ0, . . . , φd−1}, so ψk = φk and Kb = d
in (3.3). Cox and Matthews [5] presented a fourth order scheme using these basis
functions with Kb = 3. Krogstad [14] also derived a variant of their method by using
a continuous extension as just explained. In [22] Zennaro developed a theory which
generalizes the collocation polynomial idea to arbitrary Runge–Kutta schemes. The
approach was called natural continuous extensions (NCE). By making a slight modi-
fication to the approach of Zennaro, one can find a useful way of deriving exponential
integrators as well as providing them with a continuous extension.

Suppose w1(θ), . . . , ws(θ) are given polynomials of degree d, and that the stage
derivatives N1, . . . , Ns of an exponential integrator are given from (1.2). We define
the d− 1 degree polynomial N̄(t) by (3.4).

Definition 3.3. We call N̄(t) of (3.4) a natural continuous n-extension (NCNE)
of degree d of the exponential integrator (1.2)–(1.3) if

1.

wr(0) = 0, wr(1) = br(0), r = 1, . . . , s,

2.

max
t0≤t≤t1

|N(u(t)) − N̄(t)| = O(hd−1),(3.6)

where u(t) is the exact solution of (1.1) satisfying u(t0) = u0;
3.

∫ t1

t0

G(t)(N(u(t)) − N̄(t)) dt = O(hp+1)(3.7)

for every smooth matrix-valued function G(t).
It is important to note that the polynomial N̄(t) only depends on the stages Nr

and the weights br(0) = βr,0 corresponding to the underlying Runge–Kutta scheme.
We also observe that since the wr(θ) does not depend on L, an NCNE as defined above
is also an NCE in the sense of Zennaro for the system u̇ = N(u). Before discussing the
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existence of NCNEs, we motivate their usefulness in designing exponential integrators.
Suppose an underlying Runge–Kutta method has been chosen, and that an NCNE
has been found. Then we can determine the functions br(z) in order to obtain an
exponential Runge–Kutta method of the same order as the underlying scheme.

Theorem 3.4. If N̄(t) defined from (3.4) is an NCNE of degree d for a pth order
scheme, then the functions

br(z) =

∫ 1

0

e(1−θ)zw′(θ) dθ = βr,0 + z

∫ 1

0

e(1−θ)zw(θ) dθ,

define the weights of an exponential integrator of order p.
Proof. The exponential integrator we consider is obtained by replacing (1.1) by

v̇ = Lv + N̄(t), v(t0) = u0(3.8)

over the interval [t0, t1] and by solving (3.8) exactly. We subtract (3.8) from (1.1) to
obtain

u̇− v̇ = L(u̇− v̇) +
(
N(u) − N̄(t)

)
.

We may solve this equation to obtain

u(t1) − v(t1) =

∫ t1

t0

e(t1−t)L
(
N(u(t)) − N̄(t)

)
dt = O(hp+1),

the last equality is thanks to (3.7).
A reinterpretation of a result by Zennaro [22] combined with Proposition 3.1 leads

to the following theorem.
Theorem 3.5. Suppose that an underlying Runge–Kutta scheme with coefficients

αj,0
r and βr,0 of order p is given. Then it is possible to find a set of coefficient functions

ajr(z) with ajr(0) = αj,0
r such that an NCNE of degree d = �p+1

2 � exists. Moreover, if
N̄(t) is a NCNE of degree d, then

⌊
p + 1

2

⌋
≤ d ≤ min(ν∗, p),

where ν∗ is the number of distinct elements among c1, . . . , cs.
Corollary 3.6. For every underlying Runge–Kutta scheme, there exists an

exponential integrator whose coefficient functions br(z) are in the linear span of the
functions {φ0(z), . . . , φd−1(z)}, where d = �p+1

2 �.
Note, in particular, that one can derive fourth order exponential integrators using

linear combinations of just φ0(z) and φ1(z) for br(z), which is one less than what Cox
and Matthews used; we present a specific example in section 4.

3.2. Lower bounds for Ka and Kb. We start establishing lower bounds for
the number of necessary basis functions ψk by proving an ancillary result.

Lemma 3.7. Let q ≥ 0 be an integer. The matrix Tq ∈ Rd×d with elements

(Tq)m+1,k+1 =
1

(q + m + k + 1)!
, 0 ≤ m, k ≤ d− 1

is invertible.
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Proof. Let w = (w1, . . . , wd)
T ∈ Rd be arbitrary, and consider the polynomial

p(x) =

d−1∑
k=0

wk+1
xq+d+k

(q + d + k)!
.

We compute

p(d−m−1)(1) =

d−1∑
k=0

wk+1
1

(q + m + k + 1)!
= (Tqw)m+1, 0 ≤ m ≤ d− 1.

So Tqw = 0 is equivalent to p(j)(1) = 0 for 0 ≤ j ≤ d − 1. Since p(x) is of the form
xq+dr(x) where r(x) is a polynomial of degree at most d− 1, it follows that p(x) ≡ 0
so that w = 0.

As φ
(m)
k (0) = m!k!/(m + k + 1)! for φk defined by (3.5), we get as an immediate

consequence of this lemma that the function spaces V = span(φq, . . . , φq+K−1), q ≥ 0
satisfy Assumption 3.2.

Theorem 3.8. For an exponential integrator of order p, the dimension of the
function spaces Va and Vb are bounded from below as follows:

Ka = dimVa ≥
⌊
p

2

⌋
, Kb = dimVb ≥

⌊
p + 1

2

⌋
.(3.9)

Proof. We will show that using smaller values of Ka or Kb than dictated by (3.9)
is incompatible with the order conditions for a scheme of order p. Let Va and Vb be
arbitrary function spaces, satisfying Assumption 3.2, let V denote either of them, and
let d = dimV . If f ∈ V , then there are numbers w0, . . . , wd−1 such that

f (d)(0) =

d−1∑
m=0

wm f (m)(0).(3.10)

Suppose now that da := dimVa = �p/2� − 1 and db := dimVb = �(p + 1)/2� − 1.
Consider the bicolored trees τm,k

q defined by

τm,k
q = Bq

+

(
Wm

+ B+(

k︷ ︸︸ ︷
•, . . . , •)

)
which consist of a string of q ≥ 0 black nodes followed by a string of m > 0 white
nodes with a bushy tree of k + 1 black nodes grafted onto the topmost leaf of the
white nodes. We shall use these trees with q = 0 for proving the bound on Kb and
with q = 1 for Ka. The density of τm,k

q is given by

γ(τm,k
q ) =

(q + m + k + 1)!

k!
.

The trees corresponding to order conditions for a scheme of order p have at most p
nodes, |τm,k

q | = q +m+ k + 1 ≤ p ⇒ 0 ≤ k ≤ p−m− 1− q. The definition of da and
db implies that p− 2 ≥ 2da and p− 1 ≥ 2db. If we set q = 1, m = da we thus obtain
conditions for 0 ≤ k ≤ da, whereas q = 0, m = db results in 0 ≤ k ≤ db.

The conditions corresponding to τda,k
1 can be expressed as

1

da!

s∑
r,j=1

βr,0(ajr)
(da)(0)ckj =

k!

(da + k + 2)!
, 0 ≤ k ≤ da
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which, upon insertion of (ajr)
(da)(0) =

∑
wm(ajr)

(m)(0) as in (3.10), yields

k! da!

(k + da + 2)!
=

da−1∑
m=0

wm

(
s∑

r=1

βr,0(ajr)
(m)(0)ckj

)
=

da−1∑
m=0

wm
m! k!

(m + k + 2)!
.

The conditions for τdb,k
0 similarly yield

k! db!

(k + db + 1)!
=

db−1∑
m=0

wm

(
s∑

r=1

(br)(m)(0) ckr

)
=

db−1∑
m=0

wm
m! k!

(m + k + 1)!
.

In both cases (d = da or db), we end up with a (d+ 1)× d linear system of equations
for determining wm, m = 0, . . . , d− 1. This system is of the form

d−1∑
m=0

m! k!

(q + m + k + 1)!
wm =

k! d!

(q + k + d + 1)!
, 0 ≤ k ≤ d

for q ∈ {0, 1} and is solvable only if the matrix with elements

(Tq)m+1,k+1 =
m! k!

(q + m + k + 1)!
, 0 ≤ m, k ≤ d

is singular. However, Lemma 3.7 implies that the matrix Tq is invertible so the linear
system is inconsistent. It is hence not possible to choose Ka = da or Kb = db.

Some remarks regarding the implications of Theorem 3.8 are in order. First, note
that the bounds in the theorem are not proved to be sharp; however, Theorem 3.5
ensures that the lower bound is attainable for the dimension of Vb if a basis is given
by the functions φk of (3.5). However, this result does not apply to the space Va of
the functions ajr(z). For instance, in the case p = 5, one can prove that it is indeed
possible to take Ka = 2, but Va cannot be the span of φ0 and φ1. But an example of a
feasible two-dimensional space is that with basis ψ0(z) = φ1(z) and ψ1(z) = φ1(

3
5z).

A particular scheme is given in Table 4, though the usefulness of the bounds are
questionable in this particular example. Using say Vb = span{φ0, φ1, φ2} combined
with the above choice of Va requires the computation with a total of 4 basis functions,
whereas only 3 are necessary if one instead chooses Va = Vb.

Furthermore, we note that the minimum attainable value of the parameters Ka

and Kb depend only on the order p of the underlying Runge–Kutta scheme and the
choice of the basis functions ψk. Specifically, the coefficients of the underlying Runge–
Kutta scheme do not influence the minimum values of Ka and Kb.

4. Examples of exponential integrators. In this section we will present ex-
amples of exponential integrators. For fourth order methods, one will notice that some
well-known schemes are obtained for particular choices of the free parameters, sug-
gesting that a search on the entire space of parameters may result in schemes which in
some sense may have better properties than the known methods. The scheme of order
5 presented at the end is only included as an illustration of the proposed procedure
for solving the order conditions. It remains a subject of future research to establish
to which extent higher order exponential integrators are useful for practical purposes.

The procedure we have used in constructing schemes may be summarized as
follows:

1. Choose an underlying Runge–Kutta scheme. This determines αj,0
r and βr,0.
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Table 3

Coefficient function for a fourth order ETD scheme with classical RK4 as underlying scheme.
Basis functions given by (3.5).

a1
2(z) = −( 1

2
+ ρ1)φ0(z) + (2ρ1 + 2)φ1(z)

a1
3(z) = (1 + ρ1 − 1

4
(ρ2 + ρ3))φ0(z) + (−2 − 2ρ1 + 1

2
(ρ2 + ρ3))φ1(z)

a2
3(z) = (−1 + 1

4
(ρ2 + ρ3))φ0(z) + (3 − 1

2
(ρ2 + ρ3)φ1(z)

a1
4(z) = 1

2
(ρ2 + ρ3)φ0(z) − (ρ2 + ρ3)φ1(z)

a2
4(z) = −ρ2

2
φ0(z) + ρ2φ1(z)

a3
4(z) = (1 − 1

2
ρ3)φ0(z) + ρ3φ1(z)

b1(z) = (1 + γ2)φ0(z) + (−3 − 6γ2)φ1(z) + (6γ2 + 2)φ2(z)

b2(z) = (−γ1 − 2γ2)φ0(z) + (6γ1 + 12γ2 + 2)φ1(z) + (−6γ1 − 12γ2 − 2)φ2(z)

b3(z) = γ1 φ0(z) + (−6γ1 + 2)φ1(z) + (6γ1 − 2)φ2(z)

b4(z) = γ2 φ0(z) + (−6γ2 − 1)φ1(z) + (6γ2 + 2)φ2(z)

2. Choose basis functions ψk(z) for the coefficient functions and determine Ka

and Kb.
3. Use the order conditions for the trees of the form Wm

+ (τC), where τC is a
tree with only black nodes, and determine βr,m, for 1 ≤ m ≤ Kb − 1; see
also (3.2).

4. Identify order conditions which are linear in c′r =
∑s

j=1 α
j,1
r and which oth-

erwise depend only on βj,m
r , 0 ≤ m ≤ Kb − 1 and αj,0

r , and solve for c′r.
5. Identify remaining conditions which depend linearly on αj,1

r . Solve for αj,1
r

together with c′r =
∑s

j=1 α
j,1
r . Repeat this procedure to solve for αj,m

r , 2 ≤
m ≤ Ka − 1.

6. βr,m are now uniquely determined for m ≥ Kb and αj,m
r for m ≥ Ka by (3.10).

Verify all remaining order conditions for βr,m, Kb ≤ m ≤ p− 1 and for αj,m
r ,

Ka ≤ m ≤ p−2. If inconsistencies appear, the basis functions are not feasible.
7. Verify all remaining order conditions.

In most cases we have considered, once αj,0
r and βr,0 have been chosen, one can

find the remaining αj,m
r independently of the βr,m. Most of the exponential integrators

we find in the literature are based on the classical fourth order scheme of Kutta, and
it is typical that one can combine ajr(z) from one scheme with br(z) from another
scheme and still get overall order four.

In the class of ETD schemes, proposed by Cox and Matthews in [5] and Krogstad
in [14], the space Vb is spanned by the three functions φ0, φ1, and φ2 of (3.5). How-
ever, in the former reference, dimVa = 2 with a basis {φ0(z/2), zφ0(z/2)2}. This Va

coincides with the one used in [3] given in Table 1(a).

Another choice is to use φk(z) of (3.5) both for Va and Vb. In Table 3 we char-
acterise all resulting schemes with Ka = 2 and Kb = 3. It is interesting to note
that Theorem 3.8 predicts Ka ≥ 2 and Kb ≥ 2, and indeed, by choosing γ1 = 1

3 and
γ2 = − 1

3 , we see that φ2 disappears from the br(z)-functions. Choosing γ1 = γ2 = 0,
we recover the br(z)-functions obtained in [5].

Letting Vb be spanned by ψ0(z) = φ0(z) and ψ1(z) = φ0(z/2), one obtains the
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Table 4

Coefficient functions for a fifth order exponential integrator with Fehlberg’s fifth order RK as
the underlying scheme. Here aji (z) = ajiφ1(z) + âjiφ1( 3

5
z).

0
2
9 a1

2(z)
1
3 a1

3(z) a2
3(z)

3
4 a1

4(z) a2
4(z) a3

4(z)

1 a1
5(z) a2

5(z) a3
5(z) a4

5(z)
5
6 a1

6(z) a2
6(z) a3

6(z) a4
6(z) a5

6(z)

b1(z) b2(z) b3(z) b4(z) b5(z) b6(z)

,

b1(z) = 47
150φ0 − 188

75 φ1 + 47
15φ2

b2(z) = 0

b3(z) = − 43
25φ0 + 132

5 φ1 − 33φ2

b4(z) = 4124
75 φ0 − 6152

15 φ1 + 1352
3 φ2

b5(z) = 189
10 φ0 − 662

5 φ1 + 142φ2

b6(z) = − 1787
25 φ0 + 12966

25 φ1 − 2814
5 φ2

(i, j) (2, 1) (3, 1) (3, 2) (4, 1) (4, 2) (4, 3) (5, 1) (5, 2)

aji − 2
3

569
11544 − 831

3848 − 77157
61568

587979
61568 − 405

64
655263
7696 − 1148769

7696

âji
10
9

1355
11544

2755
3848

143535
61568 − 821745

61568
675
64 − 2031205

23088
1252665

7696

(i, j) (5, 3) (5, 4) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5)

aji
1593
40

144
5 − 2212835

277056
477285
30784 − 39

16 − 4
9 − 185

96

âji − 405
8 − 80

3
6888625
831168 − 496525

30784
65
16

20
27

575
288

unique solution

b1(z) = 1
2φ0(z) − 1

3φ0(z/2)

b2(z) = b3(z) = 1
3φ0(z)

b4(z) = − 1
6φ0(z) + 1

3φ0(z/2).

(4.1)

These weights coincide with the ones derived in the fourth order scheme in [3] given
in Table 1. Yet another choice is to let Vb consist of functions of the form p(z)φ0(z),
where p(z) is a polynomial of degree 1, and we recover br(z) as in Table 1(b).

Finally, we give an example of a fifth order exponential integrator based on a
scheme of Fehlberg. As indicated in section 3.2, we take dimVa = 2 with basis
ψ0(z) = φ1(z) and ψ1(z) = φ1(

3
5z). For Vb we use the basis ψk(z) = φk(z) for

k = 0, 1, 2. The resulting coefficient functions are given in Table 4.

In summary, this paper presents a complete order theory for exponential integra-
tors of the form (1.2)–(1.3). From deriving order conditions by means of bicolored
trees to proving bounds for the lowest possible number of basis functions, the results
presented herein provide a general framework for constructing schemes of this type.
A number of issues are, however, not addressed in the present paper. These include
systematically choosing basis functions ψk, and how to construct schemes with low
error constants.

Exponential integrators are interesting from the point of view of handling un-
bounded or stiff operators, yet the order theory does not say anything about what
happens for large eigenmodes of L in (1.1). Determining conditions for favorable
behavior in light of such operators should be an arena for future work.
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CORRECTION TO “B-SERIES AND ORDER CONDITIONS FOR
EXPONENTIAL INTEGRATORS”

There were errors in the trees in Table 2 in the published version of “B-Series
and Order Conditions for Exponential Integrators.” The correct table follows.

1



Table 2

Trees, elementary differentials and coefficients for τ ∈ T ′ with |τ | ≤ 4.

|τ | Tree F (τ) γ(τ) u1(τ) σ(τ)

1 1 N 1
∑

r βr,0 1

2 2 N ′N 2
∑

r βr,0cr 1

3 2 LN 2
∑

r βr,1 1

4 3 N ′′(N, N) 3
∑

r βr,0c2r 2

5 3 N ′N ′N 6
∑

r,j βr,0αj,0
r cj 1

6 3 N ′(LN) 6
∑

r,j βr,0αj,1
r 1

7 3 LN ′N 6
∑

r βr,1cr 1

8 3 L2N 6
∑

r βr,2 1

9 4 N ′′′(N, N, N) 4
∑

r βr,0c3r 6

10 4 N ′′(N ′N, N) 8
∑

r,j βr,0αj,0
r cjcr 1

11 4 N ′′(LN, N) 8
∑

r,j βr,0αj,1
r cr 1

12 4 N ′N ′′(N, N) 12
∑

r,j βr,0αj,0
r c2j 2

13 4 LN ′′(N, N) 12
∑

r βr,1c2r 2

14 4 N ′N ′N ′N 24
∑

r,j,k βr,0αj,0
r α

k,0
j ck 1

15 4 N ′N ′(LN) 24
∑

r,j,k βr,0αj,0
r α

k,1
j 1

16 4 N ′(LN ′N) 24
∑

r,j βr,0αj,1
r cj 1

17 4 N ′(L2N) 24
∑

r,j βr,0αj,2
r 1

18 4 LN ′N ′N 24
∑

r,j βr,1αj,0
r cj 1

19 4 LN ′(LN) 24
∑

r,j βr,1αj,1
r 1

20 4 L2N ′N 24
∑

r βr,2cr 1

21 4 L3N 24
∑

r βr,3 1

2
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Abstract. Superconvergence of the velocity is established for mimetic finite difference approx-
imations of second-order elliptic problems over h2-uniform quadrilateral meshes. The superconver-
gence result holds for a full tensor coefficient. The analysis exploits the relation between mimetic
finite differences and mixed finite element methods via a special quadrature rule for computing the
scalar product in the velocity space. The theoretical results are confirmed by numerical experiments.
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1. Introduction. We consider the numerical approximation of a linear second-
order elliptic problem. In porous medium applications, this equation models single
phase Darcy flow and is usually written as a first-order system for the fluid pressure
p and velocity u:

u = −K grad p in Ω,
div u = f in Ω,
u · n = g on ∂Ω,

(1.1)

where Ω ⊂ �2, n is the outward unit normal to ∂Ω, and K ∈ �2×2 is a symmetric
uniformly positive definite full tensor representing the rock permeability divided by
the fluid viscosity. We assume that system (1.1) satisfies the compatibility condition

∫
Ω

f dx +

∫
∂Ω

g ds = 0.

In this paper, we analyze the convergence of a mimetic finite difference (MFD)
method on quadrilateral meshes. The method uses discrete operators that preserve
certain critical properties of the original continuum differential operators. Conserva-
tion laws, solution symmetries, and the fundamental identities and theorems of vector
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and tensor calculus are examples of such properties. This “mimetic” technique has
been applied successfully to several applications including diffusion [22, 15, 18], mag-
netic diffusion and electromagnetics [14], continuum mechanics [17], and gas dynamics
[8]. For problem (1.1), the mimetic technique uses discrete flux G and divergence DIV
operators for the continuum operators −Kgrad and div, respectively, which are ad-
joint to each other, i.e., G = DIV ∗. It is straightforward to extend the MFD method
to locally refined meshes with hanging nodes [16], unstructured three-dimensional
meshes composed of hexahedra, tetrahedra, and any cell type having three faces in-
tersecting at each vertex.

A connection between the MFD method and the mixed finite element (MFE)
method with Raviart–Thomas finite elements has been established in [4]. In partic-
ular, it was shown that the scalar product in the velocity space proposed in [15] for
MFD methods can be viewed as a quadrature rule in the context of MFE methods.
Another closely related method is the control-volume MFE method [7, 9].

MFE discretizations on quadrilateral grids have been studied in [25, 26, 2, 13].
These methods are based on the Piola transformation [25, 6], which preserves continu-
ity of the normal component of the velocity u across mesh edges. Unfortunately, this
results in the necessity to integrate rational functions over quadrilaterals. The task
becomes even more complicated when the diffusion tensor is full and nonconstant. The
results in [4] provide an efficient numerical quadrature rule with a minimal number
of points. Moreover, the connection between the two methods allows for extensions
of MFE methods to general polygons and polyhedra.

The aforementioned connection provides a suitable functional frame for rigorous
analysis of convergence of mimetic discretizations. In [4], first-order convergence for
the fluid pressure and velocity was shown. In this paper, we establish velocity su-
perconvergence for MFD discretizations of (1.1) on h2-uniform quadrilateral meshes
(as defined in (2.2)–(2.3)). Precise calculation of the fluid velocity is important for
porous media and other applications. The points or lines where the numerical solution
is superclose to the exact solution may be used to improve the accuracy of the overall
simulation. Various superconvergence results for MFE methods have been established
for rectangular meshes [21, 19, 27, 10, 11, 12, 3, 1] and general quadrilateral meshes
[2, 13].

In [13], velocity superconvergence is established for the MFE discretization of
(1.1) on h2-uniform quadrilateral grids. In this paper, we exploit the relation be-
tween MFD methods and MFE methods with the quadrature rule (3.10) to establish
superconvergence for velocities in MFD discretizations. In particular, we show that
the computed normal velocities are superclose to the true normal velocities at the
midpoints of the edges. In [18], an alternative quadrature is introduced, which pre-
serves symmetry of the exact solution on polar grids. This symmetry preservation is
important for problems of radiation transport in the asymptotic diffusion limit. The
analysis of superconvergence for symmetry-preserving quadratures is left for future
investigation.

The paper outline is as follows. In section 2, we describe the MFE method for
(1.1). In section 3, the MFD method is presented and related to the MFE method
with a quadrature rule. The main superconvergence results are presented in section 4.
Superconvergence of the normal velocities at the midpoints of the edges is established
in section 5. In section 6, numerical experiments are given that confirm the theoretical
results.
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r2 = r′1

r′2

r′3r4

r1

r3 = r′4

Fig. 2.1. h2-uniform quadrilateral grid.

2. The MFE method. To simplify the exposition, we assume without loss of
generality that g = 0, i.e., homogeneous Neumann boundary conditions are imposed
on ∂Ω.

Throughout this paper, we shall use the notation ‖ · ‖k,D, ‖ · ‖div ,D, and ‖ · ‖D for
the norms on the Hilbert spaces Hk(D), H(div;D), and L2(D), respectively, where
D ⊂ Ω. In addition, | · |k,D will denote the seminorm on Hk(D). To simplify notation,
we shall omit the subscript D when D = Ω. Finally, we denote by (·, ·) the L2-inner
product on Ω of either scalar or vector functions. Let

V = {v ∈ H(div; Ω) : v · n = 0 on ∂Ω} and W =

{
w ∈ L2(Ω) :

∫
Ω

w dx = 0

}
.

The variational formulation of (1.1) is as follows: find a pair (u, p) ∈ V × W such
that

(K−1u, v) − (p, div v) = 0,

(div u, w) = (f, w) ∀ (v, w) ∈ V ×W.
(2.1)

For the discretization of (2.1), denote by Th a shape-regular partition (see [5,
Remark 2.2, p. 113]) of Ω̄ into convex quadrilateral elements of diameter not greater
than h. For two examples of shape-regular grids, see Figure 6.1. We assume that the
grid is h2-uniform. Following [13], the quadrilateral partition Th is called h2-uniform
if each element is an h2-parallelogram, i.e.,

‖(r2 − r1) − (r3 − r4)‖ ≤ Ch2,(2.2)

and any two adjacent quadrilaterals form an h2-parallelogram, i.e.,

‖(r2 − r1) − (r′2 − r′1)‖ ≤ Ch2,(2.3)

where r′1, r′2, r′3, and r′4 are the vertices of the adjacent element (see Figure 2.1).
For any convex quadrilateral e, there exists a bijection mapping Fe : ê → e, where

ê is the reference unit square with vertices r̂1 = (0, 0)T , r̂2 = (1, 0)T , r̂3 = (1, 1)T ,
and r̂4 = (0, 1)T . Denote by ri = (xi, yi)

T , i = 1, 2, 3, 4, the four corresponding
vertices of element e as shown in Figure 2.2. Then, Fe is the bilinear mapping given
by

Fe(r̂) = r1 (1 − x̂)(1 − ŷ) + r2 x̂(1 − ŷ) + r3 x̂ŷ + r4 (1 − x̂)ŷ.(2.4)
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r̂1

r4

e

r̂4

r1r̂2

r̂3

r3

r2
Fe n4

n̂2

n̂1

n̂3 n3

n2

n1

n̂4
ê�̂4 �̂2

�̂3

�̂1

�4

�3

�1

�2

Fig. 2.2. Bilinear mapping and orientation of normal vectors.

Note that the Jacobi matrix DFe and its Jacobian Je are linear functions of x̂ and ŷ.
Indeed, straightforward computations yield

DFe = [(1 − ŷ) r21 + ŷ r34, (1 − x̂) r41 + x̂ r32](2.5)

and

Je = 2|T124| + 2(|T123| − |T124|)x̂ + 2(|T134| − |T124|)ŷ,(2.6)

where rij = ri − rj and |Tijk| is the area of the triangle with vertices ri, rj , and rk.
Since e is convex, the Jacobian Je is always positive, i.e., Je > 0.

Let �i and �̂i, i = 1, 2, 3, 4, be the edges of e and ê, respectively. Let ni and n̂i be
the unit outward normal vectors to �i and �̂i, respectively (see Figure 2.2). Similarly,

let τ i and τ̂ i be the unit tangential vectors to �i and �̂i, respectively. It is easy to see
from (2.5) that for any edge �i,

ni =
1

|�i|
JeDF−T

e n̂i and τ i =
1

|�i|
DFeτ̂ i.(2.7)

The reader is referred to [6] for suitable choices for the pair of finite element spaces
Vh ⊂ V and Wh ⊂ W . In this paper, we consider the lowest-order Raviart–Thomas
finite element spaces RT0 [25, 20] defined on the reference element ê as

V̂(ê) = P1,0(ê) × P0,1(ê), Ŵ (ê) = P0(ê),

where P1,0 (or P0,1) denotes the space of polynomials linear in the x̂ (or ŷ) variable
and constant in the other variable, and P0 denotes the space of constant functions.
The velocity space on any convex quadrilateral e is defined through the Piola trans-
formation [6]

1

Je
DFe : L2(ê) × L2(ê) → L2(e) × L2(e) ∀e ∈ Th.

The RT0 spaces on Th are given by

Vh = {v ∈ V : v|e =J−1
e DFev̂ ◦ F−1

e , v̂ ∈ V̂(ê) ∀e ∈ Th},
Wh = {w ∈ W : w|e = ŵ ◦ F−1

e , ŵ ∈ Ŵ (ê) ∀e ∈ Th}.
(2.8)

Two properties of Piola’s transformation will be important in our analysis. For any
v̂ ∈ V̂(ê) and the related v = J−1

e DFev̂ ◦ F−1
e ,

Jediv v = d̂iv v̂ and |�i|v · ni = v̂ · n̂i.(2.9)
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Note that since Vh ⊂ H(div; Ω), any vector in Vh has continuous normal com-
ponents on the edges. A function in Wh is uniquely determined by its values at the
cell-centers and a vector in Vh is uniquely determined by its normal components on
the edges. Therefore, dimWh = Np and dimVh = Ne, where Np is the number of
elements and Ne is the number of interior edges. Let {ψh

i }, i = 1, Np, be a basis for
Wh such that

ψh
i (cj) = δij ≡

{
1, i = j,
0, i �= j,

where cj is the center of element ej , j = 1, Np. Similarly, let φh
i , i = 1, Ne, be a basis

for Vh such that φh
i · nj = δij , where nj is a fixed unit normal vector on edge �j ,

j = 1, Ne. In order to simplify notation, we use the same way for global and local
indexing of mesh edges and corresponding normal vectors.

Given the finite element spaces Vh and Wh, we define the discrete problem: find
(uh, ph) ∈ Vh ×Wh such that

(K−1uh, vh)h − (ph, div vh) = 0,

(div uh, wh) = (f, wh) ∀ (vh, wh) ∈ Vh ×Wh,
(2.10)

where (·, ·)h is a continuous bilinear form corresponding to the application of a nu-
merical quadrature rule for computing (·, ·). A detailed discussion of this quadrature
rule is given in section 3.

3. MFD discretizations. In this section, we derive an MFD discretization of
(1.1) and show its connection with the MFE method (2.10).

The first step in the mimetic technique is to specify discrete degrees of freedom
for pressure and velocity. The discrete pressure unknowns are defined at the centers
of the quadrilaterals, one unknown per mesh cell. The discrete velocities are defined
at the midpoints of mesh edges as normal components. In other words, an edge-based
unknown is a scalar and represents the orthogonal projection of a velocity vector onto
the unit vector ni normal to the mesh edge �i.

The second step in the mimetic technique is to equip the spaces of discrete pres-
sures and velocities with scalar products. We denote the vector space of cell-centered
pressures by Qd. The dimension of Qd equals the number of mesh cells Np. The
scalar product on the vector space Qd is given by

[pd, qd]Qd =

Np∑
i=1

|ei| pdi qdi ∀pd, qd ∈ Qd,(3.1)

where |ei| denotes the area of cell ei and pdi , q
d
i are cell-centered pressure components.

It is easy to see that the vector space Qd is isometric to the MFE space Wh in
(2.8). Indeed, for any ph ∈ Wh, there exists a unique pd = (pd1, p

d
2, . . . , p

d
Np

)T ∈ Qd

such that ph =
∑Np

i=1 p
d
iψ

h
i and

(ph, qh) = [pd, qd]Qd .

Note that the discrete MFD pressure variable, pdi , corresponds to the value of the
MFE pressure function at the cell-center, ph(ci).
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We denote the vector space of edge-based velocities by Xd. The dimension of Xd

equals the number of interior mesh edges Ne. The scalar product on Xd is given by

[ud, vd]Xd =
∑
e∈Th

[ud, vd]Xd,e,(3.2)

where [ud, vd]Xd,e is a scalar product over cell e involving only the normal velocity
components on cell edges. Recall that a velocity vector can be recovered from two
orthogonal projections on any two noncollinear vectors. Since the mesh cell is convex,
any pair of normal vectors to edges with a common point satisfies the above require-
ment. The orthogonal projections are exactly the degrees of freedom associated with
cell edges. As shown in Figure 3.1, four recovered velocity vectors can be associated
with the four vertices of the quadrilateral. For example, velocity v1 is recovered from
its projections onto the normal vectors n1 and n2. For a general quadrilateral e, we
denote by vd(rj) the velocity recovered at jth vertex rj , j = 1, 2, 3, 4. Then, the
cell-based scalar product is given by

[ud, vd]Xd,e =
1

2

4∑
j=1

|Tj |K−1(rj)u
d(rj) · vd(rj),(3.3)

where |Tj | is the area of the triangle with vertices rj−1, rj , and rj+1 (see Figures 2.2
and 3.1). For example, triangles T1 and T4 are the shaded triangles in Figure 3.1.
Note that (3.3) is indeed an inner product, since K is a symmetric and positive definite
tensor and

[vd,vd]Xd ≥ C|||vd|||2,(3.4)

where ||| · ||| is the Euclidean vector norm.

n4

v4

n1

v1

n1

n2

T4

T1

Fig. 3.1. Recovered vectors v1, v4 and triangles T1, T4.

The vector space Xd is isomorphic to the MFE space Vh in (2.8), since both
spaces have the same definitions of degrees of freedom. In particular, for any vh ∈ Vh,
there exists a unique vd = (vd1 , v

d
2 , . . . , v

d
Ne)T ∈ Xd such that vh =

∑Ne

i=1 v
d
i φ

h
i . Note

that the discrete MFD velocity variable, vdi , corresponds to the MFE normal velocity
component, vh · ni, on edge �i.

The third step in the mimetic technique is to derive a discrete approximation
to the divergence operator, DIV : Xd → Qd, which we shall refer to as the prime
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operator. For a cell e, the Gauss divergence theorem gives

DIV ud|e =
1

|e|
(
ud

1|�1| + ud
2|�2| + ud

3|�3| + ud
4|�4|

)
,(3.5)

where ud
1, . . . , u

d
4 are the normal velocity components on element e and the normal

vectors are oriented as shown in Figure 2.2.
The fourth step in the mimetic technique is to derive a discrete flux operator

G (for the continuous operator −Kgrad ) adjoint to the discrete divergence operator
DIV with respect to scalar products (3.1) and (3.2), i.e.,

[DIV ud, pd]Qd ≡ [ud, Gpd]Xd ∀ud ∈ Xd ∀pd ∈ Qd.

To derive the explicit formula for G, we consider an auxiliary scalar product 〈· , ·〉 and
relate it to scalar products (3.1) and (3.2). Denote by 〈· , ·〉 the standard vector dot
product. Then

[pd, qd]Qd = 〈Dpd, qd〉 and [ud, vd]Xd = 〈Mud, vd〉,

where D is a diagonal matrix, D = diag{|e1|, . . . , |eNp |}, and M is a sparse sym-
metric mass matrix with a 5-point stencil. Restricted to a cell, this stencil connects
edge-based unknowns if and only if the corresponding edges have a common point.
Combining the last two formulae, we get

[ud, DIV ∗pd]Xd = 〈ud, MDIV ∗pd〉 = [DIV ud, pd]Qd

= 〈ud, DIV t D pd〉 ∀ud ∈ Xd ∀pd ∈ Qd,

where DIV t is the adjoint of DIV with respect to the auxiliary scalar product.
Therefore,

G = M−1 DIV t D.(3.6)

The MFD method approximating first-order system (1.1) may be summarized as
follows:

ud = G pd, DIV ud = fd,(3.7)

where fd = (fd
1 , . . . , f

d
Np

)t, and entry fd
i is the integral average of f over cell ei.

The basic tool for the error analysis of the discrete solution (ud, pd) ∈ Xd ×Qd

is based on the following transformation. Multiplying the first equation in (3.7) by
Mvd and the second one by Dqd, we get

[ud, vd]Xd − [pd, DIV vd]Qd = 0,

[qd, DIV ud]Qd = [fd, qd]Qd ∀(vd, qd) ∈ Xd ×Qd.
(3.8)

Using the isomorphism between the finite element space Vh×Wh and the vector space
Xd ×Qd, we define finite element functions ph, qh, fh, uh, and vh corresponding to
vectors pd, qd, fd, ud, and vd, respectively. Then

[pd, DIV vd]Qd = (ph, div vh) and [qd, DIV ud]Qd = (qh, div uh).

The definition of fd implies that

[fd, qd]Qd = (fh, qh) = (f, qh).
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Finally, by introducing the quadrature rule

(K−1uh, vh)h ≡ [ud, vd]Xd ,(3.9)

we reduce problem (3.7) to the finite element problem (2.10).
The scalar product in the space of velocities given by (3.3) is obviously not unique.

In the context of MFE methods, it is a quadrature rule for numerical integration of
(K−1uh, vh):

(K−1uh, vh)h,e =
1

2

4∑
j=1

|Tj |K−1(rj)u
h(rj) · vh(rj),(3.10)

where uh(rj) is the recovered velocity at vertex rj . In the context of MFE methods,
we shall refer to (3.10) as the MFD quadrature rule. The global scalar product is
obtained by summing over quadrilaterals, i.e.,

(K−1uh, vh)h =
∑
e∈Th

(K−1uh, vh)h,e.(3.11)

Note that (3.4) implies that there exists a constant C0 > 0 such that

(K−1vh,vh)h ≥ C0‖vh‖2 ∀vh ∈ Vh.(3.12)

It was shown in [4] that the element quadrature rule (3.10) is exact for any constant
vector uh, constant tensor K, and vh ∈ Vh.

4. Superconvergence estimates for the velocity. We begin by recalling the
mixed projection operator Π : H1(Ω) ×H1(Ω) → Vh satisfying

(div (Πv − v), w) = 0 ∀w ∈ Wh.(4.1)

The operator Π is defined locally on each element e by

Π̂v = Π̂v̂,

where Π̂ : H1(ê) ×H1(ê) → V̂(ê) is the reference element projection operator satis-
fying ∫

�̂i

(Π̂v̂ − v̂) · n̂i = 0, i = 1, 2, 3, 4.(4.2)

The approximation properties of Π have been established in [25, 26]:

‖Πv‖div ≤ C‖v‖1,(4.3)

‖Πv − v‖ ≤ Ch‖v‖1,(4.4)

‖div (Πv − v)‖ ≤ Ch‖v‖2.(4.5)

The following lemma gives several approximation properties of Π̂ which will be used
in the analysis.

Lemma 4.1. The operator Π̂ defined in (4.2) satisfies, for any v̂ = (v̂1, v̂2) in
H1(ê) ×H1(ê), the following:∫

ê

∂

∂x̂
(Π̂v̂ − v̂)1 dx̂ dŷ = 0,

∫
ê

∂

∂ŷ
(Π̂v̂ − v̂)2 dx̂ dŷ = 0,(4.6)

∥∥∥∥ ∂

∂x̂
(Π̂v̂)1

∥∥∥∥
ê

≤ C

∥∥∥∥ ∂

∂x̂
v̂1

∥∥∥∥
ê

,

∥∥∥∥ ∂

∂ŷ
(Π̂v̂)2

∥∥∥∥
ê

≤ C

∥∥∥∥ ∂

∂ŷ
v̂2

∥∥∥∥
ê

,(4.7)

‖Π̂v̂‖1,ê ≤ C‖v̂‖1,ê.(4.8)
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Proof. The identities in (4.6) follow easily from definition (4.2). In particular,
writing (4.2) for the two vertical edges gives

∫ 1

0

(Π̂v̂ − v̂)1(0, ŷ) dŷ = 0,

∫ 1

0

(Π̂v̂ − v̂)1(1, ŷ) dŷ = 0.

Subtracting the above equations and applying the fundamental theorem of calculus
implies the first identity in (4.6). The proof of the second identity is similar. Note
that (4.6) means that ∂

∂x̂ (Π̂v̂)1 and ∂
∂ŷ (Π̂v̂)2 are the L2-orthogonal projections of

∂
∂x̂ v̂1 and ∂

∂ŷ v̂2, respectively, onto the space of constants, which implies (4.7). Finally,
it is easy to see that (4.2) implies

‖Π̂v̂‖ê ≤ C‖v̂‖1,ê,

which, combined with (4.7), gives (4.8).
We also make use of the L2-projection operator Ph : W → Wh such that for

p ∈ W ,

(Ph p− p, w) = 0 ∀w ∈ Wh.(4.9)

Denote the quadrature error by

σ(q,v) ≡ (q,v) − (q,v)h.(4.10)

The variational formulation (2.1) and the discrete problem (2.10) give rise to the error
equations

(K−1(Πu − uh),vh)h = (Php− ph,div vh)

+ (K−1(Πu − u),vh) − σ(K−1Πu,vh),

(div (Πu − uh), wh) = 0,

(4.11)

where we used (4.9) and (4.1) in the first and second equations, respectively. We note
that, using (2.9), the second equation in (4.11) gives

0 = (div (Πu − uh), wh)e = (d̂iv (Π̂û − ûh), ŵh)ê ∀wh ∈ Wh.

Since d̂iv V̂h = Ŵh, taking ŵh = d̂iv (Π̂û − ûh) implies that d̂iv (Π̂û − ûh) = 0 and
therefore, by (2.9),

div (Πu − uh) = 0.(4.12)

Taking vh = Πu − uh ∈ Vh and wh = Php− ph in (4.11) gives

(K−1(Πu − uh),Πu − uh)h = (K−1(Πu − u),Πu − uh) − σ(K−1Πu,Πu − uh).

(4.13)

The estimate for the first term on the right-hand side of (4.13) follows from Theorem
5.1 in [13] and (4.12):

(K−1(Πu − u),Πu − uh)

≤ C h2
(
‖u‖2‖Πu − uh‖ + ‖u‖1‖div (Πu − uh)‖

)
(4.14)

= C h2‖u‖2 ‖Πu − uh‖.
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The second term on the right-hand side of (4.13) can be bounded using Lemma 4.3:

|σ(K−1Πu,Πu − uh)| ≤ C h2‖u‖2‖Πu − uh‖.(4.15)

Combining (4.14), (4.15), and (3.12), we obtain the following superconvergence result.
Theorem 4.2. Let K−1 ∈ W 2,∞(Ω). For the velocity uh of the MFE method (2.1),

on h2-uniform quadrilateral grids, there exists a positive constant C independent of h
such that

‖Πu − uh‖ ≤ C h2‖u‖2.(4.16)

We now proceed to prove estimate (4.15).
Lemma 4.3. Let v ∈ Vh, and let K−1 ∈ W 2,∞(Ω). There exists a positive

constant C independent of h such that

|σ(K−1Πu,v)| ≤ C h2(‖u‖2 ‖v‖ + ‖u‖1‖div v‖).(4.17)

Proof. For an element e ∈ T h, we define the error

σe(K
−1Πu,v) =

∫
e

K−1Πu · v dx − (K−1Πu,v)h,e.(4.18)

With (3.10), the second term on the right-hand side of (4.18) can be written as

(K−1Πu,v)h,e =
1

2

4∑
j=1

|Tj |K−1(rj)Πu(rj) · v(rj)

=
1

2

4∑
j=1

|Tj |K̂−1(r̂j)

(
1

Je
DFeΠ̂û

)
(r̂j) ·

(
1

Je
DFev̂

)
(r̂j)

=
1

2

4∑
j=1

|Tj |
Je(r̂j)

1

Je(r̂j)
DFT

e (r̂j)K̂
−1(r̂j)DFe(r̂j) Π̂û(r̂j) · v̂(r̂j)

=
1

4

4∑
j=1

Be(r̂j) Π̂û(r̂j) · v̂(r̂j)

≡ (BeΠ̂û, v̂)T ,

(4.19)

where the subscript T denotes the trapezoidal rule on element ê and we define Be =
1
Je

DFT
e K̂−1DFe. Here we used (2.6) to conclude that

|Tj |
Je(r̂j)

= 1
2 . Considering the

first term on the right-hand side of (4.18), we obtain∫
e

K−1Πu · v dx =

∫
ê

K̂−1 1

Je
DFeΠ̂û · 1

Je
DFev̂Je d x̂

=

∫
ê

1

Je
DFT

e K̂−1DFeΠ̂û · v̂ d x̂

=

∫
ê

BeΠ̂û · v̂ d x̂.

(4.20)

Substituting (4.19) and (4.20) into (4.18), we obtain

σe(K
−1Πu,v) =

∫
ê

BeΠ̂û · v̂ d x̂ −
(
BeΠ̂û, v̂

)
T
≡ σê

(
BeΠ̂û, v̂

)
.(4.21)
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Hereafter we shall omit the subscripts e and ê. Let

E(f) ≡
∫
ê

f(x̂, ŷ)dx̂ dŷ − (f)T

be the error of the trapezoidal rule for integrating a function f(x̂, ŷ) on ê. Then,

σ(BΠ̂û, v̂) = E
(
(BΠ̂û)1v̂1

)
+ E

(
(BΠ̂û)2v̂2

)
.(4.22)

We next bound the first term on the right-hand side in (4.22). The argument for the
bound on the second term is similar.

Using the trapezoidal rule error representation from Lemma A.1 based on the
Peano kernel theorem (see [23, Theorem 5.2-3, p. 142]), we write

E((BΠ̂û)1v̂1) =

∫ 1

0

∫ 1

0

φ(x̂)
∂2

∂x̂2

(
(BΠ̂û)1v̂1

)
(x̂, 0) dx̂ dŷ

+

∫ 1

0

∫ 1

0

φ(ŷ)
∂2

∂ŷ2
(BΠ̂û)1(0, ŷ)v̂1(0, ŷ) dx̂ dŷ

+

∫ 1

0

∫ 1

0

ψ(x̂, ŷ)
∂2

∂x̂∂ŷ

(
(BΠ̂û)1v̂1

)
(x̂, ŷ) dx̂ dŷ

≡ (I) + (II) + (III),

(4.23)

where φ(t) = t(t− 1)/2 and ψ(s, t) = (1 − s)(1 − t) − 1/4. Denote by B11, B12, B21,
and B22 the components of the tensor B. Since v̂1(0, ŷ) is constant in ŷ, the second
term in (4.23) is

(II) =

∫ 1

0

∫ 1

0

φ(ŷ)
∂2

∂ŷ2
B11(0, ŷ)(Π̂û)1(0, ŷ)v̂1(0, ŷ) dx̂ dŷ

+

∫ 1

0

∫ 1

0

φ(ŷ)
∂2

∂ŷ2
B12(0, ŷ)(Π̂û)2(0, ŷ)v̂1(0, ŷ) dx̂ dŷ

+ 2

∫ 1

0

∫ 1

0

φ(ŷ)
∂

∂ŷ
B12(0, ŷ)

∂

∂ŷ
(Π̂û)2(0, ŷ)v̂1(0, ŷ) dx̂ dŷ

≡ (II)1 + (II)2 + (II)3.

(4.24)

Using (4.8), for the first two terms on the right-hand side, we have

|(II)1| + |(II)2| ≤ C|B|2,∞,ê‖û‖1,ê‖v̂1‖ê.

Since ∂
∂ŷ (Π̂û)2 is a constant, we rewrite the last term in (4.24) as

(II)3 = 2

∫ 1

0

∫ 1

0

φ(ŷ)
∂

∂ŷ
B12(0, ŷ)

∂

∂ŷ
(Π̂û)2(x̂, ŷ)v̂1(0, ŷ) dx̂ dŷ

≤ C|B|1,∞,ê

∥∥∥∥ ∂

∂ŷ
(Π̂û)2

∥∥∥∥
ê

‖v̂1‖ê ≤ C|B|1,∞,ê|û|1,ê‖v̂1‖ê,

using (4.7). A combination of the last two bounds implies that

|(II)| ≤ C
(
|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê

)
‖v̂1‖ê.(4.25)
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For the last term in (4.23), since v̂1(x̂, ŷ) is constant in ŷ, we have

(III) =

∫ 1

0

∫ 1

0

ψ(x̂, ŷ)
∂2

∂x̂∂ŷ
(BΠ̂û)1(x̂, ŷ)v̂1(x̂, ŷ) dx̂ dŷ(4.26)

+

∫ 1

0

∫ 1

0

ψ(x̂, ŷ)
∂

∂ŷ
(BΠ̂û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ ≡ (III)1 + (III)2.

Using (4.7),

|(III)1| ≤ C(|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê)‖v̂1‖ê.(4.27)

To bound (III)2 we note that ∂
∂x̂ v̂1(x̂, ŷ) is a constant and

∫ 1

0

∫ 1

0
ψ(x̂, ŷ) dx̂ dŷ = 0.

Therefore, by the Bramble–Hilbert lemma [5], and using (4.7),

|(III)2| ≤ C

∣∣∣∣ ∂∂ŷ (BΠ̂û)1

∣∣∣∣
1,ê

‖v̂1‖ê ≤ C(|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê)‖v̂1‖ê.(4.28)

The first term in the error representation (4.23) is

(I) =

∫ 1

0

∫ 1

0

φ(x̂)
∂2

∂x̂2
(BΠ̂û)1(x̂, 0) v̂1(x̂, 0) dx̂ dŷ(4.29)

+ 2

∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(BΠ̂û)1(x̂, 0)

∂

∂x̂
v̂1(x̂, 0) dx̂ dŷ = (I)1 + (I)2.

The first term on the right-hand side can be bounded in a way similar to (II):

|(I)1| ≤ C(|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê)‖v̂1‖ê.(4.30)

We rewrite the second term on the right-hand side in (4.29) as

(4.31)

1

2
(I)2 =

∫ 1

0

∫ 1

0

φ(x̂)

(
∂

∂x̂
(BΠ̂û)1(x̂, 0) − ∂

∂x̂
(BΠ̂û)1(x̂, ŷ)

)
∂

∂x̂
v̂1(x̂, 0) dx̂ dŷ

+

∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(BΠ̂û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, 0) dx̂ dŷ ≡ (I)2,1 + (I)2,2.

To estimate the first term in (4.31), we write

∂

∂x̂
(BΠ̂û)1(x̂, ŷ) −

∂

∂x̂
(BΠ̂û)1(x̂, 0) =

∫ ŷ

0

∂2

∂x̂∂ŷ
(BΠ̂û)1(x̂, t̂) dt̂.

This allows us to bound the first term in (4.31) in a way similar to bounds (4.25) and
(4.30):

|(I)2,1| ≤ C(|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê)‖v̂1‖ê.(4.32)

The second term on the right-hand side in (4.31) can be rewritten as

(I)2,2 =

∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(B(Π̂û − û))1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ(4.33)

+

∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(Bû)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ ≡ (I)2,2,1 + (I)2,2,2,
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where we used that ∂
∂x̂ v̂1(x̂, 0) = ∂

∂x̂ v̂1(x̂, ŷ) on e, since v̂1 is a constant in ŷ.
To estimate the second term in (4.33), we use the identity

∂

∂x̂
v̂1 = − ∂

∂ŷ
v̂2 + d̂iv v̂.(4.34)

We rewrite (I)2,2,2 as

(I)2,2,2 = −
∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(Bû)1

∂

∂ŷ
v̂2 dx̂ dŷ +

∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(Bû)1 d̂iv v̂ dx̂ dŷ

=

∫
�̂1

−
∫
�̂3

φ(x̂)
∂

∂x̂
(Bû)1 v̂2 dx̂ +

∫ 1

0

∫ 1

0

φ(x̂)
∂2

∂x̂∂ŷ
(Bû)1 v̂2 dx̂ dŷ

+

∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(Bû)1 d̂iv v̂ dx̂ dŷ.

(4.35)

Clearly, the last two terms can be bounded by

C(|(Bû)1|2,ê‖v̂2‖ê + |(Bû)1|1,ê‖d̂iv v̂‖ê).(4.36)

We postpone the estimate of the edge integrals in (4.35) for later.
To bound the first term on the right-hand side in (4.33), we have

(I)2,2,1 =

∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
B11(x̂, ŷ)(Π̂û − û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

+

∫ 1

0

∫ 1

0

φ(x̂)B11(x̂, ŷ)
∂

∂x̂
(Π̂û − û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

+

∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
B12(x̂, ŷ)(Π̂û − û)2(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

+

∫ 1

0

∫ 1

0

φ(x̂)B12(x̂, ŷ)
∂

∂x̂
(Π̂û − û)2(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

≡ (I)2,2,1,1 + (I)2,2,1,2 + (I)2,2,1,3 + (I)2,2,1,4.

(4.37)

Since Π̂û is exact for constants, using the Bramble–Hilbert lemma and the inverse
inequality, we can bound the first and the third terms in (4.37) as

|(I)2,2,1,1| + |(I)2,2,1,3| ≤ C|B|1,∞,ê|û|1,ê‖v̂1‖ê.(4.38)

For the second term in (4.37), a Taylor expansion of B11 about any fixed point
(x̂0, ŷ0) ∈ ê gives

(I)2,2,1,2 =

∫ 1

0

∫ 1

0

φ(x̂)B11(x̂0, ŷ0)
∂

∂x̂
(Π̂û − û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ + R,(4.39)

where

|R| ≤ C|B|1,∞,ê|û|1,ê‖v̂1‖ê,(4.40)

using (4.7) for the last inequality. To bound the first term on the right-hand side in
(4.39), we note that

(φ2)′′(x̂) = 6φ(x̂) +
1

2
, (φ2)′(0) = (φ2)′(1) = 0.
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Therefore, using (4.6), we have

∫ 1

0

∫ 1

0

φ(x̂)B11(x̂0, ŷ0)
∂

∂x̂
(Π̂û − û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

=
1

6

∫ 1

0

∫ 1

0

∂2

∂x̂2
(φ2)(x̂)B11(x̂0, ŷ0)

∂

∂x̂
(Π̂û − û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

= −1

6

∫ 1

0

∫ 1

0

∂

∂x̂
(φ2)(x̂)B11(x̂0, ŷ0)

∂2

∂x̂2
(Π̂û − û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

≤ C|B|∞,ê|û|2,ê‖v̂1‖ê.

(4.41)

A combination of (4.39)–(4.41) gives

|(I)2,2,1,2| ≤ C(|B|1,∞,ê|û|1,ê + |B|∞,ê|û|2,ê)‖v̂1‖ê.(4.42)

To complete the estimate of (I)2,2,1, it remains to bound (I)2,2,1,4. Using that
∂
∂x̂ (Π̂û)2 = 0 and (4.34), we have

(I)2,2,1,4 =

∫ 1

0

∫ 1

0

φ(x̂)B12
∂

∂x̂
û2

∂

∂ŷ
v̂2 dx̂ dŷ −

∫ 1

0

∫ 1

0

φ(x̂)B12
∂

∂x̂
û2 d̂iv v̂ dx̂ dŷ

=

∫
�̂3

−
∫
�̂1

φ(x̂)B12
∂

∂x̂
û2 v̂2 dx̂−

∫ 1

0

∫ 1

0

φ(x̂)
∂

∂ŷ

(
B12

∂

∂x̂
û2

)
v̂2 dx̂ dŷ

−
∫ 1

0

∫ 1

0

φ(x̂)B12
∂

∂x̂
û2 d̂iv v̂ dx̂ dŷ.

(4.43)

The last two terms above are bounded by

C[(|B|1,∞,ê|û|1,ê + |B|∞,ê|û|2,ê)‖v̂2‖ê + |B|∞,ê|û|1,ê‖d̂iv v̂‖ê].(4.44)

Combining (4.23)–(4.44), we obtain

E
(
(BΠ̂û)1v̂1

)
= T1 + T2 + T3,(4.45)

where

|T1| ≤ C[(|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê + |B|∞,ê|û|2,ê)‖v̂‖ê(4.46)

+ (|B|1,∞,ê|û|ê + |B|∞,ê|û|1,ê)‖d̂iv v̂‖ê],

T2 =

∫
�̂1

−
∫
�̂3

φ(x̂)
∂

∂x̂
(Bû)1(x̂, ŷ) v̂2(x̂, ŷ) dx̂,(4.47)

and

T3 =

∫
�̂3

−
∫
�̂1

φ(x̂)B12(x̂, ŷ)
∂

∂x̂
û2(x̂, ŷ)v̂2(x̂, ŷ) dx̂.

Using Lemma 4.4 below, T1 can be bounded as follows:

|T1| ≤ C
[(
h2‖K−1‖2,∞,e ‖u‖1,e + h‖K−1‖1,∞,e h|u|1,e + ‖K−1‖∞,e h

2|u|2,e
)
‖v̂‖ê

+
(
h‖K−1‖1,∞,e‖u‖e + ‖K−1‖∞,eh‖u‖1,e

)
h‖div v‖e

]
≤ C h2 (‖K−1‖2,∞,e‖u‖2,e‖v‖e + ‖K−1‖1,∞,e‖u‖1,e‖div v‖e),

(4.48)
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using the fact that |û|j,ê ≤ Chj‖u‖j,e and ‖d̂iv v̂‖ê ≤ Ch‖div v‖e (see [13, Lemma 5.5]).
The term

∑
e T2 is treated in Lemma 4.5 below.

Finally, term T3 in (4.45) can be rewritten as

T3 =

∫
�̂3

−
∫
�̂1

φ(ŝ)B12(ŝ, ŷ)
∂

∂ŝ
(û · n̂k)v̂ · n̂k dŝ.

A similar term appears in the proof of Theorem 5.1 in [13]. Following the argument
there, it can be shown that

∣∣∣∣∣
∑
e

T3

∣∣∣∣∣ ≤ C
∑
e

h2‖u‖2,e‖v‖e.(4.49)

A combination of estimates (4.45), (4.48), (4.51), and (4.49) implies that

∑
e

|E
(
(BΠ̂û)1v̂1

)
| ≤ Ch2(‖u‖2‖v‖ + ‖u‖1‖div v‖).

The argument for E((BΠ̂û)2v̂2) is analogous. This completes the proof of the
lemma.

We next give the proofs of the two auxiliary lemmas used in the above argument.
Lemma 4.4. If K−1 ∈ W 2,∞(Ω), then for all e ∈ Th there exists a positive

constant C independent of h such that

|B|s,∞,ê ≤ C hs ‖K−1‖s,∞,e, s = 0, 1, 2.

Proof. First, for a quasi-uniform mesh, we have

c1 h ≤ ‖DF‖∞,ê ≤ c2 h, c3 h
2 ≤ ‖J‖∞,ê ≤ c4 h

2

with some positive constants c1–c4. This implies that

‖B‖∞,ê ≤ C ‖K̂−1‖∞,ê.(4.50)

Second, for an h2-uniform mesh, we have additional estimates. Let α = (α1, α2),
αi ≥ 0, be a double index, and let |α| = α1 + α2. In the case |α| = 1, the definition
of the bilinear mapping (2.4)–(2.6) and (2.2) imply that

‖∂̂αDF‖∞,ê ≤ C h2 and
∥∥∥∂̂α 1

J
DF

∥∥∥
∞,ê

≤ C.

In the case |α| = 2, we have the estimates

‖∂̂αDF‖∞,ê = 0 and
∥∥∥∂̂α 1

J
DF

∥∥∥
∞,ê

≤ C h.

As a result, we get

‖∂̂αB‖∞,ê ≤ C (h‖K̂−1‖∞,ê + ‖∂̂αK̂−1‖∞,ê)

for |α| = 1 and

‖∂̂αB‖∞,ê ≤ C (h2 ‖K̂−1‖∞,ê + h ‖∂̂α−1K̂−1‖∞,ê + ‖∂̂αK̂−1‖∞,ê)
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for |α| = 2. Since K̂−1 = K−1 ◦ F, using the chain rule and ‖∂̂αF‖∞,ê ≤ C h|α| for
|α| ≤ 2, we obtain

‖∂̂αK̂−1‖∞,ê ≤ C h|α| ‖K−1‖|α|,∞,e, |α| = 0, 1, 2,

which implies

‖∂̂αB‖∞,ê ≤ C h|α|‖K−1‖|α|,∞,e, |α| = 0, 1, 2,

completing the proof.
Lemma 4.5. If K−1 ∈ W 2,∞(Ω), then

∑
e

T2 = 0,(4.51)

where T2 is defined in (4.47).
Proof. Summing over all elements in (4.47), we have

∑
e

T2 =
∑
e

∑
k=1,3

∫
�̂k

φ(ŝ)
∂

∂ŝ
((Bû) · τ̂ k)v̂ · n̂k dŝ.(4.52)

Using (2.7), we have that for any edge �,

(Bû) · τ̂ =
1

J
DFT K̂−1DFû · |�|DF−1τ = |�|(K−1u) · τ .

Therefore, using (2.9), the sum in (4.52) becomes

∑
e

T2 =
∑
e

∑
k=1,3

|�k|2
∫
�k

φ(s)
∂

∂s

(
(K−1u) · τ k

)
v · nk ds.(4.53)

Since v ∈ Vh, v ·n = 0 on exterior edges and v ·n is continuous across interior edges.
The assumed regularity for K and u implies that K−1u and

∂

∂s
(K

−1
u) are continuous

across interior edges. Note that each interior edge � appears twice in the sum in
(4.53), which now can be rewritten as a sum of interior edge integrals

∑
e

T2 =
∑
�

|�|2
∫
�

φ(s)
∂

∂s
((K−1u) · τ )[v · n] ds = 0,

where [v · n] denotes the jump in the normal component of v.

5. Superconvergence to the average edge fluxes and at the edge mid-
points. We now discuss how the superconvergence result from section 4 can be ap-
plied to obtain superconvergence for the computed velocity to the average edge fluxes
and at the midpoints of the edges. Define, for any v ∈ (H1(Ω))2,

∀e ∈ Th, |||v|||2e =

4∑
k=1

(∫
�k

v · nk ds

)2

,(5.1)

|||v|||2 =
∑
e∈Th

|||v|||2e.(5.2)
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Using the well-known property of the Piola transformation [6],

∫
�

v · n ds =

∫
�̂

v̂ · n̂ dŝ ∀v ∈ (H1(Ω))2,(5.3)

and transforming to the reference element and back, it is easy to see that ||| · ||| is a
norm on Vh and there exist constants c1 and c2 independent of h such that

c1‖v‖ ≤ |||v||| ≤ c2‖v‖ ∀v ∈ Vh.

It is clear from (4.2) and (5.3) that |||Πv− v||| = 0 for any v ∈ (H1(Ω))2. Therefore,

|||u − uh||| ≤ |||Πu − uh||| ≤ c2‖Πu − uh‖ ≤ Ch2 ‖u‖2,(5.4)

using Theorem 4.2. This implies edgewise superconvergence of the computed velocity
uh · n to 1

|�|
∫
�
u · n ds in a discrete L2-sense.

Remark 5.1. The superconvergence result (5.4) implies similar superconvergence
for |||u − uh|||M with

|||v|||2M =
∑
e∈Th

4∑
k=1

|�k|2(v · nk)
2(mk),

where mk is the midpoint of �k. Our choice of reporting the results in ||| · ||| is
motivated by the fact that average fluxes are easier to measure than pointwise values
and therefore are of greater practical interest.

6. Numerical experiments. In this section, we present the details of the nu-
merical implementation. Instead of solving saddle point problem (2.10), we reduce it
to an equivalent system with a symmetric positive definite matrix using the standard
hybridization technique.

Let Vh
e be the restriction of Vh to quadrilateral e and Λh

� be the space of constant
functions over edge �. Define

Ṽh =
∏
e

Vh
e and Λh =

∏
�

Λh
� .

Note that the normal component of vh ∈ Vh is continuous across interior mesh edges
and vh · n = 0 on exterior edges. Therefore,

Vh =

{
ṽh ∈ Ṽh :

∑
e

(μh, ṽh · ne)∂e = 0 ∀μh ∈ Λh

}
,

where ne is the outward normal vector for quadrilateral e.
It has been shown by many authors (see, e.g., [6]) that the original formulation

(2.10) is equivalent to the mixed-hybrid formulation: find (ũh, ph, λh) ∈ Ṽh×Wh×Λh

such that

(K−1ũh, ṽh)h,e − (ph, div ṽh)e + (λh, ṽh · ne)∂e = 0 ∀ṽh ∈ Ṽh,

(div ũh, wh)e = (f, wh)e ∀wh ∈ Wh,∑
e

(μh, ũh · ne)∂e = 0 ∀μh ∈ Λh.

(6.1)
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System (6.1) can be written in the matrix form as

⎛
⎜⎝

M BT CT

B 0 0

C 0 0

⎞
⎟⎠

⎛
⎜⎝

u

p

λ

⎞
⎟⎠ =

⎛
⎜⎝

0

f

0

⎞
⎟⎠ ,(6.2)

where

D =

(
M BT

B 0

)

is a block-diagonal matrix (after a permutation of columns and rows) with as many
blocks as mesh elements. Each block is a 5 × 5 matrix. Therefore, vectors u and p
can be explicitly eliminated from (6.2) resulting in a system

S λ = b,(6.3)

where S is a sparse symmetric positive definite matrix. For logically rectangular
meshes, S has at most seven nonzero elements in each row and column. Its nonzero
entries represent connections between edge-based unknowns belonging to the same
cell.

Problem (6.3) was solved with the preconditioned conjugate gradient (PCG)
method. In the numerical experiments, we used one V-cycle of the algebraic multigrid
method [24] as a preconditioner. The stopping criterion for the PCG method was the
relative decrease in the norm of the residual by a factor of 10−12.

We solved the boundary problem (1.1) with a known analytic solution

p(x, y) = x3 y2 + x cos(xy) sin(x)

and tensor coefficient

K(x, y) =

(
(x + 1)2 + y2 −xy

−xy (x + 1)2

)
.

It is pertinent to note here that the superconvergence result established in the previous
section for the homogeneous Neumann boundary condition can be extended to the
case of general Neumann boundary value problem.

In example 1, the computational domain Ω is the unit square. The computational
grid is constructed from a uniform rectangular grid via the mapping

x(ξ, η) = ξ + 0.06 sin(2πη) sin(2πξ), y(ξ, η) = η + 0.06 sin(2πη) sin(2πξ),

where 0 < η, ξ < 1, and subsequent random distortion of mesh node positions (see
Figure 6.1). The maximum value of the distortion is proportional to the square of
the local mesh size; i.e., the resulting grid satisfies assumptions (2.2) and (2.3). We
test both Neumann and Dirichlet boundary conditions. The results for the Neumann
problem are shown in Table 6.1. The convergence rates were computed using the
linear regression for the data in the rows for 1/h = 32, 64, 128, 256. In addition to
norm (5.2), we show the convergence rate in the discrete L∞-norm:

|||u − uh|||∞ = max
�k

∣∣∣∣ 1

|�k|

∫
�k

u · nk ds − uh · nk

∣∣∣∣ ,
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Fig. 6.1. Examples of meshes used in numerical experiments.

Table 6.1

Convergence rates for example 1: Neumann boundary conditions.

1/h |||u − uh|||∞ |||u − uh||| |||p− ph|||∞ |||p− ph|||
8 8.32e-2 5.47e-2 4.75e-3 1.45e-3
16 2.84e-2 1.69e-2 1.57e-3 3.99e-4
32 8.84e-3 4.49e-3 4.40e-4 1.03e-4
64 2.42e-3 1.14e-3 1.16e-4 2.59e-5
128 6.32e-4 2.87e-4 2.96e-5 6.48e-6
256 1.61e-4 7.17e-5 7.49e-6 1.62e-6
Rate 1.93 1.99 1.96 2.00

where the maximum is taken over all mesh edges. The convergence rates for the
pressure variable are shown in the following discrete norms:

|||p− ph|||2 =
∑

ei∈Th

|p(ci) − ph(ci)|2 |ei|

and

|||p− ph|||∞ = max
ei∈Th

|p(ci) − ph(ci)|,

where ci is the geometric center of element ei. The use of the geometric center instead
of the mass center is due to the following property of the MFD method. The method
is exact for linear solutions when the pressure variable, p(ci), is evaluated at the
geometric center ci [15]. The second-order convergence rate is observed for both the
pressure and velocity variables in the discrete L2- and L∞-norms.

In the case of Dirichlet boundary conditions, a loss of one half order in the con-
vergence rate for the velocity in the L2-norm is expected (see, e.g., [12, 3]). The
convergence rates are shown in Table 6.2. Note that the velocity convergence rate in
the L2-norm is larger than the theoretical bound of O(h1.5). However, the convergence
rate in the L∞-norm is only O(h).

In example 2, the computational domain Ω consists of three quadrilaterals (see
Figure 6.1). A sequence of grids is obtained by uniform refinement of these quadrilat-
erals. The left bottom corner of the domain is located at the point (1, 0). The results



SUPERCONVERGENCE OF THE VELOCITY 1747

Table 6.2

Convergence rates for example 1: Dirichlet boundary conditions.

1/h |||u − uh|||∞ |||u − uh||| |||p− ph|||∞ |||p− ph|||
8 1.50e-1 8.58e-2 5.08e-3 2.08e-3
16 7.20e-2 2.59e-2 1.64e-3 5.53e-3
32 4.24e-2 6.97e-3 4.71e-4 1.42e-4
64 2.39e-2 1.81e-3 1.26e-4 3.57e-5
128 1.27e-2 4.65e-4 3.26e-5 8.95e-6
256 6.55e-3 1.19e-4 8.26e-6 2.24e-6
Rate 0.90 1.96 1.95 2.00

Table 6.3

Convergence rates for example 2: Neumann boundary conditions.

1/h |||u − uh|||∞ |||u − uh||| |||p− ph|||∞ |||p− ph|||
8 1.59e-1 1.08e-1 8.84e-3 5.05e-3
16 5.23e-2 2.79e-2 2.74e-3 1.21e-3
32 1.72e-2 7.07e-3 8.33e-4 2.95e-4
64 5.65e-3 1.78e-3 2.26e-4 7.30e-5
128 1.85e-3 4.45e-4 5.84e-5 1.82e-5
256 6.06e-4 1.11e-4 1.48e-5 4.53e-6
Rate 1.61 2.00 1.94 2.01

of our numerical experiments are shown in Table 6.3. We realize that the grid is
only locally h2-uniform. However, the second-order convergence rate for the velocity
variable in the L2 norm is attained.

7. Conclusion. We have proved the superconvergence estimate for the velocity
variable on h2-uniform quadrilateral grids when the exact integration of velocities
is replaced by a novel 4-point quadrature rule. The theoretical results for the full
diffusion tensor have been confirmed with numerical experiments.

Appendix. Representation of the trapezoidal rule error.

Lemma A.1. Let f(x, y) be a function defined on a rectangular domain [a, b] ×
[c, d]. The trapezoidal rule error

E(f) ≡
∫ b

a

∫ d

c

f(x, y) dx dy − (f)T

can be represented as

E(f) = (d− c)

∫ b

a

(x− a)(x− b)

2

∂2

∂x2
f(x, c) dx

+ (b− a)

∫ d

c

(y − c)(y − d)

2

∂2

∂y2
f(a, y) dy

+

∫ b

a

∫ d

c

(
(x− b)(y − d) − (b− a)(d− c)

4

)
∂2

∂x∂y
f(x, y) dx dy.

Proof. Define a function

gk(x, s) ≡ (x− s)k+ ≡
{

(x− s)k, x ≥ s,
0, x < s,
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where k ≥ 0. The Peano kernel theorem (see [23, Theorem 5.2-3, p. 142]) states that
the error of the trapezoidal rule is given by

E(f) =

∫ b

a

A2,0(s)f
(2,0)(s, c) ds

+

∫ d

c

A0,2(t)f
(0,2)(a, t) dt

+

∫ b

a

∫ d

c

A1,1(s, t)f
(1,1)(s, t) ds dt,

(A.1)

where f (i,j)(x, y) = ∂i+j

∂xi ∂yj f(x, y) for i, j ≥ 0 and

A2,0(s) = E(g1(x, s)), A0,2(t) = E(g1(y, t)), A1,1(s, t) = E(g0(x, s)g0(y, t)).

Straightforward calculations give

A2,0(s) =

∫ b

a

∫ d

c

g1(s, x) dx dy − (b− a)(d− c)

4

4∑
j=1

g(xj , s)

= (d− c)

(∫ b

s

(x− s) dx− b− a

2
(g(a, s) − g(b, s))

)

= (d− c)
(s− a)(s− b)

2
.

(A.2)

Similarly, we get

A0,2(t) = (b− a)
(t− c)(t− d)

2
and A1,1(s, t) = (s− b)(t− d) − (b− a)(d− c)

4
.

(A.3)

A substitution of (A.2) and (A.3) into (A.1) completes the proof.
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thesis, Université Pierre et Marie Curie, Paris, 1977.

[26] J. Wang and T. P. Mathew, Mixed finite element method over quadrilaterals, in Conference
on Adv. Numer. Methods and Appl., I. T. Dimov, B. Sendov, and P. Vassilevski, eds.,
World Scientific, River Edge, NJ, 1994, pp. 203–214.

[27] A. Weiser and M. F. Wheeler, On convergence of block-centered finite-differences for elliptic
problems, SIAM J. Numer. Anal., 25 (1988), pp. 351–375.



SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 43, No. 4, pp. 1750–1765

A C2 TRIVARIATE MACROELEMENT BASED ON THE
WORSEY–FARIN SPLIT OF A TETRAHEDRON∗

PETER ALFELD† AND LARRY L. SCHUMAKER‡

Abstract. A C2 trivariate macroelement is constructed based on the Worsey–Farin split of
a tetrahedron into twelve subtetrahedra. The element uses supersplines of degree 9 and provides
optimal order approximation of smooth functions.
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1. Introduction. This paper is a companion to our recent paper [5] in which
we constructed a C2 trivariate macroelement based on Clough–Tocher splits of a
tetrahedron using polynomials of degree 13 on the subtetrahedra. The purpose of this
paper is to describe an alternative C2 macroelement which works with polynomials
of degree 9 instead. To be able to use the lower-degree polynomials, we have to work
with a more complicated split. Here we choose the Worsey–Farin split [23]. It divides
a tetrahedron into twelve subtetrahedra, as compared with the four subtetrahedra
involved in a Clough–Tocher split.

We recall [5] that a trivariate macroelement defined on a tetrahedron T consists
of a pair (S,Λ), where S is a space of splines (piecewise polynomial functions) defined
on a partition of T into subtetrahedra, and Λ := {λi}ni=1 is a set of linear functionals
which define values and derivatives of a spline s at certain points in T in such a
way that for any given values zi, there is a unique spline s ∈ S with λis = zi for
i = 1, . . . , n. These functionals are called the nodal degrees of freedom of the element.
A macroelement has smoothness Cr provided that if the element is used to construct
an interpolating spline locally on each tetrahedron of a tetrahedral partition �, then
the resulting piecewise function is Cr continuous globally. Our aim here is to construct
a C2 macroelement.

The paper is organized as follows. In section 2 we present some background ma-
terial and notation. The construction of our macroelement for a single tetrahedron
is presented in section 3, where we also give a minimal determining set for the space
and calculate its dimension. In section 4 we collect several lemmas concerning bi-
variate spline spaces which are used in our construction. The macroelement space
for a Worsey–Farin refinement of an arbitrary tetrahedral partition is discussed in
section 5, where again we give a dimension statement and an explicit minimal deter-
mining set. Section 6 is devoted to the construction of a nodal determining set for
our macroelement space and an associated Hermite interpolation operator along with
an error bound for it. We conclude the paper with a number of remarks.
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2. Preliminaries. Throughout the paper, we write Pj
d for the ( d + j

j )-dimen-

sional linear space of polynomials of degree d in j variables. Given a tetrahedral
partition � of a polyhedral domain Ω, we define

Sr
d(�) := {s ∈ Cr(Ω) : s|T ∈ P3

d for all T ∈ �}.

In dealing with polynomials and splines, we will use the well-known Bernstein–
Bézier methods as used, for example, in [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 23, 24]. As usual, given a tetrahedron T := 〈v1, v2, v3, v4〉 and a polynomial

p of degree d, we denote the B-coefficients of p by cT,d
ijkl and associate them with the

domain points ξT,d
ijkl := (iv1+jv2+kv3+lv4)

d , where i+j+k+ l = d. We write DT,d for the

set of all domain points associated with T . We say that the domain point ξT,d
ijkl has

distance d − i from the vertex v1, with similar definitions for the other vertices. We
say that ξT,d

ijkl is at a distance i+ j from the edge e := 〈v3, v4〉, with similar definitions
for the other edges of T . If � is a tetrahedral partition of a set Ω, we write D�,d for
the collection of all domain points associated with tetrahedra in �, where common
points in neighboring tetrahedra are not repeated. Given ξ ∈ DT,d, we denote the

associated Bernstein polynomial by BT,d
ξ .

Given ρ > 0, we refer to the set Dρ(v) of all domain points which are within a
distance ρ from v as the ball of radius ρ around v. Similarly, we refer to the set Rρ(v)
of all domain points which are at a distance ρ from v as the shell of radius ρ around
v. If e is an edge of �, we define the tube of radius ρ around e to be the set of domain
points whose distance to e is at most ρ.

If F is a face of a tetrahedron T , then the domain points in DT,d which lie on F
associated with a trivariate polynomial on T can be considered to be the domain points
of a bivariate polynomial of degree d defined on the triangle F . If F := 〈v1, v2, v3〉
is such a face, we write DF,d for this set of domain points. As usual, we call the set
of points Dρ(v1) in DF,d within a distance ρ from v1 the disk of radius ρ around v1.
Similarly, the set of points Rρ(v1) in DF,d at a distance ρ from v1 is called the ring
of radius ρ around v1. We use the same notation for disks/balls and shells/rings, but
the meaning will be clear from the context.

Suppose S is a linear subspace of S0
d(�), and suppose M is a subset of D�,d.

Then M is said to be a determining set for S provided that if s ∈ S and its
B-coefficients satisfy cξ = 0 for all ξ ∈ M, then s ≡ 0. It is called a minimal deter-
mining set (MDS) for S provided there is no smaller determining set. It is well known
that M is an MDS for S if and only if setting the coefficients {cξ}ξ∈M of a spline
in S uniquely determines all coefficients of s. It is also known that the cardinality of
any MDS for S equals the dimension of S.

Now suppose N is a collection of linear functionals λ, where λs is defined by a
combination of values or derivatives of s at a point ηλ in Ω. Then N is said to be a
nodal determining set (NDS) for S provided that if s ∈ S and λs = 0 for all λ ∈ N ,
then s ≡ 0. It is called a nodal minimal determining set (NMDS) for S provided that
there is no smaller NDS or, equivalently, for each set of real numbers {zλ}λ∈N , there
exists a unique s ∈ S such that λs = zλ for all λ ∈ N .

3. The basic macroelement on one tetrahedron. Given a tetrahedron T :=
〈v1, v2, v3, v4〉, let v

T
be a point in the interior of T . In this section we take v

T
to be an

arbitrary point in T , but to obtain a C2 macroelement space on a general tetrahedral
partition, we need to be more careful in the selection of v

T
; see section 5 below. In

addition, for each face F of T , let v
F

be a point in the interior of F . For tetrahedral
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partitions with more than one tetrahedron, we will also have to choose these points
in a special way. Suppose now that we connect v

T
to each vertex v of T and to each

point v
F
, and we connect each v

F
to the vertices of the face in which it lies. Then T

is split into 12 subtetrahedra. This split was used in [23] to construct a C1 piecewise
cubic trivariate macroelement. We refer to it as the Worsey–Farin split and denote
it by TWF . We write VT , ET , and FT for the sets of vertices, edges, and faces of
T . Let Ec

T be the set of four edges connecting v
T

to the face points v
F
, and for each

F := 〈v1, v2, v3〉 ∈ FT , let EF be the set of three oriented edges 〈vi, vF
〉, i = 1, 2, 3.

We write F0
T for the set of 12 faces of �WF of the form 〈v

T
, v

F
, v〉, where v ∈ VT .

We need some additional notation before introducing our basic macroelement.
Suppose t := 〈v

T
, v

F
, v1, v2〉 and t̃ := 〈v

T
, v

F
, v2, v3〉 are two tetrahedra in TWF which

share the face F := 〈v
T
, v

F
, v2〉 ∈ F0

T . Let cijkl and c̃ijkl be the coefficients of the
B-representations of s|t and s|t̃, respectively. Then we define the linear functionals
ν
F

and μ
F

by

ν
F
s := c̃0,1,3,5 −

∑
i+j+k=5

c0,i+1,j,k+3B
t,5
ijk(v3),

μ
F
s := c̃1,0,3,5 −

∑
i+j+k=5

c1,i,j,k+3B
t,5
ijk(v3),

(3.1)

where Bt,5
ijk are the Bernstein polynomials of degree 5 with respect to the triangle

〈v
F
, v1, v2〉. Note that ν

F
s involves coefficients of s on the shell R9(vT

), while μ
F
s

involves coefficients of s on the shell R8(vT
).

We now introduce our basic macroelement space as the following space of super-
splines defined on TWF :

S2(TWF ) := {s ∈ C2(T ) : s|t ∈ P3
9 for all t ∈ TWF ,

s ∈ C3(e) for all e ∈ ET ,
s ∈ C7(e) for all e ∈ Ec

T ,

ν
F
s = μ

F
s = 0 for all F ∈ F0

T ,

s ∈ C4(v) for all v ∈ VT ,

s ∈ C7(v
T
)}.

(3.2)

As usual, if v is a vertex of TWF , then s ∈ Cρ(v) means that all polynomial pieces
of s defined on tetrahedra sharing the vertex v have common derivatives up to order
ρ at v. If e is an edge of TWF , then s ∈ Cμ(e) means that all subpolynomials of s
defined on tetrahedra sharing the edge e have common derivatives up to order μ on e.

Before proceeding, we first make some remarks about our fairly complicated def-
inition of S2(TWF ). The construction is the result of a considerable amount of exper-
imentation with the first author’s Java code for working with trivariate splines; see
Remark 6. In creating S2(TWF ), we had two aims in mind: to create a macroelement
which will be globally C2 smooth, and to minimize the complexity and number of
degrees of freedom. First, we observe that we are forced to impose the C4 super-
smoothness at the vertices of T , since otherwise we could not make macroelements
on adjoining tetrahedra join with C2 smoothness; see Remark 4. Since derivatives
up to order 4 at the vertices are not allowed to interfere (or, equivalently, balls of
radius 4 around the vertices are not allowed to overlap), this forces us to use poly-
nomials of degree (at least) 9. The additional supersmoothness in the definition of
S2(TWF ) has been imposed in order to remove unnecessary degrees of freedom from
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our macroelement. While other choices are possible, we found that this choice is the
most symmetric, while at the same time providing stable computations.

For each vertex v of T , let Tv be one of the tetrahedra in TWF attached to v.
For each edge e := 〈u, v〉 of T , let Te be one of the two tetrahedra containing e, and
let E3(e) denote the set of domain points in the tube of radius 3 around e which do
not lie in the balls D4(u) or D4(v). Finally, for each face F := 〈v1, v2, v3〉 of T , let
TF,i := 〈v

T
, v

F
, vi, vi+1〉, i = 1, 2, 3, where we set v4 := v1.

Theorem 3.1. The space S2(TWF ) has dimension 292. Moreover,

M :=
⋃

v∈VT

Mv ∪
⋃

e∈ET

Me ∪
⋃

F∈FT

MF ∪ MT(3.3)

is an MDS for S2(TWF ), where
(1) Mv := D4(v) ∩ Tv,
(2) Me := E3(e) ∩ Te,

(3) MF := {ξTF,1

2430, ξ
TF,2

2430, ξ
TF,3

2430},
(4) MT := D3(vT

) ∩ Tv
T
.

Proof. We shall show that M is an MDS for S2(TWF ), which in turn implies that
the dimension of S2(TWF ) is just the cardinality of M. The cardinalities of the sets
Mv, Me, MF , MT are 35, 20, 3, and 20, respectively. Since T has four vertices, six
edges, and four faces, it follows that the dimension of S2(TWF ) is 4 × 35 + 6 × 20 +
4 × 3 + 20 = 292.

To show that M is an MDS for S2(TWF ), we need to show that setting the coeffi-
cients {cξ}ξ∈M of a spline s ∈ S2(TWF ) consistently determines all other coefficients
of s. First, for each vertex v ∈ VT , the C4 smoothness at v implies that all coefficients
corresponding to domain points in D4(v) are consistently determined. Moreover, for
each edge e ∈ ET , the C3 smoothness around e implies that the coefficients of s in the
tube of radius 3 around e are consistently determined.

We now examine the coefficients corresponding to domain points on the shell
R9(vT

), i.e., on the outer faces of TWF . Let F := 〈v1, v2, v3〉 be a face of this shell. We
can consider the coefficients of s corresponding to the domain points on F (see Figure 1

(left)) as the coefficients of a bivariate spline g := s|F in the space S̃2
9 (FCT ) defined

in (4.2) below, where FCT is the Clough–Tocher split of F into three subtriangles.
By the above, it is clear that all coefficients of g corresponding to the domain points
marked with dots or triangles in Figure 1 (left) are already determined. But then, by
Lemma 4.1 below, all other coefficients of g are determined. Repeating this argument
for each face of R9(vT

), we conclude that the coefficients of s are determined for all
domain points on the shell R9(vT

).
Now consider the coefficients of s corresponding to domain points lying on the

shell R8(vT
). For each face F := 〈v1, v2, v3〉 of this shell, we can consider the B-

coefficients of s corresponding to domain points on F (see Figure 1 (right)) to be

the coefficients of a bivariate spline g in the space S̃2
8 (FCT ) defined in (4.5) below.

It is clear from the above that all coefficients of g corresponding to domain points
marked with dots or triangles in Figure 1 (right) are already determined. But then by
Lemma 4.2 below, all other coefficients of g are determined. Repeating this argument
for each face of R8(vT

), we conclude that the coefficients of s are determined for all
domain points on the shell R8(vT

).
Next we consider the shell R7(vT

). Let F be a face of this shell. We can consider
the coefficients of s corresponding to domain points on F to be the coefficients of a
bivariate spline g in S2

7 (FCT ) ∩ C7(v
F
), which means that g is actually a polynomial
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Fig. 1. Domain points of S2(TWF ) on faces of R9(vT ) and R8(vT ), respectively.

Fig. 2. Domain points of S2(TWF ) on a face of R7(vT ).

of degree 7. All coefficients corresponding to domain points marked with dots or
triangles in Figure 2 are already determined. In addition, those corresponding to ⊕
are also determined as those points are in M. It now follows from Lemma 4.3 below
that all other coefficients of g are determined. Repeating this argument for each face
of R7(vT

), we conclude that all coefficients of s corresponding to domain points on
the shell R7(vT

) are determined.

To show that the coefficients of s corresponding to the remaining domain points
in TWF are determined, we note that by the C7 smoothness at v

T
, we may consider

the B-coefficients of s corresponding to domain points in the ball D7(vT
) as those of

a trivariate polynomial g of degree 7 considered as a spline in S2
7 (t

WF
), where t

WF
is

the Worsey–Farin split of the tetrahedron t whose vertices are the vertices of D7(vT
).

By the above, g is determined on the faces of t. Now setting the coefficients {cξ}ξ∈MT

is equivalent to setting the derivatives of g up to order 3 at the point v
T
. But then

Lemma 3.2 below shows that this combined information determines g.

Lemma 3.2. Suppose g ∈ P3
7 and let {cξ}ξ∈Dt,7 be its set of B-coefficients relative

to a tetrahedron t. Suppose we are given values for the coefficients corresponding to
the set of domain points lying on the faces of t. Let w be any point in the interior
of t. Then the remaining coefficients of g are uniquely determined by the values of
{Dαg(w)}|α|≤3.

Proof. The set of domain points in Dt,7 which do not lie on the faces of t is
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Γ := {ξt,7ijkl : i, j, k, l ≥ 1}. The cardinality of this set is 20. Now the equations

Dαg(w) = zα, |α| ≤ 3,

provide a linear system of 20 equations for the {cξ}ξ∈Γ. We claim that this system is
nonsingular. To see this, we show that if g is zero on the faces of t and zα = 0 for all
|α| ≤ 3, then g ≡ 0. The fact that g vanishes on faces implies that it can be written
as g = �1�2�3�4q, where q ∈ P3

3 , and where for i = 1, 2, 3, �i is a nontrivial linear
polynomial which vanishes on the ith face of t. But now the condition Dαg(w) = 0
for |α| ≤ 3 implies Dαq(w) = 0 for |α| ≤ 3, which implies q ≡ 0, which in turn implies
that g ≡ 0.

4. Some bivariate lemmas. In this section we establish some properties of
certain bivariate spline spaces defined on the well-known Clough–Tocher split of a
triangle F := 〈v1, v2, v3〉 in R

2. Given v
F

in the interior of F , we connect it to
all three vertices of F to split it into three subtriangles Fi := 〈v

F
, vi, vi+1〉. Let

ei := 〈vi, vi+1〉 and ẽi := 〈vi, vF
〉, i = 1, 2, 3, where v4 := v1. Note that in this section

we do not make any special assumptions about the location of v
F
, just that it be in

the interior of F . For d ≥ 2, let

S2
d(FCT ) := {s ∈ C2(F ) : s|Fi

∈ P2
d , i = 1, 2, 3}.

Given 1 ≤ l ≤ 3, suppose {cijk} and {c̃ijk} are the coefficients of s ∈ S2
d(FCT ) relative

to Fl−1 and Fl, respectively, where we identify v4 = v1. Then we define the linear
functional τnl,m,d by

τnl,m,ds := c̃m−n,d−m,n −
∑

i+j+k=n

ci+m−n,j,k+d−mBl,n
ijk(vl+1),(4.1)

where Bl,n
ijk are the Bernstein polynomials of degree n relative the triangle Fl−1. Note

that τnl,m,d describes an individual Cn smoothness condition involving the coefficients
on ring Rm(vl).

Lemma 4.1. Let

S̃2
9 (FCT ) := {s ∈ S2

9 (FCT ) ∩ C7(v
F
) : s ∈ C4(v

l
)

and τ5
l,6,9s = 0, l = 1, 2, 3}.

(4.2)

Then dim S̃2
9 (FCT ) = 63, and the set

M9 :=

3⋃
i=1

(
Mvi ∪Mei

)

is an MDS for S̃2
9 (FCT ), where

(1) Mv := D4(v) ∩ tv, where tv is some triangle of FCT attached to v;
(2) Me is the set of domain points whose distance to e := 〈u, v〉 is at most 3 and

which do not lie in the disks D4(u) or D4(v).
Proof. Points in the sets Me are marked with small triangles in Figure 1 (left),

while points in the disks D4(v) are marked with dots. By Theorem 2.2 in [19],

dimS2
9 (FCT ) ∩ C7(v

F
) = 75. To get the subspace S̃2

9 (FCT ), for each l = 1, 2, 3
we have to enforce three extra smoothness conditions at the vertex vl to get C4(vl)
as well as the special smoothness condition corresponding to τ5

l,6,9. It follows that
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dimS2
9 (FCT ) ≥ 63. Since the cardinality of M9 is 63, to show that M9 is an MDS for

S̃2
9 (FCT ) and dim S̃2

9 (FCT ) = 63, it suffices to show that if s is a spline in S̃2
9 (FCT )

whose coefficients satisfy cξ = 0 for all ξ ∈ M9, then s ≡ 0. By the definition of M9,
it is clear that all coefficients marked with dots or triangles in Figure 1 (left) are zero.
We now examine the coefficients corresponding to the remaining domain points.

First consider the ring R5(v1). All coefficients corresponding to domain points
on this ring are already zero except for the three corresponding to domain points
within a distance 1 of the edge ẽ1. To compute these three coefficients, we proceed
as in Lemma 3.3 of [9] and Lemma 2.1 of [4]. The C7 smoothness at v

F
implies

that s satisfies individual C1, C2, and C3 continuity conditions on ring R5(v1), i.e.,
τn1,5,9s = 0 for n = 1, 2, 3. This leads to a linear system of equations with matrix

M3 :=

⎛
⎜⎝

a2 a1 −1

2a2a1 a2
1 0

3a2a
2
1 a3

1 0

⎞
⎟⎠,(4.3)

where (a1, a2, a3) are the barycentric coordinates of v3 relative to the triangle F1.
This matrix is nonsingular since its determinant is −a2a

4
1 and a1, a2 are both nonzero.

Coefficients on the rings R5(v2) and R5(v3) can be computed in a similar way.
Now consider the ring R6(v1). At this point, all coefficients corresponding to

domain points on the ring R6(v1) are determined to be zero except for the five cor-
responding to domain points within a distance 2 of ẽ1. Now the C7 smoothness at
v
F

implies that s satisfies individual C1 through C4 smoothness conditions on ring
R6(v1). Coupling this with the special smoothness condition τ5

1,6,9s = 0, we are led
to the system of equations τn1,6,9s = 0 for n = 1, . . . , 5. The matrix of this system is

M5 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a2 a1 −1 0

a2
2 2a2a1 a2

1 0 −1

3a2
2a1 3a2a

2
1 a3

1 0 0

6a2
2a

2
1 4a2a

3
1 a4

1 0 0

10a2
2a

3
1 5a2a

4
1 a5

1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.(4.4)

This is a nonsingular matrix since its determinant is equal to −a3
2a

9
1. Coefficients on

the rings R6(v2) and R6(v3) can be computed in a similar way. Now all remaining
coefficients of s can be computed from the smoothness conditions by solving similar
nonsingular 5× 5 systems. We conclude that all coefficients of s must be zero, which
completes the proof of the lemma.

Lemma 4.2. Let

S̃2
8 (FCT ) := {s ∈ S2

8 (FCT ) ∩ C7(v
F
) : s ∈ C3(v

l
)

and τ5
l,5,8s = 0, l = 1, 2, 3}.

(4.5)

Then dim S̃2
8 (FCT ) = 48, and the set

M8 :=

3⋃
i=1

(
Mvi ∪Mei

)

is an MDS for S̃2
8 (FCT ), where
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(1) Mv := D3(v) ∩ tv, where tv is some triangle of FCT attached to v;
(2) Me is the set of domain points whose distance to e := 〈u, v〉 is at most 2 and

which do not lie in the disks D3(u) or D3(v).
Proof. The proof is very similar to proof of Lemma 4.1, so we can be brief. By

Theorem 2.2 in [19], dimS2
8 (FCT ) ∩ C7(v

F
) = 54. To get the subspace S̃2

8 (FCT ), for
each l = 1, 2, 3, we have to enforce one extra smoothness condition at the vertex vl
to get C3(vl) along with the special smoothness condition corresponding to τ5

l,5,8. It

follows that dim S̃2
8 (FCT ) ≥ 48. Since the cardinality of M8 is 48, to show that it

is an MDS for S̃2
8 (FCT ) and dim S̃2

8 (FCT ) = 48, it suffices to show that if cξ = 0 for
all ξ ∈ M8, then s ≡ 0. We already know that all coefficients of s corresponding
to domain points marked with dots or triangles in Figure 1 (right) are zero. But
then the remaining coefficients can be computed from the same linear systems as in
Lemma 4.1.

Lemma 4.3. The set

M7 := MF ∩
3⋃

i=1

(
Mvi ∪Mei

)

is an MDS for P2 = S2
7 (FCT ) ∩ C7(v

F
), where

(1) Mv := D2(v) ∩ tv, where tv is some triangle of FCT attached to v;
(2) Me is the set of domain points whose distance to e := 〈u, v〉 is at most 1 and

which do not lie in the disks D2(u) or D2(v);
(3) MF := {ξF1

430, ξ
F2
430, ξ

F3
430}.

Proof. Points in MF are marked with ⊕ in Figure 2, while points in Me are
marked with small triangles. Points in the disks D2(v) are marked with dots. The
dimension of P2

7 is 36 and the cardinality of M is also 36. Thus, it suffices to show that
M is a determining set. Suppose s ∈ P2

7 , and cξ = 0 for all ξ ∈ M. This means that
the B-coefficients of s corresponding to all marked domain points in Figure 2 (left) are
zero. First, we note that the coefficients corresponding to the three remaining domain
points on R3(v1) can be computed from a nonsingular 3 × 3 linear system with the
matrix M3 given in (4.3). The same holds for the rings R3(v2) and R3(v3). Now
consider R4(v1). There are four unknown coefficients corresponding to the unmarked
points on this ring, and they can be computed from a system of four equations with
the matrix

M4 :=

⎛
⎜⎜⎜⎝

0 a2 −1 0

a2
2 2a2a1 0 −1

3a2
2a1 3a2a

2
1 0 0

6a2
2a

2
1 4a2a

3
1 0 0

⎞
⎟⎟⎟⎠.

The determinant of this matrix is −6a4
1a

3
2 �= 0. We can repeat this for the other

two vertices v2, v3. The remaining coefficients of s are then determined exactly as in
Lemmas 4.1 and 4.2.

5. The macroelement space S2(�W F ). We now show that the construction
of the previous section can be used to define a C2 macroelement space defined on
a general tetrahedral partition, provided that the split points v

T
and v

F
are chosen

appropriately. Suppose � is an arbitrary tetrahedral partition of a polyhedral domain
Ω, and that the points v

T
are chosen so that for any pair of tetrahedra sharing a

common face F , the line connecting the center points passes through the interior of
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F . This can be insured, for example, by taking v
T

to be the centers of the inscribed
balls in each tetrahedron T ; see [23]. We now take �WF to be the refined partition
obtained by applying the Worsey–Farin split to each tetrahedron in �, where, for
every face F shared by two tetrahedra T and T̃ , the split point v

F
on F is taken to

be the intersection of F with the line connecting v
T

and v
T̃
.

Let V, E , and F be the sets of vertices, edges, and faces of �, respectively. Let V ,
E, F be the cardinalities of these sets, and denote the number of tetrahedra in � by
NT . We write F0 =

⋃
T∈� F0

T , where F0
T is defined in section 3. Let Ec :=

⋃
T∈� Ec

T ,
where Ec

T is also defined in section 3. We now define the following macroelement space:

S2(�WF ) := {s ∈ C2(Ω) : s|t ∈ P3
9 for all t ∈ �WF ,

s ∈ C3(e) for all e ∈ E ,

s ∈ C7(e) for all e ∈ Ec,

ν
F
s = μ

F
s = 0 for all F ∈ F0,

s ∈ C4(v) for all v ∈ V,

s ∈ C7(v
T
) for all T ∈ �}.

(5.1)

To define an MDS for S2(�WF ) we need some more notation. For each vertex v
of �, let Tv be one of the tetrahedra in �WF attached to v. For each edge e := 〈u, v〉
of �, let Te be one of the tetrahedra containing e, and let E3(e) denote the set of
domain points in the tube of radius 3 around e which do not lie in the balls D4(u)
or D4(v). Finally, for each face F := 〈v1, v2, v3〉 of �, let TF,i := 〈v

T
, v

F
, vi, vi+1〉,

i = 1, 2, 3, where v
T

is the split point of some tetrahedron in � containing F (if F is
a boundary face, there is just one such tetrahedron—otherwise, there are two).

Theorem 5.1. The space S2(�WF ) has dimension 35V + 20E + 3F + 20NT .
Moreover, the set

M :=
⋃
v∈V

Mv ∪
⋃
e∈E

Me ∪
⋃
F∈F

MF ∪
⋃

T∈�
MT(5.2)

is an MDS for S2(�WF ), where
(1) Mv := D4(v) ∩ Tv,
(2) Me := E3(e) ∩ Te,

(3) MF := {ξTF,1

2430, ξ
TF,2

2430, ξ
TF,3

2430},
(4) MT := D3(vT

) ∩ Tv
T
.

Proof. We shall show that M is an MDS for S2(�WF ). This implies that the
dimension of S2(�WF ) is just the cardinality of M, which is easily seen to be equal
to the given formula.

To show that M is an MDS for S2(TWF ), we need to show that if s ∈ S2(TWF ),
then we can set the coefficients {cξ}ξ∈M to arbitrary values, and all other coefficients
will be consistently determined. First, since the balls D4(v) do not overlap, it is
clear that we can set all of the coefficients corresponding to the sets Mv to arbitrary
values, and then by the C4 smoothness at vertices, all other coefficients corresponding
to domain points in balls D4(v) will be consistently determined. Similarly, since the
sets E3(e) do not overlap each other or any of the balls D4(v), we can set all of the
coefficients corresponding to the sets Me to arbitrary values, and then by the C3

smoothness around edges, all other coefficients corresponding to domain points in the
sets E3(e) will be consistently determined.

Now we can use Lemma 4.1 to compute coefficients corresponding to the remaining
domain points on the faces of the shells R9(vT

) for all T . For interior faces F , this
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means computing the same coefficients twice, once for each tetrahedron sharing F .
But we will get the same values since these coefficients are computed in the same way
using only known coefficients associated with domain points on F .

We can now use Lemma 4.2 to uniquely compute coefficients corresponding to the
remaining domain points on the faces of the shells R8(vT

) for all T . But now we have

to check that if T := 〈v
T
, v1, v2, v3〉 and T̃ := 〈v

T̃
, v1, v2, v3〉 are two tetrahedra sharing

a face F := 〈v1, v2, v3〉, then these computed coefficients satisfy all C1 smoothness
conditions across F . Note that the split point v

F
lies on the line from v

T
to v

T̃
. Let

g := s|T and g̃ := s|T̃ . Consider the typical subtriangle f := 〈v
F
, v1, v2〉 of FCT . By

the geometry, each of the C1 smoothness conditions involving coefficients associated
with domain points in f reduces to a relationship of the form

b = sc + rd,

where (r, s, 0, 0) are the barycentric coordinates of v
T

with respect to the tetrahedron
〈v

T̃
, v

F
, v1, v2〉. Here b is a coefficient of g corresponding to a domain point ξb in t

which lies at a distance 1 from F , i.e., in F8 := R8(vT
) ∩ F ; see Figure 1 (right).

Similarly, d is a coefficient of g̃ corresponding to a domain point ξd in t̃ which lies at
a distance 1 from F , i.e., in F̃8 := R8(vT̃

) ∩ F . The coefficient c is a coefficient of
g corresponding to the domain point on F which lies on the straight line between ξb
and ξd. Let Γ8 be the set of n := 66 domain points in Figure 1 (right) marked with
either a dot or a triangle. Let {bi}ni=1 and {di}ni=1 be the corresponding coefficients
of g and g̃, respectively, and let {ci}ni=1 be the coefficients of g corresponding to the
associated domain points on F ; see Figure 1 (left). Then by the smoothness of s at
vertices and around edges, it is clear that all C1 continuity conditions with tips at
points in Γ8 are satisfied, i.e.,

bi = sci + rdi, i = 1, . . . , n.(5.3)

Now let ξ be any other domain point in Figure 1 (right), and let b, c, d be the coef-
ficients entering into the C1 smoothness condition with a tip at ξ. Then in view of
Lemma 4.2, b can be computed as a linear combination of the b1, . . . , bn; i.e., there
exist {αi}ni=1 such that

b =

n∑
i=1

αibi.(5.4)

Since F8, and F̃8 are just scaled versions of F9 := F , it follows that (5.4) also holds
with b’s replaced by either c’s or d’s. But then using (5.3), we have

[1, −s, −r]

⎛
⎝ b

c
d

⎞
⎠ = [1, −s, −r]

⎛
⎝ b1 · · · bn

c1 · · · cn
d1 · · · dn

⎞
⎠

⎛
⎜⎝

α1

...
αn

⎞
⎟⎠ = 0,

which shows that the C1 smoothness condition with tip at ξ and involving b, c, d is
also satisfied.

Now for each face of F , we set the coefficients corresponding to MF . These sets
are clearly separated from each other and from the sets D4(v) and E3(e). If F is an

interior face of �, then there are two tetrahedra T and T̃ sharing the face F , and
MF lies in just one of them, say T . Next we use the C2 smoothness conditions to
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uniquely determine the coefficients for the corresponding points in T̃ . Now we can use
Lemma 4.3 to compute the coefficients of s corresponding to the remaining domain
points on faces F of the shells R7(vT

) for all T . We now check that these computed
coefficients satisfy all C2 smoothness conditions across F . Each domain point in F7

(see Figure 2) is the tip of a C2 smoothness condition. Assuming a, b, c, d, e are the
coefficients on F7, F8, F9, F̃8, F̃7, the typical condition has the form

a = s2c + 2rsd + r2e,

where r, s are as before. By construction, these smoothness conditions are satisfied
for all points ξ marked with dots, triangles, or ⊕ in Figure 2. There are n = 45 such
points. Writing {ai, bi, ci, di, ei}ni=1 for the associated coefficients, we have

ai = s2ci + 2rsdi + r2ei, i = 1, . . . , n.

Now if ξ is any other point in F7, then by Lemmas 4.1–4.3, there are αi such that

[1, −s2, −2rs, −r2]

⎛
⎜⎜⎝

a
c
d
e

⎞
⎟⎟⎠ = [1, −s2, −2rs, −r2]

⎛
⎜⎜⎝

a1 · · · an
c1 · · · cn
d1 · · · dn
e1 · · · en

⎞
⎟⎟⎠

⎛
⎜⎝

α1

...
αn

⎞
⎟⎠ = 0,

which shows that the C2 smoothness condition with tip at ξ and involving a, c, d, e is
also satisfied.

To complete the proof, we now apply Lemma 3.2 to uniquely compute the
coefficients of s corresponding to the remaining domain points in the balls D7(vT

) for
all T .

6. An NMDS and Hermite interpolation. In this section we show how to
construct an NMDS for the macroelement space of the previous section, and then use
it to solve a certain Hermite interpolation problem. First we need some additional
notation.

Given any multi-index α = (α1, α2, α3), we write Dα for the partial derivative
Dα1

x Dα2
y Dα3

z . For each edge e := 〈u, v〉 of a tetrahedron T ∈ �, suppose Xe is the
plane perpendicular to e at the point u. We endow Xe with Cartesian coordinate axes
whose origin lies at the point u. Then for any multi-index β = (β1, β2), we define Dβ

e

to be the corresponding derivative. It corresponds to a directional derivative of order
|β| := β1 + β2 in a direction lying in Xe. Associated with e we also need notation for
the following sets of equally spaced points in the interior of e:

ηie,j :=
(i− j + 1)u + jv

i + 1
, j = 1, . . . , i,(6.1)

for all i > 0.
For each face F := 〈v1, v2, v3〉 of �, let D

F
be the directional derivative associated

with a unit normal vector to F , and let DF,i be the directional derivatives associated
with the vectors 〈vi, vF

〉 for i = 1, 2, 3, where as before v
F

is the split point in the
face F .

If η is a point in R
3, we write εη for the point-evaluation functional associated

with η, so that for any trivariate function, εηf := f(η).
Theorem 6.1. The set

N :=
⋃
v∈V

Nv ∪
⋃
e∈E

Ne ∪
⋃
F∈F

NF ∪
⋃

T∈�
NT(6.2)

is an NMDS for S2(�WF ), where
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(1) Nv := {εvDα}|α|≤4,

(2) Ne :=
⋃3

i=1

⋃i
j=1{εηi

e,j
Dβ

e }|β|=i,

(3) NF := {εviD
2
FD

4
F,i}3

i=1,
(4) NT := {εv

T
Dα}|α|≤3.

Proof. It is easy to see that the cardinality of the set N matches the dimension of
S2(�WF ) as given in Theorem 5.1. We already know that the set M defined in that
theorem is an MDS for S2(�WF ). Thus, to show that N is an NMDS, it suffices to
show that if s ∈ S2(�WF ), then setting the values {λs}λ∈N determines all coefficients
in the set {cξ}ξ∈M.

For each v ∈ V, we can compute the coefficients in Mv from the values of the
derivatives Dαs(v) corresponding to Nv. Then for each edge e ∈ E , the coefficients
in Me can be computed from the derivatives of s corresponding to Ne. We now use
Lemmas 4.1 and 4.2 as in the proof of Theorem 3.1 to compute all remaining coeffi-
cients corresponding to domain points on the shells R9(vT

) and R8(vT
) of tetrahedra

in �.
Now fix F ∈ F , and consider the set MF . It consists of the three domain points

{ξTF,1

2430, ξ
TF,2

2430, ξ
TF,3

2430}, where TF,i are three tetrahedra in �WF lying on one side of F
and sharing the face F . These domain points are marked with ⊕ in Figure 2 (left).

To compute the coefficient corresponding to ξ
TF,1

2430, we first solve a 3 × 3 system of
equations with associated matrix M3 as in (4.3) to get the coefficients corresponding
to the unmarked domain points on R3(v1) in Figure 2 (left). Then the coefficient

corresponding to ξ
TF,1

2430 can be computed from the value of the derivative D2
FD

4
F,is(v1).

The coefficients corresponding to the other two points in MF can be computed in a
similar way. Now we can use Lemma 4.3 to compute the coefficients of s corresponding
to the remaining domain points on shells R7(vT

). Finally, as shown in the proof of
Theorem 3.1, for each tetrahedron T in �, we can use the values {λs}λ∈NT

to compute
the coefficients cξ of s for ξ ∈ MT .

Theorem 6.1 shows that for any function f ∈ C6(Ω), there is a unique spline
s ∈ S2(�WF ) solving the Hermite interpolation problem

λs = λf for all λ ∈ N ,

or, equivalently,
(1) Dαs(v) = Dαf(v) for all |α| ≤ 4 and all v ∈ V;
(2) Dβ

e s(η
i
e,j) = Dβ

e f(ηie,j) for all |β| = i with 1 ≤ j ≤ i and 1 ≤ i ≤ 3, and for
all edges e of �;

(3) D2
FD

4
F,is(vi) = D2

FD
4
F,if(vi), i = 1, 2, 3, for each face F := 〈v1, v2, v3〉 of �;

(4) Dαs(v
T
) = Dαf(v

T
) for all |α| ≤ 3 and all tetrahedra T ∈ �.

The nodal functionals described in (6.2) involve some derivatives of order higher
than 2, even though s is only C2 globally. However, s is in C4(v) at vertices and in
C3(e) around edges, and so the third and fourth derivatives appearing in Ne and Nv

are well defined. But it is not in C6(v) at a vertex v, and so if F is an interior face,
then the derivatives in NF are applied to just one of the polynomial pieces of s which
share F .

The mapping which takes functions f ∈ C6(Ω) to this Hermite interpolating spline
defines a linear operator I

WF
: C6(Ω) → S2(�WF ). The construction guarantees that

I
WF

s = s for every spline s ∈ S2(�WF ), and in particular for all trivariate polyno-
mials of degree 9. We now discuss error bounds for this interpolation process, which
in turn provides an estimate for the approximation power of the space S2(�WF ).
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It is well known that the key to getting error bounds for these types of spline
interpolation operators is to show that the construction of the interpolating spline is
both local and stable. The localness of the operator is clear from the way in which
the B-coefficients of the interpolating spline s are computed. More precisely, for every
domain point ξ, the corresponding coefficient cξ of s depends only on values of f
and its derivatives at points in star(Tξ), where Tξ ∈ � is a tetrahedron containing ξ.
Concerning stability, we have the following.

Lemma 6.2. Given a tetrahedral partition �, let �WF be a corresponding
Worsey–Farin partition, and let θ

WF
be the smallest angle between any two edges

in �WF sharing a vertex. Then

|cξ| ≤ C

6∑
i=0

|ΩT |i|s|i,ΩT
for all ξ ∈ D�WF ,9,(6.3)

where ΩT is the union of the tetrahedra in star(T ), |ΩT | is its diameter, and C is a
constant depending only on θ

WF
.

Proof. To see that (6.3) holds, we review the computation of the coefficients of
s as described in the proof of Theorem 6.1. For domain points in balls of the form
D4(v), where v is a vertex of �, (6.3) follows from the well-known connection between
B-coefficients in such a ball and derivatives at v. Then in the next step we compute
coefficients in the sets Me from the derivatives corresponding to Ne. This involves
solving some systems of equations whose stability depends on θ

WF
. Now Lemmas 4.1

and 4.2 are used to compute coefficients corresponding to domain points on shells
R9(vT

) and R8(vT
). This involves solving linear systems with matrices M3 and M5

whose inverses are bounded by a constant depending on θ
WF

. Next we go to the
shells R7(vT

). After solving 3 × 3 systems for the coefficients on the 3-rings around
the vertices of a face F of such a shell, we compute the coefficients in MF from the
derivatives of s associated with NF (this is where the sixth derivatives come in). The
bound (6.3) also holds for these coefficients. Now the coefficients corresponding to
the remaining coefficients on the shells R7(vT

) are computed from Lemma 4.3, which
involves solving systems with matrices M4 and M5. Next, we use Lemma 3.2 to solve
for the remaining 20 coefficients of s|D7(vT

) (written as single polynomial). The matrix

M20 of this system depends only on the barycentric coordinates (a1, a2, a3, a4) of v
T
,

which are all bounded away from zero by a constant depending on θ
WF

. This insures
that the inverse of M20 is also bounded by a constant depending on θ

WF
. These

coefficients are then converted to the final coefficients of s on D7(vT
) by subdivision

about the point v
T
, which is known to be stable.

Given a tetrahedral partition �, we write |�| for the diameter of the largest
tetrahedron in �.

Theorem 6.3. There exists a constant K depending only on θ
WF

such that for
every f ∈ Cm+1(Ω) with 5 ≤ m ≤ 9,

‖Dα(f − I
WF

f)‖Ω ≤ K|�|m+1−|α||f |m+1,Ω(6.4)

for all |α| ≤ m.
Proof. Since the proof is similar to the proof of Theorem 3.3 in [5] and Theorem

6.2 in [20] (see also [17, 18] for similar arguments in the bivariate case), we can be
brief. Fix T ∈ �, and let f ∈ Cm+1(Ω). By Lemma 4.3.8 of [8], there exists a
polynomial q := qf,T ∈ P3

9 such that

‖Dβ(f − q)‖ΩT
≤ |(f − q)||β|,ΩT

≤ K1|ΩT |m+1−|β||f |m+1,ΩT
(6.5)
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for all |β| ≤ m, where ΩT is the union of the tetrahedra in star(T ). Now fix α with
|α| ≤ m. Then since I

WF
q = q,

‖Dα(f − I
WF

f)‖T ≤ ‖Dα(f − q)‖T + ‖DαI
WF

(f − q)‖T .

It suffices to estimate the second quantity. Applying the Markov inequality [22] to
each of the polynomials I

WF
(f − q)|Tj

, where T1, . . . , T12 are the tetrahedra in the
Worsey–Farin split of T , we have

‖DαI
WF

(f − q)‖Tj
≤ K2|�|−|α|‖I

WF
(f − q)‖Tj

,

where K2 is a constant depending only on θ
WF

. Let cξ be the B-coefficients of the
polynomial I

WF
(f − q)|Tj

relative to the tetrahedron Tj . Then combining (6.3) with
the fact that the Bernstein basis polynomials form a partition of unity, it is easy to
see that

‖I
WF

(f − q)‖Tj
≤ K3 max

ξ∈DTj,d

|cξ| ≤ K4

6∑
i=0

|ΩT |i|f − q|i,ΩT
.

Taking the maximum over j and combining this with (6.5) gives

‖I
WF

(f − q)‖T ≤ K5|�|m+1|f |m+1,ΩT
,

which gives

‖Dα(f − I
WF

f)‖T ≤ K6|�|m+1−|α||f |m+1,ΩT
.

Finally, we take the maximum over all tetrahedra T in � to get (6.4).

7. Remarks.
Remark 1. In the bivariate setting, Cr macroelements on various splits have been

studied by several authors; see, e.g., [3, 4, 13, 14] and the references therein.
Remark 2. A C2 trivariate polynomial macroelement defined on nonsplit tetra-

hedra was constructed in [16] using polynomials of degree 17. For Cr trivariate poly-
nomial macroelements using polynomials of degree 8r + 1, see [15].

Remark 3. C1 trivariate macroelements were constructed on the Worsey–Farin
split using splines of degree 3 in [23]. Stability issues and the approximation power
were not addressed. For other C1 trivariate macroelements, see [1, 24].

Remark 4. By examining slices through TWF , it can be shown that it is not
possible to construct C2 macroelements on the Worsey–Farin split using splines with
smoothness less than 3 around the edges or smoothness 4 at the vertices. This in turn
implies that the minimal degree possible is 9.

Remark 5. In section 5 we have shown that our local construction of a macroele-
ment on a single tetrahedron given in Theorem 3.1 leads to a C2 macroelement space
for general tetrahedral partitions, provided, for each interior face F , we choose the
split point v

F
on F to lie on the line connecting the interior split points v

T
and v

T̃

of the two tetrahedra T and T̃ which share the face F . This geometry causes the
smoothness conditions across F to be essentially univariate in nature. Tests using the
Java program have shown that without this condition, we do not get C2 continuity.

Remark 6. The Java code of the first author for examining piecewise polynomial
functions on tetrahedral partitions was a key tool in developing the macroelements
described in this paper. The code uses residual arithmetic to compute the dimension
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of trivariate spline spaces, find MDSs, and solve the smoothness equations. It can
be downloaded from http://www.math.utah.edu/∼pa/3DMDS, along with associated
documentation.

Remark 7. We have also used the Java code to explore the possibility of imposing
additional smoothness conditions on our superspline space S2(TWF ) to get a space of
dimension 272 which is uniquely determined by the domain points of Theorem 3.1,
minus the set MT . This would give us a C2 macroelement which is defined by natural
degrees of freedom only, i.e., information on the boundary of the tetrahedron T that is
necessary to insure the global smoothness and local construction. However, we have
not been able to find a symmetric way to do this, and expect that if it can be done
at all, it would require imposing various individual smoothness conditions of the form
(4.1). A similar approach was successful in the bivariate case; see [3, 4], where we
used it to get natural degrees of freedom for bivariate macroelement spaces.

Remark 8. We can remove the special smoothness conditions involving ν and μ
in the definition (3.2) of the space S2(TWF ) to get an alternative macroelement space
which has 9 degrees of freedom per face rather than 3, and thus has a total of 316
degrees of freedom rather than 292. The proof that this alternative element is C2

proceeds along the same lines as the proof of Theorem 5.1, and the global space has
dimension 35V + 20E + 9F + 20NT . The corresponding nodal basis (and associated
Hermite interpolation operator) requires derivatives up to order 4 only, rather than
the order 6 required for the element described here.

Remark 9. It is possible to create macroelements with fewer degrees of freedom
by the process of condensation. This amounts to further restricting the spline space
by forcing cross-derivatives along edges or through faces of the tetrahedron T to be
of reduced degree. The main problem with this strategy is that it produces elements
which no longer have the capability of reproducing the full polynomial space, and
thus have reduced approximation power.

Remark 10. In this paper we have given error bounds for Hermite interpolation
with our macroelement in the uniform norm. Analogous results hold for the p-norms
and can be proved using appropriate quasi-interpolation operators; see section 10 of
[12] for the bivariate case.

Remark 11. Using the Java code mentioned in Remark 6, one can easily check
that there is a similar C3 macroelement on the Worsey–Farin split of a tetrahedron
which uses splines of degree 13 which are C6 around the vertices, C5 around the edges,
C9 at the centroid v

T
, and C9 along edges connecting vT to points v

F
. This space

has dimension 984, with 916 natural degrees of freedom; see Remark 7.

Remark 12. We have recently learned [10] that Ming-Jun Lai and Alain Le
Méhauté have independently studied Cr macroelements based on the Worsey–Farin
split.

Remark 13. Using the Java software, we have also designed C2 macroelements
based on a trivariate analog of the double Clough–Tocher split of a tetrahedron which
is obtained by first applying the Clough–Tocher split, and then applying it again to
each of the resulting four subtetrahedra. We report on this element in [6].

Remark 14. It has recently been shown (see [15]) that if incenters are used
to construct the bivariate Powell–Sabin element, then the stability of the element
depends only on the smallest angle in the original triangulation before applying the
Powell–Sabin splits. We conjecture that the analogous statement holds here—namely,
that the stability of our element depends only on the smallest angle in the original
tetrahedral partition � rather than on the smallest angle θ

WF
in �WF . This is
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an important distinction, since even though we are using incenters, theoretically the
angles in the Clough–Tocher splits of the faces could be arbitrarily small. We are still
working on this conjecture.

Acknowledgment. We would like to thank Ming-Jun Lai for useful discussions.
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[25] A. Ženǐsek, Polynomial approximation on tetrahedrons in the finite element method, J. Approx.
Theory, 7 (1973), pp. 334–351.



SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 43, No. 4, pp. 1766–1782

ROBUST A POSTERIORI ERROR ESTIMATES FOR
STATIONARY CONVECTION-DIFFUSION EQUATIONS∗
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Abstract. We analyze a posteriori error estimators for finite element discretizations of convec-
tion-dominated stationary convection-diffusion equations using locally refined, isotropic meshes. The
estimators are based on either the evaluation of local residuals or the solution of discrete local
problems with Dirichlet or Neumann boundary conditions. All estimators yield global upper and
lower bounds for the error measured in a norm that incorporates the standard energy norm and a
dual norm of the convective derivative. They are fully robust in the sense that the ratio of the upper
and lower bounds is uniformly bounded with respect to the size of the convection. The estimates are
also uniform with respect to the size of the zero-order reaction term and also hold for the limit case
of vanishing reaction.
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1. Introduction. We consider stationary convection-diffusion equations

−εΔu + a · ∇u + bu = f in Ω,

u = 0 on ΓD,(1.1)

ε
∂u

∂n
= g on ΓN

in a polygonal domain Ω in R
n, n ≥ 2, with Lipschitz boundary Γ consisting of two

disjoint components ΓD and ΓN . The data have to satisfy the following conditions:
(A1) 0 < ε � 1.
(A2) a ∈ W 1,∞(Ω)n, b ∈ L∞(Ω).
(A3) There are two constants β ≥ 0 and cb ≥ 0, which do not depend on ε, such

that − 1
2 div a + b ≥ β and ‖b‖L∞ ≤ cbβ.

(A4) The Dirichlet boundary ΓD has positive (n−1)-dimensional Lebesgue measure
and includes the inflow boundary {x ∈ Γ : a(x) · n(x) < 0}.

Assumption (A3) allows us to handle simultaneously the case of a nonvanishing zero-
order reaction term and that of absent reaction, the latter corresponding to β = 0. In
the case β = 0 we set cb = 0. Assumption (A1) of course means that we are interested
in the convection-dominated regime.

We analyze three a posteriori error estimators for finite element discretizations
(standard Galerkin or SUPG) of problem (1.1). One estimator is based on the evalu-
ation of local residuals, and the other two are based on the solution of auxiliary local
discrete convection-diffusion problems with Dirichlet or Neumann boundary condi-
tions. All estimators yield global upper and lower bounds on the error of the finite
element discretization measured in a norm that incorporates the standard energy
norm of problem (1.1) and a dual norm of the convective derivative (cf. section 2 for
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the definition of the norms). All estimates are fully robust in the sense that the ratio
of upper and lower bounds is uniformly bounded with respect to the mesh-size, to the
viscosity ε, and to the parameter β.

Our analysis is restricted to shape-regular meshes (cf. section 2). This includes
locally refined meshes but excludes anisotropic elements with large aspect ratios. One
could try to extend our analysis to anisotropic meshes following the lines of [6]. One
then has to establish Lemmas 3.3 and 3.6 for anisotropic elements too. This is partially
done in [7]. It is to be expected that the left-hand side of the upper error bound (4.7)
in Theorem 4.1 will then include a factor which measures the alignment of the mesh
with the error (cf. [7, Theorem 7.1]).

The present results complement and improve the results of [10] in several respects.
There the analysis was restricted to the case β = 1; here we also treat the limiting
case of vanishing reaction. Up to obvious modifications due to the presence of the
parameter β, the residual estimator and the auxiliary local Dirichlet problems are the
same here and in [10]. But here the solution of the local problem is evaluated with
respect to a norm that also incorporates a mesh-dependent norm of the convective
derivative. Most important, the present estimates are fully robust, whereas in [10]
the ratios of the upper and lower bounds depend on the mesh-Péclet number. The
present auxiliary local Neumann problems differ from their analogue in [10] by a new
approximation of the convection and reaction terms. Moreover, the estimator consid-
ered here is based on a mesh-dependent norm that takes into account the convective
derivative.

A comparison of the present results and of those in [10] leads to the following
conclusions:

• A large ratio of the error estimators to the energy norm of the error may be at-
tributed to a large convective derivative of the error and thus to insufficiently
resolved interior and boundary layers.

• The full equivalence of the error estimators with parameter-independent con-
stants is due to the incorporation of the convection into the norms used for
evaluating the solutions of the auxiliary problems.

Our results should also be compared with those of [8]. There the residual-free
bubbles method is applied to problem (1.1) with b = 0 and div a = 0, i.e., β = 0.
The meshes are assumed to be shape-regular. The error estimator is a residual one
and is proved to be robust. Our results for the case β = 0 and those of [8] differ in
the scaling of the norm that measures the error and of the weights used in the error
estimator. Such a rescaling, however, is not possible in the general case β > 0.

We have implemented the residual error estimator of section 4 for some examples.
The Java applet and a user guide are available at www.ruhr-uni-bochum.de/num1.
The estimators of sections 5 and 6 are much more complex both with respect to
implementational and computational work. Up to now we did not have the time to
implement them.

The article is organized as follows. In section 2 we present the variational for-
mulation of problem (1.1), its finite element discretization, and the relevant norms.
In section 3 we collect some auxiliary results which are needed for deriving the error
bounds. In sections 4–6 we introduce the error estimators and prove their robustness.
In what follows all constants are independent of the mesh-size, of the viscosity ε, and
of the parameter β.

2. Variational formulation and finite element discretization. For any
bounded open subset ω of Ω with Lipschitz boundary γ, we denote by Hk(ω), k ∈ N,
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L2(ω) = H0(ω), and L2(γ) the usual Sobolev and Lebesgue spaces equipped with the
standard norms ‖.‖k;ω = ‖.‖Hk(ω) and ‖.‖0;γ = ‖.‖L2(γ) (cf. [1]). Similarly, (., .)ω and
(., .)γ denote the L2-scalar products on ω and γ, respectively. If ω = Ω, we will omit
the index Ω.

Set

H1
D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}(2.1)

and define the bilinear form B on H1(Ω) ×H1(Ω) by

B(u, v) = ε(∇u,∇v) + (a · ∇u, v) + (bu, v).(2.2)

Then the standard variational formulation of problem (1.1) is to find u ∈ H1
D(Ω) such

that

B(u, v) = (f, v) + (g, v)ΓN
∀v ∈ H1

D(Ω).(2.3)

Due to assumption (A3), the natural energy norm for problem (2.3) is given by

|‖v‖| =
{
ε‖∇u‖2

0 + β‖u‖2
0

}1/2
.(2.4)

The dual space of H1
D(Ω) is denoted by H1

D(Ω)∗ and is equipped with the dual norm

|‖ϕ‖|∗ = sup
v∈H1

D(Ω)\{0}

〈ϕ, v〉
|‖v‖| ,(2.5)

where 〈., .〉 denotes the corresponding duality pairing. This norm will be used for
bounding the convective derivative.

For the finite element discretization we consider a family Th, h > 0, of partitions
of Ω into simplices or parallelepipeds that satisfies the following properties.

Affine equivalence: Each element can be mapped by an invertible affine mapping
onto the unit n-simplex or the unit n-cube.

Admissibility: Any two elements are either disjoint or share a complete �-dimen-
sional face (0 ≤ � ≤ n− 1).

Shape regularity: The ratio of the diameter hK of any element K to the diameter
ρK of the largest ball inscribed into this element is uniformly bounded.

We fix a natural number k ≥ 1 and denote for any element K by Rk(K) the space
of all polynomials of total degree at most k if K is a simplex or of maximal degree at
most k if K is a parallelepiped. With this definition the finite element space is given
by

Xh =
{
v ∈ C(Ω) : v|K ∈ Rk(K) ∀K ∈ Th, v = 0 on ΓD

}
.(2.6)

Next we define a bilinear form Bδ on Xh ×Xh and a linear form �δ on Xh by

Bδ(uh, vh) = B(uh, vh) +
∑

K∈Th

δK(−εΔuh + a · ∇uh + buh, a · ∇vh)K(2.7)

and

�δ(vh) = (f, vh) + (g, vh)ΓN
+
∑

K∈Th

δK(f, a · ∇vh)K .(2.8)
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The δK are nonnegative stabilization parameters. We will always assume that

δK‖a‖L∞(K) ≤ chK ∀K ∈ Th.(2.9)

With these definitions, the finite element discretization of problem (1.1) consists in
finding uh ∈ Xh such that

Bδ(uh, vh) = �δ(vh) ∀vh ∈ Xh.(2.10)

The choice δK = 0 for all K yields the standard Galerkin discretization; the choice
δK > 0 for all K corresponds to the SUPG-discretizations (cf., e.g., [4], [5]). Condition
(2.9) is satisfied for all choices of δK used in practice. Assumptions (A3), (A4), and
(2.9) and standard arguments for SUPG-discretizations imply that problem (2.10)
admits a unique solution.

3. Auxiliary results. In this section we collect some auxiliary results and no-
tation that will be helpful for the estimates of the subsequent sections. We start with
a stability result for the bilinear form (2.2).

Lemma 3.1. The bilinear form (2.2) satisfies the upper bound

B(u, v) ≤ max{cb, 1} {|‖u‖| + |‖a · ∇u‖|∗} |‖v‖| ∀u, v ∈ H1
D(Ω)(3.1)

and the inf-sup condition

inf
u∈H1

D(Ω)\{0}
sup

v∈H1
D(Ω)\{0}

B(u, v)

{|‖u‖| + |‖a · ∇u‖|∗} |‖v‖|
≥ 1

2 + max{cb, 1}
.(3.2)

The constant cb is the one of assumption (A3).

Proof. The upper bound (3.1) follows from assumption (A3), the definition (2.4)
of the energy norm |‖.‖|, and the definition (2.5) of the dual norm |‖.‖|∗.

To prove the inf-sup condition (3.2), we fix an arbitrary function u ∈ H1
D(Ω) and

choose a real number θ greater than 0 and less than 1. Due to the definition (2.5) of
the dual norm there is a function vθ ∈ H1

D(Ω) with

|‖vθ‖| = 1 and (a · ∇u, vθ) ≥ θ|‖a · ∇u‖|∗.

Set wθ = u + 1
1+max{cb,1} |‖u‖|vθ. The bilinearity of B then yields

B(u,wθ) = B(u, u) +
1

1 + max{cb, 1}
|‖u‖|B(u, vθ).

Integration by parts and assumptions (A3) and (A4) imply the coercivity of B, i.e.,

B(u, u) ≥ |‖u‖|2.

The definition of vθ and assumption (A3) on the other hand give

B(u, vθ) = (a · ∇u, vθ) + ε(∇u,∇vθ) + (bu, vθ) ≥ θ|‖a · ∇u‖|∗ − max{cb, 1}|‖u‖|.
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Since

|‖wθ‖| ≤
2 + max{cb, 1}
1 + max{cb, 1}

|‖u‖|

these estimates yield

sup
v∈H1

D(Ω)\{0}

B(u, v)

|‖v‖| ≥ B(u,wθ)

|‖wθ‖|

≥ 1

2 + max{cb, 1}
{|‖u‖| + θ|‖a · ∇u‖|∗}.

Since 0 < θ < 1 and u ∈ H1
D(Ω) were arbitrary, this proves the inf-sup condition

(3.2).
Remark 3.2. A similar result is established in [9]. There, however, the solution

u and the test-function v are measured with respect to the same norm which is an
interpolation norm between |‖.‖| and |‖.‖| + |‖a · ∇.‖|∗. The present result is better
suited for our purposes, since, in what follows, we thus have to estimate Clément-type
interpolants and bubble functions with respect to the energy norm and can do this
by invoking standard results from the literature. It is worth noting that by the same
argument a similar stability result can be established for the bilinear form B restricted
to Xh × Xh. One only has to replace |‖.‖|∗ by its discrete analogue for which the
supremum is taken with respect to Xh instead of H1

D(Ω). In section 5 we will use
a similar result for analyzing the local auxiliary problems. Lemma 3.1 should also
be compared with the results in [2]. There the norm supv B(u, v)/‖∇v‖0 is used to
derive suboptimal, i.e., ε-dependent, a posteriori error bounds.

Next we introduce some notation that will be needed for the error estimates. We
denote by Nh the set of all element vertices that do not lie on the Dirichlet boundary
ΓD and by Eh the set of all (n− 1)-dimensional element faces that are not contained
in ΓD.

With each E ∈ Eh we associate a unit vector nE that is orthogonal to E and that
points to the outside of Ω if E is part of the boundary Γ. For any interior face E in Ω
we denote by [.]E the jump across E in direction nE . The jump [.]E of course depends
on the orientation of nE . But quantities of the form [nE · .]E are independent thereof.

With every element K we associate two sets ωK and ω̃K which consist of the
union of all elements that share an (n− 1)-dimensional face with K and of the union
of all elements that share at least one point with K, respectively. For a face E ∈ Eh
the sets ωE and ω̃E are defined analogously.

For every vertex x ∈ Nh we denote by λx the nodal bases function which is
uniquely defined by the properties

λx|K ∈ R1(K) ∀K ∈ Th, λx(y) = 0 ∀y ∈ Nh\{x}, λx(x) = 1.

The support of a nodal bases function λx is denoted by ωx and consists of all elements
that share the vertex x. With this notation we can define a Clément-type interpolation
operator Ih : L1(Ω) −→ {ϕ ∈ C(Ω) : ϕ|K ∈ R1(K) for all K ∈ Th, ϕ = 0 on ΓD} by
(cf. [11])

Ihv =
∑
x∈Nh

{
1

|ωx|

∫
ωx

v

}
λx.(3.3)

Here |ωx| denotes the n-dimensional Lebesgue measure of ωx.
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Lemma 3.3. For every S ∈ Th ∪ Eh denote by hS its diameter and set

αS = min{hSε
−1/2, β−1/2}.(3.4)

Then the following estimates hold for all elements K, all faces E, and all functions
v ∈ H1

D(Ω):

‖v − Ihv‖0;K ≤ c1αK |‖v‖|ω̃K
,

‖v − Ihv‖0;E ≤ c2ε
−1/4α

1/2
E |‖v‖|ω̃E

,

|‖Ihv‖|K ≤ c3|‖v‖|ω̃K
.

Here |‖.‖|A denotes the restriction of |‖.‖| to the measurable set A.

Proof. The proof of Lemma 3.3 follows from Lemma 3.1 in [10] and Proposition
2.1 in [11] with the arguments used in the proof of Lemma 3.2 in [10].

Remark 3.4. In the case β = 0 the minimum in (3.4) of course yields αS =
ε−1/2hS for all S.

Remark 3.5. Proposition 2.1 of [11] is only proved for simplicial elements. A
close inspection of the arguments, however, reveals that they immediately carry over
to parallelepipeds that are the affine image of the unit cube. The crucial point here
is that the Jacobian of the transformation is constant.

Next we define element and face bubble functions that will be used in deriving
lower error bounds. For every element K we denote by NK the set of its vertices and
set

ψK = γK
∏

x∈NK

λx,(3.5)

where the constant γK is chosen such that ψK equals 1 at the barycenter of K. Note
that the support of ψK is contained in K and that ‖ψK‖L∞(K) = 1.

For every face E we set

θE = min{ε1/2β−1/2h−1
E , 1}(3.6)

and denote by NE the set of its vertices. (Note that θE = 1 in the case β = 0.)
Consider first a face E that is not contained in the boundary. It is shared by exactly
two elements KE,1 and KE,2. For i = 1, 2 we define an affine transformation Fi :
R

n −→ R
n as follows: We first map KE,i onto the reference element such that the

image of E is contained in the hyperplane {xn = 0}; then we apply the transformation
(x1, . . . , xn−1, xn) −→ (x1, . . . , xn−1, θExn); and finally we transform back using the
inverse of the affine transformation of the first step. With this definition we set

ψE = γE
∏

x∈NE

λx ◦ F−1
i on KE,i , i = 1, 2,(3.7)

where the constant γE is chosen such that ψE equals 1 at the barycenter of E. Note
that the support of ψE is contained in F1(KE,1)∪F2(KE,2) ⊂ KE,1 ∪KE,2 = ωE and
that ‖ψE‖L∞(E) = 1.
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If a face E is contained in the Neumann boundary ΓN , the definition of ψE is
modified in the obvious way taking into account that now E is the face of exactly one
element KE .

Lemma 3.6. The following estimates hold for all elements K, all polynomials
v ∈ Rk(K), all faces E, and all polynomials σ ∈ Rk(E):

(v, ψKv)K ≥ c4‖v‖2
0;K ,

|‖ψKv‖|K ≤ c5α
−1
K ‖v‖0;K ,

(σ, ψEσ)E ≥ c6‖σ‖2
0;E ,

|‖ψEσ‖|ωE
≤ c7ε

1/4α
−1/2
E ‖σ‖0;E ,

‖ψEσ‖0;ωE
≤ c8ε

1/4α
1/2
E ‖σ‖0;E .

Here, a polynomial σ defined on a face E is continued in the canonical way to a
polynomial defined on R

n. The constants c4, . . . , c8 depend only on the polynomial
degree k and on the ratios hK/ρK .

Proof. The estimates are proven with the same arguments as in the proof of
Lemma 3.3 in [10]. For parallelepipeds one only has to take into account that the
transformation to the unit cube is affine and thus has a constant Jacobian.

4. A residual error estimator. Denote by fh, gh, ah, and bh the L2-projections
of the data f , g, a, and b onto the space of piecewise constant functions corresponding
to Th. For abbreviation we define element residuals RK by

RK = fh + εΔuh − ah · ∇uh − bhuh,(4.1)

face residuals RE by

RE =

⎧⎨
⎩

−[εnE · ∇uh]E if E �⊂ Γ,
gh − εnE · ∇uh if E ⊂ ΓN ,
0 if E ⊂ ΓD,

(4.2)

elementwise data errors DK by

DK = {f − fh + (ah − a) · ∇uh + (bh − b)uh}|K ,(4.3)

and edgewise data errors DE , E ∈ Eh ∩ ΓN , by

DE = g − gh.(4.4)

Here, of course, uh denotes the solution of the discrete problem (2.10). Note that, as
usual, RK is defined elementwise. In particular, the term Δuh has to be interpreted
as the Laplacian applied to the restriction of uh to the element K.

Theorem 4.1. For every element K define the error indicator ηK by

ηK =

⎧⎨
⎩α2

K‖RK‖2
0;K +

∑
E∈Eh;E⊂∂K

ε−1/2αE‖RE‖2
0;E

⎫⎬
⎭

1/2

(4.5)
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and the data error indicator ΘK by

ΘK =

{
α2
K

[
‖f − fh‖2

0;K + ‖(a− ah) · uh‖2
0;K + ‖(b− bh)uh‖2

0;K

]

+
∑

E∈Eh;E⊂∂K∩ΓN

ε−1/2αE‖g − gh‖2
0;E

}1/2

.

(4.6)

Then the error between the solutions u and uh of problems (2.3) and (2.10) is bounded
from above by

|‖u− uh‖| + |‖a · ∇(u− uh)‖|∗ ≤ c∗

{ ∑
K∈Th

[
η2
K + Θ2

K

]}1/2

(4.7)

and from below by

{ ∑
K∈Th

η2
K

}1/2

≤ c∗

⎡
⎣|‖u− uh‖| + |‖a · ∇(u− uh)‖|∗ +

{ ∑
K∈Th

Θ2
K

}1/2
⎤
⎦.(4.8)

The constant c∗ depends only on the constants c1, . . . , c3 of Lemma 3.3 and on the
ratios hK/ρK ; the constant c∗ depends only on the constants c4, . . . , c8 of Lemma 3.6
and on the ratios hK/ρK .

Proof. As usual, we define the residual R(uh) of the discrete solution uh by

〈R(uh), v〉 = (f, v) + (g, v)ΓN
−B(uh, v) ∀v ∈ H1

D(Ω).(4.9)

Since 〈R(uh), v〉 = B(u− uh, v) for all v ∈ H1
D(Ω), Lemma 3.1 implies

1

1 + max{cb, 1}
|‖R(uh)‖|∗ ≤ |‖u− uh‖| + |‖a · ∇(u− uh)‖|∗

≤{2 + max{cb, 1}} |‖R(uh)‖|∗.
(4.10)

Integration by parts elementwise yields the following L2-representation of the residual:

〈R(uh), v〉 =
∑

K∈Th

(f + εΔuh − a · ∇uh − buh, v)K

−
∑

E∈Eh∩Ω

([εnE · ∇uh]E , v)E +
∑

E∈Eh∩Γn

(g − εnE · ∇uh, v)E

=
∑

K∈Th

(RK , v)K +
∑
E∈Eh

(RE , v)E

+
∑

K∈Th

(DK , v)K +
∑

E∈Eh∩Γn

(DE , v)E .

(4.11)

Lemma 3.3 and the Cauchy–Schwarz inequality therefore imply for all v ∈ H1
D(Ω)
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〈R(uh),v − Ihv〉

≤ c|‖v‖|
{ ∑

K∈Th

α2
K‖RK‖2

0;K +
∑
E∈Eh

ε−1/2αE‖RE‖2
0;E

+
∑

K∈Th

α2
K‖DK‖2

0;K +
∑

E∈Eh∩Γn

ε−1/2αE‖DE‖2
0;E

}1/2

.

(4.12)

The constant c depends only on the constants c1 and c2 of Lemma 3.3 and on the
ratios hK/ρK .

From the definition of problems (2.3) and (2.10) we conclude that

〈R(uh), Ihv〉 =
∑

K∈Th

δK{(RK , a · ∇Ihv)K + (DK , a · ∇Ihv)K}.

Lemma 3.3, condition (2.9), and the Cauchy–Schwarz inequality therefore imply

〈R(uh), Ihv〉 ≤ c|‖v‖|
{ ∑

K∈Th

α2
K

{
‖RK‖2

0;K + ‖DK‖2
0;K

}}1/2

.(4.13)

Estimates (4.10), (4.12), and (4.13) and the triangle inequality for the DK prove the
upper bound (4.7).

For the proof of the lower bound (4.8) we proceed as in the proof of [12, Lemma
5.1] and define a function wh by

wh = γ1

∑
K∈Th

α2
KψKRK + γ2

∑
E∈Eh

ε−1/2αEψERE .(4.14)

The constants γ1 and γ2 are arbitrary at present and will be determined below. The
subsequent arguments are based on the following observation:

• the supports of the ψK are mutually disjoint;
• the support of a ψK intersects the support of at most 2n different ψE ’s;
• the support of a ψE intersects the support of at most two ψK ’s;
• the support of a ψE intersects the support of at most 2n− 2 other ψE ’s.

Lemma 3.6 therefore yields

|‖wh‖|2 ≤ γ2
1

∑
K∈Th

α4
K |‖ψKRK‖|2K

+ 2γ1γ2

∑
K∈Th

⎧⎨
⎩

∑
E;ωE∩K �=∅

α2
Kε−1/2αE |‖ψKRK‖|K |‖ψERE‖|K

⎫⎬
⎭

+ γ2
2

∑
E∈Eh

⎧⎨
⎩

∑
E′;ωE∩ωE′ �=∅

ε−1αEαE′ |‖ψERE‖|ωE
|‖ψE′RE′‖|ωE′

⎫⎬
⎭

≤ (2n + 1) max{γ2
1 , γ

2
2}max{c5, c7}

∑
K∈Th

η2
K .

(4.15)
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Since hE ≤ hK for all faces E of any element K, Lemma 3.6 also implies that

∑
K∈Th

(RK , wh)K +
∑
E∈Eh

(RE , wh)E

= γ1

∑
K∈Th

α2
K(RK , ψKRK)K + γ2

∑
E∈Eh

ε−1/2αE(RE , ψERE)E

+ γ2

∑
E∈Eh

⎧⎨
⎩

∑
K;K∩ωE �=∅

ε−1/2αE(RK , ψERE)K

⎫⎬
⎭

≥ γ1

∑
K∈Th

c4α
2
K‖RK‖2

0;K + γ2

∑
E∈Eh

c6ε
−1/2αE‖RE‖2

0;E

− γ2

∑
E∈Eh

⎧⎨
⎩

∑
K;K∩ωE �=∅

c8ε
−1/4α

1/2
E αK‖RK‖0;K‖ψERE‖0;E

⎫⎬
⎭

≥ (γ1c4 − 2nγ2c
2
8c

−1
6 )

∑
K∈Th

α2
K‖RK‖2

0;K +
1

2
γ2c6

∑
E∈Eh

ε−1/2αE‖RE‖2
0;E

≥ min

{
γ1c4 − 2nγ2c

2
8c

−1
6 ,

1

2
γ2c6

} ∑
K∈Th

η2
K .

(4.16)

From Lemma 3.6 we also obtain

∑
K∈Th

(DK , wh)K +
∑

E∈Eh∩Γn

(DE , wh)E

= γ1

∑
K∈Th

α2
K(DK , ψKRK)K

+ γ2

∑
K∈Th

⎧⎨
⎩

∑
E;E⊂∂K

ε−1/2αE(DK , ψERE)K

⎫⎬
⎭

+ γ2

∑
E∈Eh∩Γn

ε−1/2αE(DE , ψERE)E

≤ γ1

∑
K∈Th

α2
K‖RK‖0;K‖DK‖0;K

+ γ2

∑
K∈Th

⎧⎨
⎩

∑
E;E⊂∂K

c8ε
−1/4α

3/2
E ‖RE‖0;E‖DK‖0;K

⎫⎬
⎭

+ γ2

∑
E∈Eh∩Γn

ε−1/2αE‖RE‖0;E‖DE‖0;E

≤ 2nmax{γ1, γ2}max{1, c8}
{ ∑

K∈Th

Θ2
K

}1/2{ ∑
K∈Th

η2
K

}1/2

.

(4.17)

Now we choose

γ2 =
2

c6
and γ1 =

1

c4

(
1 +

4nc28
c26

)
.
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This choice gives

min

{
γ1c4 − 2nγ2c

2
8c

−1
6 ,

1

2
γ2c6

}
= 1.

Estimates (4.16), (4.17), and (4.15), equation (4.11), and the triangle inequality for
the DK therefore imply

∑
K∈Th

η2
K ≤ c

{ ∑
K∈Th

η2
K

}1/2
⎡
⎣|‖R(uh)‖|∗ +

{ ∑
K∈Th

Θ2
K

}1/2
⎤
⎦.

In combination with Lemma 3.1 this establishes the lower bound (4.8).

5. An error estimator based on the solution of local Dirichlet problems.
In this section we present an error estimator that is based on the solution of auxiliary
local discrete problems with Dirichlet boundary conditions. To this end we fix an
arbitrary element K and set

VK = span{ψK′v, ψEσ : K ′ ⊂ ωK , E ⊂ ∂K\ΓD, v ∈ Rk(K
′), σ ∈ Rk(E)}.

Then we consider the following problem: Find v ∈ VK such that

ε(∇v,∇w)ωK
+ (a · ∇v, w)ωK

+ (bv, w)ωK

= (fh, w)ωK
+ (gh, w)∂K∩ΓN

− ε(∇uh,∇w)ωK

− (ah · ∇uh, w)ωK
− (bhuh, w)ωK

∀w ∈ VK .

(5.1)

The following lemma is a discrete analogue of Lemma 3.1. It in particular implies the
unique solvability of problem (5.1).

Lemma 5.1. Denote by πVK
the L2-projection onto VK . Then the following

estimates are valid:

sup
v∈VK\{0}

sup
w∈VK\{0}

ε(∇v,∇w)ωK
+ (a · ∇v, w)ωK

+ (bv, w)ωK{
|‖v‖|2ωK

+ α2
K‖πVK

(a · ∇v)‖2
0;ωK

}1/2 |‖w‖|ωK

≤
√

2 max{ca, cb, 1}
(5.2)

and

inf
v∈VK\{0}

sup
w∈VK\{0}

ε(∇v,∇w)ωK
+ (a · ∇v, w)ωK

+ (bv, w)ωK{
|‖v‖|2ωK

+ α2
K‖πVK

(a · ∇v)‖2
0;ωK

}1/2 |‖w‖|ωK

≥ 1

1 + 3c2a max{cb, 1}2
.

(5.3)

The constant cb is that of assumption (A3). The constant ca depends only on the
polynomial degree k and on the ratios hK/ρK (cf. (5.5) below).

Proof. The definition of πVK
implies

(a · ∇v, w)ωK
= (πVK

(a · ∇v), w)ωK
∀v, w ∈ VK .

This identity, assumption (A3), and the definition (2.4) of the energy norm yield for
all v, w ∈ VK

ε(∇v,∇w)ωK
+ (a · ∇v, w)ωK

+ (bv, w)ωK

≤max{cb, 1}|‖v‖|ωK
|‖w‖|ωK

+ ‖πVK
(a · ∇v)‖0;ωK

‖w‖0;ωK
.

(5.4)
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Since the functions in VK vanish at the vertices of K, the norms hK‖∇.‖0;ωK
and

‖ .‖0;ωK
are equivalent on VK . Therefore αK |‖.‖|ωK

and ‖ .‖0;ωK
are also equivalent

norms on VK ; i.e., there is a constant ca ≥ 1 which depends only on the polynomial
degree k and on the ratios hK/ρK such that

1

ca
αK |‖w‖|ωK

≤ ‖w‖0;ωK
≤ caαK |‖w‖|ωK

(5.5)

holds for all w ∈ VK . Inequalities (5.4) and (5.5) prove the upper bound (5.2).
For the proof of the lower bound (5.3) we proceed as in the proof of estimate

(3.2). We consider an arbitrary function v ∈ VK and set wγ = v + γα2
KπVK

(a · ∇v).
The constant γ is arbitrary at present and will be determined below. The norm
equivalence (5.5) implies

|‖wγ‖|ωK
≤ |‖v‖|ωK

+ caγαK‖πVK
(a · ∇v)‖0;ωK

≤
{
1 + c2aγ

2
}1/2 {|‖v‖|2ωK

+ α2
K‖πVK

(a · ∇v)‖2
0;ωK

}1/2
.

Assumptions (A3) and (A4), integration by parts, and the definition (2.4) of the
energy norm on the other hand imply that the bilinear form on the left-hand side of
problem (5.1) is coercive on VK with constant 1. Inserting wγ as a test-function in
this bilinear form therefore yields

ε(∇v,∇wγ)ωK
+ (a · ∇v, wγ)ωK

+ (bv, wγ)ωK

= ε(∇v,∇v)ωK
+ (a · ∇v, v)ωK

+ (bv, v)ωK

+ γα2
K{ε(∇v,∇πVK

(a · ∇v))ωK
+ (a · ∇v, πVK

(a · ∇v))ωK
+ (bv, πVK

(a · ∇v))ωK
}

≥ |‖v‖|2ωK
+ γα2

K‖πVK
(a · ∇v)‖2

0;ωK
− ca max{cb, 1}γαK |‖v‖|ωK

‖πVK
(a · ∇v)‖0;ωK

≥
(

1 − 1

2
c2a max{cb, 1}2γ

)
|‖v‖|2ωK

+
1

2
γα2

K‖πVK
(a · ∇v)‖2

0;ωK
.

Now we choose γ = 2/(1 + c2a max{cb, 1}2). Since

(1 + c2a max{cb, 1}2)

{
1 +

4c2a
(1 + c2a max{cb, 1}2)2

}1/2

=
{
(1 + c2a max{cb, 1}2)2 + 4c2a

}1/2

≤ 1 + 3c2a max{cb, 1}2

this proves estimate (5.3).
We denote by vK ∈ VK the unique solution of problem (5.1) and define the error

indicator ηD,K by

ηD,K =
{
|‖vk‖|2ωK

+ α2
K‖πVK

(a · ∇vK)‖2
0;ωK

}1/2
.(5.6)

Remark 5.2. The function uh + vK is a finite element approximation to the
solution uK of the local convection-diffusion problem

−εΔuK + a∇ · uK + buK = fh in ωK ,

uK = uh on ∂ωK\(∂K ∩ ΓN ),

εnK · ∇uK = gh on ∂K ∩ ΓN .
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Problem (5.1) is the same as problem (5.1) in [10]. But, contrary to [10], the present
error indicator also takes into account the convective derivative of vK . This modifi-
cation is crucial for obtaining fully robust error estimates.

Theorem 5.3. There are two constants c† and c† which depend only on the
polynomial degree k and on the ratios hK/ρK such that the estimate

1

c†
ηK ≤ ηD,K ≤ c†

{ ∑
K′⊂ωK

η2
K′

}1/2

(5.7)

holds for all elements K. Moreover ηD,K yields the upper error bound

|‖u− uh‖| + |‖a · ∇(u− uh)‖|∗ ≤ ĉ∗

{ ∑
K∈Th

[
η2
D,K + Θ2

K

]}1/2

(5.8)

and the lower error bound

{ ∑
K∈Th

η2
D,K

}1/2

≤ ĉ∗

⎡
⎣|‖u− uh‖| + |‖a · ∇(u− uh)‖|∗ +

{ ∑
K∈Th

Θ2
K

}1/2
⎤
⎦.(5.9)

The constants ĉ∗ and ĉ∗ depend only on the polynomial degree k and on the ratios
hK/ρK .

Proof. In view of Theorem 4.1 we only have to prove estimate (5.7). Integration
by parts of the right-hand side of problem (5.1) yields for all w ∈ VK

(fh, w)ωK
+ (gh, w)∂K∩ΓN

− ε(∇uh,∇w)ωK
− (ah · ∇uh, w)ωK

− (bhuh, w)ωK

=
∑

K′⊂ωK

(RK′ , w)K′ +
∑

E⊂∂K\ΓD

(RE , w)E .

Hence we have

sup
w∈VK

1

|‖w‖|ωK

{ε(∇vK ,∇w)ωK
+ (a · ∇vK , w)ωK

+ (bvK , w)ωK
}

= sup
w∈VK

1

|‖w‖|ωK

⎧⎨
⎩
∑

K′⊂ωK

(RK′ , w)K′ +
∑

E⊂∂K\ΓD

(RE , w)E

⎫⎬
⎭.

(5.10)

Lemma 5.1 implies that the left-hand side of (5.10) is bounded from above and
from below by constant multiples of {|‖vK‖|2ωK

+α2
K‖πVK

(a·∇vK)‖2
0;ωK

}1/2. The norm
equivalence (5.5) yields that the right-hand side of (5.10) is bounded from

above by a constant multiple of
{∑

K′⊂ωK
η2
K′
}1/2

. The arguments in establishing es-
timates (4.15) and (4.16) on the other hand show that, taking a suitable
combination of functions ψK′RK′ , K ′ ⊂ ωK , and ψERE , E ⊂ ∂K\ΓN , allows
us to bound the right-hand side of (5.10) from below by a constant multiple of
{
∑

K′⊂ωK
α2
K′‖RK′‖2

0;K′ +
∑

E⊂∂K\ΓD
ε−1/2αE‖RE‖2

0;E}1/2, which in turn is an up-
per bound for ηK .

6. An error estimator based on the solution of local Neumann prob-
lems. In this section we present an error estimator that is based on the solution of
auxiliary local discrete problems with Neumann boundary conditions. The main diffi-
culty in constructing the discrete local problem now is to ensure the coercivity of the
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corresponding bilinear form. To achieve this we have to approximate the reaction b
and the convection a by discrete quantities such that assumption (A3) remains valid
for this approximation and such that the normal component of the discrete convection
is piecewise constant on the edges, respectively, faces, of Th.

To this end we recall that bh is the L2-projection of b onto the space of piecewise
constant functions corresponding to Th. For the approximation of the convection we
denote by aRTh

the approximation of a in the lowest-order Raviart–Thomas space
RT0 corresponding to Th which is defined by (cf. [3, sections III.3.1 and III.3.2]):

aRTh |K ∈ R0(K)n +

⎛
⎜⎝
x1

...
xn

⎞
⎟⎠R0(K) ∀K ∈ Th,

∫
E

nE · aRTh
=

∫
E

nE · a ∀E ∈ Eh.

Note that nE · aRTh
is piecewise constant on the edges, respectively, faces. Therefore

we can associate with each element K the collection of its outflow edges, respectively,
faces, by setting

E+
K = {E ∈ Eh ∩ ∂K : nK · aRTh

≥ 0},

where nK denotes the outward normal to K.
With these definitions we set

ṼK = span {ψKv, ψEσ : v ∈ Rk(K), E ∈ E+
K , σ ∈ Rk(E)}

and consider the following problem: Find ṽ ∈ ṼK such that

ε(∇ṽ,∇w)K + (aRTh
· ∇ṽ, w)K + (bhṽ, w)K

= (RK , w)K +
∑

E∈E+
K

(RE , w)E ∀w ∈ ṼK .(6.1)

The following lemma is an analogue of Lemma 5.1. It in particular implies the unique
solvability of problem (6.1).

Lemma 6.1. The following estimates hold for all elements K:

sup
v∈ṼK\{0}

sup
w∈ṼK\{0}

ε(∇v,∇w)K + (aRTh
· ∇v, w)K + (bhv, w)K

{|‖v‖|2K + α2
K‖aRTh

· ∇v‖2
0;K}1/2|‖w‖|K

≤
√

2 max{c̃a, cb, 1}
(6.2)

and

inf
v∈ṼK\{0}

sup
w∈ṼK\{0}

ε(∇v,∇w)K + (aRTh
· ∇v, w)K + (bhv, w)K

{|‖v‖|2K + α2
K‖aRTh

· ∇v‖2
0;K}1/2|‖w‖|K

≥ 1

1 + 3c̃2a max{cb, 1}2
.

(6.3)

The constant cb is that of assumption (A3). The constant c̃a depends only on the
polynomial degree k and on the ratios hK/ρK (cf. (6.6) below).

Proof. Choose an arbitrary element K and keep it fixed in what follows.
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Since bh is constant on K we conclude from assumption (A3) that

‖bh‖L∞(K) =

∣∣∣∣ 1

|K|

∫
K

bh

∣∣∣∣ =
∣∣∣∣ 1

|K|

∫
K

b

∣∣∣∣ ≤ cbβ.

From [3, sections III.3.1 and III.3.2] we know that div aRTh
is constant on K and

satisfies
∫
K

div aRTh
=
∫
K

div a. Hence we get from assumption (A3)

bh − 1

2
div aRTh

=
1

|K|

∫
K

{
bh − 1

2
div aRTh

}
=

1

|K|

∫
K

{
b− 1

2
div a

}
≥ β.(6.4)

This shows that bh and aRTh
satisfy assumption (A3) with the same constants β and

cb. Hence we obtain the following analogue of estimate (5.4) for all v, w ∈ ṼK :

ε(∇v,∇w)K + (aRTh
· ∇v, w)K + (bhv, w)K

≤max{cb, 1}|‖v‖|K |‖w‖|K + ‖aRTh
· ∇v‖0;K‖w‖0;K .

(6.5)

The same arguments as in the proof of estimate (5.5) imply that there is a constant
c̃a ≥ 1 which depends only on the polynomial degree k and on the ratios hK/ρK such
that

1

c̃a
αK |‖w‖|ωK

≤ ‖w‖0;ωK
≤ c̃aαK |‖w‖|ωK

(6.6)

holds for all w ∈ ṼK . Inequalities (6.5) and (6.6) prove the upper bound (6.2).
For the proof of the lower bound (6.3) we only have to check the coercivity of the

bilinear form on the left-hand side of problem (6.1). Once this is done, the inf-sup
condition (6.3) is established with the same arguments as in the proof of Lemma 6.1.

For every w ∈ ṼK we have

ε(∇w,∇w)K + (aRTh
· ∇w,w)K + (bhw,w)K

= ε‖∇w‖2
0;K +

∫
K

1

2
div(aRTh

w2) +

∫
K

{
bh − 1

2
div aRTh

}
w2

= ε‖∇w‖2
0;K +

∫
∂K

1

2
nK · aRTh

w2 +

∫
K

{
bh − 1

2
div aRTh

}
w2

≥ ε‖∇w‖2
0;K + β‖w‖2

0;K .

In the last step we have used estimate (6.4) and the definition of ṼK , which implies
that

∫
∂K

1
2nK · aRTh

w2 ≥ 0.

We denote by ṽK ∈ ṼK the unique solution of problem (6.1) and define the error
indicator ηN,K by

ηN,K =
{
|‖ṽk‖|2K + α2

K‖aRTh
· ∇ṽK‖2

0;K

}1/2
.(6.7)

Remark 6.2. The function ṽK is a finite element approximation to the solution
ũK of the local convection-diffusion problem

−εΔũK + a∇ · ũK + bũK = RK in K,

εnK · ∇ũK = RE on E , E ∈ E+
K ,

ũK = 0 on ∂K\ ∪E∈E+
K
E.
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Due to the approximation of the convection and reaction terms, problem (6.1) is
different from problem (5.7) in [10]. Moreover the present error indicator also takes
into account the convective derivative of ṽK . These modifications are crucial for
obtaining fully robust error estimates.

Theorem 6.3. There are two constants c̃† and c̃† which depend only on the
polynomial degree k and on the ratios hK/ρK such that the estimate

1

c̃†

⎧⎨
⎩α2

K‖RK‖2
0;K +

∑
E∈E+

K

ε−1/2αE‖RE‖2
0;E

⎫⎬
⎭

1/2

≤ ηN,K ≤ c̃†ηK(6.8)

holds for all elements K. Moreover ηN,K yields the upper error bound

|‖u− uh‖| + |‖a · ∇(u− uh)‖|∗ ≤ c̃ ∗

{ ∑
K∈Th

[
η2
N,K + Θ2

K

]}1/2

(6.9)

and the lower error bound

{ ∑
K∈Th

η2
N,K

}1/2

≤ c̃∗

⎡
⎣|‖u− uh‖| + |‖a · ∇(u− uh)‖|∗ +

{ ∑
K∈Th

Θ2
K

}1/2
⎤
⎦.(6.10)

The constants c̃∗ and c̃∗ depend only on the polynomial degree k and on the ratios
hK/ρK .

Proof. Estimate (6.8) is proven with the same arguments as estimate (5.7). The
error bounds (6.9) and (6.10) follow from estimate (6.8), Theorem 4.1, and the ob-
servation that for every edge, respectively, face, E, which is not part of the Dirichlet
boundary ΓD, there is at least one element KE with E ∈ E+

KE
.
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Abstract. We consider discretizations of convection dominated nonstationary convection-
diffusion equations by A-stable θ-schemes in time and conforming finite elements in space on locally
refined, isotropic meshes. For these discretizations we derive a residual a posteriori error estimator.
The estimator yields upper bounds on the error which are global in space and time and lower bounds
that are global in space and local in time. The error estimates are fully robust in the sense that
the ratio between upper and lower bounds is uniformly bounded in time, does not depend on any
step-size in space or time nor on any relation between these both, and is uniformly bounded with
respect to the size of the convection. Moreover, the estimates are uniform with respect to the size of
the zero-order reaction term and also hold for the limit case of vanishing reaction.

Key words. a posteriori error estimates, convection dominated convection-diffusion equations,
θ-scheme
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1. Introduction. We consider nonstationary convection-diffusion equations

∂u

∂t
− εΔu + a · ∇u + bu = f in Ω × (0, T ],

u = 0 on ΓD × (0, T ],

ε
∂u

∂n
= g on ΓN × (0, T ],

u = u0 in Ω

(1.1)

in a bounded space-time cylinder with a polygonal cross-section Ω ⊂ R
d, d ≥ 2,

having a Lipschitz boundary Γ consisting of two disjoint parts ΓD and ΓN . The final
time T is arbitrary, but kept fixed in what follows. We assume that the data satisfy
the following conditions:

(A1) f ∈ C(0, T ;L2(Ω)), g ∈ C(0, T ;L2(ΓN )), a ∈ C(0, T ;W 1,∞(Ω)d), b ∈ C(0, T ;
L∞(Ω)).

(A2) 0 < ε � 1.
(A3) There are two constants β ≥ 0 and cb ≥ 0, which do not depend on ε, such

that − 1
2diva + b ≥ β and ‖b‖L∞(Ω) ≤ cbβ in (0, T ].

(A4) The Dirichlet boundary ΓD has positive (d − 1)-dimensional measure and
includes the inflow boundary {x ∈ Γ : a(x) · n(x) < 0}.

Assumption (A3) allows us to handle simultaneously the case of a nonvanishing
zero-order reaction term and the one of absent reaction, the latter one corresponding
to β = 0. In the case β = 0 we set cb = 0. Assumption (A2) of course means that we
are interested in the convection-dominated regime. Assumption (A1) can be replaced

∗Received by the editors February 18, 2004; accepted for publication (in revised form) April 22,
2005; published electronically November 22, 2005.

http://www.siam.org/journals/sinum/43-4/60427.html
†Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany (rv@num1.

ruhr-uni-bochum.de).
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by weaker conditions concerning the temporal smoothness. Its present form, however,
simplifies the analysis.

We use the A-stable θ-schemes for the time discretization of problem (1.1). The
spatial discretization is based on standard conforming finite element spaces using
the standard Galerkin formulation or a stabilized SUPG-scheme. The spatial meshes
must be shape-regular (cf. section 2). This includes locally refined meshes but excludes
anisotropic elements with large aspect ratios. For this space-time discretization we
analyze a residual error estimator and establish upper and lower bounds for the error.
The upper bounds are global with respect to space and time; the lower bounds are
global with respect to space and local with respect to time. The ratio of upper and
lower bounds is uniformly bounded with respect to any mesh-size, to the final time, to
the parameter β, and—most important—to the viscosity ε. Thus the error estimates
are fully robust. Contrary to standard residual error estimates, the present estimator
requires the solution of an auxiliary discrete stationary reaction-diffusion problem at
each time-level. This is the price that we must pay for the ε-independent bounds.
The computational effort for evaluating the error estimator is thus comparable to an
additional time-step for each time-level and similar to the extra work required by the
now popular estimators that are based on the solution of suitable discrete adjoint
problems [3].

The article is organized as follows. In section 2 we introduce some function spaces
and norms. Section 3 is devoted to the finite element discretization. Using energy
estimates we prove in section 4 that the error is equivalent to a residual which is
defined in a suitable dual space. This residual is split into three parts: one corre-
sponding to the approximation of the data, a contribution corresponding to a spatial
error, and a part corresponding to a temporal error. The latter can be further decom-
posed into a diffusive and a convective part. In section 5 we derive upper and lower
bounds for the spatial part of the residual. The temporal part is treated in section 6.
Combining these results we obtain in section 7 a first error estimator. This estimator
yields upper and lower bounds on the error and is fully robust in the sense described
above. However, it is not suited for practical computations since it incorporates a
dual norm of the convective derivative of the finite element solution. This contri-
bution is due to the convective part of the temporal residual. Standard approaches
bound this contribution by inverse estimates and therefore lead to estimates that are
no longer robust. The results of section 7 show that sharp upper and lower bounds
with parameter-independent constants for this term are mandatory for obtaining a
robust and computable a posteriori error estimator. In section 8 we finally bound
the critical dual norm by computable quantities based on the solution of a discrete
stationary reaction-diffusion problem at each time-level. This yields our final error
estimates which are stated in Theorem 8.2.

2. Function spaces. For any bounded open subset ω of Ω with Lipschitz bound-
ary γ, we denote by Hk(ω), k ∈ N, L2(ω) = H0(ω), and L2(γ) the usual Sobolev and
Lebesgue spaces equipped with the standard norms ‖.‖k;ω = ‖.‖Hk(ω) and ‖.‖0;γ =
‖.‖L2(γ) (cf. [1]). Similarly, (., .)ω and (., .)γ denote the scalar products of L2(ω) and
L2(γ), respectively. If ω = Ω, we will omit the index Ω.

Set

H1
D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.(2.1)

We equip H1
D(Ω) with the norm
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|||v||| =
{
ε‖∇v‖2

0 + β‖v‖2
0

}1/2
.(2.2)

Due to assumptions (A3) and (A4) this is the natural energy norm of problem (1.1).
The dual space of H1

D(Ω) is denoted by H1
D(Ω)∗ and equipped with the norm

|||ϕ|||∗ = sup
v∈H1

D(Ω)\{0}

〈ϕ, v〉
|||v||| ,(2.3)

where 〈., .〉 denotes the corresponding duality pairing.
H1/2(ΓN ) denotes the space of ΓN -traces of H1-functions and is equipped with

the trace norm induced by the energy norm, i.e.,

‖ϕ‖H1/2(ΓN ) = inf
{
|||v||| : v ∈ H1

D(Ω) , v = ϕ on ΓN

}
.

H−1/2(ΓN ) denotes the dual space of H1/2(ΓN ) and is equipped with the correspond-
ing dual norm. Thus the norms of H1/2(ΓN ) and H−1/2(ΓN ) depend on the energy
norm and consequently on the parameters ε and β.

For any separable Banach space V and any two numbers a < b we denote by
L2(a, b;V ) and L∞(a, b;V ) the spaces of measurable functions u defined on (a, b) with
values in V such that the function t → ‖u(., t)‖V is square integrable, respectively,
essentially bounded. These are Banach spaces equipped with the norms

‖u‖L2(a,b;V ) =

{∫ b

a

‖u(., t)‖2
V dt

}1/2

,

‖u‖L∞(a,b;V ) = ess.sup
a<t<b

‖u(., t)‖V

(cf. [4, Vol. 5, Chap. XVIII, sect. 1]). For abbreviation we introduce the space

X(a, b) =
{
u ∈ L2(a, b;H1

D(Ω)) ∩ L∞(a, b;L2(Ω)) :

∂tu + a · ∇u ∈ L2(a, b;H1
D(Ω)∗)

}(2.4)

and equip it with its graph norm

‖u‖X(a,b) =

{
ess.sup
a<t<b

‖u(., t)‖2
0 +

∫ b

a

|||u(., t)|||2dt

+

∫ b

a

|||(∂tu + a · ∇u)(., t)|||2∗dt
}1/2

.

(2.5)

Here the derivative ∂tu has to be understood in the distributional sense [4, Vol. 5,
Chap. 18, Sect. 1].

The weak form of problem (1.1) consists in finding u ∈ L2(0, T ;H1
D(Ω)) such that

∂tu ∈ L2(0, T ;H1
D(Ω)∗), u(., 0) = u0 in H1

D(Ω)∗, and for almost every t ∈ (0, T ) and
all v ∈ H1

D(Ω)

(∂tu, v) + ε(∇u,∇v) + (a · ∇u, v) + (bu, v) = (f, v) + (g, v)ΓN
.(2.6)

Assumptions (A1)–(A4) imply that problem (2.3) admits a unique solution [2], [4].
For later use we note that integration by parts and assumptions (A3) and (A4)

imply

ε(∇v,∇v) + (a · ∇v, v) + (bv, v) ≥ |||v|||2 ∀v ∈ H1
D(Ω).(2.7)
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Similarly, assumption (A3) and definition (2.2) imply

ε(∇v,∇w) + (bv, w) ≤ max{cb, 1}|||v||| |||w||| ∀v, w ∈ H1
D(Ω).(2.8)

3. Finite element discretization. For the discretization we choose an integer
N ≥ 1 and intermediate times 0 = t0 < t1 < · · · < tN = T and set τn = tn − tn−1,
1 ≤ n ≤ N . With each intermediate time tn, 0 ≤ n ≤ N , we associate a partition
Th,n of Ω and a corresponding finite element space Xh,n. These have to satisfy the
following conditions:

(1) Affine equivalence: every element K ∈ Th,n can be mapped by an invertible
affine mapping onto the standard reference d-simplex or the standard unit
cube in R

d.
(2) Admissibility: any two elements are either disjoint or share a vertex, or a

complete edge, or (if d = 3) a complete face.
(3) Shape-regularity: for any element K the ratio of its diameter hK to the di-

ameter ρK of the largest inscribed ball is bounded uniformly with respect to
all partitions Th,n and to N .

(4) Transition condition: for 1 ≤ n ≤ N there is an affinely equivalent, admissi-

ble, and shape-regular partition T̃h,n such that it is a refinement of both Th,n
and Th,n−1 and such that sup1≤n≤N supK∈T̃h,n

supK′∈Th,n;K⊂K′
hK′
hK

< ∞.

(5) Each Xh,n is a subset of H1
D(Ω) and consists of continuous functions which

are piecewise polynomials, the degrees being bounded uniformly with respect
to all partitions Th,n and to N .

(6) Each Xh,n contains the space of continuous, piecewise linear finite elements
corresponding to Th,n.

Condition (1) restricts quadrilateral elements to parallelograms and cubic ele-
ments to parallelepipeds. In two dimensions, triangular and quadrilateral elements
may be mixed. In three dimensions this is also possible if one adds prismatic elements.

Condition (2) excludes hanging nodes.
Condition (3) is a standard one and allows for locally refined meshes. However,

it excludes anisotropic elements with large aspect ratios.
Condition (4) is due to the simultaneous presence of finite element functions

defined on different grids. In practice the partition Th,n is usually obtained from
Th,n−1 by a combination of refinement and of coarsening. In this case condition (4)
restricts only the coarsening. It must not be too abrupt nor too strong.

We choose a parameter θ ∈ [ 12 , 1] and keep it fixed in what follows. For every
time-level n ≥ 1 we introduce the abbreviations

fnθ = θf(., tn) + (1 − θ)f(., tn−1),

gnθ = θg(., tn) + (1 − θ)g(., tn−1),

anθ = θa(., tn) + (1 − θ)a(., tn−1),

bnθ = θb(., tn) + (1 − θ)b(., tn−1).

Furthermore we denote by π0 the L2-projection onto Xh,0.
Then the space-time discretization of problem (1.1) consists in finding un

h ∈ Xh,n,
0 ≤ n ≤ N , such that

u0
h = π0u0(3.1)
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and, for n = 1, . . . , N , and all vh ∈ Xh,n

(
un
h − un−1

h

τn
, vh

)
+ ε(θ∇un

h + (1 − θ)∇un−1
h ,∇vh)

+ (anθ · ∇(θun
h + (1 − θ)un−1

h ), vh)

+ (bnθ(θun
h + (1 − θ)un−1

h ), vh)

+
∑

K∈T̃h,n

δK

(
un
h − un−1

h

τn
− εΔ(θun

h + (1 − θ)un−1
h )(3.2)

+ anθ · ∇(θun
h + (1 − θ)un−1

h )

+ bnθ(θun
h + (1 − θ)un−1

h ) , anθ · ∇vh

)
K

= (fnθ, vh) + (gnθ, vh)ΓN
+

∑
K∈T̃h,n

δK(fnθ, anθ · ∇vh)K .

The δK are nonnegative stabilization parameters. The choice δK = 0 for all K yields
the standard Galerkin discretization; the choice δK > 0 for all K corresponds to the
SUPG-discretizations (cf., e.g., [5], [6]). In what follows we will always assume that

δK‖anθ‖L∞(K) ≤ hK ∀K ∈ T̃h,n, 0 ≤ n ≤ N.(3.3)

This condition is satisfied for all choices of δK used in practice.
Assumptions (A3), (A4), and (3.3) and standard arguments for SUPG-discreti-

zations (cf., e.g., [5], [6]) imply that problems (3.1), (3.2) admit a unique solution
(un

h)0≤n≤N . With this sequence we associate the function uh,τ which is piecewise
affine on the time-intervals [tn−1, tn], 1 ≤ n ≤ N , and which equals un

h at time tn,
0 ≤ n ≤ N . Since the function t → uh,τ (., t) is continuous and piecewise affine
with values in H1

D(Ω), it is differentiable in the distributional sense [4, Vol. 5, Chap.
XVIII, sect. 1] and its weak derivative satisfies

∂tuh,τ =
un
h − un−1

h

τn
on (tn−1, tn).(3.4)

4. The equivalence of error and residual. With the function uh,τ defined
by the solution of problems (3.1), (3.2) we associate the residual R(uh,τ ) ∈ L2(0, T ;
H1

D(Ω)∗) via

〈R(uh,τ ), v〉 = (f, v) + (g, v)ΓN
− (∂tuh,τ , v) − ε(∇uh,τ ,∇v)

− (a · ∇uh,τ , v) − (buh,τ , v)
(4.1)

for all v ∈ H1
D(Ω). The following lemma shows that this residual and the error u−uh,τ

are equivalent. Its proof is based on standard energy estimates. Recall that H1
D(Ω)

and its dual space H1
D(Ω)∗ are equipped with the energy norm |||.||| and the dual norm

|||.|||∗, respectively.
Lemma 4.1. For all w ∈ L2(0, T ;H1

D(Ω)) the following lower bound on the error
holds:

∫ T

0

〈R(uh,τ ), w〉dt ≤
√

2 max{1, cb}‖u− uh,τ‖X(0,T )‖w‖L2(0,T ;H1
D(Ω)),(4.2)
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where cb is the constant of assumption (A3). Conversely, for all n between 1 and N ,
the error can be bounded from above by

‖u− uh,τ‖X(0,tn) ≤
{

2(1 + max{1, cb}2)‖u0 − π0u0‖2
0

+ 2(2 + max{1, cb}2)‖R(uh,τ )‖2
L2(0,tn;H1

D(Ω)∗)

}1/2

.
(4.3)

Proof. Equations (2.6) and (4.1) imply for all v ∈ H1
D(Ω) that

(∂t(u− uh,τ ), v) + ε(∇(u− uh,τ ),∇v)

+ (a · ∇(u− uh,τ ), v) + (b(u− uh,τ ), v) = 〈R(uh,τ ), v〉.
(4.4)

This identity, definitions (2.2) and (2.3) of the norms |||.||| and |||.|||∗, and inequality
(2.8) yield for all 0 < t < T and all v ∈ H1

D(Ω) the estimate

〈R(uh,τ ), v〉 ≤ |||(∂t(u− uh,τ ) + a · ∇(u− uh,τ ))(., t)|||∗|||v|||
+ max{1, cb}|||(u− uh,τ )(., t)||| |||v|||.

Taking into account the definitions (2.4), (2.5) of X(0;T ) and of its norm, this estimate
proves the bound (4.2).

To prove estimate (4.3) we choose an integer n between 1 and N and a time t
between 0 and tn and insert v = (u − uh,τ )(., t) in (4.4). Taking into account (2.7),
this gives

1

2

d

dt
‖(u− uh,τ )(., t)‖2

0 + |||(u− uh,τ )(., t)|||2

≤ (∂t(u− uh,τ )(., t), (u− uh,τ )(., t)) + ε(∇(u− uh,τ )(., t),∇(u− uh,τ )(., t))

+ (a · ∇(u− uh,τ )(., t), (u− uh,τ )(., t)) + (b(u− uh,τ )(., t), (u− uh,τ )(., t))

= 〈R(uh,τ )(., t), (u− uh,τ )(., t)〉
≤ |||R(uh,τ )(., t)|||∗|||(u− uh,τ )(., t)|||

≤ 1

2
|||R(uh,τ )(., t)|||2∗ +

1

2
|||(u− uh,τ )(., t)|||2

and thus

d

dt
‖(u− uh,τ )(., t)‖2

0 + |||(u− uh,τ )(., t)|||2 ≤ |||R(uh,τ )(., t)|||2∗.

Integrating this estimate from 0 to t implies

‖(u− uh,τ )(., t)‖2
0 − ‖u0 − π0u0‖2

0 +

∫ t

0

|||(u− uh,τ )(., s)|||2 ds

≤ ‖R(uh,τ )‖2
L2(0,t;H1

D(Ω)∗)

≤ ‖R(uh,τ )‖2
L2(0,tn;H1

D(Ω)∗).

Since t ∈ (0, tn] was arbitrary, this yields

‖u− uh,τ‖2
L∞(0,tn;L2(Ω)) ≤ ‖u0 − π0u0‖2

0 + ‖R(uh,τ )‖2
L2(0,tn;H1

D(Ω)∗)(4.5)

and

‖u− uh,τ‖2
L2(0,tn;H1

D(Ω)) ≤ ‖u0 − π0u0‖2
0 + ‖R(uh,τ )‖2

L2(0,tn;H1
D(Ω)∗).(4.6)
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Equation (4.4) and estimate (2.8), on the other hand, imply

|||∂t(u− uh,τ ) + a · ∇(u− uh,τ )|||∗ ≤ |||R(uh,τ )|||∗ + max{1, cb}|||u− uh,τ |||.

Taking the square of this inequality, integrating from 0 to tn, and inserting estimate
(4.6) we arrive at

‖∂t(u− uh,τ ) + a · ∇(u− uh,τ )‖2
L2(0,tn;H1

D(Ω)∗)

≤ 2‖R(uh,τ )‖2
L2(0,tn;H1

D(Ω)∗) + 2 max{1, cb}2‖u− uh,τ‖2
L2(0,tn;H1

D(Ω))

≤ 2 max{1, cb}2‖u0 − π0u0‖2
0

+ 2(1 + max{1, cb}2)‖R(uh,τ )‖2
L2(0,tn;H1

D(Ω)∗).(4.7)

Combining estimates (4.5)–(4.7) proves the bound (4.3).
The subsequent analysis relies on an appropriate decomposition of the residual

R(uh,τ ). To this end we define a temporal residual Rτ (uh,τ ) ∈ L2(0, T ;H1
D(Ω)∗) and

a spatial residual Rh(uh,τ ) ∈ L2(0, T ;H1
D(Ω)∗) by setting, for all v ∈ H1

D(Ω) and all
1 ≤ n ≤ N ,

〈Rτ (uh,τ ), v〉 = ε(∇[θun
h + (1 − θ)un−1

h − uh,τ ],∇v)

+ (anθ · ∇[θun
h + (1 − θ)un−1

h − uh,τ ], v)(4.8)

+ (bnθ[θun
h + (1 − θ)un−1

h − uh,τ ], v) on (tn−1, tn]

and

〈Rh(uh,τ ), v〉 = (fnθ, v) + (gnθ, v)ΓN
−

(
un
h − un−1

h

τn
, v

)

− ε(θ∇un
h + (1 − θ)∇un−1

h ,∇v)(4.9)

− (anθ · ∇[θun
h + (1 − θ)un−1

h ], v)

− (bnθ[θun
h + (1 − θ)un−1

h ], v) on (tn−1, tn].

The time discretization of the data is taken into account by a data-residual RD(uh,τ )
∈ L2(0, T ;H1

D(Ω)∗) which is defined by

〈RD(uh,τ ), v〉 = (f − fnθ, v) + (g − gnθ, v)ΓN

+ ((anθ − a) · ∇uh.τ , v) + ((bnθ − b)uh,τ , v) on (tn−1, tn].
(4.10)

From (3.4) we obtain the decomposition

R(uh,τ ) = RD(uh,τ ) + Rτ (uh,τ ) + Rh(uh,τ ).(4.11)

5. Estimation of the spatial residual. The techniques required for the es-
timation of the spatial residual Rh(uh,τ ) are similar to those used in the stationary
case [10, sect. 4]. But it should be stressed that we are not interested in estimating
the error between uh,τ and the solution of the variational problem obtained from the
temporal semidiscretization of (1.1). Moreover, we have to pay particular attention
to the fact that uh,τ is the linear interpolant of the functions (un

h)0≤n≤N that live on
different spatial meshes.

We denote by Ẽh,n, 1 ≤ n ≤ N , the set of all edges (if d = 2), respectively, faces

(if d = 3), of T̃h,n. With each edge or face E ∈ Ẽh,n we associate a unit vector nE
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orthogonal to E such that it points to the outward of Ω if E lies on the boundary. For
every edge or face E that is not contained in the boundary Γ we denote by [.]E the
jump across E in direction nE . The quantity [.]E of course depends on the orientation
of nE , but quantities of the form [nE · .]E are independent thereof. With each edge,
respectively, face, we associate the set ωE which is the union of the elements that
share E.

We denote by fh,τ , gh,τ , ah,τ , and bh,τ functions which are piecewise constant

on the time-intervals and which, on each interval (tn−1, tn], equal the L2-projection
of fnθ, gnθ, anθ, and bnθ respectively onto the space of piecewise constant functions
corresponding to Th,n. With this notation we define element residuals RK , K ∈ T̃h,n,
1 ≤ n ≤ N , by

RK = fh,τ − un
h − un−1

h

τn
+ εΔ(θun

h + (1 − θ)un−1
h )

− ah,τ · ∇(θun
h + (1 − θ)un−1

h ) − bh,τ (θu
n
h + (1 − θ)un−1

h ),

(5.1)

edge, respectively, face, residuals RE , E ∈ Ẽh,n, 1 ≤ n ≤ N , by

RE =

⎧⎪⎨
⎪⎩

−
[
εnE · ∇(θun

h + (1 − θ)un−1
h )

]
E

if E �⊂ Γ,

gh,τ − εnE · ∇(θun
h + (1 − θ)un−1

h ) if E ⊂ ΓN ,

0 if E ⊂ ΓD,

(5.2)

elementwise data errors DK , K ∈ T̃h,n, 1 ≤ n ≤ N , by

DK =
{
fnθ − fh,τ + (ah,τ − anθ)∇ · (θun

h + (1 − θ)un−1
h )

+ (bh,τ − bnθ)(θun
h + (1 − θ)un−1

h )
}
|K ,

(5.3)

and edge-, respectively, facewise, data errors DE , E ∈ Ẽh,n ∩ ΓN , 1 ≤ n ≤ N , by

DE = gnθ − gh,τ .(5.4)

Here, of course, (un
h)0≤n≤N denotes the solution of problems (3.1) and (3.2).

Note that, as usual, the residuals RK are defined elementwise. In particular Δun
h

and Δun−1
h must be interpreted as the Laplacian applied to the restriction to K of

the corresponding functions. Here, we need the transition condition that T̃h,n is a
common refinement of Th,n and Th,n−1.

For every n between 1 and N we denote by Nh,n the set of all element vertices in
Th,n that do not lie on the Dirichlet boundary ΓD. With every vertex x ∈ Nh,n we
associate the nodal bases function λx which is uniquely defined by the properties

λx|K ∈ R1(K) ∀K ∈ Th,n, λx(y) = 0 ∀y ∈ Nh,n\{x}, λx(x) = 1.

Here, as usual, Rk(K) denotes the set of all polynomials of total degree k, if K is a
simplex, and of maximal degree k, if K is a parallelepiped. The support of a nodal
basis function λx is denoted by ωx and consists of all elements in Th,n that share the
vertex x. With this notation we can define a Clément-type interpolation operator
Ih,n : L1(Ω) −→ {ϕ ∈ C(Ω) : ϕ|K ∈ R1(K) for all K ∈ Th,n, ϕ = 0 on ΓD} by (cf. [9])

Ih,nv =
∑

x∈Nh,n

{
1

|ωx|

∫
ωx

v

}
λx.(5.5)
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Here |ωx| denotes the d-dimensional Lebesgue-measure of ωx. Due to condition (6) of
section 3 the image of Ih,n is contained in Xh,n.

Lemma 5.1. For every S ∈ T̃h,n ∪ Ẽh,n, 1 ≤ n ≤ N , denote by hS its diameter
and set

αS = min{hSε
−1/2, β−1/2}.(5.6)

Then the following estimates hold for all n between 1 and N , all elements K ∈ T̃h,n,
all edges, respectively, faces, E of K, and all functions v ∈ H1

D(Ω):

‖v − Ihv‖0;K ≤ c1αK |||v|||ω̃K
,

‖v − Ihv‖0;E ≤ c2ε
−1/4α

1/2
E |||v|||ω̃K

,

|||Ihv|||K ≤ c3|||v|||ω̃K
.

Here, ω̃K is the union of all elements in Th,n that share at least one vertex with the
element K ′ ∈ Th,n that contains K and |||.|||A denotes the restriction of |||.||| to the
measurable set A.

Proof. The proof of Lemma 5.1 follows from Lemma 3.1 in [7] and Proposition
2.1 in [8] with the arguments used in the proof of Lemma 3.2 in [7].

Remark 5.2. In the case β = 0 the minimum in (5.6) of course yields αS =
ε−1/2hS for all S.

For every element K ∈ T̃h,n, 1 ≤ n ≤ N , we denote by NK the set of its vertices
and set

ψK = γK
∏

x∈NK

λx,(5.7)

where the constant γK is chosen such that ψK equals 1 at the barycenter of K. Note
that the support of ψK is contained in K and that ‖ψK‖L∞(K) = 1.

For every edge, respectively, face, E ∈ Ẽh,n, 1 ≤ n ≤ N , we set

θE = min{ε1/2β−1/2h−1
E , 1}(5.8)

and denote by NE the set of its vertices. (Note that θE = 1 in the case β = 0.)
Consider first a face E that is not contained in the boundary. It is shared by exactly
two elements KE,1 and KE,2. For i = 1, 2 we define an affine transformation Fi :
R

n −→ R
n as follows: We first map KE,i onto the reference element such that the

image of E is contained in the hyperplane {xd = 0}; then we apply the transformation
(x1, . . . , xd−1, xd) −→ (x1, . . . , xd−1, θExd); and finally we transform back using the
inverse of the affine transformation of the first step. With this definition we set

ψE = γE
∏

x∈NE

λx ◦ F−1
i on KE,i, i = 1, 2,(5.9)

where the constant γE is chosen such that ψE equals 1 at the barycenter of E. Note
that the support of ψE is contained in F1(KE,1)∪F2(KE,2) ⊂ KE,1 ∪KE,2 = ωE and
that ‖ψE‖L∞(E) = 1.

If an edge, respectively, face, E is contained in the Neumann boundary ΓN , the
definition of ψE is modified in the obvious way, taking into account that now E is the
face of exactly one element KE .
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Lemma 5.3. The following estimates hold for all n between 1 and N , all elements
K ∈ T̃h,n, all polynomials v ∈ Rk(K), all edges, respectively, faces, E ∈ Ẽh,n, and all
polynomials σ ∈ Rk(E):

(v, ψKv)K ≥ c4‖v‖2
0;K ,

|||ψKv|||K ≤ c5α
−1
K ‖v‖0;K ,

(σ, ψEσ)E ≥ c6‖σ‖2
0;E ,

|||ψEσ|||ωE
≤ c7ε

1/4α
−1/2
E ‖σ‖0;E ,

‖ψEσ‖0;ωE
≤ c8ε

1/4α
1/2
E ‖σ‖0;E .

Here, a polynomial σ defined on an edge, respectively, face, E is continued in the
canonical way to a polynomial defined on R

d. The constants c4, . . . , c8 depend only
on the polynomial degree k in condition (5) of section 3 and on the ratios hK/ρK in
condition (3).

Proof. The estimates are proven with the same arguments as in the proof of
Lemma 3.3 in [7]. For parallelepipeds one only has to take into account that the
transformation to the unit cube is affine and thus has a constant Jacobian.

With these preparations we are now ready to bound the spatial residual.
Lemma 5.4. For every n between 1 and N define a spatial error indicator ηnh by

ηnh =

⎧⎨
⎩

∑
K∈T̃h,n

α2
K‖RK‖2

L2(K) +
∑

E∈Ẽh,n

ε−1/2αE‖RE‖2
L2(E)

⎫⎬
⎭

1/2

(5.10)

and a spatial data error indicator Θn
h by

Θn
h =

⎧⎨
⎩

∑
K∈T̃h,n

α2
K‖DK‖2

L2(K) +
∑

E∈Ẽh,n∩ΓN

ε−1/2αE‖DE‖2
L2(E)

⎫⎬
⎭

1/2

.(5.11)

Then there are functions wn ∈ H1
D(Ω), 1 ≤ n ≤ N , and constants c† and c† such that

on each interval (tn−1, tn], 1 ≤ n ≤ N , the following estimates hold:

|||Rh(uh,τ )|||∗ ≤ c† {ηnh + Θn
h}(5.12)

and

(ηnh)2 ≤ 〈Rh(uh,τ ), wn〉 + Θn
h ηnh ,

|||wn||| ≤ c†η
n
h .

(5.13)

The constants c† and c† depend on the ratios hK/ρK in condition (3) of section 3. The
constant c† in addition depends on the ratios hK′/hK in condition (4). The constant
c† in addition depends on the maximum of the polynomial degrees of the finite element
functions.

Proof. Choose an integer n between 1 and N and keep it fixed in what follows.
Integration by parts on the elements in T̃h,n yields the following L2-representation

of the spatial residual:

〈Rh(uh,τ ), v〉 =
∑

K∈T̃h,n

(RK , v)K +
∑

E∈Ẽh,n

(RE , v)E

+
∑

K∈T̃h,n

(DK , v)K +
∑

E∈Ẽh,n∩Γn

(DE , v)E .
(5.14)
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Lemma 5.1 and the Cauchy–Schwarz inequality therefore imply, for all v ∈ H1
D(Ω),

〈Rh(uh,τ ),v − Ih,nv〉

≤ c|||v|||
{ ∑

K∈T̃h,n

α2
K‖RK‖2

0;K +
∑

E∈Ẽh,n

ε−1/2αE‖RE‖2
0;E

+
∑

K∈T̃h,n

α2
K‖DK‖2

0;K +
∑

E∈Ẽh,n∩Γn

ε−1/2αE‖DE‖2
0;E

}1/2

.

(5.15)

The constant c depends only on the constants c1 and c2 of Lemma 5.1 and on the
ratios hK/ρK .

From the definition of problem (3.2) and definition (4.9) of the spatial residual
we conclude that

〈Rh(uh,τ ), Ih,nv〉 =
∑

K∈T̃h,n

δK

{
(RK , anθ · ∇Ih.nv)K + (DK , anθ · ∇Ih,nv)K

}
.

Lemma 5.1, condition (3.3), and the Cauchy–Schwarz inequality therefore imply

〈Rh(uh,τ ), Ih,nv〉 ≤ c|||v|||
{ ∑

K∈T̃h,n

α2
K

{
‖RK‖2

0;K + ‖DK‖2
0;K

}}1/2

.(5.16)

Equation (5.14) and estimates (5.15) and (5.16) prove the upper bound (5.12).
For the proof of the lower bound (5.13) we proceed as in the proof of [9, Lem.

5.1] and define the function wn by

wn = γ1

∑
K∈T̃h,n

α2
KψKRK + γ2

∑
E∈Ẽh,n

ε−1/2αEψERE .(5.17)

The constants γ1 and γ2 are arbitrary at present and will be determined below. The
subsequent arguments are based on the following observations:

• The supports of the ψK are mutually disjoint.
• The support of a ψK intersects the support of at most 2d different ψE ’s.
• The support of a ψE intersects the support of at most two ψK ’s.
• The support of a ψE intersects the support of at most 2d− 2 other ψE ’s.
Lemma 5.3 therefore yields

|||wh|||2 ≤ γ2
1

∑
K∈T̃h,n

α4
K |||ψKRK |||2K

+ 2γ1γ2

∑
K∈T̃h,n

⎧⎨
⎩

∑
E;ωE∩K 
=∅

α2
Kε−1/2αE |||ψKRK |||K |||ψERE |||K

⎫⎬
⎭

+ γ2
2

∑
E∈Ẽh,n

⎧⎨
⎩

∑
E′;ωE∩ωE′ 
=∅

ε−1αEαE′ |||ψERE |||ωE
|||ψE′RE′ |||ωE′

⎫⎬
⎭

≤ (2d + 1) max{γ2
1 , γ

2
2}max{c5, c7} (ηnh)

2
.

(5.18)
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Since hE ≤ hK for all edges, respectively, faces, E of any element K, Lemma 5.3 also
implies that

∑
K∈T̃h,n

(RK ,wn)K +
∑

E∈Ẽh,n

(RE , wn)E

= γ1

∑
K∈T̃h,n

α2
K(RK , ψKRK)K + γ2

∑
E∈Ẽh,n

ε−1/2αE(RE , ψERE)E

+ γ2

∑
E∈Ẽh,n

⎧⎨
⎩

∑
K;K∩ωE 
=∅

ε−1/2αE(RK , ψERE)K

⎫⎬
⎭

≥ γ1

∑
K∈T̃h,n

c4α
2
K‖RK‖2

0;K + γ2

∑
E∈Ẽh,n

c6ε
−1/2αE‖RE‖2

0;E

− γ2

∑
E∈Ẽh,n

⎧⎨
⎩

∑
K;K∩ωE 
=∅

c8ε
−1/4α

1/2
E αK‖RK‖0;K‖ψERE‖0;E

⎫⎬
⎭

≥ (γ1c4 − 2dγ2c
2
8c

−1
6 )

∑
K∈T̃h,n

α2
K‖RK‖2

0;K

+
1

2
γ2c6

∑
E∈Ẽh,n

ε−1/2αE‖RE‖2
0;E

≥ min

{
γ1c4 − 2dγ2c

2
8c

−1
6 ,

1

2
γ2c6

}
(ηnh)

2
.

(5.19)

From Lemma 5.3 we also obtain

∑
K∈T̃h,n

(DK , wh)K +
∑

E∈Ẽh,n∩Γn

(DE , wh)E

= γ1

∑
K∈T̃h,n

α2
K(DK , ψKRK)K

+ γ2

∑
K∈T̃h,n

⎧⎨
⎩

∑
E;E⊂∂K

ε−1/2αE(DK , ψERE)K

⎫⎬
⎭

+ γ2

∑
E∈Ẽh,n∩Γn

ε−1/2αE(DE , ψERE)E

≤ γ1

∑
K∈T̃h,n

α2
K‖RK‖0;K‖DK‖0;K

+ γ2

∑
K∈T̃h,n

⎧⎨
⎩

∑
E;E⊂∂K

c8ε
−1/4α

3/2
E ‖RE‖0;E‖DK‖0;K

⎫⎬
⎭

+ γ2

∑
E∈Ẽh,n∩Γn

ε−1/2αE‖RE‖0;E‖DE‖0;E

≤ 2dmax{γ1, γ2}max{1, c8}Θn
hη

n
h .

(5.20)
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Now we choose

γ2 =
2

c6
and γ1 =

1

c4

(
1 +

4dc28
c26

)
.

This choice gives

min

{
γ1c4 − 2dγ2c

2
8c

−1
6 ,

1

2
γ2c6

}
= 1.

Estimates (5.19), (5.20), and (5.18) and equation (5.14) now imply the lower bound
(5.13).

6. Estimation of the temporal residual. The following lemma provides us
with sharp upper and lower bounds for the temporal residual.

Lemma 6.1. For every integer n between 1 and N and every real number δ
larger than 0 and less than 1 there is a function zn,δ ∈ L2(0, T ;H1

D(Ω)) such that the
following estimates hold on each interval (tn−1, tn]:

{ ∫ tn

tn−1

|||Rτ (uh,τ )(., s)|||2∗ds
}1/2

≤
√

2

3
max{cb, 1}τ1/2

n

{
|||un

h − un−1
h |||2 + |||anθ · ∇(un

h − un−1
h )|||2∗

}1/2

(6.1)

and ∫ tn

tn−1

〈Rτ (uh,τ )(., s), zn,δ(., s)〉ds

≥ δ

12(δ + max{cb, 1}2)
τn

{
|||un

h − un−1
h |||2 + δ|||anθ · ∇(un

h − un−1
h )|||2∗

}
,

(6.2) { ∫ tn

tn−1

|||zn,δ(., s)|||2ds
}1/2

≤
√

8

3
τ1/2
n

{
|||un

h − un−1
h |||2 + |||anθ · ∇(un

h − un−1
h )|||2∗

}1/2

.

Proof. Since the function t → uh,τ (., t) is continuous and piecewise affine with
values in H1

D(Ω), we have on each time interval [tm−1, tm]

θum
h + (1 − θ)um−1

h − uh,τ =

[
θ − t− tm−1

τm

]
(um

h − um−1
h ).

For abbreviation we define for each m between 1 and N the quantity rm ∈ H1
D(Ω)∗

by

〈rm, v〉 = ε(∇(um
h − um−1

h ),∇v) + (amθ · ∇(um
h − um−1

h ), v)

+ (bmθ(um
h − um−1

h ), v) ∀v ∈ H1
D(Ω).

Then we obtain the following representation of the temporal residual

Rτ (uh,τ ) =

[
θ − t− tm−1

τm

]
rm on (tm−1, tm], 1 ≤ m ≤ N.(6.3)
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A straightforward calculation gives∫ tm

tm−1

[
θ − t− tm−1

τm

]2

dt = τm
1

3

[
θ3 + (1 − θ)3

]

and consequently

1

12
τm ≤

∫ tm

tm−1

[
θ − t− tm−1

τm

]2

dt ≤ 1

3
τm.(6.4)

From (2.8) we conclude that

|||rm|||∗ ≤ max{cb, 1}|||um
h − um−1

h ||| + |||amθ · ∇(um
h − um−1

h )|||∗

≤
√

2 max{cb, 1}
{
|||um

h − um−1
h |||2 + |||amθ · ∇(um

h − um−1
h )|||2∗

}1/2

.
(6.5)

Inequalities (6.4) and (6.5) prove the upper bound (6.1).
Due to the definition (2.3) of |||.|||∗ there is for each δ ∈ (0, 1) a function ϕm,δ ∈

H1
D(Ω) with

|||ϕm,δ||| = |||amθ · ∇(um
h − um−1

h )|||∗,
(amθ · ∇(um

h − um−1
h ), ϕm,δ) ≥ δ|||amθ · ∇(um

h − um−1
h )|||2∗.

We set

ζm,δ = (um
h − um−1

h ) + γϕm,δ,(6.6)

where γ is a constant that will be fixed below. Obviously we have

|||ζm,δ||| ≤ max{1, γ}
{
|||um

h − um−1
h ||| + |||amθ · ∇(um

h − um−1
h )|||∗

}
.

Inequalities (2.7) and (2.8) on the other hand yield

〈rm, ζm,δ〉 ≥ |||um
h − um−1

h |||2 + γδ|||amθ · ∇(um
h − um−1

h )|||2∗
− γ max{cb, 1}|||um

h − um−1
h ||| |||amθ · ∇(um

h − um−1
h )|||∗

≥
{

1 − 1

2
γδ−1 max{cb, 1}2

}
|||um

h − um−1
h |||2

+
1

2
γδ|||amθ · ∇(um

h − um−1
h )|||2∗.

Now we choose

γ =
2δ

δ + max{cb, 1}2

and obtain

|||ζm,δ||| ≤ 2
{
|||um

h − um−1
h ||| + |||amθ · ∇(um

h − um−1
h )|||∗

}
,

〈rm, ζm,δ〉 ≥
δ

δ + max{cb, 1}2

{
|||um

h − um−1
h |||2

+ δ|||amθ · ∇(um
h − um−1

h )|||2∗
}
.

(6.7)

Equation (6.3) and estimates (6.4), (6.7) show that the function

zm,δ =

[
θ − t− tm−1

τm

]
ζm,δ

yields the lower bounds (6.2).
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7. A preliminary a posteriori error estimate. The following lemma provides
us with a posteriori error bounds which are robust in the sense described in the
introduction. However, they are not suited for practical computations since they
involve terms of the form |||anθ · ∇(un

h − un−1
h )|||∗. In the next section we will bound

these terms by computable quantities. Recall that H1
D(Ω)∗ is equipped with |||.|||∗.

Lemma 7.1. The error between the solution u of problem (2.6) and the solution
uh,τ of problems (3.1), (3.2) is bounded from above by

‖u−uh,τ‖X(0,T )

≤ c∗

{
‖u0 − π0u0‖2

0

+

N∑
n=1

τn

[
(ηnh)

2
+ |||un

h − un−1
h |||2 + |||anθ · ∇(un

h − un−1
h )|||2∗

]

+
N∑

n=1

τn (Θn
h)

2

+
∥∥f − fnθ − (a− anθ) · ∇uh,τ − (b− bnθ)uh,τ

∥∥2

L2(0,T ;H1
D(Ω)∗)

+
∥∥g − gh,τ

∥∥2

L2(0,T ;H−1/2(ΓN ))

}1/2

(7.1)

and on each interval (tn−1, tn], 1 ≤ n ≤ N , from below by

τ1/2
n

{
(ηnh)

2
+ |||un

h − un−1
h |||2 + |||anθ · ∇(un

h − un−1
h )|||2∗

}1/2

≤ c∗

{
‖u− uh,τ‖2

X(tn−1,tn)

+ τn (Θn
h)

2

+
∥∥f − fnθ − (a− anθ) · ∇uh,τ − (b− bnθ)uh,τ

∥∥2

L2(tn−1,tn;H1
D(Ω)∗)

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}1/2

.

(7.2)

The quantities ηnh and Θn
h are defined in (5.10) and (5.11), respectively. The constants

c∗ and c∗ depend on the ratios hK/ρK . The constant c∗ in addition depends on the
ratios hK′/hK . The constant c∗ in addition depends on the maximum of the polynomial
degrees of the finite element functions. All constants are independent of the final time
T , the viscosity ε, and the parameter β.

Proof. The upper bound (7.1) follows from estimates (4.3), (5.12), and (6.1) and
the decomposition (4.11) of the residual.

For the proof of the lower bound (7.2) we choose an integer n between 1 and N
and a real number δ larger than 0 and less than 1.

First we insert the function zn,δ of Lemma 6.1 into the representation (4.11) of
the residual. Estimates (6.2), (5.12), and (4.2) then imply
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δ

12(δ + max{cb, 1}2)
τn

{
|||un

h − un−1
h |||2 + δ|||anθ · ∇(un

h − un−1
h )|||2∗

}

≤
∫ tn

tn−1

〈Rτ (uh,τ )(., s), zn,δ(., s)〉ds

=

∫ tn

tn−1

〈R(uh,τ )(., s) −RD(uh,τ )(., s) −Rh(uh,τ )(., s), zn,δ(., s)〉ds

and

∫ tn

tn−1

〈R(uh,τ )(., s) −RD(uh,τ )(., s) −Rh(uh,τ )(., s), zn,δ(., s)〉ds

≤
√

8

3
τ1/2
n

{
|||un

h − un−1
h |||2 + |||anθ · ∇(un

h − un−1
h )|||2∗

}1/2

·
{

2 max{cb, 1}2‖u− uh,τ‖2
X(tn−1,tn)

+
∥∥f − fnθ − (a− anθ) · ∇uh,τ − (b− bnθ)uh,τ

∥∥2

L2(tn−1,tn;H1
D(Ω)∗)

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

+ c†τn (Θn
h)

2
+ c†τn (ηnh)

2

}1/2

.

Since δ ∈ (0, 1) was arbitrary and since
√

8
3 ≤ 2 this yields the estimate

τ1/2
n

{
|||un

h − un−1
h |||2 + |||anθ · ∇(un

h − un−1
h )|||2∗

}1/2

≤ c′
{

2 max{cb, 1}2‖u− uh,τ‖2
X(tn−1,tn) + c†τn (Θn

h)
2

+
∥∥f − fnθ − (a− anθ) · ∇uh,τ − (b− bnθ)uh,τ

∥∥2

L2(tn−1,tn;H1
D(Ω)∗)

(7.3)

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

+ c†τn (ηnh)
2
}1/2

with c′ = 24(1 + max{cb, 1}2).

Next we insert the function (α + 1)( t−tn−1

τn
)αwn into the representation (4.11)

of the residual. Here wn is the function of Lemma 5.4 and α denotes a nonnegative
constant that will be determined below. Estimate (5.13) and the decomposition (4.11)
of the residual then yield

τn (ηnh)
2 ≤

∫ tn

tn−1

(α + 1)

(
t− tn−1

τn

)α

〈Rh(uh,τ ), wn〉dt + τnΘn
h ηnh

=

∫ tn

tn−1

(α + 1)

(
t− tn−1

τn

)α

〈R(uh,τ ) −RD(uh,τ ) −Rτ (uh,τ ), wn〉dt

+ τnΘn
h ηnh .



NONSTATIONARY CONVECTION-DIFFUSION EQUATIONS 1799

Since
∫ tn

tn−1

(α + 1)2
(
t− tn−1

τn

)2α

dt =
(α + 1)2

2α + 1
τn ≤ (2α + 1)τn

and
√

2
3 ≤ 1, estimates (4.2), (5.13), and (6.1) imply that

∫ tn

tn−1

(α + 1)

(
t− tn−1

τn

)α

〈R(uh,τ ) −RD(uh,τ ), wn〉dt

≤
√

2α + 1c†τ
1/2
n ηnh

{√
2 max{cb, 1}‖u− uh,τ‖X(tn−1,tn)

+
∥∥f − fnθ − (a− anθ) · ∇uh,τ − (b− bnθ)uh,τ

∥∥
L2(tn−1,tn;H1

D(Ω)∗)

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}
.

Since ∫ tn

tn−1

(α + 1)

(
t− tn−1

τn

)α [
θ − t− tn−1

τn

]
dt =

(
θ − α + 1

α + 2

)
τn

and
√

2
3 ≤ 1, we conclude from estimates (5.13) and (6.1) that

∫ tn

tn−1

(α + 1)

(
t− tn−1

τn

)α

〈Rτ (uh,τ ), wn〉dt

≤
∣∣∣∣θ − α + 1

α + 2

∣∣∣∣ max{cb, 1}c†ηnhτn
{
|||un

h − un−1
h ||| + |||anθ · ∇(un

h − un−1
h )|||∗

}
.

Combining these estimates and inserting (7.3) we arrive at the estimate

τn (ηnh)
2

≤
∣∣∣∣θ − α + 1

α + 2

∣∣∣∣ c†c′′τn (ηnh)
2

+ τ1/2
n ηnhc†c

′′′
[√

2α + 1 +

∣∣∣∣θ − α + 1

α + 2

∣∣∣∣
]

·
{
‖u− uh,τ‖X(tn−1,tn) + τ1/2

n Θn
h

+
∥∥f − fnθ − (a− anθ) · ∇uh,τ − (b− bnθ)uh,τ

∥∥
L2(tn−1,tn;H1

D(Ω)∗)

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}

(7.4)

with constants c′′ and c′′′ that depend only on the constant cb of assumption (A3).
Now we choose the parameter α such that the first term on the right-hand side

of (7.4) is balanced by the term on the left-hand side. In case of the Crank–Nicolson
scheme, i.e., θ = 1

2 , this is obvious: We have to choose α = 0. In the remaining cases
1
2 < θ ≤ 1 we set

α =
2c†c

′′(2θ − 1)

2c†c′′(1 − θ) + 1
.
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Since we may assume that c†c
′′ ≥ 1 this implies

α + 1

α + 2
≤ θ and

∣∣∣∣θ − α + 1

α + 2

∣∣∣∣ c†c′′ ≤ 1

2
.

Estimate (7.4) therefore takes the form

τ1/2
n ηnh

≤ c
{
‖u− uh,τ‖X(tn−1,tn) + τ1/2

n Θn
h

+
∥∥f − fnθ − (a− anθ) · ∇uh,τ − (b− bnθ)uh,τ

∥∥
L2(tn−1,tn;H1

D(Ω)∗)

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}
(7.5)

with a constant c that depends only on the constants cb and c†. Estimates (7.3) and
(7.5) obviously imply the lower bound (7.2).

8. A robust a posteriori error estimator. In this section we derive com-
putable and robust bounds for the terms |||anθ · ∇(un

h − un−1
h )|||∗ in Lemma 7.1.

Standard approaches bound this term by inverse estimates eventually combined with
integration by parts. These approaches, however, lead to estimates which incorporate
a factor ε−1/2 and which are not robust.

The idea which leads to robust estimates is as follows: Due to the definition of the
dual norm, these quantities equal the energy norm of the weak solutions of suitable
stationary reaction-diffusion equations. These solutions are approximated by suitable
finite element functions. The error of the approximations is estimated by robust error
estimators for reaction-diffusion equations.

Lemma 8.1. For every integer n between 1 and N set

X̃h,n = {v ∈ C(Ω) : v|K ∈ R1(K) ∀K ∈ T̃h,n, v = 0 on ΓD}

and denote by ũn
h ∈ X̃h,n the unique solution of the discrete reaction-diffusion problem

ε(∇ũn
h,∇vh) + β(ũn

h, vh) = (anθ · ∇(un
h − un−1

h ), vh) ∀vh ∈ X̃h,n.(8.1)

Define the error indicator η̃nh by

η̃nh =

{ ∑
K∈T̃h,n

α2
K‖anθ · ∇(un

h − un−1
h ) + εΔũn

h − βũn
h‖2

0;K

+
∑

E∈Ẽh,n\ΓD

ε−1/2αE‖[nE · ∇ũn
h]E‖2

0;E

}1/2

.

(8.2)

Then there are two constants c̃† and c̃† which depend only on the ratios hK/ρK such
that the following estimates are valid

c̃† {|||ũn
h||| + η̃nh} ≤ |||anθ · ∇(un

h − un−1
h )|||∗ ≤ c̃† {|||ũn

h||| + η̃nh}.(8.3)

Proof. We choose an integer n between 1 and N and keep it fixed in what
follows. Denote by Ũn ∈ H1

D(Ω) the unique solution of the stationary reaction-
diffusion equation

ε(∇Ũn,∇v) + β(Ũn, v) = (anθ · ∇(un
h − un−1

h ), v) ∀v ∈ H1
D(Ω).
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The definitions (2.2) and (2.3) of the energy norm |||.||| and of the dual norm |||.|||∗,
respectively, imply that

|||Ũn||| = |||anθ · ∇(un
h − un−1

h )|||∗.

Inserting vh = ũn
h as a test function in the discrete problem (8.1) we obtain

|||ũn
h||| ≤ |||anθ · ∇(un

h − un−1
h )|||∗.

The triangle inequality therefore yields

1

3

{
|||ũn

h||| + |||Ũn − ũn
h|||

}
≤ |||anθ · ∇(un

h − un−1
h )|||∗ ≤

{
|||ũn

h||| + |||Ũn − ũn
h|||

}
.

Since anθ · ∇(un
h − un−1

h ) is a piecewise polynomial we know from [7] that η̃nh yields

upper and lower bounds for |||Ũn − ũn
h||| with multiplicative constants that depend

only on the ratios hK/ρK . This proves estimate (8.3).
Combining Lemmas 7.1 and 8.1 we obtain our final result.
Theorem 8.2. The error between the solution u of problem (2.6) and the solution

uh,τ of problems (3.1), (3.2) is bounded from above by

‖u− uh,τ‖X(0,T )

≤ c̃ ∗

{
‖u0 − π0u0‖2

0 +

N∑
n=1

τn

[
(ηnh)

2
+ |||un

h − un−1
h |||2 + (η̃nh)

2
+ |||ũn

h|||
2
]

+
N∑

n=1

τn (Θn
h)

2
+

∥∥f − fnθ − (a− anθ) · ∇uh,τ − (b− bnθ)uh,τ

∥∥2

L2(0,T ;H1
D(Ω)∗)

+
∥∥g − gh,τ

∥∥2

L2(0,T ;H−1/2(ΓN ))

}1/2

(8.4)

and on each interval (tn−1, tn], 1 ≤ n ≤ N , from below by

τ1/2
n

{
(ηnh)

2
+ |||un

h − un−1
h |||2 + (η̃nh)

2
+ |||ũn

h|||
2
}1/2

≤ c̃∗

{
‖u− uh,τ‖2

X(tn−1,tn) + τn (Θn
h)

2

+
∥∥f − fnθ − (a− anθ) · ∇uh,τ − (b− bnθ)uh,τ

∥∥2

L2(tn−1,tn;H1
D(Ω)∗)

+
∥∥g − gh,τ

∥∥2

L2(tn−1,tn;H−1/2(ΓN ))

}1/2

.

(8.5)

The quantities ηnh and Θn
h are defined in (5.10) and (5.11), respectively. The constants

c̃∗ and c̃∗ depend on the ratios hK/ρK . The constant c̃∗ in addition depends on
the ratios hK′/hK . The constant c̃∗ in addition depends on the maximum of the
polynomial degrees of the finite element functions. All constants are independent of
the final time T , the viscosity ε, and the parameter β.

Remark 8.3. Theorem 8.2 shows that the quantity τ
1/2
n {(ηnh)

2
+ |||un

h −un−1
h |||2 +

(η̃nh)
2
+|||ũn

h|||
2}1/2 is a robust error indicator in the sense described in the introduction.
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The remaining terms on the right-hand side of estimate (8.4) and the second and third
term on the right-hand side of estimate (8.5) are data errors. They can be bounded

a priori by computable norms involving the data f , g, a, and b. The term τ
1/2
n ηnh can

be interpreted as a spatial error indicator. The terms τ
1/2
n {|||un

h − un−1
h |||2 + (η̃nh)

2
+

|||ũn
h|||

2}1/2 on the other hand can be viewed as temporal error indicators.

Acknowledgments. Part of this work was carried out during a stay at the De-
partment of Mathematics of the Polytechnico di Torino. We want to thank Prof. Clau-
dio Canuto and Dr. Stefano Berrone for their kind hospitality and the many fruitful
discussions.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] H. Amann, Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory,

Birkhäuser Boston, Boston, 1995.
[3] G. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equa-
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FOR GENERAL SECOND ORDER LINEAR ELLIPTIC PDEs∗
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Abstract. We prove convergence of adaptive finite element methods (AFEMs) for general
(nonsymmetric) second order linear elliptic PDEs, thereby extending the result of Morin, Nochetto,
and Siebert [SIAM J. Numer. Anal., 38 (2000), pp. 466–488; SIAM Rev., 44 (2002), pp. 631–658].
The proof relies on quasi-orthogonality, which accounts for the bilinear form not being a scalar
product, together with novel error and oscillation reduction estimates, which now do not decouple.
We show that AFEMs are a contraction for the sum of energy error plus oscillation. Numerical
experiments, including oscillatory coefficients and both coercive and noncoercive convection-diffusion
PDE, illustrate the theory and yield optimal meshes.

Key words. a posteriori error estimators, quasi-orthogonality, adaptive mesh refinement, error
and oscillation reduction estimates, optimal meshes
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1. Introduction and main result. Let Ω be a polyhedral bounded domain in
R

d (d = 2, 3). We consider a homogeneous Dirichlet boundary value problem for a
general second order elliptic partial differential equation (PDE):

Lu = −∇·(A∇u) + b · ∇u + c u = f in Ω,(1.1)

u = 0 on ∂Ω.(1.2)

The choice of boundary condition is made for ease of presentation, since similar results
are valid for other boundary conditions. We also assume

• A : Ω �→ R
d×d is Lipschitz and symmetric positive definite with smallest

eigenvalue a− and largest eigenvalue a+, i.e.,

a−(x) |ξ|2 ≤ A(x)ξ · ξ ≤ a+(x) |ξ|2 ∀ξ ∈ R
d, x ∈ Ω;(1.3)

• b ∈ [L∞(Ω)]
d

is divergence free (∇·b = 0 in Ω);
• c ∈ L∞(Ω) is nonnegative (c ≥ 0 in Ω);
• f ∈ L2(Ω).

The purpose of this paper is to prove the following convergence results for adaptive
finite element methods (AFEMs) for (1.1)–(1.2) and document their performance
computationally.

Theorem 1.1 (convergence of AFEMs). Let {uk}k∈N0 be a sequence of finite
element solutions corresponding to a sequence of nested finite element spaces {Vk}k∈N0

produced by the AFEM of section 3.5, which involves loops of the form
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SOLVE → ESTIMATE → MARK → REFINE.
There exist constants σ, γ > 0 and 0 < ξ < 1, depending solely on the shape regularity
of meshes, the data, the parameters used by AFEM, and a number 0 < s ≤ 1 dictated
by the interior angles of ∂Ω, such that if the initial meshsize h0 satisfies hs

0‖b‖L∞ < σ,
then for any two consecutive iterations k and k + 1, we have

|||u− uk+1|||2 + γ osck+1Ω
2 ≤ ξ2

(
|||u− uk|||2 + γ osckΩ

2
)
.(1.4)

Therefore, AFEM converges with a linear rate ξ, namely,

|||u− uk|||2 + γ osckΩ
2 ≤ C0 ξ2k,

where C0 := |||u− u0|||2 + γ osc0(Ω)
2
.

Hereafter, |||·||| denotes the energy norm induced by the operator L and osc(Ω), the
oscillation term, stands for the information missed by the averaging process associated
with FEM. This convergence result extends those of Morin, Nochetto, and Siebert
[7, 8] in several ways:

• We deal with a full second order linear elliptic PDE with variable coefficients
A,b, and c, whereas in [7, 8] A is assumed to be piecewise constant and b
and c to vanish.

• The underlying bilinear form B is nonsymmetric due to the first order term
b · ∇u. Since B is no longer a scalar product as in [7, 8], the Pythagoras
equality relating u, uk, and uk+1 fails; we prove a quasi-orthogonality property
instead.

• The oscillation terms depend on discrete solutions in addition to data. There-
fore, oscillation and error cannot be reduced separately as in [7, 8].

• The oscillation terms do not involve the oscillation of the jump residuals.
This is achieved by exploiting positivity and continuity of A.

• Since error and oscillation are now coupled, in order to prove convergence we
need to handle them together. This leads to a novel argument and result,
the contraction property (1.4), according to which both error and oscillation
decrease together.

This paper is organized as follows. In section 2, we introduce the bilinear form,
the energy norm, recall existence and uniqueness of solutions, and state the quasi-
orthogonality property. In section 3, we describe the procedures used in AFEM,
namely, SOLVE, ESTIMATE, MARK, and REFINE; state new error and oscillation re-
duction estimates; present the adaptive algorithm AFEM; and prove its convergence.
In section 4, we prove the quasi-orthogonality property of section 2 and the error and
oscillation reduction estimates of section 3. In section 5, we present three numerical
experiments to illustrate properties of AFEM. We conclude in section 6 with exten-
sions to A piecewise Lipschitz with discontinuities aligned with the initial mesh, as
well as noncoercive bilinear form B due to ∇·b 
= 0 and a numerical experiment.

2. Discrete solution and quasi-orthogonality. For an open set G ⊂ R
d we

denote by H1(G) the usual Sobolev space of functions in L2(G) whose first derivatives
are also in L2(G), endowed with the norm

‖u‖H1(G) :=
(
‖u‖L2(G) + ‖∇u‖L2(G)

)1/2

.

We use the symbols ‖·‖H1 and ‖·‖L2 when G = Ω. Moreover, we denote by H1
0 (G)

the space of functions in H1(G) that vanish on the boundary in the trace sense.
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A weak solution of (1.1) and (1.2) is a function u satisfying

u ∈ H1
0 (Ω) : B[u, v] = 〈f, v〉 ∀ v ∈ H1

0 (Ω),(2.1)

where 〈u, v〉 :=
∫
Ω
uv for any u, v ∈ L2(Ω), and the bilinear form is defined on

H1
0 (Ω)×H1

0 (Ω) as

B[u, v] := 〈A∇u,∇v〉 + 〈b · ∇u + c u, v〉.(2.2)

By the Cauchy–Schwarz inequality one can easily show the continuity of the
bilinear form

|B[u, v]| ≤ CB ‖u‖H1 ‖v‖H1 ,

where CB depends only on the data. Combining Poincaré inequality with the diver-
gence free condition ∇·b=0, one has coercivity in H1

0 (Ω)

B[v, v] ≥
∫

Ω

a− |∇v|2 + cv2 ≥ cB ‖v‖2
H1 ,

where cB depends only on the data. Existence and uniqueness of (2.1) thus follows
from the Lax–Milgram theorem [5].

We define the energy norm on H1
0 (Ω) by |||v|||2 := B[v, v], which is equivalent to

H1
0 (Ω)-norm ‖·‖H1 . In fact we have

cB ‖v‖2
H1 ≤ |||v|||2 ≤ CB ‖v‖2

H1 ∀ v ∈ H1
0 (Ω).(2.3)

2.1. Discrete solutions on nested meshes. Let {TH} be a shape regular
family of nested conforming meshes over Ω, that is, there exists a constant γ∗ such
that

HT

ρT
≤ γ∗ ∀ T ∈

⋃
H

TH ,(2.4)

where, for each T ∈ TH , HT is the diameter of T and ρT is the diameter of the biggest
ball contained in T ; the global meshsize is hH := maxT∈TH

HT .
Let {VH} be a corresponding family of nested finite element spaces consisting of

continuous piecewise polynomials over TH of fixed degree n ≥ 1 that vanish on the
boundary. Let uH be a discrete solution of (2.1) satisfying

uH ∈ VH : B[uH , vH ] = 〈f, vH〉 ∀ vH ∈ VH .(2.5)

The effect of quadrature is not considered in this paper. Existence and uniqueness of
this problem follows from the Lax–Milgram theorem, since VH ⊂ H1

0 (Ω).

2.2. Quasi-orthogonality. Consider two consecutive nested meshes TH ⊂ Th,
i.e., Th is a refinement of TH . For the corresponding spaces VH ⊂ Vh ⊂ H1

0 (Ω),
let uh ∈ Vh and uH ∈ VH be the discrete solutions. Since the bilinear form is
nonsymmetric, it is not a scalar product and the orthogonality relation between u−uH

and uh − uH , the so-called Pythagoras equality, fails to hold. We have instead a
perturbation result referred to as quasi-orthogonality provided that the initial mesh
is fine enough. This result is stated below and the proof is given in section 4.

Lemma 2.1 (quasi-orthogonality). Let f ∈ L2(Ω). There exists a constant C∗ >
0, solely depending on the shape regularity constant γ∗, the data A,b, and c, and a
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number 0 < s ≤ 1 dictated only by the interior angles of ∂Ω, such that if the meshsize
h0 of the initial mesh satisfies C∗hs

0 ‖b‖L∞ < 1, then

|||u− uh|||2 ≤ Λ0 |||u− uH |||2 − |||uh − uH |||2 ,(2.6)

where Λ0 := (1 − C∗hs
0 ‖b‖L∞)

−1
. The equality holds provided b = 0 in Ω.

3. Adaptive algorithm. The adaptive procedure consists of loops of the form

SOLVE → ESTIMATE → MARK → REFINE.

The procedure SOLVE solves (2.5) for the discrete solution uH . The procedure ES-
TIMATE determines the element indicators ηH(T ) and oscillation oscH(T ) for all
elements T ∈ TH . Depending on their relative sizes, these quantities are later used
by the procedure MARK to mark elements T and thereby create a subset T̂H of TH
of elements to be refined. Finally, procedure REFINE partitions those elements in T̂H
and a few more to maintain mesh conformity. These procedures are discussed in more
detail below.

3.1. Procedure SOLVE: Linear solver. We employ linear solvers, either direct
or iterative methods, such as preconditioned GMRES, CG, and BICG, to solve linear
system (2.5). In other words, given a mesh Tk, an initial guess uk−1 for the solution,
and the data A,b, c, f , SOLVE computes the discrete solution

uk := SOLVE(Tk, uk−1,A,b, c, f).

3.2. Procedure ESTIMATE: A posteriori error estimate. Since we assume
exact numerical integration, subtracting (2.5) from (2.1) yields the Galerkin orthog-
onality

B[u− uH , vH ] = 0 ∀ vH ∈ VH .(3.1)

In addition to TH , let SH denote the set of interior faces (edges or sides) of the mesh
(triangulation) TH . We consider the residual R(uH) ∈ H−1(Ω) defined by

R(uH) := f + ∇·(A∇uH) − b · ∇uH − c uH

and its relation to the error L(u − uH) = R(uH). It is then clear that to estimate
|||u− uH ||| we can equivalently deal with ‖R(uH)‖H−1(Ω). To this end, we integrate

by parts elementwise the bilinear form B[u−uH , v] to obtain the error representation
formula

B[u− uH , v] =
∑

T∈TH

∫
T

RT (uH)v +
∑

S∈SH

∫
S

JS(uH)v ∀ v ∈ H1
0 (Ω),(3.2)

where the element residual RT (uH) and the jump residual JS(uH) are defined as

RT (uH) := f + ∇·(A∇uH) − b · ∇uH − c uH in T ∈ TH ,(3.3)

JS(uH) := −A∇u+
H · ν+ − A∇u−

H · ν− := [[A∇uH ]]S · νS on S ∈ SH ,(3.4)

where S is the common side of elements T+ and T− with unit outward normals ν+ and
ν−, respectively, and νS = ν−. Whenever convenient, we will use the abbreviations
RT = RT (uH) and JS = JS(uH).
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3.2.1. Upper bound. For T ∈ TH and S ∈ Sh an interior face, we define the
local error indicator ηH(T ) by

ηH(T )2 := H2
T ‖RT (uH)‖2

L2(T ) +
∑

S⊂∂T

HS ‖JS(uH)‖2
L2(S) .(3.5)

Given a subset ω ⊂ Ω, we define the error estimator ηH(ω) by

ηH(ω)2 :=
∑

T∈TH , T⊂ω

ηH(T )2.

Hence, ηH(Ω) is the error estimator of Ω with respect to the mesh TH . Using (3.1),
(3.2), and properties of the Clément interpolation, as shown in [1, 3, 13], we obtain
the upper bound of the error in terms of the estimator,

|||u− uH |||2 ≤ C1ηH(Ω)2,(3.6)

where the constant C1 > 0 depends only on the shape regularity γ∗, coercivity con-
stant cB , and continuity constant CB of the bilinear form.

3.2.2. Lower bound. Using the explicit construction of Verfürth [1, 13] via
bubble functions and positivity and continuity of A, we can get a local lower bound
of the error in terms of local indicators and oscillation. That is, there exist constants
C2, C3 > 0, depending only on the shape regularity γ∗, CB , and cB , such that

C2 ηH(T )2 − C3

∑
T⊂ωT

H2
T

∥∥RT −RT

∥∥2

L2(T )
≤ ‖u− uH‖2

H1(ωT ) ,(3.7)

where the domain ωT consists of all elements sharing at least a side with T , and RT

is any polynomial approximation of RT on T . However, for the purpose of proving
Lemmas 3.1 and 3.2, we will assume that RT ∈ Pn−1(T ) is the L2-projection of RT .
We define the oscillation on the elements T ∈ TH by

oscH(T )
2

:= H2
T

∥∥RT −RT

∥∥2

L2(T )
,(3.8)

and for a subset ω ⊂ Ω, we define

oscH(ω)
2

:=
∑

T∈TH , T⊂ω

oscH(T )
2
.

Remark 3.1. We see from (3.7) that if the oscillation oscH(ωT ) is small compared
to the indicator ηH(T ), then a large ηH(T ) implies a large local error ‖u− uH‖H1(ωT ).
This explains why refining elements with large indicators usually tend to equidis-
tribute the errors, which is an ultimate goal of adaptivity. This idea is employed by
the procedure MARK of section 3.3.

Remark 3.2. The oscillation oscH(T ) does not involve oscillation of the jump
residual JS(uH) as is customary [1, 13]. This result follows from the positivity and
continuity of A, and is explained in section 4.2.

Remark 3.3. The oscillation oscH(T ) depends on RT = RT (uH), which in turn
depends on the discrete solution uH . This is a fundamental difference with Morin,
Nochetto, and Siebert [7, 8], where the oscillation is purely a data oscillation. It is not
clear now that the oscillation will decrease when the mesh TH will be refined because
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uH will also change. Controlling the decay of oscH(T ) is thus a major challenge
addressed in this work; see sections 3.3 and 3.4. It is not possible to show that the
oscillation will always decrease as the mesh gets refined as in [7, 8].

For a given mesh TH and discrete solution uH , along with the input data A,b, c,
and f , the procedure ESTIMATE computes indicators ηH(T ) and oscillations oscH(T )
for all elements T ∈ TH according to (3.5) and (3.8):

{ηH(T ), oscH(T )}T∈TH
= ESTIMATE(TH , uH ,A,b, c, f).

3.3. Procedure MARK. Our goal is to devise a marking procedure, namely, to
identify a subset T̂H of the mesh TH such that, after refining, both error and oscillation
will be reduced. We use two strategies for this: Marking Strategy E deals with the
error estimator and Marking Strategy O does so with the oscillation.

3.3.1. Marking Strategy E: Error reduction. This strategy was introduced
by Dörfler [4] to enforce error reduction.

Marking Strategy E. Given a parameter 0 < θ < 1, construct a subset T̂H of
TH such that

∑
T∈T̂H

ηH(T )2 ≥ θ2ηH(Ω)2,(3.9)

and mark all elements in T̂H for refinement.
We will see later that Marking Strategy E guarantees error reduction in the ab-

sence of oscillation terms. Since the latter account for information missed by the
averaging process associated with the finite element method, we need a separate pro-
cedure to guarantee oscillation reduction.

3.3.2. Marking Strategy O: Oscillation reduction. This procedure was in-
troduced by Morin, Nochetto, and Siebert [7, 8] as a separate means for reducing
oscillation.

Marking Strategy O. Given a parameter 0 < θ̂ < 1 and the subset T̂H ⊂ TH
produced by Marking Strategy E, enlarge T̂H such that

∑
T∈T̂H

oscH(T )
2 ≥ θ̂2oscH(Ω)

2
,(3.10)

and mark all elements in T̂H for refinement.
Given a mesh TH and all information about the local error indicators ηH(T ) and

oscillation oscH(T ), together with user parameters θ and θ̂, MARK generates a subset

T̂H of TH ,
T̂H = MARK(θ, θ̂ ; TH , {ηH(T ), oscH(T )}T∈TH

).

3.4. Procedure REFINE. The following interior node property, due to Morin,
Nochetto, and Siebert [7, 8], is known to be necessary for error and oscillation reduc-
tion.

Interior Node Property. Refine each marked element T ∈ T̂H to obtain a
new mesh Th compatible with TH such that

T and the d + 1 adjacent elements T ′ ∈ TH of T , as well as their
common sides, contain a node of the finer mesh Th in their interior.

In addition to the interior node property, we assume that the refinement is done
in such a way that the new mesh Th is conforming, which guarantees that both TH
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and Th are nested. With this property, we have a reduction factor γ0 < 1 of element
size, i.e., if T ∈ Th is obtained by refining T ′ ∈ T̂H , then hT ≤ γ0HT ′ . For example,
when d = 2 with triangular elements, to have the interior node property we can use
the three newest bisections for each single refinement step, whence γ0 ≤ 1/2.

Given a mesh TH and a marked set T̂H , REFINE constructs the refinement Th
satisfying the interior node property:

Th = REFINE(TH , T̂H).

Combining the marking strategies of section 3.3 with the interior node property,
we obtain the following two crucial results whose proofs are given in section 4.

Lemma 3.1 (error reduction). There exist constants C4 and C5, depending only
on the shape regularity constant γ∗ and θ, such that

ηH(T )2 ≤ C4 ‖uh − uH‖2
H1(ωT ) + C5oscHωT

2 ∀ T ∈ T̂H .(3.11)

We realize that the local energy error between consecutive discrete solutions is
bounded below by the local indicators for elements in the marked set T̂H , provided
the oscillation term is sufficiently small relative to the energy error.

Lemma 3.2 (oscillation reduction). There exist constants 0 < ρ1 < 1 and 0 < ρ2,

depending only on γ∗ and θ̂, such that

oschΩ2 ≤ ρ1oscHΩ2 + ρ2 |||uh − uH |||2 .(3.12)

We have that the oscillation reduces with a factor ρ1 < 1 provided the energy
error between consecutive discrete solutions is relatively small.

Remark 3.4 (coupling of error and oscillation). Lemmas 3.1 and 3.2 seem to
lead to conflicting demands on the relative sizes of error and oscillation. These two
concepts are indeed coupled, which contrasts with [7, 8], where the oscillation depends
only on the data and reduces separately from the error. This suggests that we must
handle them together, this being the main contribution of this paper. We make this
assertion explicit in Theorem 1.1.

3.5. Adaptive algorithm AFEM. The adaptive algorithm consists of the
loops of procedures SOLVE, ESTIMATE, MARK, and REFINE, consecutively, given
that the parameters θ and θ̂ are chosen according to Marking Strategies E and O.

Algorithm AFEM.

Choose parameters 0 < θ, θ̂ < 1.
1. Pick an initial mesh T0, initial guess u−1 = 0, and set k = 0.
2. uk = SOLVE(Tk, uk−1,A,b, c, f).
3. {ηk(T ), osck(T )}T∈Tk

= ESTIMATE(Tk, uk,A,b, c, f).

4. T̂k = MARK(θ, θ̂ ; Tk, {ηk(T ), osck(T )}T∈Tk
).

5. Tk+1 = REFINE(Tk, T̂k).
6. Set k = k + 1 and go to step 2.

Theorem 1.1 (convergence of AFEM). Let {uk}k∈N0
be a sequence of finite ele-

ment solutions corresponding to a sequence of nested finite element spaces {V
k}k∈N0

produced by AFEM. There exist constants σ, γ > 0 and 0 < ξ < 1, depending
solely on the mesh regularity constant γ∗, data, parameters θ and θ̂, and a num-
ber 0 < s ≤ 1 dictated by interior angles of ∂Ω, such that if the initial meshsize h0

satisfies hs
0‖b‖L∞ < σ, then for any two consecutive iterations k and k + 1, we have

|||u− uk+1|||2 + γ osck+1Ω
2 ≤ ξ2

(
|||u− uk|||2 + γ osckΩ

2
)
.(3.13)
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Therefore, AFEM converges with a linear rate ξ, namely,

|||u− uk|||2 + γ osckΩ
2 ≤ C0 ξ2k,

where C0 := |||u− u0|||2 + γ osc0Ω
2.

Proof. We just prove the contraction property (3.13), which obviously implies the
decay estimate. For convenience, we introduce the notation

ek := |||u− uk||| , εk := |||uk+1 − uk||| , osck := osck(Ω) .

The idea is to use the quasi-orthogonality (2.6) and replace the term |||uk+1 − uk|||2
using new results of error and oscillation reduction estimates (3.11) and (3.12). We
proceed in three steps as follows.

Step 1. We first get a lower bound for εk in terms of ek. To this end, we use
Marking Strategy E and the upper bound (3.6) to write

θ2e2
k ≤ C1θ

2ηk(Ω)2 ≤ C1

∑
T∈T̂k

ηk(T )2.

Adding (3.11) of Lemma 3.1 over all marked elements T ∈ T̂k, and observing that
each element can be counted at most D := d+ 2 times due to overlap of the sets ωT ,
together with ‖v‖2

H1 ≤ c−1
B |||v|||2 for all v ∈ H1

0 (Ω), we arrive at

θ2e2
k ≤ DC1C4

cB
ε2
k + DC1C5 osc2

k.

If Λ1 := θ2cB
DC1C4

,Λ2 := C5cB
C4

, then this implies the lower bound for ε2
k,

ε2
k ≥ Λ1e

2
k − Λ2osc2

k.(3.14)

Step 2. If h0 is sufficiently small so that the quasi-orthogonality (2.6) of Lemma
2.1 holds with Λ0 = (1 − C∗hs

0 ‖b‖L∞)−1, then

e2
k+1 ≤ Λ0e

2
k − ε2

k.

Replacing the fraction βε2
k of ε2

k via (3.14) we obtain

e2
k+1 ≤ (Λ0 − βΛ1)e

2
k + βΛ2osc2

k − (1 − β)ε2
k,

where 0 < β < 1 is a constant to be chosen suitably. We now assert that it is possible
to choose h0 compatible with Lemma 2.1 and also that

0 < α := Λ0 − βΛ1 < 1.

A simple calculation shows that this is the case provided

C∗hs
0 ‖b‖L∞ <

βΛ1

(1 + βΛ1)
< 1,

i.e., hs
0 ‖b‖L∞ < σ with σ := βΛ1

C∗(1+βΛ1)
. Consequently,

e2
k+1 ≤ αe2

k + βΛ2osc2
k − (1 − β)ε2

k.(3.15)
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Step 3. To remove the last term of (3.15) we resort to the oscillation reduction
estimate of Lemma 3.2

osc2
k+1 ≤ ρ1osc2

k + ρ2ε
2
k.

We multiply it by (1 − β)/ρ2 and add it to (3.15) to deduce

e2
k+1 +

1 − β

ρ2
osc2

k+1 ≤ α e2
k +

(
βΛ2 +

ρ1

ρ2
(1 − β)

)
osc2

k.

If γ := 1−β
ρ2

, then we would like to choose β < 1 in such a way that

βΛ2 + ρ1γ = μγ

for some μ < 1. A simple calculation yields

β =

μ−ρ1

ρ2

Λ2 + μ−ρ1

ρ2

,

and shows that ρ1 < μ < 1 guarantees that 0 < β < 1. Therefore,

e2
k+1 + γ osc2

k+1 ≤ α e2
k + μγ osc2

k

and the asserted estimate (3.13) follows upon taking ξ = max(α, μ) < 1.
Remark 3.5 (comparison with [7, 8]). In [7, 8] the oscillation is independent

of discrete solutions, i.e., ρ2 = 0, and is reduced by the factor ρ1 < 1 in (3.12).
Consequently, Step 3 is avoided by setting β = 1, and the decay of ek and osck is
monitored separately. Since this is no longer possible, ek and osck are now combined
and decreased together.

Remark 3.6 (splitting of εk). The idea of splitting εk is already used by Chen
and Jia [2] in examining one time step for the heat equation. This is because a mass
(zero order) term naturally occurs, which did not take place in [7, 8]. The elliptic
operator is just the Laplacian in [2].

Remark 3.7 (effect of convection). Assuming that hs
0 ‖b‖L∞ < σ implies that

the local Péclet number is sufficiently small for the Galerkin method not to exhibit
oscillations. This appears to be essential for u0 to contain relevant information and
guide correctly the adaptive process. This restriction is difficult to verify in practice
because it involves unknown constants. However, starting from coarser meshes than
needed in theory does not seem to be a problem in our examples (see section 5.3)
where we carefully express the constant σ in terms of data.

Remark 3.8 (vanishing convection). If b = 0, then Theorem 1.1 has no restric-
tion on the initial mesh. This thus extends the convergent result of Morin, Nochetto,
and Siebert [7, 8] to variable diffusion coefficient and zero order terms.

Remark 3.9 (optimal β). The choice of β can be optimized. In fact, we can
easily see that

α = Λ0 − βΛ1, μ = ρ1 +
β

1 − β
ρ2Λ2

yield a unique value 0 < β∗ < 1 for which α = μ and the contraction constant ξ of
Theorem 1.1 is minimal. This β∗ depends on the geometric constants Λ0,Λ1, and Λ2

as well on θ, θ̂, and h0, but it is not computable.
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4. Proofs of lemmas. Let T̂H ⊂ TH be a set of marked elements obtained
from procedure MARK. Let Th be a refined mesh obtained from procedure REFINE,
and let VH ⊂ Vh be nested spaces corresponding to compatible meshes TH and Th,
respectively. For convenience, set

eh := u− uh, eH := u− uH , εH := uh − uH .

4.1. Proof of Lemma 2.1: Quasi-orthogonality. In view of the Galerkin
orthogonality (3.1), namely, B[eh, vh] = 0, vh ∈ Vh, we have

|||eH |||2 = |||eh|||2 + |||εH |||2 + B[εH , eh].

If b = 0, then B is symmetric and B[εH , eh] = B[eh, εH ] = 0. For b 
= 0, instead,
B[εH , eh] 
= 0, and we must account for this term. It is easy to see that ∇·b = 0 and
that integration by parts yields

B[εH , eh] = B[eh, εH ] + 〈b · ∇εH , eh〉 − 〈b · ∇eh, εH〉 = 2 〈b · ∇εH , eh〉.

Hence,

|||eh|||2 = |||eH |||2 − |||εH |||2 − 2 〈b · ∇εH , eh〉 .

Using the Cauchy–Schwarz inequality and replacing the H1(Ω)-norm by the energy
norm, we have for any δ > 0 to be chosen later

−2 〈b · ∇εH , eh〉 ≤ δ ‖eh‖2
L2 +

‖b‖2
L∞

δcB
|||εH |||2 .

We then realize the need to relate L2(Ω) and energy norms to replace ‖eh‖L2 by |||eh|||.
This requires a standard duality argument whose proof is reported in Ciarlet [3].

Lemma 4.1 (duality). Let f ∈ L2(Ω) and u ∈ H1+s(Ω) for some 0 < s ≤ 1 be the
solution of (2.1), where s depends on the interior angles of ∂Ω (s = 1 if Ω is convex).
Then, there exists a constant CD, depending only on the shape regularity constant γ∗

and the data of (1.1), such that

‖eh‖L2 ≤ CDhs ‖eh‖H1 .(4.1)

Inserting this estimate in the preceding two bounds, and using h ≤ h0, the mesh-
size of the initial mesh, in conjunction with (2.3), we deduce

(
1 − δCD

2c−1
B h2s

0

)
|||eh|||2 ≤ |||eH |||2 −

(
1 − ‖b‖2

L∞(δcB)−1
)
|||εH |||2 .

We now choose δ =
‖b‖L∞
CDhs

0
to equate both parentheses, as well as h0 sufficiently small

for δCD
2h2s

0 c−1
B = C∗hs

0 ‖b‖L∞ < 1 with C∗ := CD/cB . We end up with

|||eh|||2 ≤ 1

1 − C∗hs
0 ‖b‖L∞

|||eH |||2 − |||εH |||2 .

This implies (2.6) and concludes the proof.
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4.2. Proof of Lemma 3.1: Error reduction. Upon restricting the test func-
tion v in (3.2) to Vh ⊃ VH , we obtain the error representation

B[εH , vh] =
∑

T∈TH

∫
T

RT vh +

∫
T

(RT −RT )vh +
∑

S∈SH

∫
S

JS vh ∀ vh ∈ Vh,(4.2)

where we use the abbreviations RT = RT (uH) and JS = JS(uH), and RT = Πn−1
T RT

denotes the L2-projection of RT onto the space of polynomials Pn−1(T ) over the
element T ∈ TH . Except for avoiding the oscillation terms of the jump residual JS ,
the proof goes back to [4, 7, 8]. We proceed in three steps.

Step 1. Interior residual. Let T ∈ TH , and let xT be an interior node of T
generated by the procedure REFINE. Let ψT ∈ Vh be a bubble function which satisfies
ψT (xT ) = 1, vanishes on ∂T , and 0 ≤ ψT ≤ 1; hence supp ψT ⊂ T . Since RT ∈
Pn−1(T ) and ψT > 0 in a polyhedron of measure comparable with that of T , we have

C
∥∥RT

∥∥2

L2(T )
≤

∫
T

ψT RT
2

=

∫
T

RT (ψT RT ).

Since ψTRT is a piecewise polynomial of degree ≤ n over Th, it is an admissible
test function in (4.2) which vanishes outside T (and in particular on all S ∈ SH).
Therefore,

C
∥∥RT

∥∥2

L2(T )
≤ B[εH , ψTRT ] +

∫
T

(RT −RT )ψTRT

≤ C
(
H−1

T ‖εH‖H1(T ) +
∥∥RT −RT

∥∥
L2(T )

)∥∥RT

∥∥
L2(T )

,

because of an inverse inequality for ψTRT . This, together with the triangle inequality,
yields the desired estimate for H2

T ‖RT ‖2
L2(T ),

H2
T ‖RT ‖2

L2(T ) ≤ C
(
‖εH‖2

H1(T ) + H2
T

∥∥RT −RT

∥∥2

L2(T )

)
.(4.3)

Step 2. Jump residual. Let S ∈ SH be an interior side of T1 ∈ T̂H , and let T2 ∈ TH
be the other element sharing S. Let xS be an interior node of S created by procedure
REFINE. Let ψS ∈ Vh be a bubble function in ωS := T1 ∪ T2 such that ψS(xS) = 1,
ψS vanishes on ∂ωS , and 0 ≤ ψS ≤ 1; hence supp ψS ⊂ ωS .

Since uH is continuous, [[∇uH ]]S is parallel to νS , i.e., [[∇uH ]]S = jS νS . Moreover,
the coefficient matrix A(x) being continuous implies

JS = A(x) [[∇uH ]]S · νS = jS A(x)νS · νS = a(x) jS ,

where a(x) := A(x)νS · νS satisfies 0 < aS ≤ a(x) ≤ aS with aS , aS the smallest and
largest eigenvalues of A(x) on S. Consequently,

‖JS‖2
L2(S) ≤ a2

S

∫
S

j2
S ≤ Ca2

S

∫
S

j2
SψS ≤ C

a2
S

aS

∫
S

(jS ψS)JS ,(4.4)

where the second inequality follows from jS being a polynomial and ψS > 0 in a
polygon of measure comparable with that of S.

We now extend jS to ωS by first mapping to the reference element, next extending
constantly along the normal to Ŝ, and finally mapping back to ωS . The resulting ex-
tension Eh(jS) is a piecewise polynomial of degree ≤ n−1 in ωS so that ψSEh(jS) ∈ Vh,
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and satisfies ‖ψSEh(jS)‖L2(ωS) ≤ CH
1/2
S ‖jS‖L2(S). Since vh = ψSEh(jS) is an admis-

sible test function in (4.2) which vanishes on all sides of SH but S, we arrive at∫
S

JS(jSψS) = B[εH , vh] −
∫
T1

RT1 vh −
∫
T2

RT2 vh

≤ C

(
H

−1/2
S ‖εH‖H1

S(ωS) + H
1/2
S

2∑
i=1

‖RTi
‖L2(Ti)

)
‖jS‖L2(S).

(4.5)

Therefore,

HS ‖JS‖2
L2(S) ≤ C

(
‖εH‖2

H1(ωS) +

2∑
i=1

H2
Ti

‖RTi‖
2
L2(Ti)

)
.(4.6)

Step 3. Final estimate. To remove the interior residual from the right-hand side of
(4.6) we observe that both T1 and T2 contain an interior node according to procedure
REFINE. Hence, (4.3) implies

HS ‖JS‖2
L2(S) ≤ C

(
‖εH‖2

H1(ωS) +

2∑
i=1

H2
Ti

∥∥RTi −RTi

∥∥2

L2(Ti)

)
.(4.7)

The asserted estimate for ηH(T )2 is thus obtained by adding this bound to (4.3). The
constant C depends on the shape regularity constant γ∗ and the ratio a2

S/aS of largest
and smallest eigenvalues of A(x) for x ∈ S.

Remark 4.1 (positivity). The use of A(x) being positive definite in (4.4) avoids
having oscillation terms on S. This comes at the expense of a constant depending on
a2
S/aS . If we were to proceed in the usual manner, as in [1, 9, 13], we would end up

with an oscillation of the form

H
1/2
S ‖(A − A(xS)) [[∇uH ]]S · νS‖L2(S) = H

1/2
S ‖(a− a(xS))jS‖L2(S)

≤ CH
3/2
S ‖A‖W 1

∞(S) ‖jS‖L2(S)

≤ CHS

∥∥∥H1/2
S JS

∥∥∥
L2(S)

,

where C > 0 also depends on the ratio aS/aS dictated by the variation of a(x) on
S. This oscillation can be absorbed into the term H

1/2
S ‖JS‖L2(S) provided that the

meshsize HS is sufficiently small; see [9]. We do not need this assumption in our
present discussion.

Remark 4.2 (continuity of A). The continuity of A is instrumental in avoid-
ing jump oscillations, which in turn makes computations simpler. However, jump
oscillations cannot be avoided when A exhibits discontinuities across interelement
boundaries of the initial mesh. We get instead of (4.7)

CHS ‖JS‖2
L2(S) ≤ ‖εH‖2

H1(ωS)+

2∑
i=1

H2
Ti

∥∥RTi−RTi

∥∥2

L2(Ti)
+HS

∥∥JS−JS
∥∥2

L2(S)
,(4.8)

where JS is the best L2-projection of JS onto Pn−1(S). To obtain estimate (4.8) we
proceed as follows. Starting from a polynomial JS , we get an estimate similar to that
of (4.4),

C
∥∥JS∥∥2

L2(S)
≤

∫
S

ψSJS
2

=

∫
S

JS(ψSJS) +

∫
S

(JS − JS)(ψSJS).(4.9)
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In contrast to (4.4), we see that the oscillation term (JS − JS) cannot be avoided
when A has a discontinuity across S. We estimate the first term on the right-hand
side of (4.9) exactly as we have argued with (4.5) and thereby arrive at

∫
S

JS(JSψS) ≤ C

(
H

−1/2
S ‖εH‖H1

S(ωS) + H
1/2
S

2∑
i=1

‖RTi‖L2(Ti)

)∥∥JS∥∥L2(S)
.

This and a further estimate of the second term on the right-hand side of (4.9) yield

HS

∥∥JS∥∥2

L2(S)
≤ C

(
‖εH‖2

H1(ωS) +

2∑
i=1

H2
Ti

‖RTi
‖2
L2(Ti)

+ HS

∥∥JS − JS
∥∥2

L2(S)

)
,

whence assertion (4.8) follows using the triangle inequality for ‖JS‖L2(S). Combining

with (4.3), we deduce an estimate for ηH(T ) similar to (3.11), namely,

ηH(T )2 ≤ C
(
‖εH‖2

H1(ωT ) + oscH(ωT )
2
)

with the new oscillation term involving jumps on interior sides

oscH(T )
2

:= H2
T

∥∥RT −RT

∥∥2

L2(T )
+

∑
S⊂∂T

HS

∥∥JS − JS
∥∥2

L2(S)
.(4.10)

In section 6.1, we discuss the case of a discontinuous A. We show an oscillation
reduction property of oscH(T ), defined by (4.10), similar to Lemma 3.2.

4.3. Proof of Lemma 3.2: Oscillation reduction. The proof hinges on the
Marking Strategy O and the interior node property. We point out that if T ∈ Th is
contained in T ′ ∈ T̂H , then REFINE gives a reduction factor γ0 < 1 of element size

hT ≤ γ0HT ′ .(4.11)

The proof proceeds in three steps as follows.
Step 1. Relation between oscillations. We would like to relate osch(T ′) and

oscH(T ′) for any T ′ ∈ TH . To this end, we note that for all T ∈ Th contained in
T ′, we can write

RT (uh) = RT (uH) − LT (εH) in T,

where εH = uh − uH as before and

LT (εH) := −∇·(A∇εH) + b · ∇εH + c εH in T.

By Young’s inequality, we have for all δ > 0

osch(T )
2

= h2
T

∥∥∥RT (uh) −RT (uh)
∥∥∥2

L2(T )

≤ (1+δ)h2
T

∥∥∥RT (uH)−RT (uH)
∥∥∥2

L2(T )
+ (1+δ−1)h2

T

∥∥∥LT (εH)−LT (εH)
∥∥∥2

L2(T )
,

where RT (uh), RT (uH), and LT (εH) are L2-projections of RT (uh), RT (uH), and
LT (εH) onto polynomials of degree ≤ n− 1 on T . We next observe that

∥∥∥LT (εH) − LT (εH)
∥∥∥
L2(T )

≤ ‖LT (εH)‖L2(T )
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and that, according to (4.11),

hT ≤ γT ′HT ′

provided γT ′ = γ0 if T ′ ∈ T̂H and γT ′ = 1 otherwise. Therefore, if Th(T ′) denotes all
T ∈ Th contained in T ′,

osch(T ′)
2

=
∑

T∈Th(T ′)

osch(T )
2

≤ (1 + δ)γ2
T ′oscH(T ′)

2
+ (1 + δ−1)

∑
T∈Th(T ′)

h2
T ‖LT (εH)‖2

L2(T ),
(4.12)

since RT (uH) = RT ′(uH) and RT (uH) is the best L2-approximation of RT ′(uH) in T .
Step 2. Estimate of LT (εH). In order to estimate ‖LT (εH)‖L2(T ) in terms of

‖εH‖H1(T ), we first split it as follows:

‖LT (εH)‖L2(T ) ≤ ‖∇·(A∇εH)‖L2(T ) + ‖b · ∇εH‖L2(T ) + ‖c εH‖L2(T ) .

We denote these terms NA, NB , and NC , respectively. Since

NA ≤ ‖(∇·A) · ∇εH‖L2(T ) + ‖A : H(εH)‖L2(T ),

where H(εH) is the Hessian of εH in T , invoking the Lipschitz continuity of A together
with an inverse estimate in T , we infer that

NA ≤ CA

(
‖∇εH‖L2(T ) + h−1

T ‖∇εH‖L2(T )

)
,

where CA depends on A and the shape regularity constant γ∗. Besides, we readily
have

NB ≤ CB ‖∇εH‖L2(T ) , NC ≤ CC ‖εH‖L2(T ),

where CB and CC depend on b and c. Combining these estimates, we arrive at

h2
T ‖LT (εH)‖2

L2(T ) ≤ C∗ ‖εH‖2
H1(T ) .(4.13)

Step 3. Choice of δ. We insert (4.13) into (4.12) and add over T ′ ∈ TH . Recalling
the definition of γT ′ and utilizing (3.10), we deduce

∑
T ′∈TH

γ2
T ′oscH(T ′)

2
= γ2

0

∑
T ′∈T̂H

oscH(T ′)
2

+
∑

T ′∈TH\T̂H

oscH(T ′)
2

= oscH(Ω)
2 − (1 − γ2

0)
∑

T ′∈T̂H

oscH(T ′)
2

≤ (1 − (1 − γ2
0)θ̂2)oscH(Ω)

2
,

where θ̂ is the user’s parameter in (3.10). Moreover, since C∗ ‖εH‖2
H1 ≤ Co |||εH |||2

with Co = C∗c
−1
B in light of (2.3), we end up with

osch(Ω)
2 ≤ (1 + δ)

(
1 − (1 − γ2

0)θ̂2
)
oscH(Ω)

2
+ (1 + δ−1)Co |||εH |||2 .

To complete the proof, we finally choose δ sufficiently small so that

ρ1 = (1 + δ)
(
1 − (1 − γ2

0)θ̂2
)
< 1, ρ2 = (1 + δ−1)Co.
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5. Numerical experiments. We test the performance of the adaptive algo-
rithm AFEM with several examples. We are thus able to study how meshes adapt to
various effects from lack of regularity of solutions and convexity of domains to data
smoothness, boundary layers, changing boundary conditions, etc. For simplicity, we
stick to the case of piecewise linear finite element on polygonal domains in R

2. The
implementation is done using the ALBERT toolbox of Schmidt and Siebert [11, 12].

5.1. Implementation. We employ the four main procedures as given by Morin,
Nochetto, and Siebert [7, 8]: SOLVE, ESTIMATE, MARK, and REFINE. We slightly
modified the built-in adaptive solver for elliptic problems of ALBERT toolbox [11] to
make it work for the general PDE (1.1) and mixed boundary conditions, as follows:

• SOLVE: We used built-in solvers provided by ALBERT, such as GMRES and
CG.

• ESTIMATE: We modified ALBERT for computing the estimator so that it
works for (1.1), and added procedures for computing oscillations which are
not provided.

• MARK: We employed Marking Strategies E and O to find a marked set T̂H .
• REFINE: We employed the three newest bisections for each refinement step

to enforce the interior node property.

Remark 5.1 (quadrature). Computations of integrals involving nonconstant
functions f,A,b, c, g, and the exact solution u, use a quadrature rule of order 5. Our
experiments indicate that increasing the quadrature order does not change the results.
We refer to [3, 11, 12] for details on quadrature.

For convenience of presentation, we introduce the following notation:

• DOFk := number of elements in Tk;
• EOCe := log(ek−1/ek)

log(DOFk/DOFk−1)
, experimental order of convergence, ek := |||u− uk|||;

• EOCη := log(ηk−1/ηk)
log(DOFk/DOFk−1)

, experimental order of convergence of ηk := ηk(Ω);

• RFE := ek

ek−1
and RFO := osck

osck−1
, reduction factors of the error and the oscilla-

tion;
• Eff := ηk/ek, effectivity index, i.e., the ratio between the estimator and the

error;
• ME and MO are the number of marked elements due to Marking Strategy E

and the additional marked elements due to Marking Strategy O, respectively.

The experimental order of convergence EOCe measures how the error ek decreases
as DOFk increases. In fact we have ek ≈ C DOFk

−EOCe .

5.2. Experiment 1: Oscillatory coefficients and nonconvex domain. We
consider PDE (1.1) with the Dirichlet boundary condition u = g on the nonconvex
L-shape domain Ω := (−1, 1)2\[0, 1]×[−1, 0]. We also take the exact solution

u(r) = r
2
3 sin

(
2

3
θ

)
,

where r2 := x2 + y2 and θ := tan−1(y/x) ∈ [0, 2π). We deal with variable coefficients
A(x, y) = a(x, y)I, b(x, y) = 0, and c(x, y) defined by

a(x, y) =
1

4 + P (sin( 2πx
ε ) + sin(2πy

ε ))
,(5.1)

c(x, y) = Ac(cos2(lx) + cos2(lx)),(5.2)
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Table 5.1

Experiment 1 (oscillatory coefficients and nonconvex domain): The parameters of AFEM are
θ = θ̂ = 0.5, and those controlling the oscillatory coefficients are P = 1.8, ε = 0.4, Ac = 4.0, l = 1.0,
as described in (5.1) and (5.2). The experimental order of convergence EOCe is close to the optimal
rate of 0.5, which indicates quasi-optimal meshes. The oscillation reduction factor RFO is smaller
than the error reduction factor RFE, which confirms that oscillation decreases faster than error. The
effectivity index Eff is approximately 2.0. There are no additional marked elements from oscillation
for this θ = 0.5, i.e., MO = 0. However, this is not the case if θ < 0.3; see section 5.3.

k DOFk |||u− uk||| EOCe RFE RFO Eff ME MO

– 24 2.181e-01 – – – 4.504 3 0
1 65 1.481e-01 0.388 0.679 0.446 2.994 10 0
2 229 1.056e-01 0.268 0.713 0.558 2.475 11 0
3 423 8.812e-02 0.295 0.834 0.652 2.222 13 0
4 651 5.083e-02 1.276 0.577 0.314 2.053 37 0
5 1156 3.305e-02 0.750 0.650 0.444 2.028 89 0
6 2299 2.206e-02 0.588 0.668 0.408 1.980 253 0
7 5148 1.445e-02 0.525 0.655 0.658 1.965 771 0
8 12678 7.991e-03 0.657 0.553 0.175 1.957 1833 0
9 29979 4.911e-03 0.566 0.615 0.426 2.032 – –

Table 5.2

Experiment 1 (oscillatory coefficients and nonconvex domain): Standard uniform refinement is
performed using the same values for parameters P, ε, Ac, and l as that of AFEM given in Table 5.1
above. EOCe is now suboptimal and close to the expected value 1/3. The effectivity index Eff is
around 2, which is about the same as AFEM. We need about 105 DOFs to get the error around
10−2, whereas for AFEM we need only 104 DOFs.

DOFk |||u− uk||| EOCe RFE RFO Eff
384 1.005e-01 0.400 0.574 0.300 2.398

1536 4.809e-02 0.532 0.478 0.195 2.127
6144 2.597e-02 0.444 0.540 0.182 1.984

24576 1.551e-02 0.372 0.597 0.242 1.845
98304 9.585e-03 0.347 0.618 0.264 1.745

where P, ε, Ac, and l are parameters. The functions f in (1.1) and g are defined accord-
ingly. The results are shown in Tables 5.1 and 5.2 and Figure 5.1. The observations
and conclusions of this experiment are as follows:

• AFEM gives an optimal rate of convergence of order ≈ 0.5, while standard
uniform refinement achieves the suboptimal rate of 0.3 as expected from
theory.

• Both AFEM and FEM with uniform refinement perform with the effectivity
index Eff ≈ 2.0, which gives the estimate of constant C1 ≈ 0.5 for upper
bound (3.6); no weights have been used in (3.5). For AFEM, the reduction
factors of error and oscillation are approximately 0.7 and 0.5 as DOF increases
(Table 5.1). The oscillation thus decreases faster than the error and becomes
insignificant asymptotically for k large. Additionally, AFEM outperforms
FEM in terms of the CPU time vs. energy error.

• Figure 5.1 depicts the effect of a corner singularity and rapid variation of
diffusion coefficient a(x, y) in mesh grading; c does not play much of a role.

• The number of additional marked elements MO due to Marking Strategy O
depends on parameters θ and θ̂. For this example, MO = 0 because the
parameter θ is sufficiently big; hence the condition for Marking Strategy O
is automatically satisfied. Similar experiments for θ < 0.3 and θ̂ = 0.5 yield
MO 
= 0, and MO becomes even dominant for θ = 0.1; see Experiment 2 for
more details.
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Fig. 5.1. Experiment 1 (oscillatory coefficients and nonconvex domain): Parameters of AFEM
are θ = θ̂ = 0.5, and those of oscillatory coefficients are P = 1.8, ε = 0.4, Ac = 1.0, l = 1.0. The se-
quence of graded meshes after 4 and 7 iterations shows that mesh refinement is dictated by geometric
(corner) singularities as well as periodic variations of the diffusion coefficient but not much from the
zero order term. Also on the right, a 3D plot of the diffusion coefficient a(x, y) of (5.1) interpolated
onto the mesh of iteration 7 is shown. This shows the combined effect of rapidly varying a(x, y) and
the exact solution u = r

2
3 sin( 2

3
θ): meshes are refined more where a(x, y) has a large gradient.

5.3. Experiment 2: Convection-dominated diffusion. We consider the
convection-dominated diffusion elliptic model problem (1.1) with the Dirichlet bound-
ary condition u = g on the convex domain Ω := (0, 1)2, with the isotropic diffusion
coefficient A = εI, ε = 10−3, convection velocity b = (y, 1

2 − x), and c = f = 0;
note that ∇·b = 0. The Dirichlet boundary condition g(x, y) on ∂Ω, a pulse, is the
continuous piecewise linear function given by

g(x, y) =

⎧⎪⎨
⎪⎩

1, {.2 + τ ≤ x ≤ .5 − τ ; y = 0} ,
0, ∂Ω \ {.2 ≤ x ≤ .5; y = 0} ,
linear, {(.2 ≤ x ≤ .2 + τ) or (.5 − τ ≤ x ≤ .5); y = 0} ,

(5.3)

where τ is a parameter. This problem models the transport of a pulse from ∂Ω
inside Ω and back to ∂Ω. Results are reported in Table 5.3 and Figures 5.2 and
5.3 for parameters θ = 0.3, θ̂ = 0.6, τ = 0.005, starting from a coarser mesh than
what we would need in theory. To see whether oscillation plays any role in AFEM,
Table 5.4 shows results of AFEM without using Marking Strategy O. Observations
and conclusions follow:

• Tables 5.3 and 5.4 document the role of oscillation in AFEM. Without mark-
ing due to the oscillation MO = 0, the estimator η(Ω) still reduces at an
optimal rate but the oscillation reduction RFO is not stable. The factor RFO

approximates ρ1 of Lemma 3.2 and thus controls the oscillation decay be-
tween consecutive iterations. In fact Table 5.4 indicates that lack of control
of RFO leads to more iterations for the same estimator. Tables 5.3 and 5.4
illustrate the need of Marking Strategy O to control the reduction rate of
oscillations and confirm the convergence theory of AFEM. Our experiments
show that the ratio ME/MO depends inversely on the ratio θ/θ̂. If θ = θ̂, then
ME dominates MO.

• Comparison of computational costs is measured using the CPU time used
by each procedure. On average, about 80% of the total CPU time is used
by SOLVE; the other procedures ESTIMATE, MARK, and REFINE use about
5–10%.
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Table 5.3

Experiment 2: AFEM with parameters θ = 0.3, θ̂ = 0.6, and τ = 0.005. The optimal decay
≈ 0.5 of the estimator η(Ω) is computational evidence of optimal meshes. The reduction factor of
oscillation RFO := osck/osck−1 gives an estimate of constant ρ1 ≈ 0.5 in Lemma 3.2. In contrast to
Experiment 1, the additional marking MO due to oscillation dominates ME from Marking Strategy
E. This controls RFO, the decay of oscillations, which decrease together with the error according to
Theorem 1.1.

DOFk ηk(Ω) EOCη RFO ME MO

64 1.74e-1 – – 2 5
147 9.48e-2 0.73 0.27 8 7
360 2.35e-2 1.55 0.33 4 9
500 1.68e-2 1.02 0.50 5 15
762 1.12e-2 0.95 0.43 10 23

1170 8.58e-3 0.62 0.52 15 70
2173 6.10e-3 0.55 0.48 22 137
3862 4.75e-3 0.43 0.48 30 298
7149 3.45e-3 0.51 0.50 80 600

13981 2.60e-3 0.42 0.51 – –

Fig. 5.2. Experiment 2 (convection-dominated diffusion with ε = 10−3,b = (y, 1
2
− x)): Adap-

tively refined meshes after 5, 7, and 8 iterations corresponding to Table 5.3 starting from a uniform
mesh coarser than required in theory. After a few iterations, AFEM detects the region of rapid
variation (circular transport of a pulse) and boundary layer in the outflow, whereas the rest of the
mesh remains unchanged. Refinement in the smooth region is caused by early oscillations.
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Fig. 5.3. Experiment 2 (convection-dominated diffusion with ε = 10−3,b = (y, 1
2
− x)): Plots

of solutions after 5, 7, and 8 iterations. No oscillations (of Galerkin solutions) are detected after a
few iterations even though AFEM is not stabilized.

• In theory, the initial meshsize h0 must satisfy

C∗Bh0 <
βΛ1

1 + βΛ1
= β0,

where B = ‖b‖L∞ , β0 = O(1), and C∗ is the constant from Lemma 2.1. In
this particular case, we can express C∗ in terms of ε and B quite explicitly.
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Table 5.4

Experiment 2: AFEM performance without Marking Strategy O, using the same parameters
as for Table 5.3. The reduction factor of oscillation RFO is not as stable as our AFEM shown in
Table 5.3. The estimator still reduces at the optimal rate but requires a few more iterations to reach
the same level as that of our AFEM.

DOFk ηk(Ω) EOCη RFO

64 1.74e-1 – –
95 1.02e-1 1.34 0.59

244 3.81e-2 1.31 0.86
414 1.75e-2 4.09 0.62
654 9.42e-3 1.18 0.70
834 9.05e-3 0.16 0.59

1577 5.43e-3 0.89 0.93
2970 3.56e-3 0.51 0.92
4250 2.84e-3 0.62 0.82
6502 2.15e-3 0.65 0.59

10209 1.66e-3 0.57 0.62

We first observe that the H2-regularity theory gives [5]

{
Lϕ = ζ in Ω
ϕ = 0 on ∂Ω

=⇒ ‖ϕ‖H2(Ω) ≤ CRB
1/2ε−3/2 ‖ζ‖L2(Ω)

with CR > 0 independent of data. We also note that CD of Lemma 4.1
satisfies

CICR

(
B

ε

) 3
2

h0 ≤ 1

2
=⇒ CD = 2CICR

(
B

ε

) 1
2

,

where CI is an interpolation constant solely dependent on shape regularity.
This results from the usual duality argument and the fact that ∇·b = 0,
namely,

|〈eh, ζ〉| = |B[eh, ϕ]| ≤ CIh0 (ε ‖∇eh‖L2 + B ‖eh‖L2) ‖ϕ‖H2 .

We finally recall that C∗ = CD/ε (see section 4.1), to arrive at

h0 <
β0

2CICR

( ε

B

)3/2

,

which is consistent with the previous restriction on h0. We stress that this
implies h0 ≈ 10−4 in theory, whereas h0 ≈ 10−1 works in our examples; see
Figures 5.2 and 5.3.

• The local Péclet number Pe = h0B
ε is about 102 at the beginning. Since

Pe > 1, and the Galerkin method is not stabilized, oscillations are observed
in the first few iterations but cured later by AFEM via local refinement; see
Figure 5.3, which displays solutions without oscillations for iterations 7 and 8.
Figure 5.2 depicts several graded meshes and confirms that mesh refinement
is localized around the pulse location and outflow boundary layer. Minor
refinement in the smooth region is caused by early oscillations.
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Table 5.5

Experiment 3 (drift-diffusion model): Performance of AFEM with the parameters θ = 0.6,

θ̂ = 0.75 and model parameters χ = 10, r1 = 0.75, and α = 0.04. The optimal decay ≈ 0.5 of
the estimator η(Ω) is computational evidence of quasi-optimal meshes. AFEM outperforms uniform
refinement (compare with Table 5.6).

DOFk ηk(Ω) EOCη RFO

1154 6.645 1.880 0.267
1546 3.824 1.888 0.252
2448 2.144 1.259 0.206
4032 1.455 0.776 0.285
6790 1.086 0.560 0.340

12188 0.737 0.663 0.253
23386 0.518 0.540 0.287
45728 0.363 0.529 0.261

5.4. Experiment 3: Drift-diffusion model. We consider a model problem
that comes from a mathematical model in semiconductors and chemotaxis:

−∇·(∇u + χu∇ψ) = 0 in Ω := (0, 1)2,

u = g on Γ ⊂ ∂Ω,

∂νu = 0 on ∂Ω \ Γ,

where χ is a constant. The radial function ψ is defined in Ω by

ψ(x, y) :=

⎧⎪⎨
⎪⎩

1, {
√

x2 + y2 ≤ r1},
α, {

√
x2 + y2 ≥ r1 + α},

linear, {r1 <
√
x2 + y2 < r1 + α},

where α is a small parameter and r1 < 1 is a constant. The Dirichlet boundary
condition on Γ is assumed to be

g(x, y) =

{
1, {x = 0; 0 ≤ y ≤ 0.5}

⋃
{y = 0; 0 ≤ x ≤ 0.5},

0, {x = 1; 0.5 ≤ y ≤ 1}
⋃
{y = 1; 0.5 ≤ x ≤ 1}.

We resort to the following transformation (exponential fitting) to symmetrize the
problem:

ρ := exp(χψ)u =⇒ −∇·(exp(−χψ)∇ρ) = 0,

which gives a simpler form of the model problem with a variable scalar coefficient a =
exp(−χψ). We apply AFEM to solve for ρ and obtain solution u via u = exp(−χψ)ρ.
The experiment is performed using the parameters χ = 10.0, r1 = 0.75, and α = 0.04
for the model problem, and parameters θ = 0.6, θ̂ = 0.75 for AFEM. Results are
reported in Tables 5.5 and 5.6, and Figure 5.4. Conclusions and observations follow:

• From Tables 5.5 and 5.6 we see again that AFEM outperforms FEM with
standard uniform refinement. Since the decay of the estimator η(Ω) is opti-
mal, we have computational evidence of optimal meshes.

• Figure 5.4 displays a discrete solution u8 and graded meshes after 8 and 10
iterations; note the drastic variation of u8 across the annulus r1 < r < r1 +α.
Meshes adapt well to lack of smoothness, namely, refinement concentrates
in the transition layer, where ∇ψ does not vanish, and at the midpoints of
boundary sides, where boundary conditions change.
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Table 5.6

Experiment 3 (drift-diffusion model): Performance of FEM with uniform refinement and the
same parameters χ, r1, and α as for AFEM given in Table 5.5. To have the estimator around 0.9,
uniform refinement needs about 65,000 DOFs, whereas AFEM needs only around 10,000 DOFs.

DOFk ηk(Ω) EOCη RFO

1024 179.831 3.186 0.009
2048 30.769 2.547 0.026
4096 11.031 1.479 0.096
8192 3.983 1.469 0.106

16384 2.173 0.874 0.188
32768 1.296 0.745 0.216
65536 0.874 0.567 0.250

y

0.5

1.0
x

0.5

1.0

u(x,y)

Fig. 5.4. Experiment 3 (drift-diffusion model): Discrete solution u8 and refined meshes after 8
and 10 iterations. Mesh grading is quite pronounced in the internal layer where ∇ψ does not vanish,
and at the midpoints of the boundary sides, where boundary conditions change. The solution u(x, y)
has a thin transition layer where ∇ψ �= 0, and meshes are highly refined there.

6. Extensions. We extend the model problem (1.1) by considering now A with
discontinuities aligned with the initial mesh and a nondivergence-free b. Note that if
∇·b 
= 0, then the bilinear form B may be noncoercive if c− 1

2∇·b � 0.

6.1. Discontinuous A. We first observe that Lemma 4.1, and thus Lemma 2.1,
still holds because the regularity H1+s required in the duality argument is valid; see [6]
for example. The continuity of A is used instead for obtaining error and oscillation
reduction estimates (Lemmas 3.1 and 3.2) in that the element oscillation oscH(T )
does not involve oscillation of the jump residual on ∂T . Remark 4.2 shows that
when A has discontinuities across element faces, we still obtain the error reduction
estimate (3.11) of Lemma 3.1, but this time the oscillation is defined by (4.10) and
involves oscillation of the jump residual. To prove convergence it suffices to show
the oscillation reduction estimate (3.12), for the new concept of element oscillation,

namely, oscH(T )
2

= oscR,H(T )2 +
∑

S⊂∂ToscJ,H(S)2 with

oscR,H(T )2 := H2
T

∥∥∥RT (uH) −RT (uH)
∥∥∥2

L2(T )
∀ T ∈ TH ,

oscJ,H(S)2 := HS

∥∥∥JS(uH) − JS(uH)
∥∥∥2

L2(S)
∀ S ∈ SH .

We proceed in three steps as follows:

Step 1. Oscillation of interior residual. Invoking the same arguments as in the
proof of Lemma 3.2 in section 4.3, we obtain an oscillation reduction estimate for the



1824 KHAMRON MEKCHAY AND RICARDO H. NOCHETTO

interior residual

oscR,h(T ′)2 ≤ (1 + δ)γ2
T ′oscR,H(T ′)2 + C∗(1 + δ−1) ‖εH‖2

H1(T ′) ∀ T ′ ∈ TH ,

where oscR,h(T ′) is defined to be osch(T ′) in (4.12).
Step 2. Oscillation of jump residual. To obtain an estimate for oscJ,h(S) we write

JS(uh) = γS [[A∇uH ]]S · νS + [[A∇εH ]]S · νs = γSJS(uH) + JS(εH),

where γS = 1 if S ⊂ S′ ∈ SH and γS = 0 otherwise, since A∇uH is continuous on S
in the second case. Using Young’s inequality, we have for all δ > 0

oscJ,h(S)2 ≤ (1 + δ)γShS

∥∥∥JS(uH) − JS(uH)
∥∥∥2

L2(S)

+ (1 + δ−1)hS

∥∥∥JS(εH) − JS(εH)
∥∥∥2

L2(S)
,

where JS(uH) and JS(εH) are L2-projections of JS(uH) and JS(εH) onto Pn−1(S).
For the second term we observe that∥∥∥JS(εH) − JS(εH)

∥∥∥
L2(S)

≤ ‖JS(εH)‖L2(S) = ‖[[A∇εH ]]S · νS‖L2(S)

≤
∥∥A+∇ε+

H · νS
∥∥
L2(S)

+
∥∥A−∇ε−H · νS

∥∥
L2(S)

≤ ‖A‖L∞(ωS)

(∥∥∇ε+
H

∥∥
L2(S)

+
∥∥∇ε−H

∥∥
L2(S)

)

≤ CAh
−1/2
S ‖εH‖H1(ωS) ,

where CA depends on A and the shape regularity constant γ∗. For simplicity, let
Sh(T ′) denote all S ∈ Sh contained in T ′ ∈ TH ; hence

oscJ,h(T ′)
2
=

∑
S∈Sh(T ′)

oscJ,h(S)
2

≤ (1 + δ)
∑

S∈Sh(T ′)

γShS

∥∥∥JS(uH)−JS(uH)
∥∥∥2

L2(S)
+ (1 + δ−1)CA ‖εH‖2

H1(ωT ′ ) .

In light of the reduction factor of the element size hS ≤ γT ′HS′ , and definitions of γS
and γT ′ , we obtain

∑
S∈Sh(T ′)

γShS

∥∥∥JS(uH)−JS(uH)
∥∥∥2

L2(S)
≤ γT ′

∑
S′∈SH(T ′)

HS′

∥∥∥JS′(uH) − JS′(uH)
∥∥∥2

L2(S′)

= γT ′oscJ,H(T ′)
2
,

because for S ⊂ S′ ⊂ ∂T ′, we have JS(uH) = JS′(uH) and JS(uH) is the best
L2-approximation of JS(uH) on S. Therefore,

oscJ,h(T ′)
2 ≤ (1 + δ)γT ′oscJ,H(T ′)

2
+ (1 + δ−1)CA ‖εH‖2

H1(ωT ′ ) ∀ T ′ ∈ TH .

Step 3. Choice of δ. Combining results from Steps 1 and 2 above using γT ′ ≤ 1,
C∗∗ = max {C∗, CA}, and the definition of osch(T ), we arrive at

osch(T ′)
2 ≤ (1 + δ)γT ′oscH(T ′)2 + C∗∗(1 + δ−1) ‖εH‖2

H1(ωT ′ ) .
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Proceeding as in Step 3 of the proof of Lemma 3.2, this time with Marking Strategy
O performed according to the new definition of oscH(T ), we arrive at

osch(Ω)
2 ≤ (1 + δ)(1 − (1 − γ0)θ̂

2)oscH(Ω)
2

+ Co(1 + δ−1) |||εH |||2

with Co = C∗∗c
−1
B . The assertion thus follows by choosing δ sufficiently small so that

ρ1 := (1 + δ)(1 − (1 − γ0)θ̂
2) < 1, ρ2 := Co(1 + δ−1).

6.2. Noncoercive B. In this section, we prove convergence of AFEM for the
case c− 1

2∇·b � 0, c ≥ 0; the case c < 0 can be treated as well. According to what we
have so far, the assumption of ∇·b = 0 is used for proving quasi-orthogonality and
for having equivalence between energy norm |||v|||2 := B[v, v] and H1-norm as in (2.3),
where B is coercive. Since now B may be noncoercive, we cannot define the energy
norm in this manner. We instead define the energy norm by |||v|||2 :=

∫
Ω

A∇v·∇v+c v2,
and we have equivalence of norms

cE ‖v‖2
H1(Ω) ≤ |||v|||2 ≤ CE ‖v‖2

H1(Ω) ,(6.1)

where constants cE and CE depend only on the data A, c, and Ω. The lack of coercivity
is now replaced by G̊arding’s inequality

|||v|||2 − γG ‖v‖2
L2(Ω) ≤ B[v, v] ∀ v ∈ H1

0 (Ω),(6.2)

where γG = ‖∇·b‖∞ /2. To see this we integrate by parts the middle term of B[v, v],

∫
Ω

b · ∇v v =
1

2

∫
Ω

b · ∇(v2) = −
∫

Ω

∇·b
2

v2 ∀ v ∈ H1
0 (Ω).

The same calculation leads to the sharp upper bound for B[v, v]:

B[v, v] ≤ |||v|||2 + γG ‖v‖2
L2(Ω) ∀ v ∈ H1

0 (Ω).(6.3)

Existence and uniqueness of weak solutions follows from the maximum principle
for c ≥ 0 [5]. Schatz showed in [10] that the discrete problem (2.5) has a unique
solution if the meshsize h is sufficiently small, i.e., h ≤ h∗ for some constant h∗

depending on the shape regularity and data but not computable; the results in [10]
are also valid for graded meshes. Assuming h0 ≤ h∗, to prove convergence of AFEM
it thus suffices to prove quasi-orthogonality. We follow the steps of Lemma 2.1.

Using the same notation as in section 4 for eh, eH , and εH , expanding B[eH , eH ],
and noticing that eH = eh + εH and B[eh, εH ] = 0, we arrive at

B[eh, eh] = B[eH , eH ] − B[εH , εH ] − B[εH , eh],(6.4)

where this time integration by parts yields

B[εH , eh] = B[eh, εH ] + 〈b · ∇εH , eh〉 − 〈b · ∇eh, εH〉
= 2 〈b · ∇εH , eh〉 + 〈∇·b eh, εH〉 .

Consequently, using the Cauchy–Schwarz inequality and (6.1), we have for all δ > 0

|B[εH , eh]| ≤ (2 ‖b‖∞‖∇εH‖L2 + ‖∇·b‖∞‖εH‖L2) ‖eh‖L2 ≤ C2
b δ |||εH |||2 + δ−1 ‖eh‖2

L2 ,
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where constant Cb = max {2 ‖b‖∞ , ‖∇·b‖∞} c−1
E /2.

Using (6.2) and (6.3) to estimate terms B[eh, eh],B[eH , eH ], and B[εH , εH ] in (6.4),
and combining with the previous estimate, we infer that

|||eh|||2 − (γG + δ−1) ‖eh‖2
L2 ≤ |||eH |||2 + γG ‖eH‖2

L2 − (1 − C2
b δ) |||εH |||2 + γG ‖εH‖2

L2 .

Since ‖εH‖2
L2 ≤ 2 ‖eh‖2

L2 + 2 ‖eH‖2
L2 , estimates for ‖eh‖L2 and ‖eH‖L2 of the form

(4.1), obtained via duality, with C6 := CD√
cE

imply

Λh |||eh|||2 ≤ ΛH |||eH |||2 − Λε |||εH |||2 ,(6.5)

where Λh = 1 − C2
6h

2s
0 (3γG + δ−1), ΛH = 1 + 3γGC

2
6h

2s
0 , and Λε = 1 − C2

b δ.
Consequently, to get Λh = Λε, we choose δ depending on h0 so that

δ(h0) =
CGh

2s
0 +

√
C2

Gh
4s
0 + 4C2

bC
2
6h

2s
0

2C2
b

> 0,

where CG = 3γGC
2
6 . We further choose h0 sufficiently small so that C2

b δ(h0) < 1,
whence Λh = Λε > 0. This can be achieved for hs

0 ≤ min
{
C6CbC

−1
G , (3C6Cb)

−1
}

because

C2
b δ(h0) =

CG

2
h2s

0 + CbC6h
s
0

√
1 + h2s

0 C2
G(4C2

bC
2
6 )−1

≤ 2CbC6h
s
0

(
1 + hs

0CG(4CbC6)
−1

)
< 3CbC6h

s
0 ≤ 1.

We conclude that if the meshsize h0 of the initial mesh satisfies

hs
0 ≤ min

{
C6CbC

−1
G , (3C6Cb)

−1, (h∗)s
}
,(6.6)

then quasi-orthogonality holds, i.e., for Λ0 := ΛH/Λh,

|||eh|||2 ≤ Λ0 |||eH |||2 − |||εH |||2 ,(6.7)

and Λ0 can be made arbitrarily close to 1 by decreasing h0. Convergence of AFEM
finally follows as in Theorem 1.1.

6.3. Experiment 4: Noncoercive B. We repeat Experiment 2 in section 5.3
with b = (x − 1, y + 1), and thus B is noncoercive because c − 1

2∇·b = −1. For
a better view of solutions we change the boundary condition g(x, y) to be 1 on the
x-axis from (.4 + τ) to (.8 − τ), with τ defined as in (5.3). Results of AFEM with

θ = θ̂ = 0.5, τ = 0.005 are reported in Figure 6.1. Observations and conclusions
follow:

• Figure 6.1 shows oscillations of the Galerkin solution near internal and bound-
ary layers after 4 iterations. AFEM detects this effect and corrects it after
6 iterations by selective local refinement which does not spread in regions of
smoothness.

• The resulting graded meshes are optimal and capture internal layers (diffuse
boundary of pulse g being transported) and the outflow boundary layer, even
though the initial uniform mesh is far coarser than required by theory; see
(6.6) which is a restriction similar to that discussed in section 5.3 (Experiment
2). Moreover, the performance of AFEM as to the estimator decay and
oscillation control is analogous to section 5.3 (Experiment 2).
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Fig. 6.1. Experiment 4 (noncoercive B with ε = 10−3,b = (x − 1, y + 1)): Three-dimensional
plots of solutions after 4 and 6 iterations and graded mesh after 6 iterations. Oscillations of Galerkin
solutions are observed near internal and boundary layers in a first few iterations but AFEM elimi-
nates them after 6 iterations.
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Abstract. This paper is devoted to the discretization and numerical simulation of a new quan-
tum drift-diffusion model that was recently derived. In a first step, we introduce an implicit semi-
discretization in time which possesses some interesting properties: this system is well-posed, it pre-
serves the positivity of the density, the total charge is conserved, and it is entropic (a free energy is
dissipated). Then, after a discretization of the space variable, we define a numerical scheme which
has the same properties and is equivalent to a convex minimization problem. These results are
illustrated by some numerical simulations.

Key words. quantum drift-diffusion, Schrödinger–Poisson, entropic scheme, convex minimiza-
tion
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1. Introduction. Recently, Degond and Ringhofer [15, 16] explored a new di-
rection for quantum hydrodynamic (QHD) models by extending Levermore’s moment
approach [33] to the context of quantum mechanics. Their strategy consists in defining
a notion of “local” quantum equilibrium as the minimizer of an entropy functional
under local moment constraints. Such equilibria are defined, thanks to a relation
between the thermodynamic quantities (such as the chemical potential or the temper-
ature) and the extensive quantities (the densities), in a nonlocal way. In [15], QHD
models were derived from quantum kinetic equations by moment expansions closed
by these quantum equilibria. In this reference, Degond and Ringhofer also sketched
an important program related to these QHD models, including, namely, the setting
up of a rigorous framework for this formal modeling, the inclusion of other quantum
effects (the Pauli exclusion principle, spin effects, etc.), and the numerical discretiza-
tion and simulation. Following the same approach, these authors then introduced in
[17] a family of ad hoc collision operators which decrease the quantum entropy and
relax to the equilibria. Afterwards, this strategy was applied in [13] in order to derive
quantum diffusive models: a quantum drift-diffusion (QDD) model and a quantum
energy-transport (QET) model. In a work in progress [8], other diffusive models of
the type of the spherical harmonic expansion (SHE) model are also constructed in the
quantum framework.

All these fluid models are written as conservation laws coupled to constitutive
equations. The quantum character of these models lies in these constitutive equations,
which are nonlocal in space and make these systems difficult to analyze (papers [15, 13]
remained at a formal level). However, an interesting property of these models is
that—at least formally—a fluid entropy functional is dissipated. This feature gives
an indication of the well-posedness of these systems; in addition, it is interesting to
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†MIP, Laboratoire CNRS (UMR 5640), Université Paul Sabatier, 118, route de Narbonne, 31062

Toulouse Cedex 04, France (gallego@mip.ups-tlse.fr, mehats@mip.ups-tlse.fr).

1828



DISCRETIZATION OF A QUANTUM DRIFT-DIFFUSION MODEL 1829

recall that the entropic property is obtained as a by-product of the strategy of entropy
minimization.

In this paper, we are interested in the QDD model with two objectives. First,
the present work is a first step in the rigorous analysis of this system coupled to the
Poisson equation. Second, we study the discretization of this system and its numerical
simulation.

Let us now describe the main results of this paper. The QDD system is given
by (2.8)–(2.10). Actually, we are not yet able to answer the question of the well-
posedness of this system. Nevertheless, we introduce, instead, and analyze rigorously
a semidiscretized (in time) version of this model, defined by (3.1)–(3.3), and which
presents the same entropy dissipation property as the QDD system. This first set of
results is given in Theorem 3.1. Next, concerning the second objective of the paper,
the implicit numerical scheme (4.1)–(4.3) is defined. This scheme is well-posed and
equivalent to a problem of convex minimization. Then, we show that this scheme
is stable in the sense of a discrete entropy. These results concerning the numerical
scheme are stated in Theorem 4.1.

We end this introduction with bibliographical notes on quantum transport mod-
eling. The QDD system applies to the modeling of nanoscale semiconductor devices.
In the semiconductor industry, the classical drift-diffusion model has been a valuable
tool for many years [11, 28, 35, 37, 48]. Currently, the ongoing miniaturization of
electronic devices to the nanometer scale has created the need of models which take
into account quantum effects. To this aim, two strategies can be followed.

The first approach, with a radical change in the level of description, consists of
choosing full quantum models such as the Schrödinger equation, the von Neumann
equation, or the Wigner equation [4, 9, 12, 18, 19, 32, 38, 45, 46]. These models are
well-fitted for very small devices but lead to the resolution of huge numerical systems
at the intermediate scale, which is currently considered by electronic engineers. An-
other reason why this approach is limited to very small devices is that the question of
describing collisions in quantum transport models is extremely difficult and has not
yet received a completely satisfactory answer. Therefore, full quantum models are
still mainly reserved to ballistic transport in small devices.

The opposite strategy consists of introducing quantum correction terms in the
classical drift-diffusion model. The most common quantum correction involves the
Bohm potential, which naturally appears in QHD, thanks to an analogy between the
Schrödinger equation and the pressureless Euler system corrected with the Bohm po-
tential. This analogy can be seen, thanks to the Madelung transformation [34, 50], by
considering the equations satisfied by the amplitude and the phase of a wavefunction
solving the Schrödinger equation (see, e.g., [13] for more details). Next, assuming
that adding this Bohm potential enables us to model quantum effects in classical
macroscopic systems, several models with corrective terms have been written. In a
fluid context, hydrodynamics models with quantum corrections have been studied in
[22, 23, 24, 25, 26, 27, 29, 44, 51]. In a diffusive context, and closest to the QDD
model studied in this paper, one can find the drift-diffusion model, corrected with
the Bohm potential, called the density-gradient model (it is also sometimes called the
QDD model, but in this paper we shall refer it as the density-gradient model in order
to avoid any confusion with the QDD model presented here). This model was intro-
duced in [1, 2], then mathematically and numerically studied in [3, 7, 29, 30, 41, 42].
One advantage of such an approach is that it takes into account collisions, at least
heuristically. Another strength is that, as this method is based on an evolution of the
classical drift-diffusion model, the numerical codes currently employed in the semi-
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conductor industry can be adapted by following this evolution. Nevertheless, one has
to insist on the fact that the justification of these models is far from obvious in the
case of statistical mixtures (several attempts were made to address this issue; see, for
instance, [22, 23, 24, 27]). Moreover, quantum corrections involving the Bohm po-
tential produce high order terms in these systems and make their resolution difficult,
from the mathematical and numerical points of view. To conclude this description,
one can also cite two other recent attempts to model quantum effects in diffusive
models [6, 43]. The models presented in these works are different, but both take the
form of a drift-diffusion equation, coupled to the Poisson equation, and where the
quantum phenomena are taken into account by a modification of the link between the
density and the quasi-Fermi potential, via the resolution of a quasi-static Schrödinger
equation.

As a compromise, the QDD model studied in this paper tries to reconcile these
two approaches: this model is really quantum and nonlocal, while the length scales
are macroscopic and collisions are modeled. Indeed, as is shown in section 2.3, the
steady states of the QDD model solve the Schrödinger–Poisson system studied in
[31, 39, 40], which shows the quantum character of this model. In addition, it has
been shown in [13] that, at least formally, the limit of the QDD model as � goes to
zero is the classical drift-diffusion model, while the leading order correction term in
an � expansion is the Bohm potential, which shows a clear link between the QDD
model and the density-gradient model described above.

The paper is organized as follows. In section 2, we write a formulation of the
QDD model in a bounded domain and give some of its properties. Then, in section 3,
we define the semidiscretization in time of the QDD system and show that this new
system is well-posed and entropic. In section 4, the numerical scheme is constructed
and we analyze its properties (well-posedness, stability). Finally, in section 5, we
illustrate these properties by some numerical simulations.

2. The QDD model. This section is devoted to the presentation of the QDD
model. It is not clear which precise functional framework would be adapted to a
rigorous analysis of this system. Nevertheless, we can still state some properties
satisfied by any smooth solution of this system. This enables us to put into perspective
the results of section 3. Indeed, we shall see in section 3 that similar properties are
satisfied by the solutions of the semidiscretized QDD system (3.1)–(3.3), whereas their
existence can be rigorously proved.

2.1. Notation: The QDD model on a bounded domain. Let us first give
a formulation of the QDD model in the case of bounded domains. This model, which
describes the evolution of a quantum system of electrons, was derived in [13] and the
most convenient equivalent form of this model was written in the review paper [14].
The first equation is the equation of mass conservation:

∂tn + divj = 0.(2.1)

The second equation of the model is the constitutive equation which gives the expres-
sion of the current

j = n∇(A− V ).(2.2)

In this equation, V (t, x) is the self-consistent potential (modeling the interactions
between the electrons) and A(t, x) is the quantum chemical potential, linked to the
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density by a relation which is nonlocal in space and which is the key of this quantum
model. In order to make this relation explicit, let us introduce the operator

H[A] = −h2Δ + A + V ext,

whose domain D(H) will be defined below and where h is the dimensionless Planck
constant:

h =
�

(2m∗L2 kT )1/2
,

m∗ being the effective mass, L a characteristic length of the device, and T the tem-
perature. Here, V ext(x) is an external potential applied to the system (assumed
independent of time for simplicity). In the QDD model, the electron system is at any
time in a local quantum equilibrium (see [15, 13]) and its density matrix is

� = exp(−H[A]),(2.3)

where exp denotes the exponential of the operator. Notice that when the chemical
potential A differs from the electrical potential, the operator H[A] is not the Hamilto-
nian and � is not the density matrix of a global quantum equilibria as usually defined
[5]. A consequence of this formula (2.3) is the relation between the density and the
chemical potential, given in a weak sense by

∀φ ∈ L∞
∫

nφdx = tr(exp(−H[A])φ).(2.4)

Here we used the usual convention where, for any test function φ, tr(exp(−H[A])φ)
denotes the trace of the composition of the exponential of the operator −H[A] with
the operator of multiplication by φ. Finally, the last equation of the model is the
Poisson equation, which links the density and the self-consistent potential:

−αΔV = n.(2.5)

In this equation, α is a positive dimensionless parameter proportional to the square
of the Debye length of the system; more precisely, if ε0 and εr denote the vacuum
permittivity and the relative permittivity of the material, if N denotes a characteristic
density, and if e denotes the elementary charge, we have

α =
ε0 εr kT

e2 L2 N .

A given background charge density may be taken into account in this model, for
instance, by a modification of the external potential V ext and a shift of the chemical
potential A.

Let Ω ⊂ R
d be a regular bounded domain (d ≤ 3). Its boundary is denoted by

∂Ω and ν(x) is the outward unit normal vector at x ∈ ∂Ω. All the unknowns of the
system n(t, x), j(t, x), A(t, x), and V (t, x) are defined for t ≥ 0 and x ∈ Ω. Now, we
need to make the boundary conditions for this system precise. The most simple ones,
which will be studied in this paper, prescribe a vanishing current at the boundary.
This no-flux boundary condition takes the form of the Neumann condition

∇(A− V ) · ν = 0 on ∂Ω.
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(Recall that we assume A and V smooth enough to give sense to this Neumann
condition; for the semidiscretized model analyzed in section 3, the W 2,p regularity
obtained in Theorem 3.1 is enough.) For the self-consistent potential, we consider a
Dirichlet boundary condition

V = 0 on ∂Ω.

It remains to fix the domain of the Hamiltonian H[A]. In [21], the QDD model
was written with Dirichlet boundary conditions for the wavefunctions, as well as its
discrete version. Here, for technical reasons which will be explained further (we need
to ensure the positivity of the density on Ω: see the beginning of the proof of Theorem
3.1), Neumann boundary conditions are chosen:

D(H) = {φ ∈ H2(Ω) : ∇φ · ν = 0 on ∂Ω}.(2.6)

Hence, if A belongs to, say, L2(Ω), then the operator H[A] is bounded from below
and has a compact resolvent. Let us denote by (χp[A])p=1,...,∞ an orthogonal basis
of eigenfunctions, associated with the eigenvalues λ1[A] ≤ λ2[A] ≤ · · · ≤ λp[A] ≤ · · ·.
The nonlocal relation (2.4) between n and A takes a more explicit form

n[A] =
∑
p≥1

e−λp[A] |χp[A]|2.(2.7)

To summarize this part, one can write the QDD model including self-consistent
effects as follows:

∂tn + div(n∇(A− V )) = 0,(2.8)

−αΔV = n,(2.9)

n =
∑
p

e−λp[A] |χp[A]|2,(2.10)

where (λp[A], χp[A])p denote the eigenvalues and the eigenfunctions of the Hamilto-
nian H[A] = −h2Δ + A + V ext whose domain is D(H) = {ψ ∈ H2(Ω) : ∂νψ = 0}.
The unknowns of this system are subject to the following no-flux boundary conditions
on ∂Ω:

V = 0, ∂ν(A− V ) = 0 (∂Ω),(2.11)

and to a Cauchy datum n0(x).
In this paper, the following assumptions on the data will be made.
Assumption 2.1. The initial datum n0 is continuous and positive on Ω.
Assumption 2.2. The external potential V ext is nonnegative and belongs to

L∞(Ω).

2.2. Technical lemmas: The relation between n and A. In this subsection,
we gather some technical lemmas that are used in this paper. The first lemma, which
is given without proof, is directly adapted from [40] (the only difference lies in the
domain D(H); in [40], a Dirichlet boundary condition was considered instead of our
Neumann boundary condition).

Lemma 2.3. Let A ∈ H1(Ω) and let n[A] be defined by

n[A] =
∑
p≥1

e−λp[A] |χp[A]|2,
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where λp[A] and χp[A] are the spectral elements of

H[A] = −h2Δ + A + V ext,

whose domain D(H) is defined by (2.6). Then n[A] is a continuous function on Ω.
Moreover, the map F defined by

A ∈ H1(Ω) �→ F [A] := tr
(
e−H[A]

)
=

∫
n[A] dx(2.12)

is well defined, Fréchet C∞, and strictly convex. Its first derivative in the direction
φ ∈ H1(Ω) reads

dAF · φ = −tr
(
e−H[A] φ

)
= −

∫
n[A]φdx,(2.13)

and its second derivative reads

d2
AF · φ · φ = −

∞∑
p=1

∞∑
q=1

e−λp[A] − e−λq [A]

λp[A] − λq[A]

∣∣∣∣
∫

φχp χq dx

∣∣∣∣
2

,(2.14)

where e−λp[A]−e−λq [A]

λp[A]−λq [A] conventionally equals −e−λp[A] if λp[A] = λq[A].

Notice that this lemma gives a sense to formula (2.7) as soon as A belongs to
H1(Ω).

Lemma 2.4. Let A and Ã belong to H1(Ω) and, using the notation of Lemma
2.3, let

n = n[A] =
∑
p≥1

e−λp[A] |χp[A]|2, ñ = n[Ã] =
∑
p≥1

e−λp[Ã] |χp[Ã]|2.

Then we have ∫
(n(A− Ã) + n− ñ) dx ≤ 0.(2.15)

Proof. The functional F [A] defined in Lemma 2.3 is convex; thus we have the
inequality

F [Ã] − F [A] ≥ dAF · (Ã−A).

The desired result is a consequence of the expression (2.13) of dAF .

2.3. Steady states and entropy dissipation. The steady states of the QDD
system are well known: these are the solutions of the Schrödinger–Poisson system
studied by Nier in [40]. Following this reference, the following proposition can be
proved (its proof is left to the reader).

Proposition 2.5. Let N > 0 and let (n,A, V ) be a steady state of (2.8)–(2.10)
such that

∫
n(x) dx = N . Assume that n is continuous and positive on Ω. Then there

exists a constant εF such that A = V − εF and (n, V, εF ) is the unique solution of the
Schrödinger–Poisson system under a constraint of the total charge:

⎧⎨
⎩
−h2Δχp + (V + V ext)χp = λp χp (p = 1, . . . ,∞),

χp ∈ D(H),

∫
χp χq = δpq,

(2.16)
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−αΔV = n =
∑
p

eεF−λp |χp|2, V ∈ H1
0 (Ω),(2.17)

∫
n(x) dx = N.(2.18)

Next, the following formal result shows that the QDD system coupled with the
Poisson equation is entropic.

Proposition 2.6. Let (n,A, V ) be a smooth solution of (2.8)–(2.10). Then the
following properties hold.

(i) The following free energy S(t) is a decreasing function of time and is bounded
from below (by a negative constant depending only on Ω and h):

S(t) = −
∫

n (A + 1) dx +
α

2

∫
|∇V |2 dx.

(ii) If (n∞, A∞, V ∞) is the solution of (2.16)–(2.18) corresponding to N =∫
n(0, x) dx, then the following relative entropy Σ(t) is the sum of two non-

negative terms and is a decreasing function of time:

Σ(t) = −
∫

(n (A−A∞) + n− n∞) dx +
α

2

∫
|∇(V − V ∞)|2dx.

Proof. By applying (2.15) with Ã ≡ 0, we get

−
∫

n (A + 1) ≥ −
∫

n[0] dx.

Assumption 2.2 gives V ext ≥ 0. Hence, by the min-max formula, the eigenvalues λp[0]
of H[0] = −h2Δ + V ext satisfy λp[0] ≥ λΔ

p , where λΔ
p are the eigenvalues of −h2Δ

with Neumann boundary conditions on ∂Ω. Thus, we have

∫
n[0] dx ≤

∑
p

e−λΔ
p

and S is bounded from below by a constant which depends only on Ω and h.

Let us now remark that, due to the no-flux boundary conditions (2.11), an inte-
gration of the first equation of (2.8)–(2.10) yields the conservation of the total charge:

∀t ≥ 0

∫
n(t, x) dx =

∫
n(0, x) dx.(2.19)

Independently, by differentiating with respect to time the functional F [A] defined by
(2.12), and recalling that V ext is independent of time, we get

d

dt

∫
n(t, x) dx =

d

dt
F [A(t)] = dAF · ∂tA = −

∫
n(t, x) ∂tA(t, x) dx;

thus, we have

d

dt

∫
n (A + 1) dx =

∫
(∂tn)Adx.
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To prove item (i), it remains to remark that the Poisson equation with Dirichlet
boundary conditions yields

d

dt

α

2

∫
|∇V |2 dx =

∫
(∂tn)V dx.

Consequently, we obtain

d

dt
S(t) = −

∫
(∂tn)(A− V ) dx = −

∫
n |∇(A− V )|2 dx ≤ 0,(2.20)

which proves (i). Let us now prove (ii). The fact that the first term of Σ(t) is
nonnegative stems from (2.15). In addition, since we have A∞ = V ∞− εF , we deduce
the equivalent expression

Σ(t) = −
∫

(n (A + εF ) + n− n∞) dx

+α

∫
∇V · ∇V ∞ dx +

α

2

∫
|∇(V − V ∞)|2

= S(t) − εF

∫
ndx +

∫
n∞ dx +

α

2

∫
|∇V ∞|2 dx,

where we used the Poisson equation −αΔV =n. Therefore, by using (2.19), we deduce

d

dt
Σ(t) =

d

dt
S(t) ≤ 0.

Remark 2.7. Equation (2.20) gives the expression of the entropy dissipation.
This term indicates that, as time goes to infinity, A − V should converge towards
a constant. Thus any transient solution of the QDD model should converge to the
(unique) corresponding steady state. In order to prove rigorously this convergence, we
need to control n from below, which is an open problem.

3. Semidiscretization in time. This section is devoted to the study of a
semidiscrete version of (2.8)–(2.10), which appears as a first step towards the nu-
merical scheme that is presented in section 4. Let Δt > 0 be the time step. For
k ∈ N, the semidiscretized model is written as

nk+1 − nk

Δt
+ div(nk∇(Ak+1 − V k+1)) = 0,(3.1)

−αΔV k+1 = nk+1,(3.2)

nk+1 =
∑
p

e−λp[Ak+1] |χp[A
k+1]|2,(3.3)

subject to the boundary conditions

V k+1 = 0, ∂ν(A
k+1 − V k+1) = 0.(3.4)

Recall that, in this system, λp[·] and χp[·] denote the whole sequence of eigenvalues
and eigenfunctions of the operator H[·] defined in section 2.1 by

H[A] = −h2Δ + A + V ext.
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The unknowns are the density nk(x), the quantum chemical potential Ak(x), and the
self-consistent potential V k(x) for k ∈ N

∗. For k = 0, the density n0 is given satisfying
Assumption 2.1. Then, the Poisson equation enables us to define V 0. Concerning the
initial chemical potential A0, since it is not clear whether (2.7) can be inverted, we
choose to let A0 be undetermined. Notice that A0 is not required in this model to
compute (nk, Ak, V k) for k ≥ 1. An alternative choice for the initial conditions would
be to take an initial datum A0, then to deduce n0 by (2.7) and V 0 by the Poisson
equation. However, it seems more interesting, for physical reasons, to start from an
initial density n0.

The main result of this section is as follows.
Theorem 3.1. Under Assumptions 2.1 and 2.2, we have the following properties.
(i) The semidiscretized model (3.1)–(3.3) is well-posed. For all k ∈ N

∗, the func-
tions Ak ∈ W 2,p(Ω), V k ∈ W 2,p(Ω) (for any p < ∞), and nk ∈ C(Ω) are
uniquely defined and, for all k, we have nk > 0 on Ω.

(ii) The total charge is conserved,

∀k ∈ N

∫
nk dx =

∫
n0 dx,(3.5)

and the following free energy Sk, defined for k ≥ 1, is bounded from below
and decreases as k increases:

Sk = −
∫

nk (Ak + 1) dx +
α

2

∫
|∇V k|2 dx.

(iii) If (n∞, A∞, V ∞) is the solution of the Schrödinger–Poisson system (2.16)–
(2.18) corresponding to N =

∫
n0 dx, then the following relative entropy Σk

is the sum of two nonnegative terms and decreases as k increases:

Σk = −
∫

(nk (Ak −A∞) + nk − n∞) dx +
α

2

∫
|∇(V k − V ∞)|2.

Proof. (i) Let us first give the outline of this proof. We shall proceed by induction,
for any function nk, positive and continuous on Ω, we will show that there exists a
unique pair (Ak+1, V k+1) ∈ H1(Ω) ×H1

0 (Ω) satisfying

n[Ak+1] − nk

Δt
+ div(nk∇(Ak+1 − V k+1)) = 0(3.6)

and

−αΔV k+1 = n[Ak+1],(3.7)

with the boundary condition (3.4), where we recall the notation

n[Ak+1] =
∑
p

e−λp[Ak+1] |χp[A
k+1]|2.

Then, as soon as (Ak+1, V k+1) is defined, it suffices to set nk+1 = n[Ak+1] and (3.1)–
(3.3) is satisfied. Moreover, the first part of Lemma 2.3 shows that nk+1 is continuous
on Ω. Hence, (3.1)–(3.3) and standard elliptic regularity estimates imply that for any
p < ∞ we have V k+1 ∈ W 2,p(Ω) and Ak+1 ∈ W 2,p(Ω). By Sobolev embeddings,
we deduce that Ak+1 ∈ L∞(Ω), which is enough to apply Krein–Rutman’s theorem
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[10]; the choice of Neumann boundary conditions for the eigenfunction χp (see (2.6))
ensures the fact that χk+1

1 does not vanish on the closed domain Ω. Consequently,
nk+1 is itself positive and continuous on Ω and can be used to initiate the next step
of the induction; we are then able to construct (Ak+2, V k+2, nk+2). Finally, thanks
to Assumption 2.1 on the initial density n0, all of the sequence (Ak, V k, nk)k≥1 can
be constructed by induction.

Let us now prove the claim: for any given positive and continuous function nk,
one can construct a unique corresponding (Ak+1, V k+1) satisfying (3.6) and (3.7).
This proof, inspired by [39, 40], is based on a variational argument. We introduce the
following functional, defined for A ∈ H1(Ω) and V ∈ H1

0 (Ω):

J(A, V ) =
Δt

2

∫
nk |∇(A− V )|2 dx +

α

2

∫
|∇V |2 dx + F [A] +

∫
nk (A− V ) dx,

where F [A] is defined by

F [A] = tre−H[A] =
∑
p≥1

e−λ[A].

Note that this functional J depends on nk. By Lemma 2.3, this functional is contin-
uous, Fréchet differentiable, and its derivative is given by

dA,V J · (δA, δV ) = Δt

∫
nk ∇(A− V ) · ∇(δA− δV ) dx

+α

∫
∇V · ∇δV dx

−
∫

n[A] δAdx +

∫
nk (δA− δV ) dx,

where δA ∈ H1(Ω), δV ∈ H1
0 (Ω), and we recall the notation

n[A] =
∑
p

e−λp[A] |χp[A]|2.

Therefore, it is readily seen that the critical points of J satisfy (3.1)–(3.4). To prove
the existence and uniqueness of Ak+1 and V k+1, it suffices to show that J is strictly
convex and coercive, since its unique minimizer will be (Ak+1, V k+1). The strict
convexity is a consequence of Lemma 2.3 (which states that F is strictly convex) of
the strict convexity of the functional

V ∈ H1
0 (Ω) �−→

∫
|∇V |2 dx

and of the convexity of the functional

(A, V ) ∈ H1(Ω) ×H1
0 (Ω) �−→

∫
nk |∇(A− V )|2 dx.

It remains to prove the coercivity with respect to A ∈ H1(Ω) and V ∈ H1
0 (Ω).

Let (Aε, V ε) be a sequence in H1(Ω) × H1
0 (Ω), parametrized by ε > 0, such that

J(Aε, V ε) has an upper bound independent of ε. To prove the coercivity of J , it
suffices to show that ‖Aε‖H1 + ‖V ε‖H1 can be bounded independently of ε.
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Setting aε = 1
|Ω|

∫
Aε dx (where |Ω| denotes the measure of Ω), we introduce the

function Bε = Aε − aε. We have

J(Aε, V ε) =
Δt

2

∫
nk |∇(Bε − V ε)|2 dx +

α

2

∫
|∇V ε|2 dx

+ e−aε ∑
p

e−λp[Bε] +

∫
nk (Bε − V ε) dx + aε

∫
nk dx ≤ C,

where C does not depend on ε. We recall that there exist two constants n > 0 and
n > 0, independent of ε, such that

n ≤ nk(x) ≤ n on Ω.

Hence, the Cauchy–Schwarz inequality gives

(3.8)

Δt

2
n

∫
|∇(Bε − V ε)|2 dx +

α

2

∫
|∇V ε|2 dx− n |Ω|1/2

(
‖Bε‖L2(Ω) + ‖V ε‖L2(Ω)

)

+ e−aε ∑
p

e−λp[Bε] + aε
∫

nk dx ≤ J(Aε, V ε) ≤ C.

In addition, denoting by H̃1(Ω) the space of H1(Ω) functions which have a vanishing
integral on Ω, a classical compactness argument shows that, for any a1 > 0 and a2 > 0,
the norm

(B, V ) ∈ H̃1(Ω) ×H1
0 (Ω) �−→

(
a1‖∇(B − V )‖2

L2(Ω) + a2‖∇V ‖2
L2(Ω)

)1/2

is equivalent on this space H̃1(Ω) × H1
0 (Ω) to the standard H1(Ω) × H1(Ω) norm.

Hence, there exist two constants C0 > 0 and C1 > 0, independent of ε, such that

Δt

2
n

∫
|∇(Bε − V ε)|2 dx +

α

2

∫
|∇V ε|2 dx− n |Ω|1/2

(
‖Bε‖L2(Ω) + ‖V ε‖L2(Ω)

)
≥ C0‖Bε‖2

H1(Ω) + C0‖V ε‖2
H1(Ω) − C1;

thus (3.8) gives

C0‖Bε‖2
H1(Ω) + C0‖V ε‖2

H1(Ω) + e−aε ∑
p

e−λp[Bε] + aε
∫

nk dx ≤ C.(3.9)

Let us now recall that the first eigenvalue of H[Bε] is defined by

λ1[B
ε] = min

φ ∈ H1(Ω)
‖φ‖L2(Ω) = 1

(
h2

∫
|∇φ|2 dx +

∫
(Bε + V ext)φ2 dx

)
.

By choosing the test function φ(x)≡ 1/
√
|Ω| in this formula, we deduce from

∫
Bε dx =

0 that

λ1[B
ε] ≤ 1

|Ω|

∫
V ext dx.
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There exists, consequently, a constant C2 > 0, independent of ε, such that

e−aε ∑
p

e−λp[Bε] ≥ C2 e
−aε

,

and (3.9) implies

C0‖Bε‖2
H1(Ω) + C0‖V ε‖2

H1(Ω) + C2e
−aε

+ aε
∫

nk dx ≤ C.

Since
∫
nk dx > 0, it is clear then that ‖Bε‖H1(Ω), ‖V ε‖H1(Ω), and |aε| are bounded

independently of ε. Thus ‖Aε‖H1(Ω) is bounded, which completes the proof of coer-
civity.

(ii) The conservation of mass (3.5) can be easily shown by an integration of (3.1)
on Ω, which gives, thanks to the boundary conditions (3.4),

∫
nk+1 dx =

∫
nk dx.(3.10)

To prove the decay of the free energy, let us adapt to the semidiscrete case the proof
of Proposition 2.6. By using Lemma 2.4, we have

∫
(nk(Ak −Ak+1) + nk − nk+1) dx ≤ 0;

thus

−
∫

(nk+1 Ak+1 − nk Ak + nk+1 − nk) dx(3.11)

= −
∫

(nk+1 − nk)Ak+1 dx +

∫
(nk(Ak −Ak+1) + nk − nk+1) dx

≤ −
∫

(nk+1 − nk)Ak+1 dx.

In addition, by using the Poisson equation (3.2), we obtain

α

2

∫
(|∇V k+1|2 − |∇V k|2) dx =

1

2

∫
(nk+1 V k+1 − nk V k) dx

=
1

2

∫
(nk+1 − nk)V k+1 dx +

1

2

∫
nk(V k+1 − V k) dx

=
1

2

∫
(nk+1 − nk)V k+1 dx +

1

2

∫
V k(nk+1 − nk) dx.

By remarking that

0 ≤ α

∫
|∇(V k+1 − V k)|2dx =

∫
(nk+1 − nk)(V k+1 − V k),

we deduce that

1

2

∫
V k(nk+1 − nk) dx ≤ 1

2

∫
V k+1(nk+1 − nk) dx
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and get

α

2

∫ (
|∇V k+1|2 − |∇V k|2

)
dx ≤

∫
V k+1(nk+1 − nk) dx.

By combining this inequality and (3.11), we obtain

Sk+1 − Sk ≤ −
∫

(nk+1 − nk)(Ak+1 − V k+1) dx

= Δt

∫
(Ak+1 − V k+1) div(nk∇(Ak+1 − V k+1)) dx,

thanks to (3.1). An integration by parts, using (3.4), finally gives

Sk+1 − Sk ≤ −Δt

∫
nk |∇(Ak+1 − V k+1)|2 dx ≤ 0.

This proves (ii). Finally, to prove (iii), it suffices to remark as for Proposition 2.6 that

Σk+1 − Σk = Sk+1 − Sk ≤ 0.

4. The fully discretized system: Construction and analysis. We com-
plete the construction of a numerical scheme for the QDD model (2.8)–(2.10) by now
discretizing system (3.1)–(3.3) with respect to the space variable. In the following
section, we construct the scheme and give in Theorem 4.1 its main properties: well-
posedness, charge conservation, and entropy dissipation. These properties are proved
in section 4.2. Section 4.3 is devoted to the particular question of the initial step: it
is shown in Proposition 4.4 that, at the discrete level, there exists a unique chemical
potential A corresponding to each positive density n.

4.1. Notation and main results. For simplicity, the space dimension is now
d = 1. The domain is Ω = (0, 1) and the space gridstep is Δx = 1/(N + 1). The
grid is composed of the points xi = iΔx for i = 0, . . . , N + 1, where N ∈ N. In order
to write the fully discretized finite difference numerical scheme, let us introduce the
following N ×N matrices of discrete derivative:

D− =
1

Δx

⎛
⎜⎜⎜⎜⎝

0 0 · · ·
−1 1 0 · · ·

0
. . .

. . . 0
... 0 −1 1

⎞
⎟⎟⎟⎟⎠ , D+ =

1

Δx

⎛
⎜⎜⎜⎜⎝

−1 1 0 . . .
0 −1 1 · · ·

0
. . .

. . . 1
... · · · 0 0

⎞
⎟⎟⎟⎟⎠ ,

D̃− =
1

Δx

⎛
⎜⎜⎜⎜⎝

1 0 · · ·
−1 1 0 · · ·

0
. . .

. . . 0
... 0 −1 1

⎞
⎟⎟⎟⎟⎠ , D̃+ =

1

Δx

⎛
⎜⎜⎜⎜⎝

−1 1 0 . . .
0 −1 1 · · ·

0
. . .

. . . 1
... · · · 0 1

⎞
⎟⎟⎟⎟⎠ ,

ΔDir =
1

Δx2

⎛
⎜⎜⎜⎜⎜⎝

−2 1 0 . . .

1 −2
. . . 0

0
. . .

. . . 1
... · · · 1 −2

⎞
⎟⎟⎟⎟⎟⎠

, ΔNeu =
1

Δx2

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 . . .

1 −2
. . . 0

0
. . .

. . . 1
... · · · 1 −1

⎞
⎟⎟⎟⎟⎟⎠

.
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Note that ΔNeu = D̃−D+ = D̃+D−. The unknowns are the following sequences of
vectors in R

N : nk = (nk
i )1≤i≤N , Ak = (Ak

i )1≤i≤N , V k = (V k
i )1≤i≤N and the scheme

is written as

nk+1 − nk

Δt
+

1

2
D̃−(nk D+(Ak+1 −V k+1)) +

1

2
D̃+(nk D−(Ak+1 −V k+1)) = 0,(4.1)

− αΔDirV
k = nk,(4.2)

nk =
∑
p

exp(−p[A
k])(Xp[A

k])2(4.3)

for k ∈ N (here and in what follows, for any (X,Y ) ∈ R
N × R

N , XY denotes the
direct product (XiYi)1≤i≤N ). In this discretized system, the definitions of p[A] and
Xp[A] are the discrete analogue of those of λp[A], χp[A] for the continuous problem.
These quantities are the eigenvalues and the normalized eigenvectors of the discretized
Hamiltonian with Neumann boundary conditions

M [A] = −h2ΔNeu + Diag(A + V ext),

where Diag(A) denotes the diagonal matrix of coefficients (Ai)1≤i≤N , and where the
components of the vector V ext are V ext

i = 1
Δx

∫ xi+1/2

xi−1/2
V ext(x) dx. Of course, the

index p of the eigenvalues and eigenvectors belongs now to {1, . . . , N}. Moreover, the
eigenvectors are normalized with respect to the euclidean norm ‖ · ‖N associated with
the scalar product on R

N :

(U, V )N = Δx

N∑
i=1

Ui Vi.

Notice that the boundary conditions are already taken into account in this scheme,
the values of the unknowns for i = 0 or i = N+1 being implicitly defined. To complete
(4.1)–(4.3), it suffices to add an initial condition. If Cauchy data for the continuous
problem n0 are given, the vector n0 ∈ R

N is chosen as follows:

n0
i =

1

Δx

∫ xi+1/2

xi−1/2

n0(x) dx for i = 1, . . . , N.(4.4)

The numerical scheme (4.1)–(4.3) is clearly consistent with the QDD system (2.8)–
(2.11). Its properties are listed in the following theorem, whose proof is developed in
the three next subsections.

Theorem 4.1. If Assumptions 2.1 and 2.2 are satisfied, the numerical scheme
(4.1)–(4.4) is consistent with (2.8)–(2.11) and has the following properties.

(i) Well-posedness. For all k ∈ N, its numerical solution (nk, Ak, V k) is uniquely
defined. Moreover, for all k ∈ N, (Ak+1, V k+1) is the unique minimizer of
the strictly convex and coercive functional

Ĵ(A, V ) =
ΔtΔx

4

N∑
i=1

nk
i (D+(A−V ))2i +

ΔtΔx

4

N∑
i=1

nk
i (D−(A−V ))2i(4.5)

+
αΔx

2

N∑
i=1

(D+V )2i +
α

2 Δx
(V1)

2 +
α

2 Δx
(VN )2

+

N∑
p=1

exp(−p[A]) + Δx

N∑
i=1

nk
i (Ai − Vi).
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(ii) Charge conservation. For all k and for all i we have nk
i > 0 and the (discrete)

total charge is conserved:

∀k ∈ N Δx

N∑
i=1

nk
i = Δx

N∑
i=1

n0
i .(4.6)

(iii) Entropy dissipation. The sequence of (discrete) free energies defined by

(4.7)

Sk = −Δx

N∑
i=1

nk
i

(
Ak

i + 1
)

+
αΔx

2

N∑
i=1

(D+V k)2i +
α

2 Δx

(
V k

1

)2
+

α

2 Δx

(
V k
N

)2

is decreasing and belongs to ∞. Moreover, there exists a constant C > 0
(depending only on Ω and h) such that, for any K ∈ N, we have

−C ≤ SK +
ΔtΔx

2

K∑
k=1

N∑
i=1

nk−1
i (D+(Ak − V k))2i(4.8)

+
ΔtΔx

2

K∑
k=1

N∑
i=1

nk−1
i (D−(Ak − V k))2i ≤ S0.

4.2. Proof of well-posedness and entropy dissipation. For the sake of con-
ciseness, we shall only sketch the proof of Theorem 4.1. Indeed, it suffices to adapt
to the discrete case the proof of Theorem 3.1. These results are based on formulas
of discrete integration by parts and on technical results concerning matrix analysis
which are the discrete equivalents of the technical results stated in section 2.2, and
that we have listed in Lemma 4.2 below.

It is worthwhile to mention that the similarity between the functional J(A, V ),

introduced in the proof of Theorem 3.1, and the functional Ĵ(A, V ) of Theorem 4.1
is due to two useful formulas of discrete integration by parts: for any pair of vectors
(U, V ) ∈ R

N × R
N , we have

−(ΔNeuU, V )N = −(D̃−D+U, V )N =
(
D+U,D+V

)
N

= −(D̃+D−U, V )N =
(
D−U,D−V

)
N

(4.9)

and

−(ΔDirU, V )N = (D+U,D+V )N +
U1V1 + UNVN

Δx
.(4.10)

Next, we gather in the following lemma some classical but useful technical results on
matrices.

Lemma 4.2. Let A ∈ R
N . Then the eigenvalues p[A] of the matrix M [A] =

−h2ΔNeu + Diag(A + V ext) are simple. (Up to a multiplication by −1) its first
eigenvector X1[A] has positive components. The derivatives of the eigenvalues and
eigenvectors of M [A] with respect to A, in the direction δA, are given by

dp[A] · δA = (δAXp[A], Xp[A])N ,

dXp[A] · δA =
∑
q �=p

1

p[A] − q[A]
(δAXp[A], Xq[A])N Xq[A].
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Proof. The simplicity of the eigenvalues of M [A] is a general classical result for
Hessenberg matrices [49], i.e., matrices M = (mi,j)1≤i,j≤N such that

mi,j = 0 for j < i− 1 and mi,i−1 = 0 for 2 ≤ i ≤ N.

This simplicity enables us to differentiate p and Xp[A] by using the classical pertur-
bation theory.

Let λ = 1 + maxi |Ai|. Then it is clear that the matrix M [A] + λI is invertible
and satisfies the discrete maximum principle:

∀Y ∈ R
N\{0} Y ≥ 0 =⇒ (M [A] + λI)−1 Y > 0,

where, for any vector X ∈ R
N , the notation X ≥ 0 (resp., X > 0) stands for

Xi ≥ 0 (resp., Xi > 0) for all i = 1, . . . , N . Hence the Perron–Frobenius theorem
(see [49]) applies to the matrix (M [A] + λI)−1, the spectral radius of this matrix is
an eigenvalue and, up to a multiplication by −1, the corresponding eigenvector has
positive components. This vector is the ground state X1[A] of M [A].

Remark 4.3. Special care has to be taken for the initial step of the scheme.
In the semidiscrete case of system (3.1)–(3.3), the question of the initial step was
left unsolved: for a given initial density n0(x), can we define a unique corresponding
chemical potential A0 such that (3.3) holds? In the fully discrete case, this question
finds a positive answer, as stated in Theorem 4.1(i). Section 4.3 is devoted to this
particular point of the theorem.

4.3. Initialization of the chemical potential. As noted in Remark 4.3, one
question has not been addressed yet concerning the numerical scheme (4.1)–(4.4): the
computation of the initial chemical potential A0 corresponding to the initial data n0.
While, in the continuous problem, we do not know whether (or in which functional
framework) the nonlocal relation (2.7) linking n to A is invertible, this operation is
possible with its discrete analogous (4.3). The aim of this section is to establish this
property: we show that this problem is again equivalent to a convex minimization
problem. Notice that this enables us to deduce a practical method to numerically
solve this problem, by writing an algorithm for this optimization problem (see [20] for
details). Note also that the possibility of inverting the constitutive relation A �→ n[A],
interesting for itself, is not mandatory for the other steps of the scheme (see Theorem
4.1(i)): the minimization of J for the computation of (Ak+1, V k+1) does not require
the knowledge of Ak. The following proposition is the main result of this subsection.

Proposition 4.4. Let n ∈ (R∗
+)N . Then there exists a unique A ∈ R

N such that

n =

N∑
p=1

exp(−p[A]) (Xp[A])2,(4.11)

where p[A] and Xp[A] are the eigenvalues and the eigenvectors of the discrete Hamil-
tonian M [A] = −h2ΔNeu + Diag(A + V ext).

Proof. Consider the functional

Φ[A] =
∑
p

exp (−p[A]) + (n,A)N .(4.12)

Straightforward calculations using Lemma 4.2 lead to the expression of its first and
second derivatives:

dΦA · δA =

(
n−

∑
p

exp(−p[A]) (Xp[A])2, δA

)
N
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and

d2ΦA · δA · δA =

N∑
p=1

exp(−p[A])(δAXp[A], Xp[A])2N

−
∑
p

∑
q �=p

exp(−p[A]) − exp(−q[A])

p[A] − q[A]
(δAXp[A], Xq[A])2N .

It is then clear that this functional Φ is strictly convex and that its unique minimizer
satisfies (4.11). To prove the existence of a solution to the problem, the major task
is to prove the coercivity of this functional.

Recall that

1[A] = min
‖φ‖N=1

((−h2ΔNeuφ, φ)N + (Diag(A + V ext)φ, φ)N ).(4.13)

Let i0 ∈ {1, . . . , N} (arbitrary). By choosing the i0th normalized basis vector as φ in
(4.13) (i.e., φi = δi,i0/

√
Δx), we obtain

1[A] ≤ Ai0 +
2h2

Δx2
+ V ext

i0 .(4.14)

Hence, there exists a constant C > 0 depending only on Δx, h, and V ext such that

Φ[A] ≥ C
∑
i

exp(−Ai) + Δx
∑
i

ni Ai.(4.15)

Since for all i we have ni > 0, it is clear that

lim
‖A‖→∞

Φ[A] = +∞.

This proves the coercivity of Φ.

5. Numerical results. In order to simulate the QDD model, the numerical
scheme (4.1)–(4.3) has been implemented by minimizing the functional Ĵ defined by
(4.5). Each strictly convex unconstrained minimization problem is solved by a New-
ton method (note that the Hessian matrix is explicit and always positive definite).
The computation of the eigenelements of the discrete Hamiltonian M [A] is performed
by using the MATLAB function eigs [36]. For details concerning the practical im-
plementation of the scheme, one can refer to [20].

The external potential is a discontinuous function playing the role of a double
barrier structure potential and the initial density n0 is concentrated on the left of the
double barrier (see Figure 5.1). The initial step involves the inversion of the formula
(4.11), i.e., the computation of the initial chemical potential A0 corresponding to n0.
The calculation of A0 is done by minimizing the strictly convex functional Φ defined
in (4.12). Recall that A0 is not used in the text following the algorithm.

In Figures 5.1, 5.2, 5.3, 5.4, and 5.5, we have represented, as functions of x, the
density n, the total potential V + V ext, and the electrochemical potential A − V at
the initial step and at different time steps: k = 3, 20, 100, 500. The parameters of
these computations are the following:

Δx Δt h2 α
0.01 0.005 0.02 0.1
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Fig. 5.1. Numerical solution of the QDD model: Initial step. Left: The density n(x) (solid
line) and the total potential (V + V ext)(x)(dashed line) as functions of the position x. Right: The
electrochemical potential (A− V )(x).
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Fig. 5.2. Numerical solution of the QDD model, after 3 iterations. The same quantities as in
Figure 5.1 are represented.
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Fig. 5.3. Numerical solution of the QDD model, after 20 iterations. The same quantities as in
Figure 5.1 are represented.
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Fig. 5.4. Numerical solution of the QDD model, after 100 iterations. The same quantities as
in Figure 5.1 are represented.
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Fig. 5.5. Numerical solution of the QDD model, after 500 iterations. The same quantities as
in Figure 5.1 are represented.
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Fig. 5.6. Free energy Sk as a function of the time step k.
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On the right-hand side of these figures, one can check that the electrochemical po-
tential converges to a constant: at time t = 500Δt, one can consider that the system
has converged to a steady state, which solves a discrete Schrödinger–Poisson system.
In Figure 5.6, we show the evolution of the free energy Sk defined by (4.7) and check
that it is a decreasing function, converging to a constant. In these simulations, the
initial total charge is equal to 1 and this quantity is conserved during the evolution,
up to a relative error of 10−4 %.

6. Conclusion. We have introduced a semidiscrete (in time) version (3.1)–(3.3)
of the QDD model (2.8)–(2.10). We have proved that this system is well-posed and
that its resolution amounts to minimizing a convex functional. Moreover, this semidis-
crete model has the following interesting properties: it preserves the total charge and
the positivity of the density and it dissipates the free energy. Then we have defined the
numerical scheme (4.1)–(4.3) by discretizing the space variable in this system. As a
consequence, this scheme possesses the same properties as the semidiscrete model. Fi-
nally, we have given some results of numerical simulations which have been performed
with this scheme.

A lot of open questions arise naturally. Let us list a few of them. By passing
formally to the limit in the semidiscrete model as Δt goes to zero, one obtains a
solution of the initial QDD model. To make this statement rigorous, one of the
most difficult points to be solved seems to be to find a bound from below for the
density. Studying the long-time behavior of the semidiscrete model or the continuous
model is also an interesting challenge: do their solutions converge to the solution of
the Schrödinger–Poisson system studied in [39, 40]? Another important question is
concerned with boundary conditions. We have chosen no-flux boundary conditions,
but for practical use it is necessary to enable a current flow through the boundary.
This issue will be investigated in a future work.
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les techniques, Vol. 5, Spectre des opérateurs, INSTN: Collection Enseignement, Masson,
Paris, 1988.

[11] P. Degond, Mathematical modelling of microelectronics semiconductor devices, in Proceed-
ings of the Morningside Mathematical Center, Beijing, AMS/IP Stud. Adv. Math., AMS,
Providence, RI, 2000, pp. 77–109.

[12] P. Degond and A. El Ayyadi, A coupled Schrödinger drift-diffusion model for quantum
semiconductor device simulations, J. Comput. Phys., 181 (2002), pp. 222–259.
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Abstract. The additive Schwarz preconditioned inexact Newton (ASPIN) method was recently
introduced [X.-C. Cai and D. E. Keyes, SIAM J. Sci. Comput., 24 (2002), pp. 183–200] to solve the
systems of nonlinear equations with nonbalanced nonlinearities. Although the ASPIN method has
successfully been used to solve some difficult nonlinear equations, its convergence property has not
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1. Introduction. Consider the nonlinear system of equations

F (u) = 0,(1.1)

where F : Rn → Rn is a continuously differentiable function. For convenience of
discussion, let F = (F1, F2, . . . , Fn)T , u = (u1, u2, . . . , un)T , and J(u) = F ′(u). A
numerical solution for (1.1) is often required in many scientific and engineering com-
puting areas such as the discretization of nonlinear partial differential equations; see
[7, 16]. The inexact Newton method [8] is one of the most important and effective
tools for solving such systems, in particular, when the problem is large and sparse. In
applications, some global strategies, such as linesearch or trust region techniques, are
often needed because the inexact Newton method is locally convergent [1, 2, 3, 4, 12].
In particular, if the linesearch backtracking technique is augmented in the inexact
Newton method, then the inexact Newton with backtracking (INB) method is ob-
tained [12, 13, 19]. This method is more robust and it can be briefly described here.
Suppose u(0) is a given initial guess and let u(k) be the current approximate solution;
the next approximate solution u(k+1) can be obtained through the following steps.

Algorithm 1.1 (INB [12]).
1. Inexactly solve the system

J
(
u(k)

)
p = −F

(
u(k)

)
,(1.2)

and obtain an inexact Newton direction p(k) such that

‖F
(
u(k)

)
+ J

(
u(k)

)
p(k)‖ ≤ ηk‖F

(
u(k)

)
‖.(1.3)

2. Compute the new approximate solution

u(k+1) = u(k) + λkp
(k).
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Here ηk ∈ [0, 1) is the forcing term that controls how accurately system (1.2)
should be solved, and p(k) is the inexact Newton direction of F at u(k). Step 2 in
Algorithm 1.1 is a linesearch procedure that is used to find a satisfied step factor
λk ∈ (0, 1] and then form the next approximate solution.

Usually, we use linear iterative methods, such as the classical splitting method
or the modern Krylov subspace method, to inexactly solve system (1.2). Thus, the
inexact Newton method is an inner-outer iterative method. In particular, when the
Krylov subspace method is used in an inner iteration, we obtain the Newton–Krylov
subspace method, which has been used successfully in many areas [1, 2, 3, 4, 16].

Although the inexact Newton method works very well for most nonlinear equa-
tions, this may often fail when it is used to solve some difficult problems. Many
numerical experiments show that most failed cases in the inexact Newton method
result from stagnation, particularly when it is used to solve some problems with non-
balanced nonlinearities [1, 6]. Usually, the stagnation phenomenon is caused by the
lack of a good initial guess and/or problematic regions such as boundary layers, sin-
gularities in the domain, and/or multiphysics domain, etc. See [17]. Considering this,
Cai and Keyes [6] recently proposed a nonlinearly preconditioned inexact Newton al-
gorithm: first convert system (1.1) into another nonlinear system F(u) = 0 such that
the two systems have the same solution u∗ ∈ Rn; then use Algorithm 1.1 to solve
F(u) = 0.

F and F may have completely different forms, but they must have the same
solution. Usually, F has more uniform nonlinearities, so it is relatively easy to solve.
In [6], an especially preconditioned case, where F is obtained by the single-level
nonlinear additive Schwarz method, is discussed in detail. The corresponding method
is the additive Schwarz preconditioned inexact Newton (ASPIN) method. Numerical
results in [6] show that the ASPIN method can solve some difficult problems where
the traditional inexact Newton method fails.

Although the ASPIN method has better numerical results than the traditional
inexact Newton method, it is unfortunate that until now the convergence property for
the ASPIN method has not been given much importance except for some preliminary
convergence analysis in the context of semilinear PDEs in paper [17]. In this paper,
we show that the ASPIN method is locally convergent; thus we give theoretical sup-
port for the ASPIN method. Moreover, we will discuss the convergence rate of the
ASPIN method.

The rest of the paper is organized as follows. In section 2, we briefly discuss the
ASPIN method, and some of its properties are listed. In section 3, we show that the
ASPIN method is locally convergent, and its convergence rate is discussed in section 4.
Finally, in section 5, some brief conclusions are given.

2. The ASPIN method. Assume that F (u∗) = 0 and J(u∗) is invertible. To
find the solution u∗ of system (1.1), the ASPIN method solves another nonlinear
system F(u) = 0, which is obtained from (1.1) through the additive Schwarz precon-
ditioning technique. Specifically, the ASPIN method can be described as follows.

Let

S = {1, 2, . . . , n}
be an index set, i.e., one integer corresponds to each ui and Fi. Assume that S has a
partition {S1, S2, . . . , SN} such that

N⋃
i=1

Si = S and Si ⊂ S.
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Here the subsets may overlap. Let ni = |Si| be the dimension of Si; then

N∑
i=1

ni ≥ n.

Assume that

Si = {i1, i2, . . . , ini},

where i1 < i2 < · · · < ini
. For i = 1, 2, . . . , N , define matrices Ei ∈ Rni×n by

(Ei)k,l =

{
1, l = ik,
0, l �= ik.

Let

Pi = ET
i Ei

and

Vi = PiR
n, FSi

= PiF.

It is easy to see that Pi is the orthogonal projection from Rn onto Vi.
For each u ∈ Rn, we define Ti(u) ∈ Vi such that

FSi(u− Ti(u)) = 0, i = 1, 2, . . . , N,(2.1)

and let

F(u) =
N∑
i=1

Ti(u),

which is referred to as the additive Schwarz preconditioned nonlinear function. The
ASPIN method tries to find the solution u∗ of (1.1) by solving the nonlinear system

F(u) = 0(2.2)

with the inexact Newton method.
About the solvability of (2.1), we have the following proposition.
Proposition 2.1. If EiJ(u∗)ET

i is invertible for each i, then there exists a
neighborhood U of u∗ and a unique continuously differentiable function Ti : Rn → Vi

for each i such that (2.1) holds for each u ∈ U , and also Ti(u
∗) = 0. Moreover,

T ′
i (u) = ET

i

[
EiJ(u− Ti(u))ET

i

]−1
EiJ(u− Ti(u)).(2.3)

Proof. Theorem 1.1 in [10] shows that there exist a neighborhood U1 of u∗ and
a unique continuous function Ti : Rn → Vi for each i such that (2.1) holds for each
u ∈ U1, and Ti(u

∗) = 0. Also, we know from [10] that Ti satisfies

Ti(v) − Ti(u) = DTi(v, u)(v − u), v, u ∈ U1,(2.4)

where

DTi(v, u) = ET
i

[
EiDF (v − Ti(v), u− Ti(u))ET

i

]−1
EiDF (v − Ti(v), u− Ti(u)),
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while

DF (v − Ti(v), u− Ti(u)) =

∫ 1

0

J([v − Ti(v)] + t[(u− Ti(u)) − (v − Ti(v))]) dt.

Since J(u) is continuous and EiJ(u∗)ET
i is invertible for each i, Lemma 2.3.3 in

[20] shows that there exists a neighborhood U2 of u∗ such that EiJ(u)ET
i is invertible

for each u ∈ U2. Now let U ⊂ U1∩U2 be a neighborhood of u∗ such that u−Ti(u) ∈ U2

for each u ∈ U and for each i.
For u ∈ U , let

A(u) = ET
i [EiJ(u− Ti(u))ET

i ]−1EiJ(u− Ti(u));

then, according to (2.4) and Lemma 2.3.3 in [20], it is easy to verify that

lim
‖h‖→0

‖Ti(u + h) − Ti(u) −A(u)h‖
‖h‖ = 0.

Thus, Ti(u) is Fréchet-differentiable, and

T ′
i (u) = A(u) = ET

i [EiJ(u− Ti(u))ET
i ]−1EiJ(u− Ti(u)).

In addition, it is easy to see from Lemma 2.3.3 in [20] that T ′
i (u) is continuous.

It should be pointed out that formula (2.3) has been given in [6], but it has been
obtained in a different way. In addition, it should be noted that the condition of
Proposition 2.1 is satisfied for any partition of S if J(u∗) is positive definite.

Since the inexact Newton method concerns the Jacobian of the system, an analysis
of the basic property of the Jacobian F ′(u) is necessary. Because Ti(u) is continuous
and Ti(u

∗) = 0, we know that when u is sufficiently close to u∗, Ti(u) will be suffi-
ciently close to 0, and as a result, u−Ti(u) will be close to u. Since J(u) is continuous,
we may replace J(u− Ti(u)) by J(u); therefore,

T ′
i (u) = ET

i

(
EiJ(u− Ti(u))ET

i

)−1
EiJ(u− Ti(u))

≈ ET
i

(
EiJ(u)ET

i

)−1
EiJ(u)

≡ Ri(u).

Let

J (u) = F ′(u);

then

J (u) =

N∑
i=1

T ′
i (u) ≈

N∑
i=1

Ri(u) ≡ B(u).

In implementation of the ASPIN method, the Jacobian J (u) is replaced by B(u),
since the latter is easier to use.

Remark 2.1. From the proof of Proposition 2.1, we know that if EiJ(u∗)ET
i

is invertible for each i, then EiJ(u − Ti(u))ET
i and EiJ(u)ET

i are invertible in the
neighborhood U of u∗. In addition, (EiJ(u − Ti(u))ET

i )−1 and (EiJ(u)ET
i )−1 are

continuous in U , so J (u) and B(u) are all continuous in U . Furthermore, it is easy
to see that

lim
u→u∗

J (u) = lim
u→u∗

B(u) =

N∑
i=1

ET
i

(
EiJ(u∗)ET

i

)−1
EiJ(u∗) = J (u∗).(2.5)

From [6] and [10], we can obtain the following result.
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Proposition 2.2. If EiJ(u∗)ET
i is invertible for each i, then there exists a

neighborhood D ⊂ U of u∗ with U determined in Proposition 2.1 such that
(i) J (u) and B(u) are nonsingular in D;
(ii) the nonlinear systems (1.1) and (2.2) are equivalent in the sense that they

have the same solution in D.
Remark 2.2. Remark 2.1 points out that J (u) and B(u) are all continuous in

D ⊂ U ; thus Lemma 2.3.3 in [20] and Proposition 2.2 show that J (u)−1 and B(u)−1

are continuous in D.
For convenience of discussion, we describe the ASPIN algorithm here. Let

f(u) =
1

2
F(u)TF(u),

which will be used in linesearch in the inexact Newton method. Assume that u(0) is a
given initial guess and u(k) is the current approximate solution; the next approximate
solution u(k+1) for system (2.2) can be computed through the following steps.

Algorithm 2.1 (ASPIN [6]).
0. Let ηmax ∈ (0, 1), α ∈ (0, 1), 0 < θmin < θmax < 1 be given.
1. Compute the nonlinear residual g(k) = F(u(k)) through the following steps.

1.1. Find g
(k)
i = Ti(u

(k)) by solving the local subdomain nonlinear systems

FSi

(
u(k) − g

(k)
i

)
= 0, i = 1, 2, . . . , N,

with the initial point g
(k)
i = 0.

1.2. Form the global residual

g(k) =

N∑
i=1

g
(k)
i .

1.3. Check the stopping conditions on g(k).
2. Find the approximate inexact Newton direction p(k) by solving the system

B(u(k))p = −F
(
u(k)

)
such that

∥∥F(
u(k)

)
+ B

(
u(k)

)
p(k)

∥∥ ≤ ηk
∥∥F(

u(k)
)∥∥,

where ηk ∈ [0, ηmax] is the forcing term.
3. Perform linesearch along p(k):

3.1. Let λk = 1.
3.2. While f(u(k) + λkp

(k)) > f(u(k)) + αλkF(u(k))TB(u(k))p(k), do
• choose θ ∈ [θmin, θmax],
• let λk = θλk.

3.3. Let u(k+1) = u(k) + λkp
(k).

In step 1.1 of Algorithm 2.1, N subdomain nonlinear systems have to be solved in
order to evaluate the preconditioned function F at a given point. Step 3 of Algorithm
2.1 is the linesearch procedure to find a satisfied step. For more details about the
ASPIN method, see [6].

We point out that Algorithm 2.1 can be implemented in parallel. For details
about implementation, see [6, 7].
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3. Local convergence of the ASPIN method. We will prove in this section
that the ASPIN method is locally convergent. Note that by Propositions 2.1 and 2.2,
the ASPIN method is based on the local property of F (u) at the solution u∗ of system
(1.1), so it seems impossible to obtain a global convergence result for this method.

In this section and the following, ‖ ·‖ always denotes the Euclidean norm for both
vectors and matrices, and N(u, ρ) = {v | ‖v − u‖ < ρ} represents the open ball with
center u and radius ρ.

Since the analysis of secondary iteration would complicate the discussion without
gaining more insight into the method, we assume that

(A1) the value of F at each iterative point is evaluated exactly, i.e., (2.1) holds
with u replaced by u(k) + λkp

(k) for each k; moreover, from now on, we assume that
(A2) EiJ(u∗)ET

i is invertible for each i;
(A3) D represents the neighborhood determined in Proposition 2.2; and
(A4) δ > 0 is a fixed small number such that N(u∗, δ) ⊂ D; in addition, the

following inequalities hold for any u ∈ N(u∗, δ):

(I1) ‖B(u)‖ ≤ 2M ;
(I2) ‖B(u)−1‖ ≤ 2M ;
(I3) ‖J (u)‖ ≤ 2M ;
(I4) ‖J (u)−1‖ ≤ 2M ;
(I5) ‖J (u) −B(u)‖ ≤ 1−ηmax

4M(1+ηmax) ;

(I6) ‖F(u) −F(u∗) − J (u∗)(u− u∗)‖ ≤ 1
2M ‖u− u∗‖,

where

M := max{‖J (u∗)‖, ‖J (u∗)−1‖}.

It is easy to see from Remarks 2.1 and 2.2 that inequalities (I1)–(I5) may hold with
δ small enough. The last inequality may hold by Lemma 3.2.10 in [20]. In addition,
we assume that the parameter α in Algorithm 2.1 is small enough so that

64αM4 ≤ 1 − ηmax

3 + ηmax
.(3.1)

It should be pointed out that the above assumptions are not so strict; see the appendix,
where an example is given.

Now we show that the inexact Newton direction computed in Algorithm 2.1 is
also a regular inexact Newton direction for F in the sense that (1.3) holds.

Proposition 3.1. Assume that u ∈ N(u∗, δ). If

‖F(u) + B(u)p‖ ≤ η‖F(u)‖, η ∈ [0, ηmax],(3.2)

then

‖F(u) + J (u)p‖ ≤ 1 + η

2
‖F(u)‖.(3.3)

Proof. By (I2) and (3.2),

‖p‖ = ‖B(u)−1[B(u)p + F(u) −F(u)]‖
≤ (1 + η)‖B(u)−1‖‖F(u)‖
≤ 2M(1 + η)‖F(u)‖.
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Thus, according to (I5) and (3.2),

‖J (u)p + F(u)‖ = ‖[J (u) −B(u)]p + B(u)p + F(u)‖
≤ ‖J (u) −B(u)‖‖p‖ + ‖B(u)p + F(u)‖

≤ 1 − ηmax

4M(1 + ηmax)
· 2M(1 + η)‖F(u)‖ + η‖F(u)‖

≤ 1 − η

2
‖F(u)‖ + η‖F(u)‖

≤ 1 + η

2
‖F(u)‖.

Thus we obtain the required inequality.
Remark 3.1. If u ∈ N(u∗, δ) and (3.2) holds, then we have

F(u)TB(u)p = F(u)T [B(u)p + F(u) −F(u)]

≤ −‖F(u)‖2 + ‖F(u)‖‖B(u)p + F(u)‖
≤ −(1 − η)‖F(u)‖2

< 0.

In the same way, (3.3) shows that

F(u)TJ (u)p < 0.(3.4)

In particular, (3.4) shows that if u ∈ N(u∗, δ) and p is computed by the ASPIN
method, then p is a descent direction for the function f(u) = 1

2‖F(u)‖2 at point u.1

The following lemma is needed in our analysis.
Lemma 3.2 (see [4, Lemma 3.4]). Let u ∈ Rn and H : Rn → Rn be continuously

differentiable in a neighborhood of u. Assume that H(u) �= 0 and H ′(u) is nonsingular.
If p ∈ Rn such that

‖H(u) + H ′(u)p‖ ≤ η‖H(u)‖, η ∈ [0, 1),

then

|∇h(u)T p|
‖p‖ ≥ 1 − η

(1 + η)κ(H ′(u))
‖∇h(u)‖ > 0,

where κ(H ′(u)) is the condition number for H ′(u) and h(u) = 1
2H(u)TH(u).

Based on Lemma 3.2, we have the following result.
Lemma 3.3. Assume that u ∈ N(u∗, δ). If

‖F(u) + B(u)p‖ ≤ η‖F(u)‖, η ∈ [0, ηmax],

then it holds that

|F(u)TJ (u)p| ≥ 4α|F(u)TB(u)p|.

Proof. According to Proposition 3.1, we have

‖F(u) + J (u)p‖ ≤ 1 + η

2
‖F(u)‖;

1p is a descent direction for f(u) if ∇f(u)T p < 0. In addition, note that ∇f(u) = J (u)TF(u).
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therefore, by Lemma 3.2, (I3), and (I4),

|F(u)TJ (u)p| ≥ 1 − η

(3 + η)κ(J (u))
‖F(u)TJ (u)‖‖p‖

≥ 1 − η

(3 + η)κ(J (u))‖J (u)−1‖‖F(u)‖‖p‖

≥ 1 − η

8M3(3 + η)
‖F(u)‖‖p‖.(3.5)

Thus, by (I1), (3.5), and (3.1),

4α|F(u)TB(u)p| ≤ 4α‖B(u)‖‖F(u)‖‖p‖
≤ 8αM‖F(u)‖‖p‖

≤ 8αM
8M3(3 + η)

1 − η
|F(u)TJ (u)p|

≤ 64αM4 3 + ηmax

1 − ηmax
|F(u)TJ (u)p|

≤ |F(u)TJ (u)p|.

This concludes the proof.
The following lemma shows that if u is sufficiently close to u∗, then the direction

p obtained in the ASPIN method will not be too long.
Lemma 3.4. Assume that u ∈ N(u∗, δ

2 ) with ‖F(u)‖ ≤ δ
8M . If p ∈ Rn such that

‖F(u) + B(u)p‖ ≤ η‖F(u)‖, η ∈ [0, ηmax],

then [u, u + p] ⊂ N(u∗, δ), where [u, u + p] represents the line segment between u and
u + p.

Proof. Since ‖F(u)‖ ≤ δ
8M , by (I2), we have

‖p‖ = ‖B(u)−1[B(u)p + F(u) −F(u)]‖
≤ ‖B(u)−1‖ · [‖B(u)p + F(u)‖ + ‖F(u)‖]
≤ 2M(1 + η)‖F(u)‖
≤ 2M(1 + ηmax)‖F(u)‖

≤ δ(1 + ηmax)

4

<
δ

2
.

Therefore, by u ∈ N(u∗, δ
2 ),

‖(u + p) − u∗‖ ≤ ‖u− u∗‖ + ‖p‖ <
δ

2
+

δ

2
= δ,

that is, u + p ∈ N(u∗, δ). Since u ∈ N(u∗, δ) and N(u∗, δ) is a convex set, we have
[u, u + p] ⊂ N(u∗, δ).

We can now show the following theorem, which shows that the linesearch proce-
dure along p will succeed with a nonzero step factor λ.

Theorem 3.5. Assume that u ∈ N(u∗, δ
2 ) with

F(u) �= 0, ‖F(u)‖ ≤ δ

8M
.



1858 HENG-BIN AN

In addition, assume that there exists γ > 0 such that

‖∇f(v) −∇f(w)‖ ≤ γ‖v − w‖ ∀ v, w ∈ N(u∗, δ).(3.6)

If p ∈ Rn such that

‖F(u) + B(u)p‖ ≤ η‖F(u)‖, η ∈ [0, ηmax],

then the linesearch procedure along p in Algorithm 2.1 will terminate in finite iterations
and the obtained λ satisfies

λ ≥ min

{
1,

αθmin|F(u)TJ (u)p|
γ‖p‖2

}
.

Proof. Because u ∈ N(u∗, δ
2 ), Lemma 3.3 shows that

|F(u)TJ (u)p| ≥ 4α|F(u)TB(u)p|.(3.7)

Since F(u)TJ (u)p < 0, F(u)TB(u)p < 0, (3.7) shows that

F(u)TJ (u)p ≤ 4αF(u)TB(u)p,

so

F(u)TJ (u)p− αF(u)TB(u)p ≤ 3αF(u)TB(u)p < 0.(3.8)

Because u ∈ N(u∗, δ
2 ) and ‖F(u)‖ ≤ δ

8M , Lemma 3.4 shows that [u, u + p] ⊂
N(u∗, δ). Thus, by the mean value theorem, there exists ξ ∈ [u, u + p] such that

f(u + λp) = f(u) + λ∇f(ξ)T p.

Therefore,

f(u + λp) = f(u) + λ∇f(ξ)T p

= f(u) + αλF(u)TB(u)p− αλF(u)TB(u)p + λ∇f(ξ)T p

= f(u) + αλF(u)TB(u)p + λ{[∇f(ξ)T p−∇f(u)T p]

+[∇f(u)T p− αF(u)TB(u)p]}
= f(u) + αλF(u)TB(u)p + λ{λζ + [F(u)TJ (u)p− αF(u)TB(u)p]},

where

ζ =
∇f(ξ)T p−∇f(u)T p

λ
.

By (3.6), we have

|ζ| ≤ γ‖p‖2,

so

f(u + λp) ≤ f(u) + αλF(u)TB(u)p + λ
{
λγ‖p‖2 + [F(u)TJ (u)p− αF(u)TB(u)p]

}
.

Thus, if

λγ‖p‖2 + [F(u)TJ (u)p− αF(u)TB(u)p] ≤ 0,
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then λ is acceptable. Since λ is reduced by a factor θ ≤ θmax < 1 at each iteration of
the while-loop, it follows from (3.8) that the while-loop will terminate in finite steps.

Let λ be the ultimate step factor. If λ = 1, then the needed conclusion trivially
holds. Now suppose that the linesearch procedure is implemented at least once, and
let λ− be the penultimate value; then the above argument shows that

λ−γ‖p‖2 + [F(u)TJ (u)p− αF(u)TB(u)p] > 0.

Consequently,

λ− >
|F(u)TJ (u)p| − α|F(u)TB(u)p|

γ‖p‖2
.

Therefore, it follows from (3.7) that

λ ≥ θminλ
−

> θmin
|F(u)TJ (u)p| − α|F(u)TB(u)p|

γ‖p‖2

≥ θmin
4α|F(u)TB(u)p| − α|F(u)TB(u)p|

γ‖p‖2

≥ αθmin|F(u)TB(u)p|
γ‖p‖2

.

Thus, we have obtained the required conclusion.

Lemma 3.6. If u ∈ N(u∗, δ
2 ) and

‖F(u)‖ <
δ

8M
, F(u) �= 0,

then u+ ∈ N(u∗, δ
2 ), where u+ = u + s and s is a step such that

‖F(u) + B(u)s‖ ≤ ‖F(u)‖,
‖F(u+)‖ < ‖F(u)‖.

Proof. Let y ∈ N(u∗, δ); then by (I6),

‖F(y)‖ ≥ ‖J (u∗)(y − u∗)‖ − ‖F(y) −F(u∗) − J (u∗)(y − u∗)‖

≥ 1

‖J (u∗)−1‖‖y − u∗‖ − 1

2M
‖y − u∗‖

≥ 1

M
‖y − u∗‖ − 1

2M
‖y − u∗‖

=
1

2M
‖y − u∗‖.

So

‖y − u∗‖ ≤ 2M‖F(y)‖

whenever y ∈ N(u∗, δ).
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By (I2) and the assumption that ‖F(u)‖ < δ
8M , we have

‖s‖ = ‖B(u)−1{[B(u)s + F(u)] −F(u)}‖
≤ ‖B(u)−1‖ · [‖B(u)s + F(u)‖ + ‖F(u)‖]
≤ 4M‖F(u)‖

<
δ

2
,

so

‖u+ − u∗‖ ≤ ‖u− u∗‖ + ‖s‖ < δ.

Because

‖F(u+)‖ < ‖F(u)‖ <
δ

8M
,

we have

‖u+ − u∗‖ ≤ 2M‖F(u+)‖ <
δ

4
<

δ

2
,

that is, u+ ∈ N(u∗, δ
2 ).

The following theorem describes the local convergence property of the ASPIN
method.

Theorem 3.7. Assume that there exists γ > 0 such that

‖∇f(v) −∇f(w)‖ ≤ γ‖v − w‖ ∀ v, w ∈ N(u∗, δ).

If u(0) ∈ N(u∗, δ
2 ) such that

‖F(u(0))‖ <
δ

8M
, F

(
u(0)

)
�= 0,

then the ASPIN method can generate a sequence {u(k)} ⊂ N(u∗, δ
2 ) and u(k) → u∗.

Proof. We first prove that the ASPIN method can generate a sequence {u(k)} ⊂
N(u∗, δ

2 ) by induction.

(i) Since u(0) ∈ N(u∗, δ
2 ) ⊂ N(u∗, δ), and

∥∥F(
u(0)

)
+ B

(
u(0)

)
p(0)

∥∥ ≤ η0

∥∥F(
u(0)

)∥∥, η0 ∈ [0, ηmax],(3.9)

Theorem 3.5 guarantees that a point u(1) = u(0)+λ0p
(0) ≡ u(0)+s(0) can be generated

with λ0 ∈ (0, 1] and ‖F(u(1))‖ < ‖F(u(0))‖. Furthermore, it follows from (3.9) that∥∥F(
u(0)

)
+ B

(
u(0)

)
s(0)

∥∥ =
∥∥F(

u(0)
)

+ B
(
u(0)

)(
λ0p

(0)
)∥∥

=
∥∥λ0

[
B
(
u(0)

)
p(0) + F

(
u(0)

)]
+ (1 − λ0)F

(
u(0)

)∥∥
≤ [λ0η0 + (1 − λ0)]

∥∥F(
u(0)

)∥∥
≤

∥∥F(
u(0)

)∥∥.
Thus, Lemma 3.6 shows that u(1) ∈ N(u∗, δ

2 ).

(ii) Assume that the ASPIN method has generated {u(1), u(2), . . . , u(k)} ⊂ N(u∗, δ
2 )

such that

‖F(u(1))‖ > ‖F(u(2))‖ > · · · > ‖F(u(k))‖,
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and also a direction p(k) ∈ Rn has been computed such that

‖F
(
u(k)

)
+ B

(
u(k)

)
p(k)‖ ≤ ηk‖F

(
u(k)

)
‖, ηk ∈ [0, ηmax].(3.10)

Then in the same way as above, it is easy to prove that a point u(k+1) ∈ N(u∗, δ
2 ) can

be produced, and

‖F
(
u(k)

)
‖ > ‖F

(
u(k+1)

)
‖.

Thus, by induction, the ASPIN method can generate a sequence {u(k)} ⊂ N(u∗, δ
2 ).

Next we show that f
(
u(k)

)
→ 0. By (3.10),

F
(
u(k)

)T
B
(
u(k)

)
p(k) = F

(
u(k)

)T
[B

(
u(k)

)
p(k) + F

(
u(k)

)
−F

(
u(k)

)
]

≤ −2(1 − ηmax)f
(
u(k)

)
,(3.11)

and it follows that

f(u(k) + λkp
(k)) ≤ f

(
u(k)

)
+ αλkF

(
u(k)

)T
B
(
u(k)

)
p(k)

≤ [1 − 2αλk(1 − ηmax)]f
(
u(k)

)
.

Therefore, by Theorem 3.5, we have

f(u(k) + λkp
(k)) ≤

[
1 − 2α(1 − ηmax)

αθmin|F
(
u(k)

)T
B
(
u(k)

)
p(k)|

γ‖p(k)‖2

]
f
(
u(k)

)

≡ (1 − ctk)f
(
u(k)

)
,(3.12)

where we set

c =
2α2θmin(1 − ηmax)

γ

and

tk =
|F

(
u(k)

)T
B
(
u(k)

)
p(k)|

‖p(k)‖2
.

Because {f
(
u(k)

)
} is nonnegative and strictly decreased, limk→∞ f

(
u(k)

)
exists.

If limk→∞ f
(
u(k)

)
> 0, then (3.12) shows that

lim
k→∞

f
(
u(k+1)

)
f
(
u(k)

) ≤ lim
k→∞

(1 − ctk) ≤ 1,

so

lim
k→∞

(1 − ctk) = 1

or, equivalently,

lim
k→∞

tk = 0.



1862 HENG-BIN AN

Since (3.11) shows that

2(1 − ηmax)f
(
u(k)

)
‖p(k)‖2

≤
|F

(
u(k)

)T
B
(
u(k)

)
p(k)|

‖p(k)‖2
= tk,

we have

lim
k→∞

f
(
u(k)

)
‖p(k)‖2

= 0.

Because limk→∞ f
(
u(k)

)
> 0, it follows that

‖p(k)‖ → ∞ (k → ∞).(3.13)

But on the other hand, by (I2) and (3.10), we have

‖p(k)‖ = ‖B
(
u(k)

)−1
[B

(
u(k)

)
p(k) + F

(
u(k)

)
−F

(
u(k)

)
]‖

≤ ‖B
(
u(k)

)−1‖ · [‖B
(
u(k)

)
p(k) + F

(
u(k)

)
‖ + ‖F

(
u(k)

)
‖]

≤ 2M(1 + ηk)‖F
(
u(k)

)
‖

≤ 2M(1 + ηmax)‖F(u(0))‖

≤ δ(1 + ηmax)

4
,

which contradicts (3.13). Thus, we must have f(u(k)) → 0. Since {u(k)} ⊂ N(u∗, δ),
by (I6),

‖u(k) − u∗‖ = 2‖u(k) − u∗‖ − ‖u(k) − u∗‖
≤ 2‖J (u∗)−1‖‖J (u∗)(u(k)−u∗)‖−2M‖F

(
u(k)

)
−F(u∗)−J (u∗)(u(k)−u∗)‖

≤ 2M [‖J (u∗)(u(k) − u∗)‖ − ‖F
(
u(k)

)
−F(u∗) − J (u∗)(u(k) − u∗)‖]

≤ 2M‖F
(
u(k)

)
‖.

Because ‖F(u(k))‖ =
√

2f(u(k)) → 0, we have u(k) → u∗.
Now, we complete the discussion for local convergence of the ASPIN method.

4. Convergence rate of the ASPIN method. In this section, we discuss the
convergence rate of the ASPIN method. We will show that the ASPIN method is
quadratically convergent under suitable conditions.

The following theorem shows that under suitable assumptions, λk = 1 is accept-
able for all k sufficiently large.

Theorem 4.1. Assume that f(u) is twice continuously differentiable in N(u∗, δ),
and there exists γ > 0 such that for any v, w ∈ N(u∗, δ),

‖∇f(v) −∇f(w)‖ ≤ γ‖v − w‖,
‖∇2f(v) −∇2f(w)‖ ≤ γ‖v − w‖.

Let {u(k)} be the sequence generated by the ASPIN method such that u(k) → u∗. If
ηk → 0, then u(k+1) = u(k) + p(k) for all sufficiently large k.

Proof. Because u(k) → u∗, without loss of generality, we may assume that
{u(k)} ⊂ N(u∗, δ

2 ). Thus, it follows from Proposition 3.1 that

‖F
(
u(k)

)
+ J

(
u(k)

)
p(k)‖ ≤ 1 + ηmax

2
‖F

(
u(k)

)
‖.(4.1)
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Therefore, by (I4) and (4.1),

‖p(k)‖ = ‖J
(
u(k)

)−1
[J

(
u(k)

)
p(k) + F

(
u(k)

)
−F

(
u(k)

)
]‖

≤ ‖J
(
u(k)

)−1‖ · [‖J
(
u(k)

)
p(k) + F

(
u(k)

)
‖ + ‖F

(
u(k)

)
‖]

≤ 2M

(
1 + ηmax

2
+ 1

)
‖F

(
u(k)

)
‖

= M(3 + ηmax)‖F
(
u(k)

)
‖.(4.2)

Because ‖F(u(k))‖ → 0, the above inequality shows that

‖p(k)‖ → 0 (k → ∞).

By (I4), we have

‖∇f
(
u(k)

)
‖ = ‖J

(
u(k)

)TF(
u(k)

)
‖ ≥ ‖J

(
u(k)

)−1‖−1‖F
(
u(k)

)
‖ ≥ 1

2M
‖F

(
u(k)

)
‖;

thus, Lemma 3.2 in connection with (I3), (I4), and (4.1) shows that

|∇f
(
u(k)

)T
p(k)|

‖p(k)‖ ≥
1 − 1+ηmax

2

1 + 1+ηmax

2

· 1

κ(J
(
u(k)

)
)
· ‖∇f

(
u(k)

)
‖

≥ 1 − ηmax

3 + ηmax
· 1

4M2
· 1

2M
‖F

(
u(k)

)
‖

=
1 − ηmax

8M3(3 + ηmax)
‖F

(
u(k)

)
‖,

or we have

‖F
(
u(k)

)
‖‖p(k)‖ ≤ 8M3(3 + ηmax)

1 − ηmax
· |∇f

(
u(k)

)T
p(k)|(4.3)

≡ a|∇f
(
u(k)

)T
p(k)|,

where

a =
8M3(3 + ηmax)

1 − ηmax
.

From (4.2) and (4.3), we obtain

‖p(k)‖2 ≤ M(3 + ηmax)‖F
(
u(k)

)
‖‖p(k)‖

≤ 8M4(3 + ηmax)2

1 − ηmax
· |∇f

(
u(k)

)T
p(k)|

≡ b|∇f
(
u(k)

)T
p(k)|,

where

b =
8M4(3 + ηmax)2

1 − ηmax
.
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Next we show that λk = 1 is acceptable for all k sufficiently large. First note that
if F = (F1,F2, . . . ,Fn)T , then

∇2f(u) = J (u)TJ (u) +

n∑
i=1

Fi(u)∇2Fi(u)

≡ J (u)TJ (u) + S(u).

Since u(k) → u∗ and F(u∗) = 0, it follows that ‖S(u(k))‖ → 0.
For each k, by the mean value theorem, there exists a ξ(k) on the line segment

between u(k) and u(k) + p(k) such that

f
(
u(k) + p(k)

)
− f

(
u(k)

)
− 1

2
∇f

(
u(k)

)T
p(k) =

1

2

(
∇f

(
u(k)

)
+ ∇2f

(
ξ(k)

)
p(k)

)T
p(k).

This gives∣∣∣∣f(u(k) + p(k)
)
− f

(
u(k)

)
− 1

2
∇f

(
u(k)

)T
p(k)

∣∣∣∣
=

∣∣∣∣12
(
∇f

(
u(k)

)
+ ∇2f(ξ(k))p(k)

)T
p(k)

∣∣∣∣
=

1

2

∣∣∣(∇f
(
u(k)

)
+ ∇2f

(
u(k)

)
p(k)

)T
p(k) + (p(k))T

(
∇2f(ξ(k)) −∇2f

(
u(k)

))
p(k)

∣∣∣
≤ 1

2

[∥∥J (
u(k)

)T (F(
u(k)

)
+ J

(
u(k)

)
p(k)

)∥∥ ·
∥∥p(k)

∥∥ +
(∥∥S(u(k)

)∥∥ + γ
∥∥p(k)

∥∥)∥∥p(k)
∥∥2]

≤ 1

2

[
ηk
∥∥J (

u(k)
)∥∥ ·

∥∥F(
u(k)

)∥∥ ·
∥∥p(k)

∥∥ +
(∥∥S(u(k)

)∥∥ + γ
∥∥p(k)

∥∥)∥∥p(k)
∥∥2]

≤ −1

2

[
2aMηk + b

(∥∥S(u(k)
)∥∥ + γ

∥∥p(k)
∥∥)]∇f

(
u(k)

)T
p(k)

≡ −1

2
εk∇f

(
u(k)

)T
p(k);

therefore,

f(u(k) + p(k)) − f
(
u(k)

)
≤ 1

2
(1 − εk)∇f

(
u(k)

)T
p(k).(4.4)

Since ηk, ‖S(u(k))‖, and ‖p(k)‖ all converge to zero, it follows that εk → 0. Thus, for
all k sufficiently large, we have

εk <
1

2
,

and consequently, for all k sufficiently large, it follows from (4.4) and Lemma 3.3 that

f(u(k) + p(k)) − f
(
u(k)

)
≤ 1

4
∇f

(
u(k)

)T
p(k) ≤ αF

(
u(k)

)T
B
(
u(k)

)
p(k).

Thus, λk is acceptable for all k sufficiently large. In other word, u(k+1) = u(k) + p(k)

for all k sufficiently large.
Theorem 4.1 shows that if the ASPIN iterative sequence converges to the solution

u∗ of system (1.1), then step 3 in Algorithm 2.1 will not be implemented for all k
sufficiently large.
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The following lemma shows that both J (u) and B(u) are Lipschitz continuous
near u∗.

Lemma 4.2. Assume that F (u) is twice continuously differentiable. Then there
exists a neighborhood V ⊂ N(u∗, δ

2 ) of u∗ such that both J (u) and B(u) are Lipschitz
continuous in V .

Proof. Since F ′′(w), T ′
i (u), [EiJ(u)ET

i ]−1, and EiJ(u) are continuous in N(u∗, δ
2 )

⊂ U , we define the constants

L1 := sup
u∈N(u∗, δ2 )

‖F ′′(u)‖, L2 := max
i

sup
u∈N(u∗, δ2 )

‖T ′
i (u)‖

and

L3 := max
i

sup
u∈N(u∗, δ2 )

‖[EiJ(u)ET
i ]−1‖, L4 := max

i
sup

u∈N(u∗, δ2 )

‖EiJ(u)‖.

Thus, for any u, v ∈ N(u∗, δ
2 ), Lemma 3.3.5 in [20] shows that

‖J(u) − J(v)‖ ≤ max
t∈[0,1]

‖F ′′(u + t(v − u))‖‖u− v‖ ≤ L1‖u− v‖,(4.5)

and Lemma 3.2.3 in [20] shows that

‖Ti(u) − Ti(v)‖ ≤ max
t∈[0,1]

‖T ′
i (u + t(v − u))‖‖u− v‖ ≤ L2‖u− v‖.(4.6)

Since, for each i, u − Ti(u) → u∗ when u → u∗, there exists a neighborhood
V ⊂ N(u∗, δ

2 ) of u∗, which is independent of i, such that u − Ti(u) ∈ N(u∗, δ
2 )

whenever u ∈ V . Therefore, for any u, v ∈ V , it follows from (4.5) and (4.6) that

‖J(u− Ti(u)) − J(v − Ti(v))‖ ≤ L1‖(u− v) − [Ti(u) − Ti(v)]‖
≤ L1(1 + L2)‖u− v‖.(4.7)

At the same time, for any u ∈ V and for each i, by the definition of L3, we have

‖[EiJ(u)ET
i ]−1‖ ≤ L3(4.8)

and

‖[EiJ(u− Ti(u))ET
i ]−1‖ ≤ L3.(4.9)

Now set

G(u) = EiJ(u− Ti(u))ET
i , H(u) = EiJ(u− Ti(u)).

Then for any u, v ∈ V , by (4.7), (4.9), and the definition of L4, we have

‖T ′
i (u) − T ′

i (v)‖ = ‖ET
i G(u)−1H(u) − ET

i G(v)−1H(v)‖
= ‖ET

i G(u)−1H(u) − ET
i G(u)−1H(v)

+ ET
i G(u)−1H(v) − ET

i G(v)−1H(v)‖
≤ ‖ET

i G(u)−1H(u) − ET
i G(u)−1H(v)‖

+ ‖ET
i G(u)−1H(v) − ET

i G(v)−1H(v)‖
≤ ‖G(u)−1‖‖H(u) −H(v)‖ + ‖G(u)−1‖‖G(u) −G(u)‖‖G(v)−1‖‖H(v)‖
≤ L3L1(1 + L2)‖u− v‖ + L2

3L1(1 + L2)L4‖u− v‖
= L1L3(1 + L1)(1 + L3L4)‖u− v‖.
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Thus,

‖J (u) − J (v)‖ =

∥∥∥∥
N∑
i=1

T ′
i (u) −

N∑
i=1

T ′
i (v)

∥∥∥∥ ≤
N∑
i=1

‖T ′
i (u) − T ′

i (v)‖

≤ NL1L3(1 + L1)(1 + L3L4)‖u− v‖
≡ LJ ‖u− v‖

for u, v ∈ V . That is, J (u) is Lipschitz continuous in V .
In a similar way, by using (4.5), (4.8), and the definition of L4, one can prove

that

‖Ri(u) −Ri(v)‖ ≤ L1L3(1 + L3L4)‖u− v‖

for any u, v ∈ V , and each i. Thus,

‖B(u) −B(v)‖ =

∥∥∥∥
N∑
i=1

Ri(u) −
N∑
i=1

R′
i(v)

∥∥∥∥ ≤
N∑
i=1

‖Ri(u) −Ri(v)‖

≤ NL1L3(1 + L3L4)‖u− v‖
≡ LB‖u− v‖

for all u, v ∈ V . Therefore, B(u) is Lipschitz continuous in V .
Lemma 4.3. For any u ∈ N(u∗, δ), it holds that

1

2M
‖u− u∗‖ ≤ ‖F(u)‖ ≤

(
M +

1

2M

)
‖u− u∗‖.

Proof. The first part of the inequality has been proved in the proof of Lemma
3.6, and the second part is easy.

Based on the above preparations, we now have the following result.
Theorem 4.4. Assume that both F (u) and f(u) are twice continuously differen-

tiable in N(u∗, δ), and there exists γ > 0 such that

‖∇f(v) −∇f(w)‖ ≤ γ‖v − w‖,
‖∇2f(v) −∇2f(w)‖ ≤ γ‖v − w‖

for any v, w ∈ N(u∗, δ). If {u(k)} is a sequence generated by the ASPIN method such
that u(k) → u∗ and u(k+1) = u(k) + p(k) for all sufficiently large k, then

(i) u(k) → u∗ superlinearly if and only if

‖rk‖ = o(‖F
(
u(k)

)
‖),

where

rk = F
(
u(k)

)
+ B

(
u(k)

)
p(k);

(ii) u(k) → u∗ quadratically if and only if

‖rk‖ = O(‖F
(
u(k)

)
‖2).
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Proof. Since u(k+1) = u(k) + p(k) for all sufficiently large k, without loss of
generality, we assume that u(k+1) = u(k) + p(k) for all k in the following argument.

Assume that u(k) → u∗ superlinearly. Since

rk = F
(
u(k)

)
+ B

(
u(k)

)
p(k)

=
[
F
(
u(k)

)
−F(u∗) − J (u∗)

(
u(k) − u∗)]

−
[
B
(
u(k)

)
− J (u∗)

](
u(k) − u∗) + B

(
u(k)

)(
u(k+1) − u∗),(4.10)

by Lemma 3.2.10 in [20], continuity of B(u) at u∗ and the assumption that u(k) → u∗

superlinearly, we have

‖rk‖ ≤ o(‖u(k) − u∗‖) + o(1)‖u(k) − u∗‖ + o(‖u(k) − u∗‖).

Therefore, by Lemma 4.3, it follows that

‖rk‖ = o(‖u(k) − u∗‖) = o(‖F
(
u(k)

)
‖).

Conversely, assume that ‖rk‖ = o(‖F
(
u(k)

)
‖). Since

u(k+1) − u∗ = (u(k) − u∗) + p(k)

= (u(k) − u∗) + B
(
u(k)

)−1
[rk −F

(
u(k)

)
]

= B
(
u(k)

)−1{[
B
(
u(k)

)
− J (u∗)

]
(u(k) − u∗)

+ rk −
[
F
(
u(k)

)
−F(u∗) − J (u∗)(u(k) − u∗)

]}
,(4.11)

thus, by (I2), the continuity of B(u) at u∗, the assumption that ‖rk‖ = o(‖F
(
u(k)

)
‖),

and Lemma 3.2.10 in [20], we have

‖u(k+1) − u∗‖ ≤ 2M [o(1)‖u(k) − u∗‖ + o(‖F
(
u(k)

)
‖) + o(‖u(k) − u∗‖)].

Therefore, by Lemma 4.3,

‖u(k+1) − u∗‖ = o(‖u(k) − u∗‖) + o(‖F
(
u(k)

)
‖) = o(‖u(k) − u∗‖).

Since F is twice continuously differentiable in N(u∗, δ), Lemma 4.2 shows that
both J (u) and B(u) are Lipschitz continuous in a neighborhood V ⊂ N(u∗, δ

2 ) of u∗.
Thus, there exists L > 0 such that for any u ∈ V ,

‖J (u) − J (u∗)‖ ≤ L‖u− u∗‖(4.12)

and

‖B(u) −B(u∗)‖ ≤ L‖u− u∗‖.(4.13)

By (4.12) and Lemma 3.2.12 in [20],

‖F(u) −F(u∗) − J (u∗)(u− u∗)‖ ≤ L

2
‖u− u∗‖2 ∀ u ∈ V.(4.14)

In a similar way, it follows from (4.10), (4.11), (4.13), (4.14), and Lemma 4.3 that
u(k) → u∗ quadratically if and only if

‖rk‖ = O(‖F
(
u(k)

)
‖2).

This concludes the proof.
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From Theorems 4.1 and 4.4, we can obtain the following result.
Corollary 4.5. Assume that both F (u) and f(u) are twice continuously differ-

entiable in N(u∗, δ), and there exists γ > 0 such that for any v, w ∈ N(u∗, δ),

‖∇f(v) −∇f(w)‖ ≤ γ‖v − w‖,
‖∇2f(v) −∇2f(w)‖ ≤ γ‖v − w‖.

Let {u(k)} be a sequence generated by the ASPIN method such that u(k) → u∗. Then
(i) u(k) → u∗ superlinearly if ηk → 0;
(ii) u(k) → u∗ quadratically if ηk = O(‖F

(
u(k)

)
‖).

Corollary 4.5 reflects how the forcing term influences the convergence rate of the
ASPIN method. This result is similar to Corollary 3.5 in [8] for the inexact Newton
method. In particular, by Corollary 4.5, we can determine the convergence rate of
the ASPIN method by choosing proper forcing terms.

5. Conclusion. The inexact Newton method is one of the effective tools for solv-
ing large sparse systems of nonlinear equations. By using nonlinear additive Schwarz
preconditioning technique, Cai and Keyes [6] introduced the ASPIN method. This
method is very effective for solving some nonlinear problems with strong nonbalanced
nonlinearities. However, the convergence of the ASPIN method is not discussed by
them or others.

In this paper, we discussed the convergence property of the ASPIN method and
thus we provided a theoretical support for the ASPIN method. The convergence result
is local since the design of the ASPIN only concerns the local properties of the original
function. Furthermore, we discussed the convergence rate for the ASPIN method, and
the result shows that the convergence rate of the ASPIN method is similar to that
of the inexact Newton method. Thus, we can obtain the desired convergence rate by
choosing proper forcing terms.

Appendix. We give a simple example to show that our main assumptions,
inequalities (I1)–(I6) in section 3, are not so strict. Consider the nonlinear equations

{
2u1 − u2 + λeu1 − λ = 0,

−u1 + 2u2 + λeu2 − λ = 0,

where λ > 0. It is obvious that u∗ = (0, 0)T is a solution of the system. Let

S = {1, 2}, S1 = {1}, S2 = {2}

and

T1(u) =

(
T11(u)

0

)
, T2(u) =

(
0

T22(u)

)
,

where T11, T22 : R2 → R. By FSi(u− Ti(u)) = 0, we have

(A.1) 2(ui − Tii(u)) − u3−i + λeui−Tii(u) − λ = 0, i = 1, 2.

It is easy to see that Tii(u) are continuous functions. Furthermore, we can obtain

T ′
1(u) =

(
1 −

(
2 + λeu1−T11(u)

)−1

0 0

)
, T ′

2(u) =

(
0 0

−
(
2 + λeu2−T22(u)

)−1
1

)
.
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Thus,

J (u) =

(
1 −

(
2 + λeu1−T11(u)

)−1

−
(
2 + λeu2−T22(u)

)−1
1

)
.

Besides, it is easy to see that

B(u) =

(
1 − (2 + λeu1)

−1

− (2 + λeu2)
−1

1

)
.

Since

B(u∗) = J (u∗) =

(
1 −(2 + λ)−1

−(2 + λ)−1 1

)
,

so

M = max{‖J (u∗)‖, ‖J (u∗)−1‖} =
2 + λ

1 + λ
.

Now we will choose some proper δ such that inequalities (I1)–(I6) hold. Let
δ ∈ (0, 1

2 ) and assume that u = (u1, u2)
T ∈ N(u∗, δ). Note that if

A =

(
1 a
b 1

)
,

then ‖A‖ ≤ 1 + max{|a|, |b|}. Therefore,

‖B(u)‖ ≤ 1 + max
1≤i≤2

(2 + λeui)−1 < 1 + (2 + λe−δ)−1 < 2M.

In addition, since

B(u)−1 =
1

1 − (2 + λeu1)−1(2 + λeu2)−1

(
1 (2 + λeu1)−1

(2 + λeu2)−1 1

)
,

one can easily verify that

‖B(u)−1‖ ≤ 2 + λe−δ

1 + λe−δ
< 2M.

Because u ∈ N(u∗, δ), by (A.1), we have

(A.2) |ui − Tii(u)| < 1

2
|u3−i| <

1

2
δ, i = 1, 2.

Thus, one may obtain

‖J (u)‖ ≤ 2M, ‖J (u)−1‖ ≤ 2M.

By using (A.2) and the inequality ex < 1 + 2x (0 < x < 1), we have

‖J (u) −B(u)‖ ≤ max
1≤i≤2

|(2 + λeui)−1 − (2 + λeui−Tii(u))−1|

≤ max
1≤i≤2

λeδ(e|Tii(u)| − 1)

(2 + λe−δ)2

≤ 3δλeδ

4 + 4λe−δ

≤ 3eλδ

4 + 4λ
.
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This shows that inequality (I5) holds when

δ ≤ (1 + λ)(1 − ηmax)

3eλM(1 + ηmax)
=

(1 + λ)2(1 − ηmax)

3eλ(2 + λ)(1 + ηmax)
.

By using (A.1), (A.2), and the fact that

ex > 1 + x, x ∈ (0, 1), and ex < 1 +
1

2
x, x ∈ (−1, 0),

we have

|ui − Tii(u)| ≤ 2

4 + λ
|u3−i|, i = 1, 2.

Therefore,

‖F(u) −F(u∗) − J (u∗)(u− u∗)‖ =

∥∥∥∥
(
T11(u) − u1 + (2 + λ)−1u2

T22(u) − u2 + (2 + λ)−1u1

)∥∥∥∥
≤

∥∥∥∥
(
|T11(u) − u1| + (2 + λ)−1|u2|
|T22(u) − u2| + (2 + λ)−1|u1|

)∥∥∥∥
≤ 3

2 + λ
‖u‖ < 2M‖u− u∗‖.

Thus, inequality (I6) holds.
Summing up the above discussion, we know that if

δ ≤ min

{
1

2
,

(1 + λ)2(1 − ηmax)

3eλ(2 + λ)(1 + ηmax)

}
,

then for any u ∈ N(u∗, δ), inequalities (I1)–(I6) hold.
For this example, other assumptions in the paper can also be checked to be true.
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Abstract. The stability and convergence properties of the mimetic finite difference method for
diffusion-type problems on polyhedral meshes are analyzed. The optimal convergence rates for the
scalar and vector variables in the mixed formulation of the problem are proved.

Key words. compatible discretizations, mimetic finite difference method, convergence, polyhe-
dral meshes

AMS subject classifications. 65N06, 65N12, 65N15, 65N22, 65N30

DOI. 10.1137/040613950

1. Introduction. The main goal of this paper is to establish convergence of
mimetic discretizations of the first-order system that describes linear stationary diffu-
sion on unstructured polyhedral meshes. The main idea of the mimetic finite difference
(MFD) method is to mimic the underlying properties of the original continuum dif-
ferential operators, e.g., conservation laws, solution symmetries, and the fundamental
identities and theorems of vector and tensor calculus. For the linear diffusion prob-
lem, this means that the mimetic discretizations mimic the Gauss divergence theorem
needed for the local mass conservation, the symmetry between the continuous gra-
dient and divergence operators needed for proving symmetry and positivity of the
resulting discrete operator, and the null spaces of the involved operators needed for
stability of the discretizations.

The MFD method has been successfully employed for solving problems of con-
tinuum mechanics [19], electromagnetics [14], gas dynamics [8], and linear diffusion
on simplicial and quadrilateral meshes in both the Cartesian and polar coordinates
[15, 13, 20, 17]. Recent advances in extending the mimetic discretizations to general
polygonal meshes [16] have inspired us to develop the rigorous convergence theory for
unstructured polygonal and polyhedral meshes.

The polyhedral elements appear naturally in reservoir models simulating thin-
ning or tapering out (“pinching out”) of geological layers. The pinchouts are modeled
with mixed types of mesh elements, pentahedrons, prisms, and tetrahedrons which
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are frequently obtained by collapsing some of the elements in a structured hexahedral
or prismatic mesh.

Other sources of polyhedral meshes are the adaptive mesh refinement methods.
A necessity to have a conformal mesh results in an abundant mesh refinement, e.g.,
in the methods using the red-green refinement strategy. However, the locally refined
mesh may be considered as the conformal polyhedral mesh with degenerate elements
(for instance, when the angle between two faces is 180◦). If we know how to discretize
a problem on a general polyhedral mesh, the superfluous mesh refinements can be
avoided. A similar argument can be applied to nonmatching meshes which frequently
may be treated as conformal polyhedral meshes with degenerate elements. This is the
way followed, for instance, in [16] for two-dimensional (2D) meshes.

Allowing arbitrary shape for a mesh element provides greater flexibility in the
mesh generation process, especially in the regions where the geometry is extremely
complex. Even in the case of an unstructured hexahedral mesh, it may be beneficial
to split the curvilinear faces into triangles in order to use more accurate discretization
methods and to get a smaller number of unknowns relative to a tetrahedral partition.
It is obvious that by splitting each face of a hexahedron into four triangles we get a
24-face polyhedron which is frequently nonconvex.

Some of the simulations in the fluid dynamics indicate that the polyhedral meshes
may lead to superior convergence rates and accuracy relative to tetrahedral meshes.
We refer readers to the CD-adapco group website (www.cd-adapco.com/news/18/
newsdev.htm) for more detail. The polyhedral meshes are also used in a number of
radiation–hydrodynamics applications [21, 22, 7]. For instance, one of the approaches
to increase robustness of arbitrary Lagrangian–Eulerian simulations is to change the
mesh connectivity which leads obviously to general polyhedral meshes.

The diffusion-type (elliptic) problems appear in many applications, for instance,
the temperature equation in heat diffusion or the pressure equation in flow problems.
The necessity to solve such problems arises in numerical methods for radiation trans-
port coupled with hydrodynamics, mesh smoothing algorithms, etc. In this paper,
we consider a diffusion problem formulated as a system of two first-order equations,
which is suitable for deriving locally conservative discretizations.

The mimetic discretizations have demonstrated excellent robustness and accuracy
in simulations; however, a rigorous convergence proof has always been lacking. The
original approach to prove the convergence of these discretizations has been based
on establishing the relationship between the MFD and mixed finite element meth-
ods [2, 3] which is certainly not enough for many interesting applications. In this
paper, we developed a novel technique for proving convergence estimates which may
be applied to the case of meshes consisting of arbitrary types of elements, e.g., tetra-
hedrons, pyramids, hexahedrons, degenerate polyhedrons, etc. The restrictions on a
polyhedron shape imposed in section 2 still allow extremely complex elements which
cover the majority of meshes used in applications. Note that the developed method-
ology can be applied to 2D diffusion problems on unstructured polygonal meshes with
minor modifications.

The paper is organized as follows. In section 2, we describe the problem under
consideration and the class of polyhedral meshes used in the convergence analysis.
In section 3, we formulate the MFD method. In section 4, we prove the stability
result. In section 5, we prove the convergence of mimetic discretizations. One of
the key elements used in our technique, the lift property, is discussed in detail in the
appendix.
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Fig. 2.1. Two possible elements and the normal to their faces.

2. The assumptions on the problem and on the mesh. Let us consider a
model elliptic boundary value problem

div F = b,(2.1)

F = −K grad p.(2.2)

Here p denotes a scalar function that we refer to as the pressure, F denotes a vector
function that we refer to as the velocity, K denotes a full symmetric tensor, and b
denotes a source function. The problem is posed in a bounded polyhedral domain
Ω ⊂ R

3, and is subject to appropriate boundary conditions on ∂Ω. For simplicity, we
assume that the homogeneous Dirichlet boundary conditions are imposed on ∂Ω. We
also assume that K satisfies the following regularity and ellipticity property.
P1 (regularity and ellipticity of K). Every component of K is in W 1

∞(Ω) and K is
strongly elliptic, meaning that there exist two positive constants κ∗ and κ∗

such that

κ∗‖v‖2 ≤ vTK(x)v ≤ κ∗‖v‖2 ∀v ∈ R
3 ∀x ∈ Ω.(2.3)

Let Th be a nonoverlapping conformal partition of Ω into polyhedral elements E.
For every element E, we denote by |E| its volume and by hE its diameter. Similarly,
for each face e we denote by |e| its area and for every edge � we denote by |�| its
length. Depending on context, we shall use ∂E either for the boundary of E or the
union of element faces. We also set as usual

h = sup
E

hE .

The elements E are assumed to be closed simply connected polyhedrons, rather
general in shape (see, for instance, Figure 2.1). However, we need some basic assump-
tions of shape regularity. As we shall see, the assumptions are formally complicated
sometimes, but they will hold for practically all partitions which are not totally un-
reasonable.
M1 (assumptions on the domain Ω). We assume that Ω is a polyhedron with a

Lipschitz continuous boundary.
M2 (number of faces and edges). We assume that we have two positive integers Ne

and N� such that every element E has at most Ne faces, and each face e has
at most N� edges.

M3 (volumes, areas, and lengths). We assume that there exist three positive con-
stants v∗, a∗, and l∗ (for volume, area, and length, respectively) such that for
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.
Me

Fig. 2.2. A star-shaped face with the circle of radius ρ∗ centered at Me.

every element E we have

v∗ h
3
E ≤ |E|, a∗ h

2
E ≤ |e|, l∗ hE ≤ |�|(2.4)

for all faces e and edges � of E.
M4 (star-shaped faces). We assume that the mesh faces are flat and that there exists

a positive number γ∗ such that for each element E and for each face e ∈ ∂E
there exists a point Me ∈ e such that e is star-shaped with respect to every
point in the disk of radius γ∗hE centered at Me.

We recall that e is star shaped with respect to a point P ∈ e if every
straight ray exiting from P (in the plane of e) intersects ∂e only once. In
what follows we shall often use the notation

ρ∗ = γ∗hE ,(2.5)

which is illustrated in Figure 2.2.
M5 (the pyramid property). With the notation of Assumption M4, we further assume

that for every E ∈ Th, and for every e ∈ ∂E, there exists a pyramid P e
E

contained in E such that its base equals e, its height equals γ∗hE , and the
projection of its vertex onto e is Me.

M6 (star-shaped elements). We assume that there exists a positive number τ∗ such
that for each element E there exists a point ME ∈ E such that E is star
shaped with respect to every point in the sphere of radius τ∗hE centered at
ME .

As before, we say that E is star shaped with respect to a point P ∈ E if
every straight ray exiting from P intersects ∂E only once.

3. MFD method. Let us introduce an operator G , G p = −Kgrad p, which we
refer to as the flux operator. Furthermore, we introduce the following scalar products:

(F, G)X =

∫
Ω

F · K−1GdV(3.1)
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and

(p, q)Q =

∫
Ω

pq dV(3.2)

in the space X of velocities and in the space Q of pressures, respectively. Using the
above notation, we may rewrite the Green’s formula∫

Ω

F · (K−1G p) dV =

∫
Ω

pdiv FdV(3.3)

in the equivalent form

(F, G p)X = (p, div F)Q.

The last expression clearly states that the flux and divergence operators are adjoint
to each other:

G = div∗.

The MFD method produces discretizations of these operators which are adjoint to each
other with respect to scalar products in the discrete velocity and pressure spaces.

The first step of the MFD method is to specify the degrees of freedom for physical
variables p and F and their location.

We consider the space Qd of discrete pressures that are constant on each poly-
hedron E. For q ∈ Qd we shall denote by qE (or by (q)E) its (constant) value on
E. The dimension, NQ, of Qd is obviously equal to the number of polyhedrons in Th.
In what follows, we shall denote by Qd either the vector space R

NQ or the space of
piecewise constant functions depending on context. The identification will be obvious
and no confusion should arise.

The definition of the space of discrete velocities requires some additional consid-
erations. To every element E in Th and to every face e of E we associate a number
F e
E and the vector field F e

E ne
E , where ne

E is the unit normal to e that points outside
of E. We clearly make the continuity assumption that for each face e shared by two
polyhedra E1 and E2, we have

F e
E1

= −F e
E2

.(3.4)

We denote the vector space of face-based velocity unknowns by Xd. The number,
NX , of our discrete velocity unknowns is equal to the number of boundary faces plus
twice the number of internal faces. In our theoretical discussion, we shall consider Xd

as the subspace of R
NX which verifies (3.4).

For a discrete velocity field G we will denote by GE its restriction to the boundary
of E, and by Ge

E (or by (GE)e) the restriction of GE ·nE to a face e belonging to the
boundary of E. It will be convenient sometimes to use the notation

Xd
E := {restrictions of Xd to the element E}.(3.5)

It is clear that, in practice, condition (3.4) will make the number of true indepen-
dent unknowns equal the total number of mesh faces. This means that, in a computer
program, we shall prescribe one direction for the normal to each internal face e, and
assign a single unknown Ge to each face, assuming that each of the two Ge

E coin-
cides either with Ge (when the outward normal nE on e coincides with the prescribed
direction) or with −Ge (otherwise).
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To summarize, one pressure unknown is defined on each polyhedron and the
discrete velocities are defined as face-based normal components. Once we get the
degrees of freedom in Qd and in Xd, we can define interpolation operators from the
spaces of smooth enough scalar- and vector-valued functions to the discrete spaces Qd

and Xd, respectively. To every function q in L1(Ω) we associate the element qI ∈ Qd

defined by

(qI)E :=
1

|E|

∫
E

q dV ∀E ∈ Th.(3.6)

Similarly, for every vector-valued function G ∈ (Ls(Ω))3, s > 2, with div G ∈
L2(Ω), we define GI ∈ Xd by

(
GI

E

)e
:=

1

|e|

∫
e

G · nE dS ∀E ∈ Th ∀ e ∈ ∂E.(3.7)

In the next section, we shall prove that this interpolation operator is well defined
and uniformly bounded. In what follows, we shall use bold capital letters either for
vectors from Xd or for continuous vector functions depending on context and leaving
no room for confusion.

The second step of the MFD method is to equip the spaces of discrete pressures
and velocities with scalar products. The scalar product on the vector space Qd is
given by

[p, q]Qd =
∑
E∈Th

pE qE |E| ∀p, q ∈ Qd.(3.8)

In order to define the scalar product in Xd, we first define a scalar product [F, G]E
for every element E ∈ Th in the following way. Let e1, e2, . . . , ekE

be a numbering
of the faces of the element E (where kE is clearly the total number of faces). We
assume that we are given (for each E) a symmetric positive definite kE × kE matrix
ME ≡ {ME,i,j}, and we set

[F, G]E =

kE∑
i,j=1

ME,i,j (FE)ei (GE)ej ∀F, G ∈ Xd ∀E ∈ Th.(3.9)

Some minimal approximation properties for the scalar product (3.9) are required.
The construction of the matrix ME is a nontrivial task for a polyhedral element. We
shall return to this problem in section 5. For the time being, we just assume that the
scalar product (3.9) has the following property.
S1 (stability of [·, ·]E). We assume that there exist two positive constants s∗ and S∗

independent of h and E such that, for every G ∈ Xd and for every E ∈ Th,
one has

s∗
∑
e∈∂E

(Ge
E)2 |E| ≤ [G, G]E ≤ S∗

∑
e∈∂E

(Ge
E)2 |E|.(3.10)

From (3.9) we can easily construct the scalar product in Xd by setting

[F, G]Xd =
∑
E∈Th

[F, G]E ∀F, G ∈ Xd.(3.11)
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The third step of the MFD method is to derive an approximation to the divergence
operator. The discrete divergence operator, DIVd : Xd → Qd, naturally arises from
the Gauss divergence theorem as

(DIVd F)E
def
=

1

|E|
∑
e∈∂E

F e
E |e|.(3.12)

We point out that our interpolation operators, in some sense, commute with the
divergence operator. Indeed, for every vector field G smooth enough, we can use
(3.12), (3.7), the Gauss divergence theorem, and (3.6) to obtain

(3.13)

(DIVd GI)E =
1

|E|
∑
e∈∂E

(
GI

E

)e|e|= 1

|E|

∫
∂E

G · nE dS =
1

|E|

∫
E

div GdV = (div G)IE

for every element E in Th.
The fourth step of the MFD method is to define the discrete flux operator,

Gd : Qd → Xd, as the adjoint to the discrete divergence operator, DIVd , with respect
to scalar products (3.8) and (3.11), i.e.,

[F, Gd p]Xd = [p, DIVd F]Qd ∀p ∈ Qd ∀F ∈ Xd.(3.14)

Using the discrete flux and divergence operators, the continuous problem (2.1), (2.2)
is discretized as follows:

DIVd Fd = b,(3.15)

Fd = Gd pd,(3.16)

where b ≡ bI is the vector of mean values of the source function b.

4. Stability analysis. In this section we analyze the stability of the MFD dis-
cretization (3.15)–(3.16) following the well-established theory of saddle-point problems
[5]. More precisely, we prove the coercivity condition (4.4) and the inf-sup condition
(4.5).

Using the discrete Green’s formula (3.14), we rewrite (3.15) and (3.16) in a form
more suitable for analysis:

[Fd, G]Xd − [pd, DIVd G]Qd = 0 ∀G ∈ Xd,(4.1)

[DIVd Fd, q]Qd = [b, q]Qd ∀q ∈ Qd.(4.2)

Let us introduce the following mesh norms on discrete spaces Xd and Qd:

|||p|||2Qd := [p, p]Qd , |||F|||2Xd := [F, F]Xd ,

and

|||F|||2div := |||F|||2Xd +
∑
E∈Th

h2
E ‖DIVd F‖2

L2(E).(4.3)

Let V d be the space of divergence-free discrete fluxes:

V d = {F ∈ Xd : DIVd F = 0}.
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We begin the stability analysis by noticing that the scalar product (3.11) is con-
tinuous. It is also obvious that the scalar product satisfies the V d-ellipticity condition:

[F, F]Xd ≥ |||F|||2div ∀F ∈ V d.(4.4)

The analysis of the inf-sup condition is more involved. Following [5], for every
q ∈ Qd, we have to find a vector G ∈ Xd such that

[DIVd G, q]Qd ≥ β∗|||G|||div |||q|||Qd ,(4.5)

where β∗ is a positive constant independent of q, G, and Th. Let us denote by
qh ∈ L2(Ω) the piecewise constant function on Th with values given by the entries
of the vector q (so that (qh)I ≡ q). It is obvious that ‖qh‖L2(Ω) = |||q|||Qd . Let us
consider the homogeneous Dirichlet boundary value problem

Δψ = qh in Ω.

Since Ω has a Lipschitz-continuous boundary, there exist an s > 2 and a constant C∗
Ω

such that

‖ψ‖W 1
s (Ω) ≤ C∗

Ω ‖qh‖L2(Ω).(4.6)

Let H = ∇ψ, so that we have immediately

div H = qh,(4.7)

and from (4.6)

‖H‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E ‖div H‖2

L2(E)

)1/2

≤ (C∗
Ω + h)‖qh‖L2(Ω).(4.8)

We now set

G := HI ≡ (∇ψ)I ,(4.9)

where the interpolation operator is still the one defined in (3.7). Thanks to the
commutative property (3.13) and to (4.7), we have

DIVd G = (qh)I ≡ q.(4.10)

Thus, inequality (4.5) is reduced to

|||q|||Qd ≥ β∗|||G|||div.(4.11)

At this point we need the following technical lemma.
Lemma 4.1. Under Assumptions M1–M6 and S1, for every s > 2, there exists a

positive constant β∗
s such that

|||GI |||div ≤ β∗
s

⎧⎨
⎩‖G‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E ‖div G‖2

L2(E)

)1/2
⎫⎬
⎭(4.12)

for every G ∈ (Ls(Ω))3 with div G ∈ L2(Ω), and where GI is defined in (3.7).
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Collecting (4.9) and (4.12), we get

|||G|||div = |||HI |||div ≤ β∗
s

⎧⎨
⎩‖H‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E ‖div H‖2

L2(E)

)1/2
⎫⎬
⎭ .

This, together with (4.8), implies (4.11), and hence (4.5), with β∗ = (β∗
s (C∗

Ω + h))
−1

.
Therefore, we have just to prove Lemma 4.1.

Proof of Lemma 4.1. From (3.13) we immediately have

|||DIVd GI |||Qd = |||(div G)I |||Qd ≤ ‖div G‖L2(Ω).(4.13)

Therefore, in view of (4.3), it is sufficient to prove that there exists a constant β̃∗
s such

that

|||GI |||Xd ≤ β̃∗
s

⎧⎨
⎩‖G‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E‖div G‖2

L2(E)

)1/2
⎫⎬
⎭ .(4.14)

The desired result (4.12) follows from (4.14) with β∗
s = β̃∗

s + 1. In the following
discussion, we shall make a wide use of the conjugate exponent t, depending on s
through the usual formula

1

s
+

1

t
= 1.(4.15)

Assumption (3.10) implies clearly that

[GI , GI ]Xd ≤ S∗
∑
E∈Th

|E|
∑
e∈∂E

(
Ge

E

)2
,(4.16)

so that we have to estimate the (Ge
E)’s in terms of G, or, rather, in terms of the norm

of G appearing in (4.12). Our basic instrument for that is called the lift property.
The main difficulty, in various cases, will be to prove that the lift property holds true.
LP (lift property). For every t < 2 there exists a constant λ∗ = λ∗(t) such that for

every E ∈ Th and for every e ∈ ∂E there exists a function ϕe
E from E to R

that verifies

ϕe
E = 1 on e, ϕe

E = 0 on ∂E \ e(4.17)

and

∥∥ϕe
E

∥∥
L2(E)

≤ λ∗h
3/2
E ,

∥∥∇ϕe
E

∥∥
(Lt(E))3

≤ λ∗h
3/t−1
E .(4.18)

The lift property LP is proved in the appendix.
Up to an approximation of G by smooth functions, and passage to the limit, we

have, using (3.7), (4.17), the Green’s formula,

Ge
E =

1

|e|

∫
e

G · nE dS =
1

|e|

∫
∂E

ϕe
EG · nE dS

=
1

|e|

∫
E

G · ∇ϕe
E dV +

1

|e|

∫
E

ϕe
E div GdV.

(4.19)
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Using the Hölder inequality and (4.18) in (4.19), we then have

|e|Ge
E ≤ ‖G‖Ls(E)

∥∥∇ϕe
E

∥∥
Lt(E)

+ ‖div G‖L2(E)

∥∥ϕe
E

∥∥
L2(E)

≤ λ∗ {(hE)3/t−1‖G‖Ls(E) + (hE)3/2 ‖div G‖L2(E)

}
.

Taking the squares and remembering that (a + b)2 ≤ 2(a2 + b2), we have

|e|2
(
Ge

E

)2 ≤ 2 (λ∗)2
{
(hE)6/t−2‖G‖2

Ls(E) + (hE)3 ‖div G‖2
L2(E)

}
.(4.20)

On the other hand, using conditions (2.4), we easily obtain

|E| ≤ h3
E = h−1

E

(
h2
E

)2 ≤ h−1
E (a∗)−2|e|2.(4.21)

We can now join (4.21) with (4.20) to deduce that

|E|
(
Ge

E

)2 ≤ h−1
E (a∗)−2|e|2

(
Ge

E

)2
≤ σ∗{(hE)6/t−3‖G‖2

Ls(E) + (hE)2 ‖div G‖2
L2(E)

}
,

(4.22)

where σ∗ = 2 (λ∗)2 (a∗)−2. Now we can sum (4.22) over all faces e of E and then
over all elements E of Th. We use (4.16) and Assumption M2 on the number of faces
per element to get

|||GI |||2Xd ≤ Ne S
∗ σ∗

{ ∑
E∈Th

(hE)6/t−3‖G‖2
Ls(E) +

∑
E∈Th

h2
E ‖div G‖2

L2(E)

}

≤ Ne S
∗ σ∗

⎧⎨
⎩
( ∑

E∈Th

{
(hE)6/t−3

}r

)1/r ( ∑
E∈Th

‖G‖sLs(E)

)2/s

+
∑
E∈Th

h2
E‖div G‖2

L2(E)

}
,

(4.23)

where in the last step we applied the Hölder inequality with r, the conjugate exponent
of s/2,

1

r
+

2

s
= 1.(4.24)

A simple algebraic manipulation using (4.15) and (4.24) gives

∑
E∈Th

{
(hE)6/t−3

}r
=

∑
E∈Th

h3
E ≤ v−1

∗ |Ω|,(4.25)

where we have also used (2.4) in the last step. Inserting (4.25) into (4.23), we finally
get

|||GI |||Xd ≤ β̃∗
s

⎧⎨
⎩‖G‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E‖div G‖2

L2(E)

)1/2
⎫⎬
⎭,(4.26)

where β̃∗
s depends only on λ∗(t), S∗, v∗, a∗, and Ne. This proves the assertion of the

lemma.
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5. Convergence analysis.

5.1. Consistency assumption. In order to prove error estimates, we need some
assumptions on the scalar product (3.11), and more precisely on the relationships
between the continuous scalar product (3.1) and its discrete counterpart (3.11). Our
basic assumption will be the following one.
S2 (consistency of [·, ·]E). For every element E, every linear function q1 on E, and

every G ∈ Xd, we have

[(
K̃∇q1

)I
, G

]
E

=

∫
∂E

q1 GE · nE dS −
∫
E

q1 (DIVd G)E dV,(5.1)

where (·)I is the interpolation operator (3.7) and K̃ is a constant tensor on
E such that

sup
x∈E

sup
i,j

|{K(x)}i,j − {K̃}i,j | ≤ C∗
K hE ,(5.2)

where C∗
K is a constant independent of E.

Note that K̃ may be any reasonable piecewise constant approximation of K. In
practice, we use either the value of K at the polyhedron mass center or its mean value.

Condition (5.1) is rather new and requires some comments. First, we point out
that for divergence-free vectors, G ∈ V d, it reads

[(K̃∇q1)I , G]E =

∫
∂E

q1 GE · nE dS(5.3)

showing the remarkable property of using only boundary integrals. However, as
DIVd G is constant in each E and q1 is supposed to be linear, the volume inte-
gral appearing in (5.1) is not difficult to compute. Taking G = (K̃∇q̃1)I (with q̃1

another polynomial of degree ≤ 1) in (5.3), we conclude that Assumption S2 implies
that the scalar product (3.11) gives an exact value for the integral of two constant
velocities.

In the context of the local MFD method [13], and taking for simplicity K̃ = I,
condition (5.1) means that the discrete gradient operator is exact for linear functions,
i.e., Gd (q1)I is a constant vector whose entries are equal to ∇q1. This property
has been used in [18] to build a one-parameter family of symmetric positive definite
matrices ME for a triangle. As a particular case, this family includes the mass ma-
trix appearing in the finite element discretizations with the Raviart–Thomas finite
elements.

What is still remarkable in (5.1) is that it does not require the construction of a
lifting operator from the values Ge

E on ∂E to the interior of E. It is not difficult to
show, however, that if we have any reasonable lifting operator RE , then the choice

[F, G]E :=

∫
E

K̃−1RE(FE) ·RE(GE) dV

will automatically satisfy (5.1) as well as (3.10). We have indeed the following theo-
rem.

Theorem 5.1. Assume that for every element E ∈ Th we have a lifting operator
RE acting on Xd

E (the restriction of Xd to E) and with values in (L2(E))3 such that

RE(GE) · nE ≡ GE · nE on ∂E,

divRE(GE) ≡ (DIVd G)E in E
(5.4)
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for all G ∈ Xd, and

RE

(
GI

E

)
= G(5.5)

for all G constant on E. Then the choices

{K̃}i,j :=
1

|E|

∫
E

{K}i,j dV(5.6)

and

[F, G]E :=

∫
E

K̃−1RE(FE) ·RE(GE) dV(5.7)

will automatically satisfy (5.2) and (5.1). If, moreover, there exist two positive con-
stants c∗R and C∗

R, independent of E such that

c∗R

(
|E|

∑
e∈∂E

(
Ge

E

)2)1/2

≤ ‖RE(G)‖(L2(E))3 ≤ C∗
R

(
|E|

∑
e∈∂E

(
Ge

E

)2)1/2

(5.8)

for all G ∈ Xd, then (3.10) will also hold with constants s∗ and S∗ depending only
on c∗R, C∗

R, and on the constants κ∗, κ
∗ from (2.3).

Proof. The validity of (5.2) is immediate. The validity of (5.1) is also easily
checked:

[(K̃∇q1)I , G]E =

∫
E

K̃−1RE((K̃∇q1)IE) ·RE(GE) dV (use (5.5) and ∇q1 = const)

=

∫
E

K̃−1K̃∇q1 ·RE(GE) dV (use K̃−1K̃ = Id)

=

∫
E

∇q1 ·RE(GE) dV (integrate by parts)

=

∫
∂E

q1 RE(GE) · nE dS −
∫
E

q1 divRE(GE) dV (use (5.4))

=

∫
∂E

q1 GE · nE dS −
∫
E

q1 (DIVd G)E dV.

Finally, (3.10) follows immediately from (5.7), (2.3), and (5.8) after noting that (2.3)
is equivalent to

(κ∗)−1‖v‖2 ≤ vTK−1(x)v ≤ (κ∗)
−1‖v‖2 ∀v ∈ R

3 ∀x ∈ Ω.(5.9)

This ends the proof of the theorem.
A possible way of getting (5.1) is, therefore, to construct a lifting operator RE

satisfying (5.4), (5.5), and (5.8), and then define ME following (5.7). For instance,
the way followed in [16] for polygonal domains can be interpreted as the construction
of a lifting operator satisfying (5.4) and (5.5).

In general, we may consider assumption (5.1) as a system of linear equations
where the unknowns are the coefficients of ME , and use it, in each element E, to
construct the matrix ME . Since the matrix ME should be symmetric and positive
definite, this is a problem with nonlinear constraints. An analytical solution has been
found only for triangular elements [18].
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Let us see this in more detail. We consider an element E having kE faces. Equa-
tion (5.1) should then hold for kE different possible choices of GE and three possible
choices of q1 corresponding to q1 =x, q1 = y, and q1 = z. Note that for q1 = 1, (5.1) is
automatically satisfied as it is reduced to our definition of the operator DIVd . We
have, therefore, 3kE equations. It can be shown that only 3kE − 3 equations are
linearly independent. Since K̃, and hence ME , is symmetric, the number of unknown
coefficients of ME is kE(kE + 1)/2, that is, bigger than 3kE − 3 as soon as kE ≥ 4.
The system will always be compatible, since we could always define a lifting RE first
by solving, for each GE , the Neumann problem

Δχ = DIVd GE in E,

∂χ/∂nE = GE · nE on ∂E,

then by taking RE(GE) := ∇χ, and finally by defining ME through (5.7). This would
be totally impractical but shows that at least a solution ME of (5.1), symmetric and
positive definite, exists (although, in general, the solution will not be unique).

A sparsity structure could be imposed on ME in order to reduce the number
of unknowns. For instance, we can require that each face interacts only with a few
neighboring faces, reducing the number of unknowns to 3kE − 3, which equals the
number of equations and makes the linear system much easier to solve on the computer
(see [6] for more detail).

An advantage of this approach is that it can be rather easily extended to faces
that are not flat. This is a case in which the construction of an explicit lifting operator
might prove to be very difficult. We shall consider meshes with curved faces in the
future publications.

5.2. Error estimate for the vector variable. Using Assumption S2, we are
going to prove error estimates for our discretization. Let (p, F) be the exact solution
of (2.1) and (2.2), let (pd,Fd) be the discrete solution (see (3.15) and (3.16)), and let
pI and FI be the interpolants of the exact solution. Finally, for every element E, we
denote by p1

E a suitable polynomial of degree ≤ 1 that approximates p, and that will
be decided later on. We notice first that from (2.1), (3.13), and (3.15), we easily have

DIVd (FI − Fd) = b − b = 0.(5.10)

Using (2.2) and (3.16), then (3.14), and finally (5.10), we get

[FI − Fd, FI − Fd]Xd = [(−K∇p)I , FI − Fd]Xd − [G dpd,F
I − Fd]Xd

= [(−K∇p)I , FI − Fd]Xd − [pd, DIVd (FI − Fd)]Qd

= [(−K∇p)I , FI − Fd]Xd .(5.11)

Then, adding and subtracting the terms, we have

|||FI − Fd|||2Xd = [(−K∇p)I + (K∇p1)I , FI − Fd]Xd + [(−K∇p1)I , FI − Fd]Xd

= I1 + [(−K∇p1 + K̃∇p1)I , FI − Fd]Xd + [(−K̃∇p1)I ,FI − Fd]Xd

= I1 + I2 + [(−K̃∇p1)I , FI − Fd]Xd

= I1 + I2 + I3.(5.12)
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Using (5.1) and (5.10), the third term reads

I3 =
∑
E∈Th

{∫
∂E

p1
E (FI − Fd)E · nE dS −

∫
E

p1
E (DIVd (FI − Fd))E dV

}

=
∑
E∈Th

∫
∂E

p1
E (FI − Fd)E · nE dS.(5.13)

We are, therefore, left with the problem of estimating I1, I2, and I3. A first
estimate of I2 is trivial. From (5.2) we immediately have

I2 ≡ [(−K∇p1 + K̃∇p1)I , FI − Fd]Xd ≤ C∗
Kh |||(∇p1)I |||Xd |||FI − Fd|||Xd ,(5.14)

where p1 still has to be defined.
Let us recall some known properties of the approximation theory. For the sake of

simplicity, we assume that our solution p is in H2(Ω). Note that with a little additional
effort we could use a weaker regularity and get a lower order of convergence.

We first recall that, under Assumption M6 (star-shaped elements), it is possible
to find a constant C∗

app, depending only on τ∗, such that for every element E and for
every p ∈ H2(E) there exist a constant p0

E and a polynomial p1
E of degree ≤ 1 such

that
∥∥p− p0

E

∥∥
L2(E)

≤ C∗
app hE ‖p‖H1(E),(5.15)

∥∥p− p1
E

∥∥
L2(E)

≤ C∗
app h

2
E ‖p‖H2(E),

∥∥p− p1
E

∥∥
H1(E)

≤ C∗
app hE ‖p‖H2(E)(5.16)

(see [4, Lemma 4.3.8]). Concerning the error on faces, we can use a result due to
Agmon made popular in the numerical analysis community by Arnold [1]. Applied to
our case, it says that there exists a constant C∗

agm, depending only on the constant
γ∗ of Assumption M4, such that for every pyramid P e

E (as described in Assumption
M5), and for every function χ ∈ H1(P e

E), we have

‖χ‖2
L2(e) ≤ C∗

agm

(
h−1
E ‖χ‖2

L2(P e
E) + hE ‖χ‖2

H1(P e
E)

)
.(5.17)

It is then immediate to derive from (5.17) that

‖∇χ‖2
L2(e) ≤ C∗

agm

(
h−1
E ‖χ‖2

H1(P e
E) + hE ‖χ‖2

H2(P e
E)

)
(5.18)

for every χ ∈ H2(E). Applying this to the difference p− p1
E , and using (5.16), we get

∥∥p− p1
E

∥∥2

L2(e)
+ h2

E

∥∥∇(
p− p1

E

)∥∥2

L2(e)
≤ C∗

face h
3
E ‖p‖2

H2(E),(5.19)

where C∗
face depends only on τ∗ and γ∗.

Now, we can finish the estimate of I2. Note that ∇p1 is a constant vector. Then,
(5.16) and the triangle inequality give

|||
(
∇p1

E

)I |||Xd=
∥∥∇p1

E

∥∥
L2(E)

≤‖∇p‖L2(E)+
∥∥∇(p−p1

E)
∥∥
L2(E)

≤
(
1+hEC

∗
app

)
‖p‖H2(E).

Thus, we obtain immediately from (5.14) that

I2 ≤ C∗
I2 h ‖p‖H2(Ω) |||FI − Fd|||Xd ,(5.20)
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where C∗
I2

equals (1 + hE C∗
app)C

∗
K with C∗

K given in (5.2).
The estimate of I1 is obtained in the following lemma.
Lemma 5.2. Let p ∈ H2(Ω) and let, in each E ∈ Th, p1 be such that (5.16) holds.

Let (·)I be the interpolation operator defined in (3.7), and let finally G ∈ Xd. Then

[(−K∇p)I + (K∇p1)I , G]Xd ≤ C∗
I1 h ‖p‖H2(Ω) |||G|||Xd ,(5.21)

where the constant C∗
I1

is independent of p, G, and h.
Proof. The proof follows immediately from (3.10), the definition of the interpo-

lation operator (3.7), the Cauchy–Schwarz inequality, and the approximation results
quoted above. Indeed, we have

|||(−K∇p)I + (K∇p1)I |||2Xd ≤ S∗
∑
E∈Th

∑
e∈∂E

(
((−K∇p)I + (K∇p1)I)eE

)2 |E|

≤ S∗
∑
E∈Th

∑
e∈∂E

(
1

|e|

∫
e

K∇
(
p− p1

E

)
· nE dS

)2

|E|

≤ S∗
∑
E∈Th

∑
e∈∂E

1

|e|
∥∥K∇

(
p− p1

E

)∥∥2

L2(e)
|E|

≤ C∗
I1 h

2 ‖p‖2
H2(Ω),

where C∗
I1

depends only on a∗ given in (2.4), S∗ given in (3.10), κ∗ given in (2.3), Ne

from Assumption M2, and C∗
face obtained in (5.19).

The following lemma gives an estimate for I3.
Lemma 5.3. Let p ∈ H2(Ω) and let, in each E ∈ Th, p1 be such that (5.16) holds.

Moreover, let G ∈ Xd. Then

∑
E∈Th

∫
∂E

p1 GE · nE dS ≤ C∗
I3 h ‖p‖H2(Ω) |||G|||Xd ,(5.22)

where the constant C∗
I3

is independent of p, G, and h.
Proof. The first (crucial) step of the proof uses the continuity of p and the fact

that GE · nE takes opposite values for the two elements sharing a common internal
face. Then, the result follows with usual instruments such as the Cauchy–Schwarz
inequality and approximation results (5.16):

∑
E∈Th

∫
∂E

p1
E GE · nE dS =

∑
E∈Th

∫
∂E

(
p1
E − p

)
GE · nE dS

≤
∑
E∈Th

∑
e∈∂E

∥∥p− p1
E

∥∥
L2(e)

∥∥Ge
E

∥∥
L2(e)

=
∑
E∈Th

∑
e∈∂E

∥∥p− p1
E

∥∥
L2(e)

∣∣Ge
E

∣∣ |e|1/2

≤ v
−1/2
∗ (C∗

face)
1/2

∑
E∈Th

hE‖p‖H2(E)

∑
e∈∂E

∣∣Ge
E

∣∣ |E|1/2

≤ C∗
I3 h‖p‖H2(Ω) |||G|||Xd ,

where C∗
I3

= (v−1
∗ s−1

∗ C∗
face)

1/2Ne. This proves the assertion of the lemma.
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Combining (5.12) with (5.20), (5.21), and (5.22), we finally get the main
convergence result.

Theorem 5.4. Under Assumptions P1, M1–M6, and S1–S2, let (p, F) be the
solution of (2.1)–(2.2), and let (pd, Fd) be the discrete solution, given by (3.15)–(3.16).
Moreover, let FI be the interpolant of F, introduced in (3.7). Then, we have

|||FI − Fd|||Xd ≤ C∗ h ‖p‖H2(Ω),(5.23)

where C∗ depends only upon the various constants appearing in Assumptions P1,
M1–M6, and S1–S2.

5.3. Error estimates for the scalar variable. In order to derive estimates
on the scalar variable pd, we shall go back to the proof of inf-sup condition (4.5). For
the sake of simplicity, we assume that Ω is convex. Let ψ be the solution of

−div(K∇ψ) =pI − pd in Ω,

ψ= 0 on ∂Ω,

where, for simplicity, we identified pd−pI with the corresponding piecewise constant
function. The convexity of Ω implies that there exists a constant C∗

Ω, depending only
on Ω, such that

‖ψ‖H2(Ω) ≤ C∗
Ω |||pd − pI |||Qd .(5.24)

We now set

H = K∇ψ(5.25)

and define G ∈ Xd as G = HI , so that

DIVd G = pd − pI .(5.26)

Finally, we denote by ψ1 a piecewise linear approximation of ψ that satisfies (5.16)
for each E ∈ Th. Using (5.26), then (4.1), then (3.6) and (3.13), then integrating by
parts, and finally integrating once again by parts and using (2.1) and (2.2), we get

|||pd − pI |||2Qd = [DIVd G, pd − pI ]Qd

= [Fd, G]Xd − [DIVd G, pI ]Qd = [Fd, G]Xd −
∫

Ω

pdiv(K∇ψ) dV

= [Fd, G]Xd +

∫
Ω

K∇ p · ∇ψ dV

= [Fd, G]Xd +

∫
Ω

b ψ dV.

Now, using the definition of G and adding and subtracting the terms, we have

|||pd − pI |||2Qd = [Fd, (K∇ψ)I − (K∇ψ1)I ]Xd + [Fd, (K∇ψ1)I ]Xd +

∫
Ω

b ψ dV

= J1 + [Fd, ((K − K̃)∇ψ1)I ]Xd + [Fd, (K̃∇ψ1)I ]Xd +

∫
Ω

b ψ dV

= J1 + J2 + [Fd, (K̃∇ψ1)I ]Xd +

∫
Ω

b ψ dV.(5.27)
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Using (5.21), the term J1 can be easily bounded by

J1 ≡ [Fd, (K∇ψ)I − (K∇ψ1)I ]Xd ≤ C∗
I1 h |||Fd|||Xd ‖ψ‖H2(Ω).(5.28)

The term J2 is bounded as in (5.14), (5.20) by

J2 ≡ [Fd, ((K − K̃)∇ψ1)I ]Xd ≤ C∗
I2 h |||Fd|||Xd ‖ψ‖H2(Ω).(5.29)

For the third term in the last line of (5.27), we can use (5.1) to obtain

[Fd, (K∇ψ1)I ]Xd =
∑
E∈Th

∫
∂E

ψ1(Fd)E · nE dS −
∫

Ω

bψ1 dV.(5.30)

With the help of (5.22), we then get

∣∣∣∣[Fd, (K̃∇ψ1)I ]Xd +

∫
Ω

b ψ dV

∣∣∣∣ ≤ C∗
I3 h |||Fd|||Xd ‖ψ‖H2(Ω) +

∣∣∣∣
∫

Ω

(b ψ − bψ1) dV

∣∣∣∣ ,
(5.31)

where the last term is easily bounded by 2C∗
app h ‖b‖H1(Ω) ‖ψ‖H1(Ω). Collecting

inequalities (5.27)–(5.31), we obtain

|||pd − pI |||2Qd ≤ C∗ h
{
|||Fd|||Xd + ‖b‖H1(Ω)

}
‖ψ‖H2(Ω),(5.32)

which, combined with estimates (5.24), Theorem 5.4, and Lemma 4.1, gives the proof
of the second convergence result.

Theorem 5.5. Under assumptions of Theorem 5.4, plus the convexity of Ω, we
have

|||pd − pI |||Qd ≤ C∗ h (‖p‖H2(Ω) + ‖b‖H1(Ω)),(5.33)

where the constant C∗ depends only on the constants appearing in Assumptions P1,
M1–M6, and S1–S2, on C∗

Ω appearing in (5.24), and on β∗
s appearing in (4.12).

It is interesting to note that, assuming that in each element E we had a suitable
lifting RE , a better estimate for the scalar variable could be obtained. We have indeed
the following theorem.

Theorem 5.6. Together with the assumptions of Theorem 5.5, assume, moreover,
that for each element E we have a lifting operator RE with properties (5.4), (5.5), and
(5.8) such that

‖RE(GI) − G‖L2(E) ≤ C∗
Ra hE ‖G‖(H1(E))3 ∀G ∈ (H1(E))3 ∀E ∈ Th,(5.34)

where C∗
Ra is a constant independent of G and hE. Then, the choice

[F, G]E :=

∫
E

K−1RE(FE) ·RE(GE) dV(5.35)

will give

|||pd − pI |||Qd ≤ C∗ h2
(
‖p‖H2(Ω) + ‖b‖H1(Ω)

)
,(5.36)

where the constant C∗ depends only on the constants appearing in Assumptions P1,
M1–M6, and S1–S2, on C∗

Ω appearing in (5.24), on β∗
s appearing in (4.12), and on

C∗
Ra from (5.34).
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Proof. Let R(G) be such that R(G)|E = RE(GE). Following essentially [11] and
using (5.26), then (4.1), (3.6), and (3.13) (as in the previous proof) with (5.4), then
integrating by parts, and finally using (2.2) and (5.35), we get

|||pd − pI |||2Qd = [DIVd G, pd − pI ]Qd

= [Fd, G]Xd −
∫

Ω

pdivR(G) dV

= [Fd, G]Xd +

∫
Ω

∇ p ·R(G) dV = [Fd, G]Xd +

∫
Ω

K−1K∇p ·R(G) dV

=

∫
Ω

K−1(R(Fd) − F)R(G) dV.

Adding and subtracting H defined in (5.25), we get

|||pd − pI |||2Qd =

∫
Ω

K−1(R(Fd) − F) (R(G) − H) dV +

∫
Ω

K−1(R(Fd) − F)HdV

= J3 +

∫
Ω

(R(Fd) − F)∇ψ dV = J3 −
∫

Ω

ψ div(R(Fd) − F) dV

= J3 −
∫

Ω

(bI − b)ψ dV

= J3 −
∫

Ω

(bI − b)(ψ − ψI) dV = J3 + J4.(5.37)

In their turn, J3 and J4 can be easily bounded using the previous estimates and
the usual arguments. Indeed, the triangle inequality, then (3.10) and (5.8), and finally
(5.23) and (5.34) imply that

‖R(Fd) − F‖(L2(Ω))3 ≤ ‖R(Fd − FI)‖(L2(Ω))3 + ‖R(FI) − F‖(L2(Ω))3

≤ C∗
Rs

−1/2
∗ |||Fd − FI |||Xd + ‖R(FI) − F‖(L2(Ω))3

≤ C h ‖p‖H2(Ω).(5.38)

Using assumption (5.34) and (5.24), we get

(5.39)

‖R(G)−H‖(L2(Ω))3 = ‖R(HI)−H‖(L2(Ω))3 ≤ C∗
Rah‖H‖(H1(Ω))3 ≤ Ch|||pd − pI |||Qd .

The approximation property (5.15) gives the following estimates:

|‖bI − b‖L2(Ω) ≤ C∗
app h‖b‖H1(Ω)(5.40)

and

‖ψ − ψI‖L2(Ω) ≤ C∗
app h‖ψ‖H1(Ω) ≤ C∗

appC
∗
Ω h |||pd − pI |||Qd .(5.41)

Inserting estimates (5.38)–(5.41) into (5.37), we immediately get the result.
Remark 5.1. It is very likely that our additional assumption (5.34) is not needed,

as it should be possible to deduce it from (5.4), (5.5), possibly with minor additional
assumptions on the geometry. However, in essentially all cases in which RE can be
explicitly built, it is easy to prove directly that (5.34) holds true. Therefore, we decided
that it would be simpler to just assume it.
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6. Conclusion. In this paper, we have considered the MFD method for the
mixed formulation of the diffusion problem on polyhedral meshes. We have proved
the stability of the mimetic discretizations and the optimal convergence rates for the
scalar and vector variables. The key elements of our methodology are the consistency
Assumption S2 and the lift property LP. In future work, we plan to extend the
convergence results to polyhedral meshes with curved faces.

Appendix. Proof of the list property. The purpose of this appendix is to
prove the lift property (4.17)–(4.18), which we recall for convenience of the reader.

LP (lift property). For every t < 2 there exists a constant λ∗ = λ∗(t) such that for
every E ∈ Th and for every e ∈ ∂E there exists a function ϕe

E from E to R

that verifies

ϕe
E = 1 on e, ϕe

E = 0 on ∂E\e(A.1)

and

∥∥ϕe
E

∥∥
L2(E)

≤ λ∗h
3/2
E ,

∥∥∇ϕe
E

∥∥
(Lt(E))3

≤ λ∗h
3/t−1
E .(A.2)

A traditional way would be to assume that there exist a finite number of reference
elements Ê1, . . . , Ê1 and a positive constant L∗ such that for each E ∈ Th there is an
Êk and a bi-Lipschitz map ΦE

k from Êk to E such that

∣∣ΦE
k

∣∣
W 1

∞(Êk)
≤ L∗,

∥∥ΦE
k

∥∥
L∞(Êk)

≤ L∗ hE(A.3)

and

∣∣(ΦE
k )−1

∣∣
W 1

∞(E)
≤ L∗,

∥∥(ΦE
k

)−1∥∥
L∞(E)

≤ L∗ h−1
E .(A.4)

Then, for each reference element Êk and for each face ê of Êk we could construct
the harmonic function ϕ̂ê

Êk
with boundary value 1 on ê and zero on the other faces,

and verify that it belongs to W 1
t (Êk) for every t < 2. Finally each function ϕe

E could
be constructed by combining one of the reference functions ϕ̂ê

Êk
with the corresponding

map ΦE
k . This is surely feasible but will become rather cumbersome if we want to

consider a big variety of possible shapes for our elements.

We decided here to follow a different path that requires only the fact that the
faces are star shaped (M4) and the pyramid property (M5), which are possibly more
difficult to explain but much easier to check and to enforce. The general idea is first
to build a function ϕ̂1 on the unit cone C1; then, for every h, to build a function ϕh

on a cone Ch obtained by scaling the unit cone; and finally, for each element E and
for each face e, to map the cone Cγ∗hE

(where γ∗ is given in Assumption M4) into the
pyramid P e

E described in Assumption M5 with a Lipschitz continuous mapping. This
will give us a function ϕ = ϕe

E on the pyramid, having the right norms. This function
will finally be extended by zero to the whole element E, and still it will have the right
norms. But let us look at the procedure in more detail.

For each element E and for each face e of E we want to build a function ϕ = ϕe
E

with the following properties.

• The support of ϕ is contained in the pyramid P = P e
E satisfying Assumption

M5.
• ϕ ≡ 1 on e and ϕ ≡ 0 on the other faces of P e

E .
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• ϕ satisfies the following estimates:

||ϕ||L2(P ) ≤ λ∗ h
3/2
E and ||∇ϕ||(Lt(P ))3 ≤ λ∗ h

3/t−1
E ,(A.5)

where the constant λ∗ is independent of E and e.
As we said before, we start our work on cones: for ρ > 0 we shall refer to the

solid

Cρ ≡ {(x, y, z) : 0 ≤ z ≤ ρ and x2 + y2 ≤ (ρ− z)2}

as the circular cone of radius ρ.
Lemma A.1. Let C1 be the circular cone of radius 1, and let ϕ̂1 be the harmonic

function that takes value 1 on the base and 0 on the lateral boundary. Then ϕ̂1 belongs
to L∞(C1) and ∇ϕ̂1 belongs to (Lt(C1))

3 for all t < 2.
Proof. The first part of the statement follows from the maximum principle, which

gives 0 ≤ ϕ̂1 ≤ 1. The second part of the statement follows immediately from the
known results concerning domains with corners (see, e.g., [12] or [10]).

In view of the previous lemma, we set

Ĉt := ‖∇ϕ1‖(Lt(C1))3 .(A.6)

It is clear that Ĉt depends on t and hence on s through (4.15).
Lemma A.2. For every positive real number h, let Ch be a circular cone of radius

h. Then, there exists a function ϕh taking value 1 on the base, value zero on the
lateral surface, and satisfying

||ϕh||L2(Ch) ≤ |Ch|1/2 and ||∇ϕh||(Lt(Ch))3 ≤ h3/t−1Ĉt,(A.7)

where |Ch| is the volume of Ch.
Proof. The proof follows with the usual scaling arguments (see, e.g., [9, Theorem

3.1.2]).
Consider now a face e of E. For convenience, we assume that (a) the face e lies in

the plane z = 0, (b) Me, defined in Assumption M4 (star-shaped faces), is the origin of
the axes, and (c) the polyhedron E is locally in the half-space z > 0. By Assumptions
M4 and M5 (the pyramid property), there exists a γ∗ such that the circular cone Ch
having its base on the face e (with center in Me), and radius h = ρ∗ = γ∗ hE , is
strictly contained in the pyramid P e

E having the same vertex and base equal to e.
Hence, Ch is contained in E.

Let us show that Assumption M4 implies the existence of a radial mapping in the
plane z = 0 which maps the disk Dρ∗ with center in Me and radius ρ∗ onto the face
e, is one-to-one, Lipschitz continuous together with its inverse, and with W 1

∞ norms
bounded in terms of γ∗ and the number of edges of e.

Lemma A.3. Under Assumption M4 there exists a map Φ2, mapping the disk
Dρ∗ onto the face e, which is Lipschitz continuous together with the inverse map Φ−1

2 .
Moreover,

‖Φ2‖W 1
∞(Dρ∗ ) ≤ C∗

e and ‖Φ−1
2 ‖W 1

∞(e) ≤ C∗
e ,(A.8)

where C∗
e depends only on the constant γ∗ from Assumption M4.

Proof. To show this, we note that the plane z = 0 can be split in a finite number
of sectors by the vertices of e. Each sector corresponds to the straight rays coming
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O

ρ∗

Fig. A.1. The splitting of e in sectors.

out of the origin Me and intersecting the edge �k (see Figure A.1). For each point
P ∈ Dρ∗ , we first consider the ray emanating from the origin and passing through P.
This ray intersects ∂e at a point V(P). Our mapping is defined as follows:

P̃ ≡ Φ2(P) :=
|V(P)|

ρ∗
P.(A.9)

It is clear that Φ2 maps every point P onto a point P̃ on the same ray so that

V(P) = V(P̃) ∀P ∈ Dρ∗ .(A.10)

It is immediate to check that, on each ray, the map is continuous and monotone,
and that it maps the points of the circumference of radius ρ∗ onto the corresponding
points of ∂e on the same ray. Hence it maps Dρ∗ onto e in a one-to-one way. It is
also clear that the map is globally continuous, invertible, and the inverse map

P ≡ Φ−1
2 (P̃) :=

ρ∗
|V(P)| P̃ ≡ ρ∗

|V(P̃)|
P̃(A.11)

is also continuous and maps e onto Dρ∗ . Note that we used (A.10) in the last step.
In order to show the Lipschitz continuity, we have to bound the distance between

the images |P̃ − Q̃| by a constant time the distance |P − Q|. For this, we note that
Assumption M4 implies

1 ≤ |V|
ρ∗

≤ hE

γ∗ hE
=

1

γ∗
for every V ∈ ∂e.(A.12)

As shown in Figure A.2, it also implies that for every point V on an edge � of ∂e, the
angle αV between � and the ray passing through V verifies

| sinαV | =
|H�|
|V| ≥ ρ∗

|V| ≥ γ∗,(A.13)

where H� is the orthogonal projection of the origin Me on the line containing �, and
we used (A.12) in the last step.

The Lipschitz continuity is obvious when P and Q are on the same ray:

|P̃ − Q̃| =
|V(P)|

ρ∗
|P − Q| ≤ 1

γ∗
|P − Q|.(A.14)
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O

V

αV

H�

ρ∗

Fig. A.2. Lower bound on |sinαV|.

O

V(P)

V(Q)

P

R

Q

KQ

Fig. A.3. Lipschitz continuity within a sector.

If P and Q are on two different rays in the same sector, we first denote by KQ

and R (respectively) the orthogonal projections of V(P) (respectively, of P) on the
ray containing Q (see Figure A.3). Then, applying the Thaletes theorem, we get

|V(P) − KQ|
|V(P)| =

|P − R|
|P| ≤ |P − Q|

|P| .(A.15)

Collecting (A.15), (A.13), and (A.12), we have

|V(P) − V(Q)| =
|V(P) − KQ|∣∣sin (

αV (Q)

)∣∣ ≤ |P − Q|
γ∗|P| |V(P)| ≤ |P − Q|

(γ∗)2|P| ρ∗,(A.16)
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where obviously the role of P and Q can be interchanged. Finally, the triangle
inequality together with (A.9) and (A.16) gives

|P̃ − Q̃| =

∣∣∣∣ |V(P)|P − |V(Q)|Q
ρ∗

∣∣∣∣ ≤ |V(P) − V(Q)|
ρ∗

|P| + |V(Q)|
ρ∗

|P − Q|

≤ |P − Q|
(γ∗)2

+
1

γ∗
|P − Q| =

1 + γ∗
(γ∗)2

|P − Q|.

(A.17)

The case of P and Q belonging to different sectors can be easily deduced by
inserting suitable intermediate points at the boundaries of the sectors and then using
the triangle inequality.

In a similar way, we can show that the inverse mapping is also Lipschitz contin-
uous. For instance, using (A.11) we get

|P − Q| =

∣∣∣∣ ρ∗

|V(P̃)|
P̃ − ρ∗

|V(Q̃)|
Q̃

∣∣∣∣ =
ρ∗

|V(P̃)| |V(Q̃)|
||V(Q̃)|P̃ − |V(P̃)|Q̃|.(A.18)

Then, adding and subtracting |V(P)|P and using the triangle inequality, we have

||V(Q̃)|P̃ − |V(P̃)|Q̃| ≤ |V(P̃) − V(Q̃)| |P̃| + |V(P̃)| |P̃ − Q̃|.(A.19)

On the other hand, we can apply the argument of (A.16) to obtain

|V(P̃) − V(Q̃)| ≤ |P̃ − Q̃|
(γ∗)2|P̃|

ρ∗.(A.20)

Collecting (A.18), (A.19), and (A.20), and using (A.12) (this time as ρ∗/|V| ≤ 1), we
finally obtain

|P − Q| ≤ 1

(γ∗)2
|P̃ − Q̃| + |P̃ − Q̃| =

1 + (γ∗)
2

(γ∗)2
|P̃ − Q̃|.(A.21)

This proves the assertion of the lemma.
Now, we can construct a mapping Φ3 from the cone Ch (having Dρ∗ as the base

and with height equal to ρ∗) onto the pyramid P e
E (having e as the base and with the

same vertex as Ch), which is Lipschitz continuous with its inverse, by taking

(x̃, ỹ) = Φ2(x, y), z̃ = z.(A.22)

Again, the Lipschitz norms of the map Φ3 and of its inverse depend only on γ∗. This
proves the following lemma.

Lemma A.4. Under Assumption M4 there exists a map Φ3, mapping the cone
Ch onto the pyramid P e

E, which is Lipschitz continuous together with the inverse map
Φ−1

3 . Moreover,

‖Φ3‖W 1
∞(Ch) ≤ C∗

pyr and
∥∥Φ−1

3

∥∥
W 1

∞(P e
E)

≤ C∗
pyr,(A.23)

where C∗
pyr depends only on the constant γ∗ of Assumption M4.

The last step is to construct, for each element E and for each face e ∈ ∂E, the
function ϕe

E satisfying (A.5) (with the right boundary conditions). Let

ϕe
E(x, y, z) = ϕh

(
Φ−1

3 (x, y, z)
)
,
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where ϕh is the function from Lemma A.2 defined for the circular cone of radius
h = ρ∗ = γ∗ hE . It is clear that ϕe

E will be in L2(P e
E), that ∇ϕe

E will be in (Lt(P e
E))3,

and that their norms will be bounded by

∥∥ϕe
E

∥∥
L2(P e

E)
≤ C∗

pyr h
3/2
E and

∥∥∇ϕe
E

∥∥
(Lt(P e

E))3
≤ Ĉt C

∗
pyrh

3/t−1
E ,(A.24)

where Ĉt is given in (A.6) and C∗
pyr depends only on γ∗. Hence ϕe

E satisfies (A.5) as
required. Finally, we take the prolongation of ϕe

E (that we call again ϕe
E) by zero in

E\P e
E .

This ends the proof of the lift property (A.1)–(A.2).
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PIECEWISE POLYNOMIAL COLLOCATION FOR FREDHOLM
INTEGRO-DIFFERENTIAL EQUATIONS WITH WEAKLY

SINGULAR KERNELS∗
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Abstract. In the first part of this paper we study the regularity properties of solutions of initial-
or boundary-value problems of linear Fredholm integro-differential equations with weakly singular or
other nonsmooth kernels. We then use these results in the analysis of a piecewise polynomial colloca-
tion method for solving such problems numerically. The main purpose of the paper is the derivation
of optimal global convergence estimates and the analysis of the attainable order of convergence of
numerical solutions for all values of the nonuniformity parameter of the underlying grid.

Key words. Fredholm integro-differential equation, weakly singular kernel, piecewise polyno-
mial collocation method, graded grid, attainable order of convergence
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1. Introduction. We present a study of the convergence behavior of a colloca-
tion method for the numerical solution of initial- or boundary-value problems of linear
integro-differential equations of the form

u′(t) = a(t)u(t) + f(t) +

∫ b

0

K(t, s)u(s)ds, 0 ≤ t ≤ b,

αu(0) + βu(b) = γ,

(1.1)

where b, α, β, γ ∈ R = (−∞,∞), b > 0, and α + β �= 0. We assume that a, f ∈
Cm,ν [0, b], K ∈ Wm,ν(Δ), m ∈ N = {1, 2, . . . }, ν ∈ R, ν < 1.

Here Cm,ν [0, b], m ∈ N, ν < 1, is defined as the collection of all continuous
functions u : [0, b] → R, which are m times continuously differentiable in (0, b) and
such that the estimation

∣∣u(i)(t)
∣∣ ≤ c

⎧⎨
⎩

1 if i < 1 − ν,
1 + | log �(t)| if i = 1 − ν,
�(t)1−ν−i if i > 1 − ν

holds with �(t) = min{t, b − t}, 0 < t < b, and with a constant c = c(u) for all
t ∈ (0, b) and i = 1, . . . ,m. Equipped with the norm

‖u‖m,ν = max
0≤t≤b

|u(t)| +
m∑
i=1

sup
0<t<b

(
wi+ν−1(t)

∣∣u(i)(t)
∣∣), u ∈ Cm,ν [0, b],

Cm,ν [0, b] is a Banach space. Here

wλ(t) =

⎧⎨
⎩

1 for λ < 0,
(1 + | log �(t)|)−1 for λ = 0,
�(t)λ for λ > 0,
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with t ∈ (0, b). It is easy to see that if μ < ν < 1, then Cm,μ[0, b] ⊂ Cm,ν [0, b]
and ‖u‖m,ν ≤ c‖u‖m,μ for u ∈ Cm,μ[0, b], with a constant c > 0. Notice also that1

Cm[0, b] ⊂ Cm,ν [0, b], m ∈ N, ν < 1.
The set Wm,ν(Δ), with m ∈ N, ν < 1,

Δ = {(t, s) : 0 ≤ t ≤ b, 0 ≤ s ≤ b, t �= s},

consists of all m times continuously differentiable functions K : Δ → R satisfying

∣∣∣∣
(

∂

∂t

)i(
∂

∂t
+

∂

∂s

)j

K(t, s)

∣∣∣∣ ≤ c

⎧⎨
⎩

1 if ν + i < 0,
1 + | log |t− s|| if ν + i = 0,
|t− s|−ν−i if ν + i > 0,

(1.2)

with a constant c = c(K) for all (t, s) ∈ Δ and all nonnegative integers i and j such
that i + j ≤ m.

Taking i = j = 0, the condition (1.2) yields that K ∈ Wm,ν(Δ) may possess a
weak singularity at t = s for 0 ≤ ν < 1. If ν < 0, then K itself is bounded on Δ, but
its derivatives may be singular at t = s. Often the kernel K of problem (1.1) has the
form K = Kν(t, s) = κ(t, s)|t− s|−ν , 0 < ν < 1, or K = K0(t, s) = κ(t, s) log |t− s|,
where κ ∈ Cm(Δ̄), with m ∈ N and Δ̄ = [0, b] × [0, b]. Clearly, Kν ∈ Wm,ν(Δ) for
0 < ν < 1 and K0 ∈ Wm,0(Δ).

Note that Fredholm integro-differential equations are used by modeling various
physical processes; see, e.g., [9]. A good source of information (including numerous
additional references) on applications of integral and integro-differential equations is
the monograph [4].

A special case of problem (1.1), with α = 1, β = 0, and K(t, s) = 0 for s > t, is
the initial-value problem for a Volterra integro-differential equation. Volterra integro-
differential equations have been studied by many authors (see, e.g., [3, 4, 5, 6, 7, 12,
15, 18, 19, 20, 21]), but Fredholm-type equations have received less attention. There is
some literature on the numerical solution of Fredholm integro-differential equations in
case of smooth kernels; see, e.g., [11, 13, 16, 26]. To the authors’ knowledge very little
has been written on the numerical solution of Fredholm integro-differential equations
with weakly singular kernels [25] (in contrast to weakly singular Fredholm integral
equations; see, for example, [22, 14] and, especially, [8]). In order to fill this gap, the
main purpose of the present paper is to generalize the corresponding results obtained
in [6, 7, 15] for weakly singular Volterra integro-differential equations to a wide class
of Fredholm integro-differential equations.

In the first part of this paper (section 2) we study the regularity properties of
the solution of problem (1.1) with weakly singular or other nonsmooth kernels K.
Moreover, we consider the case where the derivatives of the functions a and f in (1.1)
may be unbounded on the interval [0, b]. We then use these results in the analysis
of a piecewise polynomial collocation method for solving such equations numerically.
Using special graded grids, we derive optimal global convergence estimates and analyze
the attainable order of global and local convergence of numerical solutions for all values
of the grading exponent of the underlying grid (sections 4 and 5). In section 3 we
formulate some auxiliary results which we need in the analysis of proposed algorithms
and in section 6 we present a numerical example to clarify the obtained theoretical
results. The main results of the paper are formulated in Theorems 2.1, 4.1, and 5.1.

1By Ck(Ω) we denote the set of k times (k ≥ 0) continuously differentiable functions on Ω ⊂ Rn,
C0(Ω) = C(Ω); by c we denote positive constants, which may be different in different inequalities
(in sections 3–5 they are independent of N ∈ N).
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Notice that similar results for integral equations may be found, for example, in
[1, 2, 4, 5, 8, 10, 14, 17, 22, 24].

2. Smoothness of the solution. In what follows, for given Banach spaces E
and F we denote by L(E,F ) the Banach space of linear bounded operators A : E → F
with the norm ‖A‖ = sup{‖Au‖F : u ∈ E, ‖u‖E ≤ 1}. The regularity of the solution
of problem (1.1) is described in the following theorem.

Theorem 2.1. Let a, f ∈ Cm,ν [0, b], K ∈ Wm,ν(Δ), m ∈ N, ν ∈ R, ν < 1,
α, β, γ ∈ R, α + β �= 0. Moreover, assume that the homogeneous problem

u′(t) = a(t)u(t) +

∫ b

0

K(t, s)u(s)ds, αu(0) + βu(b) = 0,(2.1)

corresponding to the problem (1.1), has in the set {u : u ∈ C[0, b], u′ ∈ L∞(0, b)} only
the trivial solution u = 0.

Then problem (1.1) has a unique solution u ∈ Cm+1,ν−1[0, b] ⊂ Cm,ν [0, b] and u′,
the derivative of the solution of (1.1), belongs to Cm,ν [0, b].

Proof. If α + β �= 0 and v ∈ L∞(0, b), then the problem

u′(t) = v(t), αu(0) + βu(b) = γ

has a unique solution

u(t) = (Jv)(t) +
γ

α + β
, 0 ≤ t ≤ b,(2.2)

where

(Jv)(t) =

∫ t

0

v(s)ds− β

α + β

∫ b

0

v(s)ds =

∫ b

0

κ(t− s)v(s)ds, 0 ≤ t ≤ b,(2.3)

with

κ(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− β

α + β
if −b ≤ τ < 0,

1 − β

α + β
if 0 < τ ≤ b.

It follows from (2.3) and the expression of the norm ‖ · ‖m,ν that J ∈ L(Cm,ν [0, b],
Cm+1,ν−1[0, b]). Since κ(i)(τ) = 0 for τ �= 0 and i = 1, 2, . . . , then (see [23, 24]) J is
compact as an operator from Cm,ν [0, b] to Cm,ν [0, b]. Further, we can write (1.1) in
the form

u′(t) = (Au)(t) + (Tu)(t) + f(t), 0 ≤ t ≤ b, αu(0) + βu(b) = γ,

where

(Au)(t) = a(t)u(t), (Tu)(t) =

∫ b

0

K(t, s)u(s)ds, 0 ≤ t ≤ b.(2.4)

Therefore, if u is a solution of problem (1.1), then it can be presented in the form
(2.2), where v is the solution of equation

v = T1v + f1,(2.5)
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with T1 = (A + T )J (see (2.3)–(2.4)) and

f1(t) = f(t) +
γ

α + β
a(t) +

γ

α + β

∫ b

0

K(t, s)ds, 0 ≤ t ≤ b.(2.6)

Next we show that T1 is compact as an operator from Cm,ν [0, b] into Cm,ν [0, b] and
f1 ∈ Cm,ν [0, b]. Indeed, since K ∈ Wm,ν(Δ), then (see [22]) T ∈ L(Cm,ν [0, b], Cm,ν [0, b]).
If a, v ∈ Cm,ν [0, b], then (cf. [6])

‖av‖m,ν ≤ c‖a‖m,ν‖v‖m,ν .

Therefore, A ∈ L(Cm,ν [0, b], Cm,ν [0, b]). This together with the compactness of J ∈
L(Cm,ν [0, b], Cm,ν [0, b]) implies that T1 : Cm,ν [0, b] → Cm,ν [0, b] is linear and com-
pact. Since 1 ∈ Cm,ν [0, b], then T1 ∈ Cm,ν [0, b]. This together with f, a ∈ Cm,ν [0, b]
yields f1 ∈ Cm,ν [0, b].

Further, since problem (2.1) has only the trivial solution, then equation v = T1v
has only the trivial solution v = 0 in L∞(0, b) and therefore also in Cm,ν [0, b] ⊂
L∞(0, b). Thus, by the Fredholm alternative, I−T1 has a bounded inverse (I−T1)

−1 :
Cm,ν [0, b] → Cm,ν [0, b] (here I is the identity mapping), and equation (2.5) has a
unique solution v = (I − T1)

−1f1 ∈ Cm,ν [0, b]. This, in turn, implies that problem
(1.1) has a unique solution u and

u = Jv +
γ

α + β
∈ Cm+1,ν−1[0, b].

Remark 2.1. In [6, 7] it is shown that an initial-value problem for a linear Volterra
integro-differential equation in the form

u′(t) = a(t)u(t) + f(t) +

∫ t

0

K(t, s)u(s)ds, 0 ≤ t ≤ b, u(0) = γ,

has a unique solution and thus the corresponding homogeneous problem cannot have
nontrivial solutions. Such a situation does not take place for Fredholm integro-
differential equations. For example, the homogeneous problem

u′(t) = 2

∫ 1

0

u(s)ds, t ∈ [0, b], u(0) = 0,

has the nontrivial solution u(t) = ct, c �= 0.
Remark 2.2. In Theorem 2.1, we have assumed that α+β �= 0. Actually, Theorem

2.1 holds also in the case α = −β �= 0, for example, in the case of a periodic boundary
condition u(0) = u(b). In order to prove this we can use the circumstance that for
every v ∈ L∞(0, b) and γ ∈ R a problem

u′(t) + u(t) = v(t), u(0) − u(b) = γ

has a unique solution

u(t) = (J1v)(t) +
γe−t

1 − e−b
,

where

(J1v)(t) = e−t

∫ t

0

v(s)esds +
e−t−b

1 − e−b

∫ b

0

v(s)esds, 0 ≤ t ≤ b.



COLLOCATION FOR INTEGRO-DIFFERENTIAL EQUATIONS 1901

It is easy to see that J1 ∈ L(Cm,ν [0, b], Cm+1,ν−1[0, b]) and J1 is compact as an
operator from Cm,ν [0, b] into Cm,ν [0, b]. Using J1 instead of J , on the basis of similar
arguments as in the proof of Theorem 2.1, we can see that the statement of Theorem
2.1 holds also for α + β = 0, α = −β �= 0.

3. Piecewise polynomial interpolation. For N ∈ N, r ∈ R, r ≥ 1, let

ΠN = Π
(r)
N = {t0, . . . , t2N : 0 = t0 < t1 < · · · < t2N = b} be a partition (a graded

grid) of the interval [0, b] given by the grid points

tj =
b

2

(
j

N

)r

, j = 0, 1, . . . , N,

tN+j = b− tN−j , j = 1, . . . , N.

(3.1)

Here the real number r ∈ [1,∞) characterizes the nonuniformity of the grid ΠN : For
r > 1 the points (3.1) are more densely clustered near the endpoints of the interval
[0, b]. It is easy to see that tj − tj−1 ≤ (rb/2)N−1, j = 1, . . . , 2N.

For given integers m ≥ 0 and −1 ≤ d ≤ m− 1, let S
(d)
m (ΠN ) be the spline space

of piecewise polynomial functions on the grid ΠN :

S(d)
m (ΠN ) =

{
v ∈ Cd[0, b] : v

∣∣
σj

∈ πm, j = 1, . . . , 2N
}
, 0 ≤ d ≤ m− 1,

S(−1)
m (ΠN ) =

{
v : v

∣∣
σj

∈ πm, j = 1, . . . , 2N
}
.

Here v
∣∣
σj

(j = 1, . . . , 2N) is the restriction of v onto the subinterval σj = [tj−1, tj ] ⊂
[0, b], and πm denotes the set of polynomials of degree not exceeding m. Note that the

elements of S
(−1)
m (ΠN ) may have jump discontinuities at the interior points t1, . . . ,

t2N−1 of the grid ΠN .
In every interval [tj−1, tj ], j = 1, . . . , 2N , we introduce m ≥ 1 interpolation points:

tjk = tj−1 + ηk(tj − tj−1), k = 1, . . . ,m, j = 1, . . . , 2N,(3.2)

where η1, . . . , ηm are some fixed parameters which do not depend on j and N and
satisfy the conditions

0 ≤ η1 < · · · < ηm ≤ 1.(3.3)

To a given continuous function v : [0, b] → R we assign a piecewise polynomial

interpolation function PNv ∈ S
(−1)
m−1(ΠN ), which interpolates v at the points (3.2):

(PNv)(tjk) = v(tjk), k = 1, . . . ,m, j = 1, . . . , 2N.

Thus, (PNv)(t) is independently defined in every subinterval [tj−1, tj ], j = 1, . . . , 2N ,
and may be discontinuous at the points t = tj , j = 1, . . . , 2N − 1; we may treat PNv
as a two-valued function at these points. Note that in the case η1 = 0, ηm = 1, PNv
is a continuous function on [0, b].

We also introduce an interpolation operator PN which assigns to every continuous
function v : [0, b] → R its piecewise polynomial interpolation function PNv.

From [22, pp. 115–119], we obtain Lemmas 3.1–3.3 (cf. also [6]).
Lemma 3.1. Let the interpolation nodes (3.2) with grid points (3.1) and parame-

ters (3.3) be used. Then PN ∈L(C[0, b], L∞(0, b)) and ‖PN‖L(C[0,b],L∞(0,b)) ≤ c,N ∈N,
with a positive constant c which is independent of N .
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Lemma 3.2. Let v ∈ Cm,ν [0, b], m ∈ N, ν ∈ R, ν < 1, and let the interpolation
nodes (3.2) with grid points (3.1) and parameters (3.3) be used. Then the following
estimates hold:

∥∥v − PNv
∥∥
∞ ≤ c

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N−r(1−ν) for 1 ≤ r <
m

1 − ν
,

N−m(1 + logN) for r =
m

1 − ν
= 1,

N−m for r =
m

1 − ν
> 1 or r >

m

1 − ν
, r ≥ 1,

∫ b

0

∣∣v(t) − (PNv)(t)
∣∣dt ≤ c

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N−r(2−ν) for 1 ≤ r <
m

2 − ν
,

N−m(1 + logN) for r =
m

2 − ν
≥ 1,

N−m for r >
m

2 − ν
, r ≥ 1.

Here c is a positive constant not depending on N and∥∥v − PNv
∥∥
∞ = max

1≤j≤2N
sup

tj−1<t<tj

∣∣v(t) − (PNv)(t)
∣∣.(3.4)

Lemma 3.3. Let the conditions of Lemma 3.2 be fulfilled. Then

sup
tj−1<s<tj

|v(s) − (PNv)(s)| ≤ c (tj − tj−1)
m

⎧⎨
⎩

1 if m < 1 − ν,
1 + | log tj | if m = 1 − ν,
t1−ν−m
j if m > 1 − ν,

for j = 1, . . . , N , and

sup
tj−1<s<tj

|v(s) − (PNv)(s)| ≤ c (tj − tj−1)
m

⎧⎨
⎩

1 if m < 1 − ν,
1 + | log(b− tj−1)| if m = 1 − ν,
(b− tj−1)

1−ν−m if m > 1 − ν,

for j = N + 1, . . . , 2N , with a positive constant c which is independent of j and N .

4. Collocation method. Problem (1.1) is equivalent to problem (2.2), (2.5).
In order to solve problem (1.1) we construct a collocation method for the numerical
solution of problem (2.2), (2.5).

We look for an approximate solution uN of (1.1) in the form

uN (t) =

∫ t

0

vN (s)ds− β

α + β

∫ b

0

vN (s)ds +
γ

α + β
, t ∈ [0, b], N ∈ N,(4.1)

where vN satisfies the following conditions:

vN ∈ S
(−1)
m−1(ΠN ), m ∈ N,

vN (tjk) = a(tjk)

(∫ tjk

0

vN (s)ds− β

α + β

∫ b

0

vN (s)ds

)

+

∫ b

0

K(tjk, s)

(∫ s

0

vN (τ)dτ − β

α + β

∫ b

0

vN (τ)dτ

)
ds + f1(tjk),

k = 1, . . . ,m, j = 1, . . . , 2N,

(4.2)

with f1 and {tjk} given by the formulas (2.6) and (3.2), respectively.
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Remark 4.1. Since vN ∈ S
(−1)
m−1(ΠN ), then uN (see (4.1)) belongs to S

(0)
m (ΠN ) ⊂

C[0, b]. If η1 = 0 and ηm = 1 (see (3.3)), then vN ∈ S
(0)
m−1(ΠN ) ⊂ C[0, b] and uN ∈

S
(1)
m (ΠN ) ⊂ C1[0, b].

Remark 4.2. The collocation conditions (4.2) form a system of equations whose

exact form is determined by the choice of a basis in S
(−1)
m−1(ΠN ) (or in S

(0)
m−1(ΠN ) if

η1 = 0 and ηm = 1). For instance, in each subinterval [tj−1, tj ] ⊂ [0, b], j = 1, . . . , 2N,
we may use the Lagrange fundamental polynomial representation

vN (t) =

m∑
k=1

cjkϕk

(
t− tj−1

tj − tj−1

)
, t ∈ [tj−1, tj ], j = 1, . . . , 2N,

where cjk = vN (tjk),

ϕk(τ) =

m∏
q=1, q �=k

(
τ − ηq
ηk − ηq

)
, τ ∈ [0, 1], k = 1, . . . ,m.

The conditions (4.2) then lead to a system of linear algebraic equations for the coef-
ficients cjk, k = 1, . . . ,m, j = 1, . . . , 2N.

Remark 4.3. The conditions (4.2) have the operator equation representation

vN = PNT1vN + PNf1, T1 = (A + T )J,(4.3)

with A, T, J and PN , determined in sections 2 and 3, respectively.
Theorem 4.1. Let the conditions of Theorem 2.1 be fulfilled and let the interpo-

lation nodes (3.2) with grid points (3.1) and parameters (3.3) be used.
Then there exists an N0 ∈ N such that, for N ≥ N0, the settings (4.2) determine

a unique approximation vN ∈ S
(−1)
m−1(ΠN ) to v = u′, where u is the exact solution of

problem (1.1). Moreover, if N ≥ N0, then an approximation uN for u is defined by
the formula (4.1), and the following error estimates hold:

‖u− uN‖∞ ≤ c

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N−r(2−ν) for 1 ≤ r <
m

2 − ν
,

N−m(1 + logN) for r =
m

2 − ν
≥ 1,

N−m for r >
m

2 − ν
, r ≥ 1,

(4.4)

‖u′ − vN‖∞ ≤ c

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N−r(1−ν) for 1 ≤ r <
m

1 − ν
,

N−m(1 + logN) for r =
m

1 − ν
= 1,

N−m for r =
m

1 − ν
> 1 or r >

m

1 − ν
, r ≥ 1.

(4.5)

Here c is a positive constant not depending on N , and the norm ‖ · ‖∞ is defined by
the formula (3.4).

Proof. Due to the assumptions of Theorem 2.1, f1 ∈ C[0, b] and T1 = (A+T )J is
compact as an operator from L∞(0, b) to C[0, b] and to L∞(0, b), too. Since equation
v = T1v has in L∞(0, b) only the trivial solution v = 0, then there exists an inverse
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operator (I − T1)
−1 ∈ L(L∞(0, b), L∞(0, b)) and equation (2.5) has a unique solution

v = (I − T1)
−1f1 ∈ L∞(0, b). By Theorem 2.1, v ∈ Cm,ν [0, b]. A standard discussion

(cf. [6]) together with Lemmas 3.1 and 3.2 yields that there exists a number N0 ∈ N
such that for N ≥ N0 the operator (I − PNT1) is invertible in L∞(0, b) and

∥∥(I − PNT1)
−1

∥∥
L(L∞(0,b),L∞(0,b))

≤ c, N ≥ N0.(4.6)

Thus, (4.3) possesses a unique solution vN ∈ S
(−1)
m−1(ΠN ) for N ≥ N0 and

‖v − vN‖∞ ≤ c‖v − PNv‖∞, N ≥ N0,

where v = u′ ∈ Cm,ν [0, b] is the solution of (2.5). This together with Lemma 3.2
yields the estimate (4.5).

Further, using vN , we find for N ≥ N0 an approximation uN for u in the form
(4.1). It follows from (2.2), (2.3), and (4.1) that

u(t) − uN (t) = (J(v − vN ))(t)

=

∫ t

0

[v(s) − vN (s)]ds− β

α + β

∫ b

0

[v(s) − vN (s)]ds, t ∈ [0, b].
(4.7)

Therefore

max
0≤t≤b

|u(t) − uN (t)| ≤
(

1 +

∣∣∣∣ β

α + β

∣∣∣∣
) ∫ b

0

|v(s) − vN (s)|ds.(4.8)

Since T1 = (A + T )J , (I − PNT1)(v − vN ) = v − PNv, and

(
I − PNT1

)−1
= I +

(
I − PNT1

)−1PNT1, N ≥ N0,

we get from (4.6) and Lemma 3.1 the estimate

|v(s) − vN (s)| ≤
∣∣v(s) − (PNv)(s)

∣∣
+ c

∫ b

0

∣∣v(t) − (PNv)(t)
∣∣dt, s ∈ [0, b], N ≥ N0.

(4.9)

Now it follows from (4.8) and (4.9) that

‖u− uN‖∞ ≤ c

∫ b

0

∣∣v(t) − (PNv)(t)
∣∣dt, N ≥ N0.

This together with v ∈ Cm,ν [0, b] and Lemma 3.2 yields the estimate (4.4).

5. Superconvergence phenomenon. It follows from Theorem 4.1 that by us-
ing method (4.1), (4.2), one can reach a convergence order

‖u− uN‖∞ ≤ cN−m, ‖u′ − vN‖∞ ≤ cN−m(5.1)

for sufficiently large values of the grid parameter r and for every choice of collocation

parameters η1, . . . , ηm satisfying the condition (3.3). Since uN ∈ S
(0)
m (ΠN ), the first

estimate of (5.1) is not of optimal order. In the following we show that by a careful
choice of the collocation parameters (3.3) it is possible, assuming a little more reg-
ularity of functions a, f, and K, to prove a superconvergence result for values of vN
at the collocation points and improve the convergence rate of uN in the maximum



COLLOCATION FOR INTEGRO-DIFFERENTIAL EQUATIONS 1905

norm. We refer also to the papers [15] and [20], where similar results for initial-value
problems of Volterra integro-differential equations are given.

Theorem 5.1. Let a, f ∈ Cm+1,ν [0, b], K ∈ Wm+1,ν(Δ), m ∈ N, ν ∈ R, ν < 1;
α, β, γ ∈ R, α+β �= 0, and assume that problem (2.1) has in the set {u ∈ C[0, b] : u′ ∈
L∞(0, b)} only the trivial solution u = 0. Moreover, let the interpolation nodes (3.2)
with grid points (3.1) and parameters (3.3) be used and let the parameters η1, . . . , ηm
in (3.3) be chosen so that the quadrature approximation

∫ 1

0

g(s)ds ≈
m∑

k=1

wkg(ηk), 0 ≤ η1 < · · · < ηm ≤ 1,(5.2)

with appropriate weights wk = w
(m)
k , k = 1, . . . ,m, is exact for all polynomials g of

degree m.
Then the statements of Theorem 4.1 are valid. Moreover, for all N ≥ N0 the

following error estimates hold:

max
k=1,...,m, j=1,...,2N

|u′(tjk) − vN (tjk)| ≤ cΘN (m, ν, r)(5.3)

and

‖u− uN‖∞ ≤ cΘN (m, ν, r).(5.4)

Here u is the exact solution of problem (1.1), uN , and vN are determined by method
(4.1), (4.2), c is a positive constant not depending on N , ‖·‖∞ is defined by the formula
(3.4), and

ΘN (m, ν, r) =

⎧⎪⎪⎨
⎪⎪⎩

N−r(2−ν) for 1 ≤ r < m+1
2−ν ,

N−m−1(1 + logN) for r = m+1
2−ν ≥ 1,

N−m−1 for r > m+1
2−ν , r ≥ 1.

(5.5)

Proof. We know from the proof of Theorem 4.1 that (4.3) has a unique solution

vN ∈ S
(−1)
m−1(ΠN ) for N ≥ N0. We have for it and v, the solution of (2.5), that

(I − PNT1)(vN − PNv) = PNT1(PNv − v).(5.6)

As I − PNT1 is invertible in L∞(0, b) for N ≥ N0, we obtain from (4.6), (5.6), and
Lemma 3.1 the estimate

‖PNv − vN‖∞ ≤ c‖T1(v − PNv)‖∞, N ≥ N0.(5.7)

Since T1 = (A+T )J and (PNv)(tjk) = v(tjk), k = 1, . . . ,m, j = 1, . . . , 2N, it follows
from (2.3), (2.4), and (5.7) that

|v(tjk) − vN (tjk)| ≤ ‖PNv − vN‖∞ ≤ c max
0≤t≤b

∣∣∣∣
∫ t

0

[v(s) − (PNv)(s)]ds

∣∣∣∣ ,
k = 1, . . . ,m, j = 1, . . . , 2N, N ≥ N0.

(5.8)

It follows from Theorem 2.1 that v ∈ Cm+1,ν [0, b]. Using this we can show that

max
0≤t≤b

∣∣∣∣
∫ t

0

[v(s) − (PNv)(s)]ds

∣∣∣∣ ≤ cΘN (m, ν, r),(5.9)
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where ΘN (m, ν, r) is given by the formula (5.5). This together with (5.8) and v = u′

yields (5.3).
In order to prove (5.9) we choose m+1 parameters 0 ≤ η̃1 < η̃2 < · · · < η̃m+1 ≤ 1

such that {η1 . . . , ηm} ⊂ {η̃1, . . . , η̃m+1} and set

t̃jk = tj−1 + η̃k(tj − tj−1), k = 1, . . . ,m + 1, j = 1, . . . , 2N,

where {tj} are given by the formulas (3.1). Moreover, we introduce an operator P̃N

which assigns to every continuous function z : [0, b] → R its piecewise polynomial

interpolation function P̃Nz ∈ S
(−1)
m (ΠN ) such that

(P̃Nz)(t̃jk) = z(t̃jk), k = 1, . . . ,m + 1, j = 1, . . . , 2N.

Due to Lemma 3.2,

∫ b

0

|v(s) − (P̃Nv)(s)|ds ≤ cΘN (m, ν, r).(5.10)

Further, the quadrature approximation (5.2) is exact for all polynomials of degree not
exceeding m. This yields that the equality

∫ tj

tj−1

g(s)ds = (tj − tj−1)

m∑
k=1

wkg(tjk) (j = 1, . . . , 2N)

holds for all polynomials g of degree not exceeding m. Therefore for j = 1, . . . , 2N

∣∣∣∣
∫ tj

0

[v(s) − (PNv)(s)]ds

∣∣∣∣ =

∣∣∣∣
∫ tj

0

[v(s) − (P̃Nv)(s)]ds

∣∣∣∣ ≤
∫ b

0

|v(s) − (P̃Nv)(s)|ds.

This together with (5.10) yields

max
1≤j≤2N

∣∣∣∣
∫ tj

0

[v(s) − (PNv)(s)]ds

∣∣∣∣ ≤ cΘN (m, ν, r).(5.11)

Fix t ∈ [0, b] and let n ∈ {1, . . . , 2N} be such that t ∈ [tn−1, tn]. Actually, we
consider only the case n = 1, . . . , N . For n = N + 1, . . . , 2N the argument is similar.
It follows from Lemma 3.3 that

∣∣∣∣
∫ t

tn−1

[v(s) − (PNv)(s)]ds

∣∣∣∣ ≤ c(tn − tn−1)
m+1

⎧⎨
⎩

1 if m < 1 − ν,
1 + | log tn| if m = 1 − ν,
t1−ν−m
n if m > 1 − ν.

Due to (3.1),

(tn − tn−1)
m+1t1−ν−m

n ≤ cnr(2−ν)−m−1N−r(2−ν)

≤ c

{
N−r(2−ν) if r(2 − ν) < m + 1,
N−m−1 if r(2 − ν) ≥ m + 1.

Therefore ∣∣∣∣
∫ t

tn−1

[v(s) − (PNv)(s)]ds

∣∣∣∣ ≤ cΘN (m, ν, r), t ∈ [tn−1, tn].(5.12)
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This together with (5.11) yields (5.9), implying the estimate (5.3).

Let us prove the statement (5.4). Fix t ∈ [0, b], let n ∈ {1, . . . , 2N} be such that
t ∈ [tn−1, tn]. Using (4.7) and u′ = v we obtain that

|u(t) − uN (t)| ≤
∣∣∣∣
∫ tn−1

0

[v(s) − vN (s)]ds

∣∣∣∣ +

∣∣∣∣
∫ t

tn−1

[v(s) − vN (s)]ds

∣∣∣∣

+

∣∣∣∣ β

α + β

∣∣∣∣
∣∣∣∣
∫ b

0

[v(s) − vN (s)]ds

∣∣∣∣, t ∈ [tn−1, tn].

(5.13)

Consider the first term on the right-hand side of (5.13). We have

∣∣∣∣
∫ tn−1

0

[v(s) − vN (s)]ds

∣∣∣∣ ≤
∣∣∣∣
∫ tn−1

0

[v(s) − (P̃Nv)(s)]ds

∣∣∣∣ +

∣∣∣∣
∫ tn−1

0

[(P̃Nv)(s) −vN (s)]ds

∣∣∣∣

≤
∫ b

0

|v(s) − (P̃Nv)(s)|ds +

n−1∑
j=1

(tj − tj−1)

m∑
k=1

|wk||v(tjk) − vN (tjk)|.

This together with (5.3) and (5.10) yields

∣∣∣∣
∫ tn−1

0

[v(s) − vN (s)]ds

∣∣∣∣ ≤ cΘN (m, ν, r).(5.14)

In a similar way we obtain that

∣∣∣∣
∫ b

0

[v(s) − vN (s)]ds

∣∣∣∣ ≤ cΘN (m, ν, r).(5.15)

It remains to estimate the second term on the right-hand side of (5.13). We have

∣∣∣∣
∫ t

tn−1

[v(s) − vN (s)]ds

∣∣∣∣ ≤
∣∣∣∣
∫ t

tn−1

[v(s) − (PNv)(s)]ds

∣∣∣∣
+

∫ t

tn−1

|(PNv)(s) − vN (s)|ds, t ∈ [tn−1, tn].

(5.16)

By (5.8) and (5.9),

∫ t

tn−1

|(PNv)(s) − vN (s)|ds ≤ (t− tn−1)‖PNv − vN‖∞ ≤ cΘN (m, ν, r)

for all t ∈ [tn−1, tn]. This together with the estimates (5.12)–(5.16) yields (5.4).

Remark 5.1. Problem (1.1) can be rewritten also in the form

u = J(A + T )u + Jf +
γ

α + β
,(5.17)

where J and A, T are defined by the formulas (2.3) and (2.4), respectively. Using
(5.17) one can construct another collocation method for the numerical solution of
problem (1.1); cf. [6, 18]. This method will be discussed elsewhere.
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6. Numerical experiments. Consider the following boundary-value problem:

u′(t) = u(t) + f(t) +

∫ 1

0

|t− s|− 1
2u(s)ds, t ∈ [0, 1], u(0) + u(1) = 2.(6.1)

The forcing function f is selected so that u(t) = t
3
2 + (1 − t)

3
2 is the exact solution.

Actually, this is problem (1.1), where a(t) = 1,

f(t) = 3
2

(
t

1
2 − (1 − t)

1
2

)
−
(
t

3
2 + (1 − t)

3
2

)
−
(
t2 + (1 − t)2

) ∫ 1

0

x− 1
2 (1 − x)

3
2 dx

− t
1
2

∫ 1

0

x− 1
2 (1 − t− xt)

3
2 dx− (1 − t)

1
2

∫ 1

0

x− 1
2 (t + (1 − t)x)

3
2 dx,

K(t, s) = |t − s|− 1
2 , α = β = 1, γ = 2, and b = 1. Moreover, it is easy to check that

a, f ∈ Cm,ν [0, b] and K ∈ Wm,ν(Δ) with ν = 1
2 and arbitrary m ∈ N.

Problem (6.1) is solved numerically by method (4.1), (4.2), in the case m = 2. An

approximation vN ∈ S
(−1)
1 (ΠN ) to v = u′, the derivative of the solution u of (6.1), is

presented in the form (see Remark 4.2)

vN (t) = cj1
tj2 − t

tj2 − tj1
+ cj2

t− tj1
tj2 − tj1

, t ∈ [tj−1, tj ], j = 1, . . . , 2N,

where tj1 and tj2 are defined by the formula (3.2), with m = 2 and 0 ≤ η1 < η2 ≤ 1.
If η1 > 0 or η2 < 1, then the collocation conditions (4.2) lead to a system of 4N linear
algebraic equations for finding the coefficients cj1 = vN (tj1), cj2 = vN (tj2), j =
1, . . . , 2N. If η1 = 0 and η2 = 1, then tj2 = tj+1,1 = tj , j = 1, . . . , 2N − 1, and
the collocation conditions (4.2) give us a system of 2N + 1 linear algebraic equations
for finding the coefficients c11 = vN (t0), c12 = c21 = vN (t1), . . . , c2N−1,2 = c2N,1 =
vN (t2N−1), c2N,2 = vN (t2N ).

Table 6.1

Results in the case η1 = 1
4
, η2 = 3

4
.

r = 1 r = 1.5 r = 2 r = 4.1

N εN �N (2.83) εN �N (4) εN �N (4) εN �N (4)

4 2.3E-3 2.53 1.0E-3 3.85 7.2E-4 4.09 1.5E-3 5.11
8 8.8E-4 2.64 2.7E-4 3.77 1.7E-4 4.30 2.7E-4 5.42

16 3.2E-4 2.71 7.1E-5 3.78 4.0E-5 4.17 5.8E-5 4.66
32 1.2E-4 2.75 1.9E-5 3.76 9.8E-6 4.08 1.3E-5 4.35
64 4.2E-5 2.78 5.0E-6 3.79 2.4E-6 4.04 3.2E-6 4.18

128 1.5E-5 2.79 1.3E-6 3.82 6.0E-7 4.02 7.8E-7 4.09
256 5.4E-6 2.80 3.4E-7 3.85 1.5E-7 4.01 1.9E-7 4.04

N ε′N �′N (1.41) ε′N �′N (1.68) ε′N �′N (2) ε′N �′N (4)

4 1.7E-1 1.42 1.2E-1 1.68 8.4E-2 2.00 3.4E-2 4.10
8 1.2E-1 1.42 7.1E-2 1.68 4.2E-2 2.00 8.1E-3 4.13

16 8.4E-2 1.42 4.2E-2 1.68 2.1E-2 2.00 2.0E-3 4.14
32 5.9E-2 1.41 2.5E-2 1.68 1.1E-2 2.00 4.8E-4 4.14
64 4.2E-2 1.41 1.5E-2 1.68 5.3E-3 2.00 1.1E-4 4.14

128 3.0E-2 1.41 8.8E-3 1.68 2.6E-3 2.00 2.8E-5 4.14
256 2.1E-2 1.41 5.3E-3 1.68 1.3E-3 2.00 6.7E-6 4.14

In Tables 6.1–6.4 some of the obtained numerical results for different values of
the parameters N, r, η1, and η2 are presented. The quantities εN and ε′N are the
approximate values of the norms ‖uN − u‖∞ and ‖vN − u′‖∞, defined as follows:

εN = {max |uN (τjk) − u(τjk)| : k = 0, . . . , 10, j = 1, . . . , 2N},
ε′N = {max |vN (τjk) − u′(τjk)| : k = 0, . . . , 10, j = 1, . . . , 2N},
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where

τjk = tj−1 + k
tj − tj−1

10
, k = 0, . . . , 10, j = 1, . . . , 2N.

The ratios �N =
εN/2

εN
and �′N =

ε′N/2

ε′N
, characterizing the observed convergence rate,

are also presented.

Table 6.2

Results in the case η1 = 0, η2 = 1.

r = 1 r = 1.5 r = 2 r = 4.1

N εN �N (2.83) εN �N (4) εN �N (4) εN �N (4)

4 1.8E-2 2.19 8.4E-3 3.34 5.0E-3 4.09 6.3E-3 4.49
8 7.5E-3 2.42 2.3E-3 3.66 1.2E-3 4.04 1.6E-3 3.92

16 2.9E-3 2.59 6.1E-4 3.72 3.1E-4 4.01 4.0E-4 4.07
32 1.1E-3 2.68 1.6E-4 3.78 7.7E-5 4.01 9.9E-5 4.04
64 4.0E-4 2.71 4.2E-5 3.82 1.9E-5 4.01 2.5E-5 4.02

128 1.5E-4 2.74 1.1E-5 3.85 4.8E-6 4.00 6.1E-6 4.01
256 5.3E-5 2.76 2.8E-6 3.88 1.2E-6 4.00 1.5E-6 4.00

N ε′N �′N (1.41) ε′N �′N (1.68) ε′N �′N (2) ε′N �′N (4)

4 1.3E-1 1.39 9.0E-2 1.64 6.3E-2 1.95 3.0E-2 3.96
8 9.1E-2 1.39 5.4E-2 1.66 3.2E-2 1.96 7.8E-3 3.89

16 6.5E-2 1.40 3.3E-2 1.67 1.6E-2 1.98 1.9E-3 4.00
32 4.6E-2 1.41 1.9E-2 1.68 8.2E-3 1.99 4.9E-4 4.00
64 3.3E-2 1.41 1.2E-2 1.68 4.1E-3 2.00 1.2E-4 4.00

128 2.3E-2 1.41 6.9E-3 1.68 2.1E-3 2.00 3.0E-5 4.00
256 1.6E-2 1.41 4.1E-3 1.68 1.0E-3 2.00 7.6E-6 4.00

In order to facilitate the comparison of numerical experiments with theoretical
results we have used the notation �N (δr) and �′N (δ′r) in the headings of Tables 6.1–
6.2, where δr and δ′r are the ratios (that are independent of N) corresponding to the
error estimates (4.4) and (4.5) of Theorem 4.1 for m = 2, respectively. Since these
error estimates do not depend on the values of the parameters η1 and η2, satisfying
0 ≤ η1 < η2 ≤ 1, we get the same values for δr and for δ′r in Tables 6.1–6.2.

Table 6.3

Results in the case η1 = (3 −
√

3)/6, η2 = (3 +
√

3)/6.

r = 1 r = 1.5 r = 2 r = 4.1

N εN �N (2.83) εN �N (4.76) εN �N (≈ 8) εN �N (8)

4 1.5E-3 2.72 5.8E-4 4.58 3.2E-4 5.82 8.0E-4 6.84
8 5.5E-4 2.78 1.2E-4 4.72 4.3E-5 7.42 8.6E-5 9.32

16 2.0E-4 2.81 2.6E-5 4.75 5.5E-6 7.70 9.9E-6 8.73
32 7.0E-5 2.82 5.4E-6 4.76 7.0E-7 7.87 1.2E-6 8.48
64 2.5E-5 2.82 1.1E-6 4.76 8.9E-8 7.94 1.4E-7 8.26

128 8.8E-6 2.83 2.4E-7 4.76 1.1E-8 7.95 1.7E-8 8.15
256 3.1E-6 2.83 5.0E-8 4.75 1.4E-9 7.86 2.1E-9 8.08

N ε′N �′N (1.41) ε′N �′N (1.68) ε′N �′N (2) ε′N �′N (4)

4 1.6E-1 1.42 1.1E-1 1.69 8.0E-2 2.01 3.2E-2 4.11
8 1.1E-1 1.42 6.8E-2 1.68 4.0E-2 2.00 7.6E-3 4.13

16 8.0E-2 1.42 4.0E-2 1.68 2.0E-2 2.00 1.8E-3 4.14
32 5.7E-2 1.42 2.4E-2 1.68 1.0E-2 2.00 4.5E-4 4.14
64 4.0E-2 1.41 1.4E-2 1.68 5.0E-3 2.00 1.1E-4 4.14

128 2.8E-2 1.41 8.4E-3 1.68 2.5E-3 2.00 2.6E-5 4.14
256 2.0E-2 1.41 5.0E-3 1.68 1.3E-3 2.00 6.3E-6 4.14
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Tables 6.3 and 6.4 show the dependence of the convergence rates on the nonuni-
formity parameter r, when Gaussian parameters η1 = (3−

√
3)/6, η2 = (3+

√
3)/6 are

used. In Table 6.3, the ratios δr correspond to the error estimate (5.4) of Theorem
5.1, and the ratios δ′r correspond to the error estimate (4.5) of Theorem 4.1, as in
Tables 6.1–6.2.

Table 6.4

Results in the case η1 = (3 −
√

3)/6, η2 = (3 +
√

3)/6 at the collocation points.

r = 1 r = 1.5 r = 2 r = 4.1

N ξ′N σ′
N (2.83) ξ′N σ′

N (4.76) ξ′N σ′
N (≈ 8) ξ′N σ′

N (8)

4 3.1E-3 2.91 1.1E-3 4.95 6.4E-4 6.28 1.7E-3 7.44
8 1.1E-3 2.93 2.2E-4 4.97 8.2E-5 7.81 1.6E-4 10.75

16 3.6E-4 2.92 4.6E-5 4.91 1.0E-5 7.99 1.5E-5 10.22
32 1.2E-4 2.90 9.4E-6 4.86 1.3E-6 8.03 1.6E-6 9.70
64 4.3E-5 2.88 2.0E-6 4.82 1.6E-7 8.03 1.7E-7 9.11

128 1.5E-5 2.87 4.1E-7 4.79 2.0E-8 7.98 2.0E-8 8.70
256 5.2E-6 2.86 8.5E-8 4.77 2.6E-9 7.61 2.4E-9 8.18

To illustrate the fact that the superconvergence of the approximate solution in
the supremum norm is the result of the superconvergence of the derivative vN at the
collocation points, the errors of vN at the collocation points, denoted by

ξ′N = {max |vN (tjk) − u′(tjk)| : k = 1, . . . ,m, j = 1, . . . , 2N},

are presented in Table 6.4. Similarly to the previous analysis, we have computed the

ratio σ′
N =

ξ′N/2

ξ′N
and used the notation σ′

N (δ′r), where δ′r corresponds to the error

estimate (5.3) of Theorem 5.1.
From Tables 6.1–6.4 we can see that the numerical results are in good accordance

with the theoretical error estimates of Theorems 4.1 and 5.1.
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Abstract. We examine the merits of using prolate spheroidal wave functions (PSWFs) as basis
functions when solving hyperbolic PDEs using pseudospectral methods.

The relevant approximation theory is reviewed and some new approximation results in Sobolev
spaces are established. An optimal choice of the band-limit parameter for PSWFs is derived for
single-mode functions.

Our conclusion is that one might gain from using the PSWFs over the traditional Chebyshev or
Legendre methods in terms of accuracy and efficiency for marginally resolved broadband solutions.
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1. Introduction. Pseudospectral methods for PDEs [6, 13] approximate the
solution by classical polynomials (usually Chebyshev or Legendre) or trigonometric
polynomials. The main reason for their success is the spectral accuracy, i.e., the con-
vergence rate depends only on the smoothness of the functions being approximated.
This comes at a price, however, as the norm of the differentiation matrix is pro-
portional to the square of the number, N , of interpolation points (or the order of
the polynomials), resulting in small time-steps (∼N−2) [14], when using an explicit
schemes for time integration.

This stringent restriction on the time-step can be attributed to the basis functions
being classical orthogonal polynomials, the roots of which cluster near the boundaries
of the interval, e.g., the smallest distance between any two roots of a Chebyshev
polynomial of degree N is O(N−2). In [18], it was suggested to use a singular mapping
to change the basis functions to overcome this restriction, and this technique has been
successfully used by many people (e.g., [1, 2, 10, 16, 20, 21]). However, as shown in
[16, 20] this mapping only allows for doubling the time-step for practical N . If N is
large, however, the time-step can be increased to scale as O(N−1) [18, 10] without
sacrificing the accuracy as the impact of the singular mapping becomes dominated by
the finite precision. The mapping destroys the quadrature properties of the roots of
the classical polynomials, which may be a disadvantage in certain applications, e.g.,
when filtering is needed or if integrals must be computed as part of the solution, e.g.,
in spectral element methods.

In this paper we assess the performance of pseudospectral methods based on
prolate spheroidal wave functions (PSWF – ψc

k) rather than on polynomials. In [25],
the authors demonstrate the merits of using PSWFs for the interpolation, integration
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(quadrature), and differentiation of band-limited functions. They show, among other
things, that for a prescribed accuracy fewer grid points are required for interpolation
and integration than with Chebyshev polynomials. Furthermore, the differentiation
matrix has a smaller condition number, approaching O(N3/2), which suggest the
possibility of increasing the time-step significantly for large values of N .

These basic observations have led to a surge of recent activity in the develop-
ment of methods based on PSWFs, although the topic itself remains in its infancy.
In [4, 5], the author studied the feasibility of using PSWFs as the basis functions in
spectral element methods. More recently, in [3] Beylkin and Sandberg developed a
two-dimensional solver for the acoustic wave equation by using a basis of approxi-
mate PSWFs. However, even basic aspects of approximation and stability theory for
methods based on PSWFs remain unknown.

In this work we consider some of these issues, in particular in the context of solving
hyperbolic PDEs by constructing pseudospectral methods based on quadrature points
and roots associated with the PSWFs. The first step in this direction is to review and
expand the relevant approximation theory. We discuss basic approximation properties
such as the number of points per wavelength required to recover a meaningful result
and show that only two points per wavelength are needed. Thus, the PSWF expansion
recovers the Nyquist limit from Fourier theory, although defined on a finite interval.
This should be contrasted with polynomial expansions where asymptotic estimates
show that at least π points per wavelength are needed [14]. We derive a new result
that demonstrates the spectral accuracy of approximations of smooth functions by
the PSWFs.

Several variants of pseudospectral PSWF methods based on different interpolation
points are subsequently discussed, the main differences being in the definition of the
interpolation points, e.g., we consider genuine Gauss-type quadrature points as well as
Gauss–Lobatto like points defined as the roots of (1−x2)(ψ2c

N )′, where ψ2c
N is the Nth

order PSWF with bandwidth 2c—this approach is clearly inspired by results from
classical polynomials although they are in this case not associated with a quadrature.
The performance of these slightly different methods are essentially equivalent although
the latter choice is more appropriate for solving initial-boundary value problems. We
finally consider the performance of these methods for solving a scalar hyperbolic
equation as well as hyperbolic systems.

The results of our study can be summarized as follows.

• A practical relation between the two parameters, c and N , is N = c to allow
convergence.

• With this choice one observes spectral accuracy. When the solution is broad-
band and marginally resolved, the PSWF-based method is more accurate
than the Chebyshev method with the same number of terms, i.e., generally
more efficient.

• Theoretically the time-step Δt can be taken as O(N− 3
2 ) if N � 2

π c. However,
the accuracy deteriorates significantly in this case.

The remaining part of the paper is organized as follows. In section 2, we present
some mathematical background and define the PSWFs. Section 3 contains some
approximation results, while section 4 deals with the construction of pseudospectral
methods based on PSWFs. We discuss their stability and solve scalar hyperbolic
equations as well as hyperbolic systems. In the appendix, we give the details of the
proof of the main approximation result.
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2. Preliminaries. In this section, we shall summarize the notation and some
general results regarding the PSWFs.

2.1. Prolate spheroidal wave functions. A function f(x) : [−1, 1] → [−1, 1]
is band-limited if there exist a c > 0 and a function φ(t) ∈ L2[−1, 1] such that

f(x) = Fc(φ)(x) =

∫ 1

−1

eicxt φ(t) dt.

It is easy to see that Fc: L
2[−1, 1] → L2[−1, 1] is a compact operator, i.e., that it has

eigenvalues λ0, λ1, λ2, . . . , with the property |λi−1| ≥ |λi| ∀i > 0. We shall denote by
ψc
j(x) the eigenfunction corresponding to λj . Then

λj ψ
c
j(x) =

∫ 1

−1

eicxt ψc
j(t) dt, x ∈ [−1, 1],(2.1)

and the eigenfunctions, {ψc
j}+∞

j=0, are the PSWFs. We choose to normalize them so
that ‖ψc

j‖L2[−1,1] = 1.
One easily checks that the PSWFs also satisfy

μj ψ
c
j(x) =

∫ 1

−1

sin(c(x− t))

x− t
ψc
j(t) dt, x ∈ [−1, 1],

where

μj =
c

2π
|λj |2.

The following theorem gives some properties of the PSWFs (see [22, 25] and the
references therein).

Theorem 2.1. For all c ≥ 0,
• ψc

0, ψc
1, . . . are real, orthonormal, smooth, and complete in L2[−1, 1], and

they form a Chebyshev system [17] on [−1, 1];
• the ψc

k with even k are even functions, and those with odd k are odd;
• λj = ij |λj | 	= 0, where i is the complex unit;
• among {μj}∞j=0, about 2c/π are very close to 1; order log(c) decay exponen-

tially from 1 to nearly 0; the remaining ones are very close to 0.
Furthermore, there exists a strictly increasing positive sequence χ0, χ1, . . . , such

that (
(1 − x2)(ψc

j(x))
′
)′

+
(
χj − c2x2

)
ψc
j(x) = 0.(2.2)

When c = 0, the above equation reduces to the classic singular Sturm–Liouville
problem with p(x) = 1 − x2, q(x) = 0, ω(x) = 1, and χj = j(j + 1), i.e., the PSWFs
with c = 0 are the normalized Legendre polynomials [6, 13].

Following [25], one can evaluate ψc
j by expressing it as

ψc
j(x) =

∞∑
k=0

βj
kP k(x), j = 0, 1, 2, . . . ,(2.3)

where P k is the normalized Legendre polynomial of degree k. Substituting (2.3) into
(2.2) and using the properties of the Legendre polynomials one obtains an eigenvalue
problem

(A− χj · I)βj = 0.(2.4)
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Fig. 2.1. ψc
8(x) for different values of c.

Here A has the form [25]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ak,k = k(k + 1) +
2k(k + 1) − 1

(2k + 3)(2k − 1)
c2,

Ak,k+2 =
(k + 2)(k + 1)

(2k + 3)
√

(2k + 1)(2k + 5)
c2,

Ak+2,k = Ak,k+2

for k = 0, 1, 2, . . . , where the remaining entries of A are zeros.
Since ψc

j is smooth, the coefficients βj
k decay superalgebraically with respect to

k. The following theorem [25] offers guidelines on where to truncate (2.3) to ensure a
certain accuracy in the approximation of ψc

j .
Theorem 2.2. Assume ψc

m is the mth PSWF with band-limit c, and λm is the
corresponding eigenvalue. If

k ≥ 2(
e · c� + 1),(2.5)

then ∀c > 0,

∣∣∣∣
∫ 1

−1

ψc
m(x)Pk(x) dx

∣∣∣∣ < 1

λm

(
1

2

)k−1

.

Solving (2.4) and using the corresponding eigenvector in the truncated version of
(2.3) allows for the computation of one PSWF (Figure 2.1) for different values of the
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band-limit, c. In Figure 2.1, we note that the zeros of the PSWF move toward the
center as c increases, approaching a uniform distribution. This observation suggests
that by choosing a suitable c > 0 the PSWF method needs fewer points per wave-
length to accurately resolve a wave problem as compared to approximations based on
classical orthogonal polynomials. However, it also suggests that if one chooses c too
large for a fixed N , the PSWF is unable to represent functions defined on the whole
interval.

3. Approximation. In this section, we consider in more detail the properties of
approximations based on PSWFs. We first show that for the single wave cos(Mπx),
with the optimal c = Mπ, the continuous PSWF expansion converges exponentially
fast when at least two PSWFs are retained per wavelength. Equivalently, two points
per wavelength are required for exponential convergence of the discrete approximation.
This should be contrasted with about π points per wavelength needed for methods
using classical orthogonal polynomials.

The second result pertains to the approximation of a general smooth function
with a finite series of PSWFs. Recall that, for an unknown function, the optimal
choice of the bandwidth parameter, c, is unknown and the approximation depends
on two parameters, c and N . A natural approach is assume that the parameters
are related and our experiments show that c = N is a good choice if we want to
maintain the full accuracy (16 digits). We explain why we cannot use c ≥ (π/2)N
and illustrate that there can be benefits in taking c � (π/2)N , albeit at the price of
a lower accuracy.

3.1. Approximation of waves-points per wavelength. Let us consider the
wave u(x) = eiMπx. It follows directly from (2.1) and Theorem 2.1 that its PSWF
expansion is

eiMπx =

+∞∑
j=0

(
λjψ

c
j(1)

)
ψc
j(x),(3.1)

where c = Mπ.
Note that

|λjψ
c
j(1)|2 = |λj ||λjψ

c
j(1)2|,

where the term λjψ
c
j(1)2 is the jth term in the expansion of eiπM (cf. (3.1)) and

thus bounded—in fact it tends to zero with growing j. From [19], we know that |λj |
decays exponentially with j if j > 2c

π = 2M . This establishes the result: The accurate
resolution of a wave requires two PSWFs per wave. We recall here that expansions
based on Chebyshev or Legendre polynomials require about π points per wave. Only
mapped methods [20] may achieve similar resolution results for sufficiently high values
of N .

In Figure 3.1, we plot the L2-error of the truncated PSWF expansion of the
function cos(Mπx) versus N

M (N is the number of terms in the expansion). It clearly
confirms that when N/M > 2 the error decays exponentially.

In the above discussion we took c = Mπ, which is optimal. However, for general
functions, we do not have a simple optimal c (see Figure 3.2) where we display the
interpolation results with the PSWFs for two different functions. Clearly, the optimal
c depends on the required accuracy and the function being approximated. This is due
to the fact that an arbitrary function has many different modes and each mode has a
distinct optimal c.
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3.2. Error estimates. In this section, we consider the error estimates, in a
Sobolev norm, of the PSWF expansion of a smooth function. Let x ∈ [−1, 1], and
consider the expansion u(x) =

∑+∞
k=0 ûkψ

c
k(x). The order of the convergence of the
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partial sum uN (x) =
∑N

k=0 ûkψ
c
k(x) is determined by

‖u− uN‖2
L2[−1,1] ≤

∞∑
k=N+1

|ûk|2,

i.e., it depends solely on the decay rate of the coefficients {ûk}.
Using the standard notation of Hs[−1, 1] for the Sobolev space of functions with

distributional derivatives up to order s being square integrable in L2[−1, 1], we prove
in the appendix the following theorem.

Theorem 3.1. Assume that u ∈ Hs[−1, 1] with the PSWF expansion u(x) =∑+∞
i=0 ûiψ

c
i (x).

If qN =
√

c2

χN
< 1, then

|ûN | ≤ D
(
N− 2

3 s‖u‖Hs[−1,1] + (qN )
δN ‖u‖L2[−1,1]

)
,(3.2)

where both δ and D are positive constants.
From (3.2) it is evident that the expansion coefficients, ûN , may exhibit spectral

convergence when qN < 1. In [23], it is shown that if n grows with c as

n =
2

π

[
c + b log(2

√
c)
]

for some b, then

χn ∼ c2 + 2bc + O(1).

Thus

qn < 1 ⇔ χn > c2 ⇔ b > 0 ⇔ n >
2

π
c.

Consequently, the finite PSWF expansion of a smooth function, u ∈ C∞[−1, 1],

N∑
k=0

ûkψ
c
k(x)

is spectrally accurate if and only if

N >
2

π
c.

In Figure 3.3, we display the relationship between N and c ensuring that qN ≤ 1,
obtained directly by solving the eigenvalue problem. This clearly confirms the above
result. Figure 3.4 shows the loss of accuracy as N approaches 2

π c. The loss of accuracy
partially confirms Theorem 3.1. More precisely, the second term in (3.2) is dominant
as N approaches 2

π c, i.e., qN approaches one. When qN is very close to one, (qN )
δN

cannot be small for any moderate N .
We notice that c = N (which guarantees that qN is bounded away from one)

appears to be a good choice if one requires maximum accuracy, although larger values
of c may also work if a reduced accuracy is acceptable. In section 4, we will fur-
ther discuss the issue of choosing c when also considering the time-step and discrete
stability.

Similar results are obtained when we use the PSWFs to interpolate a smooth
function. In Figure 3.5, we compare interpolations based on PSWF and Chebyshev
polynomials. Here we choose the number of grid points N = c. The results indicate
that the PSWF interpolation is superior for functions with fine structures.
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4. Solving PDEs. In the following we shall discuss the use of the PSWFs as
a basis in spectral methods for solving wave problems. Particular attention shall be
paid to issues of semidiscrete and fully discrete stability.

4.1. First order wave equation. Consider the first order one-way wave equa-
tion ⎧⎨

⎩
ut = ux, x ∈ [−1, 1],

u(1, t) = g(t),
u(x, 0) = f(x)

(4.1)

for which we shall seek a numerical solution.
Consider the interpolation points {x0, . . . , xN} which will be specified later. We

define the Prolate–Lagrange function as Lj(x) =
∑N

k=0 ljkψ
c
k(x) such that Lj(xk) =

δjk. The existence of Prolate–Lagrange functions follows from the fact that the
PSWFs form a Chebyshev system [17].

In a penalty Galerkin approximation we seek an approximation to the wave prob-
lem of the form

uN (x, t) =

N∑
j=0

uN (xj , t)Lj(x)

such that the vector 
U = (uN (x0, t), . . . , uN (xN , t))
T

satisfies the equation

M
d
U

dt
= S
U − τ(uN (1, t) − g(t))
eN .(4.2)

Here, the boundary condition is imposed in a penalty way [7, 12, 15]. The matrices
M = (mjk) and S = (sjk) are defined as

mjk =

∫ 1

−1

Lj(x)Lk(x) dx,(4.3)

sjk =

∫ 1

−1

Lj(x)L
′

k(x) dx,(4.4)
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and 
eN = (0, . . . , 1)T .
Theorem 4.1 (stability). The semidiscrete method described in (4.2) is stable

for τ ≥ 1/2.
Proof. For the stability proof it suffices to assume that g(t) = 0. Multiplying

(4.2) by 
UT , we get

1

2

d

dt

(

UTM
U

)
=

∑
jk

uN (xj , t)skjuN (xk, t) − τuN (1, t)2

=
∑
jk

∫ 1

−1

uN (xj , t)uN (xk, t)Lj(x)L′
k(x) dx− τuN (1, t)2

=

∫ 1

−1

uN (x, t)
∂uN (x, t)

∂x
− τuN (1, t)2

=
1

2

(
uN (1, t)2 − uN (−1, t)2 − 2τuN (1, t)2

)
.

Thus, if τ ≥ 1
2 , then

d

dt

∑
jk

∫ 1

−1

uN (xj , t)uN (xk, t)Lj(x)Lk(x) dx ≤ 0

or

d

dt

∫ 1

−1

(uN (x, t))
2
dx ≤ 0.

This proves the theorem.
One way to implement the pseudospectral (collocation) method is to replace the

integrals in (4.3) and (4.4) by quadrature formulas based on the points {xk}. Alter-
natively, one can substitute the approximation uN (x, t) for u into the PDE (4.1) and
require that the obtained equation is satisfied at certain collocation points (in most
cases {xk} are used as collocation points as well).

For the PSWF collocation method, we do not have a stability proof. The difficulty
is caused by the fact that the product of any two of the first N PSWFs with band-
limit c is not in the space spanned by the first 2N PSWFs with band-limit 2c for
which the PSWF quadrature is exact. However, when using {xk} as the collocation
points, we numerically verify that the eigenvalues of the differentiation matrix have
negative real parts.

We shall consider two sets of grid points as {xk}: the Gauss–Lobatto PSWF
points (one way to compute them is given in [8]) and the zeros of (1−x2)(ψ2c

N )′. Note
that these points must be computed from PSWF with band-limit 2c (see [25]). As we
find the performance of the methods based on these two sets of points to be almost
equivalent, the latter will be used for the PSWF collocation method if not specified
otherwise.

When using explicit time discretization, e.g., Runge–Kutta schemes, one faces a
stability limit on the time-step Δt. A necessary condition for stability is that the
product of Δt and the largest eigenvalue of the differential matrix, being M−1(S −
τ
eN
eTN ) in the current scheme, is inside the stability region of the time-stepping
scheme.

In Figure 4.1, we observe that for fixed N the magnitude of the largest eigenvalue λ
of the PSWF collocation method decreases when c/N increases. So without violating
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the stability condition, a larger c leads to larger Δt, as confirmed by Figure 4.2. When
computing the largest stable time-step, we implemented a 10th order explicit Runge–
Kutta scheme, the general form (mth order) for ut = Au with constant matrix A
being given as [6]

u1 = un +
Δt

m
Aun,

uk = un +
Δt

m + 1 − k
Auk−1, k = 2, . . . ,m− 1,

un+1 = un + Δt Aum−1.
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This ensures that the errors from the time integration are negligible.
In Figure 4.2, the largest stable time-step approaches a growth rate O(N− 3

2 ),

when c goes to (π/2)N . This suggests that one can use a time-step of order O(N− 3
2 )

by letting c = (π/2)N . However, this choice of c causes a loss of accuracy, as demon-
strated in Figure 3.4. In Table 4.1, we list the errors for the time-steps shown in
Figure 4.2. It is evident that the accuracy is decreasing when c approaches (π/2)N .
This is consistent with our analysis for the approximation using PSWFs.

Table 4.1

L∞-error when solving ut = ux for u(x, t) = cos(2π(x + t − 0.5)) with collocation methods.
A 10th order explicit Runge–Kutta is used. For each N of each method, Δt is the largest stable
time-step shown in Figure 4.2.

N 80 120 160 200

Chebyshev 3.453 × 10−14 4.952 × 10−14 1.521 × 10−13 1.115 × 10−13

Legendre 7.361 × 10−14 1.117 × 10−12 1.274 × 10−12 1.592 × 10−12

PSWF(c = N) 9.770 × 10−15 9.104 × 10−15 2.081 × 10−14 1.482 × 10−14

PSWF(c = 1.3N) 3.638 × 10−1 2.860 × 10−9 7.133 × 10−12 9.137 × 10−14

PSWF(c = 1.5N) 5.022 × 10−2 2.968 × 10−1 8.051 × 10−2 1.649 × 10−4

The PSWF method offers a systematic way of balancing accuracy and stability. As
a compromise, c = N is used in all subsequent numerical tests. This yields a time-step
which is twice the one obtained by a Legendre collocation method without sacrificing
accuracy. Similar results can be obtained by using a mapping technique [16]. In some
cases it may be beneficial to use a different value of c, e.g., in Figure 3.4, c = 1.1N
could be used if only about 10−9 accuracy was required. Similar improvements over
the traditional Chebyshev collocation methods can also be achieved by the mapping
technique which was first presented in [18], albeit at a loss of the quadrature. However,
it will be impractical to use the PSWF collocation method if one wants to change c
very often, as both the interpolation points and the differentiation matrix have to be
recomputed when c is changed.

4.1.1. Numerical tests. The following numerical tests were carried out
with a collocation method that determines a nodal approximation uN (x, t) =∑N

j=0 uN (xj , t)Lj(x) such that the equation

∂uN

∂t
− ∂uN

∂x
= 0(4.5)

is satisfied at the grid points {xj}. The boundary condition is applied either strongly
or by a penalty procedure as discussed above.

We considered three different initial conditions, listed in Table 4.2.

Table 4.2

Initial condition f(x).

Smooth Nonsmooth

cos(2π(x− 0.5))

cos(20π(x− 0.5)) sin(20π(x− 0.5)) + H(x− 0.5)

The Heaviside function H(x) is defined as

H(x) =

{
1 if x ≤ 0,
−1 otherwise.

(4.6)
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In Figure 4.3, we show the errors from solving (4.5) with these smooth initial condi-
tions. The Chebyshev method performs better for functions with small wave numbers,
whereas the PSWF method is clearly better for functions with large wave numbers.

In Figure 4.4, we present the errors for the discontinuous initial condition. In this
case the solution is discontinuous and the point of discontinuity propagates towards
the boundary with a speed a = 1. We observe that the error does not decay below
10−4 when using a strongly imposed boundary condition.

When the boundary condition is imposed by a penalty procedure [7, 15, 12], the
PSWF method is superior to the Chebyshev method (see the right part of Figure 4.4).
We also applied the Legendre collocation method to solve the equation with discontin-
uous initial conditions. Similar to the PSWF collocation method, the weakly imposed
boundary condition yields more accurate results than the strongly imposed boundary
condition.

The improved performance with the weak imposition of the boundary condition
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Fig. 4.5. Eigenvalues of the differentiation matrix for the PSWF collocation method. Boundary
condition is imposed strongly.

can be linked to the behavior of the differentiation matrix. Figures 4.5 and 4.6 show
the spectrum of the modified differentiation matrix for the PSWF collocation method
with strongly and weakly imposed boundary conditions, respectively. We believe that
the positive real parts of eigenvalues for N = 32 and 64 in Figure 4.5 are spurious and
caused by round-off errors, as discussed in [24] for Chebyshev/Legendre spectral dif-
ferentiation matrices. These results document the importance of imposing boundary
conditions in a penalty way.

4.2. A cavity problem. In this section, we solve the one-dimensional Maxwell
equations

⎧⎪⎪⎨
⎪⎪⎩

ε
∂E

∂t
=

∂H

∂x
,

μ
∂H

∂t
=

∂E

∂x
,

(4.7)

where E(x, t) and H(x, t) are the tangential electric and magnetic fields, and ε and μ
are the relative permittivity and permeability of the materials.

We shall consider the test case of a one-dimensional cavity [−1, 1] filled with two
dielectric media with a material interface at x = 0. Two perfectly conducting walls
are located at x = −1 and x = 1. Denote by ε1 and μ1 the relative permittivity
and permeability of the material at [−1, 0]. Similarly, ε2 and μ2 are the relative
permittivity and permeability of the material in [0, 1]. The electric and magnetic
fields in the two domains are denoted by E1, H1 and E2, H2.
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Fig. 4.6. Eigenvalues of the differentiation matrix for the PSWF collocation method. Boundary
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Since the walls are perfectly conducting, the boundary conditions are

E1(−1, t) = 0 or
∂H1

∂x
|x=−1 = 0,

E2(1, t) = 0 or
∂H2

∂x
|x=1 = 0.

Denote n1 =
√
ε1 and n2 =

√
ε2, i.e., {ni} is the index of refraction. In all the

following tests, we assume μ1 = μ2 = 1.0, n1 = 1, and n2 = 10.

In Figure 4.7, we display the solution at t = 0. (See [9] for the derivation of
the exact solution.) When n1 	= n2, the solution loses smoothness at the material
interface. It is only globally C0 in [−1, 1]. Thus without using domain decomposition,
we can only get second order convergence with a Chebyshev or PSWF collocation
method (see Figure 4.8). Because of this low order there is limited advantage to the
use of the PSWF collocation method, although the PSWF method needs fewer points
per wavelength to resolve the solution.

For the pointwise errors from both PSWF and Chebyshev collocations, there is a
spike (Figure 4.9) propagating into the left-half domain and whose speed is the speed
of a characteristic wave. It is caused by the initial condition being computed from the
exact solution to the PDE, rather than an exact solution to the numerical scheme.
One can remedy this by computing the initial conditions from the numerical scheme.
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Fig. 4.8. The discrete L2-error at t = 2π. Strongly imposed boundary condition for the
Chebyshev collocation method, weakly imposed boundary condition for the PSWF collocation method.
Left: electric field E(x, t). Right: magnetic field H(x, t).

Assume that the semidiscrete equation of (4.7) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d 
E

dt
= DH


H,

d 
H

dt
= DE


E.

(4.8)
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Fig. 4.9. Pointwise error from the PSWF collocation method. c = N = 301. t = 2π. Upper:
electric field. Lower: magnetic field.
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Take the exact solution to the numerical scheme as 
E = 
̃Eeiωt and 
H = 
̃Heiωt, and
introduce them into (4.8) to obtain an eigenvalue problem,

iω

(

̃E


̃H

)
=

(
0 DH

DE 0

)(

̃E


̃H

)
.

The eigenvectors can be used as the initial conditions for the numerical scheme. The
new results are shown in Figure 4.10, confirming this to be the source of the spike.

5. Conclusions. Our study of the applicability of PSWF-based methods to the
numerical solution of time-dependent PDEs results in the following conclusions:

• The PSWF approximation requires two points per wavelength to resolve a
single mode wave function (cos(mπx)) if c is chosen as c = mπ.

• Approximating a broadband function u(x) by a finite expansion of the form∑N
n=0 ûnψ

c
n, one obtains spectral accuracy for N > 2

π c with loss of accuracy
when N approaches the limit. A robust choice is N = c.

• When solving the wave equation ut = ux with explicit temporal schemes,
the CFL bound on the time-step increases as c ≤ (π/2)N increases. Asymp-
totically, Δt = O(N−3/2) if c is very close to (π/2)N . However, this choice
results in a deterioration of the accuracy. We found c = N to be a good
choice to ensure good accuracy and large stable time-step, the latter effec-
tively increasing by a factor of 2 over methods based on classical orthogonal
polynomials.

• For marginally resolved broadband problems, the PSWF-based method with
a carefully chosen c is better than the Legendre/Chebyshev collocation meth-
ods. Fewer points are needed per wavelength for fast convergence and the
allowable time-step is twice as large.

• The weak imposition of the boundary condition is necessary for the success
of the method for problems with discontinuous initial conditions. By weakly
applying the boundary condition, we improve the spectrum of the first order
differentiation matrix of the PSWF collocation method, i.e., moving those
eigenvalues with almost zero real parts a little distance away from the imag-
inary axis, thus introducing a small amount of dissipation.

Appendix. In this appendix, we prove Theorem 3.1.
Let βk = βN

k be the coefficient in the expansion of ψc
N in terms of the normalized

Legendre polynomials, i.e., ψc
N (x) =

∑+∞
k=0 β

N
k P k(x), where

βk =

∫ 1

−1

P k(x)ψN (x) dx.

The following recurrence relation for βk is proven in [25]:

(k + 2)(k + 1)

(2k + 3)
√

(2k + 5)(2k + 1)
βk+2 =

(
Λ − k(k + 1)

c2
− 2k(k + 1) − 1

(2k + 3)(2k − 1)

)
βk

− k(k − 1)

(2k − 1)
√

(2k − 3)(2k + 1)
βk−2.(A.1)

Note that, from [23], Λ = χN = O(N2). Let m be any integer satisfying

m = O(Λ1/3) = O(N2/3) and 2m(2m + 1) <
ln 2

2
Λ.(A.2)
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Then we have the following lemma.
Lemma A.1. Assume q = qN =

√
c2

Λ < 1. Then for any given k ≤ 2m, βk is
bounded by

|βk| ≤

⎧⎪⎨
⎪⎩
D

(
2
q

)k

|β0|, k even,

D
(

2
q

)k

|β1|, k odd,
(A.3)

where D is a constant independent of m.
Proof. We give the proof only for even k. The proof for odd k is similar.
Rewrite (A.1) as

βk+2 =
1

f(k + 2)

(
1

q2

(
1 − k(k + 1)

Λ

)
− g(k)

)
βk − f(k)

f(k + 2)
βk−2,(A.4)

where f(x) = x(x−1)

(2x−1)
√

(2x−3)(2x+1)
and g(x) = 2x(x+1)−1

(2x+3)(2x−1) . It is easy to verify that

1/4 ≤ f(x) ≤ 2
√

5/15,
1

2
≤ g(x) ≤ 11

21
for x ≥ 2.

Therefore, f(x)/f(x + 2) ≤ 8
√

5/15 when x ≥ 2.
Since

k ≤ 2m ⇒ 1

q2

(
1 − k(k + 1)

Λ

)
≥ 1

q2

(
1 − ln 2

2

)
>

11

21
≥ g(x) for x ≥ 2,

the coefficient of βk in (A.4) is positive. Hence, if we assume (A.3) is true for k, k−2,
we can bound βk+2 as

|βk+2| ≤
1

f(k + 2)

(
1

q2

(
1 − k(k + 1)

Λ

)
− g(k)

)
|βk| +

f(k)

f(k + 2)
|βk−2|

≤ 4
1

q2

(
1 − ln 2

2

)
D

(
2

q

)k

|β0| +
8
√

5

15
D

(
2

q

)k−2

|β0|

≤ D

(
2

q

)k+2
(

1 − ln 2

2
+

√
5q4

30

)
|β0| ≤ D

(
2

q

)k+2

|β0|.

The last inequality follows from the facts that q < 1 and 1 − ln 2
2 +

√
5q4

30 < 1. When
k = 0, 2, (A.3) can be easily satisfied by modifying the constant D. This completes
the proof.

Define

Ak =

∫ 1

−1

xkψc
N (x) dx.(A.5)

One can check that
√

2β0 = A0 and
√

2/3β1 = A1.
Lemma A.2. Let m be an integer satisfying (A.2). Then

|A0| ≤ Kq2m

√
2

4m + 1
,(A.6)
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where K is a constant independent of m.
Proof. We first show that

|A0| ≤ q2m|A2m|
m−1∏
l=1

1

1 − 2l(2l+1)
Λ

.(A.7)

Rewrite (2.2) as

(
(1 − x2)ψ

′
)′

+ Λ(1 − q2x2)ψ = 0.

For l ≤ m, multiply the above equation by x2l, then integrate on [−1, 1] to obtain{
2l(2l − 1)A2l−2 + (Λ − 2l(2l + 1))A2l − Λq2A2l+2 = 0, l ≥ 1,

A0 − q2A2 = 0, l = 0.

Since 2m(2m + 1) ≤ Λ, all A0, A2, . . . , A2m+2 have the same sign. Thus

|A2l| ≤ q2 |A2l+2|
Λ

Λ − 2l(2l + 1)
≤ q2 |A2l+2|

1

1 − 2l(2l+1)
Λ

.

Then (A.7) follows by induction.
To show (A.6), we note that 1 − x ≥ e−2x when 0 ≤ x ≤ ln 2

2 . Therefore,

1 − 2l(2l + 1)

Λ
≥ e−2 2l(2l+1)

Λ if l = 1, 2, . . . ,m− 1,

which leads to

m−1∏
l=1

1

1 − 2l(2l+1)
Λ

≤ e

∑m−1
l=1

4l(2l+1)

Λ ≤ e
8
3
m3

Λ .

From (A.2), m = O(Λ1/3). So (A.5) yields

|A2m| ≤ ‖x2m‖L2[−1,1] ‖ψ‖L2[−1,1] ≤
√

2

4m + 1
,

which proves (A.6).
In the same way, one can also show that |A1| ≤ Kq2m

√
2

4m+3 under the same
conditions on m. We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Assume u(x) has the Legendre expansion

u(x) =

+∞∑
k=0

akPk(x).

By definition,

ûN =

∫ 1

−1

u(x)ψN (x) dx =

∫ 1

−1

ψN (x)

(
+∞∑
k=0

akPk(x)

)
dx.

Let M be an integer such that

M + 1

2m
= γ

ln(1/q)

ln(2/q)
,(A.8)
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where m is defined in (A.2) and 0 < γ < 1 is a constant. Denote by uM (x) the partial

sum uM (x) =
∑M

k=0 akPk(x). Then

ûN =

∫ 1

−1

uM (x)ψN (x) dx +

∫ 1

−1

(u(x) − uM (x))ψN (x) dx.

We use I and II to represent the first and second terms, respectively. According to
the error estimate of the Legendre approximation [11, 6],

|II| ≤ ‖u− uM‖L2[−1,1] ‖ψN (x)‖L2[−1,1] ≤ DM−s‖u‖Hs[−1,1],

where D is a constant (in the following, D is used for different constants). Now,

|I| =

∣∣∣∣∣
M∑
k=0

ak

∫ 1

−1

Pk(x)ψN (x) dx

∣∣∣∣∣ =

∣∣∣∣∣
M∑
k=0

(
ak

√
2

2k + 1

) (∫ 1

−1

P k(x)ψN (x) dx

)∣∣∣∣∣

≤
(

M∑
k=0

(ak)
2 2

2k + 1

)1/2 (
M∑
k=0

(∫ 1

−1

P k(x)ψN (x) dx

)2
)1/2

≤ ‖u‖L2[−1,1]

(
M∑
k=0

β2
k

)1/2

≤ D‖u‖L2[−1,1]

(
M∑
k=0

(
2

q

)2k
)1/2

max (|β0|, |β1|).

Here Lemma A.1 is used in the last reduction.

From Lemma A.2, β0 = 1√
2
A0 < Kq2m

√
2

4m+1 and β1 =
√

3/2A1 < Kq2m
√

2
4m+3 ,

where K is a constant. Thus

|I| ≤ D‖u‖L2[−1,1]

(
M∑
k=0

(
2

q

)2k
)1/2

q2m

√
2

4m + 3

≤ D‖u‖L2[−1,1]

(
2

q

)M+1

q2m

√
2

4m + 3

≤ D‖u‖L2[−1,1]

(
q

(
2

q

)M+1
2m

)2m √
2

4m + 3

≤ D‖u‖L2[−1,1] p
2m

√
2

4m + 3
,

where p = q( 2
q )

M+1
2m .

From (A.8), p = q1−γ and M = O(m) = O(N2/3). Combining the bounds for I
and II, we get

|ûN | ≤ D
(
N− 2

3 s‖u‖Hs[−1,1] + (qN )
2
3 (1−γ)N ‖u‖L2[−1,1]

)
,

which proves Theorem 3.1 with δ = 2
3 (1 − γ).
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OPTIMAL SUPERCONVERGENCE ORDERS OF ITERATED
COLLOCATION SOLUTIONS FOR VOLTERRA INTEGRAL

EQUATIONS WITH VANISHING DELAYS∗

HERMANN BRUNNER† AND QIYA HU‡

Abstract. In this paper we analyze the optimal convergence properties of collocation approxi-
mations to solutions of Volterra integral equations of the second kind with vanishing variable delays.
The focus of the analysis is on the superconvergence of the (iterated) collocation approximation corre-
sponding to collocation in the space of (discontinuous) piecewise polynomials of degree m−1 ≥ 0. We
show that on uniform meshes the iterated collocation solution possesses the global superconvergence
order m + 1, and that the solution’s order of local superconvergence at the nodes of the underlying
mesh cannot exceed m + 2, in sharp contrast to problems with nonvanishing delays. Moreover, the
optimal order p∗ = m+ 2 can be attained only under suitable assumptions. This result also resolves
a conjecture of 1997 regarding the attainable order of local superconvergence for Volterra integral
equations containing a proportional delay qt with q ∈ (0, 1).

Key words. delay integral equation, proportional delays, collocation method, iterated colloca-
tion solution, optimal order of superconvergence

AMS subject classification. 65R20

DOI. 10.1137/040615705

1. Introduction. In this paper we analyze the optimal orders of global and local
superconvergence of iterated collocation solutions to Volterra integral equations with
vanishing variable delays,

y(t) = f(t) +

∫ t

0

k1(t, s, y(s))ds +

∫ θ(t)

0

k2(t, s, y(s))ds, t ∈ J := [0, T ],(1.1)

where θ(t) := t − τ(t) ≥ 0 is such that the (continuous) delay τ satisfies τ(0) =
0. (Additional assumptions are stated in section 2.1.) Equation (1.1) includes the
important special case where τ is the proportional delay τ(t) = (1−q)t with 0 < q < 1,
i.e.,

y(t) = f(t) +

∫ t

0

k1(t, s, y(s))ds +

∫ qt

0

k2(t, s, y(s))ds, t ∈ J(1.2)

(see [8, 4]).
It is well known that for classical Volterra integral equations (corresponding to

k2 ≡ 0 in (1.1)) the iterated collocation approximation based on collocation in the
space of (discontinuous) piecewise polynomials of degree m − 1 ≥ 0 possesses the
optimal superconvergence order p∗ = 2m at the nodes of the underlying (uniform)
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mesh, provided that the collocation parameters are the m Gauss points in (0, 1).
For Volterra integral equations with nonvanishing delays (e.g., constant delays), this
property is preserved if the mesh is suitably constrained (see [2, 3, 15, 5]).

It was shown in [4] and [23] that these superconvergence properties on uniform
meshes do not carry over to (1.1) with k2 �≡ 0 and τ(t) = (1 − q)t (0 < q < 1).
In fact, for this proportional delay the optimal (local) superconvergence order is at
most p∗ = 2m− 1 when q �= 1

2 ; for q = 1
2 and collocation at the Gauss points it was

conjectured that p∗ = 2m.

In the present paper we investigate the attainable order of the iterated collocation
approximation for the general delay integral equation (1.1). We first show that, under
natural assumptions, this approximation exhibits global superconvergence of order
m + 1. We then introduce a general condition characterizing meshes for which local
superconvergence at the nodes can occur for a given vanishing delay τ(t) when the
collocation points are the m Gauss points. In particular, this holds when the meshes
are uniform, the delay has the form τ(t) = (1 − q)t with q = 1

2 , and m is even. This
means that the conjecture mentioned above is true only when m = 2. Furthermore,
we explain why the result no longer holds when m ≥ 3. A key technique for proving
our main result is the use of an inductive (or recursive) method, which was developed
in [7], [14], and [15].

The analysis of second-kind Volterra functional integral equations with propor-
tional delays dates back to the work of Volterra [25, pp. 92–101] and Andreoli [1].
Among the more recent contributions to this subject are the papers by Morris, Feld-
stein, and Bowen [18] (see pp. 518–523), Chambers [8], and Mureşan [19]; see also
Brunner [5, Chap. 5]. Related functional integral equations are studied in Esser [11],
Iserles and Liu [17], Piila [21], Piila and Pitkäranta [22] (application in the asymptotic
membrane theory of hyperbolic shells), and Denisov and Lorenzi [10] (see [10] also for
references on applications, and compare with section 6).

Fox et al. [12] were the first to investigate the numerical solution of the so-called
pantograph equation,

y′(t) = ay(t) + by(qt), t ≥ 0, 0 < q < 1.(1.3)

In particular, they analyzed the numerical treatment of its integrated form (a special
case of (1.2)) by a global method, the τ -method [12, pp. 292–295], and discussed the
behavior of the resulting error. The 1990s brought a renewed interest by numerical
analysts in (1.3) and its more general versions; see Iserles [16] for an illuminating
survey of the difficulties underlying the (stability) analysis of numerical methods
for pantograph-type equations. The papers by Brunner [4], Takama, Muroya, and
Ishiwata [23], and Brunner, Hu, and Lin [7] focus on the question of optimal local
superconvergence in (iterated) collocation solutions for (1.2). It was shown that, on
uniform meshes, collocation at the Gauss points will in general not yield the classi-
cal optimal order of (local) superconvergence at the mesh points. (See also Muroya,
Ishiwata, and Brunner [20].) However, the complete analysis of this problem has
remained open.

This paper was above all motivated by the fact that, in order to obtain insight into
the superconvergence analysis of collocation approximations for Volterra functional
integral equations with general vanishing delays or, eventually, with state-dependent
delays, we first need to fully understand this analysis for the pantograph integral
equation (1.2) and its more general version (1.1).
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2. Preliminaries.

2.1. The iterated collocation approximation. For ease of exposition, we
will consider the linear version of (1.1), namely

y(t) = f(t) +

∫ t

0

K1(t, s)y(s)ds +

∫ θ(t)

0

K2(t, s)y(s)ds, t ∈ J := [0, T ],(2.1)

with θ(t) := t− τ(t) ≥ 0. More precisely, we will assume that the delay τ satisfies the
following conditions:

(D1) τ ∈ Cν(J) for some ν ≥ 1, with τ(0) = 0 and τ(t) > 0 for t > 0;
(D2) mint∈J θ′(t) =: q0 > 0.

Regularity assumptions for the given functions τ , f and Ki (i = 1, 2) will be stated
in Theorem 4.1 (see also [8], [4], [7], and [5]).

For given N ∈ N, let JN := {tn : 0 = t0 < t1 < · · · < tN = T} denote a mesh
for the given interval J , and set en := (tn−1, tn], hn := tn − tn−1 (n = 1, . . . , N).
In the following we shall be concerned with collocation solutions u lying in the finite-
dimensional collocation space

S
(−1)
m−1(JN ) := {v : v|en =: vn ∈ Pm−1 (n = 1, . . . , N)},

where m ≥ 1 and Pm−1 denotes the set of (real) polynomials of degree not exceeding

m− 1. For a given set of collocation points, X(N) :=
⋃N

n=1 Xn, with

Xn := {tnj := tn−1 + cjhn, 0 < c1 < · · · < cm ≤ 1 (n = 1, . . . , N)},

we are looking for u ∈ S
(−1)
m−1(JN ) satisfying the collocation equations

u(t) = f(t) +

∫ t

0

K1(t, s)u(s)ds +

∫ θ(t)

0

K2(t, s)u(s)ds, t ∈ X(N).(2.2)

The collocation equation (2.2) defines a unique approximation u ∈ S
(−1)
m−1(JN )

whenever the mesh diameter h := max(n) hn is sufficiently small. As for classical
Volterra integral equations, this approximation u will be generated recursively by
successive computation of its restrictions u1, . . . , uN to the subintervals e1, . . . , eN
given by the mesh JN (compare also [6] or [5]).

When the collocation solution u is known, we obtain the iterated collocation
solution uit corresponding to u by setting

uit(t) := f(t) +

∫ t

0

K1(t, s)u(s)ds +

∫ θ(t)

0

K2(t, s)u(s)ds, t∈J.(2.3)

Note that uit(t) = u(t) whenever t ∈ X(N). We shall see that uit will exhibit a
higher order of convergence than u itself if the set {ci} is chosen judiciously (compare
sections 3 and 4). However, for m > 2, this gain is now no longer as large as in the
case of classical Volterra integral equations (Theorem 4.2).

2.2. Notation. We set ZN := {tn : 1≤n≤N} and define the domains

Ω1 := {(t, s) : 0 ≤ s ≤ t ≤ T} and Ω2 := {(t, s) : 0 ≤ s ≤ θ(t), t ∈ J}.

We introduce the linear operator K : L∞(J) → L∞(J) by setting

Kφ(t) :=

∫ t

0

K1(t, s)φ(s)ds +

∫ θ(t)

0

K2(t, s)φ(s)ds, t ∈ J.
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For a given nonnegative integer k we define the norm ‖ · ‖k,∞ by

‖v‖k,∞ :=

(
N∑

n=1

‖v‖2
k,en,∞

) 1
2

,

where

‖v‖k,en,∞ := max
0≤j≤k

(
sup
t∈en

∣∣∣∣ d
j

dtj
v(t)

∣∣∣∣
)
.

For ease of notation, the norm ‖·‖0,en,∞ will often be abbreviated by writing ‖·‖en,∞.

Finally, let πh : C(J) → S
(−1)
m−1(JN ) denote the linear interpolation operator such

that πhv(tnj) = v(tnj) (n = 1, . . . , N ; j = 1, . . . ,m) for v∈C(J). It is well known
(see, e.g., [14], [7]) that

‖πhv‖en,∞ ≤ C‖v‖en,∞ for v ∈ C(J)(2.4)

and

‖(πh − I)v‖j,en,∞ ≤ Chk−j‖v‖k,en,∞, 0 ≤ j ≤ k ≤ m.(2.5)

Here, I denotes the identity operator.

3. A global superconvergence result. There exist a number of papers dealing
with the local superconvergence properties of the iterated collocation solution uit

for the delay Volterra integral equations (1.1) and (1.2) at the nodes ZN (see, for
example, [4], [23], [7], and [5]). In this section, we complement these results by one
on the attainable order of global superconvergence of uit on the entire interval J .
Throughout the paper C will denote a generic positive constant that is independent
of N but which will depend on the length T of the interval J = [0, T ] and on bounds
for the given functions τ , f and Ki.

Theorem 3.1. Let the functions f and Ki in (2.1) satisfy f ∈ Cν(J) and
Ki ∈ Cν(Ωi) (i = 1, 2), and let the delay τ in θ(t) = t − τ(t) be subject to (D1) and
(D2) (section 2.1)), with ν ≥ m+ 1. If the collocation parameters {ci} describing the
collocation points X(N) satisfy the orthogonality condition

∫ 1

0

m∏
i=1

(s− ci) ds = 0,(3.1)

then we have

max
t∈J

|y(t) − uit(t)| ≤ Chm+1 (as h → 0+).(3.2)

In the proof of Theorem 3.1 we will have to resort to the following auxiliary results
whose proofs can be found in [8], [4], [5] (Lemma 3.2), [7] (Lemma 3.3), and [9, section
6] or [13, pp. 212–213] (Lemma 3.4).

Lemma 3.2. Let l ≥ 1 be a given integer. Assume that the functions f , τ , and Ki

in (2.1) satisfy f , τ ∈ Cl(J) and Ki ∈ Cl(Ωi) (i = 1, 2). Then (2.1) has a (unique)
solution y ∈ Cl(J).

Lemma 3.3. Under the assumptions stated in Theorem 3.1 we have

‖u− y‖en,∞ ≤ Chm‖y‖en,∞(3.3)
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and

‖u‖j,∞ ≤ C‖y‖m,∞, 0 ≤ j ≤ 2m.(3.4)

The next lemma is a standard result in the superconvergence theory for ordinary
differential equations and classical (regular) Fredholm and Volterra integral equations
of the second kind.

Lemma 3.4. Let 1 ≤ k ≤ m. Assume that the collocation parameters {ci} satisfy
the orthogonality conditions

∫ 1

0

sr
m∏
i=1

(s− ci)ds = 0, 0 ≤ r ≤ k − 1.

If ψ∈Ck(J) and ϕ∈Cm+k(J), then the following estimate is valid for all en (1 ≤ n ≤
N):

∣∣∣∣
∫
en

ψ(t)(π − I)ϕ(t)dt

∣∣∣∣ ≤ Chm+k+1
n ‖ψ‖k,∞ · ‖ϕ‖m+k,∞.(3.5)

Proof of Theorem 3.1. Since u ∈ S
(−1)
m−1(JN ), it follows from the definition of πh

that πhu = u. Equations (2.1) and (2.2) may be written in operator form as

y = Ky + f(3.6)

and

u = πhKu + πhf,(3.7)

respectively.
If we subtract (3.6) from (3.7) and set e := u− y, we obtain

e = πhKe + (πh − I)(Ky + f).

Hence, by observing (3.6),

e = πhKe + (πh − I)y.(3.8)

Using an induction argument we first prove that for all ϕ ∈ C1(en),

∣∣∣∣
∫
en

ϕ(s)e(s)ds

∣∣∣∣ ≤ Chm+2‖ϕ‖1,en,∞ (1 ≤ n ≤ N).(3.9)

It follows by (3.8) that for any ψ∈C1(e1) we have

∣∣∣∣
∫
e1

ψ(s)e(s)ds

∣∣∣∣ ≤
∫
e1

|ψ(s)| · |Ke(s)|ds +

∣∣∣∣
∫
e1

ψ(s)(I − πh)y(s)ds

∣∣∣∣ ,
which, together with (3.3) and (3.5), yields

∣∣∣∣
∫
e1

ψ(s)e(s)ds

∣∣∣∣ ≤ C(h2
1‖ψ‖e1,∞ · ‖e‖e1,∞

+hm+2
1 ‖ψ‖1,e1,∞ · ‖y‖m+1,e1,∞)
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≤ Chm+2
1 ‖ψ‖1,e1,∞ · ‖y‖m+1,e1,∞

≤ Chm+2‖ψ‖1,e1,∞.

Here, we have used the fact that θ(t) = t− τ(t) ≤ t1 for t ∈ e1.
Assuming that the inequality∣∣∣∣

∫
ei

ϕ(s)e(s)ds

∣∣∣∣ ≤ Chm+2‖ϕ‖1,ei,∞(3.10)

is valid for every ϕ ∈ C1(ei) (1 ≤ i ≤ n), we need to show that, for any ψ ∈ C1(en+1),∣∣∣∣∣
∫
en+1

ψ(s)e(s)ds

∣∣∣∣∣ ≤ Chm+2‖ψ‖1,en+1,∞.(3.11)

In fact, by (3.8) we have
∣∣∣∣∣
∫
en+1

ψ(s)e(s)ds

∣∣∣∣∣ ≤
∫
en+1

|ψ(s)| · |Ke(s)|ds +

∣∣∣∣∣
∫
en+1

ψ(s)(I − πh)y(s)ds

∣∣∣∣∣ .(3.12)

It is clear that∫
en+1

|ψ(s)| · |Ke(s)|ds ≤ hn+1‖ψ‖en+1,∞ · sup
s∈en+1

|Ke(s)|.(3.13)

For s ∈ en+1, there is an index ns such that θ(s) ∈ (tns , tns+1]. Using (3.3) and the
inductive assumption (3.10), we readily derive the estimate

|Ke(s)| ≤
∣∣∣∣
∫ tn

0

K1(s, σ)e(σ)dσ +

∫ s

tn

K1(s, σ)e(σ)dσ

∣∣∣∣
+

∣∣∣∣∣
∫ tns

0

K2(s, σ)e(σ)ds +

∫ θ(s)

tns

K2(s, σ)e(σ)dσ

∣∣∣∣∣
≤ C[n · hm+2 + (s− tn)hm

n+1 + ns · hm+2 + (θ(s) − tns)h
m
ns+1]

≤ Chm+1 for all s ∈ en+1.(3.14)

Upon substitution of this estimate in (3.13) we obtain
∫
en+1

|ψ(s)| · |Ke(s)|ds ≤ Chm+2‖ψ‖en+1,∞.

This, together (3.12) and (3.5), gives (3.11). It then follows by the induction principle
that the inequality (3.9) is indeed valid for all n ≤ N .

Consider now the iterated collocation approximation uit. Since (2.3) can be writ-
ten as

uit = f + Ku,

subtraction of (3.6) from this equality yields

eit := y − uit = Ke.

The estimate (3.2) then follows from (3.14) and (3.9).
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4. Local superconvergence results. It is clear that the estimate (3.2) also
represents the optimal local order of superconvergence result when m = 1, since 2m =

m + 1. Hence, we will now consider only collocation approximations u ∈ S
(−1)
m−1(JN )

with m ≥ 2. We will show that if collocation is based on the collocation parameters
{ci} given by the m Gauss points in (0, 1) (that is, the zeros of the shifted Legendre
polynomial Pm(2s−1)), then the order of local superconvergence of uit on ZN cannot
attain the “classical” value p∗ = 2m usually associated with the Gauss collocation
points; we can achieve only p∗ ≤ m+ 2. This implies that a key conjecture in [4] and
[7] is false when m > 2.

Without loss of generality we may assume that 0 < θ(tn) ≤ tn for each tn with
n ≥ 1. Thus, there is an index n′ such that θ(tn) ∈ (tn′ , tn′+1]. For such an index
n′, define qn′ = (θ(tn) − tn′)/hn′ ∈ (0, 1]. Let Lm+1(s) be the polynomial of degree
m + 1 defined by

Lm+1(s) =
dm−1

dsm−1
(s(s− 1))m, s ∈ [0, 1].

It is well known that L′
m+1(s) = Pm(2s− 1).

Theorem 4.1. Let the functions f and Ki (i = 1, 2) in (2.1) satisfy f ∈
Cν(J), Ki ∈ Cν(Ωi), and suppose that the delay τ is subject to the conditions (D1)
and (D2) (section 2.1), with ν ≥ m + 2. Assume that the nodes {tn} are chosen so
that

|Lm+1(qn′)| ≤ Chn′ , n = 1, . . . , N.

Then the iterated collocation approximation uit corresponding to the collocation ap-

proximation u ∈ S
(−1)
m−1(JN ) induces the estimate

max
t∈ZN

|y(t) − uit(t)| ≤ Chm+2 (as h → 0+),(4.1)

where the exponent m + 2 is best possible.
The proof of this key result will be given in the next section.
In the following we focus on Volterra integral equations (2.1) with proportional

delay τ(t) = (1 − q)t (0 < q < 1), corresponding to θ(t) = qt.
Theorem 4.2. Let the functions f and Ki (i = 1, 2) in (2.1) satisfy the assump-

tions stated in Theorem 4.1. Assume that the delay is given by τ(t) = (1 − q)t, with
q = 1

2 . If the {ci} are the Gauss points, then on any uniform mesh with sufficiently
small diameter h > 0 the following is true:

(1) The estimate (4.1) is valid if and only if m is even.
(2) The exponent describing the convergence order in (4.1) cannot be replaced by

m + 3.
Remark 4.1. We remind the reader that if the original interval J = [0, T ] is

replaced by J0 := [t0, T ], with t0 > 0, then the delay τ is strictly positive on J . Thus,
the order exponent m + 2 in (4.1) can be replaced, for any m ≥ 1, by the “classical”
optimal exponent 2m (compare [3], [5]; see also [2]).

In the proof of Theorem 4.2 we shall need the following auxiliary result.
Lemma 4.3. Let k = 1 or k = 2. Then for n′ and qn′ defined at the beginning of

section 4, the estimate∣∣∣∣∣
∫ θ(tn)

tn′

φ(s) · (I − πh)ψ(s)ds

∣∣∣∣∣ ≤ Chm+k+1
n′ ‖φ‖k,en,∞ · ‖ψ‖m+k,en,∞(4.2)
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holds for any φ ∈ Ck(en′) and ψ ∈ Cm+k(en′) if and only if
∣∣∣∣∣
∫ qn′

0

sl−1
m∏
i=1

(s− ci)ds

∣∣∣∣∣ ≤ Chk+1−l
n′ , 1 ≤ l ≤ k.(4.3)

Proof. Let π̃ : C[0, 1] → Pm[0, 1] denote the linear interpolation operator associ-
ated with the interpolation points {cj}. Hence, for any r ≥ 1 there is a polynomial
pr−1(s) of degree r − 1 such that

(I − π̃)sm+r−1 = pr−1(s) ·
m∏
j=1

(s− cj), s ∈ [0, 1].(4.4)

Using (4.4) and an obvious transformation of variables, we see that the condition (4.3)
is equivalent to the inequality∣∣∣∣

∫ qn′

0

sr1−1(I − π̃)sm+r2−1ds

∣∣∣∣ ≤ Ch
k+2−(r1+r2)
n′ , r1 +r2 ≤ k+1 (r1, r2 ≥ 1).(4.5)

We will first prove that the inequality (4.4) implies the estimate (4.2). By Taylor’s
formula, we have

φ(s) =
k−1∑
i=0

1

i!
φ(i)(tn′)(s− tn′)i +

1

k!
φ(k)(ξn′)(s− tn′)k, ξn′ ∈ (tn′ , s),

and

ψ(s) =

m+k−1∑
i=0

1

i!
ψ(i)(tn′)(s− tn′)i +

1

(m + k)!
ψ(m+k)(ηn′)(s− tn′)m+k, ηn′ ∈ (tn′ , s).

Noting that (I − π̃)sr = 0 for r ≤ m− 1, we obtain
∣∣∣∣∣
∫ θ(tn)

tn′

φ(s) · (I − πh)ψ(s)ds

∣∣∣∣∣

≤
k−1∑
i=0

m+k−1∑
j=m

1

i!j!

∣∣∣∣∣φ(i)(tn′)ψ(j)(tn′)

∫ θ(tn)

tn′

(s− tn′)i(I − πh)(s− tn′)jds

∣∣∣∣∣
+

1

(m + k)!

k−1∑
i=0

1

i!

∣∣∣∣∣φ(i)(tn′)

∫ θ(tn)

tn′

ψ(m+k)(ηn′)(s− tn′)i+m+kds

∣∣∣∣∣(4.6)

+
1

k!

m+k−1∑
j=m

1

j!

∣∣∣∣∣ψ(j)(tn′)

∫ θ(tn)

tn′

φ(k)(ξn′)(s− tn′)k(I − πh)(s− tn′)jds

∣∣∣∣∣

+
1

k!(m + k)!

∣∣∣∣∣
∫ θ(tn)

tn′

φ(k)(ξn′)(s− tn′)k(I − πh)ψ(m+k)(ηn′)(s− tn′)m+kds

∣∣∣∣∣
= : I1 + I2 + I3 + I4.

The boundedness of the operator πh implies that there exist constants Cj so that

|Ij | ≤ Cjh
m+k+1
n′ ‖φ‖k,en,∞ · ‖ψ‖m+k,en,∞ (j = 2, 3, 4).(4.7)
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The term I1 can be estimated by resorting to (4.5): we find that

|I1| ≤
k−1∑
i=0

m+k−1∑
j=m

1

i!j!
hi+j+1
n′

∣∣∣∣φ(i)(tn′)ψ(j)(tn′)

∫ qn′

0

si(I − π̃)sjds

∣∣∣∣
≤ C1

∑
i+j<m+k

hi+j+1
n′

∣∣∣∣
∫ qn′

0

si(I − π̃)sjds

∣∣∣∣ · ‖φ‖k−1,en,∞ · ‖ψ‖m+k−1,en,∞

+C1

∑
i+j≥m+k

hi+j+1
n′

∣∣∣∣
∫ qn′

0

si(I − π̃)sjds

∣∣∣∣ · ‖φ‖k−1,en,∞ · ‖ψ‖m+k−1,en,∞

≤ C1h
m+k+1
n′ ‖φ‖k−1,en,∞ · ‖ψ‖m+k−1,en,∞.

The result (4.2) readily follows by substituting these four estimates into (4.6).
We now prove the reverse conclusion, namely that (4.2) implies (4.5). For any

two positive integers r1 and r2 satisfying r1 + r2 ≤ k + 1, we have∣∣∣∣∣
∫ θ(tn)

tn′

(s− tn′)r1−1(I − πh)(s− tn′)m+r2−1ds

∣∣∣∣∣
= hm+r1+r2−1

n′

∣∣∣∣
∫ qn′

0

sr1−1(I − π̃)sm+r2−1ds

∣∣∣∣
or ∣∣∣∣

∫ qn′

0

sr1−1(I − π̃)sm+r2−1ds

∣∣∣∣

= h
−(m+r1+r2−1)
n′

∣∣∣∣∣
∫ θ(tn)

tn′

(s− tn′)r1−1(I − πh)(s− tn′)m+r2−1ds

∣∣∣∣∣ .

This, together with (4.2), setting φ(t) = (s − tn′)r1−1 and ψ(t) = (s − tn′)m+r2−1,
respectively, leads to (4.5).

Proof of Theorem 4.2. Since the mesh JN is assumed to be uniform (tn = nh
for 0 ≤ n ≤ N), and since θ(t) = qt, we have n′ = 	qn
 (if qn is not an integer) or
n′ = qn− 1 (if qn is an integer). Thus,

qn′ = qn− n′ =

{
qn− 	qn
 if qn is not an integer,

1 if qn is an integer.

In particular, for q = 1
2 we obtain

qn′ =

{
1
2 if n is odd,

1 if n is even.

(1) It is well known that while the polynomial Lm+1(s) has roots at s = 0 and
s = 1 for every m, it has a root at s = 1

2 if and only if m is even. This means that
when q = 1

2 and m is even, the number qn′ is a root of the polynomial Lm+1(s) for
every n. Thus, it follows by Theorem 4.1 that the estimate (4.1) is valid when m is
an even number.

To arrive at the reverse conclusion, we need only to show that the estimate

|eit(t1)| ≤ Chm+2(4.8)
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is not true when m is odd.
It follows from (3.8) that

eit(t1) = Ke(t1) = (KπhKe)(t1) + (K(πh − I)y)(t1).

Thus,

∫ θ(t1)

0

(πh − I)y(s)ds = eit(t1) − (KπhKe)(t1) −
∫ t1

0

(πh − I)y(s)ds.(4.9)

It is easy to see (recalling the proof of Theorem 3.1) that

∣∣∣∣(KπhKe)(t1) −
∫ t1

0

(πh − I)y(s)ds

∣∣∣∣ ≤ Chm+2.

If the inequality (4.8) is true, it follows by (4.9) that
∣∣∣∣∣
∫ θ(t1)

0

(πh − I)y(s)ds

∣∣∣∣∣ ≤ Chm+2.

This, together with Lemma 4.3, implies that∣∣∣∣∣
∫ 1

2

0

m∏
i=1

(s− ci)ds

∣∣∣∣∣ ≤ Ch

(note that q1′ = 1
2 ). Thus,

∣∣∣∣Lm+1

(
1

2

)∣∣∣∣ =

∣∣∣∣∣
∫ 1

2

0

Pm(2s− 1)ds

∣∣∣∣∣ =

∣∣∣∣∣const ·
∫ 1

2

0

m∏
i=1

(s− ci)ds

∣∣∣∣∣ ≤ Ch.

But |Lm+1(
1
2 )| is a positive constant when m is odd, independent of h, which contra-

dicts the above inequality. Therefore, the inference

|eit(t1)| ≤ Chm+2

is false.
(2) Since the inequality (4.1) is already the optimal local superconvergence result

when m = 2, it suffices to show that the estimate

|eit(t1)| ≤ Chm+3(4.10)

is not valid when m ≥ 3 is even.
Subtraction of (3.6) from (3.7) leads to

e = Ke + (πh − I)(Ku + f) = Ke + (πh − I)ũ.(4.11)

Hereafter, we set ũ := Ku + f . Using the substitution technique introduced in [15],
we are led to

e = K2e + K(πh − I)ũ + (πh − I)ũ.

Thus,

eit(t1) = (K3e)(t1) + (K2(πh − I)ũ)(t1) + (K(πh − I)ũ)(t1).(4.12)
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It follows by (3.6)–(3.7) that

|(K3e)(t1)| ≤ Chm+3,(4.13)

and hence

∣∣∣∣
∫ t1

0

K1(t1, s)(πh − I)ũ(s)ds

∣∣∣∣ ≤ Ch2m.(4.14)

Since the kernel K2(t, s) can be written as K2(t, s) = (t− s)K̃2(t, s), where K̃2(t, s) is
a (smooth) function, the use of (2.5) and (3.4)–(3.5) allows us readily to verify that

|(K2(πh − I)ũ)(t1)| ≤ Chm+3.(4.15)

We now deduce from (4.12) and (4.13)–(4.15) that estimate (4.10) is equivalent
to ∣∣∣∣∣

∫ 1
2 t1

0

K2(t1, s)(πh − I)ũ(s)ds

∣∣∣∣∣ ≤ Chm+3.(4.16)

It is easy to see that

∣∣∣∣∣
∫ 1

2

0

(
s ·

m∏
i=1

(s− ci)

)
ds

∣∣∣∣∣ =

∣∣∣∣∣const.

∫ 1
2

0

sPm(2s− 1)ds

∣∣∣∣∣
is a positive constant which cannot be bounded by Ch (as h → 0). It follows by
Lemma 4.3 with k = 2 that the inequality (4.16) does not hold. Thus, the estimate
(4.10) is not valid.

Remark 4.2. The papers [4] and [7] deal with collocation methods for Volterra
integral equations with proportional delays. They conjectured (based on extensive
numerical experiments using m = 2) that when q = 1

2 , the optimal order of local
superconvergence for the iterative collocation approximation is 2m, provided colloca-
tion is at the Gauss points. Theorem 4.2 indicates that this conjecture is indeed true
for m = 2 but becomes false for m ≥ 3.

5. Proof of Theorem 4.1. As we shall see, the proof of Theorem 4.1 has many
similarities with that of Theorem 3.1 but is considerably more complex.

It suffices to prove inductively that, for all ϕ ∈ C2(J),

∣∣∣∣∣
∫ θ(tn)

tn′

ϕ(t)e(t)dt

∣∣∣∣∣ ≤ Chm+2‖ϕ‖2,en′ ,∞ (1 ≤ n ≤ N)(5.1)

and

∣∣∣∣
∫ tn

0

ϕ(t)e(t)dt

∣∣∣∣ ≤ Chm+2‖ϕ‖2,[0,tn],∞ (1 ≤ n ≤ N).(5.2)

To verify this we first rewrite (4.13) as

e(t) =

∫ t

0

K1(t, s)e(s)ds + A(t), t ∈ J,
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with

A(t) := (πh − I)ũ(t) +

∫ θ(t)

0

K2(t, s)e(s)ds.

Let R1 be the resolvent kernel of K1. The classical Volterra theory (see, e.g., [6] or
[5]) implies that R1 inherits the smoothness of the kernel K1. Thus, the solution of
the above Volterra integral equation for e(t) can be represented in the form

e(t) = A(t) +

∫ t

0

R1(t, s)A(s)ds, t ∈ J.(5.3)

By our assumption and by Lemma 4.3 (with k = 1) we have∣∣∣∣∣
∫ θ(tn)

tn′

ϕ(t)(πh − I)ũ(t)dt

∣∣∣∣∣ ≤ Chm+2‖ϕ‖2,en,∞, 1 ≤ n ≤ N(5.4)

(recall (3.4)).
Consider first the case n = 1. From (5.3) we have, for any ϕ∈C2(e1),

∫ θ(t1)

0

ϕ(t)e(t)dt =

∫ θ(t1)

0

ϕ(t)A(t)dt +

∫ θ(t1)

0

(
ϕ(t)

∫ t

0

R1(t, s)A(s)ds

)
dt

=

∫ θ(t1)

0

ϕ(t)(πh − I)ũ(t)dt +

∫ θ(t1)

0

(
ϕ(t)

∫ θ(t)

0

K2(t, s)e(s)ds

)
dt

+

∫ θ(t1)

0

(
ϕ(t)

∫ t

0

R1(t, s)(πh − I)ũ(s)ds

)
dt

+

∫ θ(t1)

0

ϕ(t)

∫ t

0

(
R1(t, s)

∫ θ(s)

0

K2(s, σ)e(σ)dσ

)
ds dt.

This, together with (2.5), (3.3), and (5.4), leads to (5.1) with n = 1, since∣∣∣∣∣
∫ θ(t1)

0

ϕ(t)e(t)dt

∣∣∣∣∣ ≤ Chm+2‖ϕ‖2,e1,∞.(5.5)

In an analogous way we can now verify that (5.2) is valid for n = 1, by using (3.5)
and (5.5).

Assume then that the inequalities∣∣∣∣∣
∫ θ(tn)

tn′

ϕ(t)e(t)dt

∣∣∣∣∣ ≤ Chm+2‖ϕ‖2,en′ ,∞(5.6)

and ∣∣∣∣
∫ tn

0

ϕ(t)e(t)dt

∣∣∣∣ ≤ Chm+2‖ϕ‖2,[0,tn],∞(5.7)

hold for every ϕ ∈ C2[0, tn] and for 1 ≤ n < N . We need to prove that, for any
ϕ ∈ C2[0, tn+1], ∣∣∣∣∣

∫ θ(tn+1)

t(n+1)′

ϕ(t)e(t)dt

∣∣∣∣∣ ≤ Chm+2‖ϕ‖2,e(n+1)′ ,∞(5.8)
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and ∣∣∣∣
∫ tn+1

0

ϕ(t)e(t)dt

∣∣∣∣ ≤ Chm+2‖ϕ‖2,[0,tn+1],∞.(5.9)

For any ϕ ∈ C2(en+1), we have∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

ϕ(t)e(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

ϕ(t)A(t)dt +

∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ t

0

R1(t, s)A(s)ds

)
dt

∣∣∣∣∣

≤
∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

ϕ(t)(πh − I)ũ(t)dt

∣∣∣∣∣

+

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ θ(t)

0

K2(t, s)e(s)ds

)
dt

∣∣∣∣∣(5.10)

+

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ t

0

R1(t, s)(πh − I)ũ(s)ds

)
dt

∣∣∣∣∣

+

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

ϕ(t)

∫ t

0

(
R1(t, s)

∫ θ(s)

0

K2(s, σ)e(σ)dσ

)
ds dt

∣∣∣∣∣
=: I1 + I2 + I3 + I4.

By (5.4) and (3.4) we readily obtain

I1 ≤ Chm+2‖ϕ‖2,e(n+1)′ ,∞.(5.11)

It follows by (2.5) and (3.5) that

I3 ≤
∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ t(n+1)′

0

R1(t, s)(πh − I)ũ(s)ds

)
dt

∣∣∣∣∣

+

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ t

t(n+1)′

R1(t, s)(πh − I)ũ(s)ds

)
dt

∣∣∣∣∣(5.12)

≤ Chm+2‖ϕ‖2,e(n+1)′ ,∞.

Here, we have used the relation

t− t(n+1)′ ≤ θ(tn+1) − t(n+1)′ ≤ h(n+1)′ , t(n+1)′ ≤ t ≤ θ(tn+1).

The estimate of I2 is similar to the one for I3. It is clear that

I2 ≤
∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ θ(t)

θ(t(n+1)′ )

K2(t, s)e(s)ds

)
dt

∣∣∣∣∣

+

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ θ(t(n+1)′ )

0

K2(t, s)e(s)ds

)
dt

∣∣∣∣∣ .(5.13)

Since θ ∈ C1(J), there is a constant γ such that

|θ(t) − θ(t(n+1)′)| ≤ γ|t− t(n+1)′ | ≤ γh(n+1)′ , t(n+1)′ ≤ t ≤ θ(tn+1).
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It follows by (3.3) that
∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ θ(t)

θ(t(n+1)′ )

K2(t, s)e(s)ds

)
dt

∣∣∣∣∣ ≤ Chm+2‖ϕ‖2,e(n+1)′ ,∞.(5.14)

There is an index n′′ such that θ(t(n+1)′) ∈ (tn′′ , tn′′+1]. Thus,

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ θ(t(n+1)′ )

0

K2(t, s)e(s)ds

)
dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ θ(t(n+1)′ )

tn′′

K2(t, s)e(s)ds

)
dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ tn′′

0

K2(t, s)e(s)ds

)
dt

∣∣∣∣∣ .
If we now use (5.4) and (5.7) and observe that (n + 1)′ ≤ n, we find the estimate

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(
ϕ(t)

∫ θ(t(n+1)′ )

0

K2(t, s)e(s)ds

)
dt

∣∣∣∣∣ ≤ Chm+3‖ϕ‖2,e(n+1)′ ,∞.

This result and (5.14) and (5.13) lead to

I2 ≤ Chm+3‖ϕ‖2,e(n+1)′ ,∞.(5.15)

Analogous to (5.15) we can also verify that

I4 ≤ Chm+3‖ϕ‖2,e(n+1)′ ,∞.

Substitution of (5.11)–(5.12) and (5.15) and using the above estimate in (5.10) gives
(5.8). Now consider (5.9): For any ϕ∈C2[0, tn+1], we have

∣∣∣∣
∫ tn+1

0

ϕ(t)e(t)dt

∣∣∣∣ =

∣∣∣∣
∫ tn+1

0

ϕ(t)A(t)dt +

∫ tn+1

0

(
ϕ(t)

∫ t

0

R1(t, s)A(s)ds

)
dt

∣∣∣∣

≤
∣∣∣∣
∫ tn+1

0

ϕ(t)(πh − I)ũ(t)dt

∣∣∣∣

+

∣∣∣∣∣
∫ tn+1

0

(
ϕ(t)

∫ θ(t)

0

K2(t, s)e(s)ds

)
dt

∣∣∣∣∣

+

∣∣∣∣
∫ tn+1

0

(
ϕ(t)

∫ t

0

R1(t, s)(πh − I)ũ(s)ds

)
dt

∣∣∣∣(5.16)

+

∣∣∣∣∣
∫ tn+1

0

ϕ(t)

∫ t

0

(
R1(t, s)

∫ θ(s)

0

K2(s, σ)e(σ)dσ

)
ds dt

∣∣∣∣∣
=: I ′1 + I ′2 + I ′3 + I ′4.

It follows by (3.5) that

I ′1 ≤ Chn+1h
m+2‖ϕ‖2,[0,tn+1],∞.(5.17)
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If we change the order of integration in I ′3 (compare also [7]) and use (3.5), we obtain

I ′3 ≤ Chm+2‖ϕ‖2,e(n+1)′ ,∞.(5.18)

The estimate of I ′2 is similar to that of I ′3, but we now need to use the assumption on
θ. By changing the order of integration, and noting that θ(t) is an increasing function,
we are led to

I ′2 =

∣∣∣∣∣
∫ θ(tn+1)

0

(∫ tn+1

θ−1(s)

ϕ(t)K2(t, s)dt · e(s)
)
ds

∣∣∣∣∣

≤
∣∣∣∣∣
∫ t(n+1)′

0

(∫ tn+1

θ−1(s)

ϕ(t)K2(t, s)dt · e(s)
)
ds

∣∣∣∣∣

+

∣∣∣∣∣
∫ θ(tn+1)

t(n+1)′

(∫ tn+1

θ−1(s)

ϕ(t)K2(t, s)dt · e(s)
)
ds

∣∣∣∣∣ .
This, together with (5.7) and (5.8), leads to

I ′2 ≤ Chm+2‖ϕ‖2,[0,tn+1],∞(5.19)

(note that θ−1 ∈ C2(J)). Similarly, it is easy to verify that

I ′4 ≤ Chm+2‖ϕ‖2,[0,tn+1],∞.

Substitution of (5.17)–(5.19) and the above inequality into (5.16) yields the estimate
(5.9).

Finally, it follows by the induction principle that the estimates (5.1)–(5.2) hold;
hence, employing (5.1)–(5.2) in the relation

eit = uit − y = Ke

produces the desired result.

6. Extensions and open problems. The techniques underlying the proofs
of the superconvergence results in the previous sections can be adapted to obtain
analogous results for continuous piecewise polynomial collocation approximations to
the solution of the Volterra integrodifferential equation

y′(t) = a(t)y(t)+b(t)y(θ(t))+

∫ t

0

K1(t, s)y(s)ds+

∫ θ(t)

0

K2(t, s)y(s)ds, t ∈ J,(6.1)

with y(0) = y0 and with vanishing delay θ satisfying conditions (D1) and (D2). The
corresponding superconvergence results will then also apply to an important special
case of (6.1), namely the pantograph equation (1.3) (for which no superconvergence
results have yet been proved). The detailed analysis will be given elsewhere.

There is, however, a class of more general Volterra functional integral equations,
with a representative example given by

y(t) = a(t)y(pt) + f(t) +

∫ t

qt

K(t, s)y(s)ds, t ∈ [0, T ],(6.2)

with 0 < p, q < 1 (see Volterra [24], Denisov and Lorenzi [10]), for which the super-
convergence analysis of (iterated) collocation solutions is not yet understood. One of
the inherent difficulties lies in the fact that even the existence and uniqueness the-
ory for the exact solution to (6.2) and its collocation approximation is no longer an
elementary problem.
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THE EFFECTIVE STABILITY OF ADAPTIVE
TIMESTEPPING ODE SOLVERS∗

HARBIR LAMBA†

Abstract. We consider the behavior of certain adaptive timestepping methods, based upon
embedded explicit Runge–Kutta pairs, when applied to dissipative ODEs. It has been observed
numerically that the standard local error controls can impart desirable stability properties, but this
has been rigorously verified only for very special, low-order, Runge–Kutta pairs.

The rooted-tree expansion of a certain quadratic form, central to the stability theory of Runge–
Kutta methods, is derived. This, together with key assumptions on the sequence of accepted time-
steps and the local error estimate, provides a general explanation for the observed stability of such
algorithms on dissipative problems. Under these assumptions, which are expected to hold for “typ-
ical” numerical trajectories, two different results are proved. First, for a large class of embedded
Runge–Kutta pairs of order (1, 2), controlled on an error-per-unit-step basis, all such numerical tra-
jectories will eventually enter a particular bounded set. This occurs for sufficiently small tolerances
independent of the initial conditions. Second, for pairs of arbitrary orders (p−1, p), operating under
either error-per-step or error-per-unit-step control, similar results are obtained when an additional
structural assumption (that should be valid for many cases of interest) is imposed on the dissipative
vector field. Numerical results support both the analysis and the assumptions made.

Key words. error control, stability, numerical integration, ordinary differential equations
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1. Introduction. We consider adaptive timestepping ODE solvers applied to
initial value problems for an autonomous system of ODEs,

du

dt
= f(u), u(0) = U,(1.1)

where u(t) ∈ R
m. Furthermore, the Lipschitz continuous vector field f satisfies the

following structural assumption:

(D) ∃α ≥ 0, β > 0 : ∀u ∈ R
m, 〈f(u), u〉 ≤ α− β‖u‖2,

where the norm ‖ · ‖ is induced by the inner product 〈·, ·〉.
A bounded closed set B is a bounded absorbing set for (1.1) if ∀U ∈ R

m, ∃t∗ =
t∗(U) such that u(t) ∈ B ∀t ≥ t∗. If a bounded absorbing set exists, then (1.1) is
termed dissipative. Under the structural assumption (D), (1.1) is dissipative as stated
in the following theorem [16].

Theorem 1.1. Let B(v, r) be the closed ball with center v, radius r using the
norm ‖ · ‖. Then assumption (D) implies the existence of bounded absorbing sets
B = B(0,

√
(α + ε)/β) ∀ε > 0.

The structural assumption (D) has played an important role in nonlinear stability
theory, where the aim is to find conditions under which numerical schemes, when re-
garded as discrete dynamical systems, preserve various qualitative asymptotic features
of the original ODE (such as the existence of bounded absorbing sets). However, the
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vast majority of this body of work only applies to methods employing a fixed timestep,
whereas most algorithms used in practice allow the timesteps to change from one step
to the next. In the algorithms considered here, the timesteps are chosen so as to con-
trol an estimate of the local (one-step) error and this adaptive timestepping approach
can result in extremely impressive efficiency gains.

Even though the standard error controls were not designed with stability in mind,
it has been observed that such adaptive timestepping algorithms often have much
better stability properties than their fixed-timestepping counterparts. This paper
addresses the questions of when, and how, the stepsizes induced by the local error
control will confer desirable stability properties upon the adaptive numerical method.

As mentioned above, there have been many investigations into the stability prop-
erties of Runge–Kutta methods with a fixed timestep, under various structural as-
sumptions (e.g., [2, 1, 5, 9, 18]). We now provide a brief outline of the relevant results
for dissipativity. Consider a general (implicit or explicit) s-stage Runge–Kutta scheme
for (1.1) with timestep h,

ηi = Un + h

s∑
j=1

aijf(ηj), i = 1, . . . , s,(1.2)

Un+1 = Un + h

s∑
i=1

bif(ηi),(1.3)

and define the vector b = (b1, . . . , bs)
T and matrices A and B by A(i, j) = aij and

B = diag(b).
Equations (1.2) and (1.3), after standard manipulations (see, for example, [18]),

imply that

‖Un+1‖2 = ‖Un‖2 + 2h

s∑
i=1

bi〈ηi, f(ηi)〉 − h2
s∑

i,j=1

mij〈f(ηi), f(ηj)〉,

where mij = M(i, j) with M = BA + ATB − bT b. Under the structural assumption
(D), with B positive semidefinite, and using the same norm ‖ · ‖ and inner product
〈·, ·〉, we obtain

‖Un+1‖2 ≤ ‖Un‖2 + 2h

s∑
i=1

bi(α− β‖ηi‖2) − h2
s∑

i,j=1

mij〈f(ηi), f(ηj)〉.(1.4)

The Runge–Kutta method is termed algebraically stable if the matrices M and B are
both positive semidefinite. The condition on M ensures that the quadratic form

h2
s∑

i,j=1

mij〈f(ηi), f(ηj)〉(1.5)

is nonnegative, while the condition on B is used to show that the quantities bi(α −
β‖ηi‖2) are negative outside a ball of sufficiently large radius in the norm ‖·‖. Together
these imply the existence of bounded absorbing sets for the discrete dynamical system
defined by the numerical scheme ∀h> 0. Thus the algebraic stability of the numerical
scheme ensures that the property of dissipativity is transferred to the numerical ap-
proximation. However, M cannot be positive semidefinite for explicit Runge–Kutta
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methods and so all algebraically stable methods are necessarily implicit. Indeed, ex-
plicit Runge–Kutta methods using a fixed timestep often have very poor stability
properties.

We now return to our discussion of adaptive schemes. While the quadratic form
(1.5) cannot be forced to be nonnegative for a nonalgebraically stable method, we
shall show that, under certain conditions, the constraints imposed upon the timestep
sizes by the local error control will also effectively bound the magnitude of (1.5) (as
opposed to its sign). Then, for a Runge–Kutta method with B positive definite,
outside a ball of sufficiently large radius the single-summation term in (1.4) will be
shown to dominate and the norm of the numerical solution to decrease. This idea
underlies the approach introduced in this paper.

The class of adaptive schemes that will be analyzed is now defined. We set U0 = U
and iteratively generate Un+1 from Un using a timestep hn. The equations defining a
general embedded explicit Runge–Kutta pair with s stages are

ηi = Un + hn

s∑
j=1

aijf(ηj), i = 1, . . . , s,(1.6)

Vn+1 = Un + hn

s∑
i=1

bif(ηi),(1.7)

Wn+1 = Un + hn

s∑
i=1

bif(ηi).(1.8)

Such a Runge–Kutta pair, with orders p− 1 and p, will be referred to as a (p− 1, p)
pair. We shall assume that the higher-order method is represented by the weights
b1, . . . , bs and the lower-order method by b1, . . . , bs. Thus Un+1 = Vn+1 when the
higher-order method is used to advance the solution (extrapolation mode) and Un+1 =
Wn+1 otherwise (nonextrapolation mode). To complement the definitions of A,B, and
b, let b = (b1, . . . , bs)

T and B = diag(b).
The local error estimate E(Un, hn) is defined as the difference between the two

approximations,

E(Un, hn) := Wn+1 − Vn+1.

The user defines a tolerance τ , and the timesteps must satisfy the following standard
local error control:

‖E(Un, hn)‖ ≤ σ(τ, Un)hρ
n,(1.9)

where ρ = 0 for error-per-step control and ρ = 1 for error-per-unit-step control. The
quantity σ(τ, Un) is a quantity closely related to the tolerance τ , and indeed may
simply be equal to τ . However, we wish to allow for the possibility of absolute,
relative, and mixed error controls. There are various ways in which this can be done
but for simplicity we shall require only that there exists some constant C1 > 0 such
that

σ(τ, u) ≤ C1τ‖u‖ ∀u ∈ R
m.(1.10)

It should be noted that absolute or mixed error controls will need to be modified
on some neighborhood of the origin in order to satisfy (1.10). However, we will be
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concerned exclusively with trajectories that lie entirely outside of (large) balls centered
upon the origin and the choice of (1.10) will help to streamline the analysis. Also, the
norms used in (1.9) and (1.10) and throughout the rest of the paper are the same as
in (D).

We thus have four possible modes of operation depending upon the choice of
solution-advancing method and type of error control. EPS and EPUS will denote
error-per-step and error-per-unit step modes, respectively, in nonextrapolation mode,
while XEPS and XEPUS are their extrapolation counterparts. We also assume the
existence of a maximum timestep hmax, independent of τ , which is a very common
feature of adaptive algorithms. Throughout, we assume that the vector field f is
sufficiently smooth on R

m. These smoothness requirements are determined only by
the order of the Runge–Kutta methods used to form the local error estimate. Note
that no further details of the algorithm need to be specified, in particular, the way in
which candidate timesteps are generated. All that is required is that the error control
(1.9) is satisfied at every timestep.

While no explicit Runge–Kutta method can be algebraically stable, it has been
observed [6, 18] that adaptive timestepping methods based upon explicit schemes do,
for certain combinations of dissipative test problems and mode of operation, seem
to have some desirable stability properties (see also [13] for a discussion of stability
with regard to the existence of spurious fixed points). In particular, the numerical
schemes appear to be dissipative. Of course, no amount of numerical testing can
prove the existence of a bounded absorbing set for all initial data but the results do
suggest that, with an extremely high degree of certainty, numerical trajectories enter
and then remain within an “absorbing set” close to B(0,

√
α/β).

There have been previous analyses of the behavior of adaptive methods on dissi-
pative ODEs that have attempted to explain this phenomenon. In [17], it was proved
that very special, embedded explicit Runge–Kutta pairs generate a solution that, at
each step, is a small perturbation of the solution generated by using a corresponding
(implicit) algebraically stable method. In this way, the stability characteristics of this
related scheme are transferred to the explicit pair. Such pairs were termed essen-
tially algebraically stable and an order barrier for (p− 1, p) pairs, namely, that p ≤ 5,
was proved. For these pairs, applied to ODEs satisfying (D), under no additional
assumptions and with an absolute error control, two different results were proved.
The first, which is a discrete analogue of Theorem 1.1, stated that when such a pair
is used in EPUS or XEPUS modes the numerical scheme has a bounded absorbing
set for all sufficiently small tolerances τ , independent of the initial data. The second
result, which is significantly weaker, states that for the same pairs operating in EPS
or XEPS modes each numerical trajectory will again eventually enter a particular
bounded absorbing set, but now the required tolerance does depend upon the initial
data.

The independence of τ with respect to initial conditions is desirable, not just
from a computational point of view, but also from a theoretical one, since it allows
us to consider the numerical method, for a fixed sufficiently small tolerance, as a
dynamical system with similar asymptotic behavior to the underlying ODE for all
initial conditions. However, the set of essentially algebraically stable pairs forms a
very small subset of pairs currently employed and are necessarily of low-order.

A second analysis [8] took a different approach. There it was assumed, for a
general adaptive method under EPUS control, that the actual one-step truncation
errors T (Un, hn) (rather than the one-step error estimates) were correctly controlled
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at every step, in particular, that

T (Un, hn) ≤ K(U)τhn

occurred at every timestep for some constant K(U). Using this assumption that the
error control works correctly, positive stability results were proved for general adaptive
schemes but only in the much weaker sense that the required tolerance depended upon
the initial data.

Any stability properties introduced to an explicit Runge–Kutta method via a local
error control are due to the size of the accepted steps. However, neither of the analyses
described above explicitly considers the actual timestep sequences generated by the
method (and they also only considered the case of absolute error control). In order to
obtain tighter and/or more general results it is therefore natural to consider closely
the timestep sequence itself, and this forms another motivation for our analysis.

The paper is organized as follows. In section 2, for a Runge–Kutta method of order
r, an expansion of the quadratic form (1.5) is derived and the leading order term is
proved to be at least O(hr+1). In section 3, we then use this expansion, together with
the corresponding expansion of the local error estimate E(Un, hn) at each timestep,
to state and justify our two key assumptions on the numerical trajectory. The first
assumption takes the form of an upper bound on the timesteps used at each point in
the phase space. The second assumption is that controlling the local error estimate
also bounds the magnitude of the quadratic form (1.5) at each timestep. It must be
emphasized that the justification for these assumptions is that they are expected to
hold for every timestep along “typical” numerical trajectories, but it seems likely that
for most vector fields satisfying (D) there will be “atypical” numerical trajectories
where, at one or more timesteps, they do not hold. Even when these extreme events
occur, the fact that the assumptions hold for most of the timesteps should help to
preserve the qualitative asymptotic features of the numerical trajectory.

We do not attempt to quantify the ways in which our assumptions can be violated
and this is unsatisfactory from a rigorous mathematical viewpoint. However, using
these assumptions, we shall gain valuable insights into how these algorithms behave on
most simulations. The studies [15, 11, 12] have shown that even when considering the
convergence to the exact solution, as τ → 0, of adaptive timestepping algorithms over
finite time intervals and compact sets of initial data—arguably a more fundamental
property—there are mechanisms that can give rise to the breakdown of convergence.
These arise because of the possibility that the leading term of the error estimate
may vanish at some point along the exact trajectory, resulting in a local increase in
the size of the accepted timesteps and potential loss of convergence (or, more likely,
a reduction in the rate of convergence). However, at least for generic vector fields,
the probability of convergence failure is extremely small. These previous studies
have therefore already demonstrated that a “worst-case analysis” is not necessarily
appropriate in the context of ODE solvers, since the very small probability of failure
to converge is outweighed by the superior efficiency of adaptive algorithms. In fact
the situation here, where we are concerned with stability properties, is much better
than that for convergence properties. This is because convergence can be destroyed
by a single “bad” timestep whereas asymptotic qualitative properties are very likely
to be robust in the presence of such extreme events. Nevertheless, it is hoped that
the analysis presented here will stimulate further work into justifying or weakening
the assumptions made.

In section 4, we present the main results. First, for embedded explicit Runge–
Kutta pairs of order (1, 2), operating in EPUS or XEPUS modes with B positive-
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definite, any numerical trajectory satisfying the assumptions of section 3 will even-
tually enter a particular bounded set for all sufficiently small τ independent of U .
Second, motivated by the analysis, we introduce an additional structural assumption
on the vector field f :

(D′) ∃γ > 0, R > 0 : 〈f(u), u〉 ≤ −γ‖f(u)‖‖u‖ ∀‖u‖ ≥ R.

Intuitively this structural assumption states that, for sufficiently large ‖u‖, the vector
field points inwards everywhere at some definite minimum nonzero angle and holds
for many ODEs of interest. In particular, vector fields satisfying (D) or (D′) (or both)
are not necessarily globally Lipschitz. Assuming that (D), (D′), and the assumptions
on the numerical trajectory hold, then for sufficiently small τ independent of initial
data, for arbitrary embedded (p− 1, p) pairs with B positive-definite in any mode of
operation, a similar result is proved. Finally, in section 5, we present numerical results
that support both the assumptions made in section 3 and the results of section 4.

2. Order conditions and the matrix M . The Taylor series expansions in
powers of h of both the exact solution to (1.1) and the one-step Runge–Kutta approx-
imation, over some time interval [s, s+h], consist of multiples of expressions involving
f and its higher derivatives which rapidly become very complicated. We therefore first
recall some necessary definitions and terminology from the rooted tree description of
Taylor series expansions. This theory was developed by Butcher, and the reader is
referred to [3, 4] for full details of all the notation, definitions, and results up to and
including (2.3).

A rooted tree is an unlabeled connected graph containing no cycles and with one
node identified as the “root.” Each rooted tree with precisely n nodes corresponds
uniquely to one term (of many) appearing at order hn in the Taylor series. Each
term is a multiple of an elementary differential of order n and this correspondence
is achieved as follows. Let f i

j1,j2,...,jr
denote the rth partial derivative of the ith

component of f with respect to the components j1, j2, . . . , jr. Now attach the label i
to the root of the tree and labels j, k, l, . . . to the other nodes. Then for each node,
write down f with a superscript equal to the label of that node and subscripts given
by the other nodes that are directly connected to it on the side away from the root
node. For example, the rooted tree

i

j

k

m

o p

q

n

l

corresponds to the product f i
jnf

j
klf

kf l
mfmfn

opqf
ofpfq (using the summation conven-

tion over repeated indices), which is the ith component of one particular elementary
differential of order 9. Repeating the above process for each value of the index i
provides each component of the elementary differential corresponding to the above
(unlabeled) rooted tree. The elementary differential corresponding to a particular
tree t will be denoted by the function F (t) : R

m → R
m.
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The set of all rooted trees, denoted by T , is defined recursively as follows. The
rooted tree consisting of a single node is defined as τ and any rooted tree t can be
built up by joining trees t1, . . . , tk to a new root. The rooted tree t is then written as
t = [t1, . . . , tk] (note that the order is unimportant) and m repetitions of a tree ti are
denoted by tmi .

We now recall some important functions that can be defined on the set T . The
function ρ(t) is simply the number of nodes in t. The next three functions γ(t), σ(t),
and α(t) have important combinatorial interpretations (see [3, section 144]) and also
allow for an elegant statement of Taylor series expansions. However, the following
recursive definitions, also due to Butcher, are more relevant for our purposes:

γ(τ) = 1, γ([t1, . . . , tk]) = ρ([t1, . . . , tk])

k∏
j=1

γ(tj)(2.1)

and

σ(τ) = 1, σ([tn1
1 , . . . , tnk

k ]) = n1!n2! . . . nk!

k∏
j=1

σ(tj)
nj ,

where the trees t1, . . . , tk are all distinct. Finally, the function α(t) is defined by

α(t) =
ρ(t)!

γ(t)σ(t)
.

In [3] it is then proved that the Taylor series for the exact solution of (1.1) at time
s + h is

u(s + h) = u(s) +
∑
t∈T

α(t)

ρ(t)!
hρ(t)F (t)(u(s)).(2.2)

The one-step numerical approximation, ũ(s+h) can also be expressed in terms of
elementary differentials. For a given rooted tree t and Runge–Kutta method (deter-
mined by (1.2) and (1.3)) we define the elementary weight Φ(t) as follows. Label the
root of the tree i and attach labels to the other vertices. For every edge connecting
vertices u and v, write down a factor auv, where u is the vertex closer to the root.
Insert a final factor bi, corresponding to the root, form the product of the above fac-
tors, and then sum every index over all of the stages. Thus the elementary weight
corresponding to the tree drawn above is

Φ(t) =

s∑
i,j,k,l,m,n,o,p,q=1

biaijajkajlalmainanoanpanq.

Now the numerical approximation can be expanded as

ũ(s + h) = u(s) +
∑
t∈T

γ(t)α(t)Φ(t)

ρ(t)!
hρ(t)F (t)(u(s)).(2.3)

By comparing (2.2) and (2.3), Butcher proved that a necessary and sufficient condition
for a Runge–Kutta method to be of order precisely p is that Φ(t) = 1/γ(t) for all rooted
trees t with ρ(t) ≤ p, but not for at least one tree t with ρ(t) = p + 1.
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The above definitions and results now enable us to prove a new expansion for the
quadratic form (1.5).

Lemma 2.1. Let the stages η1, . . . , ηs be generated by a Runge–Kutta method
of order r using a timestep h from a solution value u. Then there exists an integer
q ≥ r + 1 and scalar-valued functions G1(u) and G2(u, h) such that G2(u, 0) = 0 and

h2
s∑

i,j=1

mij〈f(ηi), f(ηj)〉 = hq(G1(u) + hG2(u, h)).(2.4)

Proof. Consider an arbitrary rooted tree t. Comparison of the Taylor series
expansion of the numerical solution (2.3) with (1.3) shows that each of the terms
hf(ηi) can be expanded as

hf(ηi) =
∑
t∈T

γ(t)α(t)Φi(t)

ρ(t)!
hρ(t)F (t)(u),

where each term Φi(t) is derived from Φ(t) by deleting both the factor bi and the
summation over the index i. Note that each Φi(t) has precisely ρ(t) − 1 factors. Let
us now fix trees T1 and T2 (not necessarily distinct) and consider the coefficient of
〈F (T1)(u), F (T2)(u)〉 in the expansion of (1.5). Using the definition of the matrix M ,
this is

(2 − IT1=T2
)hρ(T1)+ρ(T2)

α(T1)α(T2)γ(T1)γ(T2)

ρ(T1)!ρ(T2)!

s∑
i,j=1

[Φi(T1)Φj(T2)biaij

+ Φi(T1)Φj(T2)bjaji −Φi(T1)Φj(T2)bibj ],(2.5)

where IT1=T2
= 1 if T1 = T2 and 0 otherwise.

We now introduce some new notation. Given two trees T1 = [s1, . . . , sm] and
T2 = [t1, . . . , tn] (where m = 0 or n = 0 correspond to T1 = τ or T2 = τ, respectively)
we define the tree T1 ↗ T2 := [s1, . . . , sm, T2], which is the tree with ρ(T1) + ρ(T2)
nodes obtained by adding a single edge between the roots of T1 and T2 and keeping
the root of T1 as the root of the new tree. Similarly, T2 ↗ T1 := [t1, . . . , tn, T1]. Thus
the first term in the summand of (2.5), after summation, corresponds to Φ(T1 ↗ T2),
the second term corresponds to Φ(T2 ↗ T1), and the third term to Φ(T1)Φ(T2).

Let us now assume that ρ(T1) + ρ(T2) ≤ r. Then this coefficient vanishes if

Φ(T1 ↗ T2) + Φ(T2 ↗ T1) = Φ(T1)Φ(T2).(2.6)

But since the Runge–Kutta method is of order r this is equivalent to the condition
that

1

γ(T1 ↗ T2)
+

1

γ(T2 ↗ T1)
=

1

γ(T1)γ(T2)
.(2.7)

This is easily proved via (2.1), the recursive definition of γ. For let us suppose first
that T1 �= τ �= T2. Then

γ(T1) = ρ(T1)γ(s1) . . . γ(sm),

γ(T2) = ρ(T2)γ(t1) . . . γ(tn),

γ(T1 ↗ T2) = [ρ(T1) + ρ(T2)]ρ(T2)γ(s1) . . . γ(sm)γ(t1) . . . γ(tn),

γ(T2 ↗ T1) = [ρ(T1) + ρ(T2)]ρ(T1)γ(t1) . . . γ(tn)γ(s1) . . . γ(sm),
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and (2.7) easily follows. The remaining cases when either T1 = τ or T2 = τ are also
easily verified.

Thus

h2
s∑

i,j=1

mij〈f(ηi), f(ηj)〉 = hq(G1(u) + hG2(u, h))

for some q ≥ r + 1, with the function G1(u) being the sum of inner products of
elementary differentials where the nodes in the corresponding rooted trees sum to
precisely q, and the function G2(u, h) comprising the higher-order terms.

The possibility of q > r + 1 in the statement of Lemma 2.1 arises because, for a
pair of trees T1, T2 with ρ(T1) + ρ(T2) = n > r, the Runge–Kutta method being of
order n is a sufficient, but not necessary, condition for (2.6) to be satisfied. This is in
fact the case for the improved Euler (Heun) method where (2.6) is also satisfied for
the unique pair of rooted trees whose nodes sum to 3. Thus q = 4 even though r = 2.

3. Assumptions. We now turn to the assumptions necessary for the analysis
and results of section 4. Once again, the purpose of these results is to provide an expla-
nation of the observed behavior of explicit Runge–Kutta pairs for “typical” numerical
trajectories of “typical” vector fields. For the vast majority of adaptive schemes (i.e.,
apart from ones utilizing essentially algebraically stable pairs) it would appear that
no results are possible without such assumptions. As mentioned in the introduction,
similar problems arise when proving convergence results for adaptive algorithms, even
for finite-time initial value problems on compact domains. This is because any method
based upon a local error estimate can behave badly, even if only for a single timestep,
by a sufficiently unfortunate (or devious) combination of vector field, solution value,
and candidate timestep. However, both of the assumptions stated and justified below
are numerically verified for every single timestep used to advance the solutions in the
numerical experiments of section 5.

Assumption 1. If the local error estimate is derived from a (p − 1, p) explicit
Runge–Kutta pair, then, for all sufficiently small τ > 0, there exists a constant K1 > 0,
independent of U , such that for each accepted timestep hn,

hp−ρ
n ≤ K1

σ(τ, Un)

‖f(Un)‖ .(3.1)

The intuitive reason for this assumption can be seen by following [15, 11] and
expanding the local error estimate as

E(Un, hn) = hp
n (B1(Un) + hnB2(Un, hn))(3.2)

= hp
n‖f(Un)‖(B̃1(Un) + hnB̃2(Un, hn)).(3.3)

In (3.3) the expansion has simply been rescaled by a factor of ‖f(Un)‖. Now let us
suppose that the function ‖B1(u)‖ is bounded away from zero along the numerical
trajectory. Then if the error control is working correctly (for sufficiently small τ), and
the accepted timesteps are controlled by the (nonvanishing) leading-order term of the
expansion (3.2), we see that (3.1) immediately follows.

In [15, 11, 10], rigorous proofs of the upper bound (3.1) on the sequence of accepted
timesteps are obtained via induction arguments for sufficiently small τ , but only for
numerical trajectories lying inside a predefined compact set on which B1(u) is bounded
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away from zero. By restricting ourselves to ODEs satisfying (D), we now argue that
(3.1) will only fail to hold in exceptional cases for any initial data.

Note first that under assumption (D), f(u) �= 0 outside the ball B(0,
√

α/β).
Thus, outside this ball, the leading order term of the error estimate can vanish only
if B̃1 does. But B̃1 : R

m → R
m and so for typical vector fields will vanish only at

isolated points in the phase space. In order to obtain (3.1) from (3.3), we assume the
existence of constants K,K ′ > 0 (independent of τ and Un) for τ sufficiently small
such that at each step of the numerical trajectory

σ(Un, τ) ≥ ‖E(Un, hn)‖/hρ
n ≥ Khp−ρ

n max (B1(u), hnB2(Un, hn))

≥ Khp−ρ
n ‖B1(u)‖

≥ KK ′‖f(Un)‖hp−ρ
n ,

leading immediately to (3.1) with K1 = 1/KK ′. The existence of the constant K > 0
is equivalent to assuming that at each step no catastrophic cancellation occurs between
B1 and hnB2. In order to justify the existence of the constant K ′ > 0 we need to
demonstrate that, under assumption (D), ‖B̃1(u)‖ does not tend to 0 as ‖u‖ → ∞ in
any direction. We achieve this by showing that at least one of the rescaled elementary
differentials comprising B̃1(u) cannot vanish as ‖u‖ → ∞.

Let us suppose that the lower-order method of the pair does not increase its or-
der on linear constant-coefficient problems.1 Then B1(u) must contain an elementary
differential of the form cf ′(u)p−1f(u) with coefficient c �= 0 (the rooted trees cor-
responding to such elementary differentials are often referred to as “tall trees” and
contain no branches). Under the structural assumption (D), ‖f(u)‖ must increase at
least as fast as O(‖u‖) for sufficiently large ‖u‖ in any given direction. Thus ‖f ′(u)‖
and ‖cf ′(u)p−1f(u)‖/‖f(u)‖ cannot tend to 0 as ‖u‖ → ∞ (although for pathologi-
cal vector fields, f ′(u) may equal zero on arbitrarily large compact sets in the phase
space). We now approach once again to the principle that catastrophic cancella-
tion (this time between the weighted and rescaled elementary differentials comprising
B̃1(u)) occurs negligibly often, giving B̃1(u) �→ 0 as ‖u‖ → ∞ in any direction. This
completes our justification of (3.1).

It should be noted that for a linear constant-coefficient ODE satisfying (D),
‖B̃1(u)‖ is a nonzero constant, but for certain nonlinear problems we can expect
‖B̃1(u)‖ to grow as ‖u‖ grows. Thus for particular classes of nonlinear problem it
may be possible to strengthen the upper bound on the timestep sequence in Assump-
tion 1 considerably (this is confirmed by numerical computations but we shall not
explore this point further).

The second assumption states that the error control, which is of course designed
to bound the local error estimate, also provides a bound on the magnitude of the
quadratic form (1.5) for typical timesteps.

Assumption 2. For all sufficiently small τ there exists a constant K2 > 0, inde-
pendent of U , such that at each timestep along the numerical trajectory∣∣∣∣∣∣h

2
n

s∑
i,j=1

mij〈f(ηi), f(ηj)〉

∣∣∣∣∣∣ ≤K2σ(τ, Un)h1+ρ
n ‖f(Un)‖,(3.4)

1If this mild condition is violated, then the method behaves substantially differently for such
problems. Indeed if the (p− 1, p) pair has precisely p stages, then the local error estimate E(u, h) ≡ 0
and the error control fails completely. The reader is referred to [11] for further discussion of this
point. We simply note that most embedded pairs used in practice satisfy this criterion.
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where the matrix M is the stability matrix for the higher-order method of the (p− 1, p)
Runge–Kutta pair.

We start our justification of Assumption 2 by defining

Ê(Un, hn) :=

∣∣∣∣∣∣hn

s∑
j=1

〈E(Un, hn), f(ηj)〉

∣∣∣∣∣∣(3.5)

=

∣∣∣∣∣∣h
2
n

s∑
i,j=1

(bi − bi)〈f(ηi), f(ηj)〉

∣∣∣∣∣∣ .(3.6)

The enforcement of the local error control (1.9) now allows us to bound Ê(Un, hn)
from above, since

Ê(Un, hn) ≤ hn

s∑
j=1

‖E‖ ‖f(ηj)‖

≤ sσ(τ, Un)h1+ρ
n max

j=1,...,s
‖f(ηj)‖.(3.7)

We now compare the expansion (3.6) for Ê with that of the (absolute value of
the) quadratic form for the higher-order method (1.5). From the proof of Lemma 2.1,
(1.5) is a linear combination of inner products of elementary differentials. Reverting
to the rooted-tree description of elementary differentials, the only inner products
〈F (T1)(u), F (T2)(u)〉 appearing in the expansion are those for which ρ(T1) + ρ(T2) ≥
p+1, and their coefficients are of order h

ρ(T1)+ρ(T2)
n . The corresponding expansion for

Ê contains those inner products 〈F (T1)(u), F (T2)(u)〉 for which max(ρ(T1), ρ(T2)) ≥
p, once again with coefficients of order h

ρ(T1)+ρ(T2)
n .

Note that the expansion of (1.5) therefore contains a (finite) number of additional
inner products not appearing in that of Ê. However, these inner products are closely
related to others that are common to both expansions and so our assumption reduces
to the observation that the control of the quantity Ê should effectively control (1.5) to
within some constant. Assumption 2 now follows immediately from (3.7) by assuming
that maxj=1,...,s ‖f(ηj)‖ is always close to ‖f(Un)‖, which of course should be the case,
barring any catastrophic cancellations in the formation of the error estimate.

In principle, Assumptions 1 and 2 could be weakened considerably by, for example,
only requiring that (3.1) and (3.4) hold, for a given K1 and K2, on a sufficiently
large proportion of the numerical timesteps. However, an analysis resting on such
assumptions would become far more difficult without generating any new insights
into the mechanisms leading to effective numerical stability.

4. Results. Using Assumptions 1 and 2 we are now ready to prove the main
results. We start by considering the case of embedded explicit Runge–Kutta pairs
with order (1, 2) in either EPUS or XEPUS mode.

Theorem 4.1. Consider an embedded explicit Runge–Kutta pair of order (1, 2),
under either EPUS or XEPUS control, where the higher-order method has positive
weights. If Assumptions 1 and 2 are satisfied and the ODE (1.1) satisfies (D), then
∃τ∗ > 0 such that ∀τ ≤ τ∗, the numerical trajectory eventually enters a compact set
independent of τ, U .

Proof. The tolerance τ is chosen sufficiently small such that Assumptions 1 and 2
are satisfied. We first consider advancing the numerical solution using the higher-order
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method (extrapolation mode). From (D) we have

‖Vn+1‖2 = ‖Un‖2 + 2hn

s∑
i=1

bi〈ηi, f(ηi)〉 − h2
n

s∑
i,j=1

mij〈f(ηi), f(ηj)〉(4.1)

≤ ‖Un‖2 + 2hn

s∑
i=1

bi(α− β‖ηi‖2) − h2
n

s∑
i,j=1

mij〈f(ηi), f(ηj)〉.(4.2)

We now proceed by bounding the absolute value of the last term and, for sufficiently
small τ , absorbing it into the previous one. From Assumptions 1 and 2 and (1.10),∣∣∣∣∣∣h

2
n

s∑
i,j=1

mij〈f(ηi), f(ηj)〉

∣∣∣∣∣∣ ≤ K2σ(τ, Un)h2
n‖f(Un)‖(4.3)

≤ K1K2hnσ(τ, Un)2(4.4)

≤ C2
1K1K2hnτ

2‖Un‖2.(4.5)

Now fix 0 < β̃ < β and substitute (4.5) into the last term of (4.2) with

τ <

√
2b1(β − β̃)

C2
1K1K2

.

Noting that η1 = Un for explicit Runge–Kutta methods, we obtain

‖Vn+1‖2 ≤ ‖Un‖2 + 2hn

s∑
i=1

bi(α− β̃‖ηi‖2).(4.6)

The proof now proceeds exactly as in [17, Lemma 4.2 and Theorem DC1] by showing
that the norm of the numerical solution strictly decreases until it enters, for any ε > 0,

the compact set S = B(0,
√

((α + ε)/β̃) + hmaxK), where

K = max
‖ηi‖≤γi

⎛
⎜⎝2

s∑
i,j=1

bieij〈ηi, f(ηi)〉 + hmax

s∑
i=1

bi

∥∥∥∥∥∥
s∑

j=1

eijf(ηj)

∥∥∥∥∥∥
2
⎞
⎟⎠(4.7)

and

eij := bj − aij , γ2
i :=

α

β̃bi
.

We now consider the nonextrapolation case. From the local error control (1.9),

‖Wn+1‖2 − ‖Vn+1‖2 = 〈Wn+1 + Vn+1,Wn+1 − Vn+1〉
≤ ‖Wn+1 + Vn+1‖ ‖Wn+1 − Vn+1‖
≤ ‖Wn+1 + Vn+1‖σ(τ, Un)hn

≤ 2‖Vn+1‖σ(τ, Un)hn + σ2(τ, Un)h2
n.

While the numerical trajectory is outside the compact set B(0,
√

((α + ε)/β̃) + hmaxK),

we have already proved that, for sufficiently small τ , ‖Vn+1‖ ≤ ‖Un‖ implying

‖Wn+1‖2 − ‖Vn+1‖2 ≤ 2‖Un‖σ(τ, Un)hn + σ2(τ, Un)h2
n

≤ 2C1τ‖Un‖2hn + C2
1τ

2‖Un‖2h2
n.(4.8)
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Thus the bound on ‖Vn+1‖2 from (4.6) may be invoked in (4.8) to give

‖Wn+1‖2 ≤ ‖Un‖2 + 2hn

s∑
i=1

bi(α− β̃‖ηi‖2) + 2C1τ‖Un‖2hn +C2
1τ

2‖Un‖2hnhmax.

(4.9)

The argument now concludes in a very similar fashion to the extrapolation case.
After reducing the tolerance τ further if necessary, the last two terms of (4.9) can
be absorbed into the preceding term by reducing β̃ once again, and then redefining
(increasing) K to K̃ via (4.7). This then proves that the numerical solution enters a

set B(0,
√

((α + ε)/β̃) + hmaxK̃) as required.
Theorem 4.1 only states that numerical trajectories will enter a particular compact

set, which is not necessarily close to the set B(0,
√
α/β). However, once a numerical

trajectory has entered this set, finite-time convergence results, such as those contained
in [15, 12], can be applied to prove that typical numerical trajectories (possibly after
a further reduction in τ) will enter and remain within O(τ) of the absorbing set
B(0,

√
α/β) of the ODE (1.1). Furthermore in [10], and under additional assumptions,

the existence of a (local) numerical attractor that is upper-semicontinuous to the
global attractor of (1.1) can be proved.

We now prove a more general result, applicable to embedded Runge–Kutta pairs
of any order and under any mode of operation. Note also that Assumption 1 is no
longer required.

Theorem 4.2. Consider an adaptive embedded Runge–Kutta pair of any order
(p− 1, p), operating in EPS, XEPS, EPUS, or XEPUS mode, where the higher-order
method has positive weights. If Assumption 2 holds and the ODE (1.1) satisfies both
(D) and (D′), then ∃τ∗ > 0 such that ∀τ ≤ τ∗, the numerical trajectory eventually
enters a compact set independent of τ, U .

Proof. Again we consider the extrapolation case first. From Assumption 2 and
(1.10),

∣∣∣∣∣∣h
2
n

s∑
i,j=1

mij〈f(ηi), f(ηj)〉

∣∣∣∣∣∣ ≤ K2C1‖Un‖ ‖f(Un)‖τh1+ρ
n ,

which upon substituting into (4.1) gives

‖Vn+1‖2 ≤ ‖Un‖2 + 2hn

s∑
i=1

bi〈ηi, f(ηi)〉 + K2C1‖Un‖ ‖f(Un)‖τh1+ρ
n

= ‖Un‖2 + hnb1〈η1, f(η1)〉 + 2hn

s∑
i=1

b̂i〈ηi, f(ηi)〉

+K2C1‖Un‖ ‖f(Un)‖τh1+ρ
n ,

where b̂1 = 1
2b1 and b̂i = bi, i = 2, . . . , s. We now assume that ‖Un‖ > R and using

(D′) obtain

‖Vn+1‖2 ≤ ‖Un‖2 − hnb1γ‖Un‖ ‖f(Un)‖ + 2hn

s∑
i=1

b̂i〈ηi, f(ηi)〉

+K2C1‖Un‖ ‖f(Un)‖τh1+ρ
n .
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Choosing

τ ≤ b1γ

K2C1 max(1, hmax)ρ

and applying (D) we have

‖Vn+1‖2 ≤ ‖Un‖2 + 2hn

s∑
i=1

b̂i(α− β‖ηi‖2).

Next we define β̃ = β/2 to give

‖Vn+1‖2 ≤ ‖Un‖2 + 2hn

s∑
i=1

bi(α− β‖ηi‖2) − hnb1(α− β‖η1‖2)

≤ ‖Un‖2 + 2hn

s∑
i=1

bi(α− β̃‖ηi‖2) − hnb1α

≤ ‖Un‖2 + 2hn

s∑
i=1

bi(α− β̃‖ηi‖2),(4.10)

which is identical to (4.6). Thus the proof continues in a very similar manner to that
of Theorem 4.1, via the construction of a compact set S outside of which

2hn

s∑
i=1

bi(α− β̃‖ηi‖2) ≤ 0.

While the numerical trajectory is outside the set S∪B(0, R), its norm strictly decreases
until the set is eventually entered.

For the nonextrapolation case, from (4.10) and (4.8) we once again obtain (4.9).
Again, reducing τ, β̃ and increasing K, if necessary, the numerical trajectory eventually
enters some compact set S′ ∪B(0, R).

5. Numerical results. Some numerical examples are now presented to support
Assumptions 1 and 2 and Theorems 4.1 and 4.2. We shall consider various embed-
ded Runge–Kutta pairs in different operational modes. The algorithms used are all
modifications of the ode23 routine supplied with MATLAB Version 4.2. This code
was used (rather than, for example, the more sophisticated ODE routines in later
MATLAB versions) because the timestep mechanism is particularly straightforward,
containing only elements common to all such adaptive algorithms. Note that none
of the previous analysis relies upon a detailed description of the timestep selection
mechanism, merely that the local error control is satisfied.

Two examples of vector fields that satisfy both (D) and (D′) are the scalar ODE

ut = −u|u|(5.1)

and the linear constant-coefficient problem

xt = −y − εx,(5.2)

yt = x− εy

for ε > 0. Note that for scalar ODEs (D) implies (D′).
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A vector field that satisfies (D) but not (D′) is, for ε > 0,

xt = −y
√
x2 + y2 − εx,(5.3)

yt = x
√
x2 + y2 − εy,

while a vector field that satisfies neither, yet has an absorbing set, is

xt = y − ε
x√

x2 + y2
,(5.4)

yt = −x− ε
y√

x2 + y2
.

Up to this point, we have not considered how the numerical algorithm generates
candidate timesteps since we require only that the error control be satisfied. However,
for the sake of completeness, we shall explicitly describe the timestep selection mech-
anism used in the numerical simulations. This algorithm is based upon asymptotic
considerations (see, for example, [14, 7, 12]) as the tolerance τ , and thus the timesteps,
tend to zero. If hlast was the last attempted timestep (successful or otherwise), then
the next attempted timestep is defined by

hnext = min

(
hmax, θ

(
σ(τ, U)

E(U, hlast)

) 1
p−ρ

hlast

)
,

where U is the most recent solution value. The constant θ < 1 is a “safety factor”
ensuring that, provided the exact solution lies in a compact set, the proportion of
rejected timesteps along numerical approximations will tend to 0 as τ → 0.

We first consider the behavior of order (1, 2) pairs with error-per-unit-step control.
Figure 5.1 plots the Euclidean norm of the numerical solution against integration
time for the ODEs (5.1)–(5.4) using the embedded Runge–Kutta pair consisting of
the forward Euler and Heun methods, defined by

A =

(
0 0
1 0

)
, b =

(
1
0

)
, b =

(
1
2
1
2

)
,(5.5)

in extrapolation mode with τ = 0.1, θ = 0.9, and the norm of the initial data set to
‖U‖ = 105. Here, as in all subsequent results, a relative error criterion defined by

σ(τ, u) = τ‖u‖2

was used as this results in larger timesteps and thus provides a more severe (and,
arguably, more relevant) test than a pure absolute error control. Even for this rela-
tively large value of τ , the results are in agreement with Theorem 4.1. The reduction
in norm of the numerical solution for sufficiently small τ is guaranteed for (5.1)–(5.3)
since this pair is essentially algebraically stable. For (5.4) the norm of the solution
increases with this value of τ . If τ is reduced sufficiently, then stability of the nu-
merical solution is recovered for this initial data but the instability reappears as ‖U‖
is increased further, i.e., τ depends upon the initial data. In Figure 5.2, we test
Assumptions 1 and 2 by plotting the calculated values of

k1(Un, hn) =
hp−ρ
n ‖f(Un)‖
σ(τ, Un)



EFFECTIVE STABILITY OF ADAPTIVE TIMESTEPPING ODE SOLVERS 1965

0 0.2 0.4 0.6 0.8 1

x 10
−7

9.92

9.94

9.96

9.98

10
x 10

4

Time t

 ||
 u

|| 2 

0 50 100 150
0

2

4

6

8

10
x 10

4

Time t

 ||
 u

|| 2 

0 0.5 1 1.5 2

x 10
−7

10

10

10

10

10

10
x 10

4

Time t

 ||
 u

|| 2 

0 500 1000 1500 2000
1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

5

Time t

 ||
 u

|| 2 

a) 

c) d) 

b) 

Fig. 5.1. (a)–(d) plot the norms of the numerical solution using the embedded pair (5.5) in
XEPUS mode for (5.1)–(5.4), respectively. The values of ε used in (b), (c), and (d) are 0.1, 1, and
1, and in each case τ = 0.1. (Note that the norm of the solution in (c) does decrease, as expected,
but extremely slowly.)

and

k2(Un, hn) =

∣∣∣h2
n

∑s
i,j=1 mij〈f(ηi), f(ηj)〉

∣∣∣
σ(τ, Un)h1+ρ

n ‖f(Un)‖
.

The maxima of these quantities along the numerical trajectory are the effective values
of K1 and K2, respectively, and, if Assumptions 1 and 2 are justified, these quantities
should remain bounded as ‖Un‖ → ∞. This is indeed the case for all four trajectories
in Figure 5.1, and in Figure 5.2, k1 and k2 are plotted for just two of the test problems,
namely, (5.1) and (5.3) (for the linear ODE (5.2), these quantities are constant along
the entire numerical trajectory).

Figure 5.3 is generated exactly as Figure 5.1 but using the nonessentially alge-
braically stable embedded pair

A =

(
0 0
2 0

)
, b =

(
1
0

)
, b =

( 3
4
1
4

)
.(5.6)

As can be seen, the results are very similar to those using the essentially algebraically
stable (EAS) pair (5.5) and suggest that, although EAS pairs have guaranteed stability
properties, there is little difference between EAS and non-EAS pairs in practice.

We now consider Theorem 4.2. Figure 5.4 is generated identically to Figure 5.1
except that now the method (5.5) is being used in XEPS mode rather than XEPUS.
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Fig. 5.2. (a) and (b) show the computed values of k1 and k2 for a numerical trajectory of (5.1)
while (c) and (d) are for (5.3). Apart from the initial data all the parameters are the same as used
in Figure 5.1(a) and (c).
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Fig. 5.3. (a)–(d) are generated exactly as in Figure 5.1 but using the non-EAS pair (5.6).
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Fig. 5.4. (a)–(d) are generated exactly as in Figure 5.1 but using the method (5.5) in XEPS
rather than XEPUS mode.
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Fig. 5.5. (a)–(d) are generated exactly as in Figure 5.1 but using the Fehlberg (4, 5) pair in
XEPS mode.
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The interesting case is Figure 5.4(c), corresponding to the vector field (5.3), which
satisfies (D) but not (D′). Now the norm of the numerical solution increases rather
than decreases and, for any given tolerance, this phenomenon appears to occur for
sufficiently large initial data.

Finally, we present results for a higher-order pair. Figure 5.5 shows the numerical
results obtained using the Fehlberg (4, 5) pair in XEPS mode. Note that this embed-
ded Runge–Kutta pair, whose coefficients are listed in [3, p. 306], does not satisfy the
condition that the weights of the higher-order method are positive, but the results are
similar to those obtained for other pairs that do satisfy this condition, suggesting that
this condition could be weakened somewhat. Again, the importance of the additional
structural assumption (D′) is revealed in Figure 5.5(c).
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ROOTS OF POLYNOMIALS EXPRESSED IN TERMS OF
ORTHOGONAL POLYNOMIALS∗

DAVID DAY† AND LOUIS ROMERO†

Abstract. A technique is presented for determining the roots of a polynomial p(x) that is
expressed in terms of an expansion in orthogonal polynomials. The roots are expressed as the
eigenvalues of a nonstandard companion matrix Bn whose coefficients depend on the recurrence
formula for the orthogonal polynomials, and on the coefficients of the orthogonal expansion. Some
questions on the numerical stability of the eigenvalue problem to which they give rise are discussed.
The problem of finding the roots of a transcendental function f(x) can be reduced to the problem
considered by approximating f(x) by a Chebyshev polynomial. We illustrate the effectiveness of this
convert-to-Chebyshev strategy by solving several transcendental equations using this plus our new
algorithm. We analyze the numerical stability through both linear algebra theory and numerical
experiments and find that this method is very well conditioned.

Key words. rootfinding, Chebyshev polynomial, Legendre polynomial, single transcendental
equation, global methods, companion matrix, eigenvalue problem
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1. Introduction. Suppose we want to find the real roots (especially those in
[−1, 1]) of a polynomial expressed by its Chebyshev coefficients

p(x) =

n∑
i=0

γiTi(x).

Or more generally, p(x) may be expressed in terms of polynomials {φm(x)}m≥0, each
φm(x) of exact degree m, that are orthogonal with respect to an inner product, e.g.,

〈f, g〉ρ =

∫ b

a

f(x)g(x)ρ(x)dx(1.1)

for some real and positive weight function ρ(x).
One way to find the roots of p(x) is to express p(x) as a sum of monomials,

and then to calculate the roots as the eigenvalues of the standard companion ma-
trix. However, expressing a polynomial by its monomial coefficients is not as well
conditioned as the expression in terms of Chebyshev polynomials. The transforma-
tion between a polynomial of degree n in [−1, 1] and its expansion coefficients with
respect to the monomials [12] has O((1 +

√
2)n+1) condition number with respect to

maximum norms (over [−1, 1]) and with respect to Chebyshev polynomials [10] has
O(n) condition number.

∗Received by the editors June 10, 2004; accepted for publication (in revised form) March 18,
2005; published electronically December 8, 2005. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000. The U.S. Government retains
a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or allow others to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent
not limited by these rights.

http://www.siam.org/journals/sinum/43-5/60984.html
†Computational Mathematics and Algorithms Department, Sandia National Laboratories, P.O.

Box 5800, Albuquerque, NM 87185-1110 (dmday@sandia.gov, lromero@sandia.gov).

1969



1970 DAVID DAY AND LOUIS ROMERO

For the case of Chebyshev polynomials, Boyd [6] and also Battles and Trefethen
[2] have proposed solving this problem by projecting to the unit circle in the complex
z-plane with x = (z + z−1)/2, and using the fact that Tk(x) = cos(k cos−1(x)). Their
technique allows them to find the roots of p(x) in terms of a standard companion
matrix that depends on the coefficients {γk}nk=0 of the orthogonal expansion. These
authors have found that this is a very successful algorithm, but the trouble is that it
makes use of an eigenvalue problem of size 2n for a rootfinding problem of size n.

The present manuscript proposes an alternative formulation based on a nonstan-
dard companion matrix Bn of dimension n. The algorithm is an extension of the
technique [13] for finding the roots of the nth orthogonal polynomial φn(x). The
technique uses the fact that any set of orthogonal polynomials satisfies a recurrence
formula of the form

xφn−1(x) =

n∑
i=0

φi(x)hi,n−1.(1.2)

The coefficients determine an n by n matrix Hn = [hi,j ]0≤i,j<n whose eigenvalues
are the roots of the nth orthogonal polynomial φn(x). For orthonormal polynomials
based on certain inner products such as (1.1), Hn is symmetric and tridiagonal. For
a general inner products, Hn is upper Hessenberg, that is, hi,j = 0 for i > j + 1 > 0.

As a specific example, the Chebyshev polynomials satisfy the three-term re-
currence Tn+1(x) = 2xTn(x) − Tn−1(x) for n ≥ 1, or recast in the form of (1.2),
xTn(x) = Tn−1(x) 1

2 + Tn+1(x) 1
2 . In this case, there holds h0,1 = 1

2 , h0,1 = 1 for
i > 0, hi,i+1 = hi+1,i = 1

2 , and otherwise hi,j = 0. The asymmetry of h0,1 and h1,0

reflects the nonconstant normalization of {Tk}k≥0: for ρ(x) =
√

1 − x2 there holds
〈Tk, Tk〉ρ = π

4 (1 + δk,0).
Our technique for finding the roots of p(x) is a modification of the technique for

finding the roots of φn(x). To express our result we use the notation

fn(x) = [φ0(x), . . . , φn−1(x)]T(1.3)

for the column vector-valued function containing the first n orthogonal polynomials,
and the notation

cT = [γ0, γ1, . . . , γn−1](1.4)

for the column vector containing the first n coefficients of the polynomial p(x). Using
this notation we have

p(x) = fn(x)T c + γnφn(x).(1.5)

In section 2, Theorem 2.3 shows that the roots of p(x) are the eigenvalues of the
nonstandard companion matrix

Bn = Hn − hn,n−1
c

γn
eTn−1,(1.6)

where en−1 = [0, . . . , 0, 1]T is a column vector of dimension n. When applied to
finding roots of polynomials expressed in terms of Chebyshev polynomials for large
values of n the new method promises to be something like eight times faster than the
method proposed by Boyd and Battles and Trefethen. It is somewhat faster than the
direct conversion to a monomials (without doubling the degree), which is unstable for
large values of n.
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Orthogonal polynomials have many applications. Transcendental equations may
be solved with Chebyshev polynomials, as was proposed in [4] and developed further in
the follow-up papers [5] and [6]. Battles and Trefethen automate, through MATLAB
calls, a suite of operators on functions. The implementation is accomplished using
Chebyshev polynomials of very high degree. And the operator that finds the real
roots of a function is (now) implemented along the lines described here. Battles
and Trefethen have pointed out that certain applications of polynomials based on
the monomial form may be significantly improved by using another form based on a
specific family of orthogonal polynomials.

Although the technique we present in this paper finds all of the roots of the
polynomial p(x), we will see that it only has desirable stability properties for finding
roots in an appropriate region of the complex plane. For example, for Chebyshev
polynomials we only have desirable stability properties for finding real roots in or near
the interval [−1, 1]. Similarly, transcendental equation solvers based on the rootfinding
by Chebyshev expansions have desirable stability properties only for roots in or near
interval [−1, 1] (see Theorem 4.2).

When we approximate a transcendental function in terms of an orthogonal polyno-
mial expansion, the highest order coefficient γn converges to zero (see Theorem 4.1).
For this reason, many cases of interest are near the division by zero singularity in
(1.6) for Bn. The singularity is avoided by solving a generalized eigenvalue prob-
lem as described in section 2 or [19]. However, in Theorem 4.2, we will show that
if a transcendental function is approximated as a finite sum of Jacobi polynomials,
the roots found by using the corresponding matrix Bn accurately approximate the
transcendental equation roots in or near [−1, 1].

If the cost of solving the eigenvalue problem becomes a computational bottleneck,
then one may use a subdivision algorithm (see [7]) that decomposes the rootfinding
problem into several subproblems and applies Chebyshev polynomials of lower order
in each subinterval.

1.1. Summary. We begin in section 2 by reviewing a process for finding the
roots of the nth orthogonal polynomial φn(x) as the eigenvalues of the matrix Hn.
We then show how to modify this process to construct the nonstandard companion
matrix Bn whose eigenvalues are given by the roots of the polynomial p(x) (cf. The-
orem 2.3). Although classical orthogonal polynomials are emphasized over all, we
abstractly define “orthogonal polynomial” (see Definition 2.1) so that our results in-
clude the monomials, and hence our results include the standard companion matrix.
Lemma 2.4 presents analytical expressions for both the left and right eigenvectors in
terms of the eigenvalues. In section 3 the sensitivities of polynomial roots and matrix
eigenvalues are compared. Theorem 3.3 demonstrates how eigenvalue and polynomial
root sensitivities coincide in certain cases.

The algorithms presented herein are not so much new as they are not widely
known. The companion matrices for orthogonal polynomials were independently dis-
covered by Hans Stetter. For a derivation of the nonstandard companion matrix
based on quotient rings in algebraic geometry (see [21]). Exercise 1c on p. 148 of [21]
asks the reader to derive the companion matrix for Chebyshev polynomials. On the
other hand, Stetter emphasizes application to polynomials of modest degree, say 10
(cf. p. 146). The observation that the roots of the nth member of a family of orthogo-
nal polynomials must be the eigenvalues of a companion matrix whose elements come
from the coefficients of the recurrence relation for the orthogonal polynomials was well
known to Jacobi [13]. Like Stetter, we show how to define “orthogonal” polynomial
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broadly enough to apply the observation to any polynomial. Our contribution is some
analysis of the numerical stability of such methods. Example 3 of section 5 uses a
degree 256 polynomal to solve a transcendental equation.

In order to concentrate on issues of interest in applications using orthogonal poly-
nomials, we discuss the representative application of finding the roots of a scalar tran-
scendental equation in a real interval. Representing a function by the partial sum of an
exponentially convergent orthogonal expansion raises issues that must be addressed.
In particular, ill-conditioning is manifested in the roots that we do not want. However,
roots in a specific domain of the complex plane are well conditioned in a certain sense.

In section 3.3 representation with respect to Chebyshev polynomials, or any Ja-
cobi polynomial, are shown to be ideal for finding roots in or quite near [−1, 1]. Away
from [−1, 1], the Jacobi polynomials are not recommended. The prerequisite results
for classical orthogonal polynomials are reviewed. It is shown that for rootfinding in
an interval, representing polynomials with respect to Jacobi orthogonal polynomials
is ideal. But monomials are better for rootfinding in the unit disk. In particular the
algorithms described herein are not designed to find all of the roots of a polynomial.

In section 4 we discuss how matrix balancing is desirable in computing the eigen-
values of Bn. The upper Hessenberg structure of Bn is crucial in the explanation of
the success of matrix balancing. Theorem 4.2 shows how partial sums of orthogonal
expansions lead to companion matrices that are amenable to matrix balancing. We
use our analytical expressions for the left and the right eigenvalues to show that the
polynomial and eigenvalue sensitivities differ by a computable (and benign) factor,
related to the associated Lagrange interpolation polynomials. The companion matrix
formulation is numerically stable in this case.

Analysis is also included intended for a posteriori use in solving transcendental
equations. An algorithm for finding the roots of a transcendental equation in [−1, 1]
using expansions in terms of Chebyshev polynomials is presented in section 4.2. Nu-
merical experiments are presented in section 5 that demonstrate the reliability of the
algorithm. Our results are summarized in section 6.

For expansions of transcendental equations, we explain why the companion matrix
is amenable to balancing. The exponential convergence rate is related to the distance
to the nearest singularity of the locally analytic function, and also applies to the
(right) eigenfunctions. Balancing “factors out” the dependence of Bn on 1/γn, and the
balanced companion matrix eigenvalue problem is numerically stable. An algorithm
for finding the roots of a transcendental equation on [−1, 1] using expansions in terms
of Chebyshev polynomials is presented in section 4.2. Numerical experiments are
presented in section 5 that demonstrate the reliability of the algorithm.

2. Companion matrices. Starting from a general definition of orthogonal poly-
nomials, we review the procedure for finding the roots of orthogonal polynomials as
the eigenvalues of the matrix Hn containing the coefficients in the recurrence formula.
The discussion closely follows [13]. Next we construct a nonstandard companion ma-
trix corresponding to a sequence of orthogonal polynomials and a given polynomial.
In Theorem 2.3 we establish the equivalence between the roots of the polynomial
equation and the companion matrix spectrum. In Lemma 2.4 we give an analytical
expression for the right eigenvectors of Bn. The proof exploits the connection between
Vandermonde matrices and Lagrange interpolation polynomials.

Orthogonal polynomials are broadly defined here to emphasize the connection be-
tween the numerical stability of a companion matrix eigenvalue problem and the asso-
ciated inner product. There is a one-to-one correspondence between inner products on



ROOTS OF POLYNOMIALS 1973

polynomials and the set of sequences of univariate polynomials {φi(x)}i≥0 such that
each pk(x) has degree k. The polynomials are orthonormal with respect to the polyno-
mial inner product that is the ordinary vector inner product of expansion coefficients.

We will work over the space of complex valued continuous functions on a bounded
subdomain of the complex plane.

DEFINITION 2.1. With respect to the inner product 〈, 〉 the sequence {φn(x)}n≥0

are orthogonal polynomials if each φn(x) is a polynomial of exact degree n and
〈φn, φm〉 = δn,mσ2

n. Here δi,j is Kronecker’s delta and {σn}n≥0 is a sequence of
positive real numbers. The polynomials {φn(x)}n≥0 are orthonormal if each σn is
one. The norm induced by the inner product is denoted by ||| ψ ||| = 〈ψ,ψ〉1/2.

Orthogonality implies that for i ≤ n− 1, ||| φi |||2 hi,n−1 = 〈φi(x), xφn−1(x)〉.
Usually when discussing orthogonal polynomials we will be concerned with inner

products of the form in (1.1). Orthonormal polynomials with respect to this type
of inner product must satisfy a symmetric three-term recurrence formula. This is
a consequence of the fact that such an inner product is symmetric with respect to
multiplication; that is, 〈xf(x), g(x)〉 = 〈f(x), xg(x)〉.

For rootfinding problems over bounded complex domains, we recommend the
inner product that arises in Bergman’s theory of (reproducing) kernel functions (see
[18, p. 36], [22, section 11.2], or [17, Lemma 17.2.3]). For example, the monomials are
orthogonal polynomials with respect to the inner product

〈f, g〉 =
1

2πi

∫
Γ

f(z)g(z)dz,

where the integral is taken over the circle Γ centered around the origin in the complex
plane. Note that this inner product is not symmetric with respect to multiplication.

2.1. Roots of orthogonal polynomials: A review. A way to find the roots
of the nth orthogonal polynomial φn(x) uses the recurrence formula in (1.2). The
first n instances of (1.2) combine using the matrix Hn, the column vector fn, and the
coefficient hn,n−1 into the matrix equation

xfTn (x) = fTn (x)Hn + φn(x)hn,n−1e
T
n−1.(2.1)

Equation (2.1) exposes the equivalence between the roots ξ root of φn(x) = 0 and the
eigenvalues of Hn,

ξfTn (ξ) = fTn (ξ)Hn.

We conclude with the following result that Gautschi [13] attributes to Jacobi.
Theorem 2.2. The algebraic eigenvalues of Hn defined in (2.1) coincide with the

algebraic roots of the degree n orthogonal polynomial φn(x).
Proof. The result is a corollary of Theorem 2.3.

2.2. Nonstandard companion matrices. Assuming that γn �= 0, we can use
(1.5) to express φn(x) as

φn(x) =
p(x) − fn(x)T c

γn
.(2.2)

If we substitute this expression for φn(x) into (2.1), we arrive at the equation

xfTn (x) = fTn (x)Hn +
p(x) − fn(x)T c

γn
hn,n−1e

T
n−1.(2.3)
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We now see that if ξ is a root of p(x) = 0, then

ξfTn (ξ) = fn(ξ)TBn,(2.4)

where as in (1.6)

Bn = Hn − hn,n−1
c

γn
eTn−1.

This shows that if ξ is a root of p(x), then it must be an eigenvalue of Bn with left
eigenvector fTn (ξ). The converse is established in Theorem 2.3.

Equivalently, we could express the first n terms of our recurrence formula as

xfn+1(x)T = fTn+1(x)

[
Hn

hn,n−1e
T
n−1

]
.

When we combine this with the requirement that p(x) = 0 using (1.5), we get the
system of equations

fTn+1(ξ)

[
Hn c

hn,n−1e
T
n−1 γn

]
= ξfTn+1(ξ)

[
In 0
0 0

]
.(2.5)

Any root ξ of p(x) = 0 must be an eigenvalue of this generalized eigenvalue problem
with left eigenvector fn+1(ξ).

As is the case for companion matrices, one may either solve the generalized eigen-
value problem in (2.5) and discard an infinite eigenvalue or find the eigenvalues as
defined in (2.4).

The standard backward stable algorithms for generalized and ordinary eigenvalue
problems in (2.5) and (2.4) are the QZ and QR algorithms, respectively. Because of
the upper Hessenberg form of these matrices, no initial transformation to Hessenberg
form is required for either QZ or QR. For computing eigenvalues only in the average
case, QR is three times faster than QZ [14]. The question of which formulation to use is
not an entirely solved problem. The fact that Bn may have a very large norm suggests
that the formulation of (2.5) has superior stability properties. Numerical experiments
do not confirm this hypothesis. Polynomial equations for which the formulation of
(2.5) is advantageous do exist [19], but do not arise in the solution of transcendental
equations. We performed numerical experiments comparing the residual norms of the
polynomials evaluated at the eigenvalues computed by either QZ or QR. We observed
that if QR is used without balancing, then the eigenvalues computed from the ordinary
eigenvalue problem suffer roundoff errors proportional to ‖c‖/γn. QR with balancing
and QZ always computed eigenvalues of the same quality even if ‖c‖/γn is very large.
Explanations are provided in Theorem 3.3 and in section 4.

Next the equivalence of the roots of the polynomial p(x) and the eigenvalues of
the matrix Bn defined in (1.6) and (2.4) is demonstrated.

Theorem 2.3. The roots of a polynomial p of exact degree n coincide with the
eigenvalues of the generalized companion matrix Bn counting algebraic multiplicity.

Proof. We have already shown that a root ξ of p(x) is an eigenvalue of Bn

with left eigenvector fn(ξ). The converse follows from two properties of unreduced
upper Hessenberg matrices, including Bn − ξIn for any ξ: first a nontrivial (right)
null vector has nonzero last component, and second the nullity is at most one. The
properties of Hessenberg matrices are discussed in [14, section 7.4.5] and, in particular,
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[14, Theorem 7.4.4]. If ξ is an eigenvalue of Hn with nontrivial (right) eigenvector
v = [v0, . . . , vn−1]

T , then vn−1 �= 0. Substitution of (2.2) into (2.1) yields

xfTn (x) = fTn (x)

(
Hn − c

γn
hn,n−1e

T
n−1

)
+

p(x)

γn
hn,n−1e

T
n−1.(2.6)

Inspection of the product of (2.6) and v implies that p(ξ) = 0. As a consequence of
the second property, a left eigenvector of ξ must be proportional to fn(ξ).

2.3. The right eigenvectors. We have already shown that if ξj is the jth root
of the polynomial p(x), then vT

j = fTn (ξj) is the left eigenvector associated with the
eigenvalue ξj of Bn. We will now give a simple expression for the right eigenvectors
wj associated with this eigenvalue.

The matrix of left eigenvectors, V, has jth row vj . The ith row of the inverse
contains the right eigenvector wi. Note that the n by n matrix V = [νi,j ] is called a
generalized Vandermonde matrix due to νi,j = φj(ξi).

The right eigenvectors can be expressed using the interpolating polynomials. As-
suming that ξj is a simple root of p(x), the jth Lagrange interpolating polynomial
associated with the roots of p(x) is

lj(x) =
p(x)

p′(ξj)(x− ξj)
.

Each interpolating polynomial lj(x) has degree n − 1 and satisfies lj(ξk) = δjk for
0 ≤ j, k < n.

Each polynomial lj(x) has degree n−1 and is a linear combination of {φk(x)}nk=0.
Define the column vector wj to contain the expansion coefficients of lj(x),

lj(x) = fTn (x)wj .

It follows that δij = lj(ξi) = fTn (ξi)wj = vT
i wj . This shows that the vector wi is in

fact the ith column of the inverse matrix of V, and hence wi is the right eigenvector
associated with the eigenvalue ξi. This proves the following lemma.

Lemma 2.4. The companion matrix Bn defined in (2.4) corresponding to a poly-
nomial p(x) of exact degree n and with distinct roots, {ξj}0≤j<n, has as eigenvalues
the roots of p(x). The left eigenvector corresponding to ξk is fn(ξk). Moreover, if {φj}
are orthonormal polynomials, then for lj(x) = p(x)

p′(ξj)(x− ξj)
the jth right eigenvector

wj has components eTk wj = 〈lj , φk〉 and ‖wj‖2 = |||lj |||.
Proof. The comments directly before the lemma establish the following: the n

by n matrix W = [w0, . . . ,wn−1] whose jth column, wj , contains the expansion
coefficients of lj(x) with respect to {φj(x)}0≤j<n, i.e., lj(x) = fTn (x)wj , is W = V−1,
thus is the matrix of right eigenvectors. Next take the inner product of lj(x) with
φk(x). By Definition 2.1, 〈lj , φk〉 = |||φk|||2eTkwj . The desired representation follows
in the orthonormal case. Parseval’s formula readily furnishes the equivalence between
the norms.

The relationship between |||lj ||| and p(x) is further developed in section 4.

3. Sensitivity analysis. Rootfinding by eigenvalue problems is popular due to
its favorable stability properties compared to other methods. A stability analysis
for the standard companion matrix formulation has been performed in [23]. The
companion matrix form is viewed as a rank one perturbation of a bidiagonal matrix,
and the inverses of the shifted companion matrices are analyzed. Here we perform a
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local analysis of the nonstandard companion matrix, assessing stability by comparing
the polynomial root and eigenvalue the polynomial root sensitivities. The limitation
of a local analysis is that it is only valid for eigenvalues that are well separated.

3.1. Polynomial root sensitivity. The perturbation theory for polynomial
roots is considered following [11]. We consider some particular zero ξ of p(x) as a
complex valued function of the expansion coefficients with respect to the orthogonal
polynomials. Denote the dependence on the coefficients c by ξ(c).

Lemma 3.1. Suppose that a polynomial of exact degree n, p(x) = fTn+1(x)co,
where co is an (n + 1)-dimensional column vector, has a simple root ξo such that
p(ξo) = 0 �= p

′
(ξo). There exists a smooth function ξ(c) such that ξ(co) = ξo and

fTn+1(ξ(c))c = 0 with gradient ∇cξ(co) = −fTn+1(ξo)/p
′
(ξo).

Proof. See Example 3.10 in [21] for the proof.

We will discuss several aspects of Lemma 3.1, starting with the excluded case
of multiple roots. In the case of a root of algebraic multiplicity m > 1, there exist
infinitesimal coefficient perturbations that change the multiplicity, and the roots are
Hölder continuous with exponent 1/m (see Proposition 5.1 in [21] or Theorem 4.1 in
[6]). Approximations to roots with nontrivial multiplicity correspond to small values
of p(ξo). Monitoring the value of the polynomial derivative at all approximate roots
of interest for small values is required.

Next, the implication of Lemma 3.1 is that the norm of the gradient of a root
with respect to the coefficients is proportional to ‖fn+1(ξo)‖2. In other words, a
root ξo is not very sensitive to the polynomial coefficients if both ‖fn+1(ξo)‖2 is not
“large” and |p′(ξo)| is not “small.” For all the orthogonal polynomials familiar to the
authors, for sufficiently large x, ‖fn+1(x)‖2 grows exponentially as a function of n.
This observation reflects the intrinsic difficulty of finding all the roots of an arbitrary
polynomial. On the other hand, using a Jacobi polynomial, for a root −1 ≤ ξo ≤ 1,
‖fn+1(ξo)‖2 is not “large” (clarified in section 3.3) and no well-separated root is very
sensitive to the coefficients.

3.2. Eigenvalue sensitivity. In section 3.1 we showed that the polynomial root
sensitivity with respect to the coefficients is ‖fn+1‖. Here the condition number of a
simple eigenvalue is related to the corresponding left and right eigenvectors fn = v
and w. A standard result from the perturbation theory of simple eigenvalues is that
under an infinitesimal perturbation δA of a matrix A, a simple eigenvalue λ changes
to λ + δλ, where δλ = vT δAw /vTw. Lemma 3.2 restates the result without using
infinitesimals.

Lemma 3.2. If a square matrix A has a simple eigenvalue λ with correspond-
ing left vT and right w eigenvectors, vTA = λvT and Aw = wλ, then ∇Aλ =
vwT /vTw.

Proof. See [14, p. 344] for the proof.

Next Theorem 3.3 gives a sufficient condition for the numerical stability of root-
finding based on a nonstandard companion matrix eigenvalue problem. It suffices for
the computed eigenvalues to be the eigenvalues of Bn +En nearby to Bn in a compo-
nentwise or relative sense. That is, there exists a tiny τ > 0 such that |En| ≤ τ |Bn|.
The result applies for any nonzero γn. The idea of the proof is that the factor of 1/γn
in column n of En cancels with a factor of γn in row n of w.

Theorem 3.3. Suppose that the degree n polynomial p(x) has a simple root λ.
Recall the notation of (1.5), in particular the definition of the column c in (1.4),
and the definition of Hn in (2.1). The corresponding companion matrix Bn has left
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and right eigenvectors vT = fn(λ)T and w as in Lemma 2.4 so that vTw = 1. A
perturbation En of Bn such that |En| ≤ τ |Bn| perturbs λ by δλ such that

|δλ| ≤ τ |v|T |Hn| |w| + τ |v|T |c|/|p′(λ)| + O(τ2).

Proof. We start by establishing the following claim. For hn,n−1 defined in (1.2)
there holds

hn,n−1e
T
n−1w = γn/p

′(λ).(3.1)

Substitute the expansion l(x) = fn(x)w below, and simplify to find that γn = 〈p, φn〉
= 〈l(x)(x − λ)p′(λ), φn〉 = 〈l(x)xp′(λ), φn〉 = 〈φn−1(x)xp′(λ), φn〉eTn−1w. Rewrite
(1.2) in matrix form,

xφn−1(x) = fTn (x)Hnen−1 + φn(x)hn,n−1.(3.2)

Equation (3.2) implies that γn = hn,n−1p
′(λ)eTn−1w. Divide by p′(λ) to establish the

claim.
By Lemma 3.2, to first order in τ there holds |δλ| = |vTEnw| ≤ |v|T |En||w|

≤ τ |v|T |Bn||w|. The proof is completed by substituting (1.6), applying the triangle
inequality, and then the claim.

Theorem 4.2 will show how for transcendental equations, QR iteration with bal-
ancing solves a nearby eigenvalue problem, Bn + En, such that only the last column
of En is proportional to 1/γn.

3.3. Classical orthogonal polynomials. In general, the term ‖fn+1(ξ)‖2 aris-
ing in polynomial roots sensitivity is associated with the “kernel polynomials.” The

kernel polynomials are defined by Kn(xo, x) = f
T

n+1(xo) fn+1(x). If xo is a con-
stant, then Kn(xo, x) is a polynomial. The kernel polynomials maximize the ratio
|p(xo)|/|||p(x)||| over all polynomials of exact degree n (see [22, Theorem 3.1.3]), and
the maximum ratio is ‖fn+1(xo)‖2. As we shall see, the asymptotic properties of the
kernel polynomials indicates that the classical orthogonal polynomials over [−1, 1],
the Jacobi polynomials, are suitable for rootfinding. And conversely, for rootfind-
ing over domains that are topologically different from intervals, none of the classical
polynomials orthogonal over an interval is desirable, and a different inner product is
needed [1, 9].

The Jacobi polynomials are orthogonal with respect to the inner product

〈f, g〉α,β =

∫ 1

−1

f(t)g(t)(1 − t)α(1 + t)βdt

for α > −1, β > −1 (see [22, section 2.4]). The case α = β = −1/2 corresponds
to the Chebyshev polynomials (of the first kind). The comparison of spectral meth-
ods for partial differential equations based on either Chebyshev polynomials or Leg-
endre polynomials (α = β = 0) in [3] demonstrates the advantages of Legendre
polynomials. The Legendre orthonormal polynomials satisfy the three-term recur-
rence γn+1φn+1(x) = xφn(x) − γnφn−1(x) for γn = n/

√
4n2 − 1. By rearranging

the three-term recurrence into the form of (1.2), one may show that for i ≥ 0,
hi+1,i = hi,i+1 = γi+1, and otherwise hi,j = 0.

Theorem 7.71.2 in [22] states that max−1≤xo≤1 ‖fn+1(xo)‖2 = O(nκ) for κ =
max(α + 1, 1/2). The result is a consequence of the connection to Sturm–Liouville
problems. The exponent is minimal for the Chebyshev polynomials, and for any
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admissible (α, β) the sensitivity bound grows like a polynomial. On the other hand,
away from the interval [−1, 1], the Jacobi polynomials grow exponentially with degree
and are undesirable for rootfinding problems.

4. Solving transcendental equations. We will discuss in depth a representa-
tive application of nonstandard companion matrices to rootfinding problems involving
polynomial equations expressed with respect to Chebyshev polynomials. We discuss
the solution of a transcendental equation ψ(ξ) = 0. Section 4.2 presents a complete
description of the corresponding algorithm for a scalar transcendental equation. In
numerical experiments, we find that the algorithm is numerically stable if matrix
balancing is used (the default in MATLAB). However, it is crucial to use balancing
with the QR algorithm in solving the eigenvalue problems that arise in the solution
of transcendental equations.

4.1. Analysis of balancing. Next some of the linear algebra issues associated
with computing the eigenvalues of the B matrices are discussed in detail. Readers
interested only in the solution of transcendental equations may choose to skip the
section.

As a sequence of polynomials converge uniformly to ψ(x) on some bounded do-
main, certain roots of the polynomials converge to {ξ : ψ(ξ) = 0} [5]. The order of
the approximation, n, is chosen to be sufficiently large such that the trailing γn is
negligible [5]. For solving transcendental equations, balancing the generalized com-
panion matrix (cf. [23]) usually employs an alarmingly ill-conditioned diagonal simi-
larity transform, and extraordinarily reduces the condition number of the matrix of
eigenvectors. Theorem 4.2 presents an explanation of the success of balancing for
companion matrices arising in the solution of transcendental equations.

A transcendental equation ψ(ζ) = 0 arises from ψ(x) that is analytic in an open
simply connected domain containing [−1, 1]. The orthogonal polynomials used are
eigenfunctions of singular Sturm–Liouville problems in [−1, 1], namely, the Jacobi
polynomials (corresponding to one value of (α, β)) and here denoted {φn(x)}n≥0.
The simplest case, {φn(x)}n≥0 orthonormal, is discussed. The convergence properties
of Jacobi series expansion

∑
n≥0 φn(x)γn with γn = 〈ψ, φn〉 of ψ(x) is described by

Theorem 4.1.

Theorem 4.1. Let ψ(x) be an analytic function with an open domain con-
taining [−1, 1]. The expansion of ψ(x) in a Jacobi series is convergent in the in-
terior of the greatest ellipse with foci at ±1, in which ψ(x) is regular. The expan-
sion is divergent in the exterior of the ellipse. If ψ(x) =

∑
n≥0 γnφn, then we have

the following representation of the sum R of the semiaxes of ellipse of convergence
R = lim infn→+∞ |γn|−1/n.

Proof. See [22, Theorem 9.1.1] for the proof.

In Theorem 4.1, R = A+B for an ellipse (x/A)2 +(y/B)2 = 1 in the (x, y)-plane
with A2 = B2 + 1 and A > B > 0 (see [15, p. 37]). Roughly speaking, there holds∑

j≥n |γj |2 = O(R−2n). The hypothesis that ψ(x) is an analytic function on an open
domain containing [−1, 1] ensures that for the greatest ellipse B > 0 and R > 1.

An analytic function ψ(x) with root ξ, ψ(ξ) = 0, has a Jacobi series. The Jacobi
series has partial sums of the form pn(x) =

∑n
j=0 φj(x)γj . Each pn(x) has at least

one root ξn nearest to ξ. In the case R > 1, Theorem 4.1 implies that in [−1, 1],

{pn(x)}n≥0 converges uniformly to ψ(x). Furthermore, each derivative p
(m)
n (x) con-

verges uniformly to ψ(m)(x) in [−1, 1].

If ξ is a simple root of ψ(x) (i.e., ψ′(ξ) �= 0), then ξn → ξ. Moreover, for
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n sufficiently large that ψ′(ξn)ψ′(ξ) > (ψ′(ξ))2/2 the relationship between residual
error and approximate solution error implies that ξn − ξ = O(R−n).

The algebraic eigenvalue problem BnWn = WnΛn is solved by applying the QR
algorithm to the balanced generalized companion matrix. In MATLAB, the default
configuration of the QR algorithm applies balancing. Balancing refers to determining
a diagonal matrix Σn such that the similar eigenvalue problem Σ−1

n BnΣn is (hope-
fully) much better conditioned. A nearly optimal diagonal similarity transformations
Σn produces Σ−1

n Wn with equal row norms (see [16, section 12]), but Wn is not
known a priori. Instead a diagonal similarity transformation Σn that nearly mini-
mizes a norm of Σ−1

n BnΣn is determined.
To illustrate matrix balancing, consider B4 whose coefficients are chosen to reflect

the asymptotic equation γk = O(R−k) for R > 1. A rootfinding algorithm based
on Chebyshev polynomials is used. We use slightly more complicated coefficients,
cT = [2, 2R−1, 2R−2 + 1

2R
−4, 2R−3] and γ4 = −R4, so that B4 takes the simple

form in (4.1). We have included an extra nonzero element in the southwest term to
illustrate the essential contribution of the upper Hessenberg structure of Bn to the
success of the matrix balancing algorithm. We approximately balance this matrix
using Σ4 = diag(R3, R2, R1, 1),

Σ−1
4

⎡
⎢⎢⎣

0 1/2 0 R4

1 0 1/2 R3

0 1/2 0 R2

S 0 0 R

⎤
⎥⎥⎦ , Σ4 =

⎡
⎢⎢⎣

0 1
2R 0 R

R 0 1
2R R

0 R/2 R
SR3 0 0 R

⎤
⎥⎥⎦ .(4.1)

Note that because B4 is upper Hessenberg, S = 0, so that balancing reduces B4 in
norm from O(R4) to O(R). In this example, as R increases, the diagonal matrix
determined by the balancing algorithm converges to Σ4. For polynomials of degree
n, the norm of Bn is proportional to Rk for k possibly as large as n.

Different normalizations of the orthogonal polynomials correspond to the different
diagonal similarity transformations applied to Bn. The product of (2.3) and Σn =
diag(σ0, . . . , σn−1) has the form

x fTn (x)Σn = fTn (x)Σn Σ−1
n BnΣn +

p(x)

γn
hn,n−1σn−1e

T
n−1.(4.2)

In this sense, the balancing algorithm determines a suitable normalization of the or-
thogonal polynomials (cf. Definition 2.1). Bear in mind that eTj Bnen−1 is proportional
to γj/γn.

The next theorem will show that asymptotically the right eigenvectors all are
graded in exactly the same way, decreasing from term to term by a ratio of approxi-
mately 1/R. For such Bn for an optimal Σn, which approximately equalizes the row
norms of Σ−1

n Wn, σi/σi is asymptotically R. In general, it is not necessarily the case
that the diagonal Σn that approximately minimizes a norm of Σ−1

n BnΣn is nearly op-
timal for the eigenvalue problem. For transcendental equation solving, asymptotically
the polynomial coefficients also decrease by a factor of 1/R from coefficient to coeffi-
cient. Equation (4.1) illustrates how in this case the balancing algorithm determines
a nearly optimal scaling for eigenvalue problems.

By Theorem 4.1, (γn)n≥0 decays exponentially. Not surprisingly, in practice the
diagonal elements of Σn exhibits similar exponential decay. The resulting Σn has
an alarmingly large condition number. Next Theorem 4.2 will show that the rows of
(eTj Wnek)0≤j<n decay at the same exponential rate as (γn)n≥0. The transformation
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from Wn to Σ−1
n Wn reduces the variation in the norms of the rows of Wn and

improves the condition number of the eigenvalue problem.
Theorem 4.2. Suppose that ψ(x) is analytic in an ellipse with foci at ±1 and

that ξ is a simple root of ψ(x) within the ellipse. Suppose in addition that for each
partial sum of the Jacobi series expansion of ψ(x), pn(x), all of the roots of pn(x) are
within the ellipse. Choose a root ξn of pn(x) nearest to ξ. The generalized companion
matrix corresponding to pn(x), Bn, has an eigenvector wn such that Bnwn = wnξn.
Then eTj wn = O(R−n).

Proof The maximal ellipses for l(t) = (ψ(t) − ψ(ξ))/(t − ξ) and ψ(t) coincide.
For l(t) =

∑
n≥0 φn(t)μn, by Theorem 4.1, there holds R = lim inf |μn|−1/n. The

partial sums are ln(x) =
∑

0≤j≤n φj(x)μj . By careful accounting, one may show

that for each fixed ε > 0, and for |x − ξ| > ε, there holds ln(x) − l(x) = O(R−n).
Furthermore, a similar argument shows that ln(ξn) − l(ξn) = O(R−n), from which
|||ln(x) − l(x)||| = O(R−n) follows. By theorem

|eTj wn| = |〈φj , ln〉| = |〈φj , ln − l〉 + 〈φj , l〉|
= |〈φj , ln − l〉 + μj | ≤ |||ln − l||| + |μj | = O(R−n).

Note that if the Jacobi series converges superexponentially, or even if R is very
large, our justification of the balancing algorithm breaks down. We performed many
numerical experiments, in floating point arithmetic with machine precision 2−54, at-
tempting to cause the balancing algorithm to fail. The expansion coefficients in the
Jacobi series of a transcendental function coefficients converge to zero. We assume
that each expansion coefficient, γm, with the maximal absolute value, supk |γk| = |γm|,
arises for m � n. For an entire function, limn→+∞ γn/γn+1 = +∞. The values of
{γn}n≥0 computed in finite precision arithmetic do not share this asymptotic property.
The absolute error in each nonzero γn is, very roughly, the product of the machine
precision and supk |γk|. In our numerical experiments, we never observed a huge value
of γn/γn+1 for the nonzero approximate values of {γn}n≥0. In other words, although
matrix balancing has always worked for us, one must check that balancing determines
a Bn not much larger in norm than Hn.

4.2. An algorithm for transcendental equations. An algorithm is imple-
mented as a MATLAB script that approximates the roots in an interval of a tran-
scendental equation. Modified companion matrices are used to find the roots in or
very near [−1, 1]. The case of a polynomial expressed as a sum of Chebyshev poly-
nomials is considered. The algorithm to approximate a function by a polynomial is
reviewed briefly. Many subtle numerical analysis issues are discussed that are crucial
for readers who actually want to solve a transcendental equation, such as rules for
when to discard some of the eigenvalues. Readers more interested in concrete informa-
tion on how to find the roots of a given polynomial expressed as a sum of Chebyshev
coefficients are directed to the paragraph directly following the algorithm.

A collocation method is used to determine the expansion coefficients with re-
spect to the Chebyshev polynomials of a polynomial approximation of a scalar func-
tion ψ(x) whose domain includes [−1, 1] (see Appendix A in [6]). For completeness,
we briefly review the popular method here. The Chebyshev–Gauss–Lobatto (CGL)
points, cos(kπ/n)nk=0, are unisolvent. A unique nth degree polynomial interpolates
ψ(x) at the CGL points. The column vector of expansion coefficients [γ0, . . . , γn]T

is the product of discrete Chebyshev transformation matrix, Πn, and the column
vector, [ψ(cos(0π/n)), . . . , ψ(cos(nπ/n)]T , where Πn = [cos(ijπ/n)2/(qiqjn)]0≤i,j≤n,
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and q0 = qn = 2 and qi = 1 otherwise. Other issues including spectral conver-
gence, the adaptive selection of n, and the subdivision of the interval are discussed
elsewhere [6].

Techniques for discarding some of the eigenvalues are discussed. There are two
reasons to discard certain computed eigenvalues. First, equations with np roots in or
near [−1, 1] may be approximated by a polynomial of higher degree n > np. In finite
precision arithmetic, the n − np additional eigenvalues do not necessarily solve the
polynomial equation. We would like to be able to reliably determine np. Second, in
many applications the cost of evaluating the function is significant.

An important application of Chebyshev polynomials is solving transcendental
equations in a way that minimizes the number of function evaluations [4]. For poly-
nomials of high degree, some definitions of nearness to [−1, 1] will classify a large
percentage of the eigenvalues as potential polynomial roots, significantly increasing
the number of function evaluations needed for equation residuals. The spurious eigen-
values are in a region in the complex plane in which Chebyshev polynomials of a given
degree are wildly unstable. We select only eigenvalues within a domain of interest;
here we discard eigenvalues outside of (−2, 2)× (−.2, .2). On the other hand, discard-
ing roots may also be discarding part of the answer. Real roots may be approximated
by complex eigenvalues near to [−1, 1]. For example, if the complex QR algorithm is
applied to the real matrix Bn (for robustness), the set of computed roots is not closed
under conjugation. The problem is addressed by using a partial condition number
of the eigenvalues. The condition number of an eigenvalue, ξ, is the product of two
terms, ‖fn(ξ)‖2 (defined in (1.3)) and a term that involves the Lagrange interpola-
tion polynomial whose support contains the eigenvalue. Our solution is to add a test
that discards ξ such that ‖fn(ξ)‖2 is enormous (compare the definition of cond max).
Chebyshev polynomials are wildly unstable in such regions in the complex plane. At
multiple roots near [−1, 1], the norm of the vector values of the orthogonal polynomial
evaluated at the roots is of order one and is not discarded.

The parameters are chosen here to avoid large numbers of spurious roots. No
attempt is made to find all of the roots of the polynomial.

n = 2^4; % polynomial degree

[CGLpoints, ChebTransMat] = setupChebyshev(n);

FunctValues = problemRod(CGLpoints); % evaluate @ CGL pts

ExpansionCoeff = FunctValues * ChebTransMat;

if ExpansionCoeff(n+1) == 0,

error(’leading expansion coefficient vanishes; try --n’);

end

ExpansionCoeff = ExpansionCoeff/(-2*ExpansionCoeff(n+1)); % normalize

H = diag(ones(n-1, 1)/2, 1) + diag(ones(n-1, 1)/2, -1); H(1, 2) = 1;

C = H; C(n, :) = C(n, :) + ExpansionCoeff(1:n); % nonstandard

Eigenvalues = eig( C ); % ...companion matrix

Vandermonde = evalCheb(n,Eigenvalues); % generalized...

Vcolsums = sum( abs(Vandermonde’) ); % Vandermonde matrix

tube_index = find((abs(imag(Eigenvalues))<.2) & ...

(abs(real(Eigenvalues))< 2));

Solutions = Eigenvalues( tube_index ); % Spectrum in

Vcolsums = Vcolsums( tube_index ); % ...(-2,2)x(-.2,.2)

cond_max = min( 2^(n/2), 10^6 ); % Cluster threshold

condEigs_index = find ( Vcolsums < cond_max ); % Select

Solutions = Solutions( condEigs_index ); % ...roots
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Suppose we want to find the roots of the polynomial

p(x) = eT0(x) + 2πT1(x) + 2γT2(x) − 2T3(x),

where γ = 0.57721566 . . . is Euler’s constant. The example corresponds to n = 3 at
line 1. Lines 2 and 3 are replaced by ExpansionCoeff = [e, 2π, 2γ,−2];. The roots
are approximately 1.44, −1.02, and −0.13. The two roots outside of [−1, 1] are due
to their large condition numbers (estimated by Vcolsums).

In the algorithm, three user supplied external functions are called. The func-
tion setupChebyshev() determines the CGL points and the matrix that transforms
function values to expansion coefficients.

function [cgl,CT] = setupChebyshev(n)

y = [0:n]*pi/n;

cgl = cos(y);

for i=0:n,

CT(i+1,:) = cos(y*i);

end

pp = ones(n+1,1); pp(1) = 1/2; pp(n+1) = 1/2;

CT = diag(pp) * CT * diag(pp);

CT = CT * (2/n); % End of function setupChebyshev

The function problemRod evaluates user functions at specified points in the do-
main. Here a problem associated with the vibration of an elastic rod is solved.

function functValues = problemRod(cgl)

[one, ncol] = size(cgl);

n = ncol-1;

first = cgl*3 + ones(1,n+1)*(3+1);

functValues = cos(first*pi) - sech(first*pi);

% End of function problemRod

The vector ExpansionCoeff is the vector of coefficients in the collocation ap-
proximation by Chebyshev polynomials of degree up to n. The function evalCheb
evaluates the Chebyshev polynomials at a specified set of points.

function V = evalCheb(degree_max,z)

% Input: vector of points, z, and the polynomial degree, degree_max.

% Output: Vandermonde matrix, m by degree_max + 1, V(j+1,k)=T_j(z_k)

[m,one] = size(z);

if m*degree_max >= 0,

V(:,1) = ones(m,1);

if degree_max >= 1,

V(:,2) = z;

if degree_max >= 2,

index = find( log(abs(z)) >= 100/degree_max ); % avoid

si = size(index,1); % overflow

if si > 0

z(index) = ones(si,1)*exp(100/degree_max);

end

for i=2:degree_max,

V(:,i+1) = V(:,i).*(2*z) - V(:,i-1);

end

end

end

else

V = [];

end % End of function evalCheb
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In practice, five figures are recommended for verification purposes. Graphs of
the expansion coefficients of the function and its derivative versus the indices are
useful for assessing convergence. The exponential decay of the expansion coefficients
indicates the convergence of the series to the transcendental equation. A plot of the
cubic spline interpolants at the CGL points to the function and its derivative over
the interval [−1, 1] is useful for detecting clusters of roots. Later the (real parts of
the) roots and the (real parts of the) derivative values at the roots may be overlaid
onto the respective graphs. In selecting the eigenvalues that approximate roots of
the polynomial or transcendental equation, it is helpful to compare the distribution
of the eigenvalues and the row sums of the generalized Vandermonde matrix. The
roots in [−1, 1] and the other roots appear as two sets that are easier to see than to
quantify. Finally one must check the transcendental equation residuals at the selected
eigenvalues.

5. Examples. We apply our rootfinding technique to Chebyshev expansions
arising in the solution of some transcendental equations. Two representative ap-
plications of the algorithm are discussed, followed by two more challenging applica-
tions. For a transcendental equation ψ(ξ) = 0 with clustered or multiple roots, an
added issue is that roots of pn(x) that are not near roots of ψ(x) appear among the
approximate solutions of ψ(ξ) = 0. Such problems demonstrate the importance of
monitoring ψ′(x). Examples 1 and 2 concern problems with well-separated simple
roots. For polynomials with multiple roots, pn(x) may very accurately approximate
ψ(x) and still have spurious roots near roots of ψ(x), as will be shown in Example 3.
Last, numerical experiments on computing the eigenvalues of Bn are discussed.

The methodology of the experiments is as follows. The number of function evalu-
ations is carefully minimized. The degree of the polynomial n is doubled. In fact n is
a power of 2 in the examples, except Example 2. Although doubling the polynomial
order with a spectral method is overkill, it is done here for two reasons. First, if the
function is evaluated at n points, it is possible to reuse the previous n/2 function
values [6], carefully minimizing the number of function evaluations. Second, we wish
to illustrate the properties of the nonstandard companion matrices for all values of
n, not just special values. We find that using excessively large values of n, up to 210,
does not effect the accuracy of the approximate roots in [−1, 1]. For transcendental
equations, we discuss at length the minimal values of n for which the series is (almost)
converged.

Example 1 concerns the transverse vibrations (u) of a homogeneous rod of length
π with both ends free ( u′′ and u′′′ vanish at endpoints). The first six flexible modes
are found by solving the secular equation cos(πx)− sech(πx) in the interval 1 ≤ x ≤ 7
[8, p. 296]. For n = 16 or n = 32 all six roots are approximated to within 5 or 14
significant digits, respectively.

Example 2 reproduces results from [6]. The roots of Bessel’s function of the first
kind, Jν(ξ) = 0, are computed without doubling the polynomial degree. In the first
numerical experiments J0(x) = 0 is solved over three intervals, [0, w], for w = 20, 60,
and 180; J0(x) has 6, 19, and 57 roots in the respective intervals. The computed roots
J0 are compared to the roots computed by a stable algorithm. Here we can exactly
reproduce the results of [6].

Example 3 originated in [20] and is the nonlinear eigenvalue problem for T (λ) =
λ2B(2) + (eλ − 1)B(1) −B(0). The transcendental equation here is detT (λ) = 0. The
determinant is evaluated by factoring T (λ) (not by Cramer’s rule). A large interval
is chosen to test the numerical stability of the rootfinding algorithm.
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Fig. 5.1. The function ψ(x) of Example 3 is approximated by a Chebyshev series p(x) of degree
128. The absolute values of the expansion coefficients of p(x) (dots) and p′(x) (squares) are plotted
on a logarithmic scale.

The problem is an example of an overdamped system. Each B(i) is symmetric pos-
itive definite. At λ = −∞, λ = 0, and λ = +∞ the normalized matrix T (λ)/‖T (λ)‖
is positive definite, negative definite, and positive definite. The matrices are 8 by 8
with B(0) = 100I8, and for 0 ≤ i, j < 8,

B
(1)
i,j = (i + 1)(j + 1)(9 − max(i + 1, j + 1)) and B

(2)
i,j = 8δi,j − 1/(i + j + 2).

Six roots are clustered near −3.7 with average absolute gap 0.1. As is carefully
documented in [4], the the exponential growth of detT (λ) as λ → +∞ impedes
resolution on certain intervals. The problem illustrates the rewards for choosing a
suitable interval. On the interval [−8, 8] in double precision arithmetic the roots of
the polynomial approximation of detT (λ) poorly approximate the solutions, but in
the interval [−8, 4], the roots of the polynomial approximation converge rapidly to
the solutions.

Another approach, pursued here, concerns the alternative scaled problem ψ(λ) =
det(T (Λ)/σ(λ)) for

σ(λ) = (detB(0))1/8 + (detB(1))1/8(eλ − 1) + (detB(2))1/8λ2.

The interval [−10, 10] containing all 16 of the roots is used. We will discuss in
detail the results obtained using a Chebyshev series expansions of degree 128 (see
Figure 5.1). Of the 128 eigenvalues, 108 are discarded and 20 are potential solutions
(see Figure 5.2).

Inspection of the graphs of the ψ(x) and ψ′(x), shown in Figures 5.3 and 5.4,
respectively, is helpful. In a large neighborhood of the root cluster around −3.7,
there holds |ψ| < 10−9 and |ψ′| < 10−5. A degree 128 polynomial is insufficient to
resolve each root in the cluster. On the other hand, with a degree 256 polynomial, 240
eigenvalues are discarded. The remaining 16 eigenvalues approximate the 16 roots,
each with residual norms below 10−13.
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Fig. 5.2. In Example 3 using a Chebyshev series of degree 128 results in a companion matrix
B128. The figure displays the eigenvalues of B128 in the complex plane. A “·” indicates each of the
108 discarded eigenvalues, and a “+” indicates each of the 20 potential roots.
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Fig. 5.3. The value of |p(x)| for −1 ≤ x ≤ 1 is shown on a logarithmic scale for the degree
128 Chebyshev series approximation of the function ψ(x) of Example 3. The function values at
CGL points (dots), a spline interpolant to the CGL points (dashed line), and the residuals at the 20
potential roots (squares) are each presented. A complex root ξ is displayed at x = �(ξ). Because of
this discrepancy, such function values appear above the spline interpolant in [−1, 1].

Before closing, we make an observation about accelerating the convergence of the
QR algorithm for computing the eigenvalues of Bn arising from the solution of tran-
scendental equations. Loosely speaking, a matrix is graded (by diagonal) if the norms
of the diagonals increase geometrically. Note that Bn is graded by diagonal. We have
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Fig. 5.4. Example 3, the absolute value the derivative |p′(x)| for −1 ≤ x ≤ 1 is shown on a
logarithmic scale for the degree 128 Chebyshev series approximation of the function ψ(x) of Exam-
ple 3. The function values at CGL points (dots), a spline interpolant to the CGL points (dashed
line), and the derivative values at the 20 potential roots (squares) are all shown. Complex roots are
displayed at the real part of the root, and because of this discrepancy, such function values differ
from the spline interpolant.

observed that the computed Schur form of Bn is also graded. Careful examination
of the QR iterates (say with zero shifts) from Bn (without balancing) indicates that
along with the accuracy of the computed eigenvalues, the graded structure is also
lost. Better results are obtained using the matrix MnB

T
nMT

n determined using the
antidiagonal matrix Mn = [μi,j ]0≤i,j<n with μi,j = δi,n−i−1. The matrix MnB

T
nMT

n

is similar to Bn and inherits its unreduced upper Hessenberg and graded structure.
We observe that the QR iteration applied to MnB

T
nMT

n (without balancing) preserves
the graded structure of Bn and converges in many fewer iterations.

6. Conclusion. We have shown how to find the roots of a degree n polynomial
p(x) expressed in terms of orthogonal polynomials. In particular, we have shown
that these roots are the eigenvalues of a nonstandard companion matrix Bn. This
companion matrix gets infinitely large as the highest order coefficient γn in our or-
thogonal expansion goes to zero. However, we have analyzed the numerical stability of
this algorithm for Jacobi polynomials and found that it has good numerical stability
properties as long as we are interested only in roots in the interval [−1, 1]. This makes
the algorithm particularly suited for finding the roots of transcendental equations.

We have presented an algorithm for finding the roots of a scalar transcendental
equation by expressing it in terms of orthogonal polynomials, and using the companion
matrix Bn. We have given several numerical examples that illustrate the stability of
this algorithm. For a more detailed summary, see section 1.1.
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A FINITE ELEMENT, MULTIRESOLUTION VISCOSITY METHOD
FOR HYPERBOLIC CONSERVATION LAWS∗
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Abstract. It is well known that the classic Galerkin finite element method is unstable when
applied to hyperbolic conservation laws such as the Euler equations for compressible flow. It is
also well known that naively adding artificial diffusion to the equations stabilizes the method but
sacrifices too much accuracy to be of any practical use. An elegant approach, referred to as spectral
viscosity methods, has been developed for spectral methods in which one adds diffusion only to the
high-frequency modes of the solution, the result being that stabilization is effected without sacrificing
accuracy. We extend this idea into the finite element framework by using hierarchical finite element
functions as a multifrequency basis. The result is a new finite element method for solving hyperbolic
conservation laws in which artificial diffusion can be applied selectively only to the high-frequency
modes of the approximation. As for spectral viscosity methods, this results in stability without
compromising accuracy. In the context of a one-dimensional scalar hyperbolic conservation law, we
prove the convergence of approximate solutions, obtained using the new method, to the entropy
solution of the conservation law. To illustrate the method, the results of a computational experiment
for a one-dimensional hyperbolic conservation law are provided.

Key words. hyperbolic conservation laws, finite element methods, multiresolution viscosity,
hierarchical basis functions
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1. Introduction. We consider a new finite element method, based on hierarchi-
cal basis functions and a scale-dependent artificial viscosity, for hyperbolic conserva-
tion laws. With respect to a given triangulation of a domain, standard nodal basis
functions are all of the same scale; i.e., their support is roughly equal. In contrast,
hierarchical basis functions can be clustered into groups such that basis functions
within a particular group are of a different scale from those of the other groups. The
multiscale nature of the hierarchical basis functions allows for the selective addition of
viscosity only at the smallest scales, very much in the spirit of spectral viscosity meth-
ods. It is hoped that such flexibility will be sufficient for stabilizing discrete Galerkin
finite element approximations while, at the same time, results in more accurate ap-
proximations with respect to both convergence rates in regions where the solution is
smooth and the sharpness of the resolution of discontinuities in the solution.

This paper is a first step at verifying that finite element methods based on hi-
erarchical basis functions and a scale-dependent artificial viscosity do indeed fulfill
the promise mentioned in the previous paragraph. We provide some background
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material and then describe the new method. We then analyze it for the case of a
one-dimensional, periodic, scalar hyperbolic conservation law, showing that, under
appropriate hypotheses, the approximate solution converges to the entropy solution
of the conservation law. We then provide a simple example of the use of the method.
Several issues concerning the efficient implementation of the new method as well as
the results of more extensive computational testing are provided in [3, 4].

1.1. Hyperbolic conservation laws. Let Ω ⊆ R
d be a bounded domain. A

general system of conservation laws has the form

∂q

∂t
+

d∑
j=1

∂

∂xj
fj (q) = 0 in Ω × (0,∞) and q (·, 0) = g in Ω(1.1)

along with appropriate boundary conditions. Here, q : Ω × [0,∞) → R
p denotes

the vector-valued conserved variable, fj : R
p → R

p, j = 1, . . . , d, denote the d flux
functions, and g : Ω → R

p denotes the given initial data. For q̃ ∈ R
p, let Aj (q̃) :

R
p → R

p×p denote the p× p Jacobian matrix of fj , i.e., Aj (q̃) =
∂fj
∂q (q̃). The system

(1.1) is hyperbolic if, for all solutions q, any linear combination of {Aj (q)}dj=1 has real

eigenvalues with eigenvectors that span R
p. The system (1.1) is strictly hyperbolic if

the eigenvalues are distinct. See, e.g., [8, 10] for details.
The system (1.1) does not, in general, have a classical solution because of the

spontaneous formation of discontinuities. Instead, one must look for a solution q ∈
L∞ (Ω × (0,∞) ; Rp) which satisfies (1.1) in the distributional sense:

∫ ∞

0

∫
Ω

[
q·∂φ

∂t
+

d∑
j=1

fj (q) · ∂φ

∂xj

]
dΩ dt +

∫
Ω

g·φ (·, 0) dΩ = 0(1.2)

for all test functions φ ∈ C∞
0 (Ω × [0,∞) ; Rp). It is clear that for a smooth enough

solution, (1.1) and (1.2) are equivalent.
In the presence of discontinuities, solutions of the system (1.1) or of the weak for-

mulation (1.2) are not uniquely determined. Additional conditions must be imposed
to determine the unique, physically relevant solution. The second law of thermody-
namics tells us that the entropy of the system should not decrease; satisfying this
requirement suffices to allow one to obtain the unique, physically relevant entropy
solution.

Let Φ, {Ψj}dj=1 : R
p → R be smooth functions; for (1.1), Φ is an entropy with

entropy fluxes {Ψj}dj=1 if Φ is convex and ∇qΦT ∂fj
∂q = ∇qΨj in R

p for 1 ≤ j ≤ d. A

simple calculation states that if q is a smooth solution to (1.1), then Φ (q) satisfies a
scalar conservation law with flux Ψ (q):

∂

∂t
Φ (q) +

d∑
j=1

∂

∂xj
Ψj (q) = 0 in R

d × (0,∞) .(1.3)

In some instances, Φ can be interpreted as the negative of the physical entropy, so
(1.3) says that if u is a smooth solution, then Φ ◦ q satisfies a conservation law with

flux functions {Ψj ◦ q}dj=1.
For solutions with discontinuities, we impose the entropy condition on q that

requires the physical entropy to be nondecreasing:

∂

∂t
Φ (q) +

d∑
j=1

∂

∂xj
Ψj (q) ≤ 0(1.4)
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for every entropy function Φ with entropy fluxes {Ψ}dj=1; (1.4) is an inequality in the
distributional sense:

∫ ∞

0

∫
Ω

[
Φ (q)

∂φ

∂t
+

d∑
j=1

Ψj (q)
∂φ

∂xj

]
dΩ dt ≥ 0 ∀φ ∈ C∞

0 (Ω × (0,∞)) , φ ≥ 0.

(1.5)

In (1.1), viscous effects are ignored. For the class of phenomena that are modeled
with hyperbolic conservation laws, viscous effects are generally small, but they are
present and play a role when sharp gradients (such as shocks) of the solution are
present. An alternate and equivalent means of characterizing the unique, physically
relevant solution of (1.1) is to let q = limε→0 qε a.e., where qε : Ω × [0,∞) → R

p is
the solution of the perturbed equation

∂qε

∂t
+

d∑
j=1

∂

∂xj
fj (qε) − εΔqε = 0 in Ω × (0,∞) and qε (·, 0) = g in Ω(1.6)

along with boundary conditions. In other words, the entropy solution is the limit of
the viscous solution as the viscosity goes to zero.

1.2. Numerical methods for hyperbolic conservation laws. Direct dis-
cretizations of (1.1) lead to unstable approximations. The most obvious stabilization
approach is to instead discretize the perturbed system (1.6) but, as is well known,
this leads to severe smearing of discontinuities and to low accuracy even in regions in
which the solution is smooth. Of course, there have been many methods proposed for
determining improved stabilized approximation solutions of hyperbolic conservation
laws; see, e.g., [6, 10,13,17,18,24,27].

Finite difference (FD) methods are the oldest of the numerical methods, so many
variations have been developed. Many successful strategies for solving hyperbolic con-
servation laws were originally developed in the FD framework then adapted to other
methods. However, FD schemes tend to have difficulties with complex geometries,
satisfying prescribed boundary conditions, and rigorous analyses. In fluid dynam-
ics, complex geometries are common, and, as shown in [6], poor approximation of
boundary conditions can severely affect a numerical method.

Finite volume (FV) methods inherently capture many of the important aspects
of conservation laws; FV methods are locally conservative. Information is propagated
along the characteristic curves, at least approximately. FV methods use unstructured
grids, so they can handle complex geometries. High-order schemes, however, are
difficult to attain.

Finite element (FE) methods are well suited to handle complex geometries and
prescribed boundary conditions. Formally high-order schemes can be defined by sim-
ply increasing the degree of the approximating polynomials used. The price paid is a
large increase in the number of unknowns. In discontinuous Galerkin (DG) methods
(see, e.g., [6]), no continuity restrictions are placed on the approximating solution,
which results in several advantages. DG methods are easy to parallelize; adaptive
strategies are relatively easy to implement; and the mass matrix is block diagonal,
so explicit time-stepping schemes are possible. The lack of continuity of solutions,
however, is also the cause of the biggest drawback of DG methods: The number of
unknowns is drastically increased compared to, say, nodal finite element methods and
other types of methods. The shock capturing streamline diffusion method adds a
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diffusion term to the conservation law, but unlike (1.6), diffusion is added in different
amounts in the direction of the characteristic curves (streamline diffusion) and its nor-
mal direction (crosswind diffusion). Streamline diffusion is added everywhere, while
crosswind diffusion is added only near discontinuities. To determine characteristic
curves, space-time elements must be used, which increases the number of unknowns
and results in an implicit time scheme. See [13,14,23].

Spectral methods, including the spectral viscosity (SV) method, provide another
class of methods. Since incorporating the ideas from the SV method into the FE
framework is the subject of this paper, we discuss SV methods in a little more detail
in section 1.2.1.

The distinctions between the various methods are not always sharp. Some FV
and FE schemes can be written into an equivalent FD formulation. As noted in [6],
some FV methods can be considered to be special types of DG methods. Furthermore,
there are other methods, e.g., kinetic methods [22], for hyperbolic conservation laws
that do not fall within the classes just mentioned.

1.2.1. Spectral viscosity methods. In [24], SV methods were introduced as
a scheme to obtain approximate solutions of the periodic Burgers equation using
Fourier spectral basis functions. The theory was further refined and extended in a
series of papers [5, 9, 12, 19, 20, 25, 26]. Of particular importance to us are [12, 19], in
which Legendre polynomials are used. The variational formulation of the Legendre
SV method is closest to our FE formulation.

We present the most basic SV method, which uses Fourier spectral basis functions.
Using standard notation from Fourier spectral methods, we define

uN = PNu (x, t) , PNu =
∑

|k|≤N

ûk (t) eikπx, ûk (t) =
1

2

∫ +1

−1

u (x, t) e−ikπx dΩ.

We seek uN such that

∂uN

∂t
+

∂

∂x

(
PN

uN
2

2

)
= ε

∂

∂x

(
QN

∂uN

∂x

)
.

QN denotes the spectral viscosity operator defined as a convolution with the viscosity
kernel, QN (x), so that

QN
∂uN

∂x
= QN (x) ∗ ∂uN (x, t)

∂x
and QN (x) =

∑
|k|≤N

Q̂ke
ikπx.

We choose 0 ≤ Q̂k ≤ 1 and Q̂k = 0 for small |k|. It is easy to see the effect of QN

if we write the diffusion term in Fourier space:

ε
∂

∂x

(
QN

∂uN

∂x

)
= −ε

∑
|k|≤N

(
k2 π2 Q̂k ûk e

ikπx
)
.

Since Q̂k = 0 for all but large |k|, QN dampens or eliminates the low frequency modes
of uN in the diffusion term. So, we see that the SV diffusion term is a compromise be-
tween not adding diffusion, which leads to instability, and adding full diffusion, which
limits the convergence rate and smears out discontinuities in the solution. Ideally,
one would like to add diffusion only in the vicinity of a discontinuity. However, the
global nature of the basis functions does not allow for an adaptive viscosity kernel.
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The SV solution uN does not converge to the exact solution u at the optimal rate
because of the poor convergence of PNu. PNu is limited to first-order convergence in
smooth regions and has O (1) Gibbs oscillations near a discontinuity. Post-processing
uN recovers spectral convergence. The post-processing scheme can be enhanced by
knowing the locations of discontinuities, as in [9]. Because of the global nature of
spectral basis functions, this edge detection task is not trivial.

1.3. Hierarchical finite element basis functions. The usual (nodal) basis
functions used in FE methods all have the same frequency. In order to have multi-
frequency basis functions, we use hierarchical basis functions. In the elliptic partial
differential equation setting, an early analysis of hierarchical basis functions, especially
in one dimension, is given in [31]. For two dimensions, see [29]. A good overview of
hierarchical basis functions can be found in [30].

First consider a polygonal domain Ω. Let T0 be a coarse grid approximation of
Ω. The nth-level triangulation Tn is obtained by subdividing the elements of Tn−1.
Let SN be the space of continuous functions which are polynomials of degree p on the
elements of TN . Let NN ⊆ Ω be the nodes of the elements of TN . The nodal basis
functions of SN are defined by φi ∈ SN such that φi (xj) = δij for all xj ∈ NN . It is
well known that SN = span {φi}i. The use of nodal bases leads to many nice numerical
properties, such as sparse matrices and the local assembly of matrices. However, we
cannot use the nodal bases for our purposes because, as we noted earlier, the elements
of {φi}i all have the same frequency.

Let Nn denote the nodes of the nth-level triangulation, Tn, Sn denote the corre-
sponding finite element space, and Bn denote the nodal basis of Sn. The hierarchical
basis functions are defined by

ψn,i ∈ Bn such that ψn,i (xj) = 0 ∀xj ∈ Nn−1.

For 0 ≤ n ≤ N , {ψn,i}n,i ⊆ SN is a linearly independent set with the same dimension

as SN , so SN = span {ψn,i}n,i. See Figure 1 for a comparison of the nodal and
hierarchical bases for linear elements in one dimension. As can be seen from the
figure, ψn,i is a low frequency function for small n and a high frequency function for
large n.

The strategy just outlined works for polynomials of any degree. For example,
the first column of Figure 2 consists of quadratic hierarchical basis functions. An
alternate strategy is to use linear hierarchical basis functions for n < N , as in the
second column of Figure 2.

In order to determine Tn+1 from Tn, we must decide, for a given T ∈ Tn, how many
subelements to divide T into. For linear and quadratic rectangular-type elements in
R

d, the natural choice is 2d subelements. For cubic elements, the natural choice is
3d since the vertices of an element will then be a subset of the vertices of its parent.
Here, we limit our attention to linear and quadratic basis functions.

For domains with curved boundaries, the situation is more complicated. Let
Ω be our potentially complicated domain. One strategy is to use the hierarchical
decomposition of some polygonal domain Ω′ such that Ω ⊆ Ω′, as in [15]. Another
strategy is to try and impose a hierarchical structure on an unstructured mesh, as
in [1]. The hierarchical structure could also be imposed on the mapping of Ω to a
polygonal domain.

Several important properties of hierarchical finite element basis functions and
several issues that arise in efficient implementations of finite element methods based
on these kinds of bases are discussed in [3, 4].
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Fig. 1. Hierarchical (left) and nodal (right) linear basis functions spanning the same nine-
dimensional finite element space.

2. Finite element multiresolution viscosity method. Assume we have a
hierarchical sequence of partitions {Tn}Nn=0 of the open bounded set Ω ⊆ R

d. Let
SN be the space of continuous vector-valued functions whose components are in SN .
We seek an approximate solution to the hyperbolic conservation law (1.1). The finite
element multiresolution viscosity method is defined as follows: seek qN ∈ SN such
that

d

dt

∫
Ω

qN · v dΩ +

d∑
j=1

∫
Ω

∂

∂xj
fj
(
qN

)
· v dΩ

+εN

p∑
i=1

d∑
j,k=1

∫
Ω

∂

∂xj

(
Qj,k

N qNi

) ∂vi
∂xk

dΩ

−εN

p∑
i=1

d∑
j,k=1

∫
∂Ω

∂

∂xj

(
Qj,k

N qNi

)
vi n̂k ds = 0 ∀v ∈ SN ,

(2.1)

where n̂ is the unit normal to the boundary ∂Ω of Ω. As in the SV method, Qj,k
N is

chosen to dampen or eliminate the low frequency modes of a function:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qj,k
N : SN → SN ,

N∑
n=0

∑
i

βn,i ψn,i �→
N∑

n=0

∑
i

Qj,k
N ;n,i βn,i ψn,i,

0 ≤ Qj,k
N ;n,i ≤ 1, and Qj,k

N ;n,i =

{
0 for small n (n near 0),

1 for large n (n near N).

(2.2)
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Fig. 2. Two sets (left and right) of quadratic hierarchical basis functions spanning the same
17-dimensional, quadratic finite element space.

To account for boundary conditions imposed along with (1.1), a subspace of SN might
need to be used (for essential boundary conditions) or the boundary integral in (2.1)
might be reduced to one over part of ∂Ω (for natural boundary conditions).

Equation (2.1) is a weak formulation of the modified system

∂q

∂t
+

d∑
j=1

∂

∂xj
fj (q) − εN

d∑
j,k=1

∂2

∂xj∂xk

(
Qj,k

N q
)

= 0,(2.3)

where [Qj,k
N q]i = Qj,k

N qi for 1 ≤ i ≤ p. The dependence of Qj,k
N on both j and k allows

for the flexibility of introducing directional bias in the diffusion which can result
in reduced crosswind diffusion. As in the streamline diffusion method, this would
probably require the use of entropy variables. Here, we simplify our formulation by
using an isotropic diffusion term, QN , such that

Qj,k
N ;n,i = QN ;n,i δj,k.

Then, (2.1) and (2.3), respectively, reduce to

d

dt

∫
Ω

q · v dΩ +

d∑
j=1

∫
Ω

∂

∂xj
fj (q) · v dΩ + εN

∫
Ω

∇ (QNq) : ∇v dΩ

−εN

∫
∂Ω

∂

∂n
(QNq) · v ds = 0 ∀v ∈ SN

(2.4)



A MULTIVISCOSITY FEM FOR HYPERBOLIC PDEs 1995

and

∂q

∂t
+

d∑
j=1

∂

∂xj
fj (q) − εNΔ (QNq) = 0.

After choosing a time discretization technique, (2.4) is equivalent to a nonlinear
system of equations that may be solved, e.g., by Newton’s method. The relevant
Jacobian matrix has the form JH = J̃H + KHQ, where J̃H is the Jacobian of the
time dependent and flux terms, KH is the Laplacian stiffness matrix, and Q is a
diagonal matrix whose nonzero elements are

{
QN ;n,i

}
. For ease of presentation, we

have ignored the boundary term. Note that for an explicit time integration method,
the Jacobian matrix reduces to the mass matrix.

The solution of the discrete equations resulting from our hierarchical finite element
discretization may be implemented using matrices arising from the corresponding
nodal basis. See [3, 4] for details. Here, we merely observe that the Jacobian matrix

JH and residual vector 	RH may be expressed, respectively, in terms of their nodal
basis counterparts JD and 	RD through the relations JH = ST (J̃DS + KDSQ) and
	RH = ST 	RD, where S is the change of basis matrix such that 	XD = S 	XH . The
determination of (JH)−1 	RH = (J̃DS + KDSQ)−1 	RD by an iterative solver then

requires the calculation of the matrix-vector multiplication (J̃DS + KDSQ) 	X and

possibly (J̃DS + KDSQ)T 	X that only involve the nodal matrices J̃D and KD and

the transfer matrix S. Compared to KD and J̃D, S is not sparse, so one does not
want to explicitly construct S. So, making the iterative linear solvers efficient requires
being able to calculate S 	X and ST 	X quickly. Algorithms for this purpose can be found
in [3, 4].

2.1. Advantages of hierarchical bases. We use hierarchical bases (instead of
nodal bases) because of their multifrequency property. Nodal bases, however, have
important computational advantages such as producing matrices that are much more
sparse and that can be locally assembled. However, as just discussed, one can retain
most of the advantages of the nodal bases. One assembles and stores all of the system
matrices as nodal basis matrices and uses the transfer matrix S in an iterative linear
solver; S does not even have to be stored.

In the SV method, there is only one function, with global support, at a given
frequency. In the hierarchical FE formulation, there are many functions, with local
support, at a given frequency. Compared to SV methods, the hierarchical FE for-
mulation offers two advantages: Diffusion can be added locally, and edge detection is
trivial. For large values of n, the hierarchical basis function ψn,i has local support,

so Qj,k
N ;n,i only has a local effect. One can therefore add more diffusion near a discon-

tinuity and less or no diffusion in smooth regions. This should improve the accuracy
of the method. As we are about to see, the size of |βn,i| (where βn,i is the coefficient
of ψn,i in the hierarchical basis expansion of a function; see (2.2)) can be used to
determine if the support of ψn,i resides in a smooth region or is near a discontinuity.

2.1.1. Edge detection. Using hierarchical bases, edge detection is a trivial
task. Near a discontinuity, the high frequency hierarchical coefficients are of order
one. In smooth regions, they shrink exponentially. Figure 3 illustrates a hierarchical
decomposition of a piecewise smooth function containing a discontinuity. One can
easily determine the location of discontinuities by looking at the magnitude of the
coefficients of the high frequency basis functions.
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Fig. 3. Hierarchical decomposition of a piecewise smooth function with a discontinuity.

( x
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(x
k,i+1

, u(x
k,i+1

))

β
k+1,j

Fig. 4. Determination of a linear hierarchical coefficient from function values.

Edge detection for piecewise linear polynomials. Let us examine the behavior of
the hierarchical coefficients for linear hierarchical basis functions. As one can see in
Figure 4, βk+1,j can be calculated from the value of the function u at xk+1,j and at
the node points of the parent cell. For a uniform partition, the cell size at level k is
Δxk = |Ω| 2−k. Thus, xk+1,j − xk,i = xk,i+1 − xk+1,j = Δxk+1 and

βk+1,j =
u (xk+1,j) − u (xk,i)

2
− u (xk,i+1) − u (xk+1,j)

2
.(2.5)

Let Tk,i = (xk,i, xk,i+1).
Assume that u is discontinuous and has a discontinuity in Tk,i. Then, at least

one of the two terms in (2.5) will have a relatively large value so that |βk+1,j | will be
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of the same order as the jump of u, independent of k.
Now, assume that u is continuously differentiable, i.e., u ∈ C1(Tk,i). Then, since

(2.5) can be written as

βk+1,j =
|Ω|
4

2−k

(
u (xk+1,j) − u (xk,i)

xk+1,j − xk,i
− u (xk,i+1) − u (xk+1,j)

xk,i+1 − xk+1,j

)
,

the mean value theorem yields that

βk+1,j =
|Ω|
4

2−k [u′ (x̃1) − u′ (x̃2)](2.6)

for some x̃1, x̃2 ∈ Tk,i. Therefore, βk+1,j is of order 2−k, i.e.,

|βk+1,j | ≤ |Ω| ‖u′‖L∞(Tk,i)
2−k−1

so that it decays exponentially with k.
If u is twice continuously differentiable, i.e., u ∈ C2(Tk,i), the mean value theorem

applied to (2.6) yields that

βk+1,j = −|Ω|
4

2−k (x̃2 − x̃1) u′′ (x̃)

for some x̃ ∈ Tk,i. Therefore, βk+1,j is of order 4−k, i.e.,

|βk+1,j | ≤
|Ω|
4

|x̃2 − x̃1| |u′′ (x̃)| 2−k ≤ |Ω|2 ‖u′′‖L∞(Tk,i)
4−k−1

so that it again decays exponentially with k.
Similar results can be obtained for quadratic hierarchical basis function; see [3,4].

3. Convergence to entropy solutions for one-dimensional scalar con-
servation laws. In this section, we prove that the solution of the hierarchical finite
element discretization introduced in section 2 converges to the entropy solution of
the one-dimensional, periodic Burgers equation. We will make use of the method of
compensated compactness; in particular, we will use the div-curl lemma [7,21,28] and
Murat’s lemma [7,13,19,21,28]. The broad outlines of the proof follow that of [24].

3.1. The periodic, one-dimensional Burgers equation. Let Ω = (a, b) be
an open bounded interval and let ΩT = (a, b) × (0, T ) for some finite time interval
(0, T ). We seek a finite element (FE) approximation to u (x, t), the entropy solution
of the periodic hyperbolic conservation law:

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 in ΩT ,(3.1)

u (a, t) = u (b, t) in (0, T ), and u (x, 0) = g in (a, b),(3.2)

along with the entropy condition

∂

∂t

(
u2

2

)
+

∂

∂x

(
u3

3

)
≤ 0 in ΩT ,(3.3)

where (3.1) and (3.3) hold in the distributional sense. We will assume the g ∈ H1 (a, b)
and that g is space-periodic. The entropy solution of Burgers’ equation can be found
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using (3.3) instead of the more general entropy condition (1.4). This greatly simplifies
our analysis since we now require an entropy-type inequality for one entropy/entropy

flux pair, (u
2

2 , u3

3 ), instead of all of them. A weak form of the problem (3.1) is given
by ∫

ΩT

(
ϕ
∂u

∂t
+ ϕ

∂

∂x

(u2

2

))
dx dt = 0 ∀ϕ ∈ C∞

0 (ΩT ).(3.4)

Correspondingly, (3.3) can be expressed in the weak form
∫

ΩT

(
ϕ
∂

∂t

(u2

2

)
+ ϕ

∂

∂x

(u3

3

))
dx dt ≤ 0 ∀ϕ ∈ C∞

0 (ΩT ), ϕ ≥ 0.(3.5)

3.1.1. The hierarchical finite element discretization. To formulate the FE
approximation, we need some notation. Let T0 = (a, b); TN is obtained by subdivid-
ing the elements of TN−1 into M distinct elements. Let |b− a|hN be the maximal
diameter of the elements of TN . Since we assume that the partition is quasi-uniform,
there exists a positive constant ν such that M−N ≤ hN ≤ νM−N for all N .

Let {ψk,i}k,i be a hierarchical basis of SN
p . Let us define QN : SN

p → SN
p as a

damping operator QNuN =
∑

k,i (Qk,i βk,i ψk,i) for u =
∑

k,i (βk,i ψk,i) ∈ SN
p , where

0 ≤ Qk,i ≤ 1 and Qk,i = 1 for k > mH . Thus, QN dampens (or eliminates) the
low frequencies of a function while keeping the high frequencies above the level mH .
Occasionally, when the level of a basis function is unimportant, we will switch to
the less cumbersome notation {ψi}i and {Qi}i for the basis functions and damping
coefficients, respectively.

We will also use the following convention: C will denote any positive constant
which depends on known quantities and is independent of any indexing variables.

Let gN ∈ SN
p be the interpolant of g. The hierarchical finite element approxima-

tion of (3.1)–(3.2) is given by the following: seek uN (x, t) with uN (·, 0) = gN such
that, for all v ∈ SN

p ,

∫ b

a

[
∂uN

∂t
+

∂

∂x

(
uN

2

2

)]
v dx + εN

∫ b

a

[
∂

∂x
(QNuN )

∂v

∂x

]
dx = 0.(3.6)

3.2. Convergence theorem. We prove the following convergence results for
hierarchical finite element approximations of the entropy solution of (3.1) and (3.2).

Theorem 3.1. Let {uN}∞N=0 denote a sequence of hierarchical finite element
approximations determined by (3.6). Assume that ‖uN‖L∞(ΩT ) ≤ C and assume that

εN , hN → 0 as N → ∞,(3.7)
εN
hN

≥ C,(3.8)

√
εN

∥∥∥∥ ∂

∂x
[(I −QN ) vN ]

∥∥∥∥
L2(a,b)

≤ C ‖vN‖L2(a,b) for vN ∈
{
uN ,

∂uN

∂t

}
,(3.9)

∥∥∥∥ d

dx
(QNgN )

∥∥∥∥
L2(U)

≤ C

∥∥∥∥dgNdx
∥∥∥∥
L2(U)

.(3.10)

Then, there exists a subsequence of {uN}∞N=0 that converges strongly in L2(ΩT ) to a
solution u ∈ L2(ΩT ) of (3.1) and (3.2). Further, assume that

εN
hN

→ ∞ as N → ∞ and(3.11)
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√
εN

∥∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥∥
L2(a,b)

→ 0 as N → ∞.(3.12)

Then the subsequence of {uN}∞N converges strongly in L2(ΩT ) to the entropy solution
of (3.1) and (3.2), i.e., to the solution of (3.1)–(3.3).

For the moment, we assume that (3.7)–(3.12) hold, and we prove, in sections 3.3
to 3.7, the theorem. Subsequently, in section 3.8, we will show that these conditions
are satisfied in our context.

3.3. Existence of the finite element approximation. The discrete FE equa-
tions (3.6) are equivalent to the following: seek 	α : (0, T ) → R

s, where s = dimSN
p ,

such that

	̇α + M−1 	F (	α) + M−1 KQ	α = 	0,(3.13)

where M is the mass matrix, K is the stiffness matrix, Q is a diagonal matrix whose

elements are {Qi}, and 	F is the flux term: [	F (	α)]i =
∫ b

a
ψi

1
2

∂
∂x

(∑
j αj ψj

)2
dx =

	αTAi	α, where Ai is the symmetric matrix (Ai)j,k = 1
2

∫ b

a
ψi

∂
∂x (ψj ψk) dx. Evidently,

the diffusion term is globally Lipschitz continuous. We now show that the flux term
is locally Lipschitz continuous. For all 	α, 	β ∈ R

s and all i,∣∣∣[	F (	β) − 	F (	α)
]
i

∣∣∣ =
∣∣	βT Ai

	β − 	αT Ai 	α
∣∣ =

∣∣(	β + 	α)T Ai (	β − 	α)
∣∣

≤ ‖	β + 	α‖2‖Ai‖2‖	β − 	α‖2 ≤
√
s‖	β + 	α‖2‖Ai‖2‖	β − 	α‖∞

so that ‖	F (	β)− 	F (	α)‖∞ ≤
√
s‖	β + 	α‖2 max1≤i≤s ‖Ai‖2‖	β − 	α‖∞. Since ‖Ai‖2 and s

are independent of 	α and 	β, the flux term is locally Lipschitz continuous for any T .
Lipschitz continuity together with |	α (t)| < ∞, by (3.15) and (3.17), yields that

there exists a unique 	C1 [0, T ] solution of (3.13) or, equivalently, of (3.6).

3.4. Estimates for uN . In (3.6), choose v = uN ; then

∫ b

a

[
∂

∂t

(
uN

2

2

)
+

∂

∂x

(
uN

3

3

)]
dx + εN

∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx = 0.

Since uN is periodic,
∫ b

a
∂
∂x

(
uN

3

3

)
dx = 0 so that

1

2

d

dt
‖uN‖2

L2(a,b) + εN

∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx = 0.(3.14)

3.4.1. H1 (ΩT ) estimates for uN for linear polynomials. The elements
of the piecewise linear hierarchical basis are orthogonal with respect to the H1 (a, b)
seminorm. As a result,

∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx =

∑
i

∑
j

Qiβiβj

∫ b

a

ψ′
iψ

′
j dx

=
∑
i

Qiβ
2
i

∫ b

a

(ψ′
i)

2
dx ≥

∑
i

Q2
iβ

2
i

∫ b

a

(ψ′
i)

2
dx

=
∑
i

∑
j

QiQjβiβj

∫ b

a

ψ′
iψ

′
j dx =

∥∥∥ ∂

∂x
(QNuN )

∥∥∥2

L2(a,b)
.
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Integrating (3.14) over time, we obtain

C ‖g‖2
L2(a,b) ≥ ‖gN‖2

L2(a,b) = ‖uN (·, t)‖2
L2(a,b) + 2εN

∫ t

0

∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx dt

≥ ‖uN (·, t)‖2
L2(a,b) + 2εN

∫ t

0

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥
2

L2(a,b)

dt

so that

‖uN‖L2(ΩT ) ≤ C
√
T ‖g‖L2(a,b) ,

√
εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(ΩT )

≤ C ‖g‖L2(a,b) .(3.15)

3.4.2. H1 (ΩT ) estimates for uN for quadratic polynomials. The quadratic
hierarchical basis functions are not orthogonal, but we can still obtain an estimate
similar to (3.15). We now have that

∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx =

∫ b

a

∂

∂x
(QNuN )

∂

∂x
(QNuN ) dx

+

∫ b

a

∂

∂x
(QNuN )

∂

∂x
[(I −QN )uN ] dx

≥
∫ b

a

∣∣∣∣ ∂∂x (QNuN )

∣∣∣∣
2

dx

−1

2

∫ b

a

∣∣∣∣ ∂∂x (QNuN )

∣∣∣∣
2

dx− 1

2

∫ b

a

∣∣∣∣ ∂∂x [(I −QN )uN ]

∣∣∣∣
2

dx

=
1

2

∥∥∥ ∂

∂x
(QNuN )

∥∥∥2

L2(a,b)
− 1

2

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥2

L2(a,b)

≥ 1

2

∥∥∥ ∂

∂x
(QNuN )

∥∥∥2

L2(a,b)
− C

2 εN
‖uN‖2

L2(a,b) .

Substituting this result into (3.14), we obtain

d

dt
‖uN‖2

L2(a,b) ≤ C ‖uN‖2
L2(a,b) − εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥2

L2(a,b)
.(3.16)

We require a nonstandard formulation of the differential form of Gronwall’s in-
equality. A proof is given in [8].

Lemma 3.2. Let η (t) be an absolutely continuous function on [0, T ] such that for
a.e. t ∈ [0, T ], η′ (t) ≤ φ (t) η (t)+ψ (t), where φ (t) and ψ (t) are summable functions

on [0, T ]. Then, η (t) ≤ e
∫ t
0
φ(r) dr[η (0) +

∫ t

0
e−

∫ s
0
φ(r) drψ (s) ds] ∀ t ∈ [0, T ].

Let us now assume that φ = C is a positive constant, and ψ ≤ 0 is never positive.
We then have

η (t) ≤ eCt

[
η (0) +

∫ t

0

e−Csψ (s) ds

]

≤ eCt

[
η (0) +

∫ t

0

e−Ctψ (s) ds

]
= eCt η (0) +

∫ t

0

ψ (s) ds.

Using this result with (3.16), we obtain

‖uN‖2
L2(a,b) ≤ eCt ‖gN‖2

L2(a,b) − εN

∫ t

0

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥
2

L2(a,b)

ds.
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Since ‖gN‖L2(a,b) ≤ C ‖g‖L2(a,b),

‖uN‖2
L2(a,b) + εN

∫ t

0

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥
2

L2(a,b)

ds ≤ CeCt ‖g‖2
L2(a,b) .

Therefore, we have that⎧⎪⎨
⎪⎩

‖uN‖L2(ΩT ) ≤ C
√
eCT − 1 ‖g‖L2(a,b),

√
εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(ΩT )

≤ C
√
eCT ‖g‖L2(a,b) .

(3.17)

3.5. Strong convergence of {uN}. Let vN = (uN
2

2 , uN ) and wN = (uN
2

2 ,−uN
3

3 )
so that

divvN =
∂uN

∂t
+

∂

∂x

(
uN

2

2

)
and curlwN =

∂

∂t

(
uN

2

2

)
+

∂

∂x

(
uN

3

3

)
.

3.5.1. L2 (ΩT ) bound on {div vN}. In (3.6), choose v = ∂uN

∂t ; then

∫ b

a

∣∣∣∣∂uN

∂t

∣∣∣∣
2

dx +

∫ b

a

∂

∂x

(
u2
N

2

)
∂uN

∂t
dx = − εN

∫ b

a

∂

∂x
(QNuN )

∂2uN

∂x∂t
dx

=− εN

∫ b

a

∂

∂x
(QNuN )

∂2

∂x∂t
(QNuN ) dx

−εN

∫ b

a

∂

∂x
(QNuN )

∂2

∂x∂t
[(I −QN )uN ] dx

=− εN
2

∫ b

a

∂

∂t

{[ ∂

∂x
(QNuN )

]2}
dx− εN

∫ b

a

∂

∂x
(QNuN )

∂2

∂x∂t
[(I −QN )uN ] dx

≤− εN
2

∫ b

a

∂

∂t

{[ ∂

∂x
(QNuN )

]2}
dx

+εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(a,b)

∥∥∥ ∂2

∂x∂t
[(I −QN )uN ]

∥∥∥
L2(a,b)

≤− εN
2

∫ b

a

∂

∂t

{[ ∂

∂x
(QNuN )

]2}
dx + C

√
εN

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥
L2(a,b)

∥∥∥∂uN

∂t

∥∥∥
L2(a,b)

≤− εN
2

∫ b

a

∂

∂t

{[
∂

∂x
(QNuN )

]2
}

dx + C
∥∥∥∂uN

∂t

∥∥∥
L2(a,b)

≤− εN
2

∫ b

a

∂

∂t

{[ ∂

∂x
(QNuN )

]2}
dx + C2 +

1

4

∥∥∥∂uN

∂t

∥∥∥2

L2(a,b)
.

Rearranging terms in the last expression, we obtain

3

4

∥∥∥∥∂uN

∂t

∥∥∥∥
2

L2(a,b)

+
εN
2

d

dt

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥
2

L2(a,b)

− C ≤ −
∫ b

a

∂

∂x

(
u2
N

2

)
∂uN

∂t
dx

≤
∥∥∥ ∂

∂x

(
u2
N

2

)∥∥∥
L2(a,b)

∥∥∥∂uN

∂t

∥∥∥
L2(a,b)

≤
∥∥∥ ∂

∂x

(
u2
N

2

)∥∥∥2

L2(a,b)
+

1

4

∥∥∥∂uN

∂t

∥∥∥2

L2(a,b)
.

Rearranging terms again, we obtain∥∥∥∥∂uN

∂t

∥∥∥∥
2

L2(a,b)

≤ C − εN
d

dt

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥
2

L2(a,b)

+ 2

∥∥∥∥ ∂

∂x

(
u2
N

2

)∥∥∥∥
2

L2(a,b)

.
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Integrating over time, we obtain

∥∥∥∥∂uN

∂t

∥∥∥∥
2

L2(ΩT )

≤ C + 2

∫
ΩT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣
2

dx dt

− εN

∥∥∥∥ ∂

∂x
(QNuN (·, T ))

∥∥∥∥
2

L2(a,b)

+ εN

∥∥∥∥ d

dx
(QNgN )

∥∥∥∥
2

L2(a,b)

(3.18)

≤ C + 2

∫
UT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣
2

dx dt + εN

∥∥∥∥ d

dx
(QNgN )

∥∥∥∥
2

L2(a,b)

(3.19)

≤ C + 2

∫
UT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣
2

dx dt + C εN

∥∥∥∥dgNdx
∥∥∥∥

2

L2(a,b)

(3.20)

≤ C + 2

∫
UT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣
2

dx dt + C εN

∥∥∥∥dgdx
∥∥∥∥

2

L2(a,b)

.(3.21)

Now,

∫
ΩT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣
2

dx dt =

∫
ΩT

|uN |2
∣∣∣∣∂uN

∂x

∣∣∣∣
2

dx dt

≤ ‖uN‖2
L∞(ΩT )

∥∥∥∥∂uN

∂x

∥∥∥∥
2

L2(ΩT )

≤ C

εN
.

(3.22)

Combining the last two results, we obtain εN‖∂uN

∂t ‖2
L2(a,b) ≤ C

(
1 + εN + εN

2
)

so that

√
εN

∥∥∥∥∂uN

∂t

∥∥∥∥
L2(ΩT )

≤ C.(3.23)

Combining (3.22) and (3.23), we obtain

√
εN

∥∥∥div vN

∥∥∥
L2(ΩT )

=
√
εN

∥∥∥∂uN

∂t
+

∂

∂x

(
uN

2

2

)∥∥∥
L2(ΩT )

≤ √
εN

∥∥∥∂uN

∂t

∥∥∥
L2(ΩT )

+
√
εN

∥∥∥ ∂

∂x

(
uN

2

2

)∥∥∥
L2(ΩT )

≤ C.

3.5.2. {div vN} lies in a compact subset of H−1 (ΩT ). Let ϕ̃ ∈ H1
0 (ΩT ).

For all t ∈ (0, T ), let ϕ̃N (·, t) ∈ SN
p ∩H1

0 (a, b) be the H1 (a, b) projection of ϕ̃ so that

∫ b

a

∂ϕ̃N (·, t)
∂x

∂v

∂x
dx =

∫ b

a

∂ϕ̃ (·, t)
∂x

∂v

∂x
dx ∀ v ∈ SN

p ∩H1
0 (a, b) .

We need the H1(a, b) projection into SN
p of an arbitrary ϕ̃ ∈ H1

0 (ΩT ) in order to use
our FE formulation:∫

ΩT

(div vN ) ϕ̃ dx dt =

∫
ΩT

(div vN ) ϕ̃N dx dt +

∫
ΩT

(div vN ) (ϕ̃− ϕ̃N ) dx dt

= −εN

∫
ΩT

∂

∂x
(QNuN )

∂ϕ̃N

∂x
dx dt +

∫
ΩT

(div vN ) (ϕ̃− ϕ̃N ) dx dt

= −εN

∫
ΩT

∂

∂x
(QNuN )

∂ϕ̃

∂x
dx dt +

∫
ΩT

(div vN ) (ϕ̃− ϕ̃N ) dx dt



A MULTIVISCOSITY FEM FOR HYPERBOLIC PDEs 2003

≤ εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(ΩT )

∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

+ ‖div vN‖L2(ΩT ) ‖ϕ̃− ϕ̃N‖L2(ΩT )

≤ εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(ΩT )

∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

+ C hN ‖div vN‖L2(ΩT )

∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

≤ C

(√
εN +

hN√
εN

) ∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

= C
√
εN

(
1 +

hN

εN

) ∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

.

From (3.8), we have that hN

εN
≤ C so that

∫
ΩT

(divvN ) ϕ̃ dx dt ≤ C
√
εN

∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

.(3.24)

Let ϕ̃ ∈ H1
0 (ΩT ) with ‖ϕ̃‖H1(ΩT ) ≤ 1. Then, from (3.24), we have that

‖div vN‖H−1(ΩT ) ≤ C
√
εN → 0 as N → ∞

so that {divvN} lies in a compact subset of H−1 (ΩT ).

3.5.3. {curl wN} lies in a compact subset of H−1 (ΩT ). Let ϕ ∈ C∞
0 (ΩT )

be a test function. Since uN ϕ ∈ H1
0 (ΩT ), we can choose ϕ̃ = uNϕ in (3.24). Then,∫

ΩT

(curl wN )ϕdx dt =

∫
ΩT

(div vN )uN ϕdx dt

≤ C
√
εN

∥∥∥ ∂

∂x
(uNϕ)

∥∥∥
L2(ΩT )

= C
√
εN

∥∥∥uN
∂ϕ

∂x
+ ϕ

∂uN

∂x

∥∥∥
L2(ΩT )

≤ C
√
εN

(∥∥∥uN
∂ϕ

∂x

∥∥∥
L2(ΩT )

+
∥∥∥ϕ∂uN

∂x

∥∥∥
L2(ΩT )

)

≤ C
√
εN

(
‖uN‖L∞(ΩT )

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

+ ‖ϕ‖L∞(ΩT )

∥∥∥∂uN

∂x

∥∥∥
L2(ΩT )

)

≤ C
(√

εN

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

+ ‖ϕ‖L∞(ΩT )

)
.

Using a variational form of Murat’s lemma [13, 19] gives, from the last result, that
{curlwN} lies in a compact subset of H−1 (ΩT ).

3.5.4. Strong convergence in L2 (ΩT ) of a subsequence of {uN}. Since
‖uN‖L∞(ΩT ) ≤ C, there exists a subsequence {uNk

} of {uN} such that for 1 ≤ p ≤ 4,

{up
Nk

} converges weakly in L2(ΩT ). Let u(p) ∈ L2(ΩT ) be the weak limit of up
Nk

.
Then, vNk

and wNk
converge weakly:

vNk
⇀

(
u(2)

2
, u(1)

)
=: v and wNk

⇀

(
u(2)

2
,−u(3)

3

)
=: w.

By the div-curl lemma [7,21,28], we have

lim
k→∞

∫
ΩT

(vNk
· wNk

)ϕdx dt =

∫
ΩT

(v · w)ϕdx dt ∀ϕ ∈ C∞
0 (ΩT ) .(3.25)

For all ϕ ∈ C∞
0 (ΩT ),

lim
k→∞

∫
ΩT

(vNk
· wNk

)ϕdx dt = lim
k→∞

∫
ΩT

(
uNk

4

4
− uNk

4

3

)
ϕdx dt

= lim
k→∞

∫
ΩT

−uNk
4

12
ϕdx dt =

∫
ΩT

−u(4)

12
ϕdx dt.

(3.26)
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For the right-hand side of (3.25) we have∫
ΩT

(v·w)ϕdx dt =

∫
ΩT

(
1

4

(
u(2)

)2

− 1

3
u(1) u(3)

)
ϕdx dt.(3.27)

Combining (3.25)–(3.27) yields that

u(4) = 4u(1) u(3) − 3
(
u(2)

)2

a.e.,

which can be used to show that uNk
converges strongly to u(1) in L2 (ΩT ). First, we

have(
uNk

− u(1)
)4

= uNk

4 − 4uNk

3 u(1) + 6uNk

2
(
u(1)

)2

− 4uNk

(
u(1)

)3

+
(
u(1)

)4

.

Taking the weak limit of both sides of the last equation, we have that

w − limk→∞

(
uNk

− u(1)
)4

= u(4) − 4u(3) u(1) + 6u(2)
(
u(1)

)2

− 4
(
u(1)

)4

+
(
u(1)

)4

= 4u(1) u(3) − 3
(
u(2)

)2

− 4u(3) u(1) + 6u(2)
(
u(1)

)2

− 4
(
u(1)

)4

+
(
u(1)

)4

= −3
(
u(2)

)2

+ 6u(2)
(
u(1)

)2

− 3
(
u(1)

)4

= −3

[
u(2) −

(
u(1)

)2
]2

≤ 0.

Then

0 ≤ lim
k→∞

∫
ΩT

(
uNk

− u(1)
)4

dx dt =

∫
ΩT

−3

[
u(2) −

(
u(1)

)2
]2

dx dt ≤ 0.

We now have u(2) =
(
u(1)

)2

a.e., which gives us

∥∥∥u(1)
∥∥∥2

L2(ΩT )
=

∫
ΩT

u(2) dx dt = lim
k→∞

∫
ΩT

uNk

2 dx dt = lim
k→∞

‖uNk
‖2
L2(ΩT ) .

Therefore, u := u(1) is the strong limit of uNk
in L2 (ΩT ).

3.6. Convergence to a solution of the hyperbolic conservation law. We
now show that u is a solution of the conservation law (3.4). For all test functions
ϕ ∈ C∞

0 (ΩT ),∫
ΩT

[
∂u

∂t
ϕ +

∂

∂x

(
u2

2

)
ϕ

]
dx dt = −

∫
ΩT

[
u
∂ϕ

∂t
+

u2

2

∂ϕ

∂x

]
dx dt

= −
∫

ΩT

[
u(1)

∂ϕ

∂t
+

u(2)

2

∂ϕ

∂x

]
dx dt = − lim

k→∞

∫
ΩT

[
uNk

∂ϕ

∂t
+

u2
Nk

2

∂ϕ

∂x

]
dx dt

= lim
k→∞

∫
ΩT

[
∂uNk

∂t
ϕ +

∂

∂x

(
u2
Nk

2

)
ϕ

]
dx dt = lim

k→∞

∫
ΩT

(div vNk
)ϕdx dt.

The right-hand side of last expression vanishes since

0 ≤
∣∣∣∣
∫

ΩT

(div vNk
)ϕdx dt

∣∣∣∣ ≤ ‖div vNk
‖H−1(ΩT ) ‖ϕ‖H1(ΩT )

≤ C
√
εN ‖ϕ‖H1(ΩT ) → 0 as k → ∞

so that u is a solution of (3.4).
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3.7. Convergence to the entropy solution. We showed in sections 3.5 and 3.6
that {uNk

} converges strongly to a solution u of the conservation law. We now show
that, if the strengthened requirements (3.11) and (3.12) are satisfied, then u is the
physically relevant entropy solution.

Let ϕ ∈ C∞
0 (ΩT ); then

∣∣∣∣
∫

ΩT

(
u3 − uNk

3
)
ϕdx dt

∣∣∣∣ =

∣∣∣∣
∫

ΩT

(u− uNk
)
(
u2 + uuNk

+ uNk

2
)
ϕdx dt

∣∣∣∣
≤ ‖u− uNk

‖L2(ΩT )

∥∥(u2 + uuNk
+ uNk

2
)
ϕ
∥∥
L2(ΩT )

≤ ‖ϕ‖L∞(ΩT ) ‖u− uNk
‖L2(ΩT )

∥∥u2 + uuNk
+ uNk

2
∥∥
L2(ΩT )

≤ ‖ϕ‖L∞(ΩT ) ‖u− uNk
‖L2(ΩT )

(∥∥u2
∥∥
L2(ΩT )

+ ‖uuNk
‖L2(ΩT ) +

∥∥uNk

2
∥∥
L2(ΩT )

)
≤ ‖ϕ‖L∞(ΩT ) ‖u− uNk

‖L2(ΩT )(
‖u‖2

L4(ΩT ) + ‖uNk
‖L∞(ΩT ) ‖u‖L2(ΩT ) + ‖uNk

‖2
L∞(ΩT )

√
|ΩT |

)
.

Since {uN} is uniformly bounded, we have that ‖uNk
‖L∞(ΩT ) ≤ C. Also, u is in

L4(ΩT ) since u2 = u(2) ∈ L2(ΩT ). Then, since limk→∞ ‖u−uNk
‖L2(ΩT ) = 0, we have

that

lim
k→∞

∫
ΩT

(uNk
)3 ϕdx dt =

∫
ΩT

u3ϕdx dt.

Now, let ϕ ∈ C∞
0 (ΩT ) with ϕ ≥ 0; then,

∫
ΩT

[
∂

∂t

(
u2

2

)
+

∂

∂x

(
u3

3

)]
ϕdx dt = −

∫
ΩT

(
u2

2

∂ϕ

∂t
+

u3

3

∂ϕ

∂x

)
dx dt

= − lim
k→∞

∫
ΩT

(
uNk

2

2

∂ϕ

∂t
+

uNk
3

3

∂ϕ

∂x

)
dx dt

= lim
k→∞

∫
ΩT

[
∂

∂t

(
uNk

2

2

)
+

∂

∂x

(
uNk

3

3

)]
ϕdx dt

= lim
k→∞

∫
ΩT

(curl wNk
) ϕdx dt = lim

k→∞

∫
ΩT

(div vNk
) uNk

ϕdx dt.

(3.28)

Let zN = uN ϕ. For all t ∈ (0, T ), let zhN (·, t) ∈ SN
p ∩H1

0 (a, b) be the H1 (a, b)

projection of zN so that, for all v ∈ SN
p ∩H1

0 (a, b) ,

∫ b

a

∂zhN (·, t)
∂x

∂v

∂x
dx =

∫ b

a

∂zN (·, t)
∂x

∂v

∂x
dx.
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We then show that, as k → ∞, the right-hand side of (3.28) is nonpositive:

∫
ΩT

(div uN ) uN ϕdx dt =

∫
ΩT

(div uN ) zN dx dt

=

∫
ΩT

(div uN ) zhN dx dt +

∫
ΩT

(div uNk
)
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

∂zhN
∂x

∂

∂x
(QNuN ) dx dt +

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

∂zN
∂x

∂

∂x
(QNuN ) dx dt +

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

∂zN
∂x

∂uN

∂x
dx dt + εN

∫
ΩT

∂zN
∂x

∂

∂x
[(I −QN )uN ] dx dt

+

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

∂

∂x
(uN ϕ)

∂uN

∂x
dx dt

+εN

∫
ΩT

∂zN
∂x

∂

∂x
[(I −QN )uN ] dx dt +

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

ϕ

∣∣∣∣∂uN

∂x

∣∣∣∣
2

dx dt− εN

∫
ΩT

uN
∂ϕ

∂x

∂uN

∂x
dx dt

+εN

∫
ΩT

∂zN
∂x

∂

∂x
[(I −QN )uN ] dx dt +

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt.

(3.29)

For the second term on the right-hand side of (3.29), we have that

∣∣∣∣−εN

∫
ΩT

uN
∂ϕ

∂x

∂uN

∂x
dx dt

∣∣∣∣ ≤ εN ‖uN‖L∞(ΩT )

∥∥∥∂uN

∂x

∥∥∥
L2(ΩT )

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

≤ C
√
εN

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

→ 0 as N → ∞.

For the third term on the right-hand side of (3.29), we have that

∣∣∣∣εN
∫

ΩT

∂zN
∂x

∂

∂x
[(I −QN )uN ] dx dt

∣∣∣∣ ≤ εN

∥∥∥∂zN
∂x

∥∥∥
L2(ΩT )

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(ΩT )

= εN

∥∥∥ ∂

∂x
(uN ϕ)

∥∥∥
L2(ΩT )

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(ΩT )

≤ εN

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(ΩT )(

‖ϕ‖L∞(ΩT )

∥∥∥∂uN

∂x

∥∥∥
L2(ΩT )

+ ‖uN‖L∞(ΩT )

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

)

≤ C
√
εN

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(ΩT )

(
‖ϕ‖L∞(ΩT ) +

√
εN

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

)
→ 0 as N → ∞.

For the fourth term on the right-hand side of (3.29), we have that

∣∣∣∣
∫

ΩT

(div uN )
(
zN − zhN

)
dx dt

∣∣∣∣ ≤ ‖div uN‖L2(ΩT )

∥∥zN − zhN
∥∥
L2(ΩT )

≤ C hN ‖div uN‖L2(ΩT )

∥∥∥∂zN
∂x

∥∥∥
L2(ΩT )

≤ C
hN√
εN

∥∥∥∂zN
∂x

∥∥∥
L2(ΩT )
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= C
hN√
εN

∥∥∥ ∂

∂x
(uN ϕ)

∥∥∥
L2(ΩT )

≤ C
hN√
εN

(
‖uN‖L∞(ΩT )

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

+ ‖ϕ‖L∞(ΩT )

∥∥∥∂uN

∂x

∥∥∥
L2(ΩT )

)

≤ C
( hN√

εN

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

+
hN

εN
‖ϕ‖L∞(ΩT )

)
→ 0 as N → ∞.

Thus, we have shown that the second, third, and fourth terms on the right-hand side
of (3.29) vanish as N → ∞. Since the first term is clearly nonpositive, we have that

∫
ΩT

[
∂

∂t

(
u2

2

)
+

∂

∂x

(
u3

3

)]
ϕdx dt = lim inf

k→∞

∫
ΩT

(div uNk
) uNk

ϕdx dt ≤ 0

so that the u is the entropy solution of (3.4). This completes the proof of Theorem
3.1.

3.8. Verifying the hypotheses of Theorem 3.1. In the hierarchical finite
element formulation (3.6), we have to choose εN , m, and the form of QN for k ≤ m.
Let 0 < δ ≤ θ ≤ 1. We then choose

εN = C hN
θ, mH ≤ δ N

2
, and Qk,i =

{
0, k ≤ mH ,

1, k > mH .

It is then evident that εN , hN → 0 as N → ∞ so (3.7) holds. Since 0 < θ ≤ 1,
εN
hN

= C hN
θ−1 ≥ C so that (3.8) also holds.

Let v ∈ SN
p ; (I −QN ) is simply an interpolation operator on a coarse grid so that

‖(I −QN ) v‖L2(a,b) ≤ C ‖v‖L2(a,b) .

QN retains the high frequencies of a function, so (I −QN ) eliminates them: Qk,i =
1 ⇒ 1 − Qk,i = 0 for k > mH so that (I −QN ) v ∈ SmH

p . Using a standard inverse
estimate,

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(a,b)

≤ C (hmH
)
−1 ‖(I −QN ) v‖L2(a,b)

≤ CMmH ‖(I −QN ) v‖L2(a,b) ≤ CM
N δ
2 ‖(I −QN ) v‖L2(a,b)

≤ C

(
ν

hN

) δ
2

‖(I −QN ) v‖L2(a,b) ≤ C

(
ν

hN

) δ
2

‖v‖L2(a,b)

= C
√
νδ hN

− δ
2 ‖v‖L2(a,b)

and

√
εN

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(a,b)

≤ C
√
νδ

√
εN
hδ
N

‖v‖L2(a,b)

= C

√
hN

θ−δ ‖v‖L2(a,b) .

(3.30)

Since δ ≤ θ, we have that hN
θ−δ ≤ C; therefore, (3.9) is satisfied.

Since (I −QN ) is an interpolation operator on a coarse grid, for all v ∈ SN
p ,

∥∥∥ d

dx
(QNv)

∥∥∥
L2(a,b)

=
∥∥∥dv
dx

− d

dx
[(I −QN ) v]

∥∥∥
L2(a,b)

≤ C
∥∥∥dv
dx

∥∥∥
L2(a,b)

.



2008 MARCUS CALHOUN-LOPEZ AND MAX D. GUNZBURGER

Therefore, (3.10) is satisfied. This completes the verification of the hypotheses (3.7)–
(3.10) of Theorem 3.1 that are used to prove the convergence of the hierarchical finite
element approximations.

To verify the hypotheses (3.11) and (3.12) of Theorem 3.1 that are used to prove
the convergence of the hierarchical finite element approximations to the entropy so-
lution, we must choose 0 < θ < 1. In this case, εN

hN
= C hN

θ−1 → ∞ as N → ∞ so

that (3.11) holds. Since now δ < θ so that hN
θ−δ → 0 as N → ∞, (3.30) implies that

(3.12) holds.

4. A simple computational illustration. We consider the simple periodic
problem for the Burgers equation in one dimension:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 on (−1,+1) × (0, T )

u (−1, t) = u (+1, t) for all t ∈ (0, T )

u (x, 0) = 1 +
1

2
sin (πx) .

(4.1)

A means for establishing the exact solution of this problem is given in [8, 16]. All
of our numerical results were generated using the finite element library deal.II [2].
More extensive computational experimentations are provided in [3, 4].

In (2.1), the values of several parameters must be chosen. We set εN = hN and
add diffusion only to the finest level: QN ;n,ı = 0 for n < N . Neither of these choices
satisfies the requirements of Theorem 3.1 for convergence to the entropy solution.
Even with the smaller diffusion term, however, our numerical experiments indicate
that the approximations still converge to the correct solution.

After spatial discretization is effected using linear hierarchical finite element func-
tions, the resulting system of ordinary differential equations is integrated using a third-
order, strong, stability-preserving Runge–Kutta method found in [11], with time step
Δt that satisfies the CFL condition Δt/hN supu ≤ 0.2.

The exact and discrete solutions of (4.1) are given in Figure 5. Because we are
approximating a discontinuous solution with continuous piecewise polynomials, we
see Gibbs oscillations near the discontinuity; see Figure 5. A simple post-processing
strategy to remove the oscillations is to set the coefficients of the hierarchical expansion
to zero around the discontinuity. The question then becomes how to determine the
location of the discontinuity. Let βn+1,ı be a high frequency hierarchical coefficient in
the discrete solution. Let βn,j be the parent hierarchical coefficient, so the support of
ψn+1,ı is a subset of ψn,j. If the solution is continuously differentiable in the region of
the support of ψn,j, then βn,j/βn+1,ı ≈ 2. Thus, our simple post-processing strategy
is as follows: For the highest four frequencies, if a hierarchical coefficient is larger
than half the value of its parent, then it is set to zero. Our simple post-processing
strategy only affects the region around a discontinuity, but it has the disadvantage
of smoothing across the discontinuity. See Figure 6. We note that post-processing
strategies must also be applied in the spectral viscosity method in order to reduce the
size of the Gibbs oscillations.

In Table 1, we use the L1 norm to measure errors in the approximate solution.
Near a discontinuity, we are limited to how well a piecewise polynomial can approx-
imate a solution. We are more interested in the convergence rates in the smooth
regions. We therefore exclude a region of length 0.2 around the discontinuity in our
error calculations. We see that away from the discontinuity, we achieve the optimal



A MULTIVISCOSITY FEM FOR HYPERBOLIC PDEs 2009

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 7
 # elements=128
 h

N
=1.6e 02

numerical
exact

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 8
 # elements=256
 h

N
=7.8e 03

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 9
 # elements=512
 h

N
=3.9e 03

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 10
 # elements=1024
 h

N
=2.0e 03

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 11
 # elements=2048
 h

N
=9.8e 04

Periodic Burgers’ Equation

Diffusion on Finest Level Only
Q

k,i
=0 or 1

time=1.00 (3rd-Order SSP RK Method)

0 levels were post-processed

Fig. 5. Solution of periodic Burgers equation with linear polynomials (without post-processing).
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Fig. 6. Solution of periodic Burgers equation with linear polynomials (with post-processing).
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Table 1

Convergence rate for the periodic Burgers equation using linear hierarchical basis functions.

without post-processing with post-processing

levels L1 error rate L1 error rate
8 5.775e-03 - 5.238e-02 -
9 5.321e-04 3.44 3.124e-03 4.07
10 2.221e-05 4.58 2.517e-05 6.96
11 3.691e-06 2.59 3.691e-06 2.77
12 9.230e-07 2.00 9.230e-07 2.00
13 2.307e-07 2.00 2.307e-07 2.00
14 5.768e-08 2.00 5.768e-08 2.00

error rate with or without post-processing. We have no theoretical justification for
these convergence rates, but this is a common failing for conservation laws.

5. Concluding remarks. Initial results for the new method seem promising.
We have a stable finite element method which, in some cases, attains quasi-optimal
convergence rates in smooth regions. We also have developed a theoretical foundation
for understanding why the method works. These results, however, are preliminary.
There are potential pitfalls awaiting in more complicated problems, but there is also
untapped potential within the framework. Hierarchical bases, for example, should
provide a suitable environment for implementing adaptive strategies, both for the
grid and the diffusion term.
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A UNIFIED ANALYSIS FOR CONFORMING AND
NONCONFORMING STABILIZED FINITE ELEMENT METHODS

USING INTERIOR PENALTY∗

ERIK BURMAN†

Abstract. We discuss stabilized Galerkin approximations in a new framework, widening the
scope from the usual dichotomy of the discontinuous Galerkin method on the one hand and Petrov–
Galerkin methods such as the SUPG method on the other. The idea is to use interior penalty terms as
a means of stabilizing the finite element method using conforming or nonconforming approximation,
thus circumventing the need of a Petrov–Galerkin-type choice of spaces. This is made possible by
adding a higher-order penalty term giving L2-control of the jumps in the gradients between adjacent
elements. We consider convection-diffusion-reaction problems using piecewise linear approximations
and prove optimal order a priori error estimates for two different finite element spaces, the standard
H1-conforming space of piecewise linears and the nonconforming space of piecewise linear elements
where the nodes are situated at the midpoint of the element sides (the Crouzeix–Raviart element).
Moreover, we show how the formulation extends to discontinuous Galerkin interior penalty methods
in a natural way by domain decomposition using Nitsche’s method.

Key words. convection-diffusion problem, interior penalty, finite element approximation,
Crouzeix–Raviart element
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1. Introduction. The solution of convection-diffusion problems with dominat-
ing convection using finite element methods has been the object of much research
during the last 30 years. Essentially, the field has been separated into two main
branches, Petrov–Galerkin methods in cases where conforming approximation is used
[4, 16] and discontinuous Galerkin with interior penalty when nonconforming approx-
imation is used [19, 17, 13]. Of course the discontinuous Galerkin method may also be
supplied with an SUPG-type stabilization as in [25], and there is the SUPG method
using the Crouzeix–Raviart element [15, 14, 20], which needs both interior penalty
and Petrov–Galerkin-type approximation spaces to be stable in the limit of vanishing
diffusion. So the current state of affairs seems to be that Petrov–Galerkin-type ap-
proximations are necessary for all approximations except the discontinuous Galerkin
method. This is not satisfactory since the SUPG-method in practice suffers from
several shortcomings:

• The mass matrix may not be lumped. This may severely reduce performance
when solving large reactive systems using low-order elements.

• The consistency requirements practically impose the use of a space-time finite
element approach for time-stepping, using discontinuous approximation in
time. The practical implementation of such techniques is rather involved and
requires additional unknowns.

• The stabilization parameter depends on the diffusion. This may lead to
complications when computing the solution of large coupled systems with a
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complex diffusion matrix or in cases when the diffusion/viscosity depends in
a strongly nonlinear way on the solution.

The discontinuous Galerkin (DG) method, on the other hand, behaves well with
respect to these above mentioned points but suffers from the fact that it involves a
larger number of degrees of freedom due to the discontinuous approximation space.
In fact, memory requirements of the DG method are typically a factor 7–10 larger
than those of the SUPG method. Hence there is a strong motivation to find methods
that use more economic spaces that do not suffer from the same disadvantages as the
SUPG method.

In this paper we will go beyond this dichotomy between conforming finite ele-
ment methods using Petrov–Galerkin-type stabilizations and discontinuous Galerkin
methods using interior penalty-type stabilization and adopt a different point of view,
where the interior penalty is the main stabilization. We also show that interior penalty
stabilization is sufficient not only for the discontinuous Galerkin method but also for
conforming piecewise linear finite element approximations, even in the case when the
same trial and test spaces are used. The outline of the paper is as follows: In the next
section we introduce the model problem and discuss in more detail this new frame-
work; in section 3 we then consider the limiting case of conforming piecewise linear
approximation stabilized by using only an interior penalty term; we prove stability
and a priori error estimates. Then we use these results in the general framework and
extend the method to the nonconforming case of Crouzeix–Raviart-type finite ele-
ment approximation (continuity at the midpoints of the element sides) in section 4.
In section 5 we discuss domain decomposition using Nitsche’s method and how this
naturally leads to discontinuous Galerkin-type interior penalty methods. The per-
formance of the method is shown numerically in section 6. Finally, we draw some
conclusions in section 7.

2. A new framework. As a model problem we propose the convection-diffusion-
reaction equation {

β · ∇u + σu− εΔu = f in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω is a bounded open connected subset of R
d with a Lipschitz boundary ∂Ω,

d = 2 or 3 is the space dimension, β ∈ [W 1,∞(Ω)]d is a velocity field, ε > 0 is a
diffusion coefficient (that may be zero if the boundary conditions are modified), and
σ > 0 is the reaction coefficient, f ∈ L2(Ω). We will use the notation ∂Ωin (∂Ωout)
for the subset of ∂Ω such that β · n < 0 (β · n > 0). We assume that the following
standard coercivity condition holds:

σ − 1

2
∇ · β ≥ σ0 > 0,(2.2)

and we define the associated parameter σ1 by

σ1 = ess supx∈Ω

|σ −∇ · β|2
σ0

.

Problem (2.1) is well-posed thanks to the Lax–Milgram lemma, and we will always
assume that the solution is sufficiently smooth, i.e., u ∈ H2(Ω).

Remark 2.1. An analysis including the case σ0 = 0 could be undertaken using
exponentially weighted test functions following [21] but is beyond the scope of the
present paper.
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For the finite element formulation of this problem, we introduce some additional
notation. Let Th be a triangulation of Ω, without hanging nodes, and let Vh be a
space of (conforming or nonconforming) piecewise linear functions defined on Th. Let
Si be a vertex of Th, ϕi ∈ Vh the associated nodal basis function, and denote by Ωi

the macro-element formed by the elements K in Th sharing vertex Si. Let Ei denote
the set of faces connected to Si. Let hK denote the diameter of an element K and set
h = maxK∈Th

hK . Moreover, we shall assume that there exists a constant ρ > 0 such
that for all vertices Si in Th, we have

max
e∈Ei

he ≤ ρmin
e∈Ei

he,(2.3)

where he = |e| is the length of edge e. Property (2.3) was introduced in [5] and is a
local quasi-uniformity property of the mesh. It implies that for each node Si there is
a finite number, nρ, of elements in Ωi. The jump [x]f of a quantity x over an interior
face f will be defined by [x(ξ)]f = limε→0+(x(ξ−nf ε)−x(ξ+nf ε)), where nf denotes
a normal vector to the face f having an arbitrary but fixed orientation and ξ ∈ f .
The subscript is omitted when there is no ambiguity. For faces such that f ⊂ ∂Ω,
we define nf as the outward pointing normal and set [x]f ≡ 0. By {x}f we denote
the average value of x over face f , {x(ξ)}f = limε→0+

1
2 (x(ξ − nf ε) + x(ξ + nf ε)).

Tangential vectors of a face f will be denoted τf (τf · nf = 0). Furthermore, we will
use the notation (x, y)X =

∫
X
x · y dx, 〈x, y〉∂X =

∫
∂X

x · y ds with the elementwise
counterparts (x, y)X,h =

∑
K∈X

∫
K
x · y dx and 〈x, y〉∂X,h =

∑
f∈∂X

∫
f
x · y ds. Let

‖x‖∂X = (x, x)
1/2
X denote the L2-norm over X and |x|X = 〈x, x〉1/2∂X the L2-norm over

∂X with the elementwise counterparts ‖x‖X,h = (x, x)
1/2
X,h and |x|∂X,h = 〈x, x〉1/2∂X,h,

respectively. When the subscript X or ∂X is omitted, the norm is taken over the
domain Ω or its boundary ∂Ω. The norm of the space Hi(X) will be denoted ‖x‖i,X
with i = 1, 2. We will use c and C to denote generic positive constants independent
of hK but not necessarily of the local mesh geometry.

The general discretization for (2.1) typically takes the following form: Find uh ∈
Vh such that

A(uh, vh) +

1∑
i=0

Ji(uh, vh) = (f, vh) ∀vh ∈ Wh,(2.4)

where

A(uh, vh) = (σuh, vh) + (ε∇uh,∇vh)h + (β · ∇uh, vh)h

− 1
2

∑
K

(
〈β · n[uh], {vh}〉∂K\∂Ω + 〈{ε∇uh · n}, [vh]〉∂K\∂Ω + 〈{ε∇vh · n}, [uh]〉∂K\∂Ω

)∗

−〈ε∇uh · n, vh〉h − 〈ε∇vh · n, uh〉h
+
〈
γbc

ε
huh, vh

〉
+ 〈|β · n|uh, vh〉∂Ωin

,

(2.5)

J0(uh, vh) =
∑
K

〈γ0(h)[uh], [vh] 〉∂K\∂Ω ,

and

J1(uh, vh) =
∑
K

〈γ1(h)[∇uh], [∇vh] 〉∂K\∂Ω ,(2.6)
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with γi(h) = γ̃ih
si and si chosen so as to obtain optimal stability and approximation

properties. Wh denote some test space, the choice of which will be discussed later.
γbc denotes the penalization parameter for the weakly imposed boundary condition.
Moreover, we have marked with an asterisk the terms that are present only when
nonconforming approximation spaces are used. It should be noted that the term
J1(uh, vh) can be decomposed in the streamline and the crosswind part. To this end,
we assume that |β| > 0 and define the unit vector parallel to β as eβ = β

|β| and the

unit vector orthogonal to β such that eβ⊥ . Clearly we may decompose the gradient
in the orthogonal basis formed by {eβ , eβ⊥} (in two space dimensions).

∇uh = (eβ · ∇uh)eβ + (eβ⊥ · ∇uh)eβ⊥ .

Plugging this into (2.6) yields for the jumps

[∇uh] · [∇vh] = [(eβ · ∇uh)eβ + (eβ⊥ · ∇uh)eβ⊥ ] · [(eβ · ∇vh)eβ + (eβ⊥ · ∇vh)eβ⊥ ]

= [eβ · ∇uh][eβ · ∇vh] + [eβ⊥ · ∇uh][eβ⊥ · ∇vh].

This implies that one may use the following form of the stabilization term:

J1(uh, vh) =
∑

K 〈γ1,β(h)[eβ · ∇uh], [eβ · ∇vh] 〉∂K\∂Ω

+
∑

K

〈
γ1,β⊥(h)[eβ⊥ · ∇uh], [eβ⊥ · ∇vh]

〉
∂K\∂Ω

,

which coincides with (2.6) when γ1,β(h) = γ1,β⊥(h). For stability, however, it is only
essential that the parameter γ1,β(h) is large enough. The parameter γ1,β⊥(h) may
be set to zero. We note that in the case of piecewise linear continuous functions uh,
there holds [τf · ∇uh]f = 0. Using this observation, we may introduce some further
simplifications of the stabilization term. This time, consider the decomposition of the
gradient in the directions normal and tangential to the element edge; for the jump in
the streamline derivative we then obtain

[β · ∇uh]f = [β · ((nf · ∇uh)nf + (τf · ∇uh)τf )]f

= [β · nf (nf · ∇uh)]f + [β · τf (τf · ∇uh)]f .

However, since the tangential jump is zero, the second term in the right-hand side
vanishes and we may readily deduce that on each face we have [β · ∇uh]f [β · ∇vh]f =
|β · nf |2[nf · ∇uh]f [nf · ∇vh]f . Using once again the fact that the tangential jump
is zero, it follows that the product of the jumps in the normal component equals the
scalar product of the jump in the full gradient; [β ·∇uh]f [β ·∇vh]f = |β ·nf |2[∇uh]f ·
[∇vh]f . Hence in this case the streamline diffusion character of the stabilization
may be included in the parameter γ1 in (2.6). We also recall that the addition of
stabilization in the crosswind direction increases the accuracy of the approximation
close to interior layers; see [18]. The first term on the second line of the expression for
A(uh, vh) is related to the consistency error of the convective term. This term can be
chosen in a variety of different ways, related to what numerical flux one wishes to use
in the nonconforming method. We will not pursue this further here, but only point
out that the whole parenthesis marked * vanishes for conforming approximation. Note
that in the above formulation we impose the boundary conditions weakly, see [22]; this
is natural when considering the general framework, since the finite element solution
may be nonconforming. It also has some advantages from the point of view of the
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analysis. For results using conforming piecewise linear approximation and strongly
imposed boundary conditions, we refer to [6]. The SUPG method is typically obtained
by choosing γ1 = 0 and taking Wh = {wh : wh = vh + δβ · ∇vh, vh ∈ Vh}. Then
γ0 has to be chosen correctly in order to ensure the coercivity of A(uh, vh) in the
nonconforming case. However, our main concern in this paper is the case Wh = Vh.
We will show that the use of approximation spaces that previously needed SUPG-
type stabilization may, in fact, be stabilized using interior penalty only. The key
observation is that the following inequality holds:

inf
ζh∈Vh

‖h1/2(β · ∇uh − ζh)‖2 ≤ J1(uh, uh).(2.7)

This means that we only stabilize the scales that are not already resolved by the finite
element space; in this sense this is a minimal stabilizing procedure [3]. Other methods
following similar ideas but using hierarchic meshes or projections have been proposed
in [11, 9]. The inequality (2.7) was originally proved in [6] but only for constant
velocities and uniform meshes. In this paper the essential restrictions that we impose
are that β should belong to the space of piecewise linear continuous functions and that
the computational mesh is locally quasi-uniform. Moreover, the general framework
allows us to circumvent the inf-sup condition proved in [6]. The technique of proof
introduced in this paper is flexible and may be used in the analysis of more complex
problems. The low-order interior penalty term J0(uh, vh) should ensure coercivity and
continuity of the bilinear form whereas the term J1(uh, vh) is what makes the method
stable in the hyperbolic limit. Clearly for continuous approximations J0(uh, vh) = 0,
but in this case A(uh, vh) is coercive without stabilization (if we discard the boundary
conditions for the moment). For the discontinuous Galerkin method, on the other
hand, β · ∇uh ∈ Vh so that (2.7) holds with γ1 ≡ 0.

So it seems that the right dichotomy is between methods using Petrov–Galerkin-
type stabilization and methods using interior penalty-type stabilization and not be-
tween conforming and nonconforming approximations. In this new framework the
guideline is to add only the amount of stabilization needed to control the part of the
streamline derivative that cannot be represented by the approximation space. This
can be seen in the analysis leading to (2.7): a big space yields a small value of γ1 and
a small space yields a big value of γ1. The Petrov–Galerkin approach, on the other
hand, enforces stability in a much stronger sense when modifying the test space, and
the stabilization will be the same regardless of the properties of the approximating
space. We will first prove inequality (2.7) in the case where the space of piecewise
linear H1-conforming functions is a subspace of Vh. Let

P 1
c = {vh : vh ∈ H1(Ω); vh|K ∈ P1(K)}.

The crucial part is to prove that the jumps in the gradient can control some interpo-
lation error of the streamline derivative, ‖h1/2(β ·∇uh−π∗

h(β ·∇uh))‖. For simplicity
we will consider the case of two-space dimensions; the extension to three-space di-
mensions is straightforward.

Theorem 2.2 (stability). Assume that P 1
c ⊂ Vh. Let β ∈ [P 1

c ]2 and let uh ∈ Vh.
Then there exists an interpolation operator π∗

h : β · ∇Vh → P 1
c and a constant γ̃1 ≥

c0 > 0, depending only on the local mesh geometry, such that

‖h1/2(β · ∇uh − π∗
h(β · ∇uh))‖2 ≤ J1(uh, uh)
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with

J1(uh, uh) =
∑
K

∫
∂K\∂Ω

γ̃1h
2
∂K [β · ∇uh]2 ds.(2.8)

Proof. First we will define the operator π∗
h. To this end we recall a quasi-

interpolant due to Oswald (see [23, 12]). Consider a node Si and let ∇uh(Si)|K
denote the value of ∇uh in the element K and in node Si. Then let

π∗
h(β · ∇uh)(Si) =

1

ni

∑
K⊂Ωi

β(Si) · ∇uh(Si)|K ,(2.9)

where ni denotes the number of triangles in Ωi. Let ϕj , j = 1, 2, 3, be the basis
functions on some arbitrary element K ′ in Th. Denoting the locally numbered nodes
of K ′ by si, with associated macro-elements Ωi, i = 1, 2, 3, there holds ϕj(si) = δij ,
where δij denotes the Kronecker delta. We now consider the projection error on the
element K ′.

(2.10) ‖h1/2
K′ (β · ∇uh − π∗

h(β · ∇uh))‖2
K′

=

∫
K′

hK′

(
3∑

j=1

(
β(sj) · ∇uh(sj)|K′ − 1

nj

∑
K⊂Ωj

β(sj) · ∇uh(sj)|K

)
ϕj

)2

dx

=

∫
K′

hK′

(
3∑

j=1

1

nj

∑
K⊂Ωj

(
β(sj) · ∇uh(sj)|K′ − β(sj) · ∇uh(sj)|K

)
ϕj

)2

dx.

Clearly for any K and K ′, the difference of the streamline derivatives may be rewritten

β(sj) · (∇uh(sj)|K′ −∇uh(sj)|K) =
∑

e∈P (K,K′)

[β(sj) · ∇uh(sj)]e,

where P (K,K ′) is the set of edges between the elements connecting K and K ′ (the
shortest path; see Figure 1) and we may write

(2.11) ‖h1/2
K′ (β · ∇uh − π∗

h(β · ∇uh))‖2
K′

=

∫
K′

hK′

(
3∑

j=1

1

nj

( ∑
K⊂Ωj

∑
e∈P (K,K′)

[β(sj) · ∇uh(sj)]e

)
ϕj

)2

dx.

Since Vh is a space of piecewise linears and β ∈ [P 1
c ]2, the integrand is a quadratic

polynomial on K ′ and we may use the midpoints on the element sides to evaluate the
integral. We let xk denote the midpoints of the edges and write

‖h1/2
K′ (β · ∇uh − π∗

h(β · ∇uh))‖2
K′

=

3∑
k=1

meas(K ′)

3
hK′

(
3∑

j=1

1

nj

( ∑
K⊂Ωj

∑
e∈P (K,K′)

[β(sj) · ∇uh(sj)]e

)
ϕj(xk)

)2

.

We now consider k = 3 and assume that this is the midpoint between s1 and s2

(see Figure 1). Using the inequality (
∑N

i=1 ai)
2 ≤ N

∑N
i=1 a

2
i and the inequality
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K

K ′

s1

s2

s3

x1

x2

x3

e2

e1

Fig. 1. Example of element K′ with nodes s1, s2, and s3 and the three associated macro-
elements Ω1, Ω2, and Ω3. The edges e1, e2 separating K′ and another triangle K are illustrated,
P (K,K′) = {e1, e2}, as well as the edge midpoint quadrature points x1, x2, and x3.

|
∑

e∈P (K,K′)[β(sj) · ∇uh(sj)]e| ≤ 1
2

∑
e∈Ej

|[β(sj) · ∇uh(sj)]e|, we obtain (recalling

that we have ϕ1(x3) = ϕ2(x3) = 1/2 and ϕ3(x3) = 0 and that in two space dimensions
card Ej = nj)

meas(K ′)

3
hK′

(
3∑

j=1

1

nj

( ∑
K⊂Ωj

∑
e∈P (K,K′)

[β(sj) · ∇uh(sj)]e

)
ϕj(x3)

)2

≤ meas(K ′)

3n2
j

hK′2

2∑
j=1

nj

∑
K⊂Ωj

nj

4

∑
e∈Ej

[β(sj) · ∇uh(sj)]
2
e

1

4

≤ meas(K ′)

24
hK′

2∑
j=1

nj

∑
e∈Ej

[β(sj) · ∇uh(sj)]
2
e.

It follows from the local quasi-uniformity of the mesh, using three-point quadrature
for the edge integral (weights 1/6, 4/6, 1/6), that

meas(K ′)

24
hK′

2∑
j=1

nj

∑
e∈Ej

[β(sj) · ∇uh(sj)]
2
e ≤

2∑
j=1

∑
e∈Ej

∫
e

γ̃1,jh
2
e[β · ∇uh]2e ds,

where γ̃1,j ≤ ρ3nj

4 . We complete the proof by summing over all Gauss points and all
elements leading to a final upper bound on the parameter of γ1(h) = γ̃1h

2
∂K , with

γ̃1 ≤ ρ3n2
ρ

4 .
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Remark 2.3. Theorem 2.2 may be extended to finite element spaces using higher-
order polynomial approximations. The dependence of the stabilization parameter on
the polynomial order is, however, nontrivial and will be a subject for future work.

3. A crucial limit case: Piecewise linear H1-conforming approximation.
The case of H1-conforming piecewise linear approximation is important since it is
the space for which Petrov–Galerkin-type approximations generally have been used.
We will show that this approximation is stable for (2.1) and has (quasi-) optimal
convergence properties. We consider H1-conforming, piecewise-affine finite elements,
Vh = P 1

c . In (2.4) we take Wh = Vh and γ0 = 0, γ1 = γ̃1h
2
∂K , where γ̃1 scales as ‖β‖−1

∞
and depends on the local mesh geometry (but not on the mesh size). This results in
an interior penalty method originally proposed in [10] and analyzed in [6].

The finite element formulation now takes the following form: Find uh ∈ Vh such
that

A(uh, vh) + J1(uh, vh) = (f, vh) ∀vh ∈ Vh,(3.1)

where A(uh, vh) is given by (2.5) with the terms marked (*) left out (being zero) and
J1(uh, vh) is given by (2.8).

3.1. Analysis. We will prove the three preliminary lemmas (Lemmas 3.1, 3.3,
and 3.4) giving an approximation result, coercivity of the bilinear form, and Galerkin
orthogonality. Using these preliminary results and the stability Theorem 2.2, we then
prove the convergence in Theorem 3.5, which is the main result of this section. We
first recall a trace inequality that we will use repeatedly:

‖v‖2
0,∂K ≤ C

(
h−1
K ‖v‖2

0,K + hK ‖v‖2
1,K

)
∀v ∈ H1(K).(3.2)

For a proof of this result, we refer to [26]. The triple norm takes the form

|||wh|||2 = ‖σ1/2
0 wh‖2 + ‖ε1/2∇wh‖2

h + |(hε)1/2∇wh · n|2h

+J1(wh, wh) + |δ(ε, β)wh|2 ,
(3.3)

where

δ(ε, β)2 =
(
γbc

ε

h

)
+

1

2
|β · n|.

For the continuity of the bilinear form, we will also use the modified norm

|]wh[|2 = ‖σ1/2
1 wh‖2 + ‖β‖∞‖h−1/2wh‖2 + ‖ε1/2∇wh‖2

h

+|(hε)1/2∇wh · n|2h + J1(wh, wh) + |δ(ε, β)wh|2 .

Note that we have used the broken norm for the definition of the triple norms. This
is not necessary in the conforming case, but it allows us to use the same triple norm
also for the nonconforming approximation.

Lemma 3.1 (approximation). Assume that the mesh Th is locally quasi-uniform.
Let u ∈ H2(Ω) and let πhu denote the standard L2-projection of u onto Vh; then, if
γ̃1 ≤ C‖β‖−1

∞ , we have that

|||πhu− u||| ≤ Ch(σ
1/2
0 h + ε1/2 + ‖β‖1/2

∞ h1/2)‖u‖2,Ω,

where C is independent of σ, ε, β, and h but depends on the mesh geometry.
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Proof. It follows from standard interpolation results that ‖σ1/2
0 (πhu − u)‖ ≤

σ
1/2
0 h2‖u‖2,Ω. We then write ξh = πhu−πn

hu, where πn
h denotes the nodal interpolant,

and note that ξh = πh(u− πn
hu). By the H1-stability of the L2-projection on locally

quasi-uniform meshes [2], we may write

‖∇ξh‖ ≤ ‖∇(u− πn
hu)‖ ≤ Ch‖u‖2,Ω.(3.4)

It immediately follows that

‖ε1/2∇(u− πhu)‖ ≤ Cε1/2h‖u‖2,Ω,

and, using the trace inequality (3.2) and (3.4),

|(εh)1/2∇(πhu− u)|2h ≤
∑

K∈Th

(
ε‖∇(πhu− u)‖2

K + εh2
K |u|22,K

)
≤ Cεh2‖u‖2

2,Ω.

Using once again (3.2) and (3.4) we get in a similar fashion

J1(u− πhu, u− πhu) ≤ cγ̃1

(
h−1h2‖β‖2

∞‖∇(u− πhu)‖2 + h3‖β‖2
∞|u|22,Ω

)

≤ ‖β‖∞h3‖u‖2
2,Ω.

Finally we note that for the boundary term we have, using (3.2),

〈πhu− u, πhu− u〉∂Ω ≤ h−1‖πhu− u‖2 + h‖∇(πhu− u)‖2 ≤ Ch3‖u‖2
2,Ω,

which concludes the proof.
As an immediate consequence of the above result we have the following corollary.

Corollary 3.2. Under the same assumptions as in Lemma 3.1 we have that

|]πhu− u[| ≤ Ch(σ
1/2
1 h + ε1/2 + ‖β‖1/2

∞ h1/2)‖u‖2,Ω,

where C is independent of σ, ε, β, and h but depends on the mesh geometry.
Lemma 3.3 (coercivity). The bilinear form A(uh, vh) + J(uh, vh) is coercive:

There exists c, independent of ε, σ, β, and of h, such that

c|||wh|||2 ≤ A(wh, wh) + J1(wh, wh) ∀wh ∈ Vh.

Proof. We essentially only need to show that the weakly imposed boundary
conditions do not destroy coercivity. We have

(3.5) A(wh, wh) = ‖σ1/2wh‖2 + ‖ε1/2∇wh‖2 + (β · ∇wh, wh)

− 2 〈ε∇wh · n,wh〉 +
〈
γbc

ε

h
wh, wh

〉
+ 〈|β · n|wh, wh〉∂Ωin

.

Consider the third term and the last term on the right-hand side. Integration by parts
yields

(3.6) (β · ∇wh, wh) + 〈|β · n|wh, wh〉∂Ωin

= −1

2
(∇ · β wh, wh) +

1

2
〈β · nwh, wh〉 + 〈|β · n|wh, wh〉∂Ωin

= −1

2
(∇ · β wh, wh) +

1

2
〈|β · n|wh, wh〉 .
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We now consider the second, fourth, and fifth terms of (3.5). The nonsymmetric
boundary integral is split using a Cauchy–Schwarz inequality followed by Young’s
inequality and controlled by the symmetric terms in the following fashion:

(3.7) ‖ε1/2∇wh‖2 − 2 〈ε∇wh · n,wh〉 +
〈
γbc

ε

h
wh, wh

〉

≥ ‖ε1/2∇wh‖2 − α|(hε)1/2∇wh · n|2 +

〈(
γbc −

1

α

)
ε

h
wh, wh

〉
.

As a consequence of the trace inequality (3.2) we have

|(hε)1/2∇wh · n|2 ≤ Ct‖ε1/2∇wh‖2,(3.8)

and by choosing α = (2Ct)
−1 and γbc = 2Ct(

2+2Ct

1+2Ct
) we conclude that

(3.9) ‖ε1/2∇wh‖2 − 2 〈ε∇wh · n,wh〉 +
〈
γbc

ε

h
wh, wh

〉

≥ 1

2(1 + Ct)

(
‖ε1/2∇wh‖2 + |(hε)1/2∇wh · n|2 +

〈
γbc

ε

h
wh, wh

〉)
.

Combining the results of (3.5), (3.6), (3.9), and the condition (2.2), the lemma follows
with the coercivity constant c = 1

2(1+Ct)
.

Lemma 3.4 (Galerkin orthogonality). Let u be the solution of (2.1) and uh ∈ Vh

the solution of (3.1); then we have that

A(u− uh, wh) + J1(u− uh, wh) = 0 ∀wh ∈ Vh.(3.10)

Proof. First note that since u ∈ H2(Ω), the trace of ∇u is well-defined, and hence
J1(u,wh) = 0. Since u = 0 on ∂Ω, we have that

A(u,wh) = (σu + β · ∇u,wh) + (ε∇u,∇wh) − 〈ε∇u · n,wh〉 .

By an integration by parts in the second term on the right-hand side, we conclude
that

A(u,wh) = (σu + β · ∇u− εΔu,wh) = (f, wh),

and the lemma is an immediate consequence of (3.1).
Theorem 3.5. Let u ∈ H2(Ω) be the solution of (2.1) and let uh ∈ Vh be the

solution of (3.1); then, the following a priori error estimate holds:

|||u− uh||| ≤ Ch(σ̃1/2h + ε1/2 + ‖β‖1/2
∞ h1/2)‖u‖2,Ω,

where σ̃ = max(σ0, σ1).
Proof. Let πhu be the L2-projection of u onto Vh. Consider ξh = uh − πhu and

η = u− πhu. By the triangle inequality we have

|||u− uh||| ≤ |||η||| + |||ξh|||

and hence by Lemma 3.1 we only need to control |||ξh|||. We now use the coercivity
lemma, Lemma 3.3, followed by Galerkin orthogonality, Lemma 3.4, to obtain

c|||ξh|||2 ≤ A(ξh, ξh) + J1(ξh, ξh) = A(η, ξh) + J1(η, ξh).(3.11)
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Note that after integration by parts in the convective term followed by the application
of the Cauchy–Schwarz inequality in A(η, ξh) + J1(η, ξh) we have

A(η, ξh) + J1(η, ξh) ≤ ‖σ1/2
1 η‖‖σ1/2

0 ξh‖ + ‖ε1/2∇η‖‖ε1/2∇ξh‖
+J1(η, η)

1/2J1(ξh, ξh)1/2 + |(η, β · ∇ξh)|
+ |δ(ε, β)ξh||δ(ε, β)η|
+C|(εh)1/2∇η · n||δ(ε, β)ξh| + C|(εh)1/2∇ξh · n||δ(ε, β)η|

≤ C|]η[| |||ξh||| + |(η, β · ∇ξh)|.

In the second term in the right-hand side of the last inequality, we now use the
orthogonality of the L2-projection to subtract the Oswald quasi-interpolant from the
streamline derivative of ξh

|(η, β · ∇ξh)| = |(η, β · ∇ξh − π∗
h(β · ∇ξh))|

≤ ‖β‖1/2
∞ ‖h−1/2η‖ ‖β‖−1/2

∞ ‖h1/2(β · ∇ξh − π∗
h(β · ∇ξh))‖.

By Theorem 2.2 we then conclude that

c|||ξh|||2 ≤ C|]η[| |||ξh||| + ‖β‖1/2
∞ ‖h−1/2η‖ J1(ξh, ξh)1/2

≤ C|]η[| |||ξh|||,

and the claim follows by the approximation Corollary 3.2.

4. An intermediate space: The nonconforming P1-Crouzeix–Raviart
element. Stabilized finite element methods using the Crouzeix–Raviart element have
been considered in a number of articles [15, 14, 20], all from the Petrov–Galerkin
standpoint. Here we will show how this discretization enters the interior penalty
framework using only a penalization on the jump in the gradients, together with a
(numerical flux) term involving the jump in the solution assuring coercivity of the
convective term. The space of Crouzeix–Raviart finite elements is defined by

V CR
h =

{
v : v|K ⊂ P1(K),

∫
∂K\∂Ω

[v] ds = 0

}
.

It is well known that on triangular meshes P 1
c ⊂ V CR

h , and we will use this fact to
simplify our analysis. We propose the following scheme, obtained by taking V CR

h as
test and trial space in (2.4): Find uh ∈ V CR

h such that

A(uh, vh) + J1(uh, vh) = (f, vh) ∀vh ∈ V CR
h ,(4.1)

where the bilinear form is given by

(4.2) A(uh, vh) = (σuh, vh) + (ε∇uh,∇vh)h + (β · ∇uh, vh)h

− 1

2

∑
K

〈β · n[uh], {vh}〉∂K\∂Ω − 〈ε∇uh · n, vh〉h − 〈ε∇vh · n, uh〉h

+
〈
γbc

ε

h
uh, vh

〉
+ 〈|β · n|uh, vh〉∂Ωin

.
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This time we choose the following form of the interior penalty term:

(4.3)

J1(uh, vh) =
∑
K

(
〈γτ (h)[∇uh · τ ], [∇vh · τ ]〉∂K + 〈γ1(h)[β · ∇uh], [β · ∇vh]〉∂K

)
.

Note that we do not add any terms penalizing the jump in the solution; this is because
for the Crouzeix–Raviart discretization the jump in the solution is bounded by the
jump in the tangential derivative as shown in the following lemma.

Lemma 4.1. The jump in the solution over element edges satisfies∫
e

α[uh]2 ds =
1

12

∫
e

αh2
e[∇uh · τe]2 ds.

Proof. Let xe denote the midpoint on edge e. Clearly [uh(x)]2 = [∇uh·τe]2(x−xe)
2

for all x ∈ e and the lemma follows by integration.
The parameter γ1(h) may be chosen as in the previous section and γτ (h)|∂K =

γ̃τh
2‖β ·n‖∞,∂K , γ̃τ = 1/12. For the analysis we also need the operator π0

h : L2(K) →
P0(K) that denotes the L2-projection onto the space P0(K) of piecewise constant
functions on the element K. As an immediate consequence of (3.2) we have the
estimate

‖v − π0
hv‖0,∂K ≤ Ch

1/2
K ‖∇v‖K , v ∈ H1(K),(4.4)

which we will use to prove that the consistency error is of optimal order. For the
convergence proof we will use the same triple norm (3.3) (but with the slightly mod-
ified J1(uh, vh) given by (4.3) that has the same approximation properties) and the
L2-projection πh onto the space P 1

c so that Lemma 3.1 and Theorem 2.2 hold. We
will now proceed to prove equivalents of Lemmas 3.3 and 3.4 for the formulation
(4.1) using the Crouzeix–Raviart space. The convergence and, in particular, that the
inconsistencies are of the correct order is then shown in Theorem 4.4.

Lemma 4.2. The bilinear form of formulation (4.1) is coercive: There exists a
constant c independent of ε, β, σ, and h such that

c|||wh|||2 ≤ A(wh, wh) + J1(wh, wh).

Proof. The boundary part is handled in the same way as in Lemma 3.3. The part
that we need to show does not interfere with coercivity is, in this case, the convective
term, but by partial integration we obtain, on using [w2

h] = 2[wh]{wh}, that

(4.5) (β · ∇wh, wh)h = −(∇ · β wh, wh)h − (wh, β · ∇wh)h

+
∑
K

〈β · n [wh], {wh}〉∂K\∂Ω + 〈β · n wh, wh〉 .

Using this in A(wh, wh) gives

(4.6) (β · ∇wh, wh)h − 1

2

∑
K

〈β · n [wh], {wh}〉∂K\∂Ω + 〈|β · n|wh, wh〉∂Ωin

= −1

2
(∇ · β wh, wh)h +

1

2
〈|β · n|wh, wh〉

and coercivity follows by the coercivity condition (2.2).
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Lemma 4.3 (Galerkin orthogonality). Let u be the solution of (2.1) and let uh

be the solution of (4.1); then, we have that

A(u− uh, wh) + J1(u− uh, wh) =
1

2

∑
K

〈
ε(∇u · n− π0

h(∇u · n)), [wh]
〉
∂K\∂Ω

,

where π0
h denotes the projection onto piecewise constants on the element K.

Proof. We note that

A(u,wh) = (σu + β · ∇u,wh) + (ε∇u,∇wh)h − 〈ε∇u · n,wh〉

= (σu + β · ∇u− εΔu,wh) +
1

2

∑
K∈Th

〈ε∇u · n, [wh]〉∂K\∂Ω .

Using now (2.1), the zero mean value property of the jump [wh] and the fact that
J1(u,wh) = 0 for u ∈ H2(Ω) we may write

A(u,wh) = (f, wh) +
1

2

∑
K∈Th

〈
ε(∇u · n− π0

h(∇u · n)), [wh]
〉
∂K\∂Ω

,

which completes the proof.

Theorem 4.4. Let u ∈ H2(Ω) be the solution of (2.1) and let uh ∈ V CR
h be the

solution of (4.1); then, the following a priori error estimate holds:

|||u− uh||| ≤ Ch(σ̃1/2h + ε1/2 + ‖β‖1/2
∞ h1/2)‖u‖2,Ω,

where σ̃ = max(σ0, σ1).

Proof. The proof is similar to the proof of Theorem 3.5. We only need to prove
that the residual terms due to the inconsistency have the correct order of convergence.
Consider u − πhu with πh the L2-projection onto P 1

c . Let ξh = uh − πhu and η =
u− πhu. Following the previous convergence proof we obtain by Lemmas 4.2 and 4.3
and the continuity of the symmetric part that

|||ξh|||2 ≤ A(ξh, ξh) + J1(ξh, ξh)

= A(η, ξh) + J1(η, ξh) +
1

2

∑
K

〈
ε(∇u · n− π0

h(∇u · n)), [ξh]
〉
∂K\∂Ω

≤ C|]η[| |||ξh||| +
1

2

∑
K

〈
ε(∇u · n− π0

h(∇u · n)), [ξh]
〉
∂K\∂Ω

+
1

2

∑
K

〈β · nη, [ξh]〉∂K\Ω + |(η, β · ∇ξh)h|.

For the element boundary terms we readily obtain

∑
K

〈
ε(∇u · n− π0

h(∇u · n)), [ξh]
〉
∂K\∂Ω

≤
(∑

K

‖ε1/2h1/2(∇u · n− π0
h(∇u · n))‖2

∂K\∂Ω

)1/2 (∑
K

〈
εh−1[ξh], [ξh]

〉
∂K\∂Ω

)1/2
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and

1

2

∑
K

〈β · nη, [ξh]〉∂K\∂Ω ≤ 1

2

(∑
K

‖β‖∞|η|2∂K

)1/2(∑
K

〈|β · n|[ξh], [ξh]〉∂K\∂Ω

)1/2

.

Using now the projection estimate (4.4), approximation, and Lemma 4.1 we have

(∑
K

‖ε1/2h1/2(∇u · n− π0
h(∇u · n))‖2

∂K\∂Ω

)1/2

≤ ε1/2h‖u‖2,Ω,

1

2

(∑
K

‖β‖∞|η|2∂K

)1/2

≤ C‖β‖1/2
∞ h3/2‖u‖2,Ω,

and

(∑
K

〈
(εh−1 + |β · n|)[ξh], [ξh]

〉
∂K\∂Ω

)1/2

≤
(
C‖ε1/2∇ξh‖2

h + J1(ξh, ξh)
)1/2

.

Finally the convective term is handled exactly as in the proof of Theorem 3.5 using
the orthogonality of the L2-projection and Theorem 2.2, and we conclude the proof
by an application of the approximation Corollary 3.2.

Remark 4.5. The above analysis of the Crouzeix–Raviart discretization only
shows that the method will converge with the same order as the conforming piecewise
linear method. However, we expect a richer space to provide a better approximation
of the streamline derivative and hence the upper bound on the parameter γ̃1 to be
smaller. A more precise analysis following the proof of Theorem 2.2 shows that this
is indeed the case. For completeness below we add such a result, which is proven in
[7]. What should be observed is that the richer space gives a sharper estimate: In
this case the stabilization parameter is independent of the mesh geometry.

Lemma 4.6. Let β ∈ [P 1
c ]d and wh ∈ V CR

h ; then

‖h1/2(β · ∇wh − πCR
h (β · ∇wh))‖2

h ≤ jβ(wh, wh),

where πCR
h denotes the averaging interpolation operator of (2.9) defined on the

Crouzeix–Raviart space and jβ(wh, wh) is given by

jβ(wh, wh) =
∑
K

γβ

∫
∂K\∂Ω

hKh∂K⊥ [β · ∇wh]2 ds

with h∂K⊥ denoting the triangle size perpendicular to the side on ∂K and γβ depends
only on the space dimension.

5. Domain decomposition and the relation to discontinuous Galerkin
methods. In this section we will show how domain decomposition using Nitsche’s
method leads to discontinuous Galerkin-type penalty methods in a natural way. For
the Poisson problem this method was analyzed in [1]. Below we will briefly sketch
how the results of [1] may be extended to the case of convection-diffusion problems
using the interior penalty framework. Consider a decomposition of the domain Ω into
the disjoint subdomains ωi, i = 1, . . . , N , with corresponding triangulations Th,i such
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that ∪N
i=1Th,i = ∪N

i=1ω̄i = Ω̄. Note that we do not suppose that neighboring meshes
are conforming over the intersubdomain boundary. On each triangulation we define
a finite element space Vh,i associated with the subdomain ωi.

Vh,i = {vh : vh ∈ H1(ωi); vh|K ∈ P1(K)}

and we let Vh =
∑N

i=1 Vh,i. We now consider problem (2.1) on Ω and, by taking Vh

as trial and test space in the formulation (2.4), we propose the finite element method:
Find uh ∈ Vh such that

A(uh, vh) + J(uh, vh) = (f, vh) ∀vh ∈ Vh,(5.1)

where

A(uh, vh) =
∑N

i=1 ((σuh, vh)ωi + (ε∇uh,∇vh)ωi + (β · ∇uh, vh)ωi
)

− 1
2

∑N
i=1

(
〈β · n[uh], {vh}〉∂ωi

+ 〈{ε∇uh · n}, [vh]〉∂ωi
+ 〈{ε∇vh · n}, [uh]〉∂ωi

)
−〈ε∇uh · n, vh〉 − 〈ε∇vh · n, uh〉

+
〈
γbc

ε
huh, vh

〉
+ 〈|β · n|uh, vh〉∂Ωin

and

(5.2) J(uh, vh) =

N∑
i=1

( ∑
K∈Th,i

〈γ1,i(h)[β · ∇uh], [β · ∇vh] 〉∂K\∂ωj

+
〈
δ(ε, β)2[uh], [vh]

〉
∂ωi\∂Ω

)
.

Note that the bilinear form A corresponds to a standard Galerkin formulation in each
subdomain, supplemented with boundary terms on the inner and outer boundaries
that appear naturally in the formulation to assure coercivity or consistency. The
interior penalty term J(uh, vh) has been decomposed into a term controlling the jumps
in the gradient over interior edges of each subdomain ωi and another term controlling
the jump of the solution over interior boundaries of neighboring subdomains. The
stabilization parameter γ1,i(h) = γ̃1,ih

2
K is now dependent on the mesh geometry of

the subdomain triangulation Th,i. We define the triple norm

(5.3) |||wh|||2 =

N∑
i=1

(
‖σ1/2

0 wh‖2
ωi

+ ‖ε1/2∇wh‖2
ωi

+ |(hε)1/2∇wh · n|2∂ωi

)

+ J(wh, wh) + |δ(ε, β)wh|∂Ω

and obtain the following a priori error estimate.
Theorem 5.1. Let u ∈ H2(Ω) be the solution of (2.1) and let uh ∈ Vh be the

solution of (5.1); then, the following a priori error estimate holds:

|||u− uh||| ≤ Ch
(
σ̃1/2h + ε1/2 + ‖β‖1/2

∞ h1/2
)
‖u‖2,Ω,

where σ̃ = max(σ0, σ1).
Proof. We will not give the details of the proof here, but note that it follows by

applying the techniques of Theorem 3.5 in each subdomain ωi. The internal boundary
terms are treated in the same fashion as the outer boundary terms. The added penalty
terms on the jump of the solution over internal boundaries ensures the coercivity and
continuity of the bilinear form. For a detailed analysis of the method in the case of
the Poisson problem, we refer to [1].
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Corollary 5.2. If the triangulation of each subdomain consists of a single
triangle, then the formulation (5.1) is equivalent to an interior penalty discontinuous
Galerkin method for (2.1).

Proof. This result is immediate by noting that the interior penalty term on the
gradient jumps vanishes since there are no interior edges in the subdomains.

Remark 5.3. The substructuring iterative method for parallel solution naturally
associated to (5.1) will be analyzed in a forthcoming work [8].

6. Numerical examples. In this section we illustrate the numerical perfor-
mance of the interior penalty method on some academic test cases. We will only
consider the case of conforming piecewise linear approximation. In these test cases
we have used weakly imposed boundary conditions. For results using strongly im-
posed boundary conditions, or comparisons between stabilization using the jump in
the streamline derivative versus the jump in the whole gradient, see [6]. For results
on shock-capturing and discrete maximum principles, see [5], and for results using the
Crouzeix–Raviart element, see [7]. First we consider three problems with known exact
solution, the first two on structured meshes and the third on the so-called Peterson
meshes. The reason we consider Peterson meshes is because we wish to verify that
our a priori error estimate is sharp. Finally we will show qualitatively the effect of
the weakly imposed boundary conditions. We have applied the finite element method
(3.1) to (2.1) using the stabilizing term

Jtot(uh, vh) =
∑
K

∫
∂K\∂Ω

γ1(h)[∇uh] · [∇vh]ds

with γ1(h) = 0.025 h2
K . The a priori error estimate of Theorem 3.5 holds also for this

choice, but some consistent crosswind diffusion is added, giving better control of the
gradient. The parameter γbc is set to unity.

6.1. Convergence tests, smooth solutions. Consider problem (2.1) with β =
(1, 0), σ = 1, and ε = 1.E − 5 in a square with unit sidelength. To examine the
convergence behavior of our method we propose two smooth test cases with known
solution. The exact solutions are as follows (see Figure 2):

• test case 1: u = exp(− (x−0.5)2

aw
− 3(y−0.5)2

aw
), aw = 0.2;

• test case 2: u = 1
2 (1 − tanh(x−0.5

aw
)), aw = 0.05.

These functions have then been inserted into the equations and the corresponding
source terms have been computed. The solution has been computed on a series of
structured meshes having 20, 40, 80, 160, and 320 elements, respectively, on each side.
A typical mesh is presented in Figure 4. In Tables 6.1 and 6.2 we report the errors
in the L2-norm and the H1-seminorm as well as the convergence of the jumps in the
gradients over element edges given by Jtot(uh, uh) (with γ1(h) = h2

K for simplicity).
Note that Jtot(uh, uh) and Jtot(uh−πhu, uh−πhu) have the same convergence order.
The observed order of convergence is denoted by α indicating that the rate is of order
O(hα).

We observe second-order convergence of the error in the L2-norm and first-order
convergence in the H1-norm. For the stabilization term we obtain the convergence or-
der h3/2. In Figure 3 we present a comparison between the numerical results obtained
using the continuous interior penalty (CIP) method (for the corresponding theoretical
result see Theorem 3.5) and those obtained by solving the problem using a standard
SUPG approach. For these simple test cases, the numerical performance of the two
methods is nearly identical.
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Fig. 2. The two exact solutions: the Gaussian (left), the hyperbolic tangent (right).

Table 6.1

Convergence results for test case 1.

N L2 α H1 α Jtot(uh, uh)1/2 α
20 0.1618E−02 – 0.1482E+00 – 0.6300E−02 –
40 0.3458E−03 2.22 0.7333E−01 1.02 0.2241E−02 1.49
80 0.8236E−04 2.07 0.3647E−01 1.01 0.7933E−03 1.50
160 0.2045E−04 2.01 0.1817E−01 1.01 0.2806E−03 1.50
320 0.5117E−05 2.00 0.9058E−02 1.00 0.9920E−04 1.50

Table 6.2

Convergence results for test case 2.

N L2 α H1 α Jtot(uh, uh)1/2 α
20 0.7382E−02 – 0.6678E+00 – 0.2447E−01 –
40 0.1267E−02 2.54 0.2913E+00 1.20 0.8485E−02 1.53
80 0.2985E−03 2.09 0.1442E+00 1.01 0.3000E−02 1.50
160 0.7370E−04 2.02 0.7198E−01 1.00 0.1061E−02 1.50
320 0.1838E−04 2.00 0.3596E−01 1.00 0.3752E−03 1.50

h

-210-33. 10 -35. 10 -22. 10 -23. 10 -25. 10

-510

-410

-310

slope h^2
SUPG     
CIP      

test case 1, L2 norm error

h

-210-33. 10 -35. 10 -22. 10 -23. 10 -25. 10

-510

-410

-310

-210

slope h^2
SUPG     
CIP      

test case 2, L2 norm error

Fig. 3. Comparisons with the SUPG method: test case 1 (left); test case 2 (right).
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Fig. 4. Example of the meshes used: structured crisscross mesh (left); Peterson mesh (right).

6.2. Peterson meshes. Naively, one might hope that the consistently added
crosswind diffusion in the jump term J1(uh, vh) obtained by taking the jump of the
whole gradient and not only the streamline derivative would result in a numerical
scheme for which the error in the L2-norm never degenerates to O(h3/2). However,
as the following numerical example shows, this is not the case. We recall the test
cases of [27, 24] on the so-called Peterson meshes. In Figure 4 we show an example of
a Peterson mesh. In [27] it was shown that the convergence order of the streamline
diffusion method on Peterson meshes depends on the number of vertical lines in the
mesh. In fact, the streamline diffusion method can be made to converge with any rate
O(h3/2) − O(h2) depending on the distribution of the vertical edges. Here we only
consider the worst case where the number of inserted lines is given by m ≈ h−3/4.
Following [27] we chose β = (0, 1), σ = 1, and ε = 0 in (2.1). Moreover we choose
f = x2 and the inflow boundary condition uin = x2. The exact solution is given by
u(x, y) = x2. In Table 6.3 we report the errors obtained in different norms and the
corresponding convergence orders. We note that the convergence rate of the method
degenerates to almost O(h3/2) in the L2-norm and to O(h0.88) in the H1-norm. The
jump term has a slightly suboptimal convergence rate of α = 1.4 but seems to be
increasing toward the asymptotic value α = 1.5 as the mesh is refined.

Table 6.3

Convergence results on Peterson meshes.

N m L2 α H1 α Jtot(uh) α

8 5 0.7958E−02 – 0.1601E+00 – 0.5065E−02 –
16 8 0.2602E−02 1.61 0.8728E−01 0.88 0.2013E−02 1.33
32 13 0.8178E−03 1.67 0.4726E−01 0.89 0.7613E−03 1.40
64 23 0.2654E−03 1.62 0.2543E−01 0.89 0.2839E−03 1.42
128 38 0.8365E−04 1.67 0.1375E−01 0.89 0.1054E−03 1.43
256 64 0.2712E−04 1.63 0.7465E−02 0.88 0.3878E−04 1.44

6.3. Nonsmooth solutions, weak boundary conditions. In this last nu-
merical example we show the effect of the weakly imposed boundary condition and
compare with the case when the boundary condition is imposed strongly. We consider
a classical problem with an interior layer and an outflow layer. In this case we choose
ε = 2.E − 3, σ = 0, β = (− cos 55◦,− sin 55◦). The boundary conditions and the
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computational domain are specified in Figure 5. In Figure 6 we present solutions on
three different meshes, having 20, 80, and 320 elements per side, respectively. On
the coarsest mesh we show the carpet plot of the mesh and on the finer meshes we
only show elevations of the contour plots. Note how the strongly imposed boundary
conditions induce significant overshoots in the outflow layer. When the boundary
conditions are imposed weakly there are hardly any overshoots, but the approximate
solution will satisfy the boundary condition only when the layer is fully resolved. The
parameter γbc can be tuned to impose the satisfaction of the boundary condition on a
given scale. However, if the penalty parameter is chosen too large, the oscillations will
reappear. The spurious oscillations on the interior layer are suppressed thanks to the
added crosswind diffusion but disappear completely only when the mesh is sufficiently
fine.

55

β

U=0

U=1

Fig. 5. Problem data specification, outflow layer test case. At the points the boundary data
changes linearly from U = 1 to U = 0 over an interval of size ε.

7. Conclusion. We have proposed a new framework for stabilized methods
based on interior penalty and conforming or nonconforming approximation. In or-
der to avoid Petrov–Galerkin-type discretizations we added a term giving L2-control
of the jumps in the solution gradient over element boundaries when using spaces Vh

that do not satisfy β · ∇vh ∈ Vh ∀vh ∈ Vh. We proved that this results in a method
that is stable in the hyperbolic limit with optimal order convergence for continuous
piecewise linear approximation. The stabilization is symmetric, uniform in the dif-
fusion parameter ε and lumped mass may be used for efficient time stepping. The
framework also allows for nonconforming approximations and we proved optimal or-
der a priori error estimates for the first-order Crouzeix–Raviart element using the
theory developed for the conforming case. Moreover we discussed domain decompo-
sition using Nitsche’s method and the relation to discontinuous Galerkin methods.
Finally we considered some numerical examples for the continuous piecewise linear
case. We showed that the method has optimal convergence order of O(h2) in the L2

norm for smooth test problems on structured meshes, but degenerates to O(h3/2) on
the so-called Peterson meshes, indicating that our a priori error estimates are sharp.
We believe that this form of stabilization offers an attractive compromise between
the SUPG method and the discontinuous Galerkin method. Compared to SUPG we
are more flexible with respect to time-stepping schemes and mass lumping; however,
we pay a price in the size of the system matrix which increases in size by a factor
of two in two space dimensions and a factor three in three space dimensions. The
implementation also differs since one needs a data structure containing the elements
neighboring to a given element in order to compute the gradient jumps. The method
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Fig. 6. Outflow layer test case: weakly imposed boundary conditions (left); strongly imposed
boundary conditions; resolutions from top down: 20 × 20, 80 × 80, and 320 × 320 (right).

enjoys many of the advantages of the discontinuous Galerkin method. Two impor-
tant exceptions, however, are the local conservation properties of the discontinuous
Galerkin method and the ease by which one may couple finite elements with different
polynomial degree. On the other hand, in the continuous interior penalty method we
can control the number of degrees of freedom we use by choosing our approximation
spaces judiciously. A particularly interesting feature of the method is the way in which
it can be combined with discontinuous Galerkin approximations using a Nitsche-type
coupling.

Acknowledgment. The author thanks an anonymous referee for the careful
reading of the manuscript and the constructive criticism that helped to improve the
paper.
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Abstract. The effectiveness of the three-dimensional (3-D) diffusion synthetic acceleration
preconditioning procedure is proved in various asymptotic regimes for the discretized, mono-energetic,
steady-state, linear Boltzmann transport equation with isotropic scattering. The discretizations
consist of a discrete ordinate collocation in angle and a Petrov–Galerkin finite element method in
space. Following the path initiated by Faber and Manteuffel, we pursue the 3-D development of
Brown by providing a 3-D extension of the slab geometry convergence results of Ashby et al. Our
theoretical results confirm the good numerical results of Brown in thin and thick limits and hold for
problems with nonconstant coefficients and nonuniform spatial zoning posed on finite domains with
an incident flux prescribed at the boundaries.
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1. Introduction. The integro-differential linear Boltzmann transport equation
(BTE) models neutral and charged particle transport. In deterministic approaches, a
spatio-angular discretization of the BTE yields a system of linear algebraic equations
that is solved iteratively. Diffusion synthetic acceleration (DSA) is known to be
effective in speeding up the iterative solution of the discretized BTE. A recent review
paper by Adams and Larsen [2] gives an extensive survey of the DSA history together
with other acceleration methods using discrete ordinate angular discretizations.

We follow here the path initiated by Faber and Manteuffel [7], who popularized
the equivalence between DSA and preconditioning techniques. Their linear algebraic
setting then allows benefiting from well-known linear system solution techniques such
as conjugate gradients. Ashby et al. [4] extended the viewpoint of [7] by incorporating
diamond-difference (or Petrov–Galerkin) spatial discretization and discrete ordinate
angular discretization. Their matrix formulation of the resulting discretization en-
abled a linear algebraic derivation of the preconditioner and initial guess. They also
showed the relationship between their work and the four-step method of Larsen [12].

While this was restricted to slab geometry (one-dimensional Cartesian), Brown [5]
extended this viewpoint to three-dimensional (3-D) geometry. He derived the precon-
ditioning matrix yielding the DSA procedure, and presented numerical experiments
demonstrating the effectiveness of this 3-D DSA preconditioner on some example
problems. Specifically, this preconditioner was shown to exhibit very good behavior
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†Commissariat à l’énergie atomique (CEA-Saclay), DEN/DM2S/SERMA/LENR (bat 470), 91191

Gif-sur-Yvette Cedex, France (serge.van-criekingen@cea.fr).

2034



LINEAR ALGEBRAIC ANALYSIS OF 3-D DSA 2035

in the thin and thick limits, that is, for total cross-sections tending to zero or infinity,
respectively.

Nevertheless, the 3-D DSA preconditioner derivation of Brown [5] lacks a detailed
mathematical analysis of the thin and thick limits similar to that given by Ashby et al.
[4] for the slab geometry. In this paper, we intend to remedy this lack so as to confirm
the encouraging numerical results in [5]. Opposite to typical Fourier analyses, our
results hold for problems posed on finite domains, with nonconstant coefficients and
nonuniform spatial zoning.

We consider discretizations consisting of a standard discrete ordinate collocation
of the angular variable and a Petrov–Galerkin finite element approximation of the spa-
tial variable. This discretization scheme [5] is equivalent to the well-known discrete
ordinate diamond-difference scheme in [13], here in a matrix formulation. As is well
known [3, 12], a “consistent” discretization of a limiting diffusion approximation to
the BTE leads to effective DSA algorithms. While for slab geometry the consistently-
differenced diffusion problem is nonsingular, Brown [5] showed that the “consistently”
differenced 3-D diffusion approximation is actually singular, although the DSA pre-
conditioner itself remains nonsingular. This fact makes the 3-D convergence analysis
challenging, forcing us to use pseudo-inverses while standard inverses could be used
in slab geometry.

Similar to what was done to obtain slab geometry theoretical results [4], we will
consider particular values of the cross-sections, namely the thick and thin limits.
Within the thick limit, we more precisely investigate the asymptotic diffusion limit,
where sources tend to zero and scattering ratios (fraction of “losses” due to scatter-
ing processes) tend to unity while total cross-sections tend to infinity. Besides, the
effectiveness of the 3-D DSA preconditioner is proved in another thick limit, with
scattering ratios bounded away from unity. Finally, we discuss the behavior of the
system matrix and DSA preconditioner in the thin regime.

The paper is organized as follows. After some preliminaries in section 2, the 3-
D BTE is introduced in section 3. Isotropic scattering is assumed, and Dirichlet
boundary conditions are applied. Section 4 gives an integrated presentation of the
BTE discretization, and section 5 displays the 3-D DSA preconditioner and related
initial guess derived in [5]. Section 6 contains our 3-D convergence analysis results for
the different problem regimes described above. Despite their importance, the proofs
have been put in an appendix for ease of readability.

2. Preliminaries. We review some notations and results used throughout the
paper. For a linear operator A, N (A) denotes its null space and R(A) its range.
For matrices A = (aij) ∈ Rm×n and B ∈ Rk×l, the Kronecker (or tensor, or direct)
product of A and B is the mk × nl matrix defined by

A⊗B ≡

⎛
⎜⎝

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎞
⎟⎠ .

We recall the following Kronecker product properties [9]:
• If A and B are nonsingular, then A ⊗ B is nonsingular with (A ⊗ B)−1 =
A−1 ⊗B−1,

• (A⊗B)T = AT ⊗BT ,
• (A ⊗ B) · (C ⊗ D) = AC ⊗ BD as long as both sides of the equation make

sense,
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• (A + B) ⊗ C = A⊗ C + B ⊗ C,
• A⊗ (B + C) = A⊗B + A⊗ C, and
• for any two vectors u and v, ‖u⊗ v‖2 = ‖u‖2 · ‖v‖2, where ‖ · ‖2 denotes the

usual Euclidean norm of a vector.
Finally, for diagonal matrices A and B, A < (≤) B means aii < (≤) bii for all i.

3. Problem definition. We begin with the mono-energetic, steady-state, linear
BTE in a 3-D box geometry with isotropic scattering [13]. The spatial domain is the
box D ≡ {r = (x, y, z)|ax ≤ x ≤ bx, ay ≤ y ≤ by, and az ≤ z ≤ bz}, the direction
variable is Ω ∈ S2 (the unit sphere in R3), and the equation in the flux ψ is given by

Ω · ∇ψ(r,Ω) + σ(r)ψ = σs(r)

∫
S2

ψ(r,Ω′)dΩ′ + q(r,Ω),(3.1)

where ∇ψ ≡ (∂ψ/∂x, ∂ψ/∂y, ∂ψ/∂z). The functions σ(r), σs(r) and q(r,Ω) are as-
sumed known. The flux ψ(r,Ω) is expanded in surface harmonics Y m

n (Ω) according to

ψ(r,Ω) =

∞∑
n=0

n∑
m=−n

φm
n (r)Y m

n (Ω),

where

φm
n (r) ≡

∫
S2

ψ(r,Ω)Y m
n (Ω)dΩ

is the (n,m)th moment of ψ. Similarly, the source q is expanded as

q(r,Ω) =

∞∑
n=0

n∑
m=−n

qmn (r)Y m
n (Ω),

where

qmn (r) ≡
∫
S2

q(r,Ω)Y m
n (Ω)dΩ.

For ease of exposition in what follows, we have elected to use real-valued surface
harmonics, all scaled to have unit norm in L2(S2). See [5] for a detailed definition of
these harmonics. To relate to notations in [5], we also define σs,0 = 4πσs.

Given ψ in the above form, one is able to rewrite the scattering term in the form

σs(r)

∫
S2

ψ(r,Ω′)dΩ′ = σs,0(r)φ
0
0(r)Y

0
0

with Y 0
0 = 1√

4π
. The total cross-section σ is given by

σ(r) = σa(r) + σs,0(r),

where σa is the absorption cross-section.
Boundary conditions must also be specified so as to make (3.1) well-posed. We

consider Dirichlet boundary conditions in which the incident flux g(r,Ω) is specified
on a face. That is,

ψ(r,Ω) = g(r,Ω) for all r ∈ ∂D and Ω ∈ S2 with �n(r) · Ω < 0,(3.2)

where �n(r) is the outward pointing unit normal at r ∈ ∂D. Another common choice
of boundary conditions is a reflecting condition on a face. Note that a problem with a
reflecting condition can be transformed into one with Dirichlet conditions by reflecting
the problem data about the reflecting boundary.
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4. Discretization of the 3-D problem. We give here an integrated presen-
tation of the discretization scheme developed in [5] for (3.1)–(3.2). This scheme is
equivalent to the discrete ordinate diamond-difference scheme in [13]. On the other
hand, the Petrov–Galerkin spatial discretization used here can also be related to the
finite volume element method analyzed by Cai, Mandel, and McCormick [6].

4.1. Spatio-angular discretization of the BTE. The angular variable is dis-
cretized using a discrete ordinate collocation method (see [13] for a complete overview
of such methods). It consists simply of evaluating the BTE (3.1) in discrete angular
directions Ω� ∈ S2 (� = 1, . . . , L), each of them characterized by direction cosines
(μ�, η�, ξ�). The same set of (nonzero) direction cosines is used with respect to each
of the three coordinate axes, i.e., {μ�} = {η�} = {ξ�}. Also, the direction cosines
are assumed to be symmetrically placed (with respect to the origin) along each axis.
Integrals over the unit sphere are approximated by a quadrature rule∫

S2

ψ(Ω)dΩ ≈
L∑

�=1

w�ψ(Ω�).(4.1)

As in [5], we consider either weights invariant under 90◦-rotations about any coordi-
nate axis, or weights that are all equal. In either case, we require all the weights to
be positive and such that

L∑
�=1

w�ξ
2n
� =

4π

2n + 1
(4.2)

for n= 0 and 1. It follows from the symmetrical placement of the direction cosines that

L∑
�=1

w�μ� = 0,

L∑
�=1

w�η� = 0, and

L∑
�=1

w�ξ� = 0.(4.3)

For the spatial variable, we first discretize the box-shaped domain D into zones
delimited by the coordinate lines x = xi (i = 0, . . . ,M), y = yj (j = 0, . . . , J),
and z = zk (k = 0, . . . ,K), and define rijk = (xi, yj , zk). Next, we define Δxi =
xi − xi−1 for i = 1, . . . ,M , and similarly Δyj and Δzk. We also define Δrijk ≡
ΔxiΔyjΔzk. The {rijk} are referred to as nodes, and function values at these points
are called nodal values. Assume that σ, σs and q have constant values on each zone

Zijk ≡ {r|xi−1 < x < xi, yj−1 < y < yj , zk−1 < z < zk},
denoted by σijk, σs,ijk, and qijk, respectively. In what follows, we assume σijk 	= 0
for all i, j, k, even though we examine the thin limit (where total cross-sections tend
to zero as described below) in section 6.2. Function values that are constant on zones
will be referred to as zone-centered values. We use ψijk,� to denote the approximation
to ψ(rijk,Ω�), the true solution at rijk in the direction Ω�.

For the spatial expansions, we use the continuous piecewise-trilinear elements

Pijk(r) ≡ pi(x)pj(y)pk(z),

where pi(x), pj(y), and pk(z) are the standard continuous piecewise-linear one-dimen-
sional basis functions. We then approximate ψ(r,Ω�) by the piecewise-trilinear func-
tion ψa given by

ψ(r,Ω�) ≈ ψa(r,Ω�) ≡
∑
i,j,k

ψijk,�Pijk(r).(4.4)

Note that ψa(rijk,Ω�) = ψijk,�.
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The Petrov–Galerkin method consists of substituting ψa for ψ in the BTE (3.1)
and then averaging over zone Zijk. For each direction Ω�, this procedure yields a set
of MJK zonal equations in the (M+1)(J+1)(K+1) unknowns ψijk,�. The boundary
conditions provide the extra equations necessary to make the problem well-posed. In
what follows, nodes and zones used as sub- or superscripts will respectively denote
the number of nodes (M + 1)(J + 1)(K + 1) and zones MJK.

To obtain a compact notation, we define the vector of nodal values

Ψ ≡

⎛
⎜⎝

Ψ1

...
ΨL

⎞
⎟⎠ with Ψ� ≡

⎛
⎜⎝

Ψ0,�

...
ΨK,�

⎞
⎟⎠ ∈ Rnodes,

Ψk,� ≡

⎛
⎜⎝

Ψ0k,�

...
ΨJk,�

⎞
⎟⎠ ∈ R(M+1)(J+1), and Ψjk,� ≡

⎛
⎜⎝

ψ0jk,�

...
ψMjk,�

⎞
⎟⎠ ∈ RM+1.

Next, we define

Δx ≡ diag(Δx1, . . . ,ΔxM ),

Δy ≡ diag(Δy1, . . . ,ΔyJ),

Δz ≡ diag(Δz1, . . . ,ΔzK),

Δr = Δz ⊗ Δy ⊗ Δx,

as well as the matrices

DM ≡

⎛
⎜⎝

−1 1
. . .

. . .

−1 1

⎞
⎟⎠ ∈ RM×(M+1),(4.5)

SM ≡ 1

2

⎛
⎜⎝

1 1
. . .

. . .

1 1

⎞
⎟⎠ ∈ RM×(M+1),(4.6)

and similarly the matrices DJ , SJ , DK , and SK for the other two directions. Fur-
thermore, we introduce

Σ ≡ diag(σ111, . . . , σzones) ∈ Rzones,

and

S ≡ SK ⊗ SJ ⊗ SM ,

Cx ≡ SK ⊗ SJ ⊗ Δx−1DM ,

Cy ≡ SK ⊗ Δy−1DJ ⊗ SM ,

Cz ≡ Δz−1DK ⊗ SJ ⊗ SM .

Note that S represents an averaging matrix taking nodal vectors into zone-centered
vectors, while Cx, Cy, and Cz represent the discretized versions of the differentiation
operators ∂/∂x, ∂/∂y, and ∂/∂z, respectively. Then, for each �,

C� ≡ μ�Cx + η�Cy + ξ�Cz

is the discretized version of the Ω� · ∇ operator on the left-hand side of (3.1).
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To represent the source term, we define the zone-centered vector

Q ≡

⎛
⎜⎝

Q1

...
QL

⎞
⎟⎠ with Q� ≡

⎛
⎜⎝

Q1,�

...
QK,�

⎞
⎟⎠ ∈ Rzones,

Qk,� ≡

⎛
⎜⎝

Q1k,�

...
QJk,�

⎞
⎟⎠ ∈ RMJ , and Qjk,� ≡

⎛
⎜⎝

q1jk,�
...

qMjk,�

⎞
⎟⎠ ∈ RM ,

where qijk,� ≡ q(rijk,Ω�) is given.
With Izones the MJK×MJK identity matrix, we then define the MJK×LMJK

matrices

Ln,m ≡ (w1Y
m
n (Ω1)Izones |w2Y

m
n (Ω2)Izones | · · · |wLY

m
n (ΩL)Izones)(4.7)

and the LMJK ×MJK matrices

L+
n,m ≡

⎛
⎜⎝

Y m
n (Ω1)Izones

...
Y m
n (ΩL)Izones

⎞
⎟⎠ .(4.8)

Note that

Ln,mL+
n′,m′ =

L∑
�=1

w�Y
m
n (Ω�)Y

m′

n′ (Ω�)Izones,

and it was proven in [5] that, for n, n′ = 0, 1 and |m| ≤ n, |m′| ≤ n′, we have

Ln,mL+
n′,m′ = δn,n′δm,m′Izones.(4.9)

We also define the grouped matrices Ln and L+
n as

Ln =

⎛
⎜⎝

Ln,−n

...
Ln,n

⎞
⎟⎠

and

L+
n = (L+

n,−n, . . . , L
+
n,n).

Furthermore we need

Γ0 = diag(γ0,111, . . . , γ0,MJK) with γ0 = σs,0/σ ≤ 1,

Σ̄ ≡ IL ⊗ Σ, and(4.10)

S̄ ≡ IL ⊗ S

with IL the L×L identity matrix. Then, with D� ≡ (Σ−1C� +S) ∈ Rzones×nodes and

D ≡ diag(D1, . . . , DL),

the discretized version of the BTE equation (3.1) reads

DΨ = L+
0 Γ0L0S̄Ψ + Σ̄−1Q.(4.11)
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4.2. Discretized Dirichlet boundary conditions. For the boundary con-
ditions (3.2), when x = x0, the normal �n(r0jk) = (−1, 0, 0) for all j, k. Hence,
�n(r0jk) · Ω� = −μ�, and for μ� > 0 we have

ψ0jk,� = g0jk,�(≡ g(r0jk,Ω�)).(4.12)

The other cases are treated similarly. We let G be the nodal vector made out of the
gijk,� and built as the Ψ vector.

To isolate the boundary values, first note that for a direction vector Ω� with all
its components positive, ψ satisfies a Dirichlet condition for all r = r0jk, ri0k, or rij0,
i.e., for an r on any one of the three faces x = x0, y = y0, or z = z0. In this case,
after discretization, the boundary conditions (4.12) and their relevant y− and z−
counterparts can be written in tensor notation as ET

000(Ψ −G) = 0, where

ET
000 ≡

⎛
⎜⎝

eT0K ⊗ IJ+1 ⊗ IM+1

(0, IK) ⊗ eT0J ⊗ IM+1

(0, IK) ⊗ (0, IJ) ⊗ eT0M

⎞
⎟⎠

with e0M = (1, 0, . . . , 0)T ∈ RM+1, and similarly for the vectors e0J and e0K . More
generally, eIJ designates a column vector of size J + 1, filled with zeros everywhere
except for a 1 on the (I + 1)th row. There are different E matrices for the other
possible cases. For example, for a direction Ω� with μ� > 0, η� > 0 and ξ� < 0, ψ
satisfies a Dirichlet condition for r on any one of the three faces x = x0, y = y0, or
z = zK . We then have E00K(Ψ −G) = 0, where

ET
00K ≡

⎛
⎜⎝

eTKK ⊗ IJ+1 ⊗ IM+1

(IK , 0) ⊗ eT0J ⊗ IM+1

(IK , 0) ⊗ (0, IJ) ⊗ eT0M

⎞
⎟⎠ .

In all, there are eight different Eijk matrices, with i = 0 or M , j = 0 or J , and k = 0
or K. Defining

B� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ET
000 , if μl > 0, ηl > 0, and ξl > 0,

ET
M00 , if μl < 0, ηl > 0, and ξl > 0,

ET
0J0 , if μl > 0, ηl < 0, and ξl > 0,

ET
00K , if μl > 0, ηl > 0, and ξl < 0,

ET
MJ0 , if μl < 0, ηl < 0, and ξl > 0,

ET
M0K , if μl < 0, ηl > 0, and ξl < 0,

ET
0JK , if μl > 0, ηl < 0, and ξl < 0,

ET
MJK , if μl < 0, ηl < 0, and ξl < 0,

(4.13)

the discretized Dirichlet boundary conditions for each Ω� thus read

B�Ψ� = B�G�.(4.14)

We have Bl ∈ R(nodes−zones)×nodes.
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4.3. The complete discretized system. We now combine (4.11) and the
boundary conditions (4.14) into a single matrix notation. In this view we define

H ≡ diag(H1, . . . , HL),

where

H� ≡
(
D�

B�

)
.

Note that H� operates on nodal vectors. Let also

Z ≡ IL ⊗ Z0, where Z0 ≡
(
Izones

0

)
∈ Rnodes×zones,(4.15)

such that the matrix Z injects zone-centered vectors into the nodal vector space. For
the boundary terms, define the block diagonal matrix B̄ by

B̄ ≡ diag(B0
1 , . . . , B

0
L), where B0

� ≡
(

0
B�

)

for all �, with each B0
� ∈ Rnodes×nodes, as well as β ≡ B̄G.

The complete discretization of (3.1)–(3.2) can now be written in the compact
form

HΨ = ZL+
0 Γ0L0S̄Ψ + ZΣ̄−1Q + β.(4.16)

Equivalently with T = H − ZL+
0 Γ0L0S̄, we have

TΨ = ZΣ̄−1Q + β.(4.17)

It is shown in [5] that H is invertible. So, we can multiply (4.16) by L0S̄H
−1, to

yield

L0S̄Ψ = L0S̄H
−1ZL+

0 Γ0L0S̄Ψ + L0S̄H
−1(ZΣ̄−1Q + β).

Defining Φ0 ≡ L0S̄Ψ, R0 ≡ L0S̄H
−1(ZΣ̄−1Q + β), and K0,0 ≡ L0S̄H

−1ZL+
0 , we

obtain

Φ0 = K0,0Γ0Φ0 + R0

or

A0Φ0 = R0(4.18)

with

A0 ≡ Izones −K0,0Γ0.(4.19)

It is also shown in [5] that A0 is nonsingular. Once Φ0 is obtained by solving (4.18),
Ψ is recovered by solving the equation

HΨ = ZL+
0 Γ0Φ0 + ZΣ̄−1Q + β.
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5. Preconditioners and the initial guess. Due to the form of the matrix
A0 in equation (4.18), an iterative solution method is normally used, and a simple
Richardson or source iteration is the most common choice. The selection of a pre-
conditioner and an initial guess to speed up the iterative solving of (4.18) has been
discussed in [5]. The preconditioner was derived through a “consistent” discretization
of a limiting diffusion approximation to the BTE, and its use in Richardson’s method
is called DSA. We state the results of this discussion here, referring to [5] for the
proofs, and restricting our attention to isotropic scattering.

5.1. Discrete DSA results. We first note that the definitions of the discrete
moment matrices Ln,m and L+

n,m can be easily modified to operate directly on the
nodal vector Ψ. This is accomplished by replacing the Izones identity matrix by
the Inodes identity in equations (4.7) and (4.8). We denote these nodal moment
operators by L̃n,m and L̃+

n,m, respectively, and analogously the operators L̃n and L̃+
n .

We can then define the nodal moments Φ̃n of Ψ by

Φ̃n ≡ L̃nΨ.

To take discrete moments of the boundary conditions, we need to introduce the matrix
operator L�n defined by

L�n ≡ (v1w1Y
0
0 S�n | v2w2Y

0
0 S�n | · · · | vLwLY

0
0 S�n),

with v� ≡ �n ·Ω� if �n ·Ω� < 0 and 0 otherwise and with S�n defined so that S�nΨ gives a
vector containing only two-dimensional zone-averaged entries of Ψ on the face of the
box corresponding to �n. We have for

�n = �nx0 ≡ (−1, 0, 0) : S�nx0
≡ SK ⊗ SJ ⊗ eT0M ,(5.1)

�n = �nxM
≡ (1, 0, 0) : S�nxM

≡ SK ⊗ SJ ⊗ eTMM ,(5.2)

and similarly for the other two directions.
The DSA preconditioner is obtained using a P1 approximation to (4.17) that

consists in approximating Ψ by L̃+
0 Φ̃0 + L̃+

1 Φ̃1. The following discrete P1 system was
derived in [5]:

T1

(
Φ̃0

Φ̃1

)
≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lx0,0 Lx0,1

Ly0,0 Ly0,1

Lz0,0 Lz0,1

T00 T01

T10 T11

LxM ,0 LxM ,1

LyJ ,0 LyJ ,1

LzK ,0 LzK ,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
Φ̃0

Φ̃1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gx0

Gy0

Gz0

(Σ0)−1Q0

(Σ1)−1Q1

GxM

GyJ

GzK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(5.3)

where

T00 = (Izones − Γ0)S
0

T01 =
1√
3
[−Σ−1Cy,Σ

−1Cz,−Σ−1Cx]

T10 =
1√
3
[−CT

y Σ−1, CT
z Σ−1,−CT

x Σ−1]T

T11 = S1,
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with Sn ≡ I2n+1⊗S, Σn ≡ I2n+1⊗Σ, and Qn = LnQ (n = 0, 1). Also, Lx0,0 ≡ L�nL̃
+
0 ,

Lx0,1 ≡ L�nL̃
+
1 , and Gx0 ≡ L�nG for �n = �nx0 ≡ (−1, 0, 0), and similarly for the other

directions. The T1 matrix defined in (5.3) is the P1 approximation to T . Its first and
last lines correspond to the boundary conditions.

The system (5.3) can be reduced [5] to the solution of a diffusion problem involving
only Φ̃0, namely

DcoΦ̃0 = STΔr0Q0 − TT
10Δr1Q1

+ 2
1√
4π

L∑
�=1

w�S
T
KΔzSK ⊗ ST

J ΔySJ ⊗ (vx0,�e0MeT0M + vxM ,�eMMeTMM ) ·G�

+ 2
1√
4π

L∑
�=1

w�S
T
KΔzSK ⊗ (vy0,�e0Je

T
0J + vyJ ,�eJJe

T
JJ) ⊗ ST

MΔxSM ·G�(5.4)

+ 2
1√
4π

L∑
�=1

w�(vz0,�e0KeT0K + vzK ,�eKKeTKK) ⊗ ST
J ΔySJ ⊗ ST

MΔxSM ·G�,

where Δrn ≡ I2n+1 ⊗Δr for n = 0, 1, vx0,� = �nx0
·Ω� if �nx0

·Ω� < 0 and 0 otherwise,
etc., G� ∈ Rnodes are the elements of the boundary condition nodal vector G, and

Dco ≡ STΔrΣa,0S + 2αA(5.5)

+
1

3

(
CT

x ΔrΣ−1Cx + CT
y ΔrΣ−1Cy + CT

z ΔrΣ−1Cz

)
,

with α = 1
4π

∑
μl>0 wlμl, Σa,0 ≡ Σ(I − Γ0), and

A = (ÊMM ÊT
MM + Ê0M ÊT

0M ) + (ÊJJ Ê
T
JJ + Ê0J Ê

T
0J) + (ÊKKÊT

KK + Ê0KÊT
0K),

(5.6)

where

Ê0M ≡ ST
�nx0

(Δz ⊗ Δy ⊗ IM )
1/2

, ÊMM ≡ ST
�nxM

(Δz ⊗ Δy ⊗ IM )
1/2

,(5.7)

and similarly for other directions.

It is shown in [5] that Dco is singular. Nevertheless, the system (5.4) has solu-
tions and can be solved in a least-squares sense using the pseudo-inverse D+

co of Dco

[9, 8]. Then, the DSA preconditioner for A0 in (4.18) can be obtained from the P1

approximation to the transport problem. This preconditioner reads [5]

C0 = Izones + SD+
coS

TΣΔrΓ0.(5.8)

It is also shown in [5] that a good initial guess is given by

Φ0 = SD+
co

{(
Σ0ΔrS

ΔrΣ1T10

)T (
(Σ0)−1Q0

(Σ1)−1Q1

)
+ 2

1√
4π

L∑
�=1

W�G�

}
,(5.9)

where all the boundary terms are lumped into the sum over �.
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6. Limiting behavior of A0 and C0. In this section, we demonstrate that
the DSA preconditioner C0 works well in different problem regimes. Our results
are 3-D generalizations of the slab geometry results of Ashby et al. [4]. For ease of
readability, the proofs were put in an appendix. Throughout the analysis, the number
of quadrature points (L) and the number of spatial zones in each direction (M , J ,
and K) are assumed constant, as well as the mesh size.

Recall that the matrix A0 is given by

A0 = Izones −K0,0Γ0,

where K0,0 = L0S̄H
−1ZL+

0 . For a fixed mesh size, H is a function only of Σ, hence
A0 is a function of the diagonal matrices Σ and Γ0. We write A0 = A0(Σ,Γ0) to
denote this dependence. Also, in what follows, I stands for Izones.

6.1. The thick regime. The thick regime refers to problems with large total
cross sections, i.e., where ‖Σ−1‖2 is small. We prove in section A.2 the following
general result for the thick limit.

Theorem 6.1. Let A0, Σ, and Γ0 be defined as above. Then

‖A0(Σ,Γ0) − (I − Γ0)‖2 → 0 as ‖Σ−1‖2 → 0,(6.1)

uniformly for 0 ≤ Γ0 ≤ I.

6.1.1. The asymptotic diffusion limit. A particular case of the thick regime
is the asymptotic diffusion limit, which is defined by setting

Σ = ε−1Σ̂,

Γ0 = I − ε2Γ̂0,(6.2)

Q = εQ̂,

where Σ̂ and Γ̂0 are fixed diagonal matrices, Q̂ is a fixed zone-centered vector, and
letting ε → 0. In view of Theorem 6.1, Γ0 → I in a thick regime implies A0 → 0
so that C0 has to converge to infinity to be a good preconditioner. The following
theorem, proved in section A.2.1, shows the effectiveness of the DSA preconditioner
in the asymptotic diffusion limit (even when Γ̂0 = 0).

Theorem 6.2. Assume that Σ = ε−1Σ̂ and that Γ0 = I − ε2Γ̂0, where Σ̂ > 0 and
Γ̂0 ≥ 0 are fixed diagonal matrices. Then

‖C0(ε)A0(ε) − I‖2 → 0 as ε → 0.(6.3)

We also have (see section A.2.1) that in the asymptotic diffusion limit, S̄Ψ is well
approximated (in L2 norm) by L+

0 Φ0, where Ψ is the solution of (4.16) and Φ0 is the
solution of (4.18). This is formalized as follows.

Theorem 6.3. Assume that Σ = ε−1Σ̂, Γ0 = I − ε2Γ̂0, and Q = εQ̂ for any fixed
diagonal matrices Σ̂ > 0 and Γ̂0 ≥ 0, and fixed vector Q̂. Let Δr be fixed. Then

‖S̄Ψε − L+
0 Φ0,ε‖2 → 0(6.4)

as ε → 0, where Ψε and Φ0,ε are the respective solutions of (4.16) and (4.18). If we
additionally assume that g ≡ 0 in (3.2) (i.e., zero Dirichlet boundary conditions), then
it also follows that

‖Φinit
0,ε − Φ0,ε‖2 → 0,(6.5)

where Φinit
0,ε is given by (5.9).
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6.1.2. Another thick limit. We here consider the case of a thick regime where
Γ0 is bounded away from the identity. Then A0 is bounded away from zero, and the
analysis is somewhat simpler. Theorem 6.4 is proved in section A.2.2.

Theorem 6.4. Let C0 be defined as above. Then for any 0 < ε < 1,

‖C0(Σ,Γ0) − (I − Γ0)
−1‖2 → 0 as ‖Σ−1‖2 → 0,(6.6)

uniformly for 0 ≤ Γ0 ≤ (1 − ε)I.
In view of Theorem 6.1, we have as an immediate corollary.
Corollary 6.5. Under the assumptions of Theorem 6.1, given any 0 < ε < 1,

we have

‖C0(Σ,Γ0)A0(Σ,Γ0) − I‖2 → 0 as ‖Σ−1‖2 → 0,

uniformly for 0 ≤ Γ0 ≤ (1 − ε)I.

6.2. The thin regime. The thin regime refers to problems with small total
cross-sections, i.e., where ‖Σ‖2 is small. In this limit, the source iteration procedure
is known to converge in one iteration [13]. It is therefore not surprising to have the
following theorem.

Theorem 6.6. Let A0 be defined as above. Then

‖A0(Σ,Γ0) − I‖2 → 0

as ‖Σ‖2 → 0, uniformly for 0 ≤ Γ0 ≤ I.
As in slab geometry [4], the proof involves the observation that H−1

� has a limiting
value that is annihilated by Z0 on the right so that H−1Z → 0, and so ‖A0− I‖2 → 0
as ‖Σ‖2 → 0.

Note that this theorem remains valid in pure absorbing media, i.e., for ‖Γ0‖2 → 0
and K1 < ‖Σ‖2 < K2 (with K1, K2 positive constants). This is also not surprising
since the source iteration procedure is known to converge in one iteration in this limit
as well [13].

Theorem 6.6 implies that the system (4.18) needs progressively less precondi-
tioning as ‖Σ‖2 gets small. A preconditioner for (4.18) should thus converge to the
identity as ‖Σ‖2 → 0. The next result says that this indeed holds for C0.

Theorem 6.7. Let C0 be defined as above, and assume Σ = εΣ̂. Then

‖C0(ε,Γ0) − I‖2 → 0

as ε → 0, uniformly for 0 ≤ Γ0 ≤ I.
The proof of this theorem is provided in section A.3. Again, this remains true in

the pure absorbing case.

7. Discussion. Despite the singularity of the “consistently” differenced 3-D dif-
fusion approximation required by the DSA, we could extend the slab geometry results
of Ashby et al. [4] to 3-D geometry. We proved the efficiency of the 3-D DSA pre-
conditioner in the asymptotic diffusion limit even though A0 tends to zero. We also
proved that in this limit, the discrete BTE solution is well-approximated (in the L2

sense of Theorem 6.3) by its first discrete angular moment. Furthermore, the 3-D
DSA preconditioner was proved efficient in another thick limit where A0 is bounded
away from zero. Our theoretical results thus confirm the good numerical results ob-
tained by Brown [5]. Even if it does not pertain to the preconditioner performances,
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one should be aware that the discrete ordinate approximation does not necessarily
provide accurate solutions in the thick limit. This was demonstrated by Larsen and
Morel [10, 11] for the diamond-difference scheme, in case of unresolved boundary lay-
ers with anisotropic incoming fluxes. One should thus be careful in interpreting the
output in this limit. In the thin limit, acceleration becomes unnecessary and the 3-D
DSA preconditioner accordingly tends to the identity.

Possible theoretical extensions include the introduction of linear anisotropy [5]
at the price of more cumbersome notations. Also, reflected boundary conditions
could be introduced. This was done in slab geometry [4] using a mirror domain
extension obtained by reflection about the boundary. Ashby et al. then obtained
relationships between the A0 and C0 matrices and their reflected counterparts on the
mirror domain. Kronecker product notations would certainly appear extremely useful
in trying to generalize such results to 3-D geometry. Finally, the behavior of our
DSA preconditioner for any value of the cross-sections still has to be theoretically
investigated in slab geometry before possible 3-D generalizations can be addressed.

Another context where DSA can be found useful is the corner balance spatial
discretization scheme [1, 2]. We started addressing the extension of the slab geometry
DSA analysis to this scheme.

Appendix.

A.1. Additional notation. Before proving the theorems, we need to introduce
some additional notation. Since

H� ≡
(
S + Σ−1C�

B�

)
∈ Rnodes×nodes

for all l = 1, . . . , L, it can also be written as

H� = H�,0 + Z0(Σ
−1C�),

with Z0 defined in (4.15) and

H�,0 ≡
(

S
B�

)

independent of Σ. Note that H� and H�,0 were shown to be nonsingular in [5].
Note also that what was defined as E000 in [5] is now defined as ET

000, in order to
resemble the one-dimensional case of [4] (where e.. plays the role of E... here). Next,
we define the matrices V� and W� so that

(V�,W�) = H−1
�,0 ,

where V� ∈ Rnodes×zones and W� ∈ Rnodes×(nodes−zones). Hence the following identi-
ties are true:

V�S + W�B� = Inodes,

SV� = I (i.e., Izones),(A.1)

SW� = 0 (∈ Rzones×zones),

B�V� = 0 (∈ R[nodes−zones]×[nodes−zones]), and(A.2)

B�W� = I[nodes−zones].
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Since B� defined in (4.13) can take eight different forms depending on the sign of μ�,
η� and ξ�, V� and W� can each also take eight different forms and are constant in one
octant. Further developments require a closed form for V�, which we derive in the
following lemma.

Lemma A.1. We have

V� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LK ⊗ LJ ⊗ LM , if μ� ≥ 0, η� ≥ 0, and ξ� ≥ 0,
LK ⊗ LJ ⊗ UM , if μ� ≤ 0, η� ≥ 0, and ξ� ≥ 0,
LK ⊗ UJ ⊗ LM , if μ� ≥ 0, η� ≤ 0, and ξ� ≥ 0,
UK ⊗ LJ ⊗ LM , if μ� ≥ 0, η� ≥ 0, and ξ� ≤ 0,
LK ⊗ UJ ⊗ UM , if μ� ≤ 0, η� ≤ 0, and ξ� ≥ 0,
UK ⊗ LJ ⊗ UM , if μ� ≤ 0, η� ≥ 0, and ξ� ≤ 0,
UK ⊗ UJ ⊗ LM , if μ� ≥ 0, η� ≤ 0, and ξ� ≤ 0,
UK ⊗ UJ ⊗ UM , if μ� ≤ 0, η� ≤ 0, and ξ� ≤ 0,

(A.3)

where

LM ≡ 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
(−1)2 0 · · · 0
(−1)3 (−1)2 · · · 0

...
...

...
...

(−1)M (−1)M−1 · · · 0
(−1)M+1 (−1)M · · · (−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(M+1)×M ,

UM ≡ 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(−1)2 (−1)3 · · · (−1)M+1

0 (−1)2 · · · (−1)M

0 0 · · · (−1)M−1

...
...

...
...

0 0 · · · (−1)2

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(M+1)×M .

Proof. First the V� in (A.3) verify B�V� = 0 for all �. Indeed, for instance,

ET
00K · (UK ⊗ LJ ⊗ LM ) =

⎛
⎝ eTKK ⊗ IJ+1 ⊗ IM+1

(IK , 0) ⊗ eT0J ⊗ IM+1

(IK , 0) ⊗ (0, IJ) ⊗ eT0M

⎞
⎠ (UK ⊗ LJ ⊗ LM ) = 0

since eTKKUK = 0, eT0JLJ = 0, and eT0MLM = 0. Then the V� in (A.3) also verify
SV� = I for all �, because SKLK = IK = SKUK , and similarly for the other two
directions. The fact that H�,0 is nonsingular assures that these V� are unique.

Furthermore, we define

Fx ≡ STΔrCx + CT
x ΔrS,

Fy ≡ STΔrCy + CT
y ΔrS,(A.4)

Fz ≡ STΔrCz + CT
z ΔrS,

which can also be written in view of Lemma A.1 in [5] as

Fx = ST
KΔzSK ⊗ ST

J ΔySJ ⊗ (−e0MeT0M + eMMeTMM ),

Fy = ST
KΔzSK ⊗ (−e0Je

T
0J + eJJe

T
JJ) ⊗ ST

MΔxSM ,

Fz = (−e0KeT0K + eKKeTKK) ⊗ ST
J ΔySJ ⊗ ST

MΔxSM .
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Given (5.1) and (5.7), we have

ST
KΔzSK ⊗ ST

J ΔySJ ⊗ e0MeT0M = ST
�nx0

(Δz ⊗ Δy ⊗ IM )S�nx0
= Ê0M ÊT

0M .

Thus, we end up with

Fx = ÊMM ÊT
MM − Ê0M ÊT

0M ,

Fy = ÊJJ Ê
T
JJ − Ê0J Ê

T
0J ,

Fz = ÊKKÊT
KK − Ê0KÊT

0K .

A.2. Proofs for the thick regime. We first prove Theorem 6.1. We need two
technical lemmas.

Lemma A.2. Let 0 < δ < 1 be given. Then for any Σ > 0 such that

‖Σ−1‖2 ≤ ε1 ≡ δ

max�{‖C� · (V�,W�)‖2}
,(A.5)

we have

SH−1
� Z0 =

∞∑
k=0

(−1)k(Σ−1C�V�)
k

for all � = 1, . . . , L. Furthermore, the convergence is uniform in Σ with ‖Σ−1‖2 ≤ ε1.
Proof. For ‖Σ−1‖2 ≤ ε1, we have

H−1
� = H−1

�,0 (I + Z0Σ
−1C�H

−1
�,0 )−1

= (V�,W�)

∞∑
k=0

(−1)k
(
Z0Σ

−1C� · (V�,W�)
)k

,

where the Neumann series converges uniformly since

‖Z0Σ
−1C� · (V�,W�)‖2 ≤ ‖Z0‖2 · ‖Σ−1‖2‖C� · (V�,W�)‖2 ≤ δ < 1,

using ‖Z0‖2 = 1. Thus,

SH−1
� Z0 = S · (V�,W�) ·

∞∑
k=0

(−1)k
(
Z0Σ

−1C� · (V�,W�)
)k

Z0

= S · (V�,W�) · Z0

∞∑
k=0

(−1)k
(
Σ−1C� · (V�,W�) · Z0

)k

=

∞∑
k=0

(−1)k
(
Σ−1C�V�

)k

from the fact that S · (V�,W�) · Z0 = I (A.1) and C� · (V�,W�) · Z0 = C�V�.
Lemma A.3. Let 0 ≤ Γ0 ≤ I, and let ε1 be defined by (A.5). Then

A0 = (I − Γ0) −
1

4π
F (Σ−1) · Γ0,(A.6)
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where

F (Σ−1) ≡
L∑

�=1

w�

∞∑
k=1

(−1)k
(
Σ−1C�V�

)k
,(A.7)

whenever ‖Σ−1‖2 ≤ ε1, with the series converging uniformly.
Proof. We first consider K0,0 defined in section 4.3. We have

K0,0 ≡ L0S̄H
−1ZL+

0

=
1

4π

L∑
�=1

w�SH
−1
� Z0

=
1

4π

L∑
�=1

w�

∞∑
k=0

(−1)k
(
Σ−1C�V�

)k

= I +
1

4π

L∑
�=1

w�

∞∑
k=1

(−1)k
(
Σ−1C�V�

)k

where we used successively Lemma A.2 and the fact that
∑L

�=1 w� = 4π. The lemma
now follows easily using the definition (4.19) of A0.

Proof of Theorem 6.1. Using (A.6), ‖Γ0‖2 ≤ 1 and w�

4π ≤ 1, it now follows that

‖A0 − (I − Γ0)‖2 ≤ 1

4π

∥∥∥∥∥
L∑

�=1

w�

∞∑
k=1

(−1)k
(
Σ−1C�V�

)k∥∥∥∥∥
2

‖Γ0‖2

≤
L∑

�=1

∞∑
k=1

‖
(
Σ−1C�V�

)k ‖2 → 0

as ‖Σ−1‖2 → 0, and the convergence is uniform in 0 ≤ Γ0 ≤ I.

A.2.1. Proofs for the asymptotic diffusion limit. Here, we prove Theo-
rems 6.2 and 6.3 for the asymptotic diffusion limit. Recall from (5.8) that

C0 = I + SD+
coS

TΣΔrΓ0.(A.8)

Using (A.6), we can write

C0A0 − I = −Γ0 −
1

4π
F (Σ−1)Γ0 + SD+

coS
TΣΔrΓ0A0.(A.9)

We will prove Proposition A.6, which establishes an extended form for STΣΔrΓ0A0.
This proposition requires two preliminary lemmas, which we now establish.

Lemma A.4. With the above notations, we have

L∑
�=1

w�μ�FxV� = πα(ÊMM ÊT
MM + Ê0M ÊT

0M )

8∑
i=1

VLi
,

where α ≡ 1
4π

∑
μ�>0 w�μ�, and VLi is the (unique) value of V� for all � corresponding

to a direction Ω� in octant i (i = 1, 2, . . . , 8). We have similar results for the y and
z directions.
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Proof. We have

L∑
l=1

wlμlFxVl =
∑
μl>0

wlμlFxVl +
∑
μl<0

wlμlFxVl.

We showed in section A.1 that Fx can be expressed as

Fx = ÊMM ÊT
MM − Ê0M ÊT

0M .(A.10)

Recall that S�nx0
≡ SK ⊗ SJ ⊗ eT0M selects the x = x0 face and then forms two-

dimensional zone averages on this face. Meanwhile, ET
000 also selects (among others)

the x = x0 face. Thus, there exists a matrix M000,�nx0
restricting ET

000 such that

S�nx0
= M000,�nx0

ET
000.(A.11)

Now, in view of (4.13) and (A.2), ET
000V� = 0 for any � such that μ� > 0, η� > 0, and

ξ� > 0. Thus, S�nx0
V� = 0 and given (5.7), Ê0M ÊT

0MV� = 0 for such �. Moreover, S�nx0

can be obtained as in (A.11) from any B� defined in (4.13) that selects the x = x0

face, that is, from any B� with � such that μl > 0. Therefore, Ê0M ÊT
0MV� = 0 for any

� such that μ� > 0. Similarly, ÊMM ÊMMV� = 0 for any � such that μ� < 0. Thus,
flipping the sign of the vanishing terms, we can write

L∑
�=1

w�μ�FxV� =
∑
μ�>0

w�μ�(ÊMM ÊT
MM + Ê0M ÊT

0M )V�

−
∑
μl<0

wlμ�(ÊMM ÊT
MM + Ê0M ÊT

0M )V�.(A.12)

We have

L∑
�=1

=

8∑
i=1

∑
�∈Li

, where Li includes all the � corresponding to a Ω� in one octant i.

Let us take the convention that i = 1, 2, 3, and 4 correspond to the four octants where
μ� > 0. We introduce α

α ≡ 1

4π

∑
μ�>0

w�μ�

=
1

4π

4∑
i=1

∑
�∈Li

w�μ�

=
1

π

∑
�∈Li

w�μ� (i = 1, 2, 3 or 4)

by symmetry over the four octants i = 1, 2, 3, and 4. Due to the symmetrical place-
ment of the μ� along the x-axis, we have for the other four octants

α = − 1

π

∑
�∈Li

w�μ� (i = 5, 6, 7 or 8).
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Since V� is constant in each octant, we introduce the notation VLi
to denote its value

for all � ∈ Li, i.e., for all � corresponding to a direction Ω� in octant i. Then

∑
μ�>0

w�μ�(ÊMM ÊT
MM + Ê0M ÊT

0M )V� =

4∑
i=1

∑
�∈Li

w�μ�(ÊMM ÊT
MM + Ê0M ÊT

0M )VLi

= πα(ÊMM ÊT
MM + Ê0M ÊT

0M )

4∑
i=1

VLi .

Similarly, for μ� < 0, we have

∑
μ�<0

w�μ�(ÊMM ÊT
MM + Ê0M ÊT

0M )V� = −πα

8∑
i=5

(ÊMM ÊT
MM + Ê0M ÊT

0M )VLi
.

The conclusion now follows directly from (A.12).
Lemma A.5.

L∑
�=1

w�C
T
� Σ−1ΔrC�V� =

4π

3

1

8

[
CT

x Σ−1ΔrCx + CT
y Σ−1ΔrCy + CT

z Σ−1ΔrCz

] 8∑
i=1

VLi ,

where VLi is defined as in Lemma A.4.
Proof. We have

L∑
�=1

w�C
T
� Σ−1ΔrC�V� =

L∑
�=1

w�[(μ�)
2CT

x Σ−1ΔrCx + μ�η�C
T
x Σ−1ΔrCy

+μ�ξ�C
T
x Σ−1ΔrCz + η�μ�C

T
y Σ−1ΔrCx

+ (η�)
2CT

y Σ−1ΔrCy + η�ξ�C
T
y Σ−1ΔrCz(A.13)

+ ξ�μ�C
T
z Σ−1ΔrCx + ξ�η�C

T
z Σ−1ΔrCy

+ (ξl)
2CT

z Σ−1ΔrCz]V�.

First we look at the “diagonal” terms in (A.13). We have for the x-direction

L∑
�=1

w�(μ�)
2CT

x Σ−1ΔrCxV� =

8∑
i=1

∑
�∈Li

w�(μ�)
2CT

x Σ−1ΔrCxV�

=
4π

3

1

8

8∑
i=1

CT
x Σ−1ΔrCxVLi

using (4.2) and the symmetry over the eight octants. Combining the three directions,
we obtain Lemma A.5 provided the “nondiagonal” terms in (A.13) vanish. Indeed,
take for instance

L∑
�=1

w�η�μ�C
T
y Σ−1ΔrCxV�

= CT
y Σ−1Δr

{
4∑

i=1

∑
�∈Li

w�η�μ�CxV� +

8∑
i=5

∑
�∈Li

w�η�μ�CxV�

}
.
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If the four octants i = 1, 2, 3 and 4 correspond to positive values of μ�, we have

4∑
i=1

∑
�∈Li

w�η�μ�CxV� = (IK ⊗ IJ ⊗ (Δx)−1DMLM )

4∑
i=1

∑
�∈Li

w�η�μ�,

using (A.3) as well as SKLK = IK = SKUK and SJLJ = IJ = SJUJ . Since by

symmetry
∑4

i=1

∑
�∈Li

w�η�μ� = 0, the “nondiagonal” terms vanish, and Lemma A.5
is proved.

We are now prepared to establish the following proposition.
Proposition A.6. For ‖Σ−1‖2 ≤ ε1, with ε1 defined in (A.5), we have

STΣΔrΓ0A0

=

{
1

8
Dco

8∑
i=1

VLi +
1

4π

∞∑
k=2

L∑
�=1

w�

{
CT

� ΔrΣ−1C� + |μ�|A
}
V�((−1)Σ−1C�V�)

k−1

+
1

4π
STΣΔr(I − Γ0)F (Σ−1)

}
· Γ0,

where Dco and A were defined in (5.5) and (5.6), respectively.
Proof. From (A.6), we have

STΣΔrΓ0A0 =

{
STΣΔr(I − Γ0) −

1

4π
STΣΔrΓ0F (Σ−1)

}
Γ0

=

{
STΔrΣa,0 −

1

4π
STΣΔrF (Σ−1) +

1

4π
STΣΔr(I − Γ0)F (Σ−1)

}
Γ0,(A.14)

where Σa,0 = Σ(I − Γ0).
Let us look now at the STΣΔrF (Σ−1) term

STΣΔrF (Σ−1) =

∞∑
k=1

(−1)k
L∑

�=1

w�S
TΣΔr

(
Σ−1C�V�

)k
.

We have

STΣΔr
(
Σ−1C�V�

)k
= STΔrC�V�

(
Σ−1C�V�

)k−1

= STΔr(μ�Cx + η�Cy + ξ�Cz)V�

(
Σ−1C�V�

)k−1

= [−CT
� ΔrS + μ�Fx + η�Fy + ξ�Fz]V�

(
Σ−1C�V�

)k−1
,

where Fx, Fy, and Fz were defined in (A.4). Recalling that SV� = I (A.1), we can
write after some manipulations

STΣΔrF (Σ−1) = −
L∑

�=1

w�[−CT
� Δr + (μ�Fx + η�Fy + ξ�Fz)V�]

+

L∑
�=1

w�[−CT
� ΔrΣ−1C�V�](A.15)

+

∞∑
k=2

L∑
�=1

[−w�C
T
� Δr(−1)k+1(Σ−1C�V�)

k

+ (−1)kwl(μ�Fx + ηlFy + ξlFz)Vl(Σ
−1ClVl)

k−1].
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In the first sum of (A.15), the first term vanishes since

L∑
l=1

wlC
T
l =

L∑
l=1

wlμlC
T
x +

L∑
l=1

wlηlC
T
y +

L∑
l=1

wlξlC
T
z = 0,

where we have used (4.3). Lemma A.4 takes care of the second term in the first sum,
while we can apply Lemma A.5 to the second sum. With A defined in (5.6), we obtain

STΣΔrF (Σ−1) = −παA

8∑
i=1

VLi

− 4π

3

1

8

[
CT

x Σ−1ΔrCx + CT
y Σ−1ΔrCy + CT

z Σ−1ΔrCz

] 8∑
i=1

VLi

+

∞∑
k=2

L∑
�=1

[
−w�C

T
� Δr(−1)k+1(Σ−1C�V�)

k

+ (−1)kw�(μ�Fx + η�Fy + ξ�Fz)V�(Σ
−1C�V�)

k−1
]
.

Since SV� = I for all � we have I = 1
8S

∑8
i=1 VLi . Then we have, using (A.14) and

recalling definition (5.5) of Dco,

STΣΔrΓ0A0 =

{
1

8
Dco

8∑
i=1

VLi
+

1

4π

∞∑
k=2

L∑
�=1

w�{CT
� Δr(−1)k+1(Σ−1C�V�)

k

+ (μ�Fx + η�Fy + ξ�Fz)V�((−1)Σ−1C�V�)
k−1}(A.16)

+
1

4π
STΣΔr(I − Γ0)F (Σ−1)

}
· Γ0.

Now, proceeding as in (A.12) and using symmetry properties, the proposition
follows.

Before using Proposition A.6, we need to notice that

1

8
SD+

coDco

8∑
i=1

VLi = I.(A.17)

Indeed, writing VLi as the direct sum VLi = R1 ⊕ R2, with R1 ∈ N (Dco) and R2 ∈
N (Dco)

⊥ = R(DT
co), we have for i = 1, . . . , 8 that SD+

coDcoVLi = SR2 since D+
coDco

is the orthogonal projection on the range of DT
co = Dco [8]. Also, one can show [5]

that N (Dco) ⊂ N (S) which implies SR2 = SVLi
= I using (A.1). Thus (A.17) is

verified, and we can write from (A.9) and Proposition A.6

C0A0 − I = − 1

4π
F (Σ−1)Γ0

+SD+
co

1

4π

∞∑
k=2

L∑
�=1

w�

{
CT

� ΔrΣ−1C� + |μ�|A
}
V�((−1)Σ−1C�V�)

k−1Γ0(A.18)

+
1

4π
SD+

coS
TΣΔr(I − Γ0)(SS

T )(SST )−1F (Σ−1)Γ0.
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Given its definition in (A.7), F (Σ−1) → 0 when Σ−1 → 0. Therefore, to prove our
theorem, we will show that

‖D+
coS

TΣΔr(I − Γ0)S‖(A.19)

and

‖D+
cow�

{
CT

� ΔrΣ−1C� + |μ�|A
}
‖(A.20)

remain bounded as Σ−1 → 0.
We need a few more intermediate results. Since Dco is symmetric and singular,

its singular value decomposition [8] can be written

Dco = [U, V ]

(
Θ 0
0 0

)
[U, V ]T ,(A.21)

where the vectors of V span the null space of Dco and those of U its range. The
diagonal matrix Θ contains the nonzero singular values of Dco. Then, the pseudo-
inverse [8] reads

D+
co = [U, V ]

(
Θ−1 0

0 0

)
[U, V ]T = UΘ−1UT .

We have the following lemma.
Lemma A.7. With V defined as above, if R is such that V TR = 0, then D+

coR =
(Dco + δV V T )−1R for any δ > 0.

Proof.

(Dco + δV V T )−1 = [U, V ]

(
Θ−1 0

0 δ−1I

)
[U, V ]T = UΘ−1UT + δ−1V V T ,

thus

(Dco + δV V T )−1R = UΘ−1UTR + δ−1V V TR = D+
coR,

which completes the proof.
Plugging the asymptotic diffusion limit assumptions Σ = ε−1Σ̂ and Γ0 = I− ε2Γ̂0

in the definition (5.5) of Dco yields

Dco + εV V T = 2α(A + εE)(A.22)

with A defined in (5.6), and

E =
1

2α

(
1

3
(CT

x Σ̂−1ΔrCx + CT
y Σ̂−1ΔrCy + CT

z Σ̂−1ΔrCz) + ST Σ̂Γ̂0ΔrS + V V T

)
.

Arguments in [5] show that N (Dco) ⊂ N (A). We define U1, U2 through the singular
value decomposition of A:

A = [U1, U2]

(
0 0
0 T2

)
[U1, U2]

T = U2T2U
T
2 ,

where the vectors of U1 span the null space of A, and those of U2 its range. The
diagonal matrix T2 contains the singular values of A. The next lemma then derives
an expression for (A+εE)−1 in terms of a power series in ε, for all ε sufficiently small.
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Lemma A.8. Let U1, U2, A, and E be defined as above. Define

E1 ≡ UT
1 EU1,

and define the projections

P ≡ I − EU1E
−1
1 UT

1 and Q ≡ I − U1E
−1
1 UT

1 E.

Also, introducing Ã = U2(T2)
−1UT

2 , define

X−1 ≡ U1E
−1
1 UT

1 and Xk ≡ (−1)kQÃP (EÃP )k.

Then

(A + εE)
−1

= X ≡ ε−1X−1 +

∞∑
k=0

εkXk,(A.23)

and the convergence is uniform in ε for all ε sufficiently small.
Proof. First we show that the matrix E1 is nonsingular. Suppose E1p = 0 for

some vector p. Then from the form of E1, we must have that UT
1 (CT

x Σ̂−1ΔrCx +
CT

y Σ̂−1ΔrCy + CT
z Σ̂−1ΔrCz)U1p = 0, and in turn that CxU1p = 0, CyU1p = 0, and

CzU1p = 0. However, the description of N (A) in [5] show that the range of U1 and
the null space of the Cx, Cy, and Cz matrices intersect only trivially. Hence, p = 0
and E1 is nonsingular.

Next, it is clear that the series in (A.23) converges uniformly in ε for any ε ≤
εmax < 1/‖EAP‖2. To check that X in (A.23) is the inverse of A + εE, note that
since the series converges in norm (i.e., absolutely), we can write

(A + εE)X − I = ε−1AX−1 + (AX0 + EX−1 − I)

+

∞∑
k=0

εk+1(AXk+1 + EXk).(A.24)

From the definition of X−1, it is immediate that AX−1 = 0. Moreover,

AX0 + EX−1 − I = AQÃP + EU1E
−1
1 UT

1 − I = AQÃP − P.

Since AQ = A, we have AQÃP − P = (AÃ − I)P . But U1U
T
1 + U2U

T
2 = I and

AÃ = U2U
T
2 . Thus (AÃ − I)P = −U1U

T
1 P = 0 by definition of P , and the second

term in (A.24) vanishes. For the remaining terms in (A.24),

AXk+1 + EXk = (−1)k+1AQÃP (EÃP )k+1 + (−1)kEQÃP (EÃP )k

= (−1)k(−AQÃP + P )(EÃP )k+1

= 0.

using the fact that EQ = PE. Thus, all the terms in (A.24) vanish, and the lemma
is proved.

Using Lemma A.7, (A.22), and Lemma A.8, we obtain in the asymptotic diffusion
limit, provided R verifies V TR = 0 with V defined in (A.21),

D+
coR =

(
ε−1X̂−1 +

∞∑
k=0

εkX̂k

)
R,(A.25)

where X̂−1 = (2α)−1X−1 and X̂k = (2α)−1Xk.
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We now go back to (A.19) and (A.20).
Lemma A.9. Assume that Σ = ε−1Σ̂. There exist positive constants c1 and c2

such that

‖D+
coS

TΣΔr(I − Γ0)S‖ ≤ c1

and

‖D+
cow�

{
CT

� ΔrΣ−1C� + |μ�|A
}
‖ ≤ c2

for all Σ̂ > 0 and ε → 0.
Proof. It was shown in [5] that N (Dco) ⊂ N (S), N (Dco) ⊂ N (Cx), N (Dco) ⊂

N (Cy), N (Dco) ⊂ N (Cz), and N (Dco) ⊂ N (A). Consequently, V TST = 0, V TCT
l =

0, and V TA = 0 so that we can apply (A.25). With the asymptotic diffusion limit
assumptions, we obtain

D+
coS

TΣΔr(I − Γ0)S =

(
ε−1X̂−1 +

∞∑
k=0

εkX̂k

)
εST Σ̂ΔrΓ̂0S

= X̂−1S
T Σ̂ΔrΓ̂0S + O(ε),

and, using also (A.22),

D+
co(w�{CT

� ΔrΣ−1C� + |μ�|A})

=

(
ε−1X̂−1 +

∞∑
k=0

εkX̂k

)
(w�{CT

� ΔrεΣ̂−1C� + |μ�|A})

= X̂−1

(
w�

{
CT

� ΔrΣ̂−1C� +
|μ�|
2α

V V T − |μ�|E
})

+ w�
|μ�|
2α

D+
coDco + O(ε).

Since D+
coDco is a projection, its norm is bounded. Thus both terms remain bounded

as ε → 0.
We are now prepared to conclude the proof of Theorem 6.2.
Proof of Theorem 6.2. From (A.18) and Lemma A.9 we can write

‖C0A0 − I‖2 ≤ 1

4π
‖F (Σ−1)Γ0‖2 +

1

4π
‖S‖2

∞∑
k=2

L∑
�=1

c2‖V�‖2 ‖Σ−1C�V�‖k−1
2 ‖Γ0‖2

+
1

4π
‖S‖2 c1 ‖ST (SST )−1‖2 ‖F (Σ−1)‖2‖Γ0‖2.

Since F (Σ−1) → 0 when Σ−1 → 0 (A.7), the conclusion follows.
For Theorem 6.3, it follows from (A.25) that the preconditioner C0 given by (5.8)

can be written, in the asymptotic diffusion limit,

C0 = I + SD+
coS

T ε−1Σ̂Δr(I − ε2Γ̂0)

= ε−2C0,−2 + ε−1C0,−1 + C0,0 + O(ε),

where

C0,−2 = SX̂−1S
T Σ̂Δr,

C0,−1 = SX̂0S
T Σ̂Δr, and

C0,0 = I − SX̂−1S
T Σ̂ΔrΓ̂0 + SX̂1S

T Σ̂Δr.

Then, the proof of Theorem 6.3 parallels almost literally the one of Theorem 6.15
in [4]. We therefore do not repeat it here.
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A.2.2. Proof for the other thick limit. To prove Theorem 6.4, we need to
introduce the following lemma, proved in [14].

Lemma A.10. Given two matrices, A and B, a necessary and sufficient condition
that

lim
B→A

B+ = A+(A.26)

is that rank(B) = rank(A) as B approaches A.
Also, with T1 defined in (5.3), we introduce T1,0 as the limit of T1 for ‖Σ−1‖2 → 0,

i.e.,

T1,0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lx0,0 Lx0,1

Ly0,0 Ly0,1

Lz0,0 Lz0,1

Γ̃0S
0 0

0 S1

LxM ,0 LxM ,1

LyJ ,0 LyJ ,1

LzK ,0 LzK ,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(A.27)

where Γ̃0 = I−Γ0 ≥ εI. From the developments in appendix A.2 of [5], one can show
that T1 and T1,0 have full rank. Also, their pseudo-inverse T+

1 and T+
1,0 are such that

T1T
+
1 = I and T1,0T

+
1,0 = I.

Proof of Theorem 6.4. We have that T1 − T1,0 → 0 uniformly as ‖Σ−1‖2 → 0.
Developments in [5] show that C0 defined in (5.8) can equivalently be written as

C0 = I +
(
S 0LA

)
T+

1

⎛
⎜⎜⎝

0BC

I
0LA

0BC

⎞
⎟⎟⎠Γ0,(A.28)

where the zero matrix 0LA ∈ R3MJK×MJK corresponds to the linear anisotropy
terms (vanishing here since we assume isotropic scattering), and the zero matrix
0BC ∈ RKJ+MJ+MK×MJK corresponds to the boundary conditions. Then we look
at the difference

E0 ≡ C0 − (I − Γ0)
−1 = C0 − Γ̃−1

0 .

We have

Γ̃0E0 = Γ̃0C0 − I = Γ̃0

(
S 0LA

)
T+

1

⎛
⎜⎜⎝

0BC

I
0LA

0BC

⎞
⎟⎟⎠Γ0 + Γ̃0 − I.

Thus

E0 = Γ̃−1
0

⎡
⎢⎢⎣Γ̃0

(
S 0LA

)
T+

1

⎛
⎜⎜⎝

0BC

I
0LA

0BC

⎞
⎟⎟⎠− I

⎤
⎥⎥⎦Γ0.
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Using Lemma A.10 and the fact that T1 and T1,0 have the same (full) rank, the
bracketed factor in the last expression tends to

⎡
⎢⎢⎣Γ̃0

(
S 0LA

)
T+

1,0

⎛
⎜⎜⎝

0BC

I
0LA

0BC

⎞
⎟⎟⎠− I

⎤
⎥⎥⎦ ≡ E∗,

as ‖Σ−1‖2 → 0, uniformly for Γ̃0 ≥ εI. But E∗ = 0. Indeed, for any w ∈ Rzones

define

v ≡
(
v0

v1

)
≡ T+

1,0

⎛
⎜⎜⎝

0BC

I
0LA

0BC

⎞
⎟⎟⎠w (v0 ∈ Rzones, v1 ∈ R3∗zones).

Then multiplying both sides by T1,0 yields Γ̃0S
0v0 = w (from (A.27) and T1,0T

+
1,0 = I)

so that E∗w = Γ̃0S
0v0 − w = 0. Thus E0 → 0 as ‖Σ−1‖2 → 0, uniformly for Γ̃0 ≥

εI.

A.3. Proof for the thin regime. We can here go straight to the proof.
Proof of Theorem 6.7. From (5.8) and Lemma A.7, we get

C0 = I + S(Dco + ε−1V V T )−1STΣΔrΓ0.

From the definition (5.5) of Dco, we see that, for ‖Σ‖2 → 0,

Dco → 1

3

(
CT

x ΔrΣ−1Cx + CT
y ΔrΣ−1Cy + CT

z ΔrΣ−1Cz

)
.

Thus, for Σ = εΣ̂ and ε → 0,

C0 − I →

ε2S

(
1

3
(CT

x ΔrΣ̂−1Cx + CT
y ΔrΣ̂−1Cy + CT

z ΔrΣ̂−1Cz) + V V T

)−1

ST Σ̂ΔrΓ0,

which leads to the conclusion for 0 ≤ Γ0 ≤ I.
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REGULARIZATION OF ILL-POSED PROBLEMS∗
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Abstract. We study the possibility of using the structure of the regularization error for a poste-
riori choice of the regularization parameter. As a result, a rather general form of a selection criterion
is proposed, and its relation to the heuristical quasi-optimality principle of Tikhonov and Glasko
[Z. Vychisl. Mat. Mat. Fiz., 4 (1964), pp. 564–571] and to an adaptation scheme proposed in a
statistical context by Lepskii [Theory Probab. Appl., 36 (1990), pp. 454–466] is discussed. The ad-
vantages of the proposed criterion are illustrated by using such examples as self-regularization of
the trapezoidal rule for noisy Abel-type integral equations, Lavrentiev regularization for nonlinear
ill-posed problems, and an inverse problem of the two-dimensional profile reconstruction.
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1. Introduction. How do we choose a posteriori a suitable value for the reg-
ularization parameter in ill-posed problems without knowledge about the solution’s
smoothness that may not be accessible? This question is discussed extensively in
the regularization theory. A first a posteriori rule of choice is described in the paper
by Phillips [21], which predates even Tikhonov’s paper [26] recognized as a reference
point of regularization theory.

We define an operator equation

Ax = y(1.1)

with a linear operator A ∈ L(X,Y ) between Banach spaces X and Y as essentially
ill-posed if the range R(A) of A is not closed in Y . If A is invertible, this nonclosed
range is associated with the discontinuity of the inverse operator A−1. In general,
the best approximate solution A+y, where A+ is the Moore–Penrose inverse of A,
does not depend continuously on the right-hand side y. Since in practice data will
almost never be available exactly, because of measurement error, one has to be aware
of numerical instabilities when a noisy observation yδ ∈ Y instead of y with

‖y − yδ‖Y ≤ δ(1.2)

is known. Hence, in order to approximate A+y in a stable way, regularization methods
should be applied. In general, regularization methods for the solution of (1.1) replace
the generalized inverse A+ by a family of continuous operators Rα, which converge
pointwise to A+. The standard regularization methods have in common that the
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approximation error ‖A+y − Rαy‖X is monotonically decreasing for decreasing α-
values. In general, it is natural to assume that there exists an increasing continuous
function ϕ(α) = ϕ(α;A, y) such that 0 = ϕ(0) ≤ ϕ(α) ≤ 1, and

‖A+y −Rαy‖X ≤ ϕ(α).(1.3)

This property is no longer true for the regularization error ‖A+y − Rαyδ‖X . The
regularized solutions Rαyδ converge to A+y as δ → 0 only if the regularization pa-
rameter α is properly chosen dependent upon the noise level and possibly upon the
data, i.e., α = α(δ, yδ). There are several methods that have been proposed and used
for the a posteriori choice of the regularization parameter α as a function of the noise
level and the data. These include the discrepancy principle (DP) originally proposed
by Phillips [21] and later reinvented by Morozov [20] and Marti [18], a method de-
veloped by Gferer [9], Engl and Gfrerer [8], and Raus [23], which is sometimes called
the minimum-bound (MB) method [17], and the monotone error rule (ME) proposed
recently by Tautenhahn and Hämarik [25]. The MB and ME methods have been
designed for ill-posed problems in Hilbert spaces. The DP method is more universal,
because Plato (see, e.g., [22]) demonstrated that the DP method can be successfully
applied to problems in Banach spaces. However, the DP method does not provide
the best order of approximation for all problems, which could be, in principle, treated
by a fixed regularization method with optimal order of accuracy; see, e.g., [11]. The
MB and ME methods are free from this drawback of the discrepancy principle, but
a disadvantage of both methods is that they require the knowledge of an additional
approximate solution obtained within the framework of the regularization method
of higher qualification. For example, Tautenhahn and Hämarik [25] select the reg-
ularization parameter for the ordinary Tikhonov regularization by constructing an
additional approximate solution using iterated Tikhonov regularization; i.e., another
regularization method should be involved in the choice procedure, and that is not
always reasonable.

At the same time the structure of regularization error is very similar to the loss
function of statistical estimation, where some parameter always controls the trade-off
between the bias and the variance of the risk. It gives a hint that the statistical art
of bias-variance balancing can be used for choosing the regularization parameter.

Indeed, the regularization error can be estimated by

‖A+y −Rαyδ‖X ≤ ‖A+y −Rαy‖X + ‖Rαy −Rαyδ‖X ,(1.4)

where the first term on the right-hand side is an approximation error, whereas the
second term is a stability bound on the regularizing operator Rα. If Rα possesses a
locally uniformly bounded Fréchet derivative R′

α in a ball of radius δ around the exact
free term y then

‖Rαy −Rαyδ‖X ≤ δ‖R′
α‖Y→X + o(δ).

For linear problems (1.1) Rα is usually linear, and R′
α = Rα. Keeping in mind that

{Rα} approximates the unbounded Moore–Penrose inverse A+, it is easy to realize
that ‖Rα‖ (or ‖R′

α‖) should increase for α → 0. Thus, there exists an increasing
continuous function λ(α) such that λ(0) = 0, and

‖Rαy −Rαyδ‖ ≤ δ

λ(α)
.(1.5)
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For each regularization method λ(α) is known, or at least it can be estimated effec-
tively. For the standard regularization methods λ(α) = γ

√
α, where γ is a known

constant. Another forms of λ(α) will be discussed later.
Thus, from (1.3)–(1.5) it follows that

‖A+y −Rαyδ‖X ≤ ϕ(α) +
δ

λ(α)
.(1.6)

Almost all existing results about the accuracy of regularization methods are asymp-
totic results in δ. These results indicate that a choice of

α = αopt = (ϕλ)−1(δ),(1.7)

that balances ϕ(α) with δ
λ(α) , leads to the error estimate

‖A+y −Rαoptyδ‖X ≤ 2ϕ((ϕλ)−1(δ)),(1.8)

which has at least optimal order with respect to δ. Unfortunately, an a priori param-
eter choice (1.7) can seldom be used in practice because the smoothness properties of
the unknown solution A+y reflected in function ϕ from (1.3) are generally unknown.
On the other hand, an error estimate (1.8) can be considered as a benchmark for a
posteriori parameter choice strategies, because it indicates the order of accuracy that
cannot be beaten by any of them within the framework of assumptions (1.3), (1.5).
The outline of the paper is as follows. In the next section our focus will be on the
question of how to adapt the regularization parameter to the unknown smoothness in
such a way that the optimal order of accuracy (1.8) would be reached automatically.
We shall present two adaptive procedures solving this question. Then in section 3 the
advantages of the proposed procedures will be illustrated by using several examples of
linear and nonlinear ill-posed problems. We close this paper with a short conclusion.

2. General theorems. In practical applications, different regularization param-
eters αi are often selected from some finite set

ΔN = {αi : 0 < α0 < α1 < · · · < αN}

and the corresponding regularization solutions

xδ
αi

= Rαiyδ, i = 1, 2, . . . , N,

are studied online. In view of the representation

αopt = max

{
α : ϕ(α) ≤ δ

λ(α)

}

the optimal choice of αi from ΔN is

α∗ = α� = max{αi : αi ∈ M(ΔN )},

where

M(ΔN ) :=

{
αi : αi ∈ ΔN , ϕ(αi) ≤

δ

λ(αi)

}
.
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But if ϕ is unknown, such a choice is also not feasible. At the same time, for any
αi, αj , αi ≥ αj , from the set M(ΔN ), containing α∗ as an upper bound, the estima-
tion of the norm ‖xδ

αi
− xδ

αj
‖ does not require knowledge of ϕ. Indeed, due to the

monotonicity of ϕ(α), λ(α) from (1.6), it follows that

‖xδ
αi

− xδ
αj
‖ ≤ ‖A+y −Rαiyδ‖ + ‖A+y −Rαjyδ‖

≤ ϕ(αi) + ϕ(αj) +
δ

λ(αi)
+

δ

λ(αj)

≤ 2ϕ(αi) +
δ

λ(αi)
+

δ

λ(αj)

≤ 4δ

λ(αj)
.

This gives a hint that the upper bound of the subset

M+(ΔN ) :=

{
αi ∈ ΔN : ‖xδ

αi
− xδ

αj
‖ ≤ 4δ

λ(αj)
, j = 0, 1, 2, . . . , i

}
(2.1)

should be sufficiently close to a desirable value α∗. The following proposition justifies
this conjecture on αi.

Theorem 2.1. Let ΔN = Δλ,q
N be such that M(ΔN ) �= ∅, ΔN\M(ΔN ) �= ∅,

and for any αi ∈ ΔN , i = 1, 2, . . . , N ,

λ(αi) ≤ qλ(αi−1),(2.2)

where q is some fixed constant. Then under the assumptions (1.2), (1.3), (1.5) for
α+ = αk ∈ ΔN chosen as

α+ = max{αi : αi ∈ M+(ΔN )}(2.3)

the following estimate holds:

‖A+y − xδ
α+

‖ ≤ 6qϕ((ϕλ)−1(δ)).(2.4)

Proof. From the definition of α∗ = α� we have that for α�+1 > α�

ϕ(α�+1)λ(α�+1) > δ = ϕ(αopt)λ(αopt),

and using the monotonicity of ϕ(α), λ(α) we deduce α�+1 > αopt. Then under our
hypothesis

λ(αopt) < λ(α�+1) ≤ qλ(α�) = qλ(α∗).

Hence

δ

λ(α∗)
≤ q

δ

λ(αopt)
.(2.5)

As already shown above, M(ΔN ) ⊂ M+(ΔN ), and therefore

α∗ = α� = max{αi ∈ M(ΔN )} ≤ α+ = αk = max{αi ∈ M+(ΔN )}.



2064 SERGEI PEREVERZEV AND EBERHARD SCHOCK

From the definition of M+(ΔN ) and (2.5) we conclude

‖A+y − xδ
α+

‖ = ‖A+y − xδ
αk

‖ ≤ ‖A+y − xδ
α�
‖ + ‖xδ

α�
− xδ

αk
‖

≤ ϕ(α�) +
δ

λ(α�)
+

4δ

λ(α�)
≤ 6δ

λ(α∗)
≤ 6q

δ

λ(αopt)

= 6qϕ((ϕλ)−1(δ)),

and the theorem is proved.
If we would know in advance that the function ϕ(α) reflecting the smoothness

properties of the unknown solution A+y, then we may achieve the accuracy of the
optimal order given in (1.8). Comparing (1.8) with (2.4) we can conclude that the
choice of the regularization parameter α = α+ is also order optimal in the sense of
accuracy. We would like to stress, however, that the selection criterion (2.1), (2.3)
producing α+ is adaptive to the unknown smoothness, because ϕ is not involved in its
construction. Observe, that α+ depends only on the noisy data yδ, on the noise level δ,
and on the discrete set ΔN = Δλ,q

N which should meet the conditions of Theorem 2.1.
The conditions M(ΔN ) �= ∅, ΔN\M(ΔN ) �= ∅ are rather natural. It is satisfied if,
for example, α0 = λ−1(δ) ∈ ΔN , αN = λ−1(1) ∈ ΔN . The condition (2.2) is also
not so restrictive. Recall that for the standard regularization methods λ(α) = γ

√
α.

Then to meet (2.2) one can take ΔN in the form of a geometric sequence

ΔN = {αi : αi = μiα0, i = 0, 1, . . . , N}(2.6)

with μ = q2 > 1.
We remark that the first time a geometric sequence was used as a set of regular-

ization parameters in the papers by Tikhonov and Glasko [27, 28], where a method of
choosing a paramter αT = αm = μmα0 from such a sequence, termed quasi-optimality
criterion, was suggested for which

σ(αi) := ‖xδ
αi

− xδ
αi−1

‖(2.7)

has the minimum value σ(αm) in the chosen set (2.6). It is worth to mention that
this quasi-optimality criterion is chronologically the first in the class of the heuristi-
cally motivated regularization parameter choice rules that seek to avoid any a priori
knowledge of the noise level δ. There is, however, a negative result of Bakushinskii [1],
which tells us that no convergence theory and error estimates as above can exist for
noise level-free rules, and for the quasi-optimality criterion in particular.

At the same time the quasi-optimality criterion gives a hint that the quantities
(2.7) can be used as indicators for the order optimal regularization parameter choice.
Indeed, if αi−1, αi = μαi−1 belong to the set M(ΔN ) containing the optimal param-
eter value α = α∗ then the quantity (2.7) can be estimated as

‖xδ
αi

− xδ
αi−1

‖ ≤ 4δ

λ(αi−1)
.(2.8)

The right-hand side of (2.8) is a decreasing function of α. Therefore, the largest
αi ∈ ΔN satisfying (2.8) cannot be far from αT minimizing (2.7). This observation
leads to the following noise level-dependent analog of the quasi-optimality criterion:

α = max

{
αj ∈ ΔN : ‖xδ

αi
− xδ

αi−1
‖ ≤ 4δ

λ(αi−1)
, i = 0, 1, 2, . . . , j

}
.(2.9)
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Theorem 2.2. Assume (1.2), (1.3), (1.5) to hold. Assume, furthermore, that
λ(α) from (1.5) obeys a strong Δ2-condition, i.e., there are κ1 > κ > 1 such that for
any α > 0, λ(2α)/κ1 ≤ λ(α) ≤ λ(2α)/κ. If the geometric sequence (2.6) meets the
condition of Theorem 2.1, then

‖A+y − xδ
α‖ ≤ cϕ((ϕλ)−1(δ)),(2.10)

where the constant c depends only on q, κ, κ1, μ.
Proof. Let α = αm ∈ ΔN . From (2.1), (2.3), and (2.9) it follows that α ≥ α+.

Then, as in the proof of Theorem 2.1, one can deduce α = αm ≥ α+ = αk ≥ α∗ = α�,
and using the triangle inequality successively, we arrive at

‖A+y − xδ
α‖ ≤ ‖A+y − xδ

α∗‖ +

m∑
i=�+1

‖xδ
αi−1

− xδ
αi
‖

≤ ‖A+y − xδ
α∗‖ +

m∑
i=�+1

4δ

λ(αi−1)

≤ ‖A+y − xδ
α∗‖ +

m−�−1∑
ν=0

4δ

λ(α∗μν)
.

On the other hand, for any μ > 1, b > 1 and integers n, j such that 2n ≤ μ ≤ 2n+1,
2j ≤ b ≤ 2j+1 iterating the strong Δ2-condition, if necessary, one obtains

1

λ(bα∗)
≤ 1

λ(2jα∗)
≤ 1

κjλ(α∗)
≤ κ

κlog2 bλ(α∗)
;

λ(αi) = λ(αi−1μ) ≤ κn+1
1 λ(αi−1) ≤ κ

log2 2μ
1 λ(αi−1).

The last inequality means that (2.2) is satisfied with q = κ
log2 2μ
1 . Using these obser-

vations and (2.5) we conclude

‖A+y − xδ
α‖ ≤ ϕ(α∗) +

δ

λ(α∗)
+

4κδ

λ(α∗)

m−�−1∑
ν=0

(
1

κlog2 μ

)ν

≤ δ

λ(α∗)

[
2 +

4κlog2 2μ

κlog μ
2 −1

]
=

c1δ

λ(α∗)

≤ c1κ
log2 2μ
1

λ(αopt)
δ = cϕ((ϕλ)−1(δ)).

The theorem is proved.
At first glance the rule (2.9) looks like a simplified version of (2.1), (2.3), because

it requires us to compare the regularized solutions xδ
αi

corresponding to parameters
with adjacent numbers only. But as has been mentioned above, there are two different
ideas behind these rules. The rule (2.9) is related to the heuristical quasi-optimality
criterion. Up to a certain extent it supports heuristic theoretically. Moreover, numer-
ical tests from [12] show that in some important particular cases both these criteria
give the same value of regularization parameter. At the same time the rule (2.1),
(2.3) has a statistical root. This rule was first studied in the paper [15] by Lepskii,
devoted to statistical estimation from direct white noise observations that corresponds
to (1.1) with identity operator A, but with random noisy data yδ. Since then many
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authors have adopted this approach toward various statistical applications, we men-
tion only [10, 5, 29], where the same idea has been realized in the context of ill-posed
problems of the form (1.1) with compact operator A, but still with random noise. De-
terministic noise model (1.2) allows to improve the order of accuracy of the regularized
solution, as has been shown in [12, 4, 19] for the Hilbert space setting. Theorems 2.1
and 2.2 contain all these results as particular cases. Moreover, these theorems pro-
vide an uniform approach to order-optimal regularization parameter choice for linear
ill-posed problems in Banach spaces.

3. Examples. This section applies Theorems 2.1 and 2.2 to several new exam-
ples such as self-regularization of the trapezoidal rule in the Banach space of con-
tinuous functions, Lavrentiev regularization for nonlinear problems, and an inverse
problem of profile reconstruction.

3.1. Example 1: Self-regularization of the trapezoidal rule for noisy
Abel-type integral equations. Consider an equation of the form (1.1) with the
Abel-type integral operator

Ax(t) = Aβx(t) :=

∫ t

0

a(t, τ)

(t− τ)β
x(τ)dτ, t ∈ [0, 1],(3.1)

in Banach spaces X = Y = C = C[0,1], where a(t, τ) is at least Lipschitz-continuous
on 0 ≤ τ ≤ t ≤ 1, and

|a(t, t)| ≥ a0 > 0.(3.2)

The parameter β satisfies 0 < β < 1.
The trapezoidal-discretization method for (1.1), (3.1) has been intensively studied

in [2, 30, 7]. It consists of replacing (1.1), (3.1) by a set of linear equations

∫ i
n

0

a
(
i
n , τ

)
(
i
n − τ

)β x(τ)dτ = y

(
i

n

)
, i = 1, 2, . . . , n.

Then one replaces each of them by means of discretizing the integral on the left as
follows:

n
i∑

j=1

∫ j
n

j−1
n

(
τ − j−1

n

)
anijxn,j +

(
j
n − τ

)
anij−1xn,j−1(

i
n − τ

)β dτ = y

(
i

n

)
, i = 1, 2, . . . , n,

(3.3)

where anij = a( i
n ,

j
n ), and xn,j denotes the numerical approximation to x( j

n ), j =
0, 1, 2, . . . , n. Thus, (3.3) is a system of n equations in n + 1 unknown. For starting
value xn,0 one can take

x(0) = lim
t→0

(1 − β)

a(0, 0)

y(t)

t1−β
,

which exists, whenever (1.1), (3.1) has a continuous solution, or, as in [7],

xn,0 =
(1 − β)

a(0, 0)

{
3g

(
1

n

)
− 3g

(
2

n

)
+ g

(
3

n

)}
,(3.4)
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with g(t) = tβ−1y(t). This yields the following triangular system for the approxima-
tions x̄n = (xn,1, xn,2, . . . , xn,n)T

nβ−1

(1 − β)(2 − β)
Ānx̄n = ȳn − nβ−1

(1 − β)(2 − β)
b̄n,(3.5)

where ȳn = (y( 1
n ), y( 2

n ), . . . , y(1))T , b̄n = (bn,1, bn,2, . . . , bn,n)T ,

bn,i = a

(
i

n
, 0

)
xn,0, i = 1, 2, . . . , n,

(Ān)i,j =

{
ani,jκi−j , 1 ≤ j ≤ i ≤ n,

0, otherwise,

κ� = (� + 1)2−β − 2�2−β + (�− 1)2−β , � ≥ 1,

κ0 = 1.

The question of the existence and uniqueness of a solution (3.5) is summarized in the
following proposition.

Proposition 3.1 (see [7]). If a(t, τ) is Lipschitz-continuous on 0 ≤ τ ≤ t ≤ 1,
then there is a constant c̃β,a depending on β and such that ‖(Ān)−1‖∞ ≤ c̃β,a, i.e.,
for any f̄n = (f1, f2, . . . , fn)T , ‖f̄n‖∞ := maxi |fi|,

‖(Ān)−1f̄n‖∞ ≤ c̃β,a‖f̄n‖∞.

Moreover, in [2] (see also [31]) the convergence of the trapezoidal-discretization meth-
od has been shown to hold when the solution x(t) of (1.1), (3.1) has only Lipschitz
continuity and the same conditions on a(t, τ) apply. It means that there exists an
increasing continuous function ψa,β(x; t) such that ψa,β(x; 0) = 0 and

max
0≤i≤n

∣∣∣∣x
(
i

n

)
− xn,i

∣∣∣∣ ≤ ψa,β

(
x,

1

n

)
.(3.6)

Let us turn to the case of the noisy equation

Ax(t) = yδ(t),(3.7)

where A has the form (3.1), and yδ can be only element from Y = C[0,1] such that
(1.2) holds.

The trapezoidal-discretization method can be applied directly to (3.7) if in (3.4),
(3.5) y( i

n ) will be replaced by yδ(
i
n ), i = 1, 2, . . . , n. Then from Proposition 3.1 it

follows that there is always a unique solution x̄δ
n of the system

nβ−1

(1 − β)(2 − β)
Ānx̄

δ
n = ȳδn − nβ−1

(1 − β)(2 − β)
b̄δn.

It is easy to see that ‖ȳn − ȳδn‖∞ ≤ δ,

|xn,0 − xδ
n,0| ≤

(1 − β)

|a(0, 0)|n
1−βδ(3 + 3 · 2β−1 + 3β−1) = cβ,a,1n

1−βδ,(3.8)

and

‖b̄n − b̄δn‖∞ ≤ ‖a(·, 0)‖C |xn,0 − xδ
n,0| ≤ cβ,a,2n

1−βδ.
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Thus, under the condition of Proposition 3.1, the following bound holds:

max
0≤i≤n

|xn,i − xδ
n,i| ≤ n1−β‖(Ān)−1‖∞((1 − β)(2 − β) + cβ,a,2)δ

(3.9)
≤ cβ,a,3n

1−βδ.

Within the framework of trapezoidal-discretization method the approximate solution
of (1.1), (3.1) can be taken as piecewise linear interpolation spline xn(t) with uniform
interpolation knots such that xn( i

n ) = xn,i, i = 0, 1, 2, . . . , n. If only noisy right-hand
side yδ(t) is available then such a spline will interpolate xδ

n,i and have the form

xδ
n(t) =

n∑
i=0

xδ
n,i�n,i(t),

where �n,i(t) are so-called fundamental linear splines with knots { i
n}ni=0 such that

�n,i(t) ≥ 0 for t ∈ [0, 1], and �n,i(
j
n ) = δij . From (3.8), (3.9) it follows that

|xn(t) − xδ
n(t)| ≤

n∑
i=0

|xn,i − xδ
n,i|�n,i(t) ≤ max

0≤i≤n
|xn,i − xδ

n,i|
(3.10)

≤ n1−βδmax{cβ,a,1, cβ,a,3} = cβ,an
1−βδ.

Let now sn(x; t) be a piecewise linear spline with knots { i
n}ni=0 interpolating the values

x( i
n ), i = 0, 1, . . . , n, of the solution (1.1), (3.1). It is well-known that

|x(t) − sn(x; t)| ≤ cω2

(
x;

1

n

)
,

where ω2(x;h) is the second-order modulus of smoothness, ω2(x;h) → 0, and c is
some absolute constant. Using (3.6) this yields

|x(t) − xn(t)| ≤ |x(t) − sn(x; t)| + |sn(x; t) − xn(t)|

≤ cω2

(
x;

1

n

)
+

n∑
i=0

∣∣∣∣x
(
i

n

)
− xn,i

∣∣∣∣ �n,i(t)

≤ cω2

(
x;

1

n

)
+ ψa,β

(
x;

1

n

)
= ϕ

(
1

n

)
.

Combining it with (3.10), we obtain

|x(t) − xδ
n(t)| ≤ ϕ

(
1

n

)
+ cβ,an

1−βδ.(3.11)

Here the function ϕ depends on the smoothness of the solution (1.1), (3.1) and usually
is unknown. But (3.11) has the same form as (1.6), where α = 1

n , λ(α) = c−1
β,aα

1−β .

For such α and λ(α) we have ΔN = {αi = 1
N−i+1}Ni=0 and

M+(ΔN ) =

{
αi =

1

N − i + 1
: ‖xδ

N−i+1 − xδ
N−j+1‖C ≤ 4δcβ,a(N − j + 1)1−β ,

j = 0, 1, 2, . . . , i

}

= {n : ‖xδ
n − xδ

m‖C ≤ 4δcβ,am
1−β , m = N + 1, N, . . . , n}.
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Hence the selection criterion (2.1), (2.3) can be written as

n+ := min{n : ‖xδ
n − xδ

m‖C ≤ 4δcβ,am
1−β , m = N + 1, N, . . . , n}(3.12)

and the conditions of Theorem 2.1 are satisfied with q = 21−β , N > (cβ,aδ)
1

β−1 . Thus,
we have Theorem 3.2.

Theorem 3.2. If a(t, τ) and the solution x(t) of (1.1), (3.1) are Lipschitz-

continuous on 0 ≤ τ ≤ t ≤ 1, then for N > (cβ,aδ)
1

β−1 and n+ chosen as (3.12)

|x(t) − xδ
n+(t)| ≤ 6 · 21−βϕ((ϕλ)−1(δ)),

where λ(α) = c−1
β,aα

1−β, ϕ(α) = cω2(x;α) + ψa,β(x;α), and ψa,β is the function from
(3.6).

Remark 3.3. We can indicate only one case when the order of the function ϕ is
known. Namely, in [7] it has been shown that ψa,β(x, 1

n ) = c1n
−2 for all β ∈ (0, 1), and

for x(t), a(t, τ) having Lipschitz-continuous second derivatives. For such x(t) ω2(x; 1
n )

has the best possible order ω2(x; 1
n ) = c2n

−2. Thus, in the considered case ϕ( 1
n ) =

c3n
−2 and to balance both terms in (3.11), one should take n = nopt 
 δ

1
β−3 that

gives an accuracy of order O(δ
2

3−β ). Note that Theorem 3.2 gives the same order of
accuracy automatically without knowledge of ϕ.

Theorem 3.2 shows that the regularization of ill-posed problem (1.1), (3.1) with
noisy right-hand side yδ can be achieved by just choosing the number of knots in
the trapezoidal rule properly. This is called self-regularization. Self-regularization
adapted to unknown smoothness in a Hilbert space has been discussed recently in [13,
12, 4]. To the best of our knowledge, Theorem 3.2 is the first example of adaptive
self-regularization in Banach space.

3.2. Example 2: Lavrentiev regularization for nonlinear ill-posed prob-
lems with monotone operators. Throughout this section we assume that A :
D(A) → X is a nonlinear monotone operator with domain D(A) in a real Hilbert
space X. Monotonicity means that for all x1, x2 ∈ D(A)

〈A(x1) −A(x2), x1 − x2〉 ≥ 0,

where 〈·, ·〉 is the inner product associated with norm ‖ · ‖ = ‖ · ‖X .
We further assume throughout that the nonlinear equation

A(x) = y

has a solution x+, but only a noisy data yδ with a known noise level δ is available,
i.e., ‖y − yδ‖ ≤ δ. We do not assume that x+ depends continuously on the data. It
means that the stable reconstruction of x+ from the noisy equation

A(x) = yδ(3.13)

requires the application of special regularization methods. In the well-known Tikhon-
ov regularization method a regularized approximation xδ

α is obtained by minimizing
the functional

Jα(x) = ‖A(x) − yδ‖2 + α‖x− x̄‖2,

with some initial guess x̄ ∈ X and some properly chosen regularization parameter
α > 0. If A is Fréchet-differentiable in some ball Bρ(x

+) of radius ρ around x+, and
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xδ
α is an interior point of D(A) then it can be found from the (nonlinear) normal

equation of Tikhonov’s functional Jα(x)

[A′(x)]∗[A(x) − yδ] + α(x− x̄) = 0,

where [A′(x)]∗ is the adjoint of the Fréchet derivative A′(x). As has been indicated
in [16, 24], for the problems with monotone operators the least squares minimization
(and hence the use of the Fréchet derivatives) can be avoided and one can use the
simpler regularized equation

A(x) + α(x− x̄) = yδ(3.14)

known as Lavrentiev regularization.
If D(A) = X and A(x) is a continuous operator, then as has been shown in [6,

pp. 97, 100], the monotonicity implies that for α > 0 the operator F (x) = αx+A(x),
x ∈ X, is strongly monotone, and F−1(x) = (αI +A)−1(x) is Lipschitz with constant
1
α ; i.e., for any u, v ∈ X

‖(αI + A)−1(u− v)‖ ≤ 1

α
‖u− v‖.(3.15)

Applying Lavrentiev regularization one usually assumes that for pure data y = A(x+)
it produces an approximate solution xα = (αI + A)−1(y + αx̄) converging to x+ as
α → 0. It means that there exists an increasing continuous function ϕ(α) = ϕ(x+;α)
such that ϕ(0) = 0 and

‖x+ − xα‖ ≤ ϕ(α).(3.16)

Theorem 3.4. Let A(x) be a continuous monotone operator in a real Hilbert
space X. Consider ΔN = {αi = qiδ, i = 0, 1, . . . , N}, q > 1, αN  1, and ᾱ =
max{αj ∈ ΔN : ‖xδ

αi
− xδ

αi−1
‖ ≤ 4q1−i, i = 1, 2, . . . , j}, where xδ

αi
is the unique

solution of (3.14) for α = αi. Then under the assumption (3.16)

‖x+ − xδ
ᾱ‖ ≤ (6q − 2)q

q − 1
ϕ(x+; θ−1

ϕ (δ)),(3.17)

where θϕ(t) = ϕ(t)t.
Proof. From (3.15) and (3.16), it follows that for any α > 0

‖x+ − xδ
α‖ ≤ ‖x+ − xα‖ + ‖xα − xδ

α‖
≤ ϕ(α) + ‖(αI + A)−1(y − yδ)‖

≤ ϕ(α) +
δ

α
.

Hence, error bound has the form (1.6) with λ(α) = α. It is easy to see that for
such λ(α), all conditions of Theorem 2.2 are satisfied. Moreover, for λ(α) = α the
arguments from the proof can be simplified, and it gives an explicit form of the
constant c near the optimal order.

Remark 3.5. Lavrentiev regularization is usually studied under the assumption
(3.16) with ϕ(α) = cαp, p ∈ (0, 1]. For example, the case of unknown p has been
discussed recently in [24], where it has been shown that for α chosen as the solution
of the nonlinear equation

‖α(αI + A′(xδ
α))−1(A(xδ

α) − yδ)‖ = c1δ, c1 > 1,
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one has

‖x+ − xδ
α‖ ≤ cpδ

p
p+1 .

The disadvantage of this a posteriori rule is that its combination with the Lavrentiev
regularization (3.14) does not allow to avoid the use of the Fréchet derivatives. At
the same time, an a posteriori rule presented in Theorem 3.4 is free from the above
mentioned drawback and gives the same order of accuracy 0(δ

p
p+1 ) for ϕ(α) = cαp.

Moreover, to our knowledge, the rule from Theorem 3.4 is the only one that allows
to reach the best possible order of accuracy of Lavrentiev regularization automatically,
and does not involve another regularization methods.

3.3. Example 3: Inverse problem of profile reconstruction in diffractive
optics. The statement of the problem discussed in this section is borrowed from [3].
Let the profile of two-dimensional diffraction grating be described by the curve

Λf := {(x1, f(x1)) : x1 ∈ R}

with 2π-periodic function f . Let

Ωf := {x = (x1, x2) : x2 > f(x1), x1 ∈ R}

be filled with a material whose index of refraction k is some positive constant. Suppose
that a plane wave given by

uin(x) = exp(iαx1 − iβx2)

is incident on Λf from the top, where α = k sin θ, β = k cos θ, and θ ∈ (−π
2 ,

π
2 ) is the

incident angle. Then the scattering of this wave by Λf is modelled by the Dirichlet
problem for the Helmholz equation

Δu + k2u = 0 in Ωf , u = −uin on Λf(3.18)

where the scattered field u is assumed to satisfy a radiation condition, i.e., u is com-
posed of bounded outgoing plane waves:

u(x1, x2) =
∑
n∈Z

An exp[i(n + α)x1 + iβnx2],(3.19)

with βn =
√
k2 − (n + α)2 ∈ C, and the Rayleigh coefficients An ∈ C. To exclude

resonances one assumes that βn �= 0, n ∈ Z.
The inverse problem of profile reconstruction is to recover the profile function f

from the trace ub(x) = u(x, b) of the scattered field u(x1, x2) on the line x2 = b for a
given incident wave uin. Without loss of generality we can assume that the unknown
profile Λf lies above the line x2 = b0 and below x2 = b, i.e.,

b0 < f(x1) < b, x1 ∈ R.(3.20)

Representing the scattered field as a single layer potential

u(x1, x2) =

∫ 2π

0

z(t)G(x1, x2, t, 0)dt
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with an unknown density function z ∈ L2(0, 2π) and the free space quasi-periodic
Green function

G(x1, x2, y1, y2) =
i

2π

∑
n∈Z

1

βn
exp[i(n + α)(x1 − y1) + iβn(x2 − y2)],

one can reduce the inverse problem of profile reconstruction to the following system
of integral equations

Tz(x1) :=

∫ 2π

0

z(t)G(x1, b, t, 0)dt = ub(x1),

(3.21)

Sfz(x1) :=

∫ 2π

0

z(t)G(x1, f(x1), t, 0)dt = −uin ◦ f(x1),

which is nonlinear with respect to f . Here uin◦f(x1) = exp(iαx1−iβf(x1)). Applying
the arguments from the proof of [3, Lemma 4.1 and Theorem 4.2] one can obtain the
following proposition.

Proposition 3.6. Let ub(x1) be the exact pattern of the scattered field u(x1, x2)
on x2 = b that corresponds to some 2π-periodic profile functions f ∈ C2(R) meeting
(3.20). Then there exists a solution (z0, f0) of the system (3.21). If in addition the
inverse problem of profile reconstruction is uniquely solvable then f = f0.

Note that in problem (3.21) the knowledge of all Rayleigh coefficients An of the
scattered waves is required. At the same time, the Fourier coefficients of ub(x1) =
u(x1, b) with respect to orthonormal basis {exp[i(n+α)x1]}n∈Z of the complex Hilbert
space L2(0, 2π) have the form Ane

iβnb, n ∈ Z, and decay exponentially. Therefore,
in practice one is able to measure only a finite number of An, n ∈ U , corresponding
to outgoing plane waves (modes) of the scattered field (3.19) that can be observed
on the line x2 = b. Here U is some finite index set. Moreover, even these coefficients
will not be given exactly but will be perturbed by measurement errors. To be more
precise, we have only a vector (Aδ

n)n∈U determining the “noisy trace”

uδ
b(x1) =

∑
n∈U

Aδ
n exp[i(n + α)x1 + iβnb]

such that

‖ub − uδ
b‖ ≤ δ,(3.22)

where ‖ · ‖ denotes the norm in the complex Hilbert space L2(0, 2π).
Thus, replacing the scattered field ub by uδ

b one obtains the system (3.21) contain-
ing the noisy equation Tz = uδ

b , and for a stable profile reconstruction its regularized
version should be considered. Such an approach was first proposed by Kirsch and
Kress [14] for acoustic obstacle scattering. For the profile reconstruction problem
it has been developed recently in [3]. These authors have observed that the struc-
ture of the system (3.21) allows the decomposition of the inverse problem of profile
reconstruction into the severely ill-posed linear problem of estimating the scattered
field potential density z(t), and into the well-posed nonlinear problem of determin-
ing the unknown profile function as the location of the zeros of the total field; the
later problem can then be replaced by the finite dimensional nonlinear least squares
problem.
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If z(t) is given as a Fourier series

z(t) =
∑
n∈Z

zn exp[i(n + α)t], zn ∈ C,

then the operators from the system (3.21) can be represented in the following form:

Tz(x1) = i
∑
n∈Z

znβ
−1
n exp[i(n + α)x1 + iβnb],(3.23)

Sfz(x1) = i
∑
n∈Z

znβ
−1
n exp[i(n + α)x1 + iβnf(x1)].(3.24)

Now it can be easily checked that T is an injective linear operator whose inverse T−1

acts continuously from L2 = L2(0, 2π) to the Hilbert space of generalized functions

L−b
2, exp :=

{
z : ‖z‖2

L−b
2,exp

:=
∑
n∈Z

|zn|2|e2iβnb||βn|−2 < ∞
}
,

where zn is the value of the functional 〈z, ei(n+α)〉L2(0,2π), n ∈ Z. Thus, if the problem

was to find the solution of the equation Tz = uδ
b in the space L−b

2,exp, it would be well-
posed. But the second equation of (3.21) presumes Sfz ∈ L2(0, 2π) for all admissible

function meeting (3.20). One can guarantee it if z ∈ L−b0+h
2,exp for some 0 < h < b0.

Indeed, |βm| ∼ m and

‖Sfz‖2 =

∫ 2π

0

∣∣∣∣∣
∑
n∈Z

znβ
−1
n ei(α+n)x1eiβnf(x1)

∣∣∣∣∣
2

dx1

≤ c

(∑
n∈Z

|zn|2
|βn|2

|e2iβn(b0−h)|
)∫ 2π

0

∑
n∈Z

e−2|βn|(f(x1)−b0+h)dx1(3.25)

≤ c

1 − e−2h
‖z‖2

L
−b0+h

2,exp

= ch‖z‖2

L
−b0+h

2,exp

,

where the constant ch depends only on h. Thus, it is reasonable to seek for solution
of Tz = uδ

b in the space L−b0+h
2,exp .

Remark 3.7. In [3] it has been proposed to regularize the first equation of (3.21)
in the space L2. Keeping in mind that L2 ↪→ L−b0+h

2,exp , it is easy to realize that for the

pair (L2, L2) the problem Tz = uδ
b is more ill-posed than for (L−b0+h

2,exp , L2). Moreover,
for any regularized solution zδ of equation Tz = ub one has

‖z0 − zδ‖L−b0+h

2,exp

≤ ‖z0 − zδ‖L2 ,

where z0 = T−1ub. At the same time, from (3.24) it follows that the perturbation of
the left-hand side of the second equation of (3.21) caused by the replacement z0 for
zδ can be estimated as

‖Sfz0 − Sfzδ‖ ≤ ch‖z0 − zδ‖L−b0+h

2,exp

.

The equation supports the use of L−b0+h
2,exp as a more suitable space for the problem

under consideration.
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Singular value expansion (3.23) of the operator T allows us to apply the spectral
cut-off scheme for the regularization of the equation Tz = uδ

b . It gives the following
sequence of regularized solutions:

zm,δ(x1) = −i
∑

|n|<m

Aδ
nβn exp[i(α + n)x1], m = 1, 2, . . . ,M + 1,(3.26)

where M = max{m : (−m,−m + 1, . . . ,m − 1,m) ⊂ U}. Replacing Aδ
n with An in

(3.26), one obtains the partial sum zm,0 of the Fourier series

z0(x1) = T−1ub(x1) = −i
∑
n∈Z

Anβn exp[i(α + n)x1].

Keeping in mind that ‖zm,0−z0‖ → 0 as m → ∞, and ‖zm,0−z0‖L−b0+h

2,exp

≤ ‖zm,0−z0‖,
we deduce that there exists an increasing continuous function ϕ(λ) such that ϕ(0) = 0
and

‖z0 − zm,0‖L−b0+h

2,exp

≤ ϕ

(
1

m

)
.(3.27)

Moreover, from (3.22) it follows that

‖zm,0 − zm,δ‖2

L
−b0+h

2,exp

=
∑

|n|<m

|An −Aδ
n|2|e2iβn(b0−h)|

=
∑

|n|<m

|An −Aδ
n|2|e2iβnb||e2iβn(b0−h−b)|

≤ e2|βm|(b+h−b0)‖ub − uδ
b‖2

≤ δ2e2|βm|(b+h−b0).

Then

‖z0 − zm,δ‖L−b0+h

2,exp

≤ ϕ

(
1

m

)
+ δe|βm|(b+h−b0).

This estimate has the form (1.6) with α = 1
m and

λ(α) = exp
[
−
√
|k2 − (α−1 + k sin θ)2|(b + h− b0)

]
.(3.28)

As in section 3.1 we consider ΔM = {αi = 1
M−i+1}Mi=0. Keeping in mind that

c1e
− a

α ≤ λ(α) ≤ c1e
− a

α

with a = (b+ h− b0) and some constants c1, c2 depending only on k and θ, it is easy
to check that in considered case the condition (2.2) is satisfied with q = c2e

a

c1
. Then,

as in section 3.1, the straightforward application of Theorem 2.1 gives the following
theorem.

Theorem 3.8. Assume that the inverse problem of profile reconstruction is
uniquely solvable. If M is sufficiently large such that M ∼ (b+h− b0)

−1 ln 1
δ then for

m+ chosen as

m+ = min
{
m : ‖zm,δ − zn,δ‖2

L
−b0+h

2,exp

≤ 4δe|βn|(b+h−b0), n = M + 1,M, . . . ,m
}
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one has

‖z0 − zm+,δ‖L−b0+h

2,exp

≤ cϕ((ϕλ)−1(δ)),

where ϕ, λ are the functions from (3.27), (3.28), and c depends only on b, b0, h, k, θ.
Remark 3.9. In the case under consideration, the spectral cut of scheme (3.26)

can be combined with the discrepancy principle. Then the regularization parameter
m would be chosen as

md = min{m : ‖Tzm,δ − uδ
b‖L2 ≤ dδ; m = 1, 2, . . . ,M + 1}.(3.29)

It is easy to observe that the combination of (3.26) with (3.29) does not take into
account our wish to regularize a problem in such an “exotic” space as L−b0+h

2,exp . In this
respect the parameter choice rule discussed above is much more flexible, and it is one
more advantage of it.

4. Conclusion. As mentioned in the introduction, the a posteriori choice of the
regularization parameter by several of the known principles may not yield the optimal
order of accuracy for a given solution’s smoothness. The principle proposed in the
present paper is free from the above-mentioned drawback. Namely, for the first time
one has a parameter choice rule that allows us to reach the best order of accuracy for
all ill-posed problems that in principle can be treated in an optimal way by considered
regularization methods.

We would like to emphasize that adaptive parameter choice strategy described
in section 2 can be applied in a wide variety of situations where the goal is to find
a balance between stability and approximation rate, and the latter one is unknown.
Such a strategy may be of interest in other areas of numerical analysis. It seems that
the problem of the weight choice in penalty finite element methods, for example, can
be treated using the same idea.
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A PROLONGATION/RESTRICTION OPERATOR FOR WHITNEY
ELEMENTS ON SIMPLICIAL MESHES∗

ALAIN BOSSAVIT† AND FRANCESCA RAPETTI‡

Abstract. The paper is mainly focused on the construction of two transfer operators be-
tween nested grids in the case of Whitney finite elements (node-, edge-, face-, or volume-based).
These transfer operators, instances of what is called “chain map” in homology, have duals acting on
cochains, that is to say, arrays of degrees of freedom in the context of the finite-element discretiza-
tion of variational problems. We show how these duals can act as restriction/prolongation operators
in a multigrid approach to such problems, especially those involving vector fields (e.g., electromag-
netism). The duality between the operation of mesh refinement of a simplicial complex and that
of restriction/prolongation of degrees of freedom from one mesh to a nested one is thus analyzed
and explained. We use the language of p-forms, with frequent explanatory references to the more
traditional vector-fields formalism.

Key words. mesh refinement, p-chains, p-forms, Whitney elements, multigrid
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1. Introduction. In the approximation of a given differential problem by a finite
element method, solving the final algebraic linear system is a delicate step. It is well-
known that the associated matrix is sparse and can be of large size so that iterative
solvers are preferable to direct ones. However, the convergence of iterative solvers
strongly depends on the matrix condition number and slows down when the latter is
large. Moreover, classical iterative methods fail to be effective whenever the spectral
radius of the iteration matrix is close to one. A Fourier analysis shows that the
reduction in the error depends on the spatial frequency. Errors with high frequency
are rapidly damped whereas low frequency errors are slowly reduced and hold back
convergence.

The multigrid algorithm [16] is an iterative technique well-adapted to solving
linear systems arising from a finite element discretization of differential equations
over a given grid. The basic idea of the method is to change the grid in such a way
that low frequency (smooth) errors on a grid with elements of maximal diameter h can
be singled out and cut down on a coarser grid, while high frequency errors that are not
visible on the coarse grid with elements of maximal diameter H > h, for example, can
be resolved on the fine grid. The exchange of information between the two meshes is
done by means of two linear operators, one behaving as a prolongation and the other
as a restriction. These operators are well known for nodal finite elements on nested
or nonnested grids [19] but have still to be fully understood for edge or face finite
elements.

It must be remarked that recovering the coarse grid from the fine one can be a very
demanding operation. Therefore, in this paper we will address this problem the other
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way around; i.e., we suppose that we have a coarse grid and we refine it repeatedly
by means of a fixed procedure. This way, by using a suitable system of labels for the
mesh nodes, we can know at which refinement level we are. Any other situation is
not considered here since we wish to focus on the transfer of degrees of freedom from
one mesh to the other, rather than on the coarsening process itself. However, the
proposed analysis does not depend on the refinement or coarsening process. In short,
we focus on a specific criterion to present the theory, but the theory is independent
from the chosen criterion.

The paper is organized as follows. In section 2, suitable algebraic tools are intro-
duced to lead the reader into the “world” of Whitney elements on simplicial meshes,
including an appropriate formulation of the Stokes theorem. In section 3, we consider
the problem of subdividing a simplicial mesh. The core of the paper is section 4,
where we construct the information exchange operators between two “nested” meshes
(by which we mean, two meshes m and m̃, the latter a conforming refinement of
the former). Notions thus developed are applied in section 5, where we define the
two transfer operators for Whitney elements on two nested simplicial meshes. The
multigrid algorithm then comes as a straightforward application of these notions. An-
alyzing its performances is a difficult and technical issue, which we do not address.
(Relevant references are given in section 5.)

2. Algebraic tools. In this section, we recall some basic notions in algebraic
topology (see, e.g., [1, 17]) and explain our notation. We restrict ourselves to a three-
dimensional domain Ω (but the same notions can be defined in any dimension). For all
integrals, we omit specifying the integration variable when this can be done without
ambiguity. We shall denote by

∫
γ
u · tγ and

∫
σ
u ·nσ, respectively, the circulation and

the flux of a vector field u, where tγ is the unit tangent to the smooth curve γ and
nσ the outward unit normal to the surface σ. Moreover, we shall emphasize the maps
γ →

∫
γ
u · tγ and σ →

∫
σ
u ·nσ, that is to say, the differential forms of degree 1 and 2,

respectively, which one can associate with a given vector field u, and we occasionally
use notations specific to exterior calculus, such as the exterior derivative d, as used
in the Stokes theorem.

2.1. Triangulations and Whitney finite elements. Given a domain Ω ⊂ R
3

with boundary Γ, a simplicial mesh m in Ω is a tessellation of Ω by tetrahedra, under
the condition that any two of them may intersect along a common face, edge, or
node, but in no other way. We denote by Nm, Em, Fm, Tm (nodes, edges, faces, and
tetrahedra, respectively) the sets of simplices of dimension 0 to 3 thus obtained (see
Figure 1 for an example), each with its own orientation (more on this will follow),
and by Nm, Em, Fm, Tm their cardinalities. Alternatively, we may use Sp

m to denote
the set of p-dimensional simplices in m and #Sp

m for its cardinality. The importance
of simplicial meshes lies in the fact that any triangulated domain is homeomorphic to
one in which the triangles are flat and the edges straight. Note that the triangulation
for Ω is not unique, but topological properties of a triangulated domain do not depend
on the triangulation used to investigate them. (For such “homological” computations,
using a definite triangulation but yielding mesh-independent results, which we believe
are relevant to engineering practice, see [12, 15].)

For what follows, we need to underline some combinatorial properties of the sim-
plicial mesh. Besides the list of nodes and their positions, the mesh data structure
also contains incidence matrices, saying which node lies at an end of which edge,
which edge bounds which face, etc. [4]. This encodes the orientation of each simplex,
as we now explain. In short, an oriented edge is not only a two-node subset of Nm,
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0–simplex
+

(node)

n
e

1–simplex
(edge)

f

2–simplex
(face)

t

3–simplex
(volume)

Fig. 1. Examples of oriented p-simplex, p = 0, . . . , 3.

but an ordered such set, where the order implies an orientation. Let e = {�, n} be
an edge of the mesh oriented from the node � to n. We can define the incidence
numbers Ge,n = 1, Ge,� = −1, and Ge,k = 0 for all nodes k other than � and n.
These numbers form a (Em × Nm)-matrix G, which describes how edges connect to
nodes. A face f = {�, n, k} has three vertices which are the nodes �, n, k. Note that
{n, k, l} and {k, l, n} denote the same face f , whereas {n, l, k} denotes an oppositely
oriented face, which is not supposed to belong to Fm if f does. An orientation of
f induces an orientation of its boundary. So, with respect to the orientation of the
face f , the one of the edge {l, n} is positive and that of {k, n} is negative. So we
can define the incidence number Rf,e = 1 (resp., −1) if the orientation of e matches
(resp., does not match) the one on the boundary of f and Rf,e = 0 if e is not an
edge of f . These numbers form a (Fm × Em)-matrix R. Finally, let us consider the
tetrahedron t = {k, l,m, n}, positively oriented if the three vectors {k, l}, {k,m}, and
{k, n} define a positive frame (t′ = {l,m, n, k} has a negative orientation and does not
belong to Tm if t does). A (Vm×Fm)-matrix D can be defined by setting Dt,f = ±1 if
face f bounds the tetrahedron t, with the sign depending on whether the orientation
of f and of the boundary of t match or not, and Dt,f = 0 in case f does not bound
t. (For consistency, we may attribute an orientation to nodes as well—a sign, ±1.
Implicitly, we have been orienting all nodes the same way (+1) up to now. Note that
a sign (−1) to node n changes the sign of all entries of column n in the above G.) It
can easily be proved that RG = 0 and DR = 0 [4].

We now define the Whitney finite elements we use [4, 9, 10, 13]: They are scalar
functions or vector fields associated to all the simplices of the mesh m. Given the node
n, the edge e = {�,m}, the face f = {�,m, k}, and the tetrahedron t = {i, j, k, �},
we define the following scalar or vector functions (λn is the barycentric coordinate
associated to node n):

wn = λn,

we = λ� gradλm − λmgradλ�,

wf = 2 (λ� gradλm × gradλk + λm gradλk × gradλ� + λk gradλ� × gradλm),

wt = 6 (λi gradλj × gradλk · gradλ� + λj gradλk × gradλ� · gradλi

+λk gradλ� × gradλi · gradλj + λ� gradλi × gradλj · gradλk)

(wt is just the constant 1/vol(t)). We define W p
m = span {ws : s ∈ Sp

m}, p = 0, 1, 2, 3
(the simplicial dimension, e.g., p = 0 for nodes). It can be verified that the value
(resp., circulation, flux, integral) of wn (resp., we, wf , wt) on its supporting simplex
is 1, and 0 on other simplices of matching dimension, a fact we shall be able to state
more compactly in a moment.

Given two adjacent tetrahedra t and t′ sharing a face f , the function wn and both
the tangential component of we and the normal component of wf are continuous
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across f , whereas the function wt is not. Thanks to these continuity properties,
W 0

m ⊂ H1(Ω), W 1
m ⊂ H(curl,Ω), W 2

m ⊂ H(div,Ω), W 3
m ⊂ L2(Ω). The spaces

W p
m, p = 0, 1, 2, 3, have finite dimension given by Nm, Em, Fm, Tm, respectively, and

they play the role of Galerkin approximation spaces for the functional spaces just
mentioned. Therefore, a scalar field k ∈ H1(Ω) can be represented in W 0

m by the
approximation

∑
n∈Nm

kn w
n where {kn : n ∈ Nm} are the values of k at the mesh

nodes (i.e., the degrees of freedom of k on the mesh m). Similarly, a vector field
v ∈ H(curl,Ω) can be represented in W 1

m by
∑

e∈Em
ve w

e, where {ve : e ∈ Em}
are the circulations of v along the mesh edges. A vector field v ∈ H(div,Ω) can
be represented in W 2

m by
∑

f∈Fm
vf w

f , where {vf : f ∈ Fm} are the fluxes of v

across the mesh faces. Finally, a scalar field k ∈ L2(Ω) can be represented in W 3
m by∑

t∈Tm
kt w

t, where {kt : t ∈ Tm} are the integrals of k on the mesh tetrahedra.
Properties discussed so far concern the spaces W p

m taken one by one. Properties of
the structure made of the spaces W p

m when taken together should also be mentioned.
We know that the following inclusions hold:

gradW 0
m ⊂ W 1

m, curlW 1
m ⊂ W 2

m, divW 2
m ⊂ W 3

m.

It is natural to ask whether the sequence

{0} −→ W 0
m

grad−→ W 1
m

curl−→ W 2
m

div−→ W 3
m −→ {0}

is exact at levels 1 and 2, i.e., when it happens that

ker(curl;W 1
m) = gradW 0

m, ker(div;W 2
m) = curlW 1

m,

where ker(curl;W 1
m) := W 1

m ∩ ker(curl) and ker(div;W 2
m) := W 2

m ∩ ker(div). (At
level 0, the gradient operator is not injective. At level 3, the divergence operator
is surjective.) The Poincaré lemma states that, when the domain Ω is contractible,
the image fills the kernel in both cases. This may fail to happen: With Ω a solid
torus, for example, grad (W 0

m) is a proper subset of ker(curl;W 1
m). If so, it tells

us something on the topology of Ω, namely the presence of b1 “loops,” where b1 =
dim [ker(curl;W 1

m)/grad (W 0
m)] is the Betti number of dimension 1 of the domain.

Solenoidal fields that are not curls indicate the presence of b2 “holes,” where b2 =
dim [ker(div;W 2

m)/curl (W 1
m)] is the Betti number of dimension 2 of the domain. (One

may add that b0 = dim [ker(grad;W 0
m)] is the number of connected components, here

assumed to be 1, of Ω.) These are global topological properties of the meshed domain:
They depend on Ω, but not on which mesh is used to compute them. The sequences
are thus an algebraic tool by which the topology of Ω can be explored (which was the
point of inventing Whitney forms [18]).

2.2. Chains and homology groups. We now introduce chains over the mesh
m. A p-chain c is an assignment to each p-simplex s of a rational integer αs. This
can be denoted by c =

∑
s∈Sp

m
αs s. Let Cp(m) be the set of all p-chains. This set has

a structure of Abelian group with respect to the addition of p-chains: Two p-chains
are added by adding the corresponding coefficients.

If s is an oriented simplex, the elementary chain corresponding to s is the as-
signment αs = 1 and α′

s = 0 for all s′ �= s. In what follows, we will use the same
symbol s (or n, e, etc., depending) to denote the oriented simplex and the associated
elementary chain. Note how this is consistent with the above expansion of c as a
formal weighted sum of simplices. Which meaning is implied will hopefully be clear
from the context.
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The boundary of an oriented p-simplex of m is a (p− 1)-chain determined by the
sum of its (p − 1)-dimensional faces, each taken with the orientation induced from
that of the whole simplex. So, the boundary ∂s of a single simplex s is

∂e =
∑

n∈Nm

Ge,n n, ∂f =
∑
e∈Em

Rf,e e, ∂t =
∑

f∈Fm

Dt,f f.

By linearity, the boundary operator ∂ defines a group homomorphism Cp(m) →
Cp−1(m) as follows:

∂c = ∂

( ∑
s∈Sp

m

αs s

)
=

∑
s∈Sp

m

αs ∂s.

Note that ∂ is represented by a matrix, which is Gt, Rt, or Dt, depending on the
dimension p > 0. We remark that ∂ ◦ ∂ = 0, i.e., the boundary of a boundary is the
null chain. When p = 0, we define the boundary of a single vertex to be zero and
C−1(m) = {0}.

The kernel of ∂ : Cp(m) → Cp−1(m) is denoted by Zp(m) and is called the group
of p-cycles of m. The image of ∂ : Cp+1(m) → Cq(m) is denoted by Bq(m) and is
called the group of p-boundaries of m. The property ∂ ◦ ∂ = 0 implies that Bp(m) is
a subgroup of Zp(m). The quotient Hp(m) = Zp(m)/Bp(m) is the homology group of
order p of the mesh m and the Betti number bp is equal to the rank of Hp(m). Not all
cycles bound, as a rule (think again of the solid torus, for p = 1), so bp need not be zero.

By linearity, integration over simplices extends to chains as follows (let’s deal with
2-chains for definiteness). If c = Σf∈Fmcff , the integral of a vector field w over c is,
by definition (and with some notational abuse for which we shall be rewarded later),

∫
c

w =
∑

f∈Fm

cf

∫
f

w · nf .(1)

Substituting the Whitney form wf for w there, one sees that
∫
c
wf is just cf . A

similar definition can be stated for node-based, edge-based, or volume-based chains.
So we now have

∫
s′ w

s = 1 if s′ = s and 0 if s′ �= s for all p-simplices s′ and Whitney
elements ws—the promised compact expression of their main property.

Remark 2.1. We note that (1) amounts to considering the vector field w as a
differential form, as defined at the beginning of section 1. The functions and vector
fields wn, we, wf , wt of section 2.1 are thus differential forms, known as Whitney
forms in the mathematical literature [18].

2.3. Cochains and cohomology groups. In this section, we introduce the
dual concept of p-cochain. A p-cochain is a linear functional on the vector space of
p-chains. For instance, given an array b = {bs : s ∈ Sp

m} of real numbers, we can
define the p-cochain c →

∑
s∈Sp

m
bs cs acting on p-chains c with coefficients cs. Also,

as in (1), given a differential form w, the mapping c →
∫
c
w defines a p-cochain. More

generally, the p-cochain coefficients are obtained by integrating the differential form
w on the elements of the p-chain c; i.e., the map c →

∑
s∈Sp

m
cs

∫
s
w is a cochain. We

shall denote the latter value as 〈w ; c〉.
Once a metric is introduced on the ambient affine space, differential forms are in

correspondence with scalar and vector fields (called “proxy fields”—metric dependent,
of course). The coefficients of p-cochains become the degrees of freedom of scalar
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and vector fields (and this is exactly what occurs with Whitney finite elements in
section 2.1). Let W p(m) denote the set of p-cochains (or p-forms) defined on Ω when
triangulated by m. Then, Cp(m) and W p(m) are in duality via the bilinear continuous
map 〈· ; ·〉 : W p(m) × Cp(m) → R defined as 〈w ; c〉 =

∫
c
w where the integral must

be interpreted as in (1) in the example case p = 2. A duality product should be
nondegenerate, i.e., 〈w ; c〉 = 0 for all c implies w = 0, and 〈w ; c〉 = 0 for all w
implies c = 0. The former property holds true by definition, and the latter is satisfied
because, if c �= 0, one can construct an ad-hoc smooth vector field or function with
nonzero integral and hence a nonzero form w such that 〈w ; c〉 �= 0.

For p > 0, the exterior derivative of the (p − 1)-form w is the p-form dw. The
integral

∫
c
w is treated in two ways: If c = ∂τ and w is smooth, one may go forward

and integrate dw over τ . Alternatively, if the form w = dv, one may go backward and
integrate v over ∂c. In particular, we have

∫
∂c

w =
∫
c
dw, which is the common form

of Stokes’ theorem [7], or equivalently,

〈w ; ∂c〉 = 〈dw ; c〉 ∀c ∈ Cp and ∀w ∈ W p−1.(2)

Equation (2) reveals that d is the dual of ∂ (in the sense of Yosida [20, p. 194]).
As a corollary of the boundary operator property ∂ ◦ ∂ = 0, we have that d ◦ d = 0.
A form w is closed if dw = 0, exact if w = d v for some v (in the first case we
have a cocycle and in the second case a coboundary). Denoting by Zp(m) the vector
space of all closed p-forms and by Bp(m) the subspace made of all exact p-forms, the
property d ◦ d = 0 implies that Bp(m) ⊂ Zp(m); i.e., the integral of a cocycle over
a boundary vanishes. In domains Ω that are topologically trivial, all closed p-forms
are exact (this is the Poincaré lemma). But closed forms need not be exact in general
manifolds: This is the dual aspect of the above “not all cycles bound” (section 2.2).
The quotient space Hp(m) = Zp(m)/Bp(m) is (considered as an additive group) the
De Rham’s pth cohomology group of Ω or equivalently of m.

3. Refinement of a triangulation and simplicial maps. A mesh refinement
is a procedure to subdivide each simplex of a given mesh (referred to as the “coarse”
one) m into a finite number of smaller ones, whose assembly is still a proper mesh (the
“fine” one). We consider here conforming refinements, i.e., such that the set m̃ of all
simplices of the fine mesh, is itself a cellular complex (no hanging nodes). Moreover,
we are interested in subdividing a simplicial mesh in a way that will not deteriorate
the aspect ratio of the new smaller and smaller tetrahedra that appear during the
division process. In this framework, we speak of uniform refinement procedure if
there is a finite catalog of “model cells” such that any cell in any m̃ is similar to one
of them, for all meshes m̃ in the family M of meshes potentially created in the process
of iterated refinement.

The barycentric (or regular) refinement is an example of conforming refinement
procedure where the small cells are more and more stretched (see Figure 2 for a
face) and hence not uniform in that sense. In three dimensions, each tetrahedron
T is divided into 24 tetrahedra, and we can understand that after the first step of
refinement, the new tetrahedra are more stretched toward the barycenter o: When
their aspect ratio becomes too small, the classical a priori error estimates for finite
elements do not apply and convergence is not warranted.
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Fig. 2. Two-level refinement of normal (left) and barycentric (right) type. A face is divided,
respectively, into four faces (left) and six faces (right) at each refinement level.

The normal refinement1 presented in Figure 2 for a face, and in Figure 5 for a
tetrahedron, is an example of conforming refinement procedure that enjoys uniformity.
In three dimensions, let us consider a tetrahedron T built on four nodes k, l,m, n. Call
o the center, lm, ln, etc., the midpoints. The big tetrahedron T = {k, l,m, n} subdi-
vides into four midsize ones, such as {kn, ln,mn, n}, and a midsize core octahedron
(Figure 3), itself a half-size reduction of a big one O circumscribed to T . In turn, the
core divides into six small octahedra and eight small tetrahedra, all similar to O and
T , respectively, with a reduction factor of 4 (Figure 4). Hence there are two basic
shapes, that of T and that of O, which are found again and again.

O

T

k

l

m

n

T

k
l

m

n

kl

lm

kn

mn

ln

km
o

Fig. 3. Cutting T into four midsize tetrahedra plus a core octahedron, similar to the circum-
scribed one, O. Note that the common center o of T and O is four times closer to face {k, l,m}
than node n was. Faces of O are similar to those of T , twice as big.

All that is left to do, in order to get a series of nested simplicial meshes, is to cut
the octahedra into tetrahedra, either eight (Figure 5) or just four. The latter solution
simply consists of adding an edge joining two opposite nodes of the octahedron. As
there are three nonequivalent ways to do that, one must be careful to draw all these

1Whitney defines in [18, pp. 358–360] a standard subdivision that guarantees uniformity but does
not treat nodes symmetrically, the way ours does, hence the introduction of the adjective normal for
definiteness. Normal subdivision can be done in dimensions d > 3, where it also involves, as can be
inferred from Figure 3, convex hulls of barycenters of p-faces of the reference d-simplex. Denoting
such convex polytopes by Tp (the reference simplex thus being T0, and the O of Figure 5 a T1), it
can be shown that each Tp can be dissected into a finite number (bounded by a function of d only)
of polytopes similar to one of the Tq , 1 ≤ q ≤ d; hence there is uniformity.
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kl
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Fig. 4. Cutting the octahedral core O into six small octahedra (one per node of the core, or
edge of T ) plus eight small tetrahedra (one per face of the core), all similar to T and O, respectively,
and four times smaller.

diagonals parallel to a same direction if one wants to minimize the number of different
shapes of tetrahedra. Cutting in eight is a more symmetrical procedure. With both
methods, the number of shapes is kept down to five. (That is the generic number, of
course lower if T had some symmetry to start with.)

In any event, it is only at the latest stage of the subdivision that the final cut
of octahedra should be involved. Conceptually, we have two cell shapes, T and O.
Each T -cell breaks into four smaller T -cells and one O-cell. Each O-cell splits into six
O-cells and eight T -cells. At the generic step κ ≥ 1, we get

T → α
T

2κ
+ β

O

2κ−1
,(3)

where α, β are two positive integers. As a last step, O-cells are chopped.
If a tetrahedron t born from this last subdivision is earmarked for refinement by

the error-estimator, one must look upward to its ancestry before dividing it. If t is a
T -cell, apply normal subdivision. Otherwise, backtrack to its mother O-cell and sub-
divide the latter. Apart from those that are T -cells, tetrahedra of the subdivision are
mules, not able to reproduce by division. The same strategy applies to the transition
layer of tetrahedra that touch divided ones, and need division for conformity. They
should be cut in two or more tetrahedra, depending on how many of their edges belong
to divided tetrahedra. Here, for simplicity, we consider only two cases: a T -cell with a
divided face results in four tetrahedra and the one with a divided edge results in two.
Products of this subdivision can be mules as well as tetrahedra with divided edges
or faces and the procedure goes on. All other T -cells presenting two or more divided
faces are cut according to the normal subdivision (at worst, the normal subdivision
applies to the whole set of tetrahedra). If one of the two or four tetrahedra t that
compose a T -cell in the transition layer is pointed at for subdivision, one backtracks
to its (mother) T -cell and applies normal subdivision. (Refining tetrahedra t the same
way, by the normal subdivision that served for the T -cell, would make a mess.) The
number of different tetrahedral shapes is thus kept small, whatever the depth of the
subdivision procedure.
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o
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m

n

kl

lm

km

kn

Fig. 5. Normal refinement for the tetrahedron T = {k, l,m, n}. Mid-edges are denoted kl, lm,
etc., and o is the barycenter. A first halving of edges generates four small tetrahedra and a core
octahedron, which itself can be divided into eight “octants” such as O = {o, kl, lm,mk}, of at most
four different shapes. At this point, we have twelve small tetrahedra, only eight in the octahedron.
Now, octants like O should be subdivided as follows: Divide the face in front of o into four triangles
and join to o; hence we have a tetrahedron similar to T , and three peripheral tetrahedra. These,
in turn, are halved as shown for the one hanging from edge {o, lm}. Its two parts are similar to O
and to the neighbor octant {o, kn, kl,mk}, respectively. At the end of the second step, we have 56
tetrahedra for the core octahedron.

Note that, starting from a given mesh, the barycentric subdivision as well as the
normal one do not change the homology group of a complex, since the triangulated
domain is always the same. This is the very point of homology (see, for example, [1]).

4. Construction of a restriction/prolongation operator between two
nested meshes. Recall that the collection of groups and homomorphisms

{0} −→ . . .
∂−→ Cp(m)

∂−→ Cp−1(m)
∂−→ . . . −→ {0}

is usually referred to as the chain complex of the mesh m and denoted by C(m). Here,
we shall consider two meshes, the coarse one m and the fine one m̃, as obtained from
m by a given refinement technique; hence we have two complexes C(m) and C(m̃).
We use capital letters to denote nodes, edges, faces, and volumes in m and lowercase
letters to denote analogous cells in m̃. Incidence matrices for m̃ are denoted g, r, d.
Recall that the elementary chain associated with a simplex of m (or m̃) and the sim-
plex itself are denoted by the same symbol. Last, we shall use the shorthand “s ⊂ S”
when simplex s is, as a subset of the three-dimensional space, a part of S. (Thus,
N ⊂ E means N is an endpoint of E. In the case of nodes, n ⊂ N just means that n
and N sit at the same point.)

In what follows, we first introduce two maps, χ : C(m) → C(m̃) and π : C(m̃) →
C(m); we next prove that χ and π are “chain maps,” as defined below, and that
π χ = 1.
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Definition 4.1. Given a p-simplex S of the coarse complex m, set

χ(S) =
∑
s∈Sp

m̃

χs
S
s with χs

S
=

⎧⎪⎨
⎪⎩

0 if s �⊂ S,

+1 if s ⊂ S and same orientation,

−1 if s ⊂ S and opposite orientation.

(4)

Of course, the map χ is the natural way to embed m into m̃: Chop the large
simplex into small ones, and build a chain from these, with weights ±1 according to
respective orientations. For nodes, we assumed positive orientation for all of them, so
χn

N
is 1 if n coincides with N , 0 otherwise.

Next, let w
S

denote the Whitney form associated with a p-simplex S of the coarse

mesh so that 〈wS

; S′〉 = δ
S,S′ for all p-simplices S′ ∈ m. Then we have the following

definition.
Definition 4.2. Given a p-simplex s of the fine complex m̃, set

π(s) =
∑

S∈Sp
m

〈wS

; s〉S ≡
∑

S∈Sp
m

πS
s S.(5)

A small simplex is thus represented by a chain of big ones. (The use of Whitney
forms for this is natural: As argued elsewhere [5], Whitney forms are best viewed as
a device to represent manifolds by simplicial chains. Here, the manifold is the small
simplex s.) We now prove three propositions.

Proposition 4.3. One has π χ = 1.
Proof. We must show that π(χ(S)) = S for any coarse p-simplex S. Indeed,

π(χ(S)) = π

( ∑
s∈Sp

m̃

χs
S
s

)

=
∑
s∈Sp

m̃

χs
S

∑
S′∈Sp

m

〈wS′

; s〉S′

=
∑

S′∈Sp
m

〈
w

S′

;
∑
s∈Sp

m̃

χs
S
s

〉
S′(6)

=
∑

S′∈Sp
m

〈wS′

; S〉S′(7)

= S,

thanks to the fundamental property of Whitney forms, 〈wS′
; S〉 = δS,S′ . To pass

from (6) to (7), use the equality 〈w ; S〉 = 〈w ; χ(S)〉, for any given p-form w, which
stems from additivity of the integral.

It is important to remark that Proposition 4.3 and its proof do not depend on the
refinement technique, but just on the fact that coarse cells are tessellations of small
ones.

Proposition 4.4. The map χ defined in (4) is a chain map, i.e., ∂ χ = χ∂.
Proof. Although both statement and proof are independent of the refinement

procedure, we suppose here that the normal subdivision is considered at the first step
(where each tetrahedron gives 12 small tetrahedra) to build up the fine complex m̃
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from the coarse one m. We also treat separately the cases p = 1, 2, 3, where p is the
dimension of the chain on which ∂ χ and χ∂ act, though as will be apparent a generic
proof (much shorter, but perhaps less informative) could be given. Our purpose is to
help understand, on concrete examples, what is going on.

For p = 1, we have

χ∂ E = χ (
∑

N∈Nm
G

E,N
N)

=
∑

N∈Nm
G

E,N

∑
n∈Nm̃

χn
N
n

=
∑

n∈Nm̃
[
∑

N∈Nm
G

E,N
χn

N
]n =

∑
n∈Nm̃

[
∑

N⊂E G
E,N

χn
N

]n,

since only those nodes N that are, as sets, part of E, make G
E,N

�= 0, and thus
contribute to the sum. On the other hand, we obtain:

∂ χE = ∂ (
∑

e∈Em̃
χe

E
e)

=
∑

e∈Em̃
χe

E

∑
n∈Nm̃

ge,n n

=
∑

n∈Nm̃
[
∑

e∈Em̃
χe

E
ge,n ]n =

∑
n∈Nm̃

[
∑

e⊂E χe
E
ge,n ]n,

since only those e that are, as sets, part of E, make χe
E
�= 0, and thus contribute to

the sum. The conclusion comes from the equality between bracketed terms above,
which stems from the interplay between incidence numbers on both meshes, as we
now show in detail.

If n �⊂ E, there is no N such that n ⊂ N ⊂ E, so the first bracket vanishes. There
is no e either such that n ⊂ e ⊂ E, so the second bracket vanishes too. Assuming
therefore n ⊂ E, we have two cases to examine, illustrated by the center part and the
right-hand part of Figure 6, where E is supposed to be E2: either n ⊂ N for N one
of the endpoints of E2 (say N1 or N2), or not (see Figure 6, center and right-hand
part, respectively).

E1 E3

E2E2
E2

E1 E3
E1 E3

F

en e n
N2N1 N N NN21 21

1 1 2e2 e

Fig. 6. For node n ∈ Nm̃ belonging to edge E2, either there exists N ⊂ E2 such that n ⊂ N
(center) or not (right).

According to the situation at the center of Figure 6 (n ⊂ N1), we have

∑
N⊂E2

G
E2,N

χn
N

= G
E2,N1

χn
N1

+ G
E2,N2

χn
N2

= (−1)(1) + (1)(0) = −1.

For the situation at the right-hand side of Figure 6, since n �⊂ Ni, for i = 1 or 2, we
have

χn
Ni

= 0 ∀ i so that
∑
N⊂E

G
E,N

χn
N

= 0.

Let us do the same reasoning for the other quantity, looking at Figure 6. For the
situation at the center of Figure 6, we have (recalling that g is the “fine” incidence
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matrix)

∑
e⊂E2

g
e,n

χe
E2

= g
e1,n

χe1
E2

+ g
e2,n

χe2
E2

= (−1)(1) + (0)(1) = −1.

For the situation at the right-hand side of Figure 6, we have

∑
e⊂E2

g
e,n

χe
E2

= g
e1,n

χe1
E2

+ g
e2,n

χe2
E2

= (1)(1) + (−1)(1) = 0.

Summing up, for a given n ∈ Nm̃, the two quantities in brackets take the same
value (−1, 1 or 0), due to the definition of the incidence matrices G and g and
coefficients χn

N
and χe

E
.

For p = 2, we can write that

χ∂ F = χ (
∑

E∈Em
R

F,E
E)

=
∑

E∈Em
R

F,E

∑
e∈Em̃

χe
E
e

=
∑

e∈Em̃
[
∑

E∈Em
R

F,E
χe

E
] e =

∑
e∈Em̃

[
∑

E⊂F R
F,E

χe
E

] e.

On the other hand, we have

∂ χF = ∂ (
∑

f∈Fm̃
χf

F
f)

=
∑

f∈Fm̃
χf

F

∑
e∈Em̃

r
f,e

e

=
∑

e∈Em̃
[
∑

f∈Fm̃
χf

F
r
f,e

] e =
∑

e∈Em̃
[
∑

f⊂F χf
F
r
f,e

] e.

We compare again the two quantities in brackets, noting again that both brackets
vanish for each e ∈ Em̃ such that e �⊂ F . Assuming therefore e ⊂ F (Figure 7), we
have two cases: Either there exists E ∈ Em such that e ⊂ E and E ⊂ F , or not (see
Figures 7 and 8, center and right-hand part, respectively).

E1
E1E3

E3

E2E2
E2

E1 E3

F

e

e

Fig. 7. For edge e ∈ Em̃ belonging to face F , either there exists E ⊂ F such that e ⊂ E (center)
or not (right).

According to the situation at the center of Figure 7, we have

∑
E⊂F R

F,E
χe

E
= R

F,E1
χe

E1
+ R

F,E2
χe

E2
+ R

F,E3
χe

E3

= (−1)(0) + (1)(1) + (1)(0) = 1.

For the situation at the right-hand side of Figure 7, since e �⊂ Ei, i = 1, 2, 3, we have

χe
Ei

= 0 ∀ i so that
∑
E⊂F

R
F,E

χe
E

= 0.
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f1 f2
f4 f1 f2

f4
F

f3f3

e

e

Fig. 8. For edge e ∈ Em̃ belonging to face F , either there exists only one face f ∈ Em̃ such that
e ⊂ f (center) or two (right).

Let us do the same reasoning for the other quantity, looking at Figure 8. For the
situation at the center of Figure 8, we have∑

f⊂F χf
F
r
f,e

= χf1
F
r
f1,e

+ χf2
F
r
f2,e

+ χf3
F
r
f3,e

+ χf4
F
r
f4,e

= (1)(1) + (0)(1) + (0)(1) + (0)(1) = 1.

For the situation at the right-hand side of Figure 8, we have∑
f⊂F r

f,e
χf

F
= χf1

F
r
f1,e

+ χf2
F
r
f2,e

+ χf3
F
r
f3,e

+ χf4
F
r
f4,e

= (0)(1) + (0)(1) + (1)(1) + (−1)(1) = 0.

Summing up, for a given e ∈ Em̃, the two quantities in brackets take the same value
(1 or 0), due to the definition of the incidence matrices R and r and coefficients χe

E

and χf
F
.

Finally, for p = 3, we have

χ∂ T = χ (
∑

F∈Fm
D

T,F
F )

=
∑

F∈Fm
D

T,F

∑
f∈Fm̃

χf
F
f

=
∑

f∈Fm̃
(
∑

F∈Fm
D

T,F
χf

F
) f =

∑
f∈Fm̃

[
∑

F⊂T D
T,F

χf
F

] f.

On the other hand,

∂ χT = ∂ (
∑

t∈Tm̃
χt

T
t)

=
∑

t∈Tm̃
χt

T

∑
f∈Fm̃

d
t,f

f

=
∑

f∈Fm̃
(
∑

t∈Tm̃
χt

T
d

t,f
) f =

∑
f∈Fm̃

[
∑

t⊂T χt
T
d

t,f
] f.

We compare again the two quantities in brackets, assuming f ⊂ T . We have two
cases: either there exists F ∈ Fm such that f ⊂ F or not (see Figure 9’s left-hand
and right-hand part, respectively). If f is part of, say, F1, then

∑
F⊂T D

T,F
χf

F
= D

T,F1
χf

F1
+ D

T,F2
χf

F2
+ D

T,F3
χf

F3
+ D

T,F4
χf

F4

= (1)(1) + (1)(0) + (1)(0) + (1)(0) = 1.

If f �⊂ Fi, whatever Fi ⊂ T , then

χf
Fi

= 0 ∀ i; hence
∑
F⊂T

D
T,F

χf
F

= 0.

For the other bracketed term, either f is part of some F1, and there exists only one
t ∈ Tm̃ containing f , namely t∗, so that∑

t⊂T

d
t,f

χt
T

= d
t∗,f

χt∗

T
= (1)(1) = 1,
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F1

t* t1

t2

F1

f f

f
o

f

Fig. 9. For face f ∈ Fm̃ belonging to tetrahedron T ∈ Tm, either there exists F ⊂ T such that
f ⊂ F (left) or not (right). In the first case, there exists a unique tetrahedron t∗ ∈ Tm̃ containing f ,
and in the second case, two tetrahedra t1, t2 ∈ Tm̃. The normal subdivision of T is not completely
shown to make the figure clearer (o is the barycenter of T ).

or f �⊂ Fi whatever Fi ⊂ T . Then, f is inside T and is thus shared by two tetrahedra
of m̃, say t1 and t2. So,

∑
t⊂T

d
t,f

χt
T

= d
t1,f

χt1
T

+ d
t2,f

χt2
T

= (1)(1) + (−1)(1) = 0.

Summing up, for a given f ∈ Fm̃, the two quantities in brackets take the same
value (1 or 0), owing to the definition of the incidence matrices D and d and coefficients
χf

F
and χt

T
.

This completes the proof, which has been detailed for all cases, much beyond
logical necessity, to show how the incidence matrices and the two maps interact.
Later on, we will consider only one case, the others being on the same pattern.

Proposition 4.5. The map π defined in (5) is a chain map, i.e., ∂ π = π ∂.

Proof. We consider the case p = 2 to detail the proof. Then

π ∂ f = π (
∑

e∈Em̃
rf,e e)

=
∑

e∈Em̃
rf,e

∑
E∈Em

〈wE

; e〉E
=

∑
E∈Em

[
∑

e∈Em̃
rf,e 〈w

E

; e〉 ]E.

On the other hand, we can write

∂ π f = ∂ (
∑

F∈Fm
〈wF

; f〉F )

=
∑

F∈Fm
〈wF

; f〉
∑

E∈Em
R

F,E
E

=
∑

E∈Em
[
∑

F∈Fm
R

F,E
〈wF

; f〉 ]E.

We now recall that, when p = 2,

dw
E

=
∑

F∈Fm

R
F,E

w
F

(8)
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so that

∂ π f =
∑

E∈Em
[
∑

F∈Fm
R

F,E
〈wF

; f〉 ]E

=
∑

E∈Em
[ 〈dw

E

; f〉 ]E

=
∑

E∈Em
[ 〈wE

; ∂f〉 ]E

=
∑

E∈Em
[
∑

e∈Em̃
rf,e 〈w

E

; e〉 ]E

= π ∂ f.

Note the two ingredients of the proof: the Stokes theorem and the structural property,
(8), of the Whitney complex. For other dimensions, the proof is similar: Just change
R and r into G and g if p = 1, into D and d if p = 3.

Remark 4.6. The chain map χ : C(m) → C(m̃) can be defined, similarly to π, as
follows: Given a p-simplex S of the coarse complex m, set

χ(S) =
∑
s∈Sp

m̃

〈ws ; S〉 s =
∑
s∈Sp

m̃

χs
S
s.(9)

In the nested case, definitions (9) and (4) coincide. In the nonnested case, (9) is a
generalization of (4); the property π χ = 1 is lost, and the coefficients πS

s and χs
S

cannot be computed “by hands” as we shall see in the next section for nested grids.

5. Application. We explain how the map π can be used to design a multigrid
algorithm for the solution of linear systems arising from the use of Whitney elements
on tetrahedra to discretize a given differential (e.g., electromagnetic) problem. The
detailed analysis of the mesh-independent convergence and performances of the multi-
grid algorithm based on π is not considered here. We refer to [3, 8, 14] for rigorous
theoretical and numerical results in the edge element framework, and to [6] for a
formulation and application of the multigrid algorithm on hexahedral meshes.

As already pointed out in the introduction, the motivation for this approach comes
from the analysis of the error on the numerical solution in the frequency domain. We
recall the basic multigrid algorithm, assuming a two-grid method for simplicity. Let
h and H denote, respectively, the maximal diameter of tetrahedra in the fine m̃
and coarse m grids. Let Vh and V

H
be the underlying finite dimensional spaces of

cochains, with dim (Vh) > dim (V
H

), consistent with h < H. One wishes to solve
the linear system Ahuh = bh in Vh, assuming that the matrix Ah is symmetric
and positive definite (as is usually the case for matrices resulting from finite element
discretizations of a variational problem). Denoted by (u,v) the scalar product of
u,v ∈ Vh, solving Ahuh = bh in Vh is then equivalent to finding the minimizer
uh ∈ Vh of the quadratic functional Φ(u) = 1

2 (Ahu,u)− (bh,u). In what follows, Mh

represents a suitable preconditioner for Ah. The maps RH

h : Vh → V
H

, usually called
restriction operator, and Ph

H
: V

H
→ Vh, called prolongation operator, are full-rank

linear cochain-to-cochain operators. The so-called two-level V-cycle of the multigrid
procedure reads as follows:
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1. Fine grid presmoothing: from u0
h ∈ Vh and for k = 1, . . . , n1, do

uk
h = uk−1

h + Mh (bh −Ahu
k−1
h ).(10)

2. Coarse grid correction: given rn1

h = bh −Ahu
n1

h in Vh, do

restrict the residual on the coarse grid: r
H
← RH

h rn1

h .

solve the residual problem: A
H
z

H
= r

H
.

correct the solution in Vh: un1

h ← un1

h + Ph
H

z
H
.

3. Fine grid postsmoothing: from un1

h ∈ Vh and for k = 1, . . . n2, do (10).

In the fine grid presmoothing step, one iteratively solves Ahuh = bh in Vh by
a basic iterative method. High frequency errors are thus well eliminated, and once
this is achieved in, e.g., n1 iterations, further fine grid iterations would not improve
significantly the convergence rate. In the coarse grid correction, one tries to correct
un1

h on the coarse space V
H

. The coarse correction z
H

minimizes Φ(un1

h + Ph
H
z

H
)

over VH . This is equivalent to solving (Ph
H

)tAhP
h
H
z

H
= (Ph

H
)trn1

h on V
H

. Thus,
A

H
= (Ph

H
)tAhP

h
H

and the RH

h of step 2 is the transpose (Ph
H

)t [16]. On m, the
low frequency errors of m̃ manifest themselves as relatively high frequency errors and
are thus eliminated efficiently using again simple iterative smoothing methods. If
the coarsest grid has been reached, the coarse system has to be solved exactly, by
a direct solver, which can be done with little computational effort due to the small
number of unknowns. Otherwise, the three-step multigrid procedure can be repeated
recursively to solve the residual problem, as many times as the number of coarsening
levels m one considers, starting from the fine one m̃. Each grid level is responsible
for eliminating a particular frequency bandwidth of the error. Finally, in the fine
grid postsmoothing step, one solves iteratively n2 times in Vh the system Ahuh = bh,
starting from un1

h + Ph
H
z

H
, to eliminate high frequency errors on the term Ph

H
z

H
.

Our proposal is now to define the operator Ph
H

as the dual of the chain map π.
Indeed, recall that Vh and V

H
are spaces of p-cochains, while π is defined on p-chains

(see Definition 4.2). There is therefore a natural prolongation operator Ph
H

, defined as
the dual of π, i.e., by 〈u ; π(s)〉 = 〈Ph

H
u ; s〉 for all p-chains s and p-cochains u ∈ V

H
,

as suggested by the diagram below.

Vh C(m̃)

Ph
H

↑ 〈· ; ·〉 ↓ π

V
H

C(m)

Taking dual bases on both Vh and V
H

as explained in section 2.3, the matrix repre-
sentation of Ph

H
has entries (Ph

H
)sS = πS

s (cf. (5)). Recall that S and s here are two
simplices of same dimension p in m and m̃, respectively, so that there are distinct
prolongation operators for each p, i.e., for degrees of freedom based on nodes, edges,
faces, and volumes.

We now detail the calculation of π in the case where a number of coarse tetrahedra
have undergone one normal subdivision, i.e., by using (3) with κ = 1 (see Figure 5),
thus being divided into twelve small ones, while tetrahedra in the transition layer are
split into four or two small ones; hence we have the three cases considered below.
It is important to remark that the chain-map coefficients πS

s we search, defined as

〈wS

; s〉 in (5), do not depend on the shape of S and s but on their relative position
and orientation. Their computation relies on the following two obvious lemmas.
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Lemma 5.1. Let s be a p-simplex and w a linear p-differential form, linear with
respect to position x. Then

∫
s
w =

∫
s
w(xs), where xs denotes the barycenter of s.

This replaces a linear differential form by a constant one. For these, one has:

Lemma 5.2. Let s be a p-simplex and w a constant p-differential form, L a linear
map which sends simplex s to simplex s′. Then

∫
s′ w = det (L)

∫
s
w.

Case I. Tetrahedron T has been divided into twelve small tetrahedra t.

For p = 3, let w
T

be the scalar function associated to T (section 2.1), that is the

constant such that 〈wT

; T 〉 = 1. Computing 〈wT

; t〉 thus amounts to finding the
relative volume of t (an affine notion, not a metric one) with respect to T . This is
1
8 for the four tetrahedra t sharing a vertex with T (scaling factor 1

2 , to the cube),
which leaves 1

2 to be shared equally between the 8 tetrahedra with a vertex at the
barycenter o of T . So one has

〈wT

; t〉 = ± 1
8

for all t not contained in the core octahedron;

〈wT

; t〉 = ± 1
16

for all t contained in the core octahedron.

The sign ±1 depends on the relative orientation between t and T .

Note that the Lebesgue measure of t or of T played no role here: Considerations
of scaling and symmetry suffice to do the job, as will also be the case for other values of
p. We give only the results without further comments. Only the nonzero coefficients
are displayed.

For p = 2, there are four different situations, depending on where the small face
f is located with respect to the big one F and we refer again to Figure 5, κ = 1. The

coefficients 〈wF

; f〉 are the fluxes of the vector function w
F

across the small faces f .

Let F be {k, l, n} for definiteness. Using 〈wF

; F 〉 = 1, scaling, and symmetry, then

〈wF

; f〉 = ± 1
4

for all f ⊂ F such as f = {k, kl, kn};
〈wF

; f〉 = ± 1
8

for all f �⊂ F and with three vertices at mid-points
not in F , such as f = {mk, lm,mn};

〈wF

; f〉 = ± 1
8

for all f �⊂ F and with three vertices at mid-points
and one edge on F , such as f = {kl, kn, km};

〈wF

; f〉 = ± 1
16

for all f �⊂ F and with two vertices at mid-points
and the third one at o, such as f = {kl, kn, o}.

For p = 1, the coefficients 〈wE

; e〉 are the circulations of the vector function w
E

along the small edges e. Consider E = {k, n}. Again, 〈wE

; E〉 = 1, scaling and
symmetry yield

〈wE

; e〉 = ± 1
2

for all e ⊂ E, such as e = {k, kn};
〈wE

; e〉 = ± 1
4

for all e �⊂ E with vertices at mid-points,
one of which belongs to E, such as e = {kn, kl};

〈wE

; e〉 = ± 1
4

for all e �⊂ E with vertices at mid-points and
parallel to E, such as e = {kl, ln};

〈wE

; e〉 = ± 1
8

for all e �⊂ E with one vertex at o and one at a mid-point
not in E, such as e = {ln, o} or e = {mn, o}.

For p = 0, the coefficient 〈wN

; n〉 is the value of the scalar function w
N

at node
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n. Take for example N = k. Using 〈wN

; N〉 = 1 and linearity, one gets

〈wN

; n〉 = 1 for n ⊂ N ;

〈wN

; n〉 = 1
2

for n at the middle of an edge
incident on N , such as kn or km;

〈wN

; n〉 = 1
4

for n at o.

Case II. Here, T is a tetrahedron of the transition layer, divided into four small
tetrahedra t, as shown in Figure 10 (left and right).

k kl l

m

kn ln

n

k kl l

m

n

km lm

k kl l

m

n

Fig. 10. Tetrahedron T in the transition layer and division in four and two tetrahedra t.

For p = 3, by symmetry, 〈wT

; t〉 = ± 1
4

for all t contained in T .

For p = 2, two cases. If F (taken here as {k, l, n} for the sake of the example) is
divided in four as in Figure 10 (left), then

〈wF

; f〉 = ± 1
4

for all f ⊂ F , such as f = {k, kl, kn},

while F is divided in two, as in Figure 10 (right), then

〈wF

; f〉 = ± 1
2

for all f ⊂ F, such as f = {k, kl, n};
〈wF

; f〉 = ± 1
4

for all f neither in F nor in F ′ �= F , such as f = {kl, km, n}.

For p = 1, two cases again. If E ⊂ F and F is divided in four, then (with
E = {k, n} for illustration)

〈wE

; e〉 = ± 1
2

for all e ⊂ E, such as e = {k, kn};
〈wE

; e〉 = ± 1
4

for all e �⊂ E with vertices at mid-points,
one of which belongs to E, such as e = {kn, kl};

〈wE

; e〉 = ± 1
4

for all e �⊂ E parallel to E with
vertices at mid-points, such as e = {kl, ln},

while if F is divided in two, then
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〈wE

; e〉 = 1 for e = E;

〈wE

; e〉 = ± 1
2

for e = {kl, n} and {km, n}.

For p = 0, by linearity,

〈wN

; n〉 = 1 for n at N ;

〈wN

; n〉 = 1
2

for all n mid-points of edges with one
extremity at N , such as kn or kl.

Case III. Now T , is halved, as shown in Figure 10 (bottom).

For p = 3, 〈wT

; t〉 = ± 1
2

for all t contained in T .

For p= 2 and F halved (as in Figure 10, bottom, take F = {k, l, n} for illustration),

〈wF

; f〉 = ± 1
2

for all f ⊂ F , such as f = {k, kl, n}.

If F ′ �= F is halved, then

〈wF

; f〉 = 1 for f ≡ F ;

〈wF

; f〉 = ± 1
2

for f = {k, lm, n}.

For p = 1, if E ⊂ F and F is divided in two but not E, then (consider E = {k, n})

〈wE

; e〉 = 1 for e = E;

〈wE

; e〉 = ± 1
2

for e = {kl, n}.

If E ⊂ F and F is not divided in two, then

〈wE

; e〉 = 1 for e = E

and last, if E ⊂ F and F is divided in two along E, then

〈wE

; e〉 = ± 1
2

for e ⊂ E, such as e = {k, kn}.

For p = 0, finally

〈wN

; n〉 = 1 for n at N ;

〈wN

; n〉 = 1
2

for all n mid-points of edges with one
extremity at N , such as kn, kl or km.

Remark 5.3. The strategy adopted to compute the coefficients πS
s , S ∈ Sp

m and
s ∈ Sp

m̃, can be used when dealing with quadratic, cubic, etc., differential forms, pro-
vided that the integration rule is modified accordingly. Therefore, the main problem
with Whitney elements of order r > 1 (see, e.g., [9]) is the definition on a p-simplex,
p = 2, 3, of an integration rule which is exact for all polynomials of degree r (on
1-simplices we can use Gaussian quadratures). This problem is far from being trivial
and is linked to another one, namely, the location in a p-simplex of the degrees of
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freedom associated with Whitney elements of order r > 1. Both problems will be
addressed in future work.

As we have stressed, computing the coefficients of the chain-map π is a metric-
independent process. Implementation, however, may have to be done in a code con-
ceived in terms of proxy vector fields, with an underlying metric, instead of differential
forms. Hence we have the following description of the procedure, where |t| denotes the
volume of tetrahedron t, |f | the area of face f , and |e| the length of edge e. We use
xe,xf ,xt to denote the barycenters of edge e, face f , and tetrahedron t, respectively.
Points xk,x�,xm,xn are the vertices of t or T . Moreover, te denotes the unit vector
along the mesh side e, and nf stands for the unit vector normal to the mesh face f .
For completeness, we throw in the computation of the other chain map, χ. Thanks
to Lemmas 5.1 and 5.2, the following algorithm, though relying on metric elements
such as dot product, etc., does implement in the nested case (up to floating-point
errors, and barring clerical mistakes of ours . . . ) the metric-free computation of the
prolongation/restriction operator we have detailed.

Loop over S, the p-simplices of m
Loop over s ⊂ S, with s the p-simplices of m̃

Computation of πS
s

p = 0, πN
n = wN (xn), S = N, s = n;

p = 1, πE
e = |e|(wE (xe) · te), S = E, s = e;

p = 2, πF
f = |f |(wF (xf ) · nf ), S = F, s = f ;

p = 3, πT
t = |t|, S = T, s = t.

Computation of χs
S

p = 0, χn
N

= 1 S = N, s = n, n ≡ N ;

p = 1, χe
E

= 1 (−1) S = E, s = e, te · tE > 0 (< 0),

p = 2, χf
F

= 1 (−1) S = F, s = f , nf · nF > 0 (< 0),

p = 3, χt
T

= 1 (−1) S = T, s = t and

(x� − xk) · [(xm − xk) × (xn − xk)] > 0 (< 0) for both tetrahedra.

end loop over s
end loop over S.
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Abstract. This paper develops new first-order system LL∗ (FOSLL∗) formulations for scalar
elliptic partial differential equations. It extends the work of [Z. Cal et al., SIAM J. Numer. Anal.,
39 (2001), pp. 1418–1445], where the FOSLL∗ methodology was first introduced. One focus of
that paper was to develop FOSLL∗ formulations that allow the use of H1-conforming finite element
spaces and optimal multigrid solution techniques to construct L2 approximations of the dependent
variables in the presence of discontinuous coefficients. The problems for which this goal was achieved
were limited to those with no reaction term and with Dirichlet and Neumann boundaries that were
individually connected; that is, each had at most one component. Here, new FOSLL∗ formulations
are developed to achieve the same goals on a wider class of problems, including problems with
reaction terms, Dirichlet and Neumann boundaries with multiple components, reentrant corners,
and points at which Dirichlet and Neumann boundaries meet with an inner angle greater than π/2.
The efficiency of the improved FOSLL∗ formulations is illustrated by a series of numerical examples.
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1. Introduction. First-order system LL∗ (FOSLL∗) was developed in an earlier
paper [12] as a numerical method for solving partial differential equations (PDEs) that
do not exhibit the regularity required by standard first-order system least squares
(FOSLS [10, 11]). The purpose here is to extend the class of problems to which the
FOSLL∗ approach can be efficiently applied. While we include a brief discussion of
the context of this development below, the interested reader should consult [12] for
more background and historical perspective.

Standard FOSLS recasts the original problem as an expanded first-order system,
Lu = f , to which a least-squares principle is then applied. The usual goal is to re-
formulate the original problem as the minimization of a functional, ‖Lu− f‖2, whose
bilinear part is equivalent to the product H1 norm (i.e., the square root of the bilin-
ear part is continuous and coercive in the norm formed by summing the H1 norms
applied to each dependent variable). This product H1-equivalence means that the
minimization process amounts to solving a weakly coupled system of scalar elliptic
equations, which, in turn, implies that H1-conforming finite element spaces and multi-
grid solvers can be used to full efficiency. Unfortunately, standard FOSLS is product
H1-equivalent only under sufficient smoothness assumptions on the original problem
(e.g., the domain, coefficients, and data). Inverse-norm versions of FOSLS could be
used when the problem lacks sufficient smoothness, but these methods tend to lose
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efficiency, especially for problems with widely varying coefficients.
Our purpose here is to continue the development of a potentially more efficient

alternative, FOSLL∗. As with FOSLS, the FOSLL∗ approach begins by recasting the
original problem as an expanded first-order system, Lu = f . Now, however, instead of
applying a least-squares principle to this primal problem, we introduce the dual normal
equations, LL∗w = f , defined in terms of dual variable w and adjoint L∗. Note that
f = Lu, so that LL∗w = Lu, which are the normal equations for the dual problem,
L∗w = u. The original problem can now be recast as one of minimizing the functional,
‖L∗w − u‖2, which has the same minimizer as the functional ‖L∗w‖2 − 2 〈w , f〉.

If H1-conforming finite element spaces are used in a standard FOSLS formulation,
then it must fail when u is not in H1. For this choice of finite element spaces, the
discrete approximation produced by FOSLS cannot converge to the solution, u. It
will, instead, converge optimally to the minimizer of ‖Lv − f‖2, that is, to v ∈ H1

that minimizes ‖L(u−v)‖. FOSLL∗ attempts to overcome this limitation by recasting
the primal problem in terms of a dual variable, w such that L∗w = u. The aim is to
use L∗ to lift the smoothness of u so that w is in H1.

Consider the following scalar elliptic problem:

∇·(A∇p) − b · ∇p− cp = f in Ω,

p = 0 on ΓD,

n ·A∇p = 0 on ΓN ,

and define the flux variable u = ∇p (for a complete list of assumptions, see (2.1)–
(2.3)). One focus of the earlier paper [12] was to develop the FOSLL∗ methodology
for problems of this type with the reduced regularity that arises by allowing discon-
tinuous A. In that paper, the goal of using H1-conforming finite element spaces to
approximate the flux variable, u, in the L2 norm and the primal variable, p, in the
H1 norm was achieved through a two-stage procedure. The two-stage procedure de-
scribed there is applicable only when c = 0 and when ΓD and ΓN each have at most
one component.

The aim of this paper is to expand the class of problems for which H1-conforming
finite element spaces and optimal multigrid solvers can be efficiently used. In section 2,
we show that when c �= 0, the original FOSLL∗ formulation can be modified to achieve
this goal, provided that the domain, Ω, is sufficiently smooth. By this we mean that
the boundary of Ω contains no reentrant corners or corners at which ΓD and ΓN meet
with an inner angle bigger than π/2. Such points are referred to as irregular boundary
points. These are precisely the conditions under which H(∇·) ∩H(∇×) ⊂ (H1)2.

In section 3, we develop a new FOSLL∗ formulation that achieves the goal of
allowing accurate approximation using H1-conforming finite element spaces in the
presence of irregular boundary points. The key idea behind this new approach is to
first expand the domain of the primal problem in such a manner that the domain of
the dual problem remains in a subspace of H1. Generally, at this point the primal
operator, L, is not bijective and the dual operator, L∗, is not surjective. The next
step is to apply additional boundary conditions to the slack variables in the primal
equations so that fewer boundary conditions are needed for the dual problem. The
aim is that the primal operator, L, becomes bijective and the dual operator becomes
surjective. This process generally means that the dual equations are not uniquely
solvable. However, this is not an issue for the FOSLL∗ formulation, since any one
solution of the dual problem, say, w, yields the primal solution, L∗w = u. This
approach is limited to problems for which ΓD �= ∅. The pure Neumann case remains
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an open question. In section 3.2, we show that, in the case b = 0 and either c > 0
or c = 0, the FOSLL∗approximation is equivalent to a Galerkin formulation of the
original boundary value problem (2.1)–(2.3).

The numerical results presented in section 4 confirm the optimality of H1-con-
forming finite element spaces and multigrid solvers for the new FOSLL∗formulation.
The loss of unique solution for the dual problem is not an issue for the FOSLL∗

approximation in that we seek any dual solution for which L∗w = u. However,
the loss of uniqueness does affect the multigrid solution algorithm. In section 4.2,
we develop an additional modification that mitigates this effect. Section 5 contains
conclusions.

Alternatives to the approach we develop here are described in detail in [1] and
include adding H1 singular basis functions in standard Galerkin methods to enhance
the rate of convergence (cf. [23], [14], [8], and [9]) the use of H(div)-conforming finite
element spaces with mixed formulations (see [7]) or with FOSLS functionals that are
based on H(div) (see [10], [20], and [21]) and including H(∇·) ∩ H(∇×) singular
functions in a FOSLS formulation (see [1], [2]). Standard finite element spaces can
be used with FOSLS functionals that are weighted to eliminate the overall impact on
accuracy of the singular behavior of the flux [14], [19], [24]. Alternatives similar to
the FOSLL∗ formulation use FOSLS based on inverse norms [3], [5], [6], [13].

We begin in the next section with a brief overview of the current theory underlying
FOSLS and FOSLL∗ as a way of exposing the need for modifications of the original
FOSLL∗ approach.

2. General FOSLS and FOSLL∗ theory. This section summarizes the prin-
ciples and theory underlying the FOSLS and FOSLL∗ methods. For more detail and
historical perspective, see [10], [11], [12], [4]. The main goal of this section is to clarify
the need for modifying the FOSLL∗ method introduced in [12].

2.1. Model problem. Let Ω be a bounded, open, simply connected domain
in R

2 with Lipschitz boundary, ∂Ω. Let
⋃M

i=1(ΓD,i ∪ ΓN,i) = ∂Ω be a partition of
the boundary, interlaced so that every pair (ΓD,i,ΓD,i+1) is separated by a Neumann
boundary segment ΓN,i and every Neumann pair is similarly separated by a Dirichlet
segment. The Neumann and Dirichlet boundaries of the problem are defined by
ΓN :=

⋃M
i=1 ΓN,i and ΓD :=

⋃M
i=1 ΓD,i, respectively. Let n be the outward unit

normal vector and t the counterclockwise-oriented tangent vector on ∂Ω. We do not
consider the pure Neumann case here, so ΓD is assumed to have positive measure.

The FOSLL∗ methodology has application in many contexts, including elliptic
systems of PDEs. However, in this paper, we restrict our considerations to the fol-
lowing reaction–convection–diffusion boundary value problem (BVP):

∇·(A∇p) − b · ∇p− cp = f in Ω,(2.1)

p = 0 on ΓD,(2.2)

n ·A∇p = 0 on ΓN ,(2.3)

where f ∈ L2(Ω), 0 ≤ c ∈ L∞(Ω), b ∈ L∞(Ω) ∩H(∇·), and A(x) is a 2 × 2 matrix
of L∞(Ω)-functions that is uniformly symmetric positive definite; i.e., there exists
λ1 ≥ λ0 > 0 such that

λ0ξ · ξ ≤ ξ ·A(x)ξ ≤ λ1ξ · ξ

for all ξ ∈ R
2 and x ∈ Ω. We also assume that both (2.1)–(2.3) and the adjoint
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problem,

∇·(A∇p) + ∇ · (bp) − cp = f in Ω,(2.4)

p = 0 on ΓD,(2.5)

n · (A∇p + bp) = 0 on ΓN ,(2.6)

have unique solutions in H1(Ω).
We make use of the following standard differential operators:

∇s = grad s =

(
∂xs
∂ys

)
, ∇·v = div

(
v1

v2

)
= ∂xv1 + ∂yv2,

∇⊥s = rot s =

(
∂ys

−∂xs

)
, ∇×v = curl

(
v1

v2

)
= −∂yv1 + ∂xv2.

We use 〈·, ·〉 and ‖ · ‖ to denote the respective L2 inner product and norm and D, R,
and N for the respective domain, range, and null space of an operator. We also use
‖ ·‖1 to denote the H1(Ω) norm: ‖s‖2

1 = ‖s‖2 +‖∇s‖2. As usual, norms of vectors are
meant to be taken componentwise, so that ‖∇s‖ = (‖ ∂s

∂x‖2 + ‖ ∂s
∂y‖2)1/2, for example.

2.2. FOSLS. We begin with a brief introduction to the main ideas of FOSLS
as a way of providing a foundation for the FOSLL∗ methodology. We describe how
it works for domains without irregular boundary points and show why it may fail for
domains with irregular boundary points.

Standard FOSLS transforms BVP (2.1)–(2.3) into a first-order system to which
an L2 norm minimization principle is applied. This transformation can be done
by introducing the gradient, u = ∇p, as a dependent variable and adding the curl
constraint, ∇×u = 0 on Ω, and tangential boundary condition, t · u = 0 on ΓD. The
resulting first-order system, then has the form

L0(u, p) = (0, f, 0)t in Ω,(2.7)

t · u = 0 on ΓD,(2.8)

n ·Au = 0 on ΓN ,(2.9)

p = 0 on ΓD,(2.10)

where

L0(u, p) :=

⎡
⎣ I −∇
∇·A− b· −c
−∇× 0

⎤
⎦
(
u
p

)
=

⎛
⎝u −∇p
∇·Au − b · u − cp
−∇×u

⎞
⎠ .(2.11)

The least-squares functional to be minimized is

F0(v, t) =
∥∥L0(v, t) − (0, f, 0)t

∥∥2
.

Since we want this functional to exist for all (v, t) ∈ D(L0), we need

R(L0) ⊆
(
L2(Ω)

)4
.(2.12)

We are, thus, lead to choose

D(L0) = (HN (∇·A; Ω) ∩HD(∇×; Ω)) ×H1
D(Ω),
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where, for a general 2 × 2 matrix B, we define

H1
J(Ω) :=

{
s ∈ H1(Ω) : s = 0 on ΓJ

}
,

HJ(∇·B; Ω) :=
{
w ∈ (L2(Ω))2 : ∇·(Bw) ∈ L2(Ω),n ·Bw = 0 on ΓJ

}
,

HJ(∇×B; Ω) :=
{
w ∈ (L2(Ω))2 : ∇×(Bw) ∈ L2(Ω), t ·Bn = 0 on ΓJ

}
for J ∈ {N,D}. Moreover, HJ(∇·; Ω) := HJ(∇·I; Ω) and HJ(∇×; Ω) := HJ(∇×I; Ω),
where I is the 2×2 identity matrix. Clearly, D(L0) is a Hilbert space under the norm

‖(v, t)‖2
L0

:= ‖v‖2
+ ‖∇·Av‖2

+ ‖∇×v‖2
+ ‖t‖2

1 .

Since BVP (2.1)–(2.3) is well posed by assumption, we know that (2.7)–(2.10) has a
unique solution in D0. Thus, F0 has a unique minimizer in D0 with minimum value
zero. We minimize functional F0 in the weak sense; i.e., we look for solutions of the
corresponding variational problem:

Find (u, p) ∈ D0 such that

〈
L0(u, p) − (0, f, 0)t, L0(v, t)

〉
= 0(2.13)

for all (v, t) ∈ D0.
A convenient choice for this FOSLS formulation is to discretize variational prob-

lem (2.13), using H1-conforming finite element spaces, such as bilinears on quadrilat-
erals or linears on triangles. As the mesh size of the discretization tends to zero, the
use of H1-conforming finite element spaces yields converging approximations of the
solution provided that solution is in H1. This approach requires

(u, p) ∈
(
H1(Ω)

)3
(2.14)

for FOSLL∗ approximations using H1-conforming finite elements to converge to the
solution of primal problem (2.7)–(2.10). The requirement (2.14) is more restrictive
than (2.12) and is, in general, not fulfilled for problems with irregular boundary points
or discontinuous coefficient matrix A. In such cases, the FOSLS approximations,
(uh, ph), do not converge to the solution of (2.7)–(2.10), as the following example
illustrates.

Example 2.1. Define the following L-shaped domain:

Ω =
{
x ∈ R

2 : ‖x‖∞ < 1 and θ(x) ∈ (0, 3π/2)
}
,(2.15)

where θ = arcsin(y/x). Let A = I, c = 1, and b = (−y/10, 10x)t. The Neumann
boundary consists of three parts,

ΓN,1 = {(x, y) ∈ ∂Ω : x ∈ (0, 1), y = 1}, ΓN,2 = {(x, y) ∈ ∂Ω : y = −1},
ΓN,3 = {(x, y) ∈ ∂Ω : x = −1, y ∈ (0, 1)}.

The three remaining parts of ∂Ω form ΓD. This domain contains irregular boundary
points at (0, 0), (−1, 0), and (0, 1).

Let (r, θ) denote standard polar coordinates on R
2 and let

p = δ(r)r2/3 sin(2θ/3).(2.16)

Then, p is a solution of BVP (2.1)–(2.3) when f = sin(2θ/3)r2/3(δ′′(r)+ 7
3r δ

′(r))−b ·
∇p− cp. Here, δ(r) ∈ C2(Ω) is a cut-off function that satisfies δ(r) = 1 for r < 1/4
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Table 2.1

Error norms for Example 2.1 on a sequence of uniform meshes with mesh sizes h.

h 1/4 1/8 1/16 1/32 1/64 1/128 1/256

||p− ph||0 0.1461 0.1521 0.1543 0.1550 0.1551 0.1550 0.1549

||∇p− uh||0 0.8433 0.8267 0.8199 0.8173 0.8152 0.8137 0.8127

and δ(r) = 0 for r > 3/4. Clearly, f ∈ L2(Ω), but u = ∇p is not in (Hα(Ω))
2

for
any α ≥ 2/3. Table 2.1 shows the results of numerical experiments for this problem
with error norms ||p − ph||0 and ||∇p − uh||0 for a sequence of uniform meshes with
decreasing mesh sizes h and standard bilinear H1-conforming finite element spaces.
Standard FOSLS clearly fails for this example. A closer look at uh shows that the
FOSLS approximation is completely unaware of the singularities in the gradient at
the reentrant corner of Ω.

2.3. FOSLL∗. The FOSLL∗ method was developed to overcome this difficulty
with standard FOSLS, while continuing to use standard H1-conforming finite element
spaces in the discretization process. Clearly, H1-conforming spaces cannot be used to
approximate the nonsmooth primal solution, (u, p), so FOSLL∗ instead attempts to
introduce a dual first-order system whose solution is in H1.

The main idea can be motivated by looking at the simplest discrete analog, that
is, a linear system of equations, Ax = b. Solving the corresponding least-squares
problem of minimizing ‖Ax− b‖2

�2 leads to the normal equations, AtAx = Atb, and
the weak form, 〈Ax,Az〉 = 〈b, Az〉 for all z. This is analogous to what FOSLS does
at the PDE level. But another way to recast Ax = b as a minimization problem is to
recognize that if Ax = b has a solution, then so does AAty = b. Note that this system
for dual variable y is the normal equations for dual problem Aty = x, and that it can
be recast as the minimization of ‖Aty − x‖2

�2 , which has the same minimizer as the
functional 〈Aty,Aty〉 − 2 〈y, b〉. This leads to the weak form, 〈Aty,Atz〉 = 〈b, z〉 for
all z. Note that x = Aty yields the minimal norm solution of the original problem,
Ax = b. This idea is formally applicable at the PDE level since our primal problem
surely has a solution.

While simpler approaches are possible in some cases, a fairly general methodology
for applying FOSLL∗ is to attempt to reformulate the original BVP as a first-order
primal problem whose associated operator, L1, and adjoint, L∗

1, are bijective. This
guarantees the existence of a unique solution for the dual normal equations, L1L

∗
1w =

f .

This bijectivity is achieved for BVP (2.1)–(2.3) by incorporating a scalar slack
variable, q, into the system and using the scaled gradient, ũ = A1/2∇p. (Here, we
incorporate a slightly different scaling than in (2.11) because it has computational
advantages.) This is done in such a way that (ũ, p, 0) solves the primal problem,
which for BVP (2.1)–(2.3) is given by

L1(ũ, p, q) = (0, f, 0)t in Ω,(2.17)

t ·A−1/2ũ = 0 on ΓD,(2.18)

n ·A1/2ũ = 0 on ΓN ,(2.19)

p = 0 on ΓD,(2.20)

q = 0 on ΓN ,(2.21)
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where

L1(ũ, p, q) :=

⎡
⎣ A−1/2 −∇ −∇⊥

∇·A1/2 − b ·A−1/2 −c 0
−∇×A−1/2 0 0

⎤
⎦
⎛
⎝ũ
p
q

⎞
⎠(2.22)

=

⎛
⎝A−1/2ũ −∇p−∇⊥q
∇·(A1/2ũ) − b ·A−1/2ũ − cp
−∇×(A−1/2ũ)

⎞
⎠ .

The domain of L1 is

D(L1) =
(
HN (∇·A1/2; Ω) ∩HD(∇×A−1/2; Ω)

)
×H1

D(Ω) ×H1
N (Ω),

which is a Hilbert space under the norm

‖(v, t, z)‖2
L1

:= ‖v‖2
+
∥∥∥∇·(A1/2v)

∥∥∥2

+
∥∥∥∇×(A−1/2v)

∥∥∥2

+ ‖t‖2
1 + ‖z‖2

1 .(2.23)

The FOSLL∗ approach is to approximate the solution, (w, r, s), of the corresponding
dual problem,

L∗
1(w, r, s) = (ũ, p, q)t = (A1/2∇p, p, 0)t in Ω,(2.24)

t ·A−1/2w = 0 on ΓD,(2.25)

n ·A1/2w = 0 on ΓN ,(2.26)

r = 0 on ΓD,(2.27)

s = 0 on ΓN ,(2.28)

where the adjoint operator is defined by

L∗
1(w, r, s) =

⎡
⎣A

−1/2 −A1/2∇−A−1/2b −A−1/2∇⊥

∇· −c 0
−∇× 0 0

⎤
⎦
⎛
⎝w

r
s

⎞
⎠ .(2.29)

The domain of L∗
1 is

D(L∗
1) = (HN (∇·; Ω) ∩HD(∇×; Ω)) ×H1

D(Ω) ×H1
N (Ω).

which is a Hilbert space under the norm

‖(v, t, z)‖2
L∗

1
:= ‖v‖2

+ ‖∇·(v)‖2
+ ‖∇×(v)‖2

+ ‖t‖2
1 + ‖z‖2

1 .(2.30)

This formulation is similar to the FOSLL∗
e formulation described in [12]. The differ-

ence is that in (2.29), the coefficient matrix, A, only appears outside of the differential
operators. Note, also, that this scaling yields A1/2∇r orthogonal to A−1/2∇⊥s, which
produces better performance for the multigrid solvers. A minor modification of the
proof of Theorem 4.1 in [12] yields the following result.

Theorem 2.2. Operators L1 and L∗
1 are bijective from D(L1) and D(L∗

1), respec-
tively, onto (L2(Ω))4. Further, L1 and L∗

1 are coercive and continuous in the norms
defined in (2.23) and (2.30), respectively.

Proof. The proof requires the assumption that the adjoint problem (2.4)–(2.6)
is well posed and follows with minor modifications from the proof of Theorem 4.1 in
[12], together with an application of Lemma 2.1 in [12].
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Solving the dual problem is equivalent to minimizing the dual functional,

F∗
1 (v, t, z) =

∥∥L∗
1(v, t, z) − (ũ, p, q)t

∥∥2
,(2.31)

on D(L∗
1). The associated weak form is as follows:

Find (w, r, s) ∈ D(L∗
1) such that

〈L∗
1(w, r, s), L∗

1(v, t, z)〉 =
〈
(ũ, p, q)t, L∗

1(v, t, z)
〉

(2.32)

for all (v, t, z) ∈ D(L∗
1).

The unknown solution, (ũ, p, q), is eliminated from the right side of (2.32) by
rewriting the right side as follows:

〈
(ũ, p, q)t, L∗

1(v, t, z)
〉

=
〈
L1(ũ, p, q), (v, t, z)

t
〉

=
〈
(0, f, 0)t, (v, t, z)t

〉
.

After discretizing this variational form and computing an approximation, (wh, rh, sh),
for the dual unknowns, an L2 approximation, (ũh, ph, qh), for the primal unknowns is
computed easily by applying the adjoint: (ũh, ph, qh)t = L∗

1(w
h, rh, sh).

This formulation of FOSLL∗ works well with H1-conforming finite element spaces
if the violation of the crucial regularity condition, (2.14), is due only to the disconti-
nuities in A. This can be most easily seen by noting that in (2.29) the coefficients are
never differentiated. However, in the presence of irregular boundary points, we may
be left with the difficulty that

HN (∇·; Ω) ∩HD(∇×; Ω) �⊂
(
H1(Ω)

)2
.(2.33)

For example, (2.33) holds if the boundary of Ω contains re-entrant corners or points in
ΓD∩ΓN with an inner angle bigger than π/2 (cf. [17]). If H1-conforming finite element
spaces are used to approximate the solution to (2.32), then the approximation will
not, in general, converge to the solution, but rather to the closest element in (H1)4

to the solution. In general, this error will not have local support. In the next section,
we introduce a modification to FOSLL∗ that overcomes this difficulty.

We close this section by demonstrating numerically how the FOSLL∗ formulation
described above fails in the presence of irregular boundary points.

Example 2.3. We apply the FOSLL∗ method (2.32), using H1-conforming finite
elements, to the BVP from Example 2.1. Table 2.2 shows that the L2 norm of the
errors of the approximations for p and ũ stagnate as h decreases.

Table 2.2

Error norms for the standard FOSLL∗ approximations for Example 2.3 on a sequence of uni-
form meshes with mesh sizes h.

h 1/4 1/8 1/16 1/32 1/64 1/128 1/256

||p− ph||0 0.0482 0.0259 0.0231 0.0230 0.0229 0.0228 0.0228

||ũ − ũh||0 0.6767 0.3202 0.1825 0.1220 0.1001 0.0933 0.0914

3. Improved FOSLL∗. We begin here by introducing modifications to the stan-
dard FOSLL∗ formulation that overcome the shortcomings for problems with irregular
boundary points. We then describe how the method can be made more efficient for
the special cases b = 0 and c = 0.

As a starting point of our improvements, we revert to the scaling used in (2.11).
While the scaling in (2.22) is preferable in practice, we use this simpler scaling for
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ease of exposition. All results in this section can be easily generalized to the scaling
in (2.22).

Thus, we define the unscaled gradient, u = ∇p, as a dependent variable. The
primal problem has the form L0(u, p, q) = (0, f, 0)t, where q is a slack variable as
introduced in the previous subsection,

L0 =

⎡
⎣ I −∇ −∇⊥

(∇·A− b·) −c 0
−∇× 0 −d

⎤
⎦ ,(3.1)

and d is a nonnegative analytic function on Ω.
Following the development for standard FOSLL∗, the domain of L0 is given by

D(L0) = (HN (∇·A; Ω) ∩HD(∇×; Ω)) ×H1
D(Ω) ×H1

N (Ω).

Clearly, (∇p, p, 0) solves this problem when p is the solution of the BVP (2.1)–(2.3).
The corresponding dual problem is

L∗
0(w, r, s) :=

⎡
⎣ I −(A∇ + b) −∇⊥

∇· −c 0
−∇× 0 −d

⎤
⎦
⎛
⎝w

r
s

⎞
⎠ =

⎛
⎝u
p
q

⎞
⎠(3.2)

on the adjoint domain

D(L∗
0) = (HN (∇·; Ω) ∩HD(∇×; Ω)) ×H1

D(Ω) ×H1
N (Ω).

Formulating the FOSLL∗ method using L∗
0 reveals exactly the same difficulty as the

formulation using L∗
1 in the last subsection. While discontinuous coefficients do not

cause difficulties, irregular boundary points do, because they imply HN (∇·; Ω) ∩HD

(∇×; Ω) �⊂
(
H1(Ω)

)2
, which in turn implies D(L∗

1) �⊂
(
H1(Ω)

)4
.

The next step is to introduce a modified operator, L1, that is formally identical
to L0 in (3.1) but has a different domain. The aim is to expand the domain of L1

so that the domain of its adjoint shrinks to a subspace of
(
H1(Ω)

)4
. To see how this

is done, note that the second and third entries in the first row of L0 in (3.1) can be
rewritten as follows:

[
−∇ −∇⊥] =

[
−∂x −∂y
−∂y ∂x

]
=

[
−∇·
∇×

]
.

Thus, instead of asking the gradients of p and q to be in L2(Ω) individually, we may
impose the more general condition that the div and curl of the pair (p, q) be in L2(Ω).
We are thus lead to rewrite L0 as

L1 =

⎡
⎢⎢⎣

I
−∇·
∇×

(∇·A− b·)
−∇× −B

⎤
⎥⎥⎦ , where B =

(
c 0
0 d

)
,

so that

D(L1) = (HN (∇·A; Ω) ∩HD(∇×; Ω)) ×HDN (Ω),

where

HDN (Ω) := {(v1, v2) ∈ H(∇·; Ω) ∩H(∇×; Ω) : v1 = 0 on ΓD, v2 = 0 on ΓN} .
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Integration by parts then shows that the domain of L∗
1 is in

(
H1(Ω)

)4
:

D(L∗
1) = (HN (∇·; Ω) ∩HD(∇×; Ω) ∩

(
H1(Ω)

)2
) ×H1

D(Ω) ×H1
N (Ω).

Unfortunately, this approach is not yet viable because the adjoint, L∗
1, is in general

no longer surjective and we can no longer guarantee that (u, p, q) ∈ R(L∗
1), as the

following example shows.
Example 3.1. Let Ω be the L-shaped domain from (2.15) and set A = I and

b = 0. Let d be any positive analytic function and c ∈ L∞ with 0 < c < 1 a.e. We
choose homogeneous Dirichlet boundary conditions: ΓD = ∂Ω. Let ΓH be the union
of the three horizontal edges and ΓV be the union of the three vertical edges of Ω.
Thus, imposing v1 = 0 on ΓD is equivalent to imposing n · (v1, v2) = 0 on ΓH and
t · (v1, v2) = 0 on ΓV , so

HDN (Ω) = HH(∇·; Ω) ∩HV (∇×; Ω)

holds for this example. The analysis of the div-curl operator in [11] shows that [−∇·
∇× ]

has a nontrivial null space on HDN (Ω). (For example, let z = ∇φ, where Δφ = 0,
n · ∇φ = 0 on ΓH , φ = 0 on ΓV1

∪ ΓV2
, and φ = 1 on ΓV3

.) Let z �= 0 be such

a null space element. Note that L1(0, z) = (0,−cz1,−dz2)
t is in

(
L2(Ω)

)4
. Since

L1 = L∗
1 formally holds, Lemma 3.6 in [11] implies the existence of a more regular

preimage, (v,w) ∈ D(L1) ∩
(
H1(Ω)

)4
with L1(v,w) = (0,−cz1,−dz2)

t. Therefore,
(v,w − z) is a nontrivial element of null space N (L1). Since (L∗

1)
∗ = L1, the closed

range theorem implies that R(L∗
1) = N (L1)

⊥, so R(L∗
1) is not all of

(
L2(Ω)

)4
and

L∗
1 is not surjective.

To prove that, in general, U = (∇p, p, 0) �∈ R(L∗
1) so that the dual problem is not

solvable, assume otherwise: U ∈ R(L∗
1) or, equivalently, U ⊥ N (L1) for all admissible

p. Let (v,w) be an element of N (L1), i.e.,

v +

[
−∇·
∇×

]
w = 0(3.3)

[
∇·

−∇×

]
v −

(
cw1

dw2

)
= 0.(3.4)

Now, U ⊥ (v,w) means 〈∇p,v〉 + 〈p, w1〉 = 0. Using the divergence theorem and
(3.4), we thus have (c− 1) 〈p, w1〉 = 0. Since 〈p, w1〉 must vanish for all admissible p,
we must have w1 = 0. From (3.3) and (3.4), we conclude that w2 ∈ H1(Ω) and

Δw2 − dw2 = 0.

The definition of D(L1) and (3.3) supply the boundary condition

n · ∇w2 = −t · ∇⊥w2 = −t · v = 0 on ΓD = ∂Ω.

Therefore, w2 is a constant on Ω and (3.3)–(3.4) yield v = w = 0. Since N (L1) is
nontrivial, our assumption is wrong, and the dual problem is not, in general, solvable
in D(L∗

1).
Our numerical experience supports the difficulty expressed in this example: it

seems that (∇p, p, 0) is in R(L∗
1) only for very special choice of A,b, c, d, and Ω,

whenever ∂Ω contains irregular boundary points.
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Nevertheless, the modifications that lead from L0 to L1 take a step in the right

direction because we now have D(L∗
1) ⊂

(
H1(Ω)

)4
. This H1-inclusion property guar-

antees that a dual solution, when it exists, can be easily approximated by standard
H1 finite element spaces. As the final step, we now modify the domain of the oper-
ators again to ensure solvability. The aim is to increase the domain of the new dual
operator, L∗, in order to make it surjective. This is done indirectly by reducing the
number of boundary conditions on the dual domain. We do this by enforcing more
boundary conditions on the domain of the primal operator, L. Of course, we are
only allowed to enforce additional boundary conditions on the primal problem that
are fulfilled by the primal solution, (u, p, q). The key is to identify these allowable
conditions and choose those that induce the appropriate D(L∗).

First, we introduce the new modified operator, L, then prove some useful lemmas,
and finally we present our main results, the surjectivity of the dual operator, L∗.

The two additional boundary conditions we enforce on the primal problem are∫
ΓN,i

t · u ds = 0, i = 1, . . . ,M,(3.5)

q = 0 on ΓQ ⊂ ΓD.(3.6)

These additional conditions are allowable because the primal solution, (u, p, q), satis-
fies them:∫

ΓN,i

t · u ds =

∫
ΓN,i

t · ∇p ds =

∫
ΓN,i

dp

ds
ds = 0, i = 1, . . . ,M,

and q = 0 on ∂Ω. For theoretical purposes, we impose condition (3.6) only on a
subset, ΓQ ⊂ ΓD, that does not contain any irregular boundary points in its closure
but has positive measure. See Remark 3.2 for motivation.

The new operator, L, has the same form as L1, but differs again by its domain.
We define the form of L blockwise:

T =

[
∇·A− b·
−∇×

]
, B =

[
c 0
0 d

]
,(3.7)

S =

[
−∂x −∂y
−∂y ∂x

]
=

[
−∇·
∇×

]
,(3.8)

L =

[
I S
T −B

]
.(3.9)

The corresponding domains include the following additional boundary conditions:

D(T ) =

{
v ∈ HN (∇·A; Ω) ∩HD(∇×; Ω) :

∫
ΓN,i

t · v ds = 0, 1 ≤ i ≤ M

}
,(3.10)

D(S) = {(t, z) ∈ HDN (Ω) : z = 0 on ΓQ} ,(3.11)

D(L) = D(T ) ×D(S).(3.12)

These domains are Hilbert spaces under the div-curl norms,

‖v‖2
S := ‖v‖2 + ‖∇·v‖2 + ‖∇×v‖2,(3.13)

‖v‖2
T := ‖v‖2 + ‖∇·(Av)‖2 + ‖∇×v‖2,(3.14)

‖(v,w)‖2
L := ‖v‖2

T + ‖w‖2
S .(3.15)
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Integration by parts leads to the adjoint operators,

T ∗ =
[
−(A∇ + b) −∇⊥] ,(3.16)

S∗ =

[
∂x ∂y
∂y −∂x

]
=
[
∇ ∇⊥] ,(3.17)

L∗ =

[
I T ∗

S∗ −B

]
,(3.18)

and the domains,

D(S∗) =
{
v ∈

(
H1(Ω)

)2
: n · v = 0 on ΓN and t · v = 0 on ΓD\ΓQ

}
,(3.19)

D(T ∗) =
{

(t, z) ∈
(
H1(Ω)

)2
: t = 0 on ΓD and z ≡ ci on ΓN,i

}
,(3.20)

where 1 ≤ i ≤ M , and ci are arbitrary constants, and

D(L∗) = D(S∗) ×D(T ∗).(3.21)

Remark 3.2. We do not allow the closure of ΓQ ⊂ ΓD to contain irregular
boundary points because we would expect singular functions in H(∇×; Ω)∩H(∇·; Ω)
to arise at these points. These singular functions would no longer be in D(S), but
they would be in D(S∗). In practice, there seems to be no difficulty with allowing ΓQ

to touch irregular boundary points.
For the remainder of this section, we adopt the assumptions on BVP (2.1)–(2.3)

made in subsection 2.1 and let d be any nonnegative analytic function. We now prove
coercivity of the primal operator, L. To this end, we need two auxiliary results.

Lemma 3.3. L is injective.
Proof. Assume that there exists a (v,w) ∈ D(L) such that

L(v,w) =

[
I S
T −B

](
v
w

)
=

(
0
0

)
.

Then, Sw ∈ D(T ), which, together with w ∈ D(S), implies that

t · Sw = −n · ∇w2 = 0 on ΓQ,(3.22)

n ·ASw = −n ·A(∇w1 + ∇⊥w2) = 0 on ΓN .(3.23)

Now, choose any open set, O ⊂ Ω such that O ∩ ΓQ has positive measure and ∂O
contains no irregular points of ∂Ω. On O we have w ∈ (H1)2. If we only look at the
set O, eliminating v yields the following equation for w:

−TSw −Bw = −
[
∇·A− b·
−∇×

] [
−∇ −∇⊥]w −

[
c 0
0 d

]
w

=

[
(∇·A∇− b · ∇ − c) (∇·A∇⊥ − b · ∇⊥)

0 Δ − d

]
w = 0.(3.24)

Consider the second equation together with the boundary conditions to get

Δw2 − dw2 = 0 in O,

w2 = 0 on ∂O ∩ ΓQ,

n · ∇w2 = 0 on ∂O ∩ ΓQ.
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According to the unique continuation theorem (cf. Hörmander [18]), we must have
w2 = 0 in O. Since every point of Ω is in some O of this type, we conclude that
w2 = 0 in Ω. Since Sw ∈ (L2)2, then w2 = 0 implies that w1 ∈ H1(Ω). Equations
(3.23) and (3.24) now yield

(∇·A∇− b · ∇ − c)w1 = 0 in Ω,

w1 = 0 on ΓD,

n ·A∇w1 = 0 on ΓN .

The well-posedness of BVP (2.1)–(2.3) implies that w1 = 0 and, therefore, v = 0.
Hence, N (L) = {0} and the lemma follows.

Lemma 3.4. S is injective.
Proof. Assume that there is a w ∈ D(S) such that

Sw =

[
−∇·
∇×

]
w = 0.

Since Ω is simply connected, the curl-free condition here implies that w = ∇φ for
some φ ∈ H1(Ω), with φ determined uniquely up to a constant (cf. [16]). The div-free
condition implies that φ is harmonic. The boundary conditions on D(S) imply that
∇φ = 0 on ΓQ, so

n · ∇φ = 0 on ΓQ.

But t · ∇φ = 0 is also true on ΓQ. Thus, φ is constant on ΓQ and, without loss of
generality, we may assume

φ = 0 on ΓQ.

Applying the unique continuation theorem (cf. Hörmander [18]) yields φ = 0, which
completes the proof.

We are now able to establish coercivity of L.
Theorem 3.5. Operators S, T , and L are coercive in the norms (3.13), (3.14),

and (3.15), respectively.
Proof. We begin by proving coercivity of S and T . For S, it suffices to prove a

Poincaré inequality of the following form:
There exists constant C > 0 such that

‖w‖2 ≤ C
(
‖∇·w‖2

+ ‖∇×w‖2
)

(3.25)

for all w ∈ D(S).
To establish (3.25), we assume that no such inequality exists, that is, that there

exists {w(i)}i=1,∞ ∈ D(S) such that, for all i > 0,

‖∇·w(i)‖2 + ‖∇×w(i)‖2 = 1,(3.26)

‖w(i)‖2 ≥ i.(3.27)

Now, every w(i) ∈ D(S) can be written as

w(i) = z(i) +

K∑
j=1

βijφ
(j),
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where z(i) ∈ D(S) ∩
(
H1(Ω)

)2
and {φ(j)}j=1,K is a basis of the finite-dimensional

orthogonal complement of D(S) ∩
(
H1(Ω)

)2
in D(S). Here, we take orthogonality

in the HDN (Ω) sense, which is an inner product because S is injective. That is, we
require 〈

∇·φ(j),∇·z
〉

+
〈
∇×φ(j),∇×z

〉
= 0

for every z ∈ D(S) ∩
(
H1(Ω)

)2
. Then, (3.26) becomes

‖∇·z(i)‖2 + ‖∇×z(i)‖2 +

∥∥∥∥∥∇·
K∑
j=1

βijφ
(j)

∥∥∥∥∥
2

+

∥∥∥∥∥∇×
K∑
j=1

βijφ
(j)

∥∥∥∥∥
2

= 1.(3.28)

Since z(i) ∈
(
H1(Ω)

)2
, we know that there exist constants C0, C1 > 0 such that, for

all i > 0,

‖z(i)‖2 ≤ C0

(
‖∇z(i)‖2

)
≤ C1

(
‖∇·z(i)‖2 + ‖∇×z(i)‖2

)
≤ C1,(3.29)

where the second inequality can be found in [17] and the last inequality follows from
(3.28). In several places in this proof, we make use of the general inequality

‖α + β‖2 ≤ 2(‖α‖2 + ‖β‖2).(3.30)

Now, to satisfy (3.27), we combine it with (3.28) and (3.29), using inequality (3.30),
to see that we must have ∥∥∥∥∥

K∑
j=1

βijφ
(j)

∥∥∥∥∥
2

≥ i

2
− C1(3.31)

for all i > 0. We now define P,N ∈ R
(K×K) as

P := (pkl) =
〈
φ(k), φ(l)

〉
,

N := (nkl) =
〈
∇·φ(k),∇·φ(l)

〉
+
〈
∇×φ(k),∇×φ(l)

〉
.

Because the {φ(j)}j=1,K are linearly independent and S has no null space (see Lemma
3.4), P and N must be symmetric positive definite matrices. Now, define the vectors

b(i) := (βi1, βi2, . . . , βiK)t.

Equations (3.28) and (3.31) imply

b(i) · Pb(i)

b(i) ·Nb(i)
≥ i

2
− C1,

which contradicts positive definiteness of N . Therefore, (3.25) holds and S is coercive
in the norm defined by (3.13).

To prove coercivity of T , note that, by inequality (3.30), there exists a constant
C2 > 0 (dependent only on ‖b‖) such that

‖v‖2
T ≤ ‖v‖2 + 2‖∇·(Av) − b · v‖2 + ‖∇×v‖2 + 2‖b · v‖2

≤ C2

(
‖Tv‖2 + ‖v‖2

)
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for all v ∈ D(T ). Since T is injective (cf. [11]) and D(T ) is compactly embedded in(
L2(Ω)

)2
, a standard compactness argument establishes coercivity of T .

By coercivity of T and S and the inequality (3.30), there exist constants C3, C4 >
0 (depending only on ‖b‖, ‖c‖, and ‖d‖) such that for all (v,w) ∈ D(L),

‖(v,w)‖2
L = ‖v‖2

T + ‖w‖2
S ≤ C3

(
‖Tv‖2 + ‖Sw‖2

)
≤ C4

(
‖Tv −Bw‖2 + ‖v + Sw‖2 + ‖v‖2 + ‖w‖2

)
.

Since L is injective (see Lemma 3.3) and D(L) is compactly embedded in
(
L2(Ω)

)4
,

again we appeal to a standard compactness argument and establish the coercivity of
L.

The main result of this section is the following theorem, which confirms the exis-
tence of a dual solution. It is a simple consequence of Theorem 3.5.

Theorem 3.6. L∗ : D(L∗) →
(
L2(Ω)

)4
is surjective.

Proof. It is clear that (L∗)∗ = L. Thus, both L and L∗ are closed and we may
use the closed range theorem. Since L is coercive (see Theorem 3.5), then R(L) is
closed. The closed range theorem implies that R(L∗) is closed. Thus, we know that
R(L∗) = N (L)⊥. Since N (L) is empty, then L∗ is surjective.

3.1. The case c = 0. This is the case that was examined in [12]. In this paper
we remove the requirement that ΓD and ΓN have at most one component. When
c = 0, it is useful to choose d = 0 because the second and third rows of L0 in (3.1)
only involve u. This allows us to write the primal problem, LU = F , in two stages:

Tu =

(
f
0

)
,(3.32)

∇p = u.(3.33)

Since T is injective by itself (see the proof of Theorem 3.5), problem (3.32) alone is
sufficient to determine u. We can, thus, begin by solving this so-called first-stage
equation. The second stage, (3.33), can be then solved for p if needed.

Discontinuous coefficients in A and irregular boundary points on ∂Ω imply u �∈(
H1(Ω)

)2
, so we use a FOSLL∗ formulation to solve (3.32). To accommodate the

possibility of multiply connected boundary components, (3.32) is posed on domain
D(T ) defined in (3.10). Note, then, that the dual problem for the first stage reads
T ∗w = u and takes the variational form

〈T ∗w, T ∗v〉 =
〈
(f, 0)t,v

〉
for all v ∈ D(T ∗).(3.34)

Theorem 3.7. Operator T ∗ : D(T ∗) →
(
L2(Ω)

)2
is surjective.

Proof. Coercivity of T was proved for Theorem 3.5 and, by arguments similar to
those in Theorem 3.6, we can then prove surjectivity of T ∗.

This theorem establishes existence of a solution for the first stage (3.32). Note
that recovery of the solution, p, of the original BVP, (2.1)–(2.3), can then be done
by applying a standard FOSLS scheme for the second stage equation, (3.33), i.e.,
by minimizing ‖∇p− u‖, where u = T ∗w is the approximation obtained in the first
stage. This minimization is done in an appropriate subspace of H1

D(Ω) and leads to
an H1 approximation of p, which is clearly more desirable than the L2 approximations
for p obtained by the general FOSLL∗ approach for c �= 0.



FIRST-ORDER SYSTEM LL∗ 2113

Remark 3.8. A closer look at the dual problem for the first stage, T ∗w = u,
shows that the second component of the dual variable, w2, is only determined up to
a constant. Therefore, without loss of generality, we can restrict the space in which
we are looking for w to

{
w ∈

(
H1(Ω)

)2
: w1 = 0 on ΓD,

w2 = 0 on ΓN,1, w2 ≡ ci on ΓN,i, 2 ≤ i ≤ M
}
.

Thus, for the case c = 0, standard FOSLL∗, as proposed in [12], works well enough,
unless ΓD or ΓN is not simply connected.

Remark 3.9. A scaled version of the first stage (3.32) that solves for the scaled
flux, ũ = A1/2∇p (see (3.36)), yields a dual problem with better computational
performance when used in conjunction with multigrid solvers.

3.2. The case b = 0. For b = 0, we consider two cases: c > 0 and c = 0. (We
exclude the case that c is neither 0 nor strictly positive.) We show in both cases that
a scaled form of FOSLL∗ reduces to the standard Galerkin formulation of (2.1)–(2.3).

Consider, first the case c > 0. We can rescale the primal problem by using the
scaled primal unknowns, (ũ, p̃, q̃) = (A1/2∇p, c1/2p, c1/2q). The primal operator is
then simply a scaled version of L1 used in standard FOSLL∗. The primal problem
takes the form

L̃1(ũ, p̃, q̃) = (0, f, 0)t in Ω,

t ·A−1/2ũ = 0 on ΓD,

n ·A1/2ũ = 0 on ΓN ,

p̃ = 0 on ΓD,

q̃ = 0 on ΓN ,

where

L̃1(ũ, p̃, q̃) :=

⎡
⎣ A−1/2 −∇c−1/2 −∇⊥c−1/2

∇·A1/2 −c1/2 0
−∇×A−1/2 0 0

⎤
⎦
⎛
⎝ũ
p̃
q̃

⎞
⎠

=

⎛
⎝A−1/2ũ −∇c−1/2p̃−∇⊥c−1/2q̃
∇·(A1/2ũ) − c1/2p̃
−∇×(A−1/2ũ)

⎞
⎠ .

The domain of this operator is

D(L̃1) =
(
HN (∇·A1/2; Ω) ∩HD(∇×A−1/2; Ω)

)
×H1

D(c−1/2; Ω) ×H1
N (c−1/2; Ω),

where φ ∈ H1
J(c−1/2; Ω) if and only if c−1/2φ ∈ H1

J(Ω). Thus, the dual problem takes
the form

L̃∗
1(w, r, s) = (ũ, p̃, q̃)t = (A1/2∇p, c1/2p, 0)t in Ω(3.35)

on

D(L̃∗
1) = (HN (∇·; Ω) ∩HD(∇×; Ω)) ×H1

D(Ω) ×H1
N (Ω),
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where the adjoint operator has the form

L̃∗
1(w, r, s) =

⎡
⎣ A−1/2 −A1/2∇ −A−1/2∇⊥

c−1/2∇· −c1/2 0
−c−1/2∇× 0 0

⎤
⎦
⎛
⎝w

r
s

⎞
⎠ .

Remarkably, this specially scaled problem has a dual solution in
(
H1(Ω)

)4
, namely,

(w, r, s) = (0,−p, 0).

Knowing that w and s vanish in this special case, dual problem (3.35) takes the
following variational form:

Find p ∈ H1
D(Ω) such that

〈A∇p,∇t〉 + 〈cp, t〉 = −〈f, t〉

for all t ∈ H1
D(Ω).

This is precisely the variational form of the Galerkin approach for BVP (2.1)–(2.3)
with b = 0. In other words, FOSLL∗ yields the same H1 approximation, ph, as the
Galerkin approach.

Next, consider the case b = 0 and c = 0. A scaled two-stage approach leads to
the following first stage primal problem:

[
∇·A1/2

−∇×A−1/2

]
ũ =

(
f
0

)
(3.36)

on HN (∇·A1/2; Ω) ∩HD(∇×A−1/2; Ω). The corresponding dual problem is

−A1/2∇w1 −A−1/2∇⊥w2 = ũ = A1/2∇p

on H1
D(Ω)×H1

N (Ω), which obviously has the solution w = (−p, 0). Knowing that w2

vanishes leads to the following variational form:
Find p ∈ H1

D(Ω) such that

〈A∇p,∇t〉 = −〈f, t〉

for all t ∈ H1
D(Ω).

This, again, is precisely the variational form of the Galerkin approach for BVP
(2.1)–(2.3) when b = 0 and c = 0. Thus, FOSLL∗ and Galerkin again yield the same
H1 approximation, ph.

4. Numerical results. Here we report on various numerical results and dis-
cuss some implementation issues for the methods proposed in the previous section.
All problems in this section were computed with FOSPACK [22]. The linear solver
used for the discretized equations was a conjugate gradient iteration (PCG), precondi-
tioned by algebraic multigrid (AMG) using one standard W(1,1)-cycle based on point
Gauss–Seidel relaxation. In all cases, the PCG/AMG iterations were applied until the
residual norm of the linear system was reduced by a factor of at least 10−10. While
this criterion is unnecessarily strong, and is not recommended in practice, it was used
to eliminate algebraic error from the analysis of the convergence of the finite element
approximations.

First, we show how the improved FOSLL∗ method performs on the problem pro-
posed in Examples 2.1 and 2.3. One of our improvements was the introduction of
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Table 4.1

Error norms, approximate order of discretization convergence, β, and asymptotic AMG con-
vergence factors, ρ, for the improved FOSLL∗ approximations for Example 4.1 on a sequence of
uniform meshes with mesh sizes h.

h 1/4 1/8 1/16 1/32 1/64 1/128 1/256

‖p− ph‖0 0.0475 0.0189 0.0113 0.0075 0.0047 0.0027 0.0016

β 1.328 0.738 0.606 0.674 0.767 0.809

‖u − uh‖0 0.6674 0.3051 0.1573 0.0810 0.0421 0.0222 0.0120

β 1.129 0.956 0.958 0.946 0.923 0.892

ρ 0.20 0.31 0.46 0.65 0.77 0.83 0.87

ΓQ ⊂ ΓD, an additional Dirichlet boundary for the slack variable. For our numerical
tests, we chose the domain described in Example 2.1 and

ΓQ = {(x, y) ∈ ΓD : x ∈ (0.5, 1) and y = 0}.(4.1)

Example 4.1. We apply the improved FOSLL∗ method to the BVP from Ex-
amples 2.1 and 2.3. We, thus, use the constructs defined in (3.7)–(3.21), with ΓQ as
in (4.1) and d = 1. The L2 norms of the errors are shown in Table 4.1. Since the
primal solution is in (Hα(Ω))4 only for α < 2/3, the optimal asymptotic bounds on
these errors is in general proportional to h2/3. We compute the approximate order
of convergence by computing β such that (1/2)β is equal to the ratio of errors on
consecutive grids. The table suggests that the improved FOSLL∗ approach does indeed
achieve these optimal bounds, while the FOSLS and standard FOSLL∗ methods do not
converge at all (cf. Tables 2.1 and 2.2).

For the improved FOSLL∗ method, the four components of the dual solution,
(wh, rh, sh), on the h = 1/32 mesh are shown in Figure 4.1. By simply computing
(uh, ph, qh)t = L∗(wh, rh, sh), we obtained L2 approximations for the primal vari-
ables, as shown in Figure 4.2. As these figures and tables show, the improved FOSLL∗

method yields converging L2 approximations for the primal variables, u and p.
Unfortunately, convergence of ‖p−ph‖0 tends to drop to a suboptimal rate if ΓQ is

chosen to be too small, especially when there are irregular points inside the Neumann
boundary. Therefore, one has to take care in choosing ΓQ sufficiently large. On the
other hand, choosing such a large ΓQ with a fixed length seems to inhibit optimal
AMG performance: the average per-step residual error reduction factor, which we
call ρ, seems to depend on the mesh size h. In fact, 1 − ρ seems to be proportional
to hα for some positive α. For Example 4.1, the multigrid reduction factor given in
Table 4.1 suggests that 1 − ρ is proportional to h3/4. This difficulty seems to come
from the null space of L∗ as defined in (3.7)–(3.21). This null space is nontrivial since
there are no boundary conditions for the first two components of D(L∗) on ΓQ. One
remedy could be to use linear solvers that can deal with nontrivial null spaces, such as
the MINRES algorithm (cf. [15]). Another remedy is discussed in the next subsection.

Remark 4.2. For c = 0, the primal problem can be decomposed as shown in
(3.32)–(3.33). Problem (3.32) can be solved by a FOSLL∗ method. Since this prob-
lem only involves the operator T , no ΓQ is needed. Furthermore, the dual problem of
this first stage has a full set of boundary conditions, namely, w1 = 0 on ΓD, w2 = 0
on ΓN,1, and w2 ≡ const. on ΓN,i, 2 ≤ i ≤ M . This full set of boundary conditions
leads to optimal multigrid convergence for c = 0. To demonstrate this, we tested this
approach on Example 4.1 with c = 0. Table 4.2 shows the approximation errors and
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Fig. 4.1. Approximations of the dual variables for Example 4.1 on a uniform mesh with h = 1/32.

Table 4.2

Error norms and multigrid convergence for the approximations for Example 4.1 for c = 0 on a
sequence of uniform meshes with mesh sizes h. Upper half: First stage, using the improved FOSLL∗

method. Lower half: Second stage, using FOSLS method.

h 1/4 1/8 1/16 1/32 1/64 1/128 1/256

‖u − uh‖0 0.4588 0.2036 0.1046 0.0539 0.0281 0.0149 0.0081

β 1.1718 0.961 0.956 0.941 0.916 0.882

ρ 0.12 0.10 0.054 0.041 0.032 0.040 0.040

‖p− ph‖0 4.41E-2 1.21E-2 3.34E-3 1.02E-3 3.34E-4 1.19E-4 4.63E-5

β 1.856 1.868 1.710 1.614 1.482 1.367

ρ 0.022 0.032 0.032 0.031 0.040 0.031 0.031

the multigrid convergence factors for both stages. Here, second-stage equation (3.33)
is solved by FOSLS, since we know p ∈ H1(Ω) and can, therefore, obtain H1 approxi-
mations for p. Both finite element and multigrid convergence show optimal behavior.

4.1. Restoring optimal multigrid convergence. A heuristic approach for
restoring optimal multigrid convergence (i.e., ρ � 1) is to choose different boundaries
Γh
Q on different meshes so that |Γh

Q| = O (h). The motivation for this is that such a

choice for Γh
Q should control the dimension of the null space of the discrete operator

since only a bounded number of elements could then intersect Γh
Q. These null space

components that AMG cannot seem to eliminate by itself would then hopefully be
attenuated by a fixed number of conjugate gradient steps.

The new difficulty that this choice introduces is that operators S∗ and L∗ lose
surjectivity in the limit h → 0. This, in turn, impairs finite element convergence as
h decreases. Fortunately, this difficulty does not affect coercivity of T nor, as our
observations show, convergence of ‖uh − u‖. Convergence of ‖ph − p‖ does degrade,
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Fig. 4.2. Approximations ph and uh of primal variables p and u = ∇p as well as second-stage
approximation ph+ of p on a uniform mesh with h = 1/32 for Example 4.1.

however, but this can be remedied by appealing to the relation ∇p = u. That is, we
can simply replace ph by a new approximation, denoted ph+, that approximately solves
∇ph+ = uh, where uh is the approximation for u obtained by the improved FOSLL∗

method with variable Γh
Q. This postprocessing step is exactly the same as in (3.33),

so we refer to it as the second stage. Since convergence of ‖uh − u‖ is still optimal
for Γh

Q, then convergence of ‖ph+ − p‖ should be optimal as well. Our implementation

solves this second stage by the FOSLS approach of finding ph+ = arg min ‖∇z−uh‖0,
where z is chosen from the same H1-conforming finite element space that was used
to approximate the dual solution.

Example 4.3. Using the same problem as in Example 4.1, we make a different
choice for ΓQ:

Γh
Q = {(x, y) ∈ ΓD : x ∈ (1 − 4h, 1), y = 0},

for which |Γh
Q| = 4h. In Table 4.3, we list the L2 errors associated with uh, ph,

and ph+. We also include the multigrid convergence factors, ρ, for the solution of the
discretized dual problem and the computational cost of the second stage as a percentage
of the computational cost of the solution of the discretized dual problem. The results
show that our approach leads to optimal multigrid convergence and a very accurate
approximation for p at very small additional cost. Approximations ph+ and ph for this
problem on a mesh with h = 1/32 are shown in Figure 4.2.

Remark 4.4. The second stage yields an H1 approximation to p, while ph is in
general in L2\H1. This desirable feature of this new approach utilizes the higher
regularity of p in an efficient way. The approximation is not only in a smoother
space, but also more accurate. Thus, the second stage is generally an effective tool to
improve convergence of FOSLL∗, not only just for the case of variable Γh

Q.
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Table 4.3

Upper half: Error norms, approximate order of discretization convergence, β, and multigrid
convergence factors, ρ, for the improved FOSLL∗ approximations for Example 4.1 on a sequence of
uniform meshes with mesh sizes h and Γh

Q ∈ O (h). Lower half: Error norms for the second-stage
approximation, approximate order of discretization convergence, β, and work of the second stage as
a percentage of the work of the FOSLL∗ method above.

h 1/4 1/8 1/16 1/32 1/64 1/128 1/256

‖p− ph‖0 0.0475 0.0194 0.0125 0.0093 0.0071 0.0055 0.0043

β 1.29 0.639 0.430 0.385 0.372 0.365

‖u − uh‖0 0.6674 0.3051 0.1573 0.0810 0.0420 0.0221 0.0120

β 1.13 0.956 0.958 0.946 0.924 0.892

ρ 0.19 0.23 0.17 0.13 0.10 0.08 0.09

‖p− ph+‖0 4.35E-2 1.20E-2 3.36E-3 1.09E-3 3.95E-4 1.64E-4 7.56E-5

β 1.857 1.837 1.625 1.464 1.271 1.113

‖u −∇ph+‖0 0.4640 0.2078 0.1071 0.0555 0.0290 0.0155 0.0084

β 1.159 0.955 0.950 0.934 0.908 0.874

ρ 0.022 0.032 0.032 0.031 0.040 0.031 0.031

stage2 3.1% 3.4% 3.7% 4.0% 5.0% 4.2% 4.5 %

Table 4.4

Error norms and AMG convergence factors for the approximations from Example 4.5 for vary-
ing σ0 on a sequence of uniform meshes with mesh sizes h.

h

σ0 1/4 1/8 1/16 1/32 1/64 1/128 1/256

100 ‖u − uh‖0 0.6674 0.3051 0.1573 0.0810 0.0420 0.0221 0.0120

β 1.13 0.956 0.958 0.946 0.924 0.892

ρ 0.19 0.23 0.17 0.13 0.10 0.08 0.09

103 ‖u − uh‖0 0.6732 0.3277 0.1672 0.0882 0.0483 0.0276 0.0166

β 1.04 0.971 0.923 0.869 0.805 0.734

ρ 0.38 0.47 0.53 0.49 0.40 0.31 0.23

106 ‖u − uh‖0 0.6738 0.3280 0.1674 0.0883 0.0484 0.0277 0.0166

β 1.04 0.971 0.923 0.869 0.805 0.734

ρ 0.22 0.24 0.37 0.47 0.62 0.76 0.77

4.2. Dependence of A and b. Here we report on examples that demonstrate
how FOSLL∗ depends on A and b.

Example 4.5. In a first experiment, we slightly changed Example 4.3 by setting
A = σI with σ = 1 for x + y < 0 and σ = σ0 otherwise. The results are displayed in
Table 4.4 and show that the AMG solver works well, even in the presence of huge jumps
in the coefficients. It is remarkable that the AMG convergence factors are getting better
for very fine meshes, where 1/h starts to dominate the convection and the jumping
coefficients. For this example, we used the scaling mentioned in Remark 3.9.

As a second experiment, we fixed σ0 = 1 and varied the convection, b. The results
of this experiment are shown in Table 4.5. Note again the relative insensitivity of the
order of discretization error, now with respect to the size of b. AMG performance
does degrade with increasing size of b, but this reflects the usual behavior of standard
multigrid solvers for convection dominated problems. Again, as the mesh size tends
to 0, the discretized differential operators dominate the convection and cause a steady
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Table 4.5

Error norms, approximate order of discretization convergence, β, and AMG convergence factors
for the approximations from Example 4.5 for varying b on a sequence of uniform meshes with mesh
sizes h.

h

bt 1/16 1/32 1/64 1/128 1/256

(−y
10

, 10x) ‖u − uh‖0 0.1573 0.0810 0.0420 0.0221 0.0119

β 0.958 0.946 0.924 0.892

ρ 0.17 0.13 0.10 0.08 0.09

10(−y
10

, 10x) ‖u − uh‖0 0.3356 0.1862 0.0968 0.0492 0.0250

β 0.850 0.944 0.978 0.979

ρ 0.57 0.60 0.58 0.45 0.31

100(−y
10

, 10x) ‖u − uh‖0 0.4687 0.3371 0.2230 0.1342 0.0737

β 0.476 0.596 0.732 0.864

ρ 0.65 0.76 0.83 0.84 0.84

improvement of the AMG convergence rates.

5. Conclusions. In this paper we have developed new FOSLL∗ formulations
that allow the use of H1-conforming finite element spaces and optimal multigrid
solvers for constructing L2 approximations of the primal variables on an extended
class of scalar elliptic equations. This class includes problems with reaction terms,
domains with Dirichlet and Neumann boundaries with multiple components, and ir-
regular boundary points. The extension was accomplished by redefining the boundary
conditions associated with the slack variables in the primal problem. Specifically, for
domains with ΓD �= ∅, the slack variable, q, was given additional boundary conditions
on ΓQ ⊂ ΓD. Our theory establishes the surjectivity of the adjoint operator, L∗, as
long as ΓQ contains no irregular points. However, numerical results show that the
multilevel solution techniques work better, and the finite element approximations are
no worse, if ΓQ is chosen to touch irregular boundary points and to shrink along with
the mesh spacing, h. The case of pure Neumann boundary conditions remains an
open problem.

The improved FOSLL∗ approach yields an L2 approximation to the primal flux
variable that achieves the optimal theoretical convergence rate. A postprocessing step
was shown to yield optimal H1 approximation to the original scalar variable, p, at a
small additional cost.

We also showed that the FOSLL∗ formulation produces the same approximation
as a Galerkin formulation of the original second-order boundary value problem, (2.1)–
(2.3), in the absence of first order terms (b = 0) and either no reaction term (c = 0)
or strictly positive reaction term (c > 0).

The efficiency of the improved FOSLL∗ formulations was illustrated by a series
of numerical examples.

REFERENCES

[1] M. Berndt, T. A. Manteuffel, S. F. McCormick, and G. Starke, Analysis of first-order
system least squares (FOSLS) for elliptic problems with discontinuous coefficients: Part
I, SIAM J. Numer. Anal., 43 (2005), pp. 386–408.

[2] M. Berndt, T. A. Manteuffel, and S. F. McCormick, Analysis of first-order system least
squares (FOSLS) for elliptic problems with discontinuous coefficients: Part II, SIAM J.
Numer. Anal., 43 (2005), pp. 409–436.



2120 T. A. MANTEUFFEL, S. F. MCCORMICK, J. RUGE, AND J. G. SCHMIDT

[3] P. Bochev, Z. Cai, T. Manteuffel, and S. McCormick, Analysis of velocity-flux least-
squares principles for the Navier–Stokes equations: Part II, SIAM J. Numer. Anal., 36
(1999), pp. 1125–1144.

[4] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM
Rev., 40 (1998), pp. 789–837.

[5] J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, Least-squares methods for the Stokes
equations based on a discrete minus one inner product, J. Comput. Appl. Math., 74 (1996),
pp. 155–173.

[6] J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, A least-squares approach based on a
discrete minus one inner product for first order systems, Math. Comp., 66 (1997), pp. 935–
955.

[7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer, Berlin, 1994.

[8] S. C. Brenner and L. Y. Sung, Multigrid methods for the computation of singular solutions
and stress intensity factors II, BIT, 37 (1997), pp. 623–643.

[9] Z. Cai and S. Kim, A finite element method using singular functions for the poisson equation:
Corner singularities, SIAM J. Numer. Anal., 39 (2001), pp. 286–299.

[10] Z. Cai, R. Lazarov, T. Manteuffel, and S. McCormick, First-order system least squares
for second order partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994),
pp. 1785–1799.

[11] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for second-order
partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997), pp. 425–454.

[12] Z. Cai, T. Manteuffel, S. McCormick, and J. Ruge, First-order system LL∗ (FOSLL*):
Scalar elliptic partial differential equations, SIAM J. Numer. Anal., 39 (2001), pp. 1418–
1445.

[13] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the
Stokes equations, with application to linear elasticity, SIAM J. Numer. Anal., 34 (1997),
pp. 1727–1741.

[14] C. L. Cox and G. J. Fix, On the accuracy of least squares methods in the presence of corner
singularities, Comput. Math. Appl., 10 (1984), pp. 463–475.

[15] B. Fischer, Polynomial Based Iteration Methods for Symmetric Linear Systems, Wiley-
Teubner, Chichester, Stuttgart, Germany, 1996.

[16] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory
and Algorithms, Springer, Berlin, 1986.

[17] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
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CONVERGENCE ANALYSIS OF THE PERFECTLY MATCHED
LAYER PROBLEMS FOR TIME-HARMONIC MAXWELL’S

EQUATIONS∗

GANG BAO† AND HAIJUN WU‡

Abstract. This paper is concerned with convergence analysis of the perfectly matched layer
(PML) problem in spherical coordinates for the three-dimensional electromagnetic scattering. Under
some simple assumptions on the PML medium parameter, it is shown that the truncated PML
problem attains a unique solution. The main result of the paper is to establish an explicit error
estimate between the solution of the scattering problem and that of the truncated PML problem.
The error estimate implies, in particular, that the PML solution converges exponentially to the
scattering solution by increasing either the PML medium parameter or the PML layer thickness.
The convergence result is expected to be useful for determining the PML medium parameter in the
computational electromagnetic scattering problems.

Key words. Maxwell’s equations, electromagnetic scattering, perfectly matched layer, conver-
gence
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1. Introduction. Since the pioneering work of Bérenger [3, 4], the perfectly
matched layer (PML) has become an increasingly important mesh termination tech-
nique in computational wave propagation due to its effectiveness, simplicity, and flex-
ibility [5, 6, 7, 9, 10, 12, 13, 17, 18, 19]. The idea is to surround the computational
domain by a nonphysical PML medium which has the remarkable property of being
reflectionless for incident waves of any frequency or any incident direction, and the
waves decay exponentially in magnitude into the PML medium. In practical compu-
tation, the PML medium must be truncated and the truncation boundary generates
reflected waves which can pollute the solution in the computational domain. There-
fore, it is imperative to study the error estimate in the computational domain between
the solution of the wave propagation problem and that of the truncated PML problem.

For a simple two-dimensional model of the electromagnetic scattering by periodic
structures, Chen and Wu have recently proved in [5] the exponential convergence
with respect to a definite integral of the PML medium parameter. The exponential
convergence can be achieved by increasing either the medium parameter or the PML
layer thickness. Moreover, the error estimate given in [5] is explicit and can be used to
determine the PML medium parameter according to the error tolerance in practical
computation. Other convergence results of the PML problems for the Helmholtz
scattering may be found in [9, 12, 13, 18]. To the best of our knowledge, there
is no convergence result of the truncated PML problem for the three-dimensional
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electromagnetic scattering, though the PML technique has been the subject of a
substantial engineering literature.

Our goal in this paper is to analyze the convergence of PML solutions for the
three-dimensional electromagnetic scattering. Attempts are made to generalize the
results of [5] to the PML in spherical coordinates for Maxwell’s equations. However,
the techniques completely differ due to the more complicated model in the three-
dimensional case. Under the assumption that there is a unique solution of the original
scattering problem and a proper assumption on the PML medium parameter, we prove
in this paper that the truncated PML problem attains a unique solution in H(curl)
and obtain an explicit error estimate between the solution of the scattering problem
and the solution of the truncated PML problem in the computational domain. The
error estimate implies particularly that the PML solution converges exponentially to
the scattering solution when either the PML medium parameter or the layer thickness
is increased. The significance of our main result is twofold:

• new error estimates for a fixed PML layer thickness;
• explicit constants in the estimates which may be used to determine the PML

constants in the computational electromagnetic scattering.

Our proof is based on a variational approach. A crucial step is to conduct a care-
ful analysis of special functions, for example, the Bessel functions and the spherical
Hankel functions.

2. PML formulation in spherical coordinates. We first introduce the scat-
tering problem. Suppose that a bounded medium characterized by permittivity ε and
permeability μ is illuminated by a time-harmonic electromagnetic wave (Ein, Hin),
where Ein is the electric field and Hin is the magnetic field. The incoming wave
(Ein, Hin) is assumed to be a classical solution of the Maxwell system

curlEin = iωμ0H
in and curlHin = −iωε0E

in in R
3.(2.1)

Here ε0 and μ0 are two positive constants. The interaction of the incident field and
the medium gives rise to the scattered field (Esc, Hsc). Let ε, μ be two functions of
the spatial variable x = (x1, x2, x3)

T , and r = |x|. Then the scattered field satisfies
the time-harmonic Maxwell system

⎧⎨
⎩

curlEsc = iωμHsc + iω(μHin − μ0H
in) in R

3,
curlHsc = −iωεEsc − iω(εEin − ε0E

in) in R
3,

limr→+∞(
√
μ0H

sc ∧ x− r
√
ε0E

sc) = 0.
(2.2)

Assume that ε and μ, respectively, are in (L∞(R3))3×3, and so are ε−1 and μ−1.
Assume also that the inhomogeneity is bounded so that there is a constant R > 0
such that ε(x) = ε0I and μ(x) = μ0I if r = |x| ≥ R, where I is the 3 × 3 identity
matrix. Denote the ball of radius by R and its surface by Ω = {x ∈ R

3, |x| < R},
respectively, and S = {x ∈ R

3, |x| = R}.
Next, introduce the PML medium in spherical coordinates (r, θ, ϕ), where θ and

ϕ are the Euler angles: x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ.

For any point x, let �er, �eθ, and �eϕ be the local orthonormal basis, i.e.,

⎧⎨
⎩

�er = (sin θ cosϕ, sin θ sinϕ, cos θ)T = x/r,
�eθ = (cos θ cosϕ, cos θ sinϕ,−sinθ)T ,
�eϕ = (−sinϕ, cosϕ, 0)T .

(2.3)
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For any vector field v = (v1, v2, v3)
T , denote by vr, vθ, and vϕ the projections of v

onto �er, �eθ, and �eϕ, respectively,

vr = v · �er, vθ = v · �eθ, vϕ = v · �eϕ.(2.4)

Let Q =
(
�er �eθ �eϕ

)
be a 3 × 3 matrix composed of �er, �eθ, and �eϕ. It is clear that

(
vr vθ vϕ

)T
= QT

(
v1 v2 v3

)T
,

(
v1 v2 v3

)T
= Q

(
vr vθ vϕ

)T
.(2.5)

Furthermore,

curl v =
1

r sin θ

(
∂(sin θvϕ)

∂θ
− ∂vθ

∂ϕ

)
�er +

(
1

r sin θ

∂vr
∂ϕ

− 1

r

∂(rvϕ)

∂r

)
�eθ

+
1

r

(
∂(rvθ)

∂r
− ∂vr

∂θ

)
�eϕ.

(2.6)

Obviously, the scattered field (Esc, Hsc) outside the ball Ω satisfies the following
Faraday equation and Ampere equation (Maxwell’s equations):

curlEsc = iωμ0H
sc and curlHsc = −iωε0E

sc in R
3 \ Ω.(2.7)

In the spherical coordinates, Faraday’s equation becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

r sin θ

(
∂(sin θEsc

ϕ )

∂θ
− ∂Esc

θ

∂ϕ

)
= iωμ0H

sc
r in R

3 \ Ω,

1

r sin θ

∂Esc
r

∂ϕ
− 1

r

∂(rEsc
ϕ )

∂r
= iωμ0H

sc
θ in R

3 \ Ω,

1

r

(
∂(rEsc

θ )

∂r
− ∂Esc

r

∂θ

)
= iωμ0H

sc
ϕ in R

3 \ Ω.

(2.8)

Following Teixeira and Chew [17], we introduce the PML problem by a change of
variables,

r →
∫ r̂

0

s(τ) dτ,(2.9)

where s(τ) = 1 + isI(τ) is continuous, sI(τ) ≥ 0 and sI(τ) = 0 for 0 ≤ τ ≤ R. In the
Cartesian coordinates, the change of variables is equivalent to

x → x̂ = (r̂ sin θ cosϕ, r̂ sin θ sinϕ, r̂ cos θ).(2.10)

It is clear that s(τ) = 1 and r = r̂, x = x̂ for 0 ≤ r̂ ≤ R.
Noting that ∂/∂r = (1/s(r̂))∂/∂r̂ and Esc

r = Esc
r̂ , Hsc

r = Hsc
r̂ , we have from (2.8)

that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

r sin θ

(
∂(sin θEsc

ϕ )

∂θ
− ∂Esc

θ

∂ϕ

)
= iωμ0H

sc
r̂ in R

3 \ Ω,

1

r sin θ

∂Esc
r̂

∂ϕ
− 1

rs(r̂)

∂(rEsc
ϕ )

∂r̂
= iωμ0H

sc
θ in R

3 \ Ω,

1

r

(
1

s(r̂)

∂(rEsc
θ )

∂r̂
− ∂Esc

r̂

∂θ

)
= iωμ0H

sc
ϕ in R

3 \ Ω.
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Multiplying the first equation by (r/r̂)2, the second and the third equations by
s(r̂)(r/r̂), and denoting by

Esc,PML
r̂ = s(r̂)Esc

r̂ , Esc,PML
θ =

r

r̂
Esc

θ , Esc,PML
ϕ =

r

r̂
Esc

ϕ ,

Hsc,PML
r̂ = s(r̂)Hsc

r̂ , Hsc,PML
θ =

r

r̂
Hsc

θ , Hsc,PML
ϕ =

r

r̂
Hsc

ϕ ,
(2.11)

we obtain the Faraday equation for the PML medium in {x̂ ∈ R
3 \ Ω}:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

r̂ sin θ

(
∂(sin θEsc,PML

ϕ )

∂θ
− ∂Esc,PML

θ

∂ϕ

)
= iωμ0

((r
r̂

)2 1

s(r̂)

)
Hsc,PML

r̂ ,

1

r̂ sin θ

∂Esc,PML
r̂

∂ϕ
− 1

r̂

∂(r̂Esc,PML
ϕ )

∂r̂
= iωμ0s(r̂)H

sc,PML
θ ,

1

r̂

(
∂(r̂Esc,PML

θ )

∂r̂
− ∂Esc,PML

r̂

∂θ

)
= iωμ0s(r̂)H

sc,PML
ϕ .

(2.12)

The Ampere equation for the PML medium may be derived similarly.
Furthermore, from (2.5) and (2.6), we rewrite Maxwell’s equations for the PML

medium in the Cartesian coordinates as

curlx̂ E
sc,PML = iωμ̂Hsc,PML and curlx̂ H

sc,PML = −iωε̂Esc,PML,

where

ε̂ = Q̂ε, μ̂ = Q̂μ, Q̂ = Qdiag((r/r̂)2/s(r̂), s(r̂), s(r̂))QT ,(2.13)

and Q =
(
�er �eθ �eϕ

)
. Note that ε̂ = ε and μ̂ = μ for x ∈ Ω.

scatterer
R

S
R 

S 

PML 
Perfect conductor 

Fig. 2.1. Geometry of the scattering with truncated PML.

In practical computation, the PML medium is truncated by a perfect conductor
boundary condition on Ŝ = {x̂ ∈ R

3, |x̂| = R̂} for some R̂ > R (see Figure 2.1).

Denote by Ω̂ = {x̂ ∈ R
3, |x̂| < R̂}. Then the scattering problem with a truncated

PML takes the following form: find (Êsc,PML, Ĥsc,PML) such that⎧⎪⎪⎨
⎪⎪⎩

curlx̂ Ê
sc,PML = iωμ̂Ĥsc,PML + iω(μHin − μ0H

in) in Ω̂,

curlx̂ Ĥ
sc,PML = −iωε̂Êsc,PML − iω(εEin − ε0E

in) in Ω̂,

Êsc,PML ∧ n = 0 on Ŝ.

(2.14)
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The goal of the paper is to estimate the error between (Êsc,PML, Ĥsc,PML) and
(Esc, Hsc).

3. The main result. We begin with the variational form of the scattering prob-
lem (2.2). For any smooth vector field v, denote by vS its tangential component on
the surface S:

vS = −(v ∧ n) ∧ n on S,(3.1)

where n = �er is the unit outer normal vector to S. Introduce the following usual
functional spaces:

H(curl,Ω) = {u ∈ (L2(Ω))3, curlu ∈ (L2(Ω))3},
TL2(S) = {u ∈ (L2(S))3, u · n = 0},
TH−1/2(curl, S) = {u ∈ (H−1/2(S))3, u · n = 0, curlS u ∈ H−1/2(S)},
TH−1/2(div, S) = {u ∈ (H−1/2(S))3, u · n = 0, divS u ∈ H−1/2(S)}.

For the definitions of the surface divergence divS and the scalar rotational curlS ,
we refer to [14]. Recall the following Paquet duality result [16]: TH−1/2(curl, S) =
TH−1/2(div, S)′.

Following Ammari and Nédélec [1], define the capacity operator TS from TH−1/2

(curl, S) to TH−1/2(div, S):

TSu = H ∧ n,(3.2)

where ⎧⎨
⎩

curl E = iωμ0H and curlH = −iωε0E in R
3 \ Ω,

ES = u on S,
limr→+∞

(√
μ0H ∧ x− r

√
ε0E

)
= 0.

(3.3)

From (2.2), it is easily seen that

Hsc ∧ n = TSEsc
S on S.(3.4)

By eliminating the magnetic field Hsc from (2.2), we obtain

curl(μ−1 curlEsc) − ω2εEsc = f in in Ω,(3.5)

where

f in = −iωμ0 curl(μ−1Hin) + ω2εEin.(3.6)

Multiplying (3.5) by a test function φ ∈ H(curl,Ω), integrating over Ω, and using
integration by parts, we arrive at the variational form for the scattering problem
(2.2): find Esc ∈ H(curl,Ω) such that

A(Esc, φ) = 〈f in, φ〉 ∀φ ∈ H(curl,Ω),(3.7)

where the bilinear form

A(v, φ) =

∫
Ω

μ−1 curl v · curlφ− ω2

∫
Ω

εv · φ− iω

∫
S

TSvS · φS(3.8)
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and

〈f in, φ〉 = −iωμ0

∫
Ω

μ−1Hin · curlφ + iω

∫
S

Hin ∧ n · φS + ω2

∫
Ω

εEin · φ.(3.9)

Assume in the following that the variational problem (3.7) attains a unique solution.
Then the general theory in Babuška and Aziz [2, Chapter 5] implies that there exists
a constant γ1 > 0 such that the following inf-sup condition holds:

sup
0 �=φ∈H(curl,Ω)

|A(v, φ)|
‖φ‖H(curl,Ω)

≥ γ1 ‖v‖H(curl,Ω) ∀v ∈ H(curl,Ω).(3.10)

See also Kirsch and Monk [11] for additional discussions on the variational problem.
Similarly, we introduce a variational form for the truncated PML scattering

problem (2.14) by defining a capacity operator T PML
S from TH−1/2(curl, S) to

TH−1/2(div, S):

T PML
S u = HPML ∧ n,(3.11)

where ⎧⎪⎪⎨
⎪⎪⎩

curlx̂ EPML = iωμ̂HPML and curlx̂ HPML = −iωε̂EPML in R
3 \ Ω,

EPML
S = u on S,

EPML ∧ n = 0 on Ŝ.

(3.12)

It follows from (2.14) that

Ĥsc,PML ∧ n = T PML
S Êsc,PML

S on S.(3.13)

For x ∈ Ω, since ε̂ = ε and μ̂ = μ, the fields (Êsc,PML, Ĥsc,PML) and (Esc, Hsc)
satisfy the same equation. Therefore, we have the variational form of (2.14): find

Êsc,PML ∈ H(curl,Ω) such that

APML(Êsc,PML, φ) = 〈f in, φ〉 ∀φ ∈ H(curl,Ω),(3.14)

where the bilinear form

APML(v, φ) =

∫
Ω

μ−1 curl v · curlφ− ω2

∫
Ω

εv · φ− iω

∫
S

T PML
S vS · φS .(3.15)

In order to estimate the error between Êsc,PML and Esc, it is sufficient to estimate
the error between the two capacity operators T PML

S and TS . We have the following
important lemma that will be proved in section 6.

Lemma 3.1. Let

R̃I =

∫ R̂

R

sI(τ) dτ and a = min

{
1

2
,
kR

5

}
.(3.16)

Suppose

R̃I ≥ max{7R/5, R̂, 17/k}.(3.17)
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Then for any vS , φS ∈ TH−1/2(curl, S),∣∣∣∣ω
∫
S

(T PML
S − TS)vS · φS

∣∣∣∣ ≤ M‖vS‖TH−1/2(curl,S) ‖φS‖TH−1/2(curl,S) ,

where

M =
4k(aμ0)

−1 max{(kR)2(3kR + 3/2)2, 1}
ekR̃I [2−(aR̃I/R)−2+(aR̃I/R)−4/19] − 10

.(3.18)

Remark 3.1. The constant R̃I is known as the PML parameter. Here, we examine
the structure of the constant M which controls the modeling error between the PML
equation and the original scattering problem (see Theorem 3.2). Obviously, the con-

stant M approaches zero exponentially as the PML parameters R̃I goes to infinity.
From definition (3.16), R̃I may be calculated by the medium property sI(τ), which
is usually taken as a power function

sI(τ) = δm[(τ −R)/(R̂−R)]m for τ ≥ R, m ≥ 1.

Thus,

R̃I = δm(R̂−R)/(m + 1).(3.19)

It is obvious that the PML approximation error is reduced by either enlarging the
medium parameter δm or increasing the layer thickness R̂−R.

Recall the trace regularity result for H(curl,Ω) (cf. [14]):

‖vS‖TH−1/2(curl,S) ≤ γ0 ‖v‖H(curl,Ω) ∀v ∈ H(curl,Ω),(3.20)

where γ0 is a positive constant. We are now ready to present the main result of this
paper.

Theorem 3.2. Assume that (3.10) and (3.17) hold.
(i) If Mγ2

0 < γ1, then the PML variational problem (3.14) attains a unique
solution. Furthermore, the following a priori estimate (dependent on the original
scattering solution) holds:

‖|Êsc,PML − Esc‖| := sup
0 �=φ∈H(curl,Ω)

|A(Êsc,PML − Esc, φ)|
‖φ‖H(curl,Ω)

≤ Mγ2
0

1 −Mγ2
0/γ1

‖Esc‖H(curl,Ω).

(3.21)

(ii) If the PML variational problem (3.14) has a solution Êsc,PML ∈ H(curl,Ω),
then the following a posteriori estimate (dependent on the PML solution) holds:

‖|Êsc,PML − Esc‖| ≤ Mγ2
0‖Êsc,PML‖H(curl,Ω),(3.22)

where γ0 is defined in (3.20), γ1 and M are defined in (3.10) and (3.18), respectively.
Proof. We first prove (ii). By the definitions (3.8) and (3.15) of A and APML,

Lemma 3.1, and the trace regularity (3.20), we have

|APML(v, φ) −A(v, φ)| =

∣∣∣∣ω
∫
S

(T PML
S − TS)vS · φS

∣∣∣∣
≤ Mγ2

0 ‖v‖H(curl,Ω) ‖φ‖H(curl,Ω).

(3.23)



2128 GANG BAO AND HAIJUN WU

Hence from (3.7) and (3.14), we conclude that

|A(Êsc,PML − Esc, φ)| = |A(Êsc,PML, φ) −APML(Êsc,PML, φ)|
≤ Mγ2

0‖Êsc,PML‖H(curl,Ω)‖φ‖H(curl,Ω),

which implies (3.22).
Next we prove (i). From (3.10), the assumption Mγ2

0 < γ1, and (3.23), we
conclude that the bilinear form, APML : H(curl,Ω) × H(curl,Ω) → C, defined
in (3.15) satisfies the inf-sup condition. Therefore, the PML variational problem
(3.14) attains a unique solution. Finally, the error estimate (3.21) follows from (3.22)
and (3.10).

Remark 3.2. Since the norm ‖| · ‖| is equivalent to the norm ‖·‖H(curl,Ω) with

‖| · ‖| ≥ γ1 ‖·‖H(curl,Ω) (cf. (3.10)), the error estimate between Esc and Êsc,PML in

H(curl,Ω) is easily obtained from Theorem 3.2. Having established the error estimate

for the electric field, the error estimate between the magnetic fields Hsc and Ĥsc,PML

in H(curl,Ω) may be obtained by examining the following system:
{
Ĥsc,PML −Hsc = (iωμ)−1 curl(Êsc,PML − Esc) in Ω,

curl(Ĥsc,PML −Hsc) = −iωε(Êsc,PML − Esc) in Ω,

which is derived from (2.2), (2.14), and the fact that x̂ = x, ε̂ = ε, and μ̂ = μ for
x ∈ Ω.

4. Capacity operators. This section is devoted to the derivation of explicit
representations of the capacity operators TS and T PML

S . We first present series so-
lutions for (3.3) and (3.12). We also give explicit representations of the capacity
operators TS and T PML

S .
We start by representing the boundary data in terms of suitable vector basis

functions on S. Following [8], let Y m
l (θ, ϕ) be an orthonormal sequence of spherical

harmonics on the unit sphere that satisfies (cf. [8])

ΔSY
m
l + l(l + 1)Y m

l = 0,(4.1)

where ΔS = 1
sin θ

∂
∂θ (sin θ ∂

∂θ ) + 1
sin2 θ

∂2

∂ϕ2 is the Laplace–Beltrami operator on S. Let

∇S = �eθ
∂
∂θ + �eϕ

1
sin θ

∂
∂ϕ be the tangential gradient on S. Then an orthonormal basis

for TL2(S) (the tangential fields on S) consists of functions of the form

V m
l =

1

R
√
l(l + 1)

∇SY
m
l and Um

l = V m
l ∧ n.(4.2)

It follows that any tangential vector field u ∈ TL2(S) may be represented as

u =

∞∑
l=1

l∑
m=−l

[
cml Um

l + dml V m
l

]
.

Using the series coefficients (see [14] or [1]), the norm on the space TH−1/2(curl, S)
may be characterized by

‖u‖2
TH−1/2(curl,S) =

∞∑
l=1

l∑
m=−l

[√
1 + l(l + 1) |cml |2 +

1√
1 + l(l + 1)

|dml |2
]
.(4.3)
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To represent the solutions, we need the first kind and second kind of spherical
Hankel functions,

h
(1)
l (z) = (−i)l

eiz

z

l∑
m=0

im
(m + l)!

m!(l −m)!2mzm
, h

(2)
l (z) = h

(1)
l (z̄).(4.4)

Define

z
(1)
l (z) = z

d
dzh

(1)
l (z)

h
(1)
l (z)

, z
(2)
l (z) = z

(1)
l (z̄) = z

d
dzh

(2)
l (z)

h
(2)
l (z)

.(4.5)

From the spherical harmonic expansion (cf. [8, Theorems 6.24 and 6.25]) of the
radiating solution of (3.3), (2.6), (4.1), the definitions of ∇S ,ΔS , and a simple calcu-
lation, we get

E =

∞∑
l=1

l∑
m=−l

√
μ0h

(1)
l (kr)(4.6)

×
{
um
l ∇SY

m
l ∧n+

vml
ikr

[(
1 + z

(1)
l (kr)

)
∇SY

m
l + l(l+ 1)Y m

l n
]}

,

H =
∞∑
l=1

l∑
m=−l

√
ε0h

(1)
l (kr)(4.7)

×
{
−vml ∇SY

m
l ∧n+

um
l

ikr

[(
1 + z

(1)
l (kr)

)
∇SY

m
l + l(l+ 1)Y m

l n
]}

.

By using the definition of ∇S , and noting that n = �er and �eθ ∧ �er = − �eϕ, �eϕ∧ �er = �eθ
(see (2.3)), we have on S,

ES =

∞∑
l=1

l∑
m=−l

√
μ0h

(1)
l (kR)

{
um
l ∇SY

m
l ∧ n +

vml
ikR

(
1 + z

(1)
l (kR)

)
∇SY

m
l

}
,(4.8)

H ∧ n =
∞∑
l=1

l∑
m=−l

√
ε0h

(1)
l (kR)

{
um
l

ikR

(
1 + z

(1)
l (kR)

)
∇SY

m
l ∧ n + vml ∇SY

m
l

}
.(4.9)

Therefore, from definition (3.2) of TS and definitions (4.2) of Um
l , V m

l , we obtain an
explicit representation for the map TS : for any

u = ES =

∞∑
l=1

l∑
m=−l

[
cml Um

l + dml V m
l

]
,

TSu = H ∧ n =

∞∑
l=1

l∑
m=−l

[
cml

iωμ0R

(
1 + z

(1)
l (kR)

)
Um
l +

iωε0Rdml

1 + z
(1)
l (kR)

V m
l

]
.(4.10)

Next we derive an explicit representation of T PML
S . Introduce a field (Esc,Hsc):
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Esc
r̂ =

1

s(r̂)
EPML
r̂ , Esc

θ =
r̂

r
EPML
θ , Esc

ϕ =
r̂

r
EPML
ϕ ,

Hsc
r̂ =

1

s(r̂)
HPML

r̂ , Hsc
θ =

r̂

r
HPML

θ , Hsc
ϕ =

r̂

r
HPML

ϕ ,

where (EPML,HPML) is defined in (3.12). From the boundary condition in (3.12), it
is obvious that

Esc ∧ n = 0 on Ŝ.(4.11)

It is easily verified, from the derivation of the PML formulation in section 2, that the
field (Esc,Hsc) satisfies Maxwell’s equations (2.7), that is, the first two equations of
(3.3). Note that the expressions of (4.6) and (4.7) form a class of solutions for (2.7),
and if we replace the first kind of spherical Hankel functions in (4.6) and (4.7) with
the second kind of spherical Hankel functions, then we get another class of solutions
for Maxwell’s equations (2.7). Let

R̃ =

∫ R̂

0

s(τ) dτ.(4.12)

By choosing properly a linear combination of the two classes of solutions, we get the
following solution satisfying the boundary condition (4.11):

Esc =

∞∑
l=1

l∑
m=−l

√
μ0

{
um
l

(
h

(1)
l (kr)

h
(1)
l (kR̃)

− h
(2)
l (kr)

h
(2)
l (kR̃)

)
∇SY

m
l ∧ n

+
vml
ikr

[(
h

(1)
l (kr)

(
1 + z

(1)
l (kr)

)
h

(1)
l (kR̃)

(
1 + z

(1)
l (kR̃)

) −
h

(2)
l (kr)

(
1 + z

(2)
l (kr)

)
h

(2)
l (kR̃)

(
1 + z

(2)
l (kR̃)

)
)
∇SY

m
l

+

(
l(l + 1)h

(1)
l (kr)

h
(1)
l (kR̃)

(
1 + z

(1)
l (kR̃)

) − l(l + 1)h
(2)
l (kr)

h
(2)
l (kR̃)

(
1 + z

(2)
l (kR̃)

)
)
Y m
l n

]}
,

Hsc =

∞∑
l=1

l∑
m=−l

√
ε0

×
{
−vml

(
h

(1)
l (kr)

h
(1)
l (kR̃)

(
1 + z

(1)
l (kR̃)

) − h
(2)
l (kr)

h
(2)
l (kR̃)

(
1 + z

(2)
l (kR̃)

)
)
∇SY

m
l ∧ n

+
um
l

ikr

[(
h

(1)
l (kr)

(
1 + z

(1)
l (kr)

)
h

(1)
l (kR̃)

−
h

(2)
l (kr)

(
1 + z

(2)
l (kr)

)
h

(2)
l (kR̃)

)
∇SY

m
l

+

(
l(l + 1)h

(1)
l (kr)

h
(1)
l (kR̃)

− l(l + 1)h
(2)
l (kr)

h
(2)
l (kR̃)

)
Y m
l n

]}
.

Similar to (4.8) and (4.9), since EPML = Esc and HPML = Hsc on S, we have on S
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EPML
S = Esc

S =

∞∑
l=1

l∑
m=−l

√
μ0

{
um
l

(
h

(1)
l (kR)

h
(1)
l (kR̃)

− h
(2)
l (kR)

h
(2)
l (kR̃)

)
∇SY

m
l ∧ n

+
vml
ikR

(
h

(1)
l (kR)

(
1 + z

(1)
l (kR)

)
h

(1)
l (kR̃)

(
1 + z

(1)
l (kR̃)

) −
h

(2)
l (kR)

(
1 + z

(2)
l (kR)

)
h

(2)
l (kR̃)

(
1 + z

(2)
l (kR̃)

)
)
∇SY

m
l

}
,

HPML ∧ n = Hsc ∧ n =

∞∑
l=1

l∑
m=−l

√
ε0

×
{

um
l

ikR

(
h

(1)
l (kR)

(
1 + z

(1)
l (kR)

)
h

(1)
l (kR̃)

−
h

(2)
l (kR)

(
1 + z

(2)
l (kR)

)
h

(2)
l (kR̃)

)
∇SY

m
l ∧n

+ vml

(
h

(1)
l (kR)

h
(1)
l (kR̃)

(
1 + z

(1)
l (kR̃)

) − h
(2)
l (kR)

h
(2)
l (kR̃)

(
1 + z

(2)
l (kR̃)

)
)
∇SY

m
l

}
.

Then from definition (3.11) of T PML
S and definitions (4.2) of Um

l , V m
l , we obtain an

explicit representation for the map T PML
S : for any

u =

∞∑
l=1

l∑
m=−l

[
cml Um

l + dml V m
l

]
,

T PML
S u =

∞∑
l=1

l∑
m=−l

[
cml

iωμ0R

h
(1)
l (kR)h

(2)
l (kR̃)

(
1 + z

(1)
l (kR)

)
− h

(1)
l (kR̃)h

(2)
l (kR)

(
1 + z

(2)
l (kR)

)
h
(1)
l (kR)h

(2)
l (kR̃) − h

(1)
l (kR̃)h

(2)
l (kR)

Um
l

+ iωε0Rdml

× h
(1)
l (kR)h

(2)
l (kR̃)

(
1 + z

(2)
l (kR̃)

)
− h

(2)
l (kR)h

(1)
l (kR̃)

(
1 + z

(1)
l (kR̃)

)
h
(1)
l (kR)

(
1 + z

(1)
l (kR)

)
h
(2)
l (kR̃)

(
1 + z

(2)
l (kR̃)

)
− h

(1)
l (kR̃)

(
1 + z

(1)
l (kR̃)

)
h
(2)
l (kR)

(
1 + z

(2)
l (kR)

)V m
l

]
.

By using the representations of TS (4.10) and the above T PML
S , we have

(
T PML
S − TS

)
u =

∞∑
l=1

l∑
m=−l

(
ρlc

m
l Um

l + σld
m
l V m

l

)
(4.13)

with

ρl =
(iωμ0R)−1

[
z
(1)
l (kR) − z

(2)
l (kR)

]
· h(2)

l (kR)
[
h

(1)
l (kR)

]−1

h
(2)
l (kR̃)

[
h

(1)
l (kR̃)

]−1 − h
(2)
l (kR)

[
h

(1)
l (kR)

]−1 ,(4.14)

σl =
iωε0R

[
z
(2)
l (kR) − z

(1)
l (kR)

][
1 + z

(1)
l (kR)

]−2
h

(2)
l (kR)

[
h

(1)
l (kR)

]−1

h
(2)
l (kR̃)

(
1+z

(2)
l (kR̃)

)
h
(1)
l (kR̃)

(
1+z

(1)
l (kR̃)

) − h
(2)
l (kR)

(
1+z

(2)
l (kR)

)
h
(1)
l (kR)

(
1+z

(1)
l (kR)

)
.

(4.15)

Therefore, in order to estimate the error between TS and T PML
S , it is essential

to derive upper bounds for ρl and σl. To do so, we need asymptotic results for the
spherical Hankel functions.

Remark 4.1. In practice, it is important to have explicit error estimates between
TS and T PML

S . For this reason, we choose not to use the usual uniform Airy-type
asymptotic expansions of the spherical Hankel functions h

(1)
l (z) and h

(2)
l (z), which
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are efficient for l ≈ z, because the Airy functions are implicit. Instead, we employ
the explicit exponential-type expansions of the modified Bessel functions and derive
explicit approximations for the spherical Hankel functions. It should be pointed out
that the spherical Hankel functions and the modified Bessel functions are related by
the connection formula given in section 5.2.

Remark 4.2. We comment on the validity of the exponential-type expansions of
the spherical Hankel functions. Unlike the Airy-type expansions, the exponential-type
expansions may be invalid for l ≤ z with real z. In this case, some special treatment
must be used. A detailed discussion is given in subsequent sections.

5. Estimates on the spherical Hankel functions. Our goal in this section is
to derive explicit estimates for the spherical Hankel functions. We first derive and es-
timate the asymptotic expansions of the modified Bessel functions in section 5.1. The
connection formula between the spherical Hankel functions and the modified Bessel
functions in section 5.2 can then be employed to establish the desirable estimates.

5.1. First approximations of the modified Bessel functions. Consider
the asymptotic behavior of the modified Bessel functions Iν(νz) and Kν(νz) of large
order ν. The order ν is always assumed to be real and positive throughout.

Introduce new variables

ξ = (1 + z2)1/2 + ln
z

1 + (1 + z2)1/2
,(5.1)

p = (1 + z2)−1/2.(5.2)

Define

U1 = (3p− 5p3)/24.(5.3)

The following lemma was proved in sections 10.7–10.8 of [15].

Lemma 5.1. Denote by b1 = 0 and b2 = +∞. Assume that z satisfies |arg z| <
π/2 or |arg z| = π/2 but |z| < 1. Then

Iν(νz) =

(
1

2πν

)1/2
eνξ

(1 + z2)1/4
1 + η1(ν, z)

1 + η1(ν,∞)
,(5.4)

Kν(νz) =

(
π

2ν

)1/2
e−νξ

(1 + z2)1/4
(
1 + η2(ν, z)

)
,(5.5)

I ′ν(νz) =

(
1

2πν

)1/2
eνξ(1 + z2)1/4

z

1 + η3(ν, z)

1 + η1(ν,∞)
,(5.6)

K ′
ν(νz) = −

(
π

2ν

)1/2
e−νξ(1 + z2)1/4

z
(1 + η4(ν, z)),(5.7)

where

η3(ν, z) = κ1(ν, z) −
z2p3

2ν
(1 + η1(ν, z)),(5.8)

η4(ν, z) = −κ2(ν, z) +
z2p3

2ν
(1 + η2(ν, z)).(5.9)
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Moreover, the error terms ηj , κj , j = 1, 2, are bounded by

|η1(ν, z)| , |κ1(ν, z)| ≤ exp

(
2Vb1,z(U1)

ν

)
2Vb1,z(U1)

ν
,(5.10)

|η2(ν, z)| , |κ2(ν, z)| ≤ exp

(
2Vb2,z(U1)

ν

)
2Vb2,z(U1)

ν
,(5.11)

where Vbj ,z(U1) is the bounded variation from bj to z, and the variational paths being
taken by traveling in the ξ plane from ξ(z) parallel to the imaginary axis until the real
axis is reached, then proceeding along the real axis to ξ(b1) or ξ(b2).

Let

D1 = {z; |arg z| ≤ π/4}, D2 = {z; |arg z| = π/2 and |z| < 1}.(5.12)

Note that estimates (5.10) and (5.11) are not yet explicit in the sense that the right-
hand sides remain to be estimated. This problem is resolved by our next lemma whose
proof is given in the appendix.

Lemma 5.2. For m = 1, 2, z ∈ Dm,

|η1(ν, z)| , |η2(ν, z)| ≤ M̂m(ν, z) := exp

(
2Mm(z)

ν

)
2Mm(z)

ν
,

|η1(ν,∞)| ≤ M̂1(ν,+∞),

|η3(ν, z)| , |η4(ν, z)| ≤ N̂m(ν, z) :=
Nm(z)

2ν
+

(
1 +

Nm(z)

2ν

)
M̂m(ν, z),

where

M1(z) =
1

12
+

1

6
√

5
+

|�(z)|
�(z)

min

{( 4

27

)1/4

,
1

�(z)

}
,(5.13)

N1(z) = min

{( 4

27

)1/4

,
1

|z|

}
,(5.14)

M2(z) =
1

12
+

1

6
√

5
+

π |z|2 (4 + |z|2)
16(1 − |z|2)3

,(5.15)

N2(z) =
|z|2

(1 − |z|2)3/2
.(5.16)

Equipped with the estimates of the modified Bessel functions Iν and Kν , we are
now ready to establish estimates of the spherical Hankel functions. The results are
useful for the estimates of ρl and σl that are essential for the proof of Lemma 3.1.

5.2. Spherical Hankel functions. The spherical Hankel functions h
(j)
l (z) (j =

1, 2, l ≥ 0 integers) can also be defined by the Hankel functions of half-odd-integer
order H

(j)

l+ 1
2

(z) (cf. (4.4) and [15, p. 238]):

h
(1)
l (z) = i

√
π

2z
H

(1)

l+ 1
2

(z), h
(2)
l (z) = −i

√
π

2z
H

(2)

l+ 1
2

(z).(5.17)

The Hankel functions and the modified Bessel functions satisfy the following connec-
tion formulas (see, e.g., [15, pp. 250–251]):

Kν(z) =
πi

2
eνπi/2H(1)

ν

(
zeπi/2

)
, Iν(z) =

1

2
e−νπi/2

[
H(1)

ν

(
zeπi/2

)
+ H(2)

ν

(
zeπi/2

)]
,
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hence

h
(1)
l (z) =

√
2

πz
e−(l+ 1

2 )πi/2Kl+ 1
2

(
ze−πi/2

)
,(5.18)

h
(2)
l (z) = −i

√
2π

z
e(l+ 1

2 )πi/2Il+ 1
2

(
ze−πi/2

)
+ h

(1)
l (z).(5.19)

It follows from the definition of z
(j)
l (z) that

h
(1)
l (z)

[
1 + z

(1)
l (z)

]
= h

(1)
l (z) + zh

(1)
l

′
(z)(5.20)

=

√
2

πz
e−(l+ 1

2 )πi/2

(
1

2
Kl+ 1

2

(
ze−πi/2

)
− izK ′

l+ 1
2

(
ze−πi/2

))
,

h
(2)
l (z)

[
1 + z

(2)
l (z)

]
= h

(2)
l (z) + zh

(2)
l

′
(z)(5.21)

=h
(1)
l (z)

(
1+z

(1)
l (z)

)
−i

√
2π

z
e(l+ 1

2 )πi/2

(
1

2
Il+ 1

2

(
ze−πi/2

)
− izI ′l+ 1

2

(
ze−πi/2

))
.

The following three lemmas present estimates that are crucial for estimating ρl
and σl in (4.14) and (4.15), respectively.

Lemma 5.3. Denote ν = l + 1/2 and ẑ = ze−πi/2. For m = 1, 2, ẑ ∈ Dm, and
ν ≥ 3/2, the following estimates hold:

e2ν	(ξ(ẑ)) · C−
m(ν, ẑ) ≤

∣∣∣∣∣
h

(2)
l (νz)

h
(1)
l (νz)

− 1

∣∣∣∣∣ ≤ e2ν	(ξ(ẑ)) · C+
m(ν, ẑ),(5.22)

e2ν	(ξ(ẑ)) · Ĉ−
m(ν, ẑ) ≤

∣∣∣∣∣
h

(2)
l (νz)

[
1 + z

(2)
l (νz)

]
h

(1)
l (νz)

[
1 + z

(1)
l (νz)

] − 1

∣∣∣∣∣ ≤ e2ν	(ξ(ẑ)) · Ĉ+
m(ν, ẑ)(5.23)

if C−
m(ν, ẑ) and Ĉ−

m(ν, ẑ) are positive. Here

C±
m(ν, ẑ) =

1

1 ∓ M̂1(ν,+∞)
· 1 ± M̂m(ν, ẑ)

1 ∓ M̂m(ν, ẑ)
,(5.24)

Ĉ±
m(ν, ẑ) =

1

1 ∓ M̂1(ν,+∞)
·
1 ±

{
N̂m(ν, ẑ) +

|(1+ẑ2)−1/2|
2ν

[
1 + M̂m(ν, ẑ)

]}

1 ∓
{
N̂m(ν, ẑ) +

|(1+ẑ2)−1/2|
2ν

[
1 + M̂m(ν, ẑ)

]}.(5.25)

Here ξ is defined by (5.1), Dm is defined by (5.12), and M̂m, N̂m are defined in
Lemma 5.2.

Proof. From (5.18) to (5.21) and (5.4) to (5.7), we obtain, after some simple
calculations, that

h
(2)
l (νz)

h
(1)
l (νz)

= 1 +
(−1)le2νξ(ẑ)

1 + η1(ν,∞)
· 1 + η1(ν, ẑ)

1 + η2(ν, ẑ)
,

h
(2)
l (νz)

[
1 + z

(2)
l (νz)

]
h

(1)
l (νz)

[
1 + z

(1)
l (νz)

] = 1 +
(−1)le2νξ(ẑ)

1 + η1(ν,∞)
·

(1+ẑ2)−1/2

2ν [1 + η1(ν, ẑ)] + [1 + η3(ν, ẑ)]
(1+ẑ2)−1/2

2ν [1 + η2(ν, ẑ)] − [1 + η4(ν, ẑ)]
.
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Estimates (5.22)–(5.23) then follow directly from Lemma 5.2 by noting that M̂1(ν,
+∞) < 1 for v ≥ 3/2.

Once again, for the representations ρl and σl of (4.14) and (4.15), an important

term is z
(1)
l − z

(2)
l . The following result provides an estimate of the term.

Lemma 5.4. Denote ν = l + 1
2 and ẑ = ze−πi/2. Assume that z is real and

0 < z < 1 and that M̂2(ν, ẑ) < 1. Then
∣∣z(1)

l (νz) − z
(2)
l (νz)

∣∣ ≤ 2νe2ν	(ξ(ẑ))
∣∣(1 + ẑ2)1/2

∣∣[1 − M̂2(ν, ẑ)
]−2

.(5.26)

Proof. We need the following expression of z
(1)
l (z) for z > 0 [14, Theorem 2.6.1]:

z
(1)
l (z) = −pl

ql
+ i

z

ql
,(5.27)

where

ql = 1 + αl
1

1

z2
+ · · · + αl

l

1

z2l
= z2

∣∣h(1)
l (z)

∣∣2,
pl = 1 + 2αl

1

1

z2
+ · · · + (l + 1)αl

l

1

z2l
, αl

m =
(m + l)!(2m)!

m!2(l −m)!4m
.

(5.28)

Hence,

∣∣z(1)
l (z) − z

(2)
l (z)

∣∣ =
∣∣z(1)

l (z) − z
(1)
l (z)

∣∣ = 2z/ql = 2z−1
∣∣h(1)

l (z)
∣∣−2

.(5.29)

Therefore, by (5.18), (5.5), and (5.29), we have
∣∣z(1)

l (νz) − z
(2)
l (νz)

∣∣ = 2ν
∣∣e2νξ(ẑ)(1 + ẑ2)1/2

∣∣∣∣1 + η2(ν, ẑ)
∣∣−2

,

which implies (5.26).
The result below presents additional estimates of the terms in the representations

ρl and σl of (4.14) and (4.15).
Lemma 5.5. If z is real and positive, then∣∣∣∣∣

h
(1)
l (z)

h
(2)
l (z)

∣∣∣∣∣ = 1,

∣∣∣∣∣
h

(1)
l (z)

[
1 + z

(1)
l (z)

]
h

(2)
l (z)

[
1 + z

(2)
l (z)

]
∣∣∣∣∣ = 1,(5.30)

∣∣z(1)
l (z) − z

(2)
l (z)

∣∣ ≤ 2z ,(5.31)

∣∣1 + z
(j)
l (z)

∣∣ ≥
√

1 + l(l + 1)

3z + 3/2
, j = 1, 2, l ≥ 2.(5.32)

Proof. From (4.4) and (4.5), we know that (5.30) holds. By using (5.29) and
ql ≥ 1, we get (5.31). Hence, it remains to prove (5.32). From (4.5) and (5.27), we
have

∣∣1 + z
(2)
l (z)

∣∣ =
∣∣1 + z

(1)
l (z)

∣∣ ≥ max

{
pl
ql

− 1,
z

ql

}
.

From expressions (5.28) of pl and ql, some simple calculations yield

pl
ql

− 1 ≥ l(l + 1)

2z2 + l + 1
and

z

ql
≥ z − l(l + 1)

z
,

which implies that pl

ql
− 1 > l+1

3z+3/2 if z < l + 1 and z
ql

≥ 1 ≥ l+1
z if z ≥ l + 1. The

proof is now complete.
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6. Proof of the key lemma. Lemma 3.1 may be proved by estimating ρl and
σl. For simplicity, we introduce the following notation:

ν = l + 1/2, zν = kR/ν, z̃ν = kR̃/ν, ẑν = zνe
−πi/2, and ˆ̃zν = z̃νe

−πi/2.

(6.1)

It follows from (4.12), (3.16), and s(τ) = 1 + isI(τ) that

R̃ = R̂ + iR̃I and ˆ̃zν = kR̃I/ν − ikR̂/ν.(6.2)

Note that the estimates in Lemmas 5.3 and 5.4 are no longer valid for z = zν if
zν ≥ 1, that is, if ν = l + 1/2 ≤ kR. We estimate ρl and σl in (4.14) and (4.15) by
considering two separate cases: ν ≥ νa and ν < νa, where

νa = kR/a.(6.3)

Here, recall from (3.16) that a = min {1/2, kR/5} is a positive number less than 1.
The following lemma gives uniform lower bounds for the exponential terms that

appear in Lemmas 5.3 and 5.4.
Lemma 6.1. The following estimate holds:

e2ν	(ξ(ˆ̃zν)) ≥ eξ(aR̃I/R)·2kR/a for 0 < ν < νa.(6.4)

If, in addition,

2
kR

a
ln

(1 +
√

1 − a2) · R̃I/R

1 +
√

1 + a2R̃2
I/R

2

≥ 1,(6.5)

then

1

2ν
e2ν[	(ξ(ˆ̃zν))−	(ξ(ẑν))] ≥ a

2kR
eξ(aR̃I/R)·2kR/a for ν ≥ νa.(6.6)

Proof. First from Lemma A.1(ii) and (6.2), we have

�(ξ(ˆ̃zν)) ≥ ξ(kR̃I/ν).

Let

g1(ν) = νξ(kR̃I/ν) =

√
ν2 + k2R̃2

I + ν ln
kR̃I

ν +
√
ν2 + k2R̃2

I

.

Then

g′1(ν) = ln
kR̃I

ν +
√
ν2 + k2R̃2

I

< 0 for ν > 0,

which implies that g1(ν) ≥ g1(νa) for 0 < ν < νa, and hence (6.4) holds.

Now we turn to prove (6.6). For ν ≥ νa, define g(ν) = ν[ξ(kR̃I/ν) − �(ξ(ẑν))].
Since |ẑν | ≤ kR/νa = a < 1, it follows from the definition (5.1) of ξ that

g(ν) = g1(ν) −
(√

ν2 − k2R2 + ν ln
kR

ν +
√
ν2 − k2R2

)
,

g′(ν) = g′1(ν) − ln
kR

ν +
√
ν2 − k2R2

, g′′(ν) = − 1√
ν2 + k2R̃2

I

+
1√

ν2 − k2R2
.
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By g′′(ν) ≥ 0 and (6.5), we have, for ν ≥ νa,

g′(ν) ≥ g′(νa) = ln
(1 +

√
1 − a2) · R̃I/R

1 +
√

1 + a2R̃2
I/R

2

> 0,

which implies

d
(

1
2ν e

2g(ν)
)

dν
=

e2g(ν)

2ν2
(2νg′(ν) − 1) ≥ e2g(ν)

2ν2
(2νag

′(νa) − 1) ≥ 0.

Hence 1
2ν e

2g(ν) ≥ 1
2νa

e2g(νa) for ν ≥ νa. Inequality (6.6) follows from the definition of
g(ν) and the fact g(νa) ≥ g1(νa).

In addition, the next lemma gives estimates for the constants in Lemmas 5.3–5.4.
Lemma 6.2. Under assumption (3.17),

C−
1 (ν, ˆ̃zν) > 1/5, Ĉ−

1 (ν, ˆ̃zν) > 1/5 for ν ≥ 5/2(6.7)

and

C−
1 (ν, ˆ̃zν) > 17/40, Ĉ−

1 (ν, ˆ̃zν) > 17/40, M̂2(ν, ẑν) < 17/50,

C+
2 (ν, ẑν) < 91/25, Ĉ+

2 (ν, ẑν) < 91/25 for ν ≥ νa.
(6.8)

Furthermore inequality (6.5) in the statement of Lemma 6.1 holds.
Proof. Obviously, assumption (3.17) implies that

a ≤ 1/2, νa ≥ 5, kR̃I ≥ 17, and |�(ˆ̃zν)|/�(ˆ̃zν) = R̂
/
R̃I ≤ 1.(6.9)

Then by ˆ̃zν = kR̃I/ν − ikR̂/ν, ẑν = −ikR/ν (cf. (6.1) and (6.2)), and (5.13)–(5.16),
we get

M1(ˆ̃zν) ≤
1

12
+

1

6
√

5
+ 1 · ν

kR̃I

≤ 1

12
+

1

6
√

5
+

ν

17
,

N1(ˆ̃zν) ≤
ν

kR̃I

≤ ν

17
for ν ≥ 5

2

and

M2(ẑν) ≤
1

12
+

1

6
√

5
+

π |a|2 (4 + |a|2)
16(1 − |a|2)3

≤ 1

12
+

1

6
√

5
+

17π

108
,

N2(ẑν) ≤
|a|2

(1 − |a|2)3/2
≤ 2

√
3

9
for ν ≥ νa.

In addition

M1(+∞) =
1

12
+

1

6
√

5
, (1 + ˆ̃z

2

ν)
−1/2 ≤ 1, (1 + ẑ2

ν)
−1/2 = (1 − z2

ν)
−1/2.

By combining the above estimates and definitions (5.24)–(5.25), (6.1), and some direct
calculations, it is straightforward to complete the proof of (6.7)–(6.8).

From (3.16) and (3.17), it follows that kR/a ≥ 5, R̃I/R ≥ 7/5, a ≤ 1/2. Hence,

the left-hand side of (6.5) ≥ 2 × 5 ln

(
1 +

√
1 − (1/2)2

)
· 7/5

1 +
√

1 + (1/2)2(7/5)2
> 1,
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which completes the proof of Lemma 6.2.
By combining the above estimates, we can now estimate ρl and σl in (4.14) and

(4.15), respectively.
Lemma 6.3. Under assumption (3.17), the following estimates hold for l =

1, 2, . . . :

ω |ρl| ≤ M
√

1 + l(l + 1) and ω |σl| ≤
M√

1 + l(l + 1)
,(6.10)

where

M =
4k(aμ0)

−1 max
{
(kR)2(3kR + 3/2)2, 1

}
ekR̃I

[
2−(aR̃I/R)

−2
+(aR̃I/R)

−4
/

19
]
− 10

,

and the constant R̃I is defined in (3.16).
Proof. Due to the validity consideration of the exponential-type estimates for the

spherical Hankel functions, we divide the proof into three cases: ν = l + 1/2 ≥ νa,
5/2 ≤ ν < νa, and ν = 3/2. These cases are proved by using different approaches.
For the first case, we employ the exponential-type estimates for estimating ρl and σl.
For the second case, we combine the exponential-type estimates and the estimates in
Lemma 5.5. The definitions of the spherical Hankel functions are used to treat the
third case.

Case I. ν = l + 1/2 ≥ νa.
By using (4.14)–(4.15) and Lemmas 5.3–5.5, we get

|ρl| =
(ωμ0R)−1|z(1)

l (νzν) − z
(2)
l (νzν)|

|h(2)
l (νz̃ν)

[
h

(1)
l (νz̃ν)

]−1 − 1 −
(
h

(2)
l (νzν)

[
h

(1)
l (νzν)

]−1 − 1
)
|

≤ (ωμ0R)−1|1 − M̂2(ν, ẑν)|−2

1
2ν e

2ν[	(ξ(ˆ̃zν))−	(ξ(ẑν))]C−
1 (ν, ˆ̃zν) − 1

2νC
+
2 (ν, ẑν)

and

|σl| =
ωε0R · |z(2)

l (νzν) − z
(1)
l (νzν)||1 + z

(1)
l (kR)|−2∣∣∣∣h

(2)
l (νz̃ν)

(
1+z

(2)
l (νz̃ν)

)
h
(1)
l (νz̃ν)

(
1+z

(1)
l (νz̃ν)

) − 1 −
(

h
(2)
l (νzν)

(
1+z

(2)
l (νzν)

)
h
(1)
l (νzν)

(
1+z

(1)
l (νzν)

) − 1

)∣∣∣∣
≤ ωε0R|1 − M̂2(ν, ẑν)|−2[1 + l(l + 1)]−1(3kR + 3/2)2

1
2ν e

2ν[	(ξ(ˆ̃zν))−	(ξ(ẑν))]Ĉ−
1 (ν, ˆ̃zν) − 1

2ν Ĉ
+
2 (ν, ẑν)

.

Then by using Lemmas 6.1 and 6.2, we obtain

|ρl| ≤
11k(aωμ0)

−1[1 + l(l + 1)]−1/2[1 + l(l + 1)]1/2

eξ(aR̃I/R)·2kR/a − 10
,(6.11)

|σl| ≤
11k(aωμ0)

−1[1 + l(l + 1)]−1/2[1 + l(l + 1)]−1/2(kR)2(3kR + 3/2)2

eξ(aR̃I/R)·2kR/a − 10
.(6.12)

Since νa ≥ 5 (cf. (6.9)) and the integer l ≥ νa − 1
2 , we have l ≥ 5 and hence 11[1 +

l(l + 1)]−1/2 < 4. Hence, estimate (6.10) follows from the inequality

ξ(aR̃I/R) · 2kR/a > kR̃I

[
2 −

(
aR̃I/R

)−2
+
(
aR̃I/R

)−4
/19

]
,(6.13)
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which can be derived by Lemma A.1(v) and aR̃I/R = min{R̃I/(2R), kR̃I/5} ≥ 7/10.
Case II. 5/2 ≤ ν = l + 1/2 < νa.
By using (4.14)–(4.15) and Lemmas 5.3–5.5, we have

|ρl| ≤
(ωμ0R)−1

∣∣∣z(1)
l (kR) − z

(2)
l (kR)

∣∣∣∣∣∣h(2)
l (νz̃ν)

/
h

(1)
l (νz̃ν)

∣∣∣− 1
≤ (ωμ0R)−12kR

e2ν	(ξ(ˆ̃zν))C−
1 (ν, ˆ̃zν) − 2

,

|σl| ≤
ωε0R

∣∣∣z(2)
l (kR) − z

(1)
l (kR)

∣∣∣
∣∣∣1 + z

(1)
l (kR)

∣∣∣−2

∣∣∣∣h
(2)
l (νz̃ν)

(
1+z

(2)
l (νz̃ν)

)
h
(1)
l (νz̃ν)

(
1+z

(1)
l (νz̃ν)

)
∣∣∣∣− 1

≤
ωε0R · 2kR (3kR+3/2)2

1+l(l+1)

e2ν	(ξ(ˆ̃zν))Ĉ−
1 (ν, ˆ̃zν) − 2

.

From Lemmas 6.1 and 6.2, we further obtain that

|ρl| ≤
10k(ωμ0)

−1[1 + l(l + 1)]−1/2[1 + l(l + 1)]1/2

eξ(aR̃I/R)·2kR/a − 10
,(6.14)

|σl| ≤
10k(ωμ0)

−1[1 + l(l + 1)]−1/2[1 + l(l + 1)]−1/2(kR)2(3kR + 3/2)2

eξ(aR̃I/R)·2kR/a − 10
.(6.15)

Now estimate (6.10) follows from 10[1 + l(l + 1)]−1/2 < 4 and inequality (6.13).
Case III. ν = l + 1

2 = 3
2 .

From (4.4)–(4.5), we have

h
(1)
1 (z) = − ieiz

z

(
1 +

i

z

)
, h

(2)
1 (z) =

ie−iz

z

(
1 − i

z

)
,

z
(1)
1 (z) =

−(z2 + 2) + iz3

z2 + 1
, z

(2)
1 (z) =

−(z2 + 2) − iz3

z2 + 1
.

It follows from definitions (4.14) and (4.15) of ρl and σl that

|ρ1| ≤
(ωμ0R)−1

∣∣2i(kR)3[(kR)2 + 1]−1
∣∣∣∣∣e−2ikR̃(i − kR̃)(i + kR̃)−1

∣∣∣− 1
≤ 2k(ωμ0)

−1

e2kR̃I (kR̃I − 1)(kR̃I + 1)−1 − 1
,

|σ1| ≤
∣∣iωε0R · 2i(kR)3[(kR)2 + 1][(kR)6 + 1]−1

∣∣∣∣∣e−2ikR̃ i−kR̃

i+kR̃

1+i(kR̃)3

1−i(kR̃)3

∣∣∣− 1
≤ 2k(ωμ0)

−1 · 4/3
e2kR̃I kR̃I−1

kR̃I+1

(kR̃I)3−1

(kR̃I)3+1
− 1

.

Since kR̃I ≥ 17 (cf. (6.9)), it is easily seen that (6.10) holds for l = 1. The proof of
Lemma 6.3 is complete.

Now we return to the proof of Lemma 3.1. Let

vS =

∞∑
l=1

l∑
m=−l

[cml Um
l + dml V m

l ] and φS =

∞∑
l=1

l∑
m=−l

[c̃ml Um
l + d̃ml V m

l ].

From (4.13), we have from the orthogonality of the basis functions that

∣∣∣∣ω
∫
S

(T PML
S − TS)vS · φS

∣∣∣∣ =

∣∣∣∣∣ω
∞∑
l=1

l∑
m=−l

[ρlc
m
l c̃ml + σld

m
l d̃ml ]

∣∣∣∣∣
≤ M

∞∑
l=1

l∑
m=−l

[√
1 + l(l + 1) |cml | |c̃ml | + 1√

1 + l(l + 1)
|dml | |d̃ml |

]
.
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The proof of Lemma 3.1 may be completed by the Cauchy–Schwarz inequality, Lemma
6.3, and the definition (4.3) of the norm of TH−1/2(curl, S).

7. Conclusion. Under the assumption that there is a unique solution of the
original three-dimensional electromagnetic problem and some proper assumptions on
the PML medium parameter, it is shown that the truncated PML problem attains
a unique solution in H(curl). An explicit error estimate between the solution of
the scattering problem and that of the truncated PML problem in the computational
domain is obtained. The error decays exponentially as the product of the wave number
and the integrated absorption across the layer goes to infinity. The error estimate
implies particularly that the PML solution converges exponentially to the scattering
solution by increasing either the PML medium parameter or the PML layer thickness.

Appendix. Proof of Lemma 5.2.

A.1. Properties of ξ. Let

z = x + iy = reiθ, r > 0 and |θ| < π/2 or 0 < r < 1 and |θ| = π/2,

1/p = (1 + z2)1/2 = r1e
iθ1 , |θ1| ≤ π/2,

where

r1 = (1 + 2r2 cos 2θ + r4)1/4, r2
1 cos 2θ1 = 1 + r2 cos 2θ, r2

1 sin 2θ1 = r2 sin 2θ.

Denote

1 + (1 + z2)1/2 = r2e
iθ2 , |θ2| ≤ π/2,

where

r2 = (1 + 2r1 cos θ1 + r2
1)

1/2, r2 cos θ2 = 1 + r1 cos θ1, r2 sin θ2 = r1 sin θ1.

Then, by the definition (5.1) of ξ, we have

�(ξ) = r1 cos θ1 + ln
r

r2
, �(ξ) = r1 sin θ1 + θ − θ2.(A.1)

Lemma A.1.

(i) �(ξ) is decreasing in |θ|.
(ii) �(ξ) is increasing in |y| and hence �(ξ) ≥ ξ(x).
(iii) �(ξ) is increasing in r.
(iv) |�(ξ)| ≤ r1 sin |θ| + |θ|.
(v) x− 1

2x + 1
24x3 > ξ(x) > x− 1

2x + 1
38x3 for x ≥ 7

10 .
Proof. From

r1 cos θ1 =
√

(r2
1 + 1 + r2 cos 2θ)/2(A.2)

and a direct calculation, we deduce that

∂�(ξ)

∂θ
= −r2 cos θ sin θ

r1 cos θ1
,(A.3)
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which yields (i).
Let u =: r2 cos 2θ = x2 − y2. From (A.1) and (A.2), we have

∂�(ξ)

∂y
=

yf(r, u)

2r2r1 cos θ1r2
2

, where f(r, u) =: r4 − r2r2
2 + 2r1 cos θ1r

2
2.(A.4)

Noting that r4
1 ≥ (1 − r2)2, we conclude that

∂f

∂u
=

r2
2

2r3
1 cos θ1

(
2r1 cos θ1 + r2

1 + 1 − r2
)
> 0.

Consequently, statement (ii) may be proved by observing

f(r, u)

{
≥ f(r,−r2) = 2(1 − r2)(1 +

√
1 − r2)2 > 0 if r < 1,

> f(r,−r2) = 0 if r ≥ 1.

By

∂�(ξ)

∂y
=

∂�(ξ)

∂r

∂r

∂y
+

∂�(ξ)

∂θ

∂θ

∂y
=

∂�(ξ)

∂r

y

r
+

∂�(ξ)

∂θ

cos θ

r
,

(A.3), and (A.4), we get

∂�(ξ)

∂r
=

f(r, u)

2rr1 cos θ1r2
2

+
r cos2 θ

r1 cos θ1
> 0,

which implies that (iii) holds.
By r2

1 ≤ 1 + r2, we have

1 + r2 cos 2θ ≤ (1 + r2) cos 2θ1 ≤ 1 + r2 cos 2θ1,

which is cos 2θ ≤ cos 2θ1, and hence |θ1| ≤ |θ|. Furthermore, by r2
1 sin 2θ1 = r2 sin 2θ,

we know that θθ1 ≥ 0. Similarly, we can prove that |θ2| ≤ |θ1| and θ2θ1 ≥ 0. Then
(iv) follows from (A.1).

By dξ(x)
dx =

√
1+x2

x , we know that ξ(x)− (x− 1
2x + 1

24x3 ) increases for x ≥ 7
10 and

ξ(x)− (x− 1
2x + 1

38x3 ) first increases and then decreases for x ≥ 7
10 . The estimate (v)

follows then from the facts that ξ(x) − (x − 1
2x + 1

24x3 ) and ξ(x) − (x − 1
2x + 1

38x3 )
both approach 0 as x approaches infinity, and ξ(x) − (x− 1

2x + 1
38x3 ) > 0 at x = 7

10 .
The proof of Lemma A.1 is complete.

A.2. Variations of U1. In the ξ plane, the variations Vbj ,z(U1) in (5.10) and
(5.11) can be written as Vξ(bj),ξ(U1). We denote by P(ξ) the first segment of the

variational paths, i.e., ξ̃ = �(ξ) + i�(ξ)(1 − t), 0 ≤ t ≤ 1. Denote by ξ̃ = ξ(z̃)

(z̃ = r̃eiθ̃) a point on P(ξ), and let p̃ = p(z̃) = (1 + z̃2)−1/2 (cf. (5.1) and (5.2)). It is
clear that

Vbj ,z(U1) = Vξ(bj),ξ(U1) = Vξ(bj),	(ξ)(U1) + V	(ξ),ξ(U1)

≤
∫ 1

0

|U ′
1(p̃)| dp̃ +

∫ 1

0

|U ′
1(p̃)p̃

′
ξ̃
�(ξ)| dt,

(A.5)

where U ′
1(p̃) = 1−5p̃2

8 and p̃′
ξ̃

= p̃4 − p̃2 (cf. (5.1)–(5.3)).
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It is obvious that

∫ 1

0

|U ′
1(p̃)| dp̃ =

1

12
+

1

6
√

5
.(A.6)

Lemma A.2. Suppose |arg z| = |θ| ≤ π/4. Then

Vbj ,z(U1) ≤
1

12
+

1

6
√

5
+

|�(z)|
�(z)

min

{( 4

27

)1/4

,
1

�(z)

}
, j = 1, 2.

Proof. First by Lemma A.1, we have

r cos θ ≤ r̃ = |z̃| ≤ r and |θ̃| ≤ |θ| ≤ π/4 for ξ̃ on P(ξ).

Thus,

|U ′
1(p̃)| =

1

8

∣∣∣∣ (z̃
2 − 4)

1 + z̃2

∣∣∣∣ =
1

8

(16 − 8r̃2 cos 2θ̃ + r̃4

1 + 2r̃2 cos 2θ̃ + r̃4

)1/2

≤ 1

8

(16 + r̃4

1 + r̃4

)1/2

≤ 1

2

and ∣∣p̃3 − p̃
∣∣ =

∣∣z̃2p̃3
∣∣ = r̃2(1 + 2r̃2 cos 2θ̃ + r̃4)−3/4

≤ r̃2(1 + r̃4)−3/4 ≤ min
{
(4/27)1/4, 1/r̃

}
.

(A.7)

We also have from the definition of p̃ that

|p̃| = (1 + 2r̃2 cos 2θ̃ + r̃4)−1/4 ≤ (1 + 2r2 cos2 θ cos 2θ + r4 cos4 θ)−1/4 ≤ 1.

Hence, form Lemma A.1(iv), we get

|p̃| |�ξ| ≤
( 1 + 2r2 cos 2θ + r4

1 + 2r2 cos2 θ cos 2θ + r4 cos4 θ

)1/4

sin |θ| + |θ| ≤ tan |θ| + |θ| ≤ 2 tan |θ|.

Finally, the proof is complete by combining (A.5) and (A.6),

|U ′
1(p̃)p̃

′
ξ̃
�(ξ)| = |U ′

1(p̃)|
∣∣p̃3 − p̃

∣∣ |p̃| |�ξ|
along with the above estimates.

Lemma A.3. Suppose |arg z| = π/2 and |z| < 1. Then

Vbj ,z(U1) ≤
1

12
+

1

6
√

5
+

π |z|2 (4 + |z|2)
16(1 − |z|2)3

, j = 1, 2.

Proof. By Lemma A.1(i) and (iii), we have, for ξ̃ on P(ξ), r̃ = |z̃| ≤ |z|. Hence

|U ′
1(p̃)p̃

′
ξ̃
| =

∣∣∣∣ z̃
2(z̃2 − 4)

8(1 + z̃2)3

∣∣∣∣ =
r̃2(16 − 8r̃2 cos 2θ̃ + r̃4)1/2

8(1 + 2r̃2 cos 2θ̃ + r̃4)3/2

≤ r̃2(4 + r̃2)

8(1 − r̃2)3
≤ |z|2 (4 + |z|2)

8(1 − |z|2)3
.

Then the proof follows from (A.5), (A.6) and the fact that �(ξ) = π/2.
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A.3. The proof of Lemma 5.2. From (A.7), we have the following lemma.
Lemma A.4.

∣∣z2p3
∣∣ ≤

{
min

{(
4/27

)1/4
, 1/|z|

}
if z ∈ D1,

|z|2
/
(1 − |z|2)3/2 if z ∈ D2,

where D1 and D2 are defined in (5.12).
By applying Lemmas A.2–A.4 and (5.8)–(5.11), Lemma 5.2 may be proved easily.

REFERENCES
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[14] J. Nédélec, Acoustic and Electromagnetic Equations, Springer-Verlag, New York, 2001.
[15] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
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EXPONENTIALLY CONVERGENT ALGORITHMS FOR THE
OPERATOR EXPONENTIAL WITH APPLICATIONS TO
INHOMOGENEOUS PROBLEMS IN BANACH SPACES∗

I. P. GAVRILYUK† AND V. L. MAKAROV‡

Abstract. New exponentially convergent algorithms for the operator exponential generated by
a strongly positive operator A in a Banach space X are proposed. These algorithms are based on
representations by a Dunford–Cauchy integral along paths enveloping the spectrum of A combined
with a proper quadrature involving a short sum of resolvents where the choice of the integration path
dramatically affects desired features of the algorithms. A parabola and a hyperbola are analyzed as
the integration paths, and scales of estimates of dependence on the smoothness of initial data, i.e.,
of the initial vector and of the inhomogeneous right-hand side, are obtained. One of the algorithms
possesses an exponential convergence rate for the operator exponential e−At for all t ≥ 0 including the
initial point. This allows one to construct an exponentially convergent algorithm for inhomogeneous
initial value problems. The algorithm is parallelizable. It turns out that the resolvent must be
modified in order to get numerically stable algorithms near the initial point. The efficiency of the
proposed method is demonstrated by numerical examples.

Key words. inhomogeneous evolution equation, operator exponential, exponentially convergent
algorithms, sinc methods

AMS subject classifications. 65J10, 65M70, 35K90, 35L90
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1. Introduction. We consider the problem

du(t)

dt
+ Au(t) = f(t), u(0) = u0,(1.1)

where A is a strongly positive operator in a Banach space X, u0 ∈ X is a given vector,
and f(t) is a given and u(t) is the unknown vector-valued function. A simple example
of a partial differential equation covered by the abstract setting (1.1) is the classical
inhomogeneous heat equation

∂u(t, x)

∂t
− ∂2u(t, x)

∂x2
= f(t, x)

with corresponding boundary and initial conditions, where the operator A is defined
by

D(A) = {v ∈ H2(0, 1) : v(0) = 0, v(1) = 0},

Av = −d2v

dx2
∀v ∈ D(A).

The homogeneous equation

dT (t)

dt
+ AT (t) = 0, T (0) = I,(1.2)
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where I is the identity operator and T (t) is an operator valued function, defines the
semigroup of bounded operators T (t) = e−At generated by A (also called the operator
exponential or the solution operator of the homogeneous equation (1.1)). Given the
solution operator, the initial vector u0, and the right-hand side f(t), the solution of
the homogeneous initial value problem (1.1) can be represented by

u(t) = uo(t) = T (t)u0 = e−Atu0,(1.3)

and the solution of the inhomogeneous problem can be represented by

u(t) = e−Atu0 + up(t)(1.4)

with

up(t) =

∫ t

0

e−A(t−ξ)f(ξ)dξ.(1.5)

We can see that an efficient approximation of the operator exponential is needed in
order to get an efficient discretization of both (1.3) and (1.4). Further, having in
mind a discretization of the second summand in (1.4) by a quadrature sum, we need
an efficient approximation of the operator exponential for all t ≥ 0 including the point
t = 0.

A convenient representation of the operator exponential is the one provided by
the improper Dunford–Cauchy integral

e−At =
1

2πi

∫
ΓI

e−tz(zI −A)−1dz,(1.6)

where ΓI is an integration path enveloping the spectrum of A. After parametrizing Γ
we get an improper integral of the type

e−At =
1

2πi

∫
ΓI

e−tz(zI −A)−1dz =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ.(1.7)

The last integral can be discretized by a quadrature rule (desirable exponentially
convergent) involving a short sum of resolvents. Such an algorithm inherits a two-
level parallelism with respect to both the computation of resolvents and the treatment
of different time values.

Two efficient methods for solving linear homogeneous parabolic problems based
on the improper Dunford–Cauchy integrals along a path enveloping the spectrum of
A were recently proposed in [12,14,18,33,34] where the boundary of a sector contain-
ing the spectrum of A or a parabola was used as the integration path. The method
from [33] possesses a polynomial convergence rate. The method from [12,18,23] uses
sinc quadratures [1, 36, 37] and possesses an exponential convergence rate for t > 0
and a polynomial convergence rate for t = 0 depending on the smoothness of the
initial vector u0 from a Hilbert space. An exponential convergence rate for all t ≥ 0
was proved in [13, 42] under assumptions that the initial function u0 belongs to the
domain of D(Aσ) for some σ > 1, where the preliminary computation of Aσu0 is
needed. Note that all these algorithms cannot be directly applied to inhomogeneous
problems due to the inefficiency of computation of the operator exponential at t = 0.
In [20] a hyperbola was used as the integration path which allows one to get the
uniform exponential convergence rate with respect to t ≥ 0 without preliminary com-



2146 I. P. GAVRILYUK AND V. L. MAKAROV

putation of Aσu0. An exponentially convergent algorithm for the case of an operator
family A(t) depending on the parameter t was proposed in [21]. This algorithm uses
an exponentially convergent algorithm for the operator exponential generated by a
constant operator.

In contrast to various other approximation methods with a polynomial conver-
gence rate for the problem (1.1) using finite differences [4, 5, 6, 7, 9, 24, 25, 26, 28, 30,
39, 40, 41] or the Padé fractions [3, 9, 30] (both discrete in time), the Cayley trans-
form [2,16,17,21] (continuous in time), and other ideas (see, for example, [19,22,32,38]
and the references therein), the present paper introduces and analyzes new efficient ex-
ponentially convergent algorithms for the operator exponential including t = 0 which
are also applied to inhomogeneous problems with certain holomorphic right-hand
sides. The algorithms under consideration are parallelizable in an evident way.

The paper is organized as follows. In section 2 we derive some preliminary re-
sults concerning estimates of the resolvent of strongly positive operators by fractional
powers of these operators. In this section we also discuss the question of select-
ing an integration parabola enveloping the spectrum of strongly P-positive operators
avoiding intersection with the spectral parabola. In section 3 we analyze a parabola
different from that of [12, 18] as the integration path in the Dunford–Cauchy rep-
resentation of the operator exponential generated by a strongly P-positive operator
A in a Banach space [11]. Then we construct a sinc approximation of this repre-
sentation and give a new unified estimate for all t ≥ 0 which shows the exponen-
tial convergence for t > 0 and presents a scale of estimates with respect to σ for
t = 0 provided that uo ∈ D(Aσ), σ > 1/2. Using a hyperbola as the integra-
tion path, in section 4 we justify a new algorithm (a quadrature sum with with a
step-size h including 2N resolvents) for the operator exponential e−At which is of

the order O(e−c
√
N ) uniformly in t ≥ 0 provided that h = O(1/

√
N) and of the or-

der O
(
max

{
e−πdN/(c1 lnN), e−c1aItN/2−c1α lnN

})
for each fixed t ≥ 0 provided that

h = c1 lnN/N . Note that this algorithm supposes u0 ∈ D(Aσ), σ > 0, but does not
need the computation of Aσu0. The algorithms of section 4 based on the integration
along a hyperbola have much better convergence properties than the algorithms of
section 3 based on the integration along a parabola. Nevertheless we consider it nec-
essary to also include these results as an example of the application of estimates from
section 2 and in order to complete the theory developed in [12, 15, 18, 23] which was
not extended for the case t ≥ 0.

Let A be a densely defined strongly positive operator and u0 ∈ D(Aα), α ∈ (0, 1).
Then sinc quadrature (4.22) represents an approximate solution of the homogeneous
initial value problem (1.1) (i.e., u(t) = e−Atu0) and possesses a uniform, with re-
spect to t ≥ 0, exponential convergence rate with estimate (4.23) which is of the

order O(e−c
√
N ) uniformly in t ≥ 0 provided that h = O(1/

√
N) and of the or-

der O
(
max

{
e−πdN/(c1 lnN), e−c1aItN/2−c1α lnN

})
for each fixed t ≥ 0 provided that

h = c1 lnN/N .
Since the integrand in (1.7) is mainly concentrated on a finite interval and de-

creases very rapidly outside the interval, we truncate the integral to the one over the
finite interval and implement a sinc quadrature to approximate it. Estimating the
remainders and equalizing all estimates leads to another exponentially convergent ap-
proximation. A comparative analysis of both approximations is given in section 5 and
shows that despite of lower asymptotic convergence rate this approach can be better
for N not very large. Section 6 deals with the inhomogeneous problem (1.1). In order
to approximate the inhomogeneous problem, we represent the second summand in
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(1.4) in the following way:

up(t) =

∫ t

0

e−A(t−ξ)f(ξ)dξ =
1

2πi

∫
ΓI

∫ t

0

e−z(t−ξ)f(ξ)dξdz

=

∫ ∞

−∞
F1(t, η)dη.

(1.8)

We then replace this integral by a new quadrature. The latter uses our first algorithm
to compute the integrand F1(t, η) at each quadrature node. Note that one of the
crucial points in our approach disinguishing the new algorithms from other ones cited
above is the use of a modified resolvent which allows one to also get a numerical stable
algorithm for small t. The theoretical results of this paper are confirmed by numerical
examples. We establish the conditions on f(t) under which this algorithm possesses
an exponential convergence rate when solving the problem (1.2) on the infinite interval
[0,∞). It turns out that the function f(t) has to possess the analytical extension in a
sector Σf = {z = ρeiψ : ρ ∈ (0,∞), ψ ∈ (−φ1, φ1), 0 < φ1 < π/2} and has to possess
the estimate ‖f(z)‖ ≤ ce−c1�z for all z ∈ Σf , where φ1, c1 are consistent with the
spectral characteristics of the operator A.

2. Preliminaries.

2.1. Estimates of the resolvent through fractional powers of strongly
positive operators. Let A be a densely defined strongly positive (sectorial) operator
in a Banach space X with the domain D(A); i.e., its spectrum Σ(A) lies in the sector

Σ =
{
z = a0 + reiθ : r ∈ [0,∞), |θ| < ϕ <

π

2

}
(2.1)

and on its boundary ΓΣ, and outside the sector the following estimate for the resolvent
holds true:

‖(zI −A)−1‖ ≤ M

1 + |z|(2.2)

with some positive constant M (compare with [17, 27, 29, 35]). The angle ϕ is called
the spectral angle of the operator A. A practically important example of strongly
positive operators in X = Lp(Ω), 0 < p < ∞, represents a strongly elliptic partial
differential operator [10, 11, 12, 17, 21, 29, 31] where the parameters a0, ϕ of the sector
Σ are defined by its coefficients.

For an initial vector u0 ∈ D(Am+1) it holds

m+1∑
k=1

Ak−1u0

zk
+

1

zm+1
(zI −A)−1Am+1u0 = (zI −A)−1u0.(2.3)

This equality together with

A−(m+1)v =
1

2πi

∫
ΓI

z−(m+1)(zI −A)−1vdz,(2.4)

by setting v = Am+1u0, yields the following representation:

u0 = A−(m+1)Am+1u0 =
1

2πi

∫
ΓI

z−(m+1)(zI −A)−1Am+1u0dz

=

∫
ΓI

[
(zI −A)−1 −

m+1∑
k=1

Ak−1

zk

]
u0dz

(2.5)
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with an integration path ΓI situated in the right half-plane and enveloping ΓΣ. Let
us estimate the norm of the first integrand in (2.5) as a function of |z| under the
assumption u0 ∈ D(Am+α), m ∈ N, α ∈ [0, 1]. Since the operator A is strongly
positive it holds on and outside the integration path:

‖(zI −A)−1w‖ ≤ M

1 + |z| ‖w‖,

‖A(zI −A)−1w‖ ≤ (1 + M)‖w‖.
(2.6)

These estimates yield (see, e.g., Theorem 4 of [27])

‖A1−α(zI −A)−1w‖ ≤ K‖A(zI −A)−1w‖1−α‖(zI −A)−1w‖α,(2.7)

where the constant K depends on α and M only. This inequality while taking into
account (2.6) implies

‖A1−α(zI −A)−1‖ ≤ K(1 + M)

(1 + |z|)α , α ∈ [0, 1],(2.8)

which leads to the estimate∥∥∥∥
[
(zI −A)−1 − 1

z
I

]
u0

∥∥∥∥ =
1

|z| ‖A
1−α(zI −A)−1Aαu0‖

≤ (1 + M)K

|z|(1 + |z|)α ‖A
αu0‖ ∀α ∈ [0, 1], u0 ∈ D(Aα).

(2.9)

This estimate can be easily generalized to

∥∥∥∥∥
[
(zI −A)−1 −

m+1∑
k=1

Ak−1

zk

]
u0

∥∥∥∥∥ =

∥∥∥∥ 1

zm+1
(zI −A)−1Am+1u0

∥∥∥∥
=

1

|z|m+1
‖A1−α(zI −A)−1Am+αu0‖ ≤ 1

|z|m+1

(1 + M)K

(1 + |z|)α ‖Am+αu0‖

∀α ∈ [0, 1], u0 ∈ D(Am+α).

(2.10)

Thus, we get the following result, which we will need below.
Theorem 2.1. Let u0 ∈ D(Am+α) for some m ∈ N, and let α ∈ [0, 1]. Then the

estimate (2.10) holds true.

2.2. The integration parabola. There are many possibilities to define and to
approximate functions of an operator A. Let Γ be the boundary of a domain Σ in the
complex plane containing the spectrum of A, and let f̃(z) be an analytical function
in Σ. Then the Dunford–Cauchy integral

f̃(A) =
1

2πi

∫
Γ

f̃(z)(zI −A)−1dz(2.11)

defines a function of A provided that the integral converges.
By a parametrizing of Γ = {z = ξ(s) + iη(s) : s ∈ (−∞,∞)}, one can translate

the integral (2.11) into the integral

f̃(A) =

∫ ∞

−∞
F (s)ds(2.12)
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with

F (s) =
1

2πi
f̃(z)(zI −A)−1z′(s).(2.13)

Choosing various integration paths and using various quadrature formulas, one
can obtain approximations of f̃(A) with desired properties (see, for example, [12, 13,
15,17,21,23] where various functions of operators were investigated).

It was shown in [8,11,12,18,31] that the spectrum of a strongly elliptic operator
in a Hilbert space lies in a domain enveloped by a parabola defined by the coefficients
of the operator and that the resolvent on and outside of the parabola possesses the
estimate

‖(zI −A)−1‖ ≤ M

1 +
√

|z|
(2.14)

with some positive constant M . Such operators are called strongly P-positive op-
erators. The paper [31] also contains examples of differential operators which are
strongly P-positive in such genuine Banach spaces as L1(0, 1) or L∞(0, 1). One of the
natural choices of the integration path for these operators is a parabola which does
not intersect the spectral parabola containing the spectrum of the operator.

Let

Γ0 = {z = ξ − iη : ξ = a0η
2 + b0, a0 > 0, b0 > 0, η ∈ (−∞,∞)}(2.15)

be the spectral parabola enveloping the spectrum of the operator A. [12, 18] showed
how one can define the coefficients of an integration parabola by the coefficients of
the spectral parabola so that the integrand in (2.12) can be analytically extended into
a symmetric strip Dd of a width 2d around the real axes, but this choice was rather
complicated.

Below we propose another (simpler) method to define the integration parabola
through the spectral one.

We have to choose an integration parabola

ΓI = {z = ξ − iη : ξ = aIη
2 + bI , aI > 0, bI > 0, η ∈ (−∞,∞)}(2.16)

so that its top lies in (0, b0) and its opening is greater than the one of the spectral
parabola, i.e., aI < a0. Moreover, by changing η to η + iν the set of parabolas

Γ(ν) = {z = ξ − iη : ξ = aIη
2 + bI − aIν

2 + ν − iη(1 − 2aIν), η ∈ (−∞,∞)}

=

{
z = ξ − iη̃ : ξ =

aI
(1 − 2aIν)2

η̃2 + bI − aIν
2 + ν, η̃ = (1 − 2aIν)η ∈ (−∞,∞)

}
,

(2.17)

for |ν| < d must lie outside of the spectral parabola (only in this case can one guarantee
that the resolvent of A remains bounded). Note that the substitution η̃ = (1−2aIν)η
must be nonsingular for all |ν| < d, which yields aI < 1/(2d). We choose d so that the
top of the integration parabola coincides with top of the spectral one and the opening
of the integration parabola is greater than the opening of the spectral parabola for
ν = d. For ν = −d we demand that the integration parabola lies outside of the
spectral parabola and that its top lies at the origin. Thus, it must be⎧⎪⎨

⎪⎩
aI

(1−2aId)2
= a0,

bI − aId
2 + d = b0,

bI − aId
2 − d = 0.

(2.18)
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It follows immediately from the last two equations that 2d = b0. From the first
equation

4d2a0a
2
I − aI(1 + 4a0d) + a0 = 0.(2.19)

After the substitution d = b0/2 we get

aI =
1 + 2a0b0 ±

√
1 + 4a0b0

2a0b0
,(2.20)

but only the root

aI =
1 + 2a0b0 −

√
1 + 4a0b0

2a0b0
=

2a0

1 + 2a0b0 +
√

1 + 4a0b0
(2.21)

satisfies the condition aI < 1/(2d) = 1/b0. Thus, the parameters of the integration
parabola from which the integrand can be analytically extended into the strip Dd of
the width

d = b0/2(2.22)

are

aI =
1 + 2a0b0 −

√
1 + 4a0b0

2a0b0
=

2a0

1 + 2a0b0 +
√

1 + 4a0b0
,

bI =
aIb

2
0

4
+

b0
2
.

(2.23)

3. New algorithm with integration along a parabola and a scale of
estimates. Let A be a strongly P-positive operator, and let

u0 ∈ D(Aα), α > 0.(3.1)

In this case due to (2.10) with m = 0 we have∥∥∥∥
[
(zI −A)−1 − 1

z
I

]
u0

∥∥∥∥ =

∥∥∥∥1

z
(zI −A)−1Au0

∥∥∥∥
=

1

|z| ‖A
1−α(zI −A)−1Aαu0‖ ≤ 1

|z| ‖A
1−α(zI −A)−1‖‖Aαu0‖.

(3.2)

The resolvent of the strongly P-positive operator is bounded on and outside the spec-
tral parabola; more precisely, we have

‖(zI −A)−1w‖ ≤ M

1 +
√
|z|

‖w‖,

‖A(zI −A)−1w‖ ≤
(

1 +
M |z|

1 +
√

|z|

)
‖w‖ ≤ (1 + M

√
|z|)‖w‖.

(3.3)

We suppose that our operator A is at the same time strongly positive (note that a
strongly elliptic operator is both strongly P-positive [11] and strongly positive). We
can use Theorem 4 of [27] and get

‖A1−α(zI −A)−1w‖ ≤ K(α)(1 + M
√

|z|)1−α

(
M

1 +
√
|z|

)α

‖w‖

≤ max (1,M)K(α)
‖w‖

(1 +
√
|z|)2α−1

(3.4)
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with a constant K(α) independent of α where K(1) = K(0) = 1. The last inequality
and (3.1) imply that

∥∥∥∥
[
(zI −A)−1 − 1

z
I

]
u0

∥∥∥∥ ≤ max (1,M)K(α)
‖Aαu0‖
|z|α+ 1

2

(3.5)

which justifies for the integration path above the following representation of the so-
lution of the homogeneous problem (1.1)

u(t) = e−Atu0 =
1

2πi

∫
ΓI

e−tz(zI −A)−1u0dz

=
1

2πi

∫
ΓI

e−tz

[
(zI −A)−1 − 1

z
I

]
u0dz,

(3.6)

provided that α > 0. After parametrizing the integral we get

u(t) =

∫ ∞

−∞
F (t, η)dη(3.7)

with

F (t, η) = − 1

2πi
(2aIη − i)e−t(aIη

2+bI−iη)

×
{

[(aIη
2 + bI − iη)I −A]−1 − 1

aIη2 + bI − iη
I

}
u0.

(3.8)

Following to [36], we construct a quadrature rule for the integral in (2.12) by using
the sinc approximation on (−∞,∞). For 1 ≤ p ≤ ∞, introduce the family Hp(Dd)
of all vector-valued functions, which are analytic in the infinite strip Dd,

Dd = {z ∈ C : −∞ < 	z < ∞, |
z| < d},(3.9)

such that if Dd(ε) is defined for 0 < ε < 1 by

Dd(ε) = {z ∈ C : |	z| < 1/ε, |
z| < d(1 − ε)},(3.10)

then for each F ∈ Hp(Dd) there holds ‖F‖Hp(Dd) < ∞ with

‖F‖Hp(Dd) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
ε→0

(∫
∂Dd(ε)

‖F(z)‖p|dz|
)1/p

if 1 ≤ p < ∞,

lim
ε→0

sup
z∈∂Dd(ε)

‖F(z)‖ if p = ∞.

(3.11)

Let

S(k, h)(x) =
sin [π(x− kh)/h]

π(x− kh)/h
(3.12)

be the kth sinc function with step-size h, evaluated in x. Given F ∈ Hp(Dd), h > 0,
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and positive integer N , let us use the notations

I(F) =

∫
R

F(x)dx, TN (F , h) = h

N∑
k=−N

F(kh),

T (F , h) = h

∞∑
k=−∞

F(kh),

C(F , h) =

∞∑
k=−∞

F(kh)S(k, h),

ηN (F , h) = I(F) − TN (F , h), η(F , h) = I(F) − T (F , h).

Applying the quadrature rule TN with the vector-valued function (3.8), we obtain
for integral (3.7)

u(t) = exp(−tA)u0 ≈ uN (t) = exp
N

(−tA)u0 = h

(
N∑

k=−N

F (kh, t)

)
u0.(3.13)

Below we show that this Sinc-quadrature approximation with a proper choice of h
converges exponentially provided that the integrand can be analytically extended into
a strip Dd. This property of the integrand depends on the choice of the integration
path.

Taking into account (3.5) we get

‖F (t, η)‖ ≤ c
e−t(aIη

2+bI)

(1 + |η|)2α ‖Aαu0‖ ∀t ≥ 0, α > 1/2(3.14)

(the inequality α > 1/2 guarantees the convergence of the integral (3.7)). The analysis
of the integration parabola above implies that the vector-valued function F (η, t) can
be analytically extended into the strip Dd and belongs to the class H1(Dd) with
respect to η with the estimate

‖F (t, z)‖H1(Dd) ≤ c
e−bIt

2α− 1
‖Aαu0‖ ∀t ≥ 0, α > 1/2.(3.15)

For our further analysis of the error ηN (F , h) = exp(−tA)u0 − expN (−tA)u0 of
the quadrature rule (3.13), we use the following lemma from [23].

Lemma 3.1. For any vector-valued function f ∈ H1(Dd), there holds

η(f̃ , h) =
i

2

∫
R

{
f̃(ξ − id−)e−π(d+iξ)/h

sin [π(ξ − id)/h]
− f̃(ξ + id−)e−π(d−iξ)/h

sin [π(ξ + id)/h]

}
dξ,(3.16)

which yields the estimate

‖η(f̃ , h)‖ ≤ e−πd/h

2 sinh(πd/h)
‖f̃‖H1(Dd).(3.17)

If, in addition, f̃ satisfies on R the condition

‖f̃(x)‖ ≤ ce−βx2

(1 + x2)σ
, 1/2 < σ ≤ 1

c, β > 0,

(3.18)
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then

‖ηN (f̃ , h)‖ ≤ 2c

2σ − 1

{
2σ

exp (−πd/h)

sinh(πd/h)
+

exp
(
−β(Nh)2

)
(Nh)2σ−1

}
.(3.19)

Taking into account the estimates (3.14) and (3.15) and setting F for f̃ , α for σ,
and taI for β, we get the estimate

‖ηN (F, h)‖ = ‖exp(−tA)u0 − expN (−tA)u0‖

≤ c
e−bIt

2α− 1

{
2α

exp(−πd/h)

sinh(πd/h)
+

exp
(
−aIt(Nh)2

)
(Nh)2α−1

}
‖Aαu0‖.

(3.20)

Equalizing the exponents here by setting πd/h = aI(Nh)2, we get for the step-size of
the quadrature

h = 3
√
πd/(aIN2).(3.21)

Since sinh (πd/h) ≥ eπd/h/2, πd/h = (
√
aIπdN)2/3, Nh = 3

√
πdN/aI , (Nh)2α−1 =

(πdN/aI)
(2α−1)/3, and d = b0, we get with this step-size the following scale of esti-

mates for the algorithm (3.13):

‖ηN (F , h)‖ = ‖exp(−tA)u0 − expN (−tA)u0‖

≤ c
e−bIt

2α− 1

{
4α exp(−2(

√
aIπb0)

2/3N2/3) +
exp
(
−aIt(πb0N/aI)

2/3
)

(πb0N/aI)(2α−1)/3

}
‖Aαu0‖.

(3.22)

Thus, we have proven the following statement.
Theorem 3.2. Let A be a strongly P-positive operator in a Banach space X with

the resolvent satisfying (2.14) and with the spectral parabola given by (2.15). Then for
the sinc approximation (3.13) we have the estimate (3.22), i.e.,

‖ exp(−tA)u0 − exp
N

(−tA)u0‖ =

{
O(e−c1N

2/3

) if t > 0,

O(N (2α−1)/3) if t = 0,
(3.23)

provided that u0 ∈ D(Aα), α > 1/2.
Remark 3.1. The above algorithm possesses two sequential levels of parallelism:

First, one can compute all û(zp) at step 2 in parallel, and second, the solution u(t) =
e−Atu0 at different time values (t1, t2, . . . , tM ).

4. New algorithm for the operator exponential with an exponential
convergence estimate including t = 0. We consider the following representation
of the operator exponential:

u(t) =
1

2πi

∫
ΓI

e−zt(zI −A)−1u0dz.(4.1)

Our aim is to approximate this integral by a quadrature with exponential convergence
rate including t = 0. It is of great importance to have in mind the representation of
the solution of the nonhomogeneous initial value problem (1.1) by

u(t) = e−Atu0 +

∫ t

0

e−A(t−ξ)f̃(ξ)dξ,(4.2)
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x
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0
2−y2/b

0
2=1

Fig. 4.1. Spectral characteristics of the operator A.

where the argument of the operator exponential under the integral becomes zero for
ξ = t. Taking into account (2.5) for m = 0, one can see that we can represent

u(t) =
1

2πi

∫
ΓI

e−zt

[
(zI −A)−1 − 1

z
I

]
u0dz(4.3)

instead of (4.1) (for t > 0, the integral from the second summand is equal to zero due
to the analyticity of the integrand inside of the integration path), and this integral
represents the solution of the problem (1.1) for u0 ∈ D(Aα), α > 0. We call the
hyperbola

Γ0 = {z(ξ) = a0 cosh ξ − ib0 sinh ξ : ξ ∈ (−∞,∞), b0 = a0 tanϕ}(4.4)

the spectral hyperbola, which has paths through the vertex (a0, 0) of the spectral
angle and possesses asymptotes which are parallel to the rays of the spectral angle Σ
(see Figure 4.1). We choose the following hyperbola as an integration path:

ΓI = {z(ξ) = aI cosh ξ − ibI sinh ξ : ξ ∈ (−∞,∞)}.(4.5)

After parametrizing the integral (4.3) by (4.5), we get

u(t) =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ(4.6)

with

F(t, ξ) = FA(t, ξ)u0,

FA(t, ξ) = e−z(ξ)t(aI sinh ξ − ibI cosh ξ)

[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
.

(4.7)

In order to estimate ‖F(t, ξ)‖ we need an estimate for |z′(ξ)/z(ξ)| = (aI sinh ξ −
ibI cosh ξ)/(aI cosh ξ − ibI sinh ξ) =

√
(a2

I tanh2 ξ + b2I)/(b
2
I tanh2 ξ + a2

I). The quo-

tient under the square root as a function of v = tanh2 ξ ∈ [0, 1] takes its max-
imum at v = 0 since the sign of the first derivative coincides with the sign of
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a4
I − b4I = −a4

0 sinϕ/ cos4 ϕ, i.e., we have

|z′(ξ)/z(ξ)| ≤ bI/aI .(4.8)

Supposing u0 ∈ D(Aα), 0 < α < 1, using (4.8) and Theorem 2.1, we can estimate the
integrand on the real axis ξ ∈ R for each t ≥ 0 by

‖F(t, ξ)‖ ≤ e−aIt cosh ξ
(1 + M)K

√
a2
I sinh2 ξ + b2I cosh2 ξ

(a2
I cosh2 ξ + b2I sinh2 ξ)(1+α)/2

‖Aαu0‖

≤ (1 + M)K
bI
aI

e−aIt cosh ξ

(a2
I cosh2 ξ + b2I sinh2 ξ)α/2

‖Aαu0‖

≤ (1 + M)K
bI
aI

(
2

aI

)α

e−aIt cosh ξ−α|ξ|‖Aαu0‖, ξ ∈ R, t ≥ 0.

(4.9)

Let us show that the function F(t, ξ) can be analytically extended with respect to ξ
into a strip of a width d1. After changing ξ to ξ + iν the integration hyperbola ΓI

will be translated into the curve

Γ(ν) = {z(w) = aI cosh (ξ + iν) − ibI sinh (ξ + iν) : ξ ∈ (−∞,∞)}
= {z(w) = a(ν) cosh ξ − ib(ν) sinh ξ : ξ ∈ (−∞,∞)}

(4.10)

with

a(ν) = aI cos ν + bI sin ν =
√
a2
I + b2I sin (ν + φ/2),

b(ν) = bI cos ν − aI sin ν =
√
a2
I + b2I cos (ν + φ/2),

cos
φ

2
=

bI√
a2
I + b2I

, sin
φ

2
=

aI√
a2
I + b2I

.

(4.11)

The analyticity of the function F(t, ξ+iν), |ν| < d1/2, can be violated if the resolvent
becomes unbounded. Thus, we must choose d1 so that the hyperbola Γ(ν) for ν ∈
(−d1/2, d1/2) remains in the right half-plane of the complex plane, for ν = −d1/2
coincides with the imaginary axis, for ν = d1/2 coincides with the spectral hyperbola,
and for all ν ∈ (−d1/2, d1/2) does not intersect the spectral sector. Then we choose
the hyperbola Γ(0) as the integration hyperbola.

This implies the following system of equations

⎧⎪⎨
⎪⎩
aI cos (d1/2) + bI sin (d1/2) = a0,

bI cos (d1/2) − aI sin (d1/2) = a0 tanϕ,

aI cos (−d1/2) + bI sin (−d1/2) = 0,

(4.12)

from which we get

⎧⎪⎨
⎪⎩

2aI cos (d1/2) = a0,

bI = a0 sin (d1/2) + b0 cos (d1/2),

aI = a0 cos (d1/2) − b0 sin (d1/2).

(4.13)

Eliminating aI from the first and the third equations, we get a0 cos d1 = b0 sin d1,
i.e., d1 = π/2 − ϕ with cosϕ = a0√

a2
0+b20

, sinϕ = b0√
a2
0+b20

. Thus, if we choose the
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parameters of the integration hyperbola by

aI = a0 cos
(π

4
− ϕ

2

)
− b0 sin

(π
4
− ϕ

2

)

=
√
a2
0 + b20 cos

(π
4

+
ϕ

2

)
= a0

cos
(
π
4 + ϕ

2

)
cosϕ

,

bI = a0 sin
(π

4
− ϕ

2

)
+ b0 cos

(π
4
− ϕ

2

)

=
√
a2
0 + b20 sin

(π
4

+
ϕ

2

)
= a0

sin
(
π
4 + ϕ

2

)
cosϕ

,

(4.14)

then the vector-valued function F(t, w) is for all t ≥ 0 analytic with respect to w =
ξ + iν in the strip

Dd1
= {w = ξ + iν : ξ ∈ (−∞,∞), |ν| < d1/2}.(4.15)

Now, estimate (4.9) takes the form

‖F(t, ξ)‖ ≤ C(ϕ, α)e−aIt cosh ξ−α|ξ|‖Aαu0‖
≤ C(ϕ, α)e−α|ξ|‖Aαu0‖, ξ ∈ R, t ≥ 0,

(4.16)

with

C(ϕ, α) = (1 + M)K tan
(π

4
+

ϕ

2

)( 2 cosϕ

a0 cos
(
π
4 + ϕ

2

)
)α

.(4.17)

Comparing (4.14) with (4.11) we get φ = π/2 − ϕ and

a(ν) = aI cos ν + bI sin ν =
a0 sin (ν + π/4 − ϕ/2)

cosϕ
=

a0 cos (π/4 + ϕ/2 − ν)

cosϕ
,

b(ν) = bI cos ν − aI sin ν =
a0 sin (π/4 + ϕ/2 − ν)

cosϕ
,

0 < a(ν) < a0, a0 tanϕ < b(ν) <
a0

cosϕ
.

(4.18)

We choose d = d1 − δ for an arbitrarily small positive δ, and for w ∈ Dd we get the
estimate (compare with (4.9))

‖F(t, w)‖ ≤ e−a(ν)t cosh ξ
(1 + M)K

√
a2(ν) sinh2 ξ + b2(ν) cosh2 ξ

(a2(ν) cosh2 ξ + b2(ν) sinh2 ξ)(1+α)/2
‖Aαu0‖

≤ (1 + M)K
b(ν)

a(ν)

e−a(ν)t cosh ξ

(a2(ν) cosh2 ξ + b2(ν) sinh2 ξ)(α/2)
‖Aαu0‖

≤ (1 + M)K
b(ν)

a(ν)

(
2

a(ν)

)α

e−a(ν)t cosh ξ−α|ξ|‖Aαu0‖

≤ (1 + M)K tan
(π

4
+

ϕ

2
− ν
)( 2 cosϕ

a0 cos (π/4 + ϕ/2 − ν)

)α

e−α|ξ|‖Aαu0‖

∀w ∈ Dd.

(4.19)
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Taking into account that the integrals over the vertical sides of the rectangle Dd(ε)
vanish as ε → 0, this estimate implies

‖F(t, ·)‖H1(Dd) ≤ ‖Aαu0‖[C−(ϕ, α, δ) + C+(ϕ, α, δ)]

∫ ∞

−∞
e−α|ξ|dξ = C(ϕ, α, δ)‖Aαu0‖

(4.20)

with

C(ϕ, α, δ) =
2

α
[C+(ϕ, α, δ) + C−(ϕ, α, δ)],

C±(ϕ, α, δ) = (1 + M)K(cosϕ)α tan

(
π

4
+

ϕ

2
± d

2

)(
2

a0 cos
(
π
4 + ϕ

2 ± d
2

)
)α

.

(4.21)

Note that the constant C(ϕ, α, δ) tends to ∞ if α → 0 or δ → 0, ϕ → π/2.
We approximate integral (4.6) by the sinc quadrature

uN (t) =
h

2πi

N∑
k=−N

F(t, z(kh))(4.22)

with the error

‖ηN (F , h)‖ = ‖u(t) − uN (t)‖

≤
∥∥∥∥∥u(t) − h

2πi

∞∑
k=−∞

F(t, z(kh))

∥∥∥∥∥+

∥∥∥∥∥∥
h

2πi

∑
|k|>N

F(t, z(kh))

∥∥∥∥∥∥
≤ 1

2π

e−πd/h

2 sinh (πd/h)
‖F‖H1(Dd) +

C(ϕ, α)h‖Aαu0‖
2π

∞∑
k=N+1

exp[−aIt cosh (kh) − αkh]

≤ c‖Aαu0‖
α

{
e−πd/h

sinh (πd/h)
+ exp[−aIt cosh ((N + 1)h) − α(N + 1)h]

}
,

(4.23)

where the constant c does not depend on h,N, t. Equalizing both exponentials for
t = 0 by

2πd

h
= α(N + 1)h,(4.24)

we get for the step-size

h =

√
2πd

α(N + 1)
.(4.25)

With this step-size the following error estimate holds true:

‖ηN (F , h)‖ ≤ c

α
exp

(
−
√

πdα

2
(N + 1)

)
‖Aαu0‖(4.26)

with a constant c independent of t,N . In the case t > 0 the first summand in the
exponent of exp[−aIt cosh ((N + 1)h) − α(N + 1)h] in (4.23) contributes mainly to
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the error order. Setting in this case h = c1 lnN/N with some positive constant c1, we
remain asymptotic for a fixed t with an error

‖ηN (F , h)‖ ≤ c
[
e−πdN/(c1 lnN) + e−c1aItN/2−c1α lnN

]
‖Aαu0‖,(4.27)

where c is a positive constant. Thus, we have proved the following result.
Theorem 4.1. Let A be a densely defined strongly positive operator, and let

u0 ∈ D(Aα), α ∈ (0, 1). Then sinc quadrature (4.22) represents an approximate
solution of the homogeneous initial value problem (1.1) (i.e., u(t) = e−Atu0) and
possesses a uniform, with respect to t ≥ 0, exponential convergence rate with estimate

(4.23) which is of the order O(e−c
√
N ) uniformly in t ≥ 0 provided that h = O(1/

√
N)

and of the order O
(
max

{
e−πdN/(c1 lnN), e−c1aItN/2−c1α lnN

})
for each fixed t ≥ 0

provided that h = c1 lnN/N .

Remark 4.1. Two other algorithms of the convergence order O(e−c
√
N ) uniformly

in t ≥ 0 were proposed in [15, Remark 4.3 and (2.41)]. One of them used a sum of
resolvents applied to u0 provided that the operator coefficient is bounded. Another
one was based on the representation

u(t) =

∫
Γ

z−σe−zt(zI −A)−1Aσu0(4.28)

valid for u0 ∈ D(Aσ), σ > 1. Approximating the integral (after parametrizing Γ) by
a sinc quadrature, one gets a short sum of resolvents applied to Aσu0 (see [15, (2.41)]
and [42]). The last vector must be computed as a preliminary where in practice σ = 2
is the first choice. It is easy to see that for u0 ∈ D(Aσ) both representations (4.28)
and (4.3) are, in fact, equivalent although the orders of computational stages (i.e.,
the algorithms) are different depending on the integral representation in use. But in
the case σ < 1 the convergence theory for (4.28) was not presented in [15, 42]. Our
representation (4.3) produces a new approximation through a short sum of modified
resolvents (zI −A)−1 − z−1I applied to u0 with the convergence properties given by
Theorem 4.1. An approximation of the accuracy order O(e−cN/ lnN ) for each fixed
t > 0 to the operator exponential generated by a strongly P-positive operator and
using a short sum of the usual resolvents was recently proposed in [14].

Remark 4.2. Note that taking (zI − A)−1 instead of (zI − A)−1 − 1
z I in (4.3)

results in a difference given by

DI(t) = − 1

2πi

∫
ΓI

e−zt 1

z
u0dz.(4.29)

For the integration path ΓI and t = 0 this difference can be calculated analytically.
Actually, taking into account that the real part is an odd function and the integral
of it in the sense of Cauchy is equal to zero, we further get for the integral of the
imaginary part

DI(0) = − 1

2πi
P.V.

∫
ΓI

1

z
u0dz

= − 1

2π

∫ ∞

−∞

aIbIdξ

a2
I cosh2 ξ + bI sinh2 ξ

u0

=
aIbI
2π

∫ ∞

−∞

d(tanh ξ)

a2
I + b2I tanh2 ξ

u0

=
1

π
arctan

bI
aI

u0 =
1

π

(π
4

+
ϕ

2

)
u0,

(4.30)
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where the factor in the front of u0 is less than 1/2. It means that one can expect a
large error for t small enough when using (zI−A)−1 instead of (zI−A)−1− 1

z I in (4.3).
This phenomena can be observed in the next example. Note that for t > 0 integral
(4.29) is equal to 0 due to the analyticity of the integrand inside of the integration
path.

Example 4.1. Let us choose a0 = π2, ϕ = 0.8π/2. Then Table 1 gives the values
of ‖DI(t)‖/‖u0‖ for various t.

Table 1

The unremovable error when using the resolvent instead of (zI −A)−1 − 1
z
I.

t ‖DI(t)‖/‖u0‖
0 0.45

0.1 · 10−8 0.404552
0.1 · 10−7 0.081008
0.1 · 10−6 0.000257
0.1 · 10−5 0.147153 · 10−6

5. Exponentially convergent algorithm II. Figure 5.1 shows the behavior
of the integrand F(t, ξ) in (4.6) with the operator A defined by D(A) = {v(x) : v ∈
H2(0, 1), v(0) = v(1) = 0}, Au = −d2u

dx2 . One can observe that the integrand is
concentrated on a small finite interval and decays very rapidly outside of this interval.
This fact can be a reason for slow convergence of the above algorithm for N not large
enough. In this section we construct another exponentially convergent quadrature
which takes into account the behavior of the integrand.

Due to the fact that the integrand exponentially decays on the infinite interval, it
is reasonable to use an exponentially convergent quadrature rule on a finite interval
where the integrand is mostly concentrated and to estimate the residual part. We
represent integral (4.6) in the form

u(t) =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ = I1(t) + I2(t)(5.1)

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5

xi

Fig. 5.1. The behavior of the integrand F(t, ξ) in (4.6).
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with

I1(t) =
1

2πi

∫ β

−β

F(t, ξ)dξ,

I2(t) =
1

2πi

∫ −β

−∞
F(t, ξ)dξ +

1

2πi

∫ ∞

β

F(t, ξ)dξ.

(5.2)

Using estimate (4.17) we get

∥∥∥∥‖A
αu0‖
2πi

∫ ∞

β

F(t, ξ)

∥∥∥∥ ≤ ‖Aαu0‖
2π

(1 + M)K tan
(π

4
+

ϕ

2

)( 2√
a2
0 + b20 cos

(
π
4 + ϕ

2

)
)α

×
∫ ∞

β

e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh ξ−α|ξ|dξ

≤ C1(ϕ, α)‖Aαu0‖e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh β

∫ ∞

β

e−α|ξ|dξ

≤ C1(ϕ, α)‖Aαu0‖e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh βe−α|β|

(5.3)

with the constant

C1(ϕ, α) =
(1 + M)K

2πα
tan
(π

4
+

ϕ

2

)( 2√
a2
0 + b20 cos

(
π
4 + ϕ

2

)
)α

independent of β. This constant tends to ∞ if α → 0 or ϕ → π/2. Analogously one
gets ∥∥∥∥∥

1

2πi

∫ −β

−∞
F(t, ξ)

∥∥∥∥∥ ≤ C1(ϕ, α)‖Aαu0‖e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh βe−α|β|,(5.4)

which yields the estimate

‖I2‖ ≤ 2C1(ϕ, α)‖Aαu0‖e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh βe−α|β|.(5.5)

Following [36] let us define for d ∈ (0, π) the eye-shaped region

D = D2
d =

{
z ∈ C :

∣∣∣∣arg

(
z + β

z − β

)∣∣∣∣ < d

}
(5.6)

(see Figure 5.2) and the class Lκ,μ(D) of all holomorphic in D vector-valued functions
satisfying

‖F (z)‖ ≤ c|z + β|κ−1|z − β|μ−1(5.7)

with some positive constants c, κ, μ.
In the previous section we have shown that F(t, ξ) can be analytically extended

into the symmetric with respect to the real axis strip Dd of the width 2d. The equation
of the boundary of the eye-shaped region in cartesian coordinates is 2βy

x2+y2−β2 =
± tan d1. For x = 0 the maximal value of y, which still lies in the analyticity region,
is y = d, and we get for the maximal d1 the equation 2βd

d2−β2 = ± tan d1, from which

d1  d/β(5.8)

for β large enough.
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−1 1

D
d
2

d

d

Fig. 5.2. The eye-shaped region.

Given N and a function F (ξ) ∈ Lκ,μ, which can be analytically extended into an
eye-shaped domain D2

d1
, let us define (see [36])

ε = min (κ, μ), δ = max (κ, μ),

h =

(
2πd

εn

)1/2

,

Ml =

{
N if ε = κ,

[μN/κ] otherwise,
Mu =

{
[κN/μ] if ε = κ,

N otherwise.

(5.9)

Then ∥∥∥∥∥
∫ β

−β

F (ξ)dξ − 2βh

Mu∑
−Ml

ekh

(1 + ekh)2
F (zk)

∥∥∥∥∥ ≤ ce−
√

2πd1εN ,(5.10)

where the nodes are zk = −β+βekh

1+ekh .
Using this quadrature and taking into account that F(t, ξ) ∈ L1,1(D) (with re-

spect to ξ), we get the following sinc quadrature approximation for I1:

I1(t) ≈ I1,N (t) =
2βh

2πi

N∑
−N

ekh

(1 + ekh)2
F(t, zk),

h =

(
2πd1

N

)1/2
(5.11)

with the approximation error

‖ηN,1(t)‖ ≤ c‖Aαu0‖e−
√

2πd1N .(5.12)

Setting

u(t) = e−Atu0 ≈ I1(t)(5.13)
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results in the full approximation error

‖u(t) − I1,N‖ = ‖e−Atu0 − I1,N‖ ≤ ‖ηN,1‖ + ‖I2(t)‖

≤ c‖Aαu0‖(e−
√

2πd1N + e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh βe−α|β|).

(5.14)

Equalizing the exponents and taking into account (5.8), we get that h =
(

2πd
N4/3

)1/2
and

‖e−Atu0 − I1,N (t)‖ ≤ c‖Aαu0‖e−c1N
1/3

(5.15)

provided that

β  N1/3.(5.16)

Example 5.1. We consider problem (1.1) with u0 = (1 − x)x2 and the operator

A defined by D(A) = {v(x) : v ∈ H2(0, 1), v(0) = v(1) = 0}, Au = −d2u
dx2 .

It is easy to see that u0 ∈ D(A1), and the exact solution is given by u(t, x) =

− 4
π3

∑∞
1

2(−1)k+1
k3 e−π2k2t sin (πkx). One can show that

(zI −A)−1u0 − u0/z =
1

z
(zI −A)−1Au0

=
6x− 2

z2
− cos [

√
z(1/2 − x)]

z2 cos (
√
z/2)

+ 3
sin [

√
z(1/2 − x)]

z2 sin (
√
z/2)

.
(5.17)

Table 2 gives the solutions computed by the algorithm (4.22) with h =
√

2π/N (the

first column) and by algorithm (5.13) with h =
√

2π/N4/3 (the second column).
The exact solution is u(0, 1/2) = u0(1/2) = 1/8. This example shows that although
algorithm (4.22) is better for N large enough, algorithm (5.13) can be better for
relatively small N . Besides the table confirms the exponential convergence of both
algorithms.

Table 2

The solution for t = 0, x = 1/2 by the algorithms (4.22) (A1) and (5.13) (A2).

N A1 A2
8 0.147319516168 0.121686777535
16 0.131006555144 0.124073586590
32 0.125894658654 0.124809057018
64 0.125055464496 0.124952849785
128 0.125000975782 0.124995882473
256 0.125000002862 0.124999802171

6. Inhomogeneous differential equation. In this section we consider the in-
homogeneous problem (1.1) with the solution

u(t) = uo(t) + up(t),(6.1)

where

uo(t) = e−Atu0, up(t) =

∫ t

0

e−A(t−s)f(s)ds.(6.2)
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Note that there exist algorithms for convolution integrals of the same type as the ones
from previous sections and also based on sinc quadratures [36]. Since these algorithms
use the inverse Laplace transformation combined with Tikhonov’s regularization, their

justification is rather complicated and the convergence order is O(
√
Ne−c

√
N ). In

order to shake off the factor
√
N in the front of the exponential, we propose in this

section a discretization different from [36].
Using representation (4.3) of the operator exponential we get

up(t) =

∫ t

0

1

2πi

∫
ΓI

e−z(t−s)

[
(zI −A)−1 − 1

z
I

]
f(s)dzds

=
1

2πi

∫
ΓI

[
(z(ξ)I −A)−1 − 1

z(ξ)
I

] ∫ t

0

e−z(ξ)(t−s)f(s)dsz′(ξ)dξ,

z(ξ) = aI cosh ξ − ibI sinh ξ.

(6.3)

Replacing here the first integral by quadrature (4.22) we get

up(t) ≈ uap(t) =
h

2πi

N∑
k=−N

z′(kh)

[
(z(kh)I −A)−1 − 1

z(kh)
I

]
fk(t)(6.4)

with

fk(t) =

∫ t

0

e−z(kh)(t−s)f(s)ds, k = −N, . . . , N.(6.5)

In order to construct an exponentially convergent quadrature for these integrals, we
change the variables by

t

2
− s =

t

2
tanh ξ(6.6)

and get instead of (6.5)

fk(t) =

∫ ∞

−∞
Fk(t, ξ)dξ,(6.7)

where

Fk(t, ξ) =
t

2 cosh2 ξ
exp[−z(kh)t(1 + tanh ξ)/2]f(t(1 − tanh ξ)/2).(6.8)

Note that with the complex variables z = ξ + iν and w = u + iv, equation (6.6)
represents the conformal mapping w = ψ(z) = t[1 − tanh z]/2, z = φ(w) = 1

2 ln t−w
w ,

of the strip Dν onto the domain Aν (compare with the domain D2
ν in [36]; also see

Figure 6.1). The integrand can be estimated on the real axis by

‖Fk(t, ξ)‖ ≤ t

2 cosh2 ξ
exp[−aI cosh (kh)t(1 + tanh ξ)/2]‖f(t(1 − tanh ξ)/2)‖

≤ 2te−2|ξ|‖f(t(1 − tanh ξ)/2)‖.
(6.9)

Lemma 6.1. Let the right-hand side f(t) in (1.1) for t ∈ [0,∞] be analytically
extended into the sector Σf = {ρeiθ1 : ρ ∈ [0,∞], |θ1| < ϕ}, and for all complex
w ∈ Σf we have

‖f(w)‖ ≤ ce−δ|�w|(6.10)
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The image of the strip 
t=10, nu=Pi/6
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0

1
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2 4 6 8 10
u

Fig. 6.1. The image of the strip for t = 10, ν = π/6.

with δ ∈ (0,
√

2a0]. Then the integrand Fk(t, ξ) can be analytically extended into the
strip Dd1 , 0 < d1 < ϕ/2, and belongs to the class H1(Dd1) with respect to ξ, where
a0, ϕ are the spectral characterizations (2.1) of A.

Proof. Let us investigate the domain in the complex plane to which the function
F(t, ξ) can be analytically extended from the real axis ξ ∈ R. Replacing in the
integrand ξ to ξ + iν, ξ ∈ (−∞,∞), |ν| < d1, we get in particularly for the argument
of f

tanh (ξ + iν) =
sinh ξ cos ν + i cosh ξ sin ν

cosh ξ cos ν + i sinh ξ sin ν

=
sinh (2ξ) + i sin (2ν)

2(cosh2 ξ − sin2 ν)
,

1 ± tanh (ξ + iν) = q±r + iq±i ,

(6.11)

where

q±r (ξ, ν) = 1 ± sinh 2ξ

2(cosh2 ξ − sin2 ν)
=

e±2ξ + cos (2ν)

2(cosh2 ξ − sin2 ν)
,

q±i (ξ, ν) = ± sin 2ν

2(cosh2 ξ − sin2 ν)
.

(6.12)

The denominator in (6.11) is not equal to zero for all ξ ∈ (−∞,∞) provided that
ν ∈ (−π/2, π/2). It is easy to see that for ξ ∈ (−∞,∞) we have

0 ≤ q±r (ξ, ν) ≤ 2,

|q±i (ξ, ν)| ≤ | tan ν|,
(6.13)

i.e., for each fixed t, ν and for ξ ∈ (−∞,∞) the parametric curve ΓA(t) given by (in
the coordinates μ, η)

μ =
t

2
q−r (ξ, ν),

η =
t

2
q−i (ξ, ν)

(6.14)



EXPONENTIALLY CONVERGENT ALGORITHMS 2165

Domain of Analiticity

t=3,5,10, nu=Pi/6

–30

–20

–10

0

10

20

30

5 10 15 20

Fig. 6.2. The domains of the analyticity of the integrand for t = 3, 5, 10, ν = π/6.

from (6.11) is closed and builds with the real axis at the origin the angle

θ = θ(ν) = arctan | lim
ξ→∞

q−i (ξ, ν)/q−r (ξ, ν)| = arctan (tan (2ν)) = 2ν.(6.15)

For ν ∈ (−π/4, π/4) the domain A(t) inside of ΓA(t) lies in the right half-plane, and
for t → ∞ fills the sector Σf (ν) = {z = ρeiψ : ρ ∈ (0,∞), ψ ∈ (−ν, ν), ν ∈ (0, π/4)}
(see Figure 6.2). Taking into account (4.14) we have

‖F(t, ξ + iν)‖ ≤ t

2(cosh2 ξ − sin2 ν)

×
∣∣∣∣exp

{
− t[aI cosh (kh) − ibI sinh (kh)]

2

[
q+
r + iq+

i

]}∣∣∣∣
× ‖f(t(1 − tanh (ξ + iν))/2)‖

≤ t

2(cosh2 ξ − sin2 ν)

× exp

{
− ta0[cosh (kh) cos (π/4 + ϕ/2)(cos (2ν) + e2ξ)]

2(cosh2 ξ − sin2 ν)

− ta0[sinh (kh) cos (π/4 + ϕ/2) sin (2ν)]

2(cosh2 ξ − sin2 ν)

}

× ‖f(t(1 − tanh (ξ + iν))/2)‖

(6.16)

(note that ν ∈ (−π/2, π/2) provides that cosh2 ξ − sin2 ν > 0 for all ξ ∈ (−∞,∞)).
Since we suppose that

‖f(w)‖ ≤ ce−δ|�w|, δ > 0,(6.17)

then by omitting the second summand in the argument of the exponential and replac-
ing cosh (kh) by 1, we arrive at the inequality

‖F(t, ξ + iν)‖ ≤ ct

2(cosh2 ξ − sin2 ν)

× exp

{
t[−Δe2ξ − δe−2ξ/2]

2(cosh2 ξ − sin2 ν)

}
,

(6.18)
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where

a0

2
≤ Δ = a0

cos (ϕ/2 + π/4)

cosϕ
=

a0√
2
√

1 + sinϕ
≤ a0√

2
.(6.19)

Due to assumption δ ≤
√

2a0 we have δ/2 ≤ Δ, and the last estimate yields

‖F(t, ξ + iν)‖ ≤ ct

2(cosh2 ξ − sin2 ν)
exp

{
− tδ cosh (2ξ)

2(cosh2 ξ − sin2 ν)

}
.(6.20)

Denoting w = tΔ cosh (2ξ)/[2(cosh2 ξ − sin2 ν)] and using (6.19) and the inequality
we−w ≤ e−1 ∀ w ≥ 0, we get

∫ ∞

−∞
‖F(t, ξ + iν)‖dξ ≤

∫ ∞

−∞

ct

2(cosh2 ξ − sin2 ν)
exp

{
− tδ cosh (2ξ)

2(cosh2 ξ − sin2 ν)

}
dξ

=

∫ ∞

−∞

1

Δ cosh (2ξ)
we−wdξ ≤ c

eΔ

∫ ∞

−∞

1

cosh (2ξ)
dξ

≤ 2c

eΔ

∫ ∞

−∞
e−2|ξ|dξ =

2c

eΔ
≤ 4c

a0e
.

(6.21)

This estimate yields Fk(t, ξ) ∈ H1(Dd1) with respect to ξ.
The assumptions of Lemma 6.1 can be weakened if we consider problem (1.1) on

some finite interval (0, T ].
Lemma 6.2. Let the right-hand side f(t) in (1.1) for t ∈ [0, T ] be analytically ex-

tended into the domain A(T ). Then the integrand Fk(t, ξ) can be analytically extended
into the strip Dd1 , 0 < d1 < ϕ/2, and belongs to the class H1(Dd1) with respect to
ξ.

Proof. The proof is analogous to the proof of Lemma 6.1 but with constants
depending on T .

Let the assumptions of Lemma 6.1 hold. Then we can use the following quadrature
rule to compute the integrals (6.7) (see [36], p. 144):

fk(t) ≈ fk,N (t) = h

N∑
p=−N

μk,p(t)f(ωp(t)),(6.22)

where

μk,p(t) =
t

2
exp{− t

2
z(kh)[1 + tanh (ph)]}/ cosh2 (ph),

ωp(t) =
t

2
[1 − tanh (ph)], h = O(1/

√
N),

z(ξ) = aI cosh ξ − ibI sinh ξ.

(6.23)

Substituting (6.22) into (6.4) we get the following algorithm to compute an approach
uap,N (t) to uap(t):

uap,N (t) =
h

2πi

N∑
k=−N

z′(kh)

[
(z(kh)I −A)−1 − 1

z(kh)
I

]

× h

N∑
p=−N

μk,p(t)f(ωp(t)).

(6.24)

The next theorem characterizes the error of this algorithm.
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Theorem 6.3. Let A be a densely defined strongly positive operator with the
spectral characterization a0, ϕ, and let the right-hand side f(t) ∈ D(Aα), α > 0 for
t ∈ [0,∞] be analytically extended into the sector Σf = {ρeiθ1 : ρ ∈ [0,∞], |θ1| < ϕ}
where the estimate

‖Aαf(w)‖ ≤ cαe
−δα|�w|, w ∈ Σf(6.25)

with δα ∈ (0,
√

2a0] holds. Then algorithm (6.24) converges with the error estimate

‖EN (t)‖ = ‖up(t) − uap,N (t)‖ ≤ ce−c1
√
N(6.26)

uniformly in t with positive constants c, c1 depending on α, ϕ, a0 and independent of
N .

Proof. Let us denote

Rk(t) = fk(t) − fk,N (t).(6.27)

Then we get for the error

EN (t) = up(t) − uap,N (t) = r1,N (t) + r2,N (t),(6.28)

where

r1,N (t) = up(t) − uap(t),

r2,N (t) = uap(t) − uap,N (t).
(6.29)

Using estimate (4.26) (see also Theorem 4.1) we get for r1,N (t) the estimate

‖r1,N (t)‖ =

∥∥∥∥∥
∫ t

0

{
1

2πi

∫ ∞

−∞
FA(t− s, ξ)dξ − h

2πi

N∑
k=−N

FA(t− s, kh)

}
f(s)ds

∥∥∥∥∥

≤ c

α
exp

(
−
√

πdα

2
(N + 1)

)∫ t

0

‖Aαf(s)‖ds,

(6.30)

where FA(t, ξ) is the operator defined in (4.7). Due to (2.9) we have for the error
r2,N (t)

‖r2,N (t)‖ =

∥∥∥∥∥
h

2πi

N∑
k=−N

z′(kh)

[
(z(kh)I −A)−1 − 1

z(kh)
I

]
Rk(t)

∥∥∥∥∥

≤ h(1 + M)K

2π

N∑
k=−N

|z′(kh)|
|z(kh)|1+α

‖AαRk(t)‖.

(6.31)

The estimate (6.9) yields

‖AαF(t, ξ)‖ ≤ 2te−2|ξ|
∥∥∥∥Aαf

(
t

2
(1 − tanh ξ)

)∥∥∥∥ .(6.32)
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Due to Lemma 6.1 the assumption ‖Aαf(w)‖ ≤ cαe
−δα|�w| for all w ∈ Σf guarantees

that Aαf(w) ∈ H1(Dd1) and AαFk(t, w) ∈ H1(Dd1). Then we are in the situation
analogous to that of Theorem 3.2.1, p. 144, of [36] with Aαf(w) instead of f which
implies

‖AαRk(t)‖ = ‖Aα(fk(t) − fk,N (t))‖

=

∥∥∥∥∥
∫ ∞

−∞
AαFk(t, ξ)dξ − h

∞∑
k=−∞

AαFk(t, kh)

∥∥∥∥∥+

∥∥∥∥∥∥h
∑

|k|>N

AαFk(t, kh)

∥∥∥∥∥∥
≤ e−πd1/h

2 sinh (πd1/h)
‖Fk(t, w)‖H1(Dd1

)

+ h
∑

|k|>N

2te−2|kh|
∥∥∥∥Aαf

(
t

2
(1 − tanh kh)

)∥∥∥∥
≤ ce−2πd1/h‖Aαf(t, w)‖H1(Dd1

)

+ h
∑

|k|>N

2te−2|kh|cαexp

{
−δα

t

2
(1 − tanh kh)

}

≤ ce−c1
√
N ,

(6.33)

where positive constants cα, δα, c, c1 do not depend on t, N, k. Now, (6.31) takes the
form

‖r2,N (t)‖ =
h

2πi

N∑
k=−N

z′(kh)

[
(z(kh)I −A)−1 − 1

z(kh)
I

]
Rk(t)

≤ ce−c1
√
NSN

(6.34)

with SN =
∑N

k=−N h |z′(kh)|
|z(kh)|1+α . Using the estimate (4.8) and

|z(kh)| =

√
a2
I cosh2 (kh) + b2I sinh2 (kh)

≥ aI cosh (kh) ≥ aIe
|kh|/2,

(6.35)

the last sum can be estimated by

|SN | ≤ c√
N

N∑
k=−N

e−α|k/
√
N | ≤ c

∫ √
N

−
√
N

e−αtdt ≤ c/α.(6.36)

Taking into account (6.33) and (6.36) we get from (6.34)

‖r2,N (t)‖ ≤ ce−c1
√
N .(6.37)

The assertion of the theorem follows now from (6.28) and (6.30).
Example 6.1. We consider the inhomogeneous problem (1.1) with the operator

A defined by

D(A) = {u(x) ∈ H2(0, 1) : u(0) = u(1) = 0},
Au = −u′′(x) ∀u ∈ D(A).

(6.38)
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The initial function is u0 = u(0, x) = 0, and the right-hand side f(t) is given by

f(t, x) = x3(1 − x)3
1 − t2

(1 + t2)2
− 6t

1 + t2
x(1 − x)(5x2 − 5x + 1).(6.39)

It is easy to see that the exact solution is u(t, x) = x3(1 − x)3 t
1+t2 . The algorithm

(6.24) was implemented for t = 1, x = 1/2 in Maple 8 with Digits=16. Table 3 shows
an exponential decay of the error εN = |u(1, 1/2) − uap,N (1)| with growing N .

Table 3

The error of algorithm (6.24) for t = 0, x = 1/2.

N εN
8 0.485604499
16 0.184497471
32 0.332658314 e-1
64 0.196729786 e-2
128 0.236757688 e-4
256 0.298766899 e-7
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gen, Ber. der Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl., 88 (1936), pp. 119–132.

[9] M. Crouzeix, S. Larsson, S. Piskarev, and V. Thomée, The stability of rational approxi-
mations of analytic semigroups, BIT, 33 (1993), pp. 74–84.

[10] H. Fujita, N. Saito, and T. Suzuki, Operator Theory and Numerical Methods, Elsevier,
Heidelberg, 2001.

[11] I. P. Gavrilyuk, Strongly P-positive operators and explicit representation of the solutions of
initial value problems for second order differential equations in Banach space, J. Math.
Anal. Appl., 236 (1999), pp. 327–349.

[12] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, H-matrix approximation for the
operator exponential with applications, Numer. Math., 92 (2002), pp. 83–111.

[13] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Data-sparse approximation to the
operator-valued functions of elliptic operator, Math. Comp., 73 (2004), pp. 1297–1324.



2170 I. P. GAVRILYUK AND V. L. MAKAROV

[14] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Tensor-product approximation to
elliptic and parabolic solution operators in higher dimensions, Computing, 74 (2005), pp.
131–157.

[15] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Data-sparse approximation of a
class of operator-valued functions, Math. Comp., 74 (2005), pp. 681–708.

[16] I. P. Gavrilyuk and V. L. Makarov, The Cayley transform and the solution of an initial
value problem for a first order differential equation with an unbounded operator coefficient
in Hilbert space, Numer. Funct. Anal. Optim., 15 (1994), pp. 583–598.

[17] I. P. Gavrilyuk and V. L. Makarov, Representation and approximation of the solution of
an initial value problem for a first order differential equation in Banach space, Z. Anal.
Anwendungen, 15 (1996), pp. 495–527.

[18] I. P. Gavrilyuk and V. L. Makarov, Exponentially convergent parallel discretization methods
for the first order evolution equations, Comput. Methods Appl. Math., 1 (2001), pp. 333–
355.

[19] I. P. Gavrilyuk and V. L. Makarov, Exponentially convergent parallel discretization methods
for the first order differential equations, Dokl. Ukrainian Acad. Sci., (2002), pp. 1–6.

[20] I. P. Gavrilyuk and V. L. Makarov, Exponentially Convergent Algorithms for the Opera-
tor Exponential with Applications to Inhomogeneous Problems in Banach Spaces, Jenaer
Schriften zur Mathematik und Informatik, FSU Jena, 4 (2004), pp. 1–34 (available online
at http://www.minet.uni-jena.de/Math-Net/reports/).

[21] I. P. Gavrilyuk and V. L. Makarov, Algorithms without accuracy saturation for evolution
equations in Hilbert and Banach spaces, Math. Comp., 74 (2005), pp. 555–583.

[22] I. P. Gavrilyuk and V. L. Makarov, An explicit boundary integral representation of the
solution of the two-dimensional heat equation and its discretization, J. Integral Equations
Appl., 12 (2000), pp. 63–83.

[23] I. P. Gavrilyuk, V. L. Makarov, and V. Vasylyk, A new estimate of the sinc method for
linear parabolic problems including the initial point, Comput. Methods Appl. Math., 4
(2004), pp. 1–27.
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A SECOND-ORDER MAXIMUM PRINCIPLE PRESERVING
FINITE VOLUME METHOD FOR STEADY
CONVECTION-DIFFUSION PROBLEMS∗

ENRICO BERTOLAZZI† AND GIANMARCO MANZINI‡

Abstract. A cell-centered finite volume method is proposed to approximate numerically the
solution to the steady convection-diffusion equation on unstructured meshes of d-simplexes, where
d ≥ 2 is the spatial dimension. The method is formally second-order accurate by means of a piecewise
linear reconstruction within each cell and at mesh vertices. An algorithm is provided to calculate
nonnegative and bounded weights. Face gradients, required to discretize the diffusive fluxes, are
defined by a nonlinear strategy that allows us to demonstrate the existence of a maximum principle.
Finally, a set of numerical results documents the performance of the method in treating problems
with internal layers and solutions with strong gradients.

Key words. unstructured grids, finite volume methods, maximum principles, M-matrices
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1. Introduction. We are concerned with the finite volume approximation of the
steady convection-diffusion boundary value problem:

Find a function u satisfying

div(vu − ν∇u) = s in Ω,(1a)

u = g on Γ,(1b)

where Ω ∈ R
d, d ≥ 2, is a polyhedral domain with boundary Γ. We assume that

the unit vector almost everywhere orthogonal to Γ, denoted by n, is always oriented
outward of Ω. The model problem of (1a)–(1b) describes the advective transport of
the scalar quantity u(x) by the velocity field v(x) and the diffusion process driven
by the scalar viscosity field ν(x). A forcing term can be present on the right-hand
side of (1a), namely, s(x). Dirichlet boundary conditions are set on Γ by using the
scalar field g(x). Let the fields v(x), ν(x), s(x), and g(x) satisfy the constraints listed
below:

(i) ν(x) ≥ β > 0, ν ∈ C1(Ω);

(ii) divv ≥ 0, v ∈ C1(Ω)d;

(iii) s ∈ L2(Ω);

(iv) g ∈ H1/2(Γ)∩ C(Γ)

(2)

for a suitable real constant β, and where

Hm(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω), |α| ≤ m

}
,
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for m ≥ 0, is the standard notation of a Sobolev space [1]. Under conditions (2) a
weak reformulation of problem (1a)–(1b) is possible in terms of the H1-coercive bilinear
form:

a(u, v) =

∫
Ω

(ν∇u − uv) · ∇v dV.

In view of the Lax–Milgram lemma, the weak problem has a unique solution in
H1(Ω) [1].

Following Stampacchia [29], a function u ∈ H1(Ω) is said to be superelliptic if
a(u, v) ≤ 0 for any v ∈ C∞0 (Ω) and v ≥ 0, where C∞0 (Ω) is the space of infinitely
differentiable functions with compact support in Ω. Under the above-stated regularity
assumptions, a maximum principle for superelliptic weak solutions exists. If u is a
superelliptic solution and is such that ess supx∈Γ u(x) ≤ k, then ess supx∈Ω u(x) ≤
max{0, k}; see [15]. A minimum principle can be stated as well by introducing the
notion of subelliptic solution, which is a function u ∈ H1(Ω) that satisfies the condition
a(u, v) ≥ 0 for any v ∈ C∞0 (Ω) and v ≥ 0. Then if u is a subelliptic weak solution and
is such that ess infx∈Γ u(x) ≥ k, then ess infx∈Ω u(x) ≥ min(0, k); see again [15].

From the analytical viewpoint, maximum and minimum principles are quite gen-
eral but very significant due to their physical implications. For example, if u at-
tains physically meaningful values in a specific range of real numbers, and is suitably
bounded on Γ, then u must attain values in the same range (almost) everywhere in the
interior of Ω. From the numerical viewpoint, it is widely recognized that maximum
and minimum principles provide a valuable tool in proving solvability results (exis-
tence and uniqueness of discrete solutions), enforcing numerical stability, and deriving
convergence results (a priori error estimates) for the sequence of approximate solu-
tions; see [26]. Recent papers investigating the existence of maximum principles in
discretization schemes for partial differential equations are cited in [9]. Other papers
pertinent to the issue of discrete maximum principle preserving methods are found in
[21, 22, 32].

A literature review of the many finite volume methods that ensure a maximum
principle is beyond the scope of this paper. For this purpose, we refer the reader to
the general introductions found, for example, in [13, 26] and to the references therein.
However, we wish to emphasize a rather important fact that we realized after a careful
and systematic inspection of the cell-centered finite volume methods that are avail-
able in the literature and capable of preserving a discrete maximum principle. Most
of these methods are designed to show that the method gives rise to a monotone
matrix or an M-matrix on uniform (or quasi-uniform) grids and their accuracy in
approximating cell averages degenerates to first order on general unstructured grids.
Let us recall that a monotone matrix is a nonsingular matrix with nonnegative in-
verse; a nonsingular M-matrix is a monotone matrix having nonpositive off-diagonal
entries [2]. If a difference scheme is described by a monotone matrix or an M-matrix
operator, a stability condition which is equivalent to a discrete maximum principle can
be easily derived for the approximate solution. For example, we mention the schemes
in [14, 18] for the steady model, and the ones proposed in [23, 31] to discretize the
spatial terms of the time-dependent model.

As a matter of fact and against intuition, the major difficulty in obtaining second-
order accurate schemes based on monotone or M-matrices is related to the discretiza-
tion of the diffusive term and not of the advective term, the latter being properly
controlled by limiters; see [6, 7, 19]. Owing to the negative result of [20], it is possi-
ble to show by appropriate counterexamples that no finite difference approximation
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of second-order partial derivatives on general unstructured grids that is both linear
and second- or higher-order accurate can be based on an M-matrix. For instance, it
is an enlightening fact that the second-order accurate cell-centered approximations
developed in [31] satisfy a discrete maximum principle but only on uniform (or quasi-
uniform) grids.

It is worth mentioning that the difficulty of obtaining M-matrices has also been
related to the one of controlling the positivity and boundedness of the coefficients
in the scheme required to ensure monotonicity [17]. A technique that surely suffers
from this major fault is the diamond scheme; see [13] for a recent literature review.
This approach defines the face gradients that are needed to discretize the numerical
diffusive flux from the approximate cell averages. The solution gradient is provided at
each internal face by a piecewise constant reconstruction of Gauss–Green type. This
reconstruction takes place on the convex hull of the face vertices and the centers of
the cells adjacent to the face. It is well known that this technique cannot ensure the
correct sign of the coefficients in the scheme on general unstructured grids [11].

In this work, we propose the design of a finite volume approximation to the
solution of (1a)–(1b) that is based on a nonlinear extension of the diamond scheme
and that simultaneously satisfies these three conditions:

- it is based on a conservative cell-centered formulation;
- it provides second order of accuracy in approximating cell averages of the

solution on general unstructured grids;
- it ensures a maximum principle in some discrete form for the approximate

solution.
We emphasize that the nonlinearity is the crucial issue of the design of the scheme;
this makes it possible to bypass the negative result of [20] and prove the existence of
a discrete maximum principle for the numerical solution. Throughout the paper, we
will refer to the standard technique as the diamond scheme and to this new method
as the nonlinear diamond scheme.

The key steps of the derivation of the method are the following. First, (1a) is re-
formulated in the integral-conservative way on an unstructured mesh of d-dimensional
simplices (triangles for d = 2 and tetrahedra for d = 3). As usual in finite volume
methods, we relate the approximation of the solution-average on any mesh control vol-
ume to the discrete balance of the numerical advective and diffusive flux on the control
volume boundary. The definition of the numerical flux uses the approximate cell av-
erages, the values recovered at the mesh vertices by a piecewise linear reconstruction
process, and the boundary data of (1b). The existence of a suitable set of nonneg-
ative and bounded coefficients for the recovery of the vertex value is theoretically
demonstrated by a constructive proof that provides an algorithm to compute them.

The numerical advective flux implements the usual first-order upstream formula,
and second order of accuracy is formally achieved by the cellwise linear reconstruction
from cell averages proposed and analyzed in [5].

The design of the numerical diffusive flux deserves much more attention. As
pointed out in [5, 24], the face gradient provided by the diamond scheme can be
written as the weighted average of two independent one-sided face gradients. Each
one-sided gradient is calculated by linearly interpolating the values at the face vertices
and the cell averages on the adjacent cells. The weights of the diamond scheme are
constant and taken to be proportional to the measure of the portion of diamond cell
shared by the corresponding adjacent cell.

In the nonlinear diamond scheme, the face gradient at any internal face is re-
formulated as a nonlinear average of the one-sided gradients by suitably designing
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solution-dependent weights. Under very general assumptions on the regularity of the
mesh, we demonstrate that there always exists a solution to the discrete nonlinear
problem and that all the numerical solutions (if more than one exist) satisfy a discrete
maximum (or minimum) principle.

A similar nonlinear design was originally considered in [3] to build nonlinear
M-matrix operators by relaxing conservation in difference approximations. These
difference methods were also shown to possess second-order accurate solutions that
preserve a discrete maximum principle.

The preservation of the maximum principle of the nonlinear diamond scheme solu-
tion has been experimentally verified by a comparative assessment with the behavior
of the diamond scheme solution in the same critical situations. Numerical experiments
also show the expected second-order convergence rate and a nonoscillatory behavior
when the analytical solution has strong gradient regions such as internal layers.

The outline of the paper is as follows. In section 2, we introduce the notation
adopted in this paper and other technical details. In section 3, we discuss the reg-
ularity assumption on the family of grids considered in the approximation process
when the mesh size tends to zero. We also present the algorithm that recovers the
vertex values from the cell averages. Then the derivation of the method is presented in
section 4. In section 5, we investigate the theoretical properties concerning the solv-
ability of the scheme and demonstrate the existence of a discrete maximum principle
for the numerical solutions provided by the method. In section 6, a set of numerical
results illustrates the performance of the method in treating problems with internal
layers and solutions with strong gradients. Final remarks and conclusions are offered
in section 7.

2. General setup and notation. In this section, we introduce the notation
adopted in this paper. For ease of reference, we also collect herein the definitions
of the topological and geometrical entities and of the discrete function spaces, scalar
product, and norms that are in use throughout the paper.

The polyhedral domain Ω ∈ R
d is covered by a finite collection of nonoverlap-

ping and nonempty d-dimensional simplices, namely, the mesh. These simplices are
denoted by the letter “T” and labeled by a Latin index like i (j, k, . . .); i.e., Ti is the
ith control volume (cell) of the mesh. The set of all mesh control volumes is denoted
by Th = {Ti}; the control volumes are such that Ω = ∪ Ti∈Th

Ti.

The mesh faces are denoted by the letter “f” and labeled by a couple of Latin
indices, i.e., fij . It is useful to distinguish between internal and boundary faces.
When fij is an internal face, there must exist two control volumes Ti and Tj such
that fij = Ti ∩Tj . When fij is a boundary face, i.e., fij ⊆ Γ, the first index always
refers to the unique control volume Ti to which the face belongs, while the second
index is defined in accordance with a suitable boundary numbering system (such as a
sort of fictitious ghost cell). The symbols Fh, F int

h , and Fbnd
h denote, respectively, the

set of all mesh faces, the set of the internal faces, and the set of the boundary faces.
When dealing with internal faces, fij and fji are equivalent symbols that denote the
same face; in expressions like fij ∈ Fh (or F int

h ) we assume that the face labeled by
i and j is considered only once (for example, by taking the representative with i < j).
Clearly, Fh = F int

h ∪Fbnd
h and F int

h ∩Fbnd
h = ∅.

The mesh vertices are denoted by the symbol “v” and labeled by Greek letters
like α (β, γ, . . .). The symbols Vh, V int

h , and Vbnd
h denote, respectively, the set of all

mesh vertices, the set of the internal vertices, and the set of the boundary vertices.
We have that Vh = V int

h ∪Vbnd
h and V int

h ∩Vbnd
h = ∅.
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Ti
fij

Fig. 1. The stencils σνi (left) and σνij (right) for the two-dimensional case.

2.1. Topological quantities. Summations are taken over the index sets:

– σi, cells sharing a face with Ti;
– σα, cells surrounding the vertex vα;
– σ′

i, “ghost” cells sharing a face with Ti;
– νi, vertices of the cell Ti;
– να, vertices connected to the vertex vα;
– νij , vertices of the face fij ; we also distinguish between νint

ij = {α ∈ νij |vα ∈
V int
h } and νbnd

ij = {α ∈ νij |vα ∈ Vbnd
h };

– σνi, cells having a vertex in common with Ti;
– σνij , cells having a vertex in common with fij .

We anticipate that the last two sets listed above, i.e., σνi and σνij , are the stencils of
the discrete gradient Gi(uh) and of the numerical diffusive flux Gij(uh) at fij ∈ Fh;
see the definitions in section 4.2. Figure 1 illustrates the two-dimensional case.

Coherently with face notation, fij is a boundary face of Ti for every j ∈ σ′
i and

the internal face shared by Ti and Tj for j ∈ σi. Thus, the index j ∈ σi ∪σ′
i labels

all the faces forming the boundary of Ti.

2.2. Geometric quantities. The quantities related to Ti are consistently la-
beled by the same index i:

– |Ti|, the d-dimensional Lebesgue measure of Ti (area in two dimensions, vol-
ume in three);

– ∂Ti, the boundary of Ti;
– xi, the barycenter of Ti.

The quantities related to the mesh vertex vα are consistently labeled by the same
index α:

– xα, the position vector of vα;
– Bxα,r, the (closed) ball of center vα and radius r; ∂Bxα,r denotes the boundary

of the ball.

The quantities related to the face fij are consistently labeled by the same couple of
indices ij:

– |fij |, the (d − 1)-dimensional Lebesgue measure of fij ∈ Fh (length in two
dimensions, surface area in three);

– xij , the position vector of the center of fij ∈ Fh;
– nij , the unit vector orthogonal to fij ∈ Fh and oriented from Ti to Tj if

fij ∈ F int
h , outward of Ω if fij ∈ Fbnd

h ;
– x̃ij , the position vector of the orthogonal projection of xi on the hyperplane

containing the face fij ∈ Fh;
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– λ̃ij
α , the barycentric coordinate of x̃ij with respect to vα ∈ fij ; hence,

∑
α∈νij

λ̃ij
α = 1 and

∑
α∈νij

λ̃ij
α xα = x̃ij ;

– hij = (x̃ij − xi) · nij , the distance between the center of Ti and the face
fij ∈ Fh;

– Hij = (xj − xi) · nij = hij + hji, the effective distance between the centers
of Ti and Tj when fij ∈ F int

h .

2.3. Discrete function spaces and norms. Let us introduce the set of piece-
wise constant functions,

Th =
{

wh ∈ L2(Ω), such that wh|Ti = wi for Ti ∈ Th
}
,

that are defined on a given triangulation Th. The set Th is clearly isomorphic to
R

card{Th}. In this paper, we use the L2 mesh-dependent scalar product, its derived
norm, and the H1-norm defined on Th by the formulae

(uh, wh)Th
=

∑
Ti∈Th

|Ti|uiwi,

‖wh‖Th
=

√
(wh, wh)Th

,

‖wh‖Th,1
=

( ∑
fij∈F int

h

|fij |
Hij

(wj − wi)
2

+
∑

fij∈Fbnd
h

|fij |
hij

w2
i

)1/2

.

3. Mesh regularity assumption and vertex reconstruction. In this sec-
tion, we discuss the sense in which the mesh used to formulate the finite volume
scheme is regular. We also describe the algorithm to recover the approximate vertex
values.

3.1. Mesh regularity assumption. In accordance with the definition of [10],
the parameter h that labels the mesh Th is called the mesh size, and is formally given
by the supremum of the mesh control volume diameters; i.e., h = maxTi∈Th

hi with
hi = diam{Ti}. Let us denote the maximum radius of the balls contained in the
cell Ti and centered at xi by ρi, and consider ρ = minTi∈Th

ρi. The approximation
method described in this paper is formulated on a family of d-dimensional conforming
grids Th that are regular in the following sense.

Assumption 1 (mesh regularity).
(i) There exists a mesh regularity constant Creg > 0 that is independent of h and

such that (h/ρ)d ≤ Creg for any h ≤ h0.
(ii) Let πijvα denote the orthogonal projection of the vertex vα on the hyperplane

containing the face fij . Then πijvα ∈ fij for any α ∈ νi and j ∈ σi ∪σ′
i.

(iii) The face fij is internal, i.e., fij ∈ F int
h iff card

{
νint
ij

}
> 0.

Note that the first condition is similar to but slightly stronger than the one that
is normally met in the analysis of finite element methods; see [10]. The present for-
mulation of item (i) is particularly useful to demonstrate the existence of the positive
weights of the vertex reconstruction in the next subsection. A weaker assumption
could be considered as well by imposing a local regularity constraint on hj/ρj and
taking the supremum on the set of cells surrounding any mesh vertex. Nonetheless,
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this would complicate the analysis that follows. The second condition is trivial when
vα ∈ fij because in this case πijvα = vα, and is satisfied by a wide family of grids, such
as, for example, the ones based on regular acute and weakly acute two-dimensional
triangulations and their suitable extensions to higher dimensions [10].

For the sake of reference, in the following proposition we list some properties of
regular grids that will be useful in the paper.

Proposition 2.

(i) max{hij/hji, hji/hij} ≤ Creg for any internal face fij ∈ F int
h .

(ii) card{σα} ≤ Creg for any vertex vα ∈ Vh.

(iii) λ̃ij
α ≥ 1/(d + 1) for any face fij ∈ Fh and any vertex vα ∈ νij.

The proof is omitted because these relations readily follow from Assumption 1.

3.2. Reconstruction of vertex values. The value at the mesh vertex vα is
reconstructed by

uα =

{∑
k∈σα

w
α
kuk, vα ∈ V int

h ,

g(xα), vα ∈ Vbnd
h ,

(3)

where {wα
k , k ∈ σα} is the set of coefficients associated to vα ∈ V int

h , and g(xα) is
the Dirichlet boundary condition of the vertex vα ∈ Vbnd

h . In Theorem 5 we demon-
strate the existence of a special set of coefficients {wα

k} that are strictly positive,
bounded from above by 1, and such that (3) is exact for linear polynomials defined on
∪ k∈σαTk ⊆ Ω. The proof of Theorem 5 is based on the technical result of Lemma 4
that exploits the possibility of separating convex sets in R

n. As this latter one is a
standard result from convex analysis, it is given in Lemma 3 without proof for the
sake of reference.

Lemma 3. There exists a closed hyperplane that strictly separates any two non-
empty and disjoint closed convex subsets of R

n, provided that one of the two sets is
also compact.

Proof. See, e.g., Rockafellar [28, section 11].
Lemma 4. Under the mesh regularity Assumption 1, for every vα ∈ V int

h we have
that Bxα,ρ ⊆ C, where C = conv{xk, k ∈ σα}.

Proof. Let vα be an internal vertex of the triangulation Th. We will demonstrate
by contradiction that neither does Bxα,ρ lie completely outside of the convex hull C
nor is Bxα,ρ partially (but not entirely) included in C. Both contradiction arguments
rely on the two following basic observations that are consequences of Assumption 1(ii):
(a) any hyperplane for vα divides the space R

d in two (closed) half-spaces that must
entirely contain at least one d-simplex with index in σα; (b) the distance between
each one of the barycenters of the two simplices of item (a) and the given hyperplane
for vα must be greater than or equal to ρ. This situation is illustrated by Figure 2(a).

Let us first consider the case in which the two closed and convex sets Bxα,ρ

and C are disjoint; a strictly separating hyperplane exists by Lemma 3, as shown by
Figure 2(b). Thus, the barycenters of all the d-simplices surrounding vα, which of
course belong to C, must lie in the same half-space of the two half-spaces defined by
the hyperplane for vα and parallel to the separating hyperplane. This fact contradicts
the initial observation (a).

When Bxα,ρ is partially but not fully included in C, a point y exists in the interior
of Bxα,ρ\C. Lemma 3 again provides a hyperplane separating y and C, as shown by
Figure 2(c). The distance between the separating hyperplane and vα must be strictly
less than ρ because y is an interior point of Bxα,ρ. Let us now consider the hyperplane
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(a) (b) (c)

Fig. 2. Proof of Lemma 4: the thicker lines in (b) and (c) are the separating hyperplane
provided by Lemma 3; the polygonal body is the convex hull of the cell centers.

for vα, which is parallel to the separating hyperplane provided by Lemma 3, and the
two half-spaces defined by it. Observation (a) implies that at least one d-simplex Tk

exists in the same half-space containing y, and observation (b) that its barycenter xk

has a distance greater than ρ from the hyperplane for vα. As shown by Figure 2(c),
the barycenter xk must be located on the same side of y and beyond the separating
hyperplane because the distance between the hyperplane for vα and the separating
hyperplane is strictly less than ρ. This last statement contradicts the fact that all
the barycenters are in the half-space defined by the separating hyperplane and not
containing y.

The following regularity constant is used in Theorem 5:

Cgrid =
1

2
Creg

d−1
d .

Theorem 5. Under the mesh regularity Assumption 1, for any internal vertex
vα ∈ V int

h there exists a set of coefficients {wα
k} such that

(i) Cgrid ≤ w
α
k < 1 for k ∈ σα;

(ii)
∑

k∈σα
w

α
k = 1;

(iii)
∑

k∈σα
w

α
k (xk − xα) = 0.

Proof. For any k ∈ σα, let us define the two vectors

∑
j∈σα

akjxj = {xα + t(xk − xα), t ≤ 0}∩ ∂Bxα,ρ,(4a)

xα + bk(xk − xα) = {xα + t(xk − xα), t ≥ 0}∩ ∂Bxα,h(4b)

that are expressed by a suitable choice of the scalar coefficients akj and bk. In view
of Lemma 4, the right-hand side of (4a) defines a convex linear combination of the
vectors xj for j ∈ σα. Thus, the coefficients {akj} at the left-hand side of (4a) can be
chosen nonnegative and such that

∑
j∈σα

akj = 1. Relation (4b) is valid with bk ≥ 1.
By construction we have that

ρbk(xk − xα) + h
∑
j∈σα

akj(xj − xα) = 0 for every k ∈ σα.(5)
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The proof terminates by verifying that the coefficients

w
α
k =

1

card{σα} (ρb + h)

[
ρbk + h

∑
j∈σα

ajk

]
, with b =

1

card{σα}
∑
k∈σα

bk,(6)

actually satisfy the statements of the theorem. The left inequality of item (i) follows
from

w
α
k ≥ ρbk

card{σα} (ρb + h)
≥ ρ

2card{σα}h
≥ ρ

2hCreg
≥ Cgrid

because bk ≥ 1 and b ≤ h/ρ. Items (ii) and (iii) are a straightforward consequence
of the construction property (5) and definition (6). The proof of item (i) is finally
completed by observing that none of the strictly positive coefficients w

α
k for k ∈ σα

can be greater than or equal to 1 if item (ii) is true.
Let us emphasize the constructive nature of the above proof that provides a prac-

tical method of computing the set of coefficients {wα
k}. In view of the mesh regularity

Assumption 1 and Lemma 4, for any cell center xk, k ∈ σα, there always exists a
subset of d indices {k1, . . . , kd} ∈ σα such that conv{xk1

, . . . ,xkd
} has a nonempty

intersection with the half-line starting from xα and having direction xα−xk. As more
than one choice of indices {k1, . . . , kd} may exist, we select the one that maximizes the
distance between the intersection point and the vertex vα. Let pαk denote the position
vector of this intersection point. Replacing the ball Bxα,ρ in the proof of Theorem 5
by the convex hull of this suitably chosen subset of cell centers surrounding vα yields
the following algorithm:

foreach k ∈ σα do let w
α
k = 0;

foreach k ∈ σα do
choose the d indices {xk1 , . . . ,xkd

} maximizing |pαk − xα|;
compute 0 ≤ β ≤ 1 such that xα = (1 − β)pαk + βxk;

compute {λl} such that pαk =
∑d

l=1 λlxkl
;

accumulate w
α
k ← w

α
k + β;

foreach l = 1, . . . , d do accumulate w
α
kl

← w
α
kl

+ (1 − β)λl;
end
foreach k ∈ σα do let w

α
k ← w

α
k/

∑
k∈σα

w
α
k .

4. Finite volume formulation. The model problem (1a)–(1b) is reformulated
by integrating on the generic control volume Ti ∈ Th and applying the Gauss–Green
theorem as follows:

1

|Ti|
∑

j∈σi ∪σ′
i

∫
fij

(
uv − ν∇u

)
· nij dS =

1

|Ti|

∫
Ti

s dV for Ti ∈ Th.

The finite volume approximation of the cell average of u on Ti is denoted by ui. The
vector that collects all the approximate cell averages is denoted by uh; i.e., uh|i = ui.
The finite volume scheme correlates the approximate cell-average vector uh to the
balance of the numerical fluxes across the bounding faces in ∂Ti by the set of relations

1

|Ti|
∑
j∈σi

|fij |
[
Fij(uh) + Gij(uh)

]
+

1

|Ti|
∑
j∈σ′

i

|fij |Bij(uh) = si for Ti ∈ Th.(7)
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The terms Fij(uh) and Gij(uh) are the face integrals of the numerical advective and
diffusive fluxes on fij ∈ F int

h ; Bij(uh) is the face integral of the numerical flux on fij ∈
Fbnd

h and collects boundary contributions from both advective and diffusive terms;
si is the volume integral of the source term over Ti approximated by an appropriate
quadrature formula.

4.1. Cell-centered gradient, slope limiter, and numerical advective flux.
The piecewise constant approximation of the solution gradient within the control
volume Ti is derived by applying the Gauss–Green theorem to the volume integral of
∇u and by linearly approximating the boundary integrals on ∂Ti.

Let fα denote the face opposite to the vertex vα and nα its unit normal vector.
We thus obtain the formula

Gi(uh) = − li(uh)

d |Ti|
∑
α∈νi

uα |fα|nα,(8)

where li(uh) is the limiter factor defined as follows. In view of (8), we first introduce
the linear reconstruction of the solution approximation:

Ri(uh)(x) =

{
ui + Gi(uh) · (x − xi) if x ∈ Ti,

0 otherwise.

The slope limiter factor li(uh) in (8) is the largest real number in [0, 1] such that

min{ui, min
α∈νi

uα} ≤ Ri(uh)(xij) ≤ max{ui,max
α∈νi

uα} for j ∈ σi∪σ′
i,(9)

and

‖G(uh)‖Th
≤ Clim,(10)

where Clim is a suitable bound from above of the Th-norm of the finite volume ap-
proximation of the solution gradient ∇u. Note that condition (10) makes it possible
to control a discrete counterpart of the total variation of uh.

Lemma 6. If ui is a local maximum (minimum), i.e., ui ≥ maxα∈νi
uα (ui ≤

minα∈νi uα), then Gi(uh) = 0.

Proof. In view of the definition of the limiter and the assumption of the lemma,
we have that Ri(uh)(xij) ≤ max{ui,maxα∈νi uα} = ui; i.e., Gi(uh) ·(xij−xi) ≤ 0 for
j ∈ σi ∪σ′

i. Since xi is the barycenter of Ti, we have that (d + 1)xi =
∑

j∈σi ∪σ′
i
xij ,

and then
∑

j∈σi ∪σ′
i
Gi(uh) · (xij − xi) = 0. Consequently, d linearly independent

directions xij−xi exist among the (d+1)-ones for j ∈ σi ∪σ′
i such that the orthogonal

projection of Gi(uh) onto them is the zero vector.

The numerical advective flux at the internal face fij is derived from the standard
upwind formula

Fij(uh) = v+
ijRi(uh)(xij) + v−ijRj(uh)(xij), j ∈ σi,

where

vij =
1

|fij |

∫
fij

v(x) · nij dS, v±ij =
vij ± |vij |

2
.
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Since v−ij + v+
ji = 0, the balance of the numerical advective flux of the internal face

fij ∈ F int
h of the cell Ti can be compactly written as

1

|Ti|
∑
j∈σi

|fij |Fij(uh) =
(
Fuh − rint(uh)

)∣∣∣
i

(11)

by introducing the advective flux matrix

Fij =
1

|Ti|

⎧⎪⎨
⎪⎩

∑
k∈σi

|fik| v+
ik, j = i,

− |fij | v+
ji, j ∈ σi,

0 otherwise

(12)

and the advective flux vector

rint
i (uh) =

1

|Ti|
∑
j∈σi

|fij |
(
v+
ijGi(uh) · (xi − xij) − v+

jiGj(uh) · (xj − xji)
)
.(13)

Note that the term Fuh|i in (11) is a first-order accurate discretization of the flux
integral

∫
∂Ti\∂Ω

u(x)v(x) ·n dS/ |Ti|, while second-order accuracy is provided by the

term rint
i (uh).

4.2. Face gradient and numerical diffusive flux. To define the numerical
diffusive flux at the internal face fij ∈ F int

h , we introduce the face gradient by a special

nonlinear average of two one-sided face gradients G̃ij(uh) and G̃ji(uh). The one-sided

face gradient G̃ij(uh) is recovered from cell averages by applying the Gauss–Green
theorem to the integral of ∇u on the half-diamond delimited by the center of Ti and
the face vertices vα, α ∈ νij . The linear approximation of the resulting boundary
integrals gives the one-sided formula

G̃ij(uh) =
ũij − ui

hij
nij + {tangential term},(14)

where ũij is the approximate solution at x̃ij ∈ fij , and the tangential term is left
unspecified because it does not contribute to the integral of the normal flux. The
value ũij is approximated by linear interpolation of the values at the vertices of the
face fij given by (3); we have the formula

ũij =
∑
α∈νij

λ̃ij
α uα.(15)

The other one-sided face gradient G̃ji(uh) is similarly defined on the opposite half-
diamond (related formulae are readily available by simply interchanging i and j in
the previous derivation).

Note that a unique definition of the face gradient is required to have a conservative
formulation of the diffusive flux. The two one-sided face gradients previously built
cannot be taken as possible candidates because selecting one of them would imply
a loss of information from the discarded one. Thus, we define the face gradient at
fij ∈ F int

h by the nonlinear average

Gij(uh) = ωij(uh)G̃ij(uh) + ωji(uh)G̃ji(uh),(16)
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where ωij(uh) and ωji(uh) are two nonnegative solution-dependent weights satisfying
ωij(uh) + ωji(uh) = 1 for any vector uh ∈ Th.

As pointed out in [5], the usual face gradient of the diamond scheme is readily
obtained by choosing the constant weights

ωij(uh) = |Ti| /(|Ti| + |Tj |).(17)

When d = 2, this choice leads to the numerical diffusive flux considered in [11].
It is well known that the diamond scheme cannot ensure a maximum principle on

general grids; see, for instance, [11, 20]. Thus, a different design of the weights ωij(uh)
and ωji(uh) must be envisaged that generalizes (17) in a nonlinear sense. To do that,
we proceed as follows. We substitute the vertex-reconstructed values provided by (3)
in (15) and use the summation rule

∑
α∈νint

ij

∑
k∈σα

=
∑

k∈σνij

∑
α∈νk ∩ νint

ij

(18)

to get

ũij =
∑

k∈σνij

pijk uk + pijgbnd
ij , gbnd

ij =
1

pij

∑
α∈νbnd

ij

λ̃ij
α g(xα),

where

pijk =
∑

α∈νk ∩ νint
ij

λ̃ij
α w

α
k for k ∈ σα, and pij =

∑
α∈νbnd

ij

λ̃ij
α .(19)

Note that the term gbnd
ij collects the contributions to ũij from the boundary vertices

that may belong to the internal face fij ∈ F int
h . Next, we rewrite the orthogonal term

in (14) as

nij · G̃ij(uh) = Dij
uj − ui

Hij
+ gij(uh)(20)

by introducing the scalar quantity

Dij = Hij min
{
pijj /hij , p

ji
i /hji

}
(21)

and the remainder term

gij(uh) =
∑

k∈σνij

(
pijk
hij

− δjk
Dij

Hij

)
(uk − ui) +

pij

hij
(gbnd

ij − ui),(22)

with δjk = 1 if j = k, δjk = 0 otherwise.

The orthogonal component of G̃ji(uh) is similarly defined. The corresponding
formulae are easily obtained by interchanging i and j in (20)–(22).

Finally, we define the nonlinear weights to be used in (16) by the formula

ωij(uh) =

{ |gji(uh)|
|gij(uh)|+|gji(uh)| if |gij(uh)| + |gji(uh)| > 0,

1/2 otherwise.
(23)
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Let sij(uh) indicate the sign of gij(uh); i.e., |gij(uh)| = gij(uh)sij(uh). A direct
calculation shows that

ωij(uh)gij(uh) − ωji(uh)gji(uh) = gij(uh)gji(uh)
sji(uh) − sij(uh)

|gij(uh)| + |gji(uh)| .

Thus, the nonlinear coefficients introduced in (23) satisfy the relation

ωij(uh)gij(uh) − ωji(uh)gji(uh) = 2ω0
ij(uh)gij(uh),(24)

where

ω0
ij(uh) =

{
ωij(uh) if gij(uh)gji(uh) < 0,

0 otherwise.
(25)

This remark has a very important consequence: using (24)–(25) we can reformulate
the orthogonal component of the nonlinearly weighted face gradient (16) in a one-sided

form. To prove this fact, we first substitute into (16) the expression for nij · G̃ij(uh)

given by (20)–(22) and the similar one for nji · G̃ji(uh) obtained by interchanging i
and j. Then we consider the nonlinear weights (23) and use the property expressed
by (24) together with (25). Finally, we introduce the nonlinear mapping ψ(uh) =
{wij

k (uh)} whose components are

wij
k (uh) = 2ω0

ij(uh)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pijHij/hij , k = i,

pijj Hij/hij −Dij , k = j,

pijk Hij/hij , k ∈ σνij\{i, j},
0 otherwise.

(26)

This straightforward calculation shows that (16) becomes

nij · Gij(uh) =
Dij

Hij
(uj − ui) + 2ω0

ij(uh)gij(uh)

=
1

Hij

(
Dij(uj − ui) +

∑
k∈σνij

wij
k (uh)(uk − ui) + wij

i (uh)(gbnd
ij − ui)

)
.

(27)

Replacing n ·∇u by nij ·Gij(uh) in the flux integral
∫
fij

n ·∇u dS/ |fij | and using

the final expression of Gij(uh) in (27) yield the average value of the numerical diffusive
flux on fij ∈ F int

h . Thus,

Gij(uh) = −νijGij(uh) · nij ,

where νij =
∫
fij

ν(x) dS/ |fij | is the average of the viscosity field ν(x) over fij .

Let us denote by w the generic instance of ψ(uh). The flux balance of the diffusive
terms at the internal faces of Ti can be compactly written as

1

|Ti|
∑
j∈σi

|fij |Gij(uh) =
(
G(w)uh − g(w)

)∣∣∣
i

(28)

by taking into account the summation rule

∑
l∈σi

∑
k∈σνil

=
∑
k∈σνi

∑
l∈σi ∩σνk
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and introducing the diffusive flux matrix and vector

Gij(w) =
1

|Ti|

⎧⎪⎨
⎪⎩

∑
l∈σi

|fil|νil

Hil
(Dil +

∑
k∈σνil

wil
k ) for j = i,

−
∑

l∈σi ∩σνj

|fil|νil

Hil
(wil

j + δljDil) for j ∈ σνi\{i},
0 otherwise,

gi(w) =
1

|Ti|
∑
j∈σi

|fij | νijwij
i

Hij
gbnd
ij .

(29)

4.3. Treatment of boundary terms. The contribution to the flux balance of
the cell Ti from the boundary faces fij ∈ Fbnd

h takes the vector form

1

Ti

∑
j∈σ′

i

|fij |Bij(uh) =
(
Buh − b − rbnd(uh)

)∣∣∣
i
,

where

Bij =
1

|Ti|

{∑
k∈σ′

i
|fij | [v+

ij + νik

hik
], j = i,

0 otherwise,

bi =
1

|Ti|
∑
j∈σ′

i

|fij |
(
v+
ijg

D
ij + νij

g̃Dij
hij

)
,

rbnd
i (uh) =

1

|Ti|
∑
j∈σ′

i

|fij | v+
ijGi(uh) · (xi − xij),

(30)

and the terms

gDij =
∑

α∈νbnd
ij

g(xα)/d and g̃Dij =
∑

α∈νbnd
ij

λ̃ij
α g(xα)(31)

are the linear interpolations at the face points xij and x̃ij , respectively, of the Dirichlet
boundary data g(xα) for vα ∈ fij ∈ Fbnd

h .

4.4. The finite volume approximation problem: Vector formulation.
Let us collect all the numerical flux matrices and vectors in the terms

A(w) = F + G(w) + B,(32a)

b(uh;w) = s + r(uh) + g(w) + b.(32b)

The symbol w—already introduced in (28)—will be considered in the rest of the
paper as an independent variable to indicate the generic instance of the coefficients
{wij

k }. The approximation problem in flux balance formulation (7) can be compactly
reformulated as

A(w)uh = b(uh;w),(33a)

w = ψ(uh),(33b)

where uh ∈ Th is the finite volume approximation of the solution cell averages, and
w the vector collecting the solution-dependent weights for the face gradient definition.
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5. Theoretical issues. In this section, we investigate the solvability of the non-
linear finite volume approximation problem (33a)–(33b) and we demonstrate the exis-
tence of at least one numerical solution. Furthermore, we prove that all the numerical
solutions to (33a)–(33b) (if more than one exist) must satisfy a discrete maximum
principle. Finally, we remark that a discrete minimum principle can be proved as well
by suitably adapting the same arguments.

5.1. Technical lemmas. The following lemma formalizes the properties of the
face gradient coefficients pij and {pijk } defined in (19), of Dij defined in (21), and

of the components of the nonlinear mapping ψ(uh) = {wij
k (uh)} in (26) used in the

definition of the numerical diffusive flux (27)–(29).
Lemma 7. The coefficients pij and {pijk , k ∈ σνij} are nonnegative and such that

for any fij ∈ F int
h

(i) pij +
∑

k∈σνij
pijk = 1;

(ii) Cgrid/(d + 1) ≤ pijj ;
(iii) Cgrid/(d + 1) ≤ Dij ≤ 1 + Creg;

(iv) 0 ≤ wij
k (uh) ≤ 2(1 + Creg) for any uh ∈ Th.

Proof. The nonnegativity of the coefficients pij and pijk for k ∈ σνij follows from
their definition in (19) by noting that both the vertex reconstruction weights {wα

k}
(see Theorem 5(i)) and the coefficients {λ̃ij

α } (see Proposition 2(iii)) are nonnegative
real numbers.

Item (i) follows by reversing the summation rule (18) and using Theorem 5(ii) to
get

∑
k∈σνij

pijk =
∑

k∈σνij

∑
α∈νk ∩ νint

ij

λ̃ij
α w

α
k =

∑
α∈νint

ij

λ̃ij
α

∑
k∈σα

w
α
k = 1 −

∑
α∈νbnd

ij

λ̃ij
α = 1 − pij .

Item (ii) follows because pijj =
∑

α∈νint
ij

λ̃ij
α w

α
j from (19), λ̃ij

α ≥ 1/(d + 1) from

Proposition 2, w
α
j ≥ Cgrid from Theorem 5(i), and card

{
νint
ij

}
≥ 1 from Assump-

tion 1(iii).
Item (iii) and the left inequality of item (iv) readily follow by taking into account

item (ii) in (21) and (26), respectively.
The right inequality of item (iv) follows by noting that

wij
k (uh) ≤ 2ω0

ij(uh)
pijk Hij

hij
≤ 2(1 + Creg),

by recalling that Hij = hij + hji (see the definition in section 2), and by applying
Proposition 2(i).

After Lemma 7(iv), it is natural to consider the coefficient vectors w for face
gradient calculations that are ranging in the following compact convex set.

Definition 8 (the set of coefficient vectors for face gradients). Let

K =
{
w such that 0 ≤ wij

k ≤ 2(1 + Creg)
}
.

Similarly, it is possible to restrict the set of admissible solutions uh of the nonlinear
finite volume approximation problem (33a)–(33b). We proceed by demonstrating
these two technical lemmas, the result of the first one being useful in proving the
second one.
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Lemma 9. There exists a real constant CR > 0, independent of h, and such that
‖r(uh)‖Th

≤ CR.
Proof. The proof of this lemma uses the same arguments of the proof of Lemma 6.2

in [5]. For this reason and for the sake of completeness, we shortly sketch the proof
herein and refer the reader to that paper for a detailed discussion.

Let us first introduce the quantities

Δuij = (xij − xi) · Gi(uh) and Δuji = (xji − xj) · Gj(uh).

In view of (13), by applying the Cauchy–Schwarz inequality and by rewriting the
summations over fij ∈ Fh we get

‖r(uh)‖2
Th

=
∑

Ti∈Th

|Ti|
(

1

|Ti|

[∑
j∈σi

|fij |
(
v+
ijΔuij + v−ijΔuji

)
+

∑
j∈σ′

i

|fij | v+
ijΔuij

])2

≤ 2(d + 1) ‖v‖2
L∞(Ω) × (),

where

() =
∑

fij∈F int
h

(
|fij |2

|Ti|
+

|fij |2

|Tj |

)(
|Δuij |2 + |Δuji|2

)
+

∑
fij∈Fbnd

h

|fij |2

|Ti|
|Δuij |2 .

Then, taking into account that |Ti| = (d+ 1)hij |fij | /d, multiplying and dividing this
expression by Hij , and exploiting the fact that Hij/hij = 1 +hji/hij ≤ 1 +Creg from
Proposition 2(i) yield

() ≤ d(1 + Creg)

d + 1

( ∑
fij∈F int

h

|fij |Hij
|Δuij |2 + |Δuji|2

H2
ij

+
∑

fij∈Fbnd
h

|fij |hij
|Δuij |2

h2
ij

)
.

By using |Δuij | ≤ h |Gi(uh)|, we have

() ≤ d(1 + Creg)

d + 1

(
sup

fij∈Fh

h

Hij

)2
( ∑

Ti∈Th

|Gi(uh)|2
∑
j∈σi

|fij |Hij

)
,

≤
(
2d2(1 + Creg)

2C2
)
/(d + 1)

∑
Ti∈Th

|Ti| |Gi(uh)|2 ,

where h/Hij ≤ C is true from the mesh regularity; see Assumption 1. In view of (10),
the lemma follows by setting CR = 2d ‖v‖L∞(Ω) ClimC(1 + Creg).

Lemma 10. The matrix A(w) = F+G(w)+B introduced in (32a) is a nonsingu-
lar M-matrix for any vector w ≥ 0. Moreover, there exists a nonnegative constant CM

independent of uh and w such that

∥∥A(w)−1b(uh;w)
∥∥
Th

≤ CM for any uh ∈ Th and w ∈ K,

where b(uh;w) has been introduced in (32b).
Proof. In this proof, we use the symbol ‖ · ‖Th

to denote both the vector norm
and its induced matrix norm.

If w ≥ 0, the matrices F and G(w) are irreducible Z-matrices, all of whose rows
have sum equal to zero by construction (see (12) and (29)), and the matrix B is a
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nonnegative diagonal matrix with some strictly positive diagonal elements (see (30)).
Thus, A(w) is a diagonally dominant Z-matrix.

The ijth entry of A(w), namely, Aij(w), is strictly positive if the index pair ij
refers to an internal face, i.e., fij ∈ F int

h , because in such a case Aij(w) ≥ Cgrid/(d+1)
from Lemma 7(iii). Hence, the matrix A(w) is irreducible and, consequently, a non-
singular M-matrix.

To demonstrate the inequality of the lemma, let us consider the inequality

∥∥A(w)−1b(uh;w)
∥∥
Th

≤
∥∥A(w)−1

∥∥
Th

(
‖s + b‖Th

+ ‖r(uh)‖Th
+ ‖g(w)‖Th

)
.

As A(w) and g(w) are continuous functions of w, the scalar quantities
∥∥A(w)−1

∥∥
Th

and ‖g(w)‖Th
are also continuous functions of this argument. Since w ranges over

the compact set K,
∥∥A(w)−1

∥∥
Th

and ‖g(w)‖Th
must be uniformly bounded in view

of the Weierstrass theorem. Thus,

∥∥A(w)−1b(uh;w)
∥∥
Th

≤ sup
w∈K

∥∥A(w)−1
∥∥
Th

(
‖s + b‖Th

+CR+sup
w∈K

‖g(w)‖Th

)
,(34)

where we also used Lemma 9 and where CR is the constant introduced therein. The in-
equality of the lemma follows by setting CM equal to the right-hand side of (34).

After Lemma 10, we can introduce the set M ∈ R
card{Th} of the admissible finite

volume solutions.
Definition 11 (the set of admissible finite volume solutions). Let

M =
{

uh ∈ Th such that ‖uh‖Th
≤ CM

}
,

where CM is the constant of Lemma 10.

5.2. Existence of the finite volume approximation. The finite volume ap-
proximation problem whose vector formulation has been derived in section 4.4 can be
formally restated by taking into consideration Definitions 8 and 11.

Definition 12 (the finite volume approximation problem).

Find uh ∈ M and w ∈ K satisfying (33a)–(33b).(35)

This problem can also be reformulated in the fixed-point form

find (uh, w) ∈ M×K such that

[
uh
w

]
= F

[
uh
w

]
,(36)

where the nonlinear mapping F : M×K → M×K is given by

F

[
uh
w

]
=

[
Φ(uh;w)
ψ(uh)

]
,

and

Φ(uh;w) = A(w)−1b(uh;w).

Unfortunately, F(uh, w) is not guaranteed to be a continuous function of its arguments
because the mapping ψ(uh) = {wij

k (uh)} may be discontinuous at some internal face
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fij ∈ F int
h . For this reason, Brouwer’s fixed-point theorem cannot be directly applied

to demonstrate the existence of a solution to (36) and hence to (35).
We thus proceed in a different way. First, we define a special “regularization”

mapping ψε(·) that is continuous in its argument and depends on the positive pa-
rameter ε. Replacing ψ(uh) = {wij

k (uh)} by ψε(uεh) = {wεij
k (uεh)} in (27) regularizes

both the face gradient formula and the numerical diffusive flux. Brouwer’s fixed-point
theorem is applicable to the regularized approximation problems that are defined for
any ε ≥ 0. Then we take the limit of ε → 0, and a compactness argument proves that
a converging subsequence can be extracted from the solutions of these regularized
problems. Finally, we demonstrate that the limit of this subsequence of regularized
solutions solves the finite volume approximation problem stated in (35).

Let us introduce, for any control volume Ti and any face fij ∈ Fh, j ∈ σi ∪σ′
i,

the regularized continuous weights

ωε
ij(uh) =

|gij(uh)|
|gij(uh)| + ε

|gji(uh)|
|gji(uh)| + ε

ω0
ij(uh).(37)

These weights are designed to satisfy the following important property.
Lemma 13. If uεh → uh for ε → 0, then at each internal face fij ∈ F int

h we have

lim
ε→0

ωε
ij(u

ε
h)gij(u

ε
h) = ω0

ij(uh)gij(uh).

Proof. As gij(·) and gji(·) are continuous functions of their argument, uεh → uh
for ε → 0 implies gij(u

ε
h) → gij(uh) and gji(u

ε
h) → gji(uh). Furthermore, when

gij(uh)gji(uh) = 0 a real number ε′ > 0 must exist such that the signs of gij(u
ε
h)gji(u

ε
h)

and gij(uh)gji(uh) coincide for any ε ≤ ε′. Let us distinguish among the following
three cases.

(i) gij(uh)gji(uh) < 0.
Then gij(u

ε
h)gji(u

ε
h) is also negative for any ε ≤ ε′, and from the definitions in (26) and

(23)–(25) it follows that

lim
ε→ 0

ωε
ij(u

ε
h)gij(u

ε
h) = lim

ε→ 0

|gji(uεh)|
|gij(uεh)| + ε

|gji(uεh)|
|gji(uεh)| + ε

|gji(uεh)|
|gij(uεh)| + |gji(uεh)|gij(u

ε
h)

=
|gji(uh)|

|gij(uh)| + |gji(uh)|gij(uh) = ω0
ij(uh)gij(uh)

due to the continuity of gij(·), gji(·) and because uεh → uh.
(ii) gij(uh)gji(uh) = 0.

Definitions (23)–(25) yield ω0
ij(uh) = 0. As gij(·) and gji(·) are continuous functions,

at least one of them approaches zero as uεh → uh for ε → 0. The statement of the
lemma follows by noting that whenever gij(u

ε
h) = 0 we have

∣∣ωε
ij(u

ε
h)gij(u

ε
h)
∣∣ ≤ ∣∣ω0

ij(u
ε
h)gij(u

ε
h)
∣∣ ≤ |gji(uεh)| |gij(uεh)|

|gij(uεh)| + |gji(uεh)| ,

and taking the limit for ε → 0.
(iii) gij(uh)gji(uh) > 0.

The statement of the lemma is trivially true because from definitions (23)–(25) and (37)
it follows that ω0

ij(uh) = 0 and ωε
ij(u

ε
h) = 0 for ε ≤ ε′.

Let ψε(uh) be the regularized mapping obtained by using ωε
ij(uh) in place of

ωij(uh) in (26).
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Theorem 14. The regularized problem

find uεh ∈ M and wε ∈ K such that

A(wε)uεh = b(uεh;wε),
wε = ψε(uεh)

(38)

admits at least one solution for any ε > 0.

Proof. Let us consider the mapping Fε : M×K → M×K defined by

F
ε

[
uεh
wε

]
=

[
Φ(uεh;wε)
ψε(uεh)

]
.

Problem (38) can be reformulated as the fixed-point problem

find (uεh, wε) ∈ M×K such that

[
uεh
wε

]
= F

ε

[
uεh
wε

]
.

As Fε is a continuous mapping from the compact convex set M × K into itself,
this fixed-point problem admits at least one solution in view of Brouwer’s fixed-point
theorem.

Theorem 15. The finite volume approximation problem (35) admits at least one
solution.

Proof. Let us consider the set of regularized solutions of (38) for ε > 0. This set
is a subset of the compact set M×K, and thus a subsequence exists that converges
to a limit solution (uh, w) ∈ M×K. Thus,

[
uεkh
wεk

]
→

[
uh
w

]
∈ M×K for k → ∞,(39)

where {εk} is a suitable sequence of nonnegative “epsilons” converging to zero for
k → ∞.

The crucial fact to be proved is that the limit solution (uh, w) in (39) actually
solves (35). To achieve this task, we show that ‖A(w)uh − b(uh;w)‖Th

is an in-
finitesimal quantity. First, we subtract the quantity A(wεk)uεkh − b(uεkh ;wεk) = 0 for
εk > 0 to A(w)uh − b(uh;w), rearrange the terms, take the ‖ · ‖Th

-norm, and apply
the triangle inequality to get

‖A(w)uh − b(uh;w)‖Th
≤ ‖F(uh − uεkh )‖Th

+ ‖G(ψ(uh))uh + g(ψ(uh)) − G(ψεk(uεkh ))uεkh − g(ψεk(uεkh ))‖Th

+ ‖B(uh − uεkh )‖Th
+ ‖r(uh) − r(uεh)‖Th

.

Then we note that all of the terms in this inequality except the second one can be
readily shown to be infinitesimal for k → ∞ by a simple continuity argument. Instead,
the second term has to be more carefully treated due to its nonlinear dependence on
uh and uεkh throughout the mappings ψ(·) and ψεk(·), respectively. Let us observe
that this second term describes the difference between the numerical diffusive flux at
any internal face calculated using the regularized solution uεkh and the one using the
limit solution uh. The ith component satisfies the inequality
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∣∣∣∣∣G(ψ(uh))uh

∣∣∣
i
− G(ψεk(uεkh ))uεkh

∣∣∣
i
+ gi(ψ(uh)) − gi(ψ

εk(uεkh ))

∣∣∣∣∣
≤ 1

|Ti|
∑
j∈σi

|fij | νijDij

∣∣∣∣ ũ
εk
j − uεk

i

Hij
− ũj − ui

Hij

∣∣∣∣
+ 2

1

|Ti|
∑
j∈σi

|fij | νij
∣∣wij(uh)gij(uh) − wεk

ij (uεkh )gij(u
εk
h )

∣∣ .

The right-hand side of this inequality approaches zero when k → ∞ because uεk
i → ui,

ũεk
ij → ũij due to the continuity of the reconstruction process, and

∣∣wij(uh)gij(uh) − wεk
ij (uεkh )gij(u

εk
h )

∣∣ → 0

thanks to Lemma 13.

5.3. The maximum principle for the finite volume approximation. In
this section, we demonstrate the existence of a maximum principle for the solution of
the finite volume approximation problem formulated in (35).

To achieve this task, we proceed as follows. We restrict the finite volume approx-
imation problem (35) to M by taking a constant weight vector w ∈ K in (33a), thus
relaxing the dependence on the solution uh through (33b). This restricted problem
will be shown to admit at least one discrete solution in Theorem 16, and all of its
solutions will be proved to satisfy a discrete maximum principle in Theorem 17. Fi-
nally, the solution of (35) will be shown to satisfy a discrete maximum principle as a
consequence of Theorem 17 in Corollary 18.

Theorem 16. The nonlinear fixed-point problem that involves the mapping
Φ(·,w) restricted to a constant w ∈ K,

find uh ∈ M such that uh = Φ(uh;w),

admits at least one solution.
Proof. The restriction Φ(·;w) to M provided by any specific choice of the weight

vector w ∈ K is a continuous mapping from the convex compact set M into itself.
The statement of the theorem follows by the application of Brouwer’s fixed-point
theorem.

The following theorem states that the solution of this restricted problem satisfies
a discrete maximum principle. The proof extends to unstructured finite volumes some
standard arguments used for proving similar results for finite differences. Nonetheless,
we report this proof in some detail to illustrate the role played by the positivity of
the factors Dij and the nonnegativity of the weights {wij

k (uh)} in the definition of the
face gradient.

Theorem 17 (maximum principle for the solution of the nonlinear restricted
problem). Let us consider problem (33a)–(33b) with definitions (32a)–(32b). Let
s ≤ 0 in (32b), and assume that w ≥ 0 be taken constant and that uh ∈ M satisfies

A(w)uh − b(uh;w) ≤ 0.(40)

Then uh satisfies the discrete maximum principle expressed in the inequality form

max
Tk∈Th

uk ≤ max
[
0, max

vα∈Vbnd
h

g(xα)
]
.
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Proof. Let us assume that there is a cell Ti such that

ui = max
Tk∈Th

uk > max
[
0, max

vα∈Vbnd
h

g(xα)
]
.(41)

We will demonstrate that this assumption contradicts the hypothesis of the theorem.
By rearranging (7) in order to collect the contribution from both internal and

boundary faces, and using the definitions introduced in section 4, we reformulate
the numerical flux balance for the cell Ti as the sum of the advective terms, labeled
{Adv. Terms}, and the diffusive terms, labeled {Diff. Terms}:

{Adv. Terms} =
1

|Ti|
∑
j∈σi

|fij |
[
v+
ijRi(uh)(xij) + v−ijRj(uh)(xij)

]

+
1

|Ti|
∑
j∈σ′

i

|fij |
[
v+
ijRi(uh)(xij) + v−ijg

D
ij

]

and

{Diff. Terms} =
1

|Ti|
∑
j∈σi

|fij | νijDij

Hij
(ui − uj)

+
1

|Ti|
∑
j∈σi

|fij | νij
Hij

( ∑
k∈σνj

wij
k (ui − uk) + wij

i (ui − gbnd
ij )

)

+
1

|Ti|
∑
j∈σ′

i

|fij | νij
ui − g̃Dij

hij
.

Both {Adv. Terms} and {Diff. Terms} are nonnegative quantities. Since from
Lemma 6 Ri(uh)(x) = ui for x ∈ Ti, we can rewrite {Adv. Terms} as

{Adv. Terms} =
ui

|Ti|
∑

j∈σi ∪σ′
i

|fij | vij +
1

|Ti|
∑
j∈σi

|fij | v−ij
(
Rj(uh)(xij) − ui

)

+
1

|Ti|
∑
j∈σ′

i

|fij | v−ij(gDij − ui),

(42)

and note that the three terms on the right-hand side of (42) are nonnegative. The
first term in the sum can be transformed as

∑
j∈σi ∪σ′

i

|fij | vij =
∑

j∈σi ∪σ′
i

∫
fij

nij · v dS =

∫
∂Ti

n · v dS =

∫
Ti

divv dV ≥ 0,

and is nonnegative because divv ≥ 0 by the initial assumption (2)(ii) and ui > 0 from
the proof assumption in (41). The second term in the sum is nonnegative because
v−ij ≤ 0 by definition and Rj(uh)(xij) ≤ ui in view of the limiter constraints (9). The

third term in the sum is nonnegative because v−ij ≤ 0 as before, and gDij < ui by (31)
and the assumption stated in (41).

Similarly, the entries in the sum comprising {Diff. Terms} are all nonnegative
quantities. Indeed, they contain scalar coefficients that are nonnegative by construc-
tion, such as νij , Hij , Dij , and {wij

k }, which multiply difference terms like (ui − uk)
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for k ∈ σνi or (ui − gbnd
ij ) and (ui − g̃Dij ) for j ∈ σi ∩σ′

i. All of these difference terms
are nonnegative as a consequence of the assumption stated in (41).

Since {Adv. Terms} + {Diff. Terms} − si = (A(w)uh − b(uh;w))
∣∣
i
≤ 0, it

follows that

si ≥ {Adv. Terms} + {Diff. Terms}

≥ 1

|Ti|
∑
j∈σi

|fij | νijDij
ui − uj

Hij
+

1

|Ti|
∑
j∈σ′

i

|fij | νij
ui − g̃Dij

hij
≥ 0,(43)

where the second inequality is obtained by canceling {Adv. Terms} ≥ 0 and some
other nonnegative terms in {Diff. Terms}. As s ≤ 0 by the hypothesis of the
theorem, relation (43) implies that uj = ui for any j ∈ σi because the coefficients Dij

of the scheme are all strictly positive and g̃Dij = ui for any j ∈ σ′
i. By repeating

this argument on the control volumes adjacent to the cell Ti and exploiting also the
connectivity of the mesh and the fact that Dij > 0 for any fij ∈ F int

h , we eventually
obtain that uh must be constant over all the mesh cells and equal to the boundary
data g̃Dij .

We emphasize that any solution uh consistent with the hypothesis (40) of the
theorem and the assumption (41) must satisfy the condition proved above. Nonethe-
less, this result then contradicts (41) because g̃Dij is the convex linear combination of

the vertex boundary values g(xα) for vα ∈ Vbnd
h (see (31)), and this should imply

ui ≤ max
vα∈Vbnd

h
g(xα).

Corollary 18. Let s(x) ≤ 0, and let (uh, w) ∈ M × K be a solution to the
finite volume approximation problem (35). Then uh satisfies the maximum principle
in the same discrete form as in Theorem 17; that is,

max
Tk∈Th

uk ≤ max

{
0, max

vα∈Vbnd
h

g(xα)

}
.

Proof. In view of the corollary’s hypothesis, uh ∈ M satisfies the fixed-point
relation uh = Φ(uh;w) with w = ψ(uh) ∈ K. Thus, uh solves the restricted problem
defined by taking these weights w constant, and the statement of the corollary is a
straightforward consequence of Theorem 17.

Remark 19. A minimum principle can be proved when s(x) ≥ 0 and can be
expressed in the form

min
Tk∈Th

uk ≥ min

{
0, min

vα∈Vbnd
h

g(xα)

}
.

The proof essentially repeats the same arguments as in the proofs of Theorem 17
and Corollary 18, but the symbols max, min and “≥”, “≤” must be consistently
interchanged.

6. Numerical experiments. In this section we present the performance of the
method on two different test cases that are taken from the recent literature. Both
test cases require the resolution of an advection-diffusion problem that is strongly
dominated by the convection term.

The first test case is taken from section 7.2 of [8]. A thorough comparison of
the behavior of the diamond scheme of [5] and the nonlinear diamond scheme of this
paper is carried out. In particular, we focus on the violation of the discrete maximum
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principle and the additional computational cost for solving the nonlinear diamond
scheme. Our investigation reveals that the second-order accurate solution provided by
the nonlinear diamond scheme exhibits a violation of the discrete maximum principle
by an error less than 10−12 against about 10−6–10−5 of the diamond scheme. The
additional cost for ensuring the satisfaction of the discrete maximum principle is about
10–15% of the cost for solving the same problem by using the diamond scheme.

The second test case is taken from Examples 5.1 and 5.2 of [27] to investigate the
order of accuracy of the nonlinear diamond scheme when numerically approximating
strong gradient solutions. The strength of the gradients of the solution is controlled
by varying the ratio between the viscosity coefficient and the absolute value of the
velocity field; note that this ratio is proportional to the Péclet number [27]. As
theoretically expected, second order of convergence is observed over a wide range of
this parameter. However, deterioration may occur for the most difficult case, and
second-order convergence is then lost. This behavior is similar to the behavior of the
scheme presented in [27].

Both the diamond scheme and the nonlinear diamond scheme require the reso-
lution of a nonlinear algebraic problem. To achieve this task, we consider the quasi-
Newton iterative scheme GIANT described in [12]. This scheme is very efficient in
solving general nonlinear problems and seems to be particularly suitable in lineariz-
ing the Jacobian matrix of the nonlinear functional (36). The nonlinear iterations
are stopped when the residual is smaller than 10−10; this threshold value is the same
one that ensures the violation of the maximum principle of the order 10−12 in the
test case of section 6.1. The linear algebraic problems arising from the Jacobian lin-
earization at the quasi-Newton iterative steps are solved by applying the Bi-CGSTAB
algorithm [30] preconditioned by an incomplete LU (ILU) factorization [16]. The mesh
data structures are managed by P2MESH [4], which is a C++ public domain library
designed for fast and efficient implementation of partial differential equation solvers.

6.1. Test case 1. We investigate a pure convection-diffusion problem with domi-
nant convection. The problem is posed on the computational domain Ω = [0, 1]×[0, 1]
by using the constant velocity field v = −(cos θ, sin θ) with θ = 55◦, and the scalar
viscosity coefficient ν = 10−5.

Dirichlet boundary conditions are set as follows: u = 0 on the bottom edge; u = 1
on the left and top edges; u steps from 0 to 1 at y = 4/5 on the right edge. The solution
exhibits an internal layer across the domain and a boundary layer along a part of the
bottom edge. As the discrete maximum principle is theoretically demonstrated by
assuming that the mesh is weakly acute, we consider, as in [8], the mesh obtained by
splitting into two triangles the square cells of a tensor product uniform mesh with
40 partitions per side of the computational domain. For this mesh, we solve the
advection-diffusion problem by using the diamond scheme and the nonlinear diamond
scheme. The two solutions are shown in Figure 3, where constant level curves are
depicted for discrete values from 0.01 to 0.99. A comparison of the two pictures in
Figure 3 shows that no additional smearing of the internal layer takes place in the
solution approximated by the nonlinear diamond scheme. The width of the internal
layer is approximately the same for both schemes because the satisfaction of the
discrete maximum principle is not based on the addition of some form of artificial or
cross-wind diffusion to the standard second-order version of the diamond scheme.

Similar results (not shown) were also obtained by repeating these calculations
on a truly unstructured mesh with a comparable number of triangles and all angles
smaller than 90◦. The performance of the two schemes for the two different kinds of
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Fig. 3. Test case 1: Linearly reconstructed vertex solution provided by the diamond scheme
(left) and the nonlinear diamond scheme (right).

Table 1

Test case 1: Performance in terms of quality and computational cost for the calculation with a
regular mesh violating the strictly acute mesh condition (top) and an unstructured mesh satisfying
the strictly acute mesh condition (bottom).

Regular mesh (40 × 40 × 2 triangles)

Scheme Overshoot Undershoot Layer width Normalized cost

Diamond 2.42 × 10−4 1.03 × 10−6 0.1 1

NL diamond 5.65 × 10−12 3.01 × 10−12 0.1 1.12

Unstructured mesh (4352 triangles)

Scheme Overshoot Undershoot Layer width Normalized cost

Diamond 8.87 × 10−5 2.34 × 10−6 0.1 1

NL diamond 9.48 × 10−11 6.46 × 10−11 0.1 1.13

meshes, i.e., the regular one and the unstructured one, is summarized by Table 1. The
measure of the absolute values of the maximum overshoot and undershoot, which is
a measure of the violation of the maximum and minimum principle, reveals that the
nonlinear diamond scheme actually provides a better approximation on both meshes.
Table 1 also gives the relative cost for the calculation using the two methods on the
two grids and the layer width approximately taken at y = 0.5 on the two pictures. It
is clear from this table that the nonlinear diamond scheme makes it possible to achieve
a higher quality approximation at a very small additional cost, this latter one being
no more than 15% of the cost of the diamond scheme for solving the same problem.
An explanation of this fact is possible by comparing the convergence curves for the
calculations that use the two schemes. The two convergence curves are illustrated
in Figure 4. From this figure, we note that the number of quasi-Newton iterations
does not significantly change when the nonlinear discretization is considered for the
diffusive term. We observe that the maximum number of quasi-Newton iterations that
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Fig. 4. Test case 1: Comparison of the convergence curves for the quasi-Newton iterations.

are necessary to attain a residual error under 10−10 is about the same: 75 iterations
for the nonlinear diamond scheme and 74 iterations for the diamond scheme. The
difference between the costs of the two calculations is mainly due to the different
number of “internal” Bi-CGSTAB iterations that are required to solve the linearized
problem at each step of the quasi-Newton “external” loop. The total number of
internal Bi-CGSTAB iterations is 1970 for the diamond scheme and 2198 for the
nonlinear diamond scheme.

From this numerical experiment we conclude that the nonlinear discretization of
the diffusive term that is proposed in this paper effectively ensures the preservation
of a discrete maximum principle. This linearity does not dramatically affect the
computational cost compared to the cost of solving the same problem by the standard
second-order version of the diamond scheme.

6.2. Test case 2. In this section, we investigate the performance of the non-
linear diamond scheme when numerically solving the two steady convection-diffusion
problems of Examples 5.1 and 5.2 of [27], which will be respectively denoted “Prob-
lem A” and “Problem B.” Both problems are defined on the computational domain
Ω = [0, 1] × [0, 1]. The domain Ω is covered by a regular triangulation of 40 × 40
square-shaped cells, each one of these being divided into two triangles by using the
same main diagonal. We run three different calculations by using ν ∈ {1, 10−1, 10−5}.
The source function s appearing on the right-hand side of the equation and the bound-
ary data g are chosen so that the exact solution u is the one indicated in the following
problem specifications. The velocity field v is also indicated below.

Problem A:

v = (−1,−1)T , u(x, y) = x cos (πy).

Problem B:

v = (2, 3)T ,

u(x, y) = xy2 − y2 exp
(
2
x− 1

ν

)
− x exp

(
3
y − 1

ν

)
+ exp

(2(x− 1) + 3(y − 1)

ν

)
.
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Fig. 5. Test case 2, Problem A: Error convergence rates measured by using the L2(Ω)-norm
(left) and the H1(Ω)-norm (right); the results concern the approximation of the solution for ν = 1
(circles), ν = 10−1 (squares), and ν = 10−5 (diamonds); second-order and first-order convergence
slopes are indicated in the bottom-left corner of both pictures.

Fig. 6. Test case 2, Problem B: Error convergence rates measured by using the L2(Ω)-norm
(left) and the H1(Ω)-norm (right); the results concern the approximation of the solution on Ω =
[0, 1]×[0, 1] for ν = 1 (circles), ν = 10−1 (squares), ν = 10−5 (diamonds) and on Ω = [0, 0.8]×[0, 0.8]
for ν = 10−5 (stars); second- and first-order convergence slopes are indicated in the bottom-left
corner of both pictures.

Problem A allows us to verify the convergence rate when approximating smooth solu-
tions. Instead, the solution of Problem B is characterized by a boundary layer at the
outflow near the edges defined by the equations x = 1 and y = 1. We mention, for
comparison’s sake, that this last test case is also solved in [27] by using a stabilized
Lagrange multiplier method and in [25] by using a nonconforming finite element dis-
cretization. The results of this section are shown in Figures 5 and 6, both reporting
the H1(Ω)- and L2(Ω)-norm error of the solution provided by the nonlinear diamond
scheme for the above-mentioned values of ν. As shown by both figures, the formal
second order of convergence is achieved when we approximate a smooth solution, as
in Problem A, and a boundary layer on a mesh that is sufficiently fine to resolve it,
as in Problem B, for ν = 1 and ν = 10−1. In both cases, the convergence rate that is
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experimentally measured is 1 for the H1(Ω)-norm error and 2 for the L2(Ω)-norm error.
When the layer is not resolved in Problem B, e.g., for the strongest advective case
corresponding to ν = 10−5, the convergence rate of the L2(Ω)-norm of the approxi-
mation error is only of order 1/2, while the H1(Ω)-norm of the approximation error
is not converging to zero on the sequence of meshes considered. Nonetheless, we still
observe the expected convergence rate for both error norms away from the boundary
layers, e.g., by restricting the error measurement to the domain Ω = [0, 0.8] × [0, 0.8]
as proposed in [27]. This local convergence behavior is perfectly in agreement with the
one observed by the authors of [27], who used a completely different approximation
method for this same problem.

7. Conclusions. A new finite volume method has been developed to numerically
solve the steady multidimensional convection-diffusion equation. The method is de-
signed on the conservative form of the equation and approximates the cell averages of
the analytical solution on unstructured meshes of d-simplices, d ≥ 2 being the spatial
dimension. The formulation of the numerical advective fluxes requires a limiter on the
reconstructed slope within each mesh cell in order to ensure monotonicity. Instead,
the diffusive numerical fluxes are based on a nonlinear extension of the face gradi-
ents used in the standard version of the diamond scheme. Second-order accuracy has
been achieved by using a piecewise linear reconstruction within each cell and at mesh
vertices. The linear reconstruction relies on the weighted average of the cell averages
of the solution. An algorithm was proposed to calculate nonnegative and bounded
weights for the mesh vertex values. The nonlinear face gradients have some signifi-
cant theoretical properties which allowed us to prove the solvability of the resulting
scheme and the existence of a discrete maximum and minimum principle. The nu-
merical results illustrate these features and the performance of the method in treating
problems with both smooth solutions and solutions with internal and boundary layers.
It turns out that second order of convergence of the sequence of approximate solutions
is achievable with negligible violation of the discrete maximum and minimum prin-
ciples. The discrete maximum and minimum principles are obtained at a relatively
small additional cost with respect to the computational cost required for solving the
same problem by the version of the method not preserving the discrete maximum
and minimum principle. The relative additional cost is about 10–15%. Finally, we
remark that the stencils of the diamond scheme and the nonlinear diamond scheme
are identical; hence, the new method does not require additional memory storage.
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[14] T. Gallouët, R. Herbin, and M. H. Vignal, Error estimates on the approximate finite
volume solution of convection diffusion equations with general boundary conditions, SIAM
J. Numer. Anal., 37 (2000), pp. 1935–1972.

[15] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, 2001; reprint of the 1998 edition.

[16] G. H. Golub and C. F. Van Loan, Matrix Computation, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[17] B. Heinrich, Finite Difference Methods on Irregular Networks, Birkhäuser Verlag, Basel, 1987.
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JONG-SHI PANG† , VIJAY KUMAR‡ , AND PENG SONG§

Abstract. Beginning with a proof of the existence of a discrete-time trajectory, this paper
establishes the convergence of a time-stepping method for solving continuous-time, boundary-value
problems for dynamic systems with frictional contacts characterized by local compliance in the normal
and tangential directions. Our investigation complements the analysis of the initial-value rigid-body
model with one frictional contact encountering inelastic impacts by Stewart [Arch. Ration. Mech.
Anal., 145 (1998), pp. 215–260] and the recent analysis by Anitescu [Optimization-Based Simulation
for Nonsmooth Rigid Multibody Dynamics, Argonne National Laboratory, Argonne, IL, 2004] using
the framework of measure differential inclusions. In contrast to the measure-theoretic approach of
these authors, we follow a differential variational approach and address a broader class of problems
with multiple elastic or inelastic impacts. Applicable to both initial and affine boundary-value prob-
lems, our main convergence result pertains to the case where the compliance in the normal direction
is decoupled from the compliance in the tangential directions and where the friction coefficients are
sufficiently small.
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1. Introduction. This paper investigates the limiting properties of time-stepping
methods for rigid-body dynamics problems with multiple contacts characterized by
friction and local compliance. Comprehensive reviews on rigid-body models and their
applications can be found in the monographs [5, 13] and the excellent survey [20].
The benefits of introducing contact compliance for analysis and numerical simulation
have been discussed in previous work [23]. In particular, a compliant model elimi-
nates the static indeterminacy that is inherent in a rigid body dynamic model with
multiple contacts and the need to make assumptions about linear independence of the
columns of the Jacobian matrix [3, 10, 19]. Most important, even when one makes
the requisite assumptions for uniqueness and existence, it is not possible to analyze
the boundary-value problem in a fully rigid-body model because of the presence of
discontinuities in velocities during impacts.

The present paper is closest in spirit to the work of Stewart [19], who analyzed
the convergence of a time-stepping method [21] for initial-value rigid-body problems
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with frictional contact. Stewart’s analysis is the first of its kind in the rigid-body
dynamics literature. However, his analysis is somewhat limiting in several respects.
In particular, the main result of the paper [19], Theorem 1, pertains essentially to
the case of one inelastic contact. Even for such a simplified case, the analysis relies
on a Radon–Nikodym derivative with several technical restrictions. It is difficult to
fully extend Stewart’s analysis because of the intrinsic analytical difficulties associated
with the rigid-body paradigm. This difficulty is acknowledged in the recent paper by
Anitescu [1], who established the convergence of a sequential quadratic programming
method to a solution of a measure differential inclusion for nonsmooth rigid multibody
dynamics.

Our previous work was concerned with several analytical aspects of dynamic mod-
els with compliant frictional contacts. Comparisons between results obtained with and
without local compliance with a singular perturbation analysis are included in [15].
Uniqueness and existence results for the discrete-time problem are presented in [17]
under a semi-implicit discretization that permits the use of linear complementarity
theory [6]. In this paper, we analyze the convergence of a broad scheme of time-
stepping methods for solving frictional compliant contact problems. In contrast to
[17], the discretization scheme employed here is more general, allowing in particular
for nonlinearities in the state variables, thus going well beyond the previous analysis
of existence and uniqueness that is based on a linear theory. Unlike the analysis in
[19, 1], our main convergence result is not in terms of measure differential inclusions.
Most importantly, our analysis is carried out in a broad setting that includes both
initial-value and boundary-value problems with affine constraints on the initial and
final state (see (13)). It should be noted that although boundary-value problems arise
naturally in the design of mechanical systems governed by dynamics, previous litera-
ture on this subject addresses only initial-value problems and ours is the first attempt
to study contact problems subject to boundary conditions.

This paper addresses neither the numerical implementation nor the order of con-
vergence of the time-stepping methods. For details on practical implementation and
computational results, see [16, 18]; see also [4] for a part-insertion application of a
boundary-value planar rigid-body problem. The order of convergence analysis for
frictional contact problems is a very difficult topic, even for initial-value problems.
The discontinuity of the friction forces as a function of the system states is a main
cause for such difficulty.

The organization of the rest of the paper is as follows. In the next section, we
summarize the formulation of the continuous-time frictional compliant contact prob-
lem and formally define a concept of a weak solution to the problem. A numerical
time-stepping scheme for computing such a solution is described in section 3. The
convergence analysis of the numerical scheme begins in section 4, where we first in-
vestigate in detail the normal and tangential frictional conditions in the discrete-time
subproblems, establishing in particular the existence of a discrete-time trajectory of
the normal and tangential contact forces that are continuous functions of the state. We
also establish the uniqueness of such a trajectory under a “small coefficient of friction”
assumption; see Propositions 6 and 7. With the aid of the machinery of differential
variational inequalities [11], and under the small-friction-coefficient assumption, we
complete the convergence analysis of the time-stepping method for a compliant-body
frictional contact problem in section 5. There, an existence result, Theorem 8, for the
discrete-time boundary-value problem is first proved, which is followed by the main
convergence theorem of the paper, Theorem 9. The small-friction assumption is the
artifact of the nonlinear friction law that is in turn a characteristic of the discretiza-
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tion scheme that we employ. Such a nonlinear analysis is in contrast to previous
analysis by Stewart and Anitescu, which is based on a polygonal approximation of
the quadratic Coulomb cone.

2. Model formulation. The mathematical formulation of the frictional compli-
ant contact problem has several components: (a) equations of motion, (b) compliance
constitutive law, (c) contact and friction, and (d) boundary conditions. In what fol-
lows, we present only the essentials of the formulation and refer the reader to [14, 17]
for the detailed explanation of the overall model.

Equations of motion. The dynamics equation of motion for a multibody system
with frictional contacts can be written as

M(q)ν̇ = f(t, q, ν) + Γ(q)Tλ,(1)

where q is the nq-dimensional vector of generalized coordinates, ν is the nν-dimensional
vector of the system velocities, ν̇ denotes the time derivative of ν (i.e., ν̇ = dν/dt),
M(q) is the nν × nν symmetric positive definite mass-inertia matrix, f(t, q, ν) is the
nν-dimensional external force vector (excluding contact forces),

Γ(q)T ≡
[

Γn(q)T Γt(q)
T Γo(q)

T
]
≡ G(q)T

[
JΨn(q)T JΨt(q)

T JΨo(q)
T
]

is the transpose of the system Jacobian matrix, with Ψn,t,o(q) and JΨn,t,o(q) being
the constraint functions and their Jacobians for all possible contacts in the normal
direction (labeled n) and the two tangential directions (labeled t and o), respectively,
and λ ≡ (λn, λt, λo) = λn,t,o is the vector of contact forces in these directions. For
compliant contact models, the dimensions of the contact forces and, accordingly, the
orders of the associated Jacobian matrices, are related to the compliance constitu-
tive model being used. The matrix G(q) is a nq × nν parametrization matrix that
allows us to use different parameterizations for the motion group via the the following
kinematics equation:

q̇ = G(q)ν,(2)

where q̇ ≡ dq/dt is the time-derivative of the system configuration. Together, (1)
and (2) constitute the equations of motion governing the dynamics of the mechanical
system.

Letting T > 0 be the terminal time of the problem, we postulate the following
assumptions (A)–(C) on the above model functions. Notice that no rank assumption
is imposed on Γ(q); this is a distinct advantage of a compliant model in that the
number of contact points need not be restricted by the degrees of freedom of the
bodies in contact.
(A) The function f(t, q, ν) is Lipschitz continuous on [0, T ] × �nq+nν with constant
L

f
> 0; thus,

‖f(t, q, ν) − f(t ′, q ′, ν ′)‖ ≤ L
f
[|t− t ′| + ‖q − q ′‖ + ‖ν − ν ′‖]

∀ (t, q, ν), (t ′, q ′, ν ′) ∈ [0, T ] ×�nq+nν .

(B) The functions G(q) and Γ(q) are Lipschitz continuous and bounded on �nq ; thus
there exist positive constants L

G
, L

W
, η

G
, and η

W
such that for all q and q ′ in �nq ,

‖G(q) −G(q ′) ‖ ≤ L
G
‖ q − q ′ ‖, ‖Γ(q) − Γ(q ′) ‖ ≤ L

W
‖ q − q ′ ‖,

sup
q∈�nq

‖G(q) ‖ ≤ η
G
, sup

q∈�nq

‖Γ(q) ‖ ≤ η
W

;
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moreover, the function Ψn(q) satisfies the limit condition

lim
‖q−q ′‖→0

‖Ψn(q) − Ψn(q ′) − JΨn(q ′)(q − q ′) ‖
‖ q − q ′ ‖ = 0,(3)

or, equivalently, for every scalar ε > 0, a scalar ς > 0 exists such that

‖ q − q ′ ‖ ≤ ς ⇒ ‖Ψn(q) − Ψn(q ′) − JΨn(q ′)(q − q ′) ‖ ≤ ε ‖ q − q ′ ‖.(4)

(C) The mass-inertia matrix M(q) is Lipschitz continuous on �nq with Lipschitz
constant L

M
> 0; moreover, positive constants σ

M
and σ ′

M
exist such that

inf
q∈�nq

min
‖ν‖=1

νTM(q)ν ≥ σ
M

and sup
q∈�nq

max
‖ν‖=1

νTM(q)ν ≤ 1/σ ′
M
.

Condition (3) is clearly satisfied if JΨn(q) is Lipschitz continuous. Unlike the treat-
ment in [1], Ψn(q) is not assumed to be twice differentiable. (The squared distance
function to a closed convex set—the obstacle set—is an example of a (scalar) function
that is continuously differentiable with a Lipschitz gradient but is not twice differ-
entiable.) Conditions (A), (B), and (C) have several immediate consequences, which
will be used freely throughout the paper where appropriate.

A constitutive model for compliance. While there are many compliance
models, we employ the distributed model described in [14, 17], to which we refer the
reader for details and references. Specifically, this model postulates that the contact
forces are linearly dependent on the body deformations and on the deformation rates:

λ = K(q)δ + C(q)δ̇(5)

where δ ≡ (δn, δt, δo) = δn,t,o is the vector of body deformations in the normal (n)

and the two tangential directions (t and o), δ̇ denotes the vector of velocities of the
deformations (i.e., δ̇ = dδ/dt); the stiffness matrix K(q) and the damping matrix
C(q), which are partitioned as

K(q) ≡

⎡
⎢⎢⎣

Knn(q) Knt(q) Kno(q)

Ktn(q) Ktt(q) Kto(q)

Kon(q) Kot(q) Koo(q)

⎤
⎥⎥⎦ and C(q) ≡

⎡
⎢⎢⎣

Cnn(q) Cnt(q) Cno(q)

Ctn(q) Ctt(q) Cto(q)

Con(q) Cot(q) Coo(q)

⎤
⎥⎥⎦ ,

are each of order 3n2
snc, with n2

s being the number of elements with lumped stiffness
and damping properties that comprise a contact patch; each of the 18 block matrices
(such as Knt(q), etc.) in K(q) and C(q) is an n2

snc block diagonal matrix with nc

diagonal blocks, one for each contact patch, and each such diagonal block is in turn
a square matrix of order n2

s. With nδ ≡ n2
snc, it follows that the vectors λn, λt, λo,

δn, δt, and δo are each of dimension nδ. We postulate the following condition:
(D) K(q) and C(q) are Lipschitz continuous symmetric positive definite matrix-valued
functions of q; moreover, positive constants η

K
> 0, σ

KC
and η

KC
exist such that

sup
q∈�nq

‖K(q)‖ ≤ η
K

, and, for all scalars h > 0 sufficiently small,

inf
q∈�nq

min
‖δ‖=1

δ T [hK(q) + C(q) ]−1δ ≥ σ
KC

and sup
q∈�nq

∥∥∥ [hK(q) + C(q) ]
−1
∥∥∥ ≤ η

KC
.

Notice that the above implies sup
q∈�nq

‖C(q)‖ ≤ 1/σ
KC

.
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Contact and friction. Stated as a complementarity condition, the normal con-
tact condition is

0 ≤ λn ⊥ Ψn(q) + δn ≥ 0,(6)

where the notation u ⊥ v means that the two vectors u and v are perpendicular. The
tangential friction condition is expressed by a minimization principle over the cone of
frictional forces: for each i = 1, . . . , nδ,

(λit, λio ) ∈ argmin
{
sitλ̃it + sioλ̃io : ( λ̃it, λ̃io ) ∈ F(μi λin)

}
,(7)

where

sit ≡ d(δit + Ψit(q))

dt
= δ̇it + ∇Ψit(q)

T q̇,

sio ≡ d(δio + Ψio(q))

dt
= δ̇io + ∇Ψio(q)q̇

(8)

are the tangential slip velocities at contact patch i, which depend on both the defor-
mations of the compliant elements and the rigid body motions, and where μi ≥ 0 is
the friction coefficient and

F(τ) ≡ { ( a, b ) ∈ �2 :
√
a2 + b2 ≤ τ }, τ ≥ 0,

is the standard Coulomb friction cone. From (7), it follows that

sitλit + sioλio = −μi λin

√
s2
it + s2

io.(9)

Moreover, provided that μiλin > 0, we have, with ri ≡
√
s2
it + s2

io,

sit +
ri λit√
λ2
it + λ2

io

= 0, so +
ri λio√
λ2
it + λ2

io

= 0,

0 ≤ ri ⊥ μi λin −
√
λ2
it + λ2

io ≥ 0,

where we define 0/0 to be 1. If we use polar coordinates to represent the pair (sit, sio),
say,

sit = ri cosψi and sio = ri sinψi,

then there exists a scalar φi ∈ [−1, 1] satisfying ri > 0 ⇒ φi = 1 such that

λit = −μi λin φi cosψi and λio = −μi λin φi sinψi.

The latter representation of (λit, λio) remains valid when μiλin = 0, by letting φi = 0.

More on the compliance model. The constitutive law (5) can be used to
eliminate the slip velocities (sit, sio) in the friction law (7), resulting in an expression
of the latter in terms of the state variables (q, ν, δn,t,o) and the normal force λn.
This reformulation of the friction law is significant because the slip velocities may
behave discontinuously and lead to technical difficulties in the convergence analysis
of a numerical method. From (5), we have δ̇ = C(q)−1(λ − K(q)δ). Writing

C(q)−1 ≡

⎡
⎢⎢⎢⎣

Ĉnn(q) Ĉnt(q) Ĉno(q)

Ĉtn(q) Ĉtt(q) Ĉto(q)

Ĉon(q) Ĉot(q) Ĉoo(q)

⎤
⎥⎥⎥⎦ ,
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we obtain

(
δ̇it

δ̇io

)
=

⎡
⎣ Ĉitn(q) Ĉitt(q) Ĉito(q)

Ĉion(q) Ĉiot(q) Ĉioo(q)

⎤
⎦ ( λ − K(q)δ ),

where Ĉitn(q) denotes the ith row of the (sub)matrix Ĉtn(q), and similarly for the
other notation. Clearly, the friction condition (7) at contact i is equivalent to: for all

(λ̃it, λ̃io) ∈ F(μiλin),

0 ≤
(

λ̃it − λit

λ̃io − λio

)T (
sit

sio

)
=

(
λ̃it − λit

λ̃io − λio

)T [(
δ̇it

δ̇io

)
+

(
Γit(q)

Γio(q)

)
ν

]

=

(
λ̃it − λit

λ̃io − λio

)T
⎧⎨
⎩
⎡
⎣ Ĉitn(q) Ĉitt(q) Ĉito(q)

Ĉion(q) Ĉiot(q) Ĉioo(q)

⎤
⎦ ( λ − K(q)δ ) +

(
Γit(q)

Γio(q)

)
ν

⎫⎬
⎭ .

(10)

Proposition 1 shows that under the constitutive compliance law (5), the tangential
friction forces in a frictional compliant model can be characterized by the solution to
a convex quadratic program.

Proposition 1. Given q, ν, λn, and δ, under (5), the tangential forces (λt, λo)
satisfy the minimum principle (7) if and only if (λt, λo) is the optimal solution, which
must necessarily be unique, of the convex quadratic program:

(11)

minimize
1

2

(
λ̃t

λ̃o

)⎡
⎣Ĉtt(q) Ĉto(q)

Ĉot(q) Ĉoo(q)

⎤
⎦
(
λ̃t

λ̃o

)

+

(
λ̃t

λ̃o

)T
⎧⎨
⎩
⎡
⎣Ĉtn(q)

Ĉon(q)

⎤
⎦λn +

[
Γt(q)

Γo(q)

]
ν −

⎡
⎣Ĉtn(q) Ĉtt(q) Ĉto(q)

Ĉon(q) Ĉot(q) Ĉoo(q)

⎤
⎦K(q)δ

⎫⎬
⎭

subject to ( λ̃t, λ̃o ) ∈
nδ∏
i=1

F(μi λin) .

Proof. It suffices to note that the first-order optimality conditions of (11) are
equivalent to the variational conditions (10).

Boundary conditions. To complete the description of the model, we postulate
a set of boundary conditions that connect the state variable x ≡ (q, ν, δ) ∈ �n, where
n ≡ nq+nν+3nδ, at the initial and terminal times: t = 0 and t = T , respectively. The
most general such conditions would be expressed by a nonlinear functional relation of
the form F (x(0),x(T )) = 0. Nevertheless, such generality would make the analysis
extremely difficult, if not impossible. In general, the boundary conditions should be
consistent with the constraints; such consistency would require the initial pair (q0, δ0

n)
to satisfy the feasibility condition:

Ψn(q0) + δ0
n ≥ 0.(12)
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Therefore, to both accommodate realistic applications and facilitate the mathematical
analysis, we consider a class of boundary conditions where the initial configuration
q(0) = q0 and deformation δ(0) = δ0 are known and satisfy (12); but the initial
velocity ν(0) and terminal state x(T ) are subject to a system of linear equations,

b = Mνν(0) + Nx(T ),(13)

for some given vector b ∈ �nν and matrices Mν ∈ �nν×nν and N ∈ �nν×n. When
Mν is the identity matrix and N is the zero matrix, we recover an initial-value problem
with a known initial state x(0).

Weak solutions. The frictional compliant contact problem under study is to
find a state trajectory x : [0, T ] → �n and a force trajectory λ : [0, T ] → �3nδ such
that q(0) = q0, δ(0) = δ0, and the conditions (1), (2)–(8), (12), and (13) are satisfied.
Ideally, we want these conditions to be satisfied at all times t ∈ [0, T ], but due to
the possible discontinuity of the force trajectory λ, this ideal goal is generally not
attainable, especially when it pertains to the numerical solutions obtained by a time-
stepping scheme, such as the one described in the next section; see [19, 20]. Therefore,
we have to settle for a kind of weak solution that satisfies the dynamics equations and
the contact and friction conditions in a weak sense. This is an inherent limitation
of the model, particularly (5). It may be possible to get a strong solution by using
a more sophisticated, nonlinear constitutive model. (See [15] for an example of such
a model.) However, we refrain from pursuing such an extended consideration and
restrict ourselves to the law (5), whose analysis is already fairly involved.

Definition 2. The pair of trajectories x : [0, T ] → �n and λ : [0, T ] → �3nδ is
said to be a weak solution of the frictional compliant contact problem if

(a) (the state equations) x(t) is absolutely continuous on [0, T ] and satisfy for all
τ ≤ τ ′ in [0, T ],

ν(τ ′) − ν(τ) =

∫ τ ′

τ

M(q(t))−1[ f(t, q(t), ν(t)) + Γ(q(t))Tλ(t) ] dt,

q(τ ′) − q(τ) =

∫ τ ′

τ

G(q(t))ν(t) dt,

δ(τ ′) − δ(τ) =

∫ τ ′

τ

C(q(t))−1[ λ(t) − K(q(t))δ(t) ] dt;

(b) (the normal contact condition) Ψn(q(t))+δn(t) ≥ 0 for all t ∈ [0, T ], λn(t) ≥ 0
for almost all t ∈ [0, T ], and∫ T

0

λn(t)T [ Ψn(q(t)) + δn(t) ] dt = 0;

(c) (the friction condition) for every i = 1, . . . , nδ, (λit(t), λio(t)) ∈ F(μiλin(t))

for almost all t ∈ [0, T ] and for every continuous function (λ̃t, λ̃o) : [0, T ] → �2nδ

such that for every i = 1, . . . , nδ, (λ̃it(t), λ̃io(t)) belongs to F(μiλin(t)) for almost all
t ∈ [0, T ], it holds that

∫ T

0

(
λ̃t(t) − λt(t)

λ̃o(t) − λo(t)

)T
⎧⎨
⎩
⎡
⎣ Ĉtt(q(t)) Ĉto(q(t))

Ĉot(q(t)) Ĉoo(q(t))

⎤
⎦
[(

λt(t)

λo(t)

)

−
[

Ktt(q(t)) Kto(q(t))

Kot(q(t)) Koo(q(t))

](
δt(t)

δo(t)

)]
+

(
Γt(q(t))

Γo(q(t))

)
ν(t)

}
dt ≥ 0,
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(d) (initial and boundary conditions) q(0) = q0, δ(0) = δ0, and (13) hold.
We make a couple remarks about the above definition. First, the slip velocities

do not enter in the above definition; second, the tangential friction condition is stip-
ulated to hold in an integral form that is an aggregation over all contacts. This is in
contrast to requiring the condition to hold at every contact. In the special case where
compliance is decoupled among the contacts, then the aggregated condition indeed
decouples into separate conditions at each individual contact.

3. A time-stepping scheme. The kind of “semi-implicit” discretization meth-
ods described herein for computing a weak solution to the frictional compliant contact
problems has been used extensively for solving initial-value rigid-body problems and,
to a lesser extent, for compliant-body problems; see, e.g., [2, 3, 11, 21, 17, 18, 19].
Specifically, we divide the time interval [0, T ] into Nh + 1 subintervals each of equal
length h > 0; thus (Nh + 1)h = T . The variables of the discrete-time system are

{ qh,0, qh,1, . . . , qh,Nh+1 }, { νh,0, νh,1, . . . , νh,Nh+1 }, { δh,0n,t,o, δ
h,1
n,t,o, . . . , δ

h,Nh+1
n,t,o },

{λh,1
n,t,o, λ

h,2
n,t,o, . . . , λ

h,Nh+1
n,t,o }, and { sh,1t,o , . . . , s

h,Nh+1
t,o }.(14)

We write xh,j ≡ (qh,j , νh,j , δh,j), δh,j ≡ δh,jn,t,o, and λh,j ≡ λh,j
n,t,o. To derive the

discrete-time system, we replace the time derivatives of the state variable x ≡ (q, ν, δ)
by standard finite-difference quotients such as:

ẋ(t) ≈ x(t + h) − x(t)

h
.

The right-hand expressions in the equation of motion (1) and in the kinematic equa-
tion (2) are approximated by a semi-implicit scheme that employs a θ-rule, whereby
the differential variables q and ν are evaluated at some intermediate values in the
respective subintervals determined by the scalar θ ∈ [0, 1]. Specifically, with

qh,θj ≡ θ qh,j + ( 1 − θ ) qh,j+1 and νh,θj ≡ θ νh,j + ( 1 − θ ) νh,j+1,

the discrete-time dynamics and kinematics equations at time th,j+1 are

M(qh,j)( νh,j+1 − νh,j ) = h [ f(th,j+1, q
h,θj , νh,θj ) + Γ(qh,j)Tλh,j+1],

qh,j+1 − qh,j = hG(qh,j)νh,θj .
(15)

(More generally, we could use different θ-values in these two equations. For simplicity,
we avoid this minor variation and use (15).) Since st,o = δ̇t,o + JΨt,o(q)q̇ by (8), we
employ the following discrete-time approximation for the vector of tangential slip
velocities st,o:

sh,j+1
t,o =

δh,j+1
t,o − δh,jt,o

h
+ JΨt,o(q

h,j)
qh,j+1 − qh,j

h
=

δh,j+1
t,o − δh,jt,o

h
+ Γt,o(q

h,j)νh,θj ,

where we have used the discrete-time kinematics equation qh,j+1−qh,j = hG(qh,j)νh,θj

and the definition of Γt,o(q
h,j) ≡ JΨt,o(q

h,j)G(qh,j) to obtain the second equality.
In deriving the discrete-time normal contact condition, we employ the first-order
approximation

Ψn(q(t + h)) ≈ Ψn(q(t)) + hJΨn(q(t)) q̇(t),
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which holds for all h > 0 sufficiently small, and approximate q̇(t) similarly.
Putting together all the above approximations, we arrive at the following discrete-

time frictional compliant contact problem: given (q0, δ0) satisfying (12), compute (14)
such that the conditions below are satisfied for all j = 0, 1, . . . , Nh,

M(qh,j)( νh,j+1 − νh,j ) = h [ f(th,j+1, q
h,θj , νh,θj ) + Γ(qh,j)Tλh,j+1],

qh,j+1 − qh,j = hG(qh,j)νh,θj ,

δh,j+1
t − δh,jt = h [sh,j+1

t − Γt(q
h,j)νh,θj ],

δh,j+1
o − δh,jo = h [sh,j+1

o − Γo(q
h,j)νh,θj ],

0 ≤ λh,j+1
n ⊥ Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,j+1

n ≥ 0,

λh,j+1 = K(qh,j)δh,j+1 +
C(qh,j)

h
( δh,j+1 − δh,j ),

(
λh,j+1
it

λh,j+1
io

)
∈ arg min

(λ̃it,λ̃io)∈F(μi λ
h,j+1
in )

⎧⎨
⎩
(

sh,j+1
it

sh,j+1
io

)T (
λ̃it

λ̃io

)⎫⎬
⎭ ,

b = Mνν
h,0 + Nxh,Nh+1, and ( qh,0, δh,0 ) = ( q0, δ0 ).

(16)

The inclusion of the parameter θ in selected terms raises the question of why it
is not used consistently throughout the constraints. An answer to this question can
be traced to the paper [21], where the intention was to use a linear complementarity
solver to solve the subproblems. As seen from the subsequent paper [19], excluding θ
from the matrices M(qh,j), Γ(qh,j), and G(qh,j) simplifies the analysis significantly.
The Ph.D. thesis [24] contains an analysis of a fully implicit time-stepping method
for an initial-value rigid-body model, which leads to subproblems that are nonlinear
complementarity problems. A computational comparison between a fully implicit
scheme versus a semi-implicit scheme can be found in [25]. Presumably, the use of
the parameter θ is to induce a higher order of convergence; yet such a goal is hard
to substantiate formally. The analysis below does not address this issue of order of
convergence.

Beginning in the next section, we will analyze two fundamental issues associated
with the above discrete-time system: (a) the existence of a solution to each discrete-
time boundary-value subproblem, and (b) the convergence of such a discrete-time tra-
jectory to a weak solution of the frictional compliant contact problem. Part of the chal-
lenge in the convergence analysis lies in the coupled nature of the individual time-step
subproblems, which are linked by the boundary equation b = Mνν

h,0 + Nxh,Nh+1.
Briefly, the analysis consists of two major tasks. First, we show that for an arbitrary
triple xh,j , a unique friction triple λh,j+1 exists that has some desirable continuity
and boundedness properties, provided that the friction coefficients μi are sufficiently
small. These properties of the friction forces allow us to apply an argument used in
[11] for a class of boundary-value differential variational inequalities to complete the
convergence analysis of the discrete-time trajectory as the time step tends to zero.

Naturally, there is an important computational issue associated with the above
numerical scheme; namely, how can the discrete-time system (16) be efficiently solved
in practice? The proof of Theorem 8 suggests a fixed-point method. Yet, specialized
complementarity methods [8] may prove to be more effective. Nevertheless, there is
presently no formal study on the applicability of the latter methods. The numerical
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experiments in [17] employed the complementarity solver path [7], which produced
satisfactory results. Despite such practical experience, which is somewhat limited,
there is an urgent need for the development of some robust algorithms for solving
(16) along with a rigorous proof of applicability.

4. Preliminary analysis: Initial-value problems. The analysis in this sec-
tion is best considered as one for an initial-value problem, where νh,0, in addition
to (qh,0, δh,0), is assumed to be fixed but arbitrary. (This is the case where Mν is
the identity matrix and N is the zero matrix.) This analysis will be the basis for
extension to the boundary-value problem where νh,0 has to be determined to satisfy
the boundary equation defined by a more general pair of boundary matrices (Mν ,N).
As the first step in the convergence analysis, we show that the discrete-time dy-
namics and kinematics equations (15) have a unique solution (qh,j+1, νh,j+1) for any
(qh,j , νh,j) and λh,j+1; moreover, such a solution, for fixed (qh,j , νh,j), has several
desirable properties in λh,j+1.

Proposition 3. Under conditions (A)–(C), for any θ ∈ [0, 1], positive constants
h0, ηq , Lq, and σ

ν
exist such that for every tuple y ≡ (t, qref , νref) ∈ [0, T ]×�nq+nν and

every h in (0, h0], a bounded continuous function (qh(·; y), νh(·; y)) : �nν → �nq+nν

exists satisfying the following properties:
(a) for every vector e ∈ �nν , (qh(e; y), νh(e; y)) is the unique pair (qh, νh) satis-

fying

M(qref)(νh − νref) = h[f(t, qref + (1 − θ)(qh − qref), νref + (1 − θ)(νh − νref)) + e],

qh − qref = hG(qref)[ νref + ( 1 − θ ) ( νh − νref ) ];

moreover,

‖ qh − qref ‖ + ‖ νh − νref ‖ ≤ h ηq

[
1 + ‖ qref ‖ + ‖ νref ‖ + ‖ e ‖

]
;

(b) (qh(·; y), νh(·; y)) is Lipschitz continuous with constant hLq; thus

‖ qh(e1; y) − qh(e2; y) ‖ + ‖ νh(e1; y) − νh(e2; y) ‖ ≤ hLq ‖ e1 − e2 ‖ ∀ e1, e2 ∈ �nν ;

(c) the function νh(·; y) : �nν → �nν is strongly monotone with constant hσ
ν
;

thus,

( νh(e1; y) − νh(e2; y) )T ( e1 − e2 ) ≥ hσν ‖ e1 − e2 ‖2 ∀ e1, e2 ∈ �nν .

Proof. For a given vector e ∈ �nν , it is easily seen that the map(
ν

q

)
�→
(
νref +hM(qref)−1 [f(t, qref +(1−θ)(q−qref), νref + (1−θ)(ν−νref)) + e]

qref + hG(qref)[νref +(1−θ)(ν−νref)]

)

is a contraction with a modulus that can be made as small as we want by choosing
h > 0 sufficiently small. Moreover, the constant h0 depends only on the constants
Lf , θ, η

G
, and σ

M
. Therefore, the above map has a unique fixed point, which yields

the existence and uniqueness of the pair (qh(e; y), νh(e; y)). The proof of the bound
on ‖qh − qref‖ + ‖ νh − νref‖ is similar to that of (b); for this reason, we prove only
the latter. For any two vectors e1 and e2, we have

‖ νh(e1; y) − νh(e2; y) ‖

≤ h

σ
M

[Lf ( 1 − θ ) ( ‖qh(e1; y) − qh(e2; y)‖ + ‖νh(e1; y) − νh(e2; y)‖ ) + ‖e1 − e2‖ ]

≤ h

σ
M

[Lf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

) ‖ νh(e1; y) − νh(e2; y) ‖ ) + ‖e1 − e2‖ ],
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which implies

‖ νh(e1; y) − νh(e2; y) ‖ ≤
hσ−1

M
‖ e1 − e2 ‖

1 − hσ−1
M

[Lf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

) ]
.

Hence,

‖ qh(e1; y) − qh(e2; y) ‖ ≤
h2 ( 1 − θ ) η

G
σ−1

M
‖ e1 − e2 ‖

1 − hσ−1
M

[Lf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

) ]
,

establishing the desired Lipschitz continuity of (qh(·; y), νh(·; y)). To prove (c), note
that

σ
M
‖ νh(e1; y) − νh(e2; y) ‖2 ≤ h ( νh(e1; y) − νh(e2; y) )T ( e1 − e2 )

+hLf (1 − θ) ‖νh(e1; y) − νh(e2; y)‖(‖qh(e1; y) − qh(e2; y)‖ + ‖νh(e1; y) − νh(e2; y)‖),

which yields

( νh(e1; y) − νh(e2; y) )T ( e1 − e2 )

≥ [σ
M

− hLf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

) ]

h
‖ νh(e1; y) − νh(e2; y) ‖2.

Furthermore,

h ‖ e1 − e2 ‖ ≤ η
M
‖ νh(e1; y) − νh(e2; y) ‖

+hLf ( 1 − θ ) (‖qh(e1; y) − qh(e2; y)‖ + ‖νh(e1; y) − νh(e2; y)‖)
≤ [ η

M
+ hLf ( 1 − θ ) ( 1 + h ( 1 − θ ) η

G
) ] ‖ νh(e1; y) − νh(e2; y)‖,

which implies

‖ νh(e1; y) − νh(e2; y)‖ ≥ h ‖ e1 − e2 ‖
η
M

+ hLf ( 1 − θ ) ( 1 + h ( 1 − θ ) η
G

)
.

Consequently,

(νh(e1; y) − νh(e2; y))T (e1 − e2) ≥ h [σ
M

− hLf (1 − θ) (1 + h(1 − θ)η
G
) ] ‖e1 − e2‖2

η
M

+ hLf (1 − θ) (1 + h(1 − θ)η
G
)

,

which establishes the desired strong monotonicity of νh(·; y).
From the discrete-time compliance equation

λh,j+1 = K(qh,j)δh,j+1 +
C(qh,j)

h
( δh,j+1 − δh,j ),

we deduce

δh,j+1 − δh,j = h [hK(qh,j) + C(qh,j) ]−1 [ λh,j+1 − K(qh,j)δh,j ].(17)

Considering the expression in the normal direction,

Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,j+1
n = Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,jn + δh,j+1

n − δh,jn ,
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we define the discrete-time normal slip velocity,

sh,j+1
n ≡ δh,j+1

n − δh,jn

h
+ Γn(qh,j) νh,θj ,

which is consistent with the corresponding expressions for the discrete-time tangential
velocities sh,j+1

t,o . Writing s ≡ sn,t,o, we have

sh,j+1 =
δh,j+1 − δh,j

h
+ Γ(qh,j) [ θ νh,j + ( 1 − θ ) νh,j+1 ]

= [hK(qh,j) + C(qh,j) ]−1[ λh,j+1 − K(qh,j)δh,j ]

+ Γ(qh,j)νh,j + (1 − θ)Γ(qh,j)(νh,j+1 − νh,j).

In view of the latter expression, we define, for fixed yref = (t, qref , νref , δref), the
following function in λ:

s(λ;yref) ≡ [hK(qref) + C(qref) ]−1[λ − K(qref)δref ] + Γ(qref)νref

+ ( 1 − θ )Γ(qref) [ νh,ref(Γ(qref)Tλ) − νref ],

where νh,ref(r) ≡ νh(r; (t, qref , νref)). Since νh,ref is strongly monotone (albeit nonlin-
ear), it follows that the map λ �→ Γ(qref) νh,ref(Γ(qref)Tλ) is monotone. Consequently,
by assumption (D), we deduce

( λ − λ ′ )T ( s(λ;yref) − s(λ ′;yref) ) ≥ σ
KC

‖λ − λ ′ ‖2, ∀λ,λ ′ ∈ �3nδ ;

that is, the function s(·;yref) is strongly monotone with a modulus that is indepen-
dent of yref . Moreover, s(·;yref) is Lipschitz continuous with a modulus that is also
independent of yref ; indeed, by assumption (D) and part (b) of Proposition 3, we have

‖ s(λ;yref) − s(λ ′;yref) ‖ ≤ [ η
KC

+ hLq ( 1 − θ ) η2
W

] ‖λ − λ ′ ‖ ∀λ,λ ′ ∈ �3nδ .

Furthermore,

s(0;yref) = −[hK(qref) + C(qref) ]−1K(qref)δref + θΓ(qref)νref + (1 − θ)Γ(qref) νh,ref(0).

From part (a) of Proposition 3, we obtain

‖ νh,ref(0) ‖ ≤ ‖ νref ‖ + h ηq [ 1 + ‖ qref ‖ + ‖ νref ‖ ].

Consequently, we deduce that a constant cs > 0 exists such that

‖ s(0;yref) ‖ ≤ cs [ 1 + ‖ qref ‖ + ‖ νref ‖ + ‖ δref ‖ ] ∀yref ≡ ( t, qref , νref , δref ).

(18)

This inequality will be used later; see Lemma 4. It is important to remark that the
above constant cs and the strong modulus and the Lipschitz constant of the function
s(·;yref) are all independent of yref and of h > 0, provided that the latter is sufficiently
small.

In terms of the function s(·;yh,j), where yh,j ≡ (th,j+1,x
h,j), the discrete fric-

tional compliant contact problem at time step th,j+1, without the boundary con-
dition, can be stated simply as the quasi-variational inequality of finding a triple
λ ≡ λn,t,o ∈ �3nδ such that

0 ≤ λn ⊥ Ψn(qh,j) + δh,jn

h
+ sn(λ;yh,j) ≥ 0



2212 JONG-SHI PANG, VIJAY KUMAR, AND PENG SONG

and for all i = 1, . . . , nδ,

(λit, λio ) ∈ argmin
{
sit(λ;yh,j)λ̃it + sio(λ;yh,j)λ̃io : ( λ̃it, λ̃io ) ∈ F(μi λin)

}
.

We state and prove a lemma pertaining to the above contact and friction condi-
tions. This lemma is the key to the entire convergence analysis of the time-stepping
method.

Lemma 4. Let s(λ;y) be a continuous function that is Lipschitz continuous and
strongly monotone in λ ∈ �3nδ uniformly in y ∈ �m; i.e., positive constants ηs and
σs exist such that for all λ and λ ′ and y,

(λ − λ′)T ( s(λ;y) − s(λ′;y) ) ≥ σs ‖λ − λ′‖2 and ‖s(λ;y) − s(λ′;y)‖ ≤ ηs ‖λ − λ′‖.

Suppose further that a constant cs > 0 exists such that ‖s(0;y)‖ ≤ cs‖y‖ for all
y ∈ �m. There exists a positive scalar μ̄ > 0 such that for every vector μ > 0
satisfying max1≤i≤nδ

μi ≤ μ̄, a continuous function λμ : �m → �3nδ exists such that
for every parameter y, λμ(y) is the unique triple λn,t,o satisfying

0 ≤ λn ⊥ sn(λn,t,o;y) ≥ 0,

and, for every i = 1, . . . , nδ,

(
λit

λio

)
∈ arg min

(λ̃it,λ̃io)∈F(μi λ in)

⎧⎨
⎩
(

λ̃it

λ̃io

)T (
sit(λn,t,o;y)

sio(λn,t,o;y)

)⎫⎬
⎭ .

Proof. There are several things to be proved: the existence of the scalar μ̄ and the
existence, uniqueness, and continuity of λμ

n,t,o(y) for all μ > 0 as specified. Indeed,
the existence of a triple λ satisfying the above friction conditions for every μ > 0 is
proved by invoking a general result from the theory of quasi-variational inequalities [8,
Corollary 2.8.4], as done in several previous references, such as [12]. In what follows,
we show the uniqueness of such a solution for all μ > 0 sufficiently small.

Suppose that λ1
n,t,o and λ2

n,t,o are two solutions corresponding to a given y. Write,

for j = 1, 2, sjn,t,o ≡ sn,t,o(λ
j
n,t,o;y). We may write, for every i,

sjit ≡ rji cosψj
i and sjio ≡ rji sinψj

i ,

where rji ≡
√

(sjit)
2 + (sjio)

2. It then follows that φj
i ∈ [−1, 1] exist satisfying

rji > 0 ⇒ φj
i = 1(19)

(φj
i is not necessarily equal to 1 when rji = 0) and

λj
it = −μi λ

j
in φ

j
i cosψj

i and λj
io = −μi λ

j
in φ

j
i sinψj

i .

We have

λ1
it − λ2

it = −μi λ
1
in φ

1
i cosψ1

i + μi λ
2
in φ

2
i cosψ2

i

= −(μi φ
1
i cosψ1

i ) (λ1
in − λ2

in ) + μi λ
2
in (φ2

i cosψ2
i − φ1

i cosψ1
i ).
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Similarly,

λ1
io − λ2

io = −(μi φ
1
i sinψ1

i ) (λ1
in − λ2

in ) + μi λ
2
in (φ2

i sinψ2
i − φ1

i sinψ1
i ).

Therefore, letting Dt and Do be the diagonal matrices whose diagonal entries are
−μiφ

1
i cosψ1

i and −μiφ
1
i sinψ1

i , respectively, we can write

λ1
t − λ2

t = Dt(λ
1
n − λ2

n ) + μλ2
n (φ2 cosψ2 − φ1 cosψ1 ),

λ1
o − λ2

o = Do(λ
1
n − λ2

n ) + μλ2
n (φ2 sinψ2 − φ1 sinψ1 ),

where the notation in the second terms in the right-hand side of the above equations
has an obvious componentwise meaning. Consequently,

⎛
⎜⎝

λ1
n − λ2

n

λ1
t − λ2

t

λ1
o − λ2

o

⎞
⎟⎠ =

⎡
⎢⎣

I 0 0

Dt I 0

Do 0 I

⎤
⎥⎦
⎛
⎜⎝

λ1
n − λ2

n

μλ2
n (φ2 cosψ2 − φ1 cosψ1)

μλ2
n (φ2 sinψ2 − φ1 sinψ1)

⎞
⎟⎠

or, equivalently,

⎛
⎜⎝

λ1
n − λ2

n

μλ2
n(φ2 cosψ2 − φ1 cosψ1)

μλ2
n(φ2 sinψ2 − φ1 sinψ1)

⎞
⎟⎠ =

⎡
⎢⎣

I 0 0

Dt I 0

Do 0 I

⎤
⎥⎦
−1⎛
⎜⎝

λ1
n − λ2

n

λ1
t − λ2

t

λ1
o − λ2

o

⎞
⎟⎠

=

⎡
⎢⎣

I 0 0

−Dt I 0

−Do 0 I

⎤
⎥⎦
⎛
⎜⎝

λ1
n − λ2

n

λ1
t − λ2

t

λ1
o − λ2

o

⎞
⎟⎠ .

Writing

D(μ) ≡

⎡
⎢⎣

I 0 0

−Dt I 0

−Do 0 I

⎤
⎥⎦ ,

we claim that positive constants σ ′
s and μ̄ exist such that for all μ > 0 satisfying

max
1≤i≤nδ

μi ≤ μ̄,

(D(μ)λ − D(μ)λ ′ )T ( s(λ;y) − s(λ ′;y) ) ≥ σ ′
s ‖λ − λ ′ ‖2

for all λ and λ ′. To establish the claim, we write

(D(μ)λ − D(μ)λ ′ )T ( s(λ;y) − s(λ ′;y) )

= ( λ − λ ′ )T ( s(λ;y) − s(λ ′;y) ) − [ ( I − D(μ) ) ( λ − λ ′ ) ]T ( s(λ;y) − s(λ ′;y) )

≥ [σs − ηs ‖ I − D(μ) ‖ ] ‖λ − λ ′ ‖2;

clearly, we can choose μ̄ > 0 sufficiently small such that for all μ > 0 satisfying
max

1≤i≤nδ

μi ≤ μ̄, we have σs − ηs‖I − D(μ)‖ ≥ 1
2σs ≡ σ ′

s. This establishes the claim.

Next, we show that

0 ≥ (D(μ)λ1 − D(μ)λ2 )T ( s(λ1;y) − s(λ2;y) ).(20)
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The right-hand side of the above inequality is equal to

⎛
⎜⎝

λ1
n − λ2

n

μλ2
n (φ2 cosψ2 − φ1 cosψ1)

μλ2
n (φ2 sinψ2 − φ1 sinψ1)

⎞
⎟⎠

T ⎛
⎜⎝

s1
n − s2

n

s1
t − s2

t

s1
o − s2

o

⎞
⎟⎠ .

By complementarity, we have (λ1
n − λ2

n)T (s1
n − s2

n) ≤ 0. Furthermore,

(φ2
i cosψ2

i − φ1
i cosψ1

i ) ( s1
it − s2

it ) + (φ2
i sinψ2

i − φ1
i sinψ1

i ) ( s1
io − s2

io )

= (φ2
i cosψ2

i − φ1
i cosψ1

i ) ( r1
i cosψ1

i − r2
i cosψ2

i )

+ (φ2
i sinψ2

i − φ1
i sinψ1

i ) ( r1
i sinψ1

i − r2
i sinψ2

i )

= −r1
i φ

1
i − r2

i φ
2
i + ( r1

i φ
2
i + r2

i φ
1
i ) cos(ψ1

i − ψ2
i )

= −r1
i − r2

i + ( r1
i φ

2
i + r2

i φ
1
i ) cos(ψ1

i − ψ2
i ) ≤ 0,

where the last equality follows from (19) and the last inequality holds because |φ1,2
j | ≤

1. Consequently, the inequality (20) holds. In turn, this implies that λ1
n,t,o = λ2

n,t,o.
This establishes the uniqueness of λμ(x) for all μ > 0 sufficiently small.

In the rest of the proof, we fix an arbitrary μ > 0 sufficiently small and drop the
superscript μ in λμ. To show the continuity of λn,t,o(y), we first derive a bound for
‖λn,t,o(y)‖. We have

0 ≥ λ(y)T s(λ(y);y) = λ(y)T ( s(λ(y);y) − s(0;y) ) + λ(y)T s(0;y)

≥ σs ‖λ(y) ‖2 − cs ‖λ(y) ‖ ‖y ‖,

which implies ‖λ(y)‖ ≤ cs‖y‖. Let {yk} be a sequence of parameters converging to
y∞. Write λk

n,t,o ≡ λn,t,o(y
k). Since the sequence {λk

n,t,o} is bounded, by what has

just been shown, let λ∞
n,t,o be the limit of a convergent subsequence {λk

n,t,o : k ∈ κ},
where κ is an infinite subset of {1, 2, . . . }. It suffices to show that λ∞

n,t,o is a solution
to the limiting system

0 ≤ λ∞
n ⊥ sn(λ∞

n,t,o;y
∞) ≥ 0(21)

and

(
λ∞
it

λ∞
io

)
∈ arg min

(λ̃it,λ̃io)∈F(μi λ∞
in)

⎧⎨
⎩
(

λ̃it

λ̃io

)T (
sit(λ

∞
n,t,o;y

∞)

sio(λ
∞
n,t,o;y

∞)

)⎫⎬
⎭ .

Since 0 ≤ λk
n ⊥ sn(λk;yk) ≥ 0 for all k, passing to the limit k(∈ κ) → ∞ yields (21).

Similarly, since (λk
it)

2 + (λk
io)

2 ≤ μ2
i (λ

k
in)2 for all k, we deduce (λ∞

it , λ
∞
io ) ∈ F(μiλ

∞
in ).

Moreover, since

λk
it sit(λ

k;yk) + λk
io sio(λ

k;yk) = −μi λ
k
in

√
sit(λ

k;yk)2 + sio(λ
k;yk)2,

passing to the limit k(∈ κ) → ∞ easily completes the proof.
Applying Lemma 4 to the friction and contact conditions, we conclude that for

all h > 0 and sufficiently small and for all μ > 0 not exceeding a certain upper bound
μ̄, for a given triple xh,j ≡ (qh,j , νh,j , δh,j), a unique friction force triple λh,j+1

n,t,o exists
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at time step th,j+1 that is a continuous function of xh,j . In what follows, we derive a

bound on ‖λh,j+1‖ that takes advantage of the normal contact condition at time step
j. This improved bound is important for the subsequent analysis. (A straightforward
application of the previous lemma would yield a bound of the order 1/h, which tends
to infinity as h ↓ 0, and thus is not effective for small h. The bound obtained below
stays finite as h tends to zero, as shown subsequently.)

Lemma 5. Let λh,j+1 satisfy

0 ≤ λh,j+1
n ⊥ Ψn(qh,j) + δh,jn

h
+ sn(λh,j+1;yh,j) ≥ 0

and for all i = 1, . . . , nδ,

(λh,j+1
it , λh,j+1

io ) ∈ arg min
(λ̃it,λ̃io)∈F(μiλ

h,j+1
in )

{
sit(λ

h,j+1;yh,j)λ̃it + sio(λ
h,j+1;yh,j)λ̃io

}
.

A constant η
λ
> 0, which depends only the model functions, exists such that

‖λh,j+1‖ ≤ η
λ

[
‖min( 0,Ψn(qh,j) + δh,jn ) ‖

h
+ 1 + ‖xh,j‖

]
.

Proof. As in the proof of Lemma 4, we have

0 ≥ (λh,j+1
n )T

Ψn(qh,j) + δh,jn

h
+ ( λh,j+1 )T s(λh,j+1;yh,j)

≥ (λh,j+1
n )T

Ψn(qh,j) + δh,jn

h
+ ‖λh,j+1 ‖2 − cs ‖λh,j+1 ‖ [ 1 + ‖xh,j ‖ ]

≥ (λh,j+1
n )T min

(
0,

Ψn(qh,j) + δh,jn

h

)
+ ‖λh,j+1 ‖2 − cs ‖λh,j+1 ‖ [ 1 + ‖xh,j ‖ ],

where the last inequality holds because λh,j+1
n ≥ 0. Consequently, the desired bound

on ‖λh,j+1‖ follows easily by rearranging terms and then applying the Cauchy–
Schwartz inequality.

Combining Proposition 3 and Lemmas 4 and 5, we obtain the following result,
which brings us one step closer to the main existence and uniqueness for the discrete-
time boundary value problem.

Proposition 6. Under conditions (A)–(D), positive scalars μ̄, h0, and ηx exist
such that for every vector μ > 0 satisfying max

1≤i≤nδ

μi ≤ μ̄, every scalar h ∈ (0, h0], and

every tuple (qh,0, νh,0, δh,0), a unique discrete-time trajectory (14) exists satisfying
(16) for every j = 0, 1, . . . , Nh but not necessarily (13); moreover,

‖xh,j+1 − xh,j ‖ ≤ h η
x
[ 1 + ‖xh,j ‖ + ‖λh,j+1 ‖ ].(22)

Finally, if Ψn(qh,0)+δh,0n ≥ 0, then, for any scalar cq > 0, the implication below holds
for all j = 0, 1, . . . , Nh, where qh,−1 ≡ qh,0:

‖min(0,Ψn(qh,j) − Ψn(qh,j−1) − JΨn(qh,j−1)(qh,j − qh,j−1))‖ ≤ cq h

⇒ ‖λh,j+1‖ ≤ η
λ

( 1 + cq + ‖xh,j‖ ).
(23)
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Proof. The bound for ‖δh,j+1 − δh,j‖, which is part of (22), follows from (17).
Since

Ψn(qh,j) + Γn(qh,j−1)(qh,j − qh,j−1) + δh,jn ≥ 0,

we have

0 ≥ min( 0,Ψn(qh,j) + δh,jn )

≥ min( 0,Ψn(qh,j) − Ψn(qh,j−1) − Γn(qh,j−1)(qh,j − qh,j−1) )

+ min( 0,Ψn(qh,j−1) + Γn(qh,j−1)(qh,j − qh,j−1) + δh,jn )

= min( 0,Ψn(qh,j) − Ψn(qh,j−1) − Γn(qh,j−1)(qh,j − qh,j−1) ).

Taking norms, we obtain

‖min(0,Ψn(qh,j) + δh,jn )‖ ≤ ‖min( 0,Ψn(qh,j) − Ψn(qh,j−1) − Γn(qh,j−1)(qh,j − qh,j−1))‖.

The bound (23) on ‖λh,j+1‖ follows readily from Lemma 5.
So far, we have not used the limit condition (3) in proving the above results. This

condition allows us to establish the boundedness of the state variables {xh,j} and
thus of the force variables {λh,j+1} also. We first state a technical fact, which can be
proved by induction; see also [11, Lemma 7]. Namely, for every nonnegative integer
k ≤ Nh, if

‖xh,j+1 − xh,j ‖ ≤ hψ
x
( 1 + ‖xh,j‖ ) ∀ j = 0, 1, . . . , k,(24)

then (recalling that T = (Nh + 1)h),

‖xh,j+1 ‖ ≤ eT ψx ( 1 + ‖xh,0 ‖ ) − 1 ∀ j = 0, 1, . . . , k.(25)

Proposition 7. For any positive scalar cq, let ψx ≡ ηx(1 + η
λ
(1 + cq)). For any

scalar R0 > 0, the scalar h0 in Proposition 6 can be chosen such that (25) holds for
k = Nh for all h ∈ (0, h0] and for all xh,0 satisfying ‖xh,0‖ ≤ R0; moreover, for all
j = 0, 1, . . . , Nh,

‖λh,j+1 ‖ ≤ η
λ

[ cq + eT ψx ( 1 + ‖xh,0 ‖ ) ].(26)

Proof. Choose ε > 0 such that εψxe
Tψx (1 + R0) < cq. Corresponding to the

chosen ε, let ς > 0 be such that (3) holds. Let h0 > 0 be sufficiently small such that
h0ψxe

Tψx (1+R0) < ς. Let xh,0 be an arbitrary vector satisfying ‖xh,0‖ ≤ R0 and let
h ∈ (0, h0] be arbitrary. It suffices to prove (24) for k = Nh. Clearly, (24) is valid for
k = 0 because ‖xh,1 − xh,0‖ ≤ hηx(1 + ‖xh,0‖) ≤ hψx(1 + ‖xh,0‖). Assume that (24),
and thus (25), holds for some k ≥ 0. To complete the induction, we need to show

‖xh,k+2 − xh,k+1 ‖ ≤ hψx ( 1 + ‖xh,k+1 ‖ ).

By the choice of h and ‖xh,0‖, (24) with j = k and (25) with j = k − 1 imply

‖xh,k+1 − xh,k ‖ ≤ hψ
x
eT ψx ( 1 + ‖xh,0 ‖ ) < ς.

By (3) and the choice of cq, it follows that

‖ min( 0,Ψn(qh,k+1) − Ψn(qh,k) − JΨn(qh,k)(qh,k+1 − qh,k) ) ‖
≤ ε ‖ qh,k+1 − qh,k ‖ ≤ ε hψx e

T ψx ( 1 + ‖xh,0 ‖ ) ≤ h cq.
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Consequently, by the implication (23), we obtain

‖λh,k+2 ‖ ≤ η
λ

( 1 + cq + ‖xh,k+1 ‖ ) ≤ η
λ

( 1 + cq ) ( 1 + ‖xh,k+1 ‖ ).

Substituting this into (22) with j = k + 1 yields

‖xh,k+2 − xh,k+1 ‖ ≤ h ηx [ 1 + ‖xh,k+1 ‖ + η
λ

( 1 + cq ) ( 1 + ‖xh,k+1 ‖ ) ]

= hψ
x ( 1 + ‖xh,k+1 ‖ ),

completing the induction. The bound on ‖λh,j+1‖ holds by (23) and the bound on
‖xh,j‖.

Based on Proposition 7, we can establish the convergence of the time-stepping
method for an initial-value frictional compliant contact problem where x(0) is com-
pletely known. Since our treatment of the boundary-value problem will cover this
case, we proceed directly to the latter.

5. Boundary-value analysis. Proposition 7 allows us to employ the line of
proof in [11] to complete the convergence analysis of the time-stepping method. Need-
less to say, the boundary equation (13) will play a key role in this analysis. For this
reason, we partition the boundary matrix N as

N ≡
[

Nq Nν Nδ

]
,

where Nq ∈ �nν×nq , Nν ∈ �nν×nν , and Nδ ∈ �nν×nδ , and we write the discrete-time
boundary equation as

(Mν + Nν )νh,0 = b + Nνν
h,0 − Nxh,Nh+1 = b̂ − N (xh,Nh+1 − xh,0 ),(27)

where b̂ ≡ b − Nqq
0 − Nδδ

0. We are now ready to formally state and prove the
two main results of this paper: Theorems 8 and 9. While the former establishes
the existence of a solution to the discrete-time boundary system (16), including the
boundary condition, the latter proves the convergence to a continuous-time trajectory.

Theorem 8. Assume conditions (A)–(D) and that Mν +Nν is nonsingular. Let
ψ

x be the constant obtained in Proposition 7. If

eTψx < 1 +
1

‖ (Mν + Nν )−1N ‖ ,(28)

positive scalars μ̄, h0, and ψx exist such that for every vector μ > 0 satisfying
max

1≤i≤nδ

μi ≤ μ̄, every scalar h ∈ (0, h0], and every pair (qh,0, δh,0) satisfying (12),

a discrete-time trajectory (14) exists satisfying (16) for every j = 0, 1, . . . , Nh. More-
over, (24) holds for k = Nh and (26) holds for all j = 0, 1, . . . , Nh.

Proof. Throughout the proof below, the scalars h and μi are taken to be suffi-
ciently small so that the previous results can all be applied. More specifically, with
the constant r0 chosen at the end of the proof (cf. (31)), the upper limits h0 and μ̄
are then guaranteed by Proposition 7. The derivation below emphasizes the process
of how the constant r0 is obtained.

For xref ≡ (qref , νref , δref) in �n, let νh(xref) be the unique tuple (qh, νh, δh),
which, along with a (unique) triple of friction forces λh, satisfies the following condi-



2218 JONG-SHI PANG, VIJAY KUMAR, AND PENG SONG

tions:

M(qref)( νh − νref ) = h [ f(th,j+1, q
h,θref , νh,θref ) + Γ(qref)Tλh ],

qh − qref = hG(qref)νh,θref ,

δht − δref
t = h [sht − Γt(q

ref)νh,θref ],

δho − δref
o = h [sho − Γo(q

ref)νh,θref ],

0 ≤ λh
n ⊥ Ψn(qref) + hΓn(qref)νh,θref + δhn ≥ 0,

λh = K(qref)δh +
C(qref)

h
( δh − δref ),

(
λh
it

λh
io

)
∈ arg min

(λ̃it,λ̃io)∈F(μi λh
in)

⎧⎨
⎩
(

shit

shio

)T (
λ̃it

λ̃io

)⎫⎬
⎭ ,

where

qh,θref ≡ θ qref + ( 1 − θ ) qh and νh,θref ≡ θ νref + ( 1 − θ ) νh.

The well-definedness of νh(xref) is ensured by Proposition 3 and Lemma 4; moreover,
this map is continuous. For j = 0, 1, . . . , Nh, define the maps Λh,j : �n → �n

recursively by Λh,j+1(x) ≡ νh(Λh,j(x)), where Λh,0 is the identity map. Define the
auxiliary map Φ : �nν → �n by Φ(ν) ≡ (qh,0, ν, δh,0). In terms of these maps we can
write the boundary equation (27) as a fixed-point equation: νh,0 = Υ(νh,0), where
Υ : �nν → �nν is the map defined by

Υ(ν) = (Mν + Nν )−1[ b̂ − N ◦ ( Λh,Nh+1 − I ) ◦ Φ(ν) ],

which is continuous. We claim that a constant r0 > 0 exists such that Υ maps the
closed Euclidean ball with center at the origin and radius r0 into itself. Once this
claim is established, Brouwer’s fixed-point theorem then shows that the discrete-time
boundary system (16) has a solution.

By Proposition 7, we have, for j = 0, 1, . . . , Nh,

‖Λh,j+1(xref) ‖ ≤ Rh,j+1 and ‖Λh,j+1(xref) − Λh,j(xref) ‖ ≤ Rh,j+1 −Rh,j ,(29)

where Rh,j+1 satisfies the recursion

Rh,j+1 ≡ ( 1 + hψx )Rh,j + hψx, j = 0, 1, . . . , Nh,(30)

with Rh,0 ≥ ‖xref‖. Consequently, for any vector ν ∈ �nν , letting r0 ≥ ‖ν‖ and
Rh,0 ≡ r0 + ‖q0‖ + ‖δ0‖, we have

‖Υ(ν)‖ ≤ ‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ ‖Λh,Nh+1(Φ(ν)) − Λh,0(Φ(ν))‖

≤ ‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ (Rh,Nh+1 −Rh,0 )

≤ ‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ ( eTψx − 1 )( 1 + Rh,0 ),

where the last inequality follows from (25), which gives Rh,Nh+1 ≤ eTψx (1+Rh,0)−1.
Consequently for any r0 ≥ ‖ν‖, we have

‖Υ(ν)‖ ≤ ‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ ( eTψx − 1 )( 1 + ‖ q0 ‖ + r0 + ‖ δ0 ‖ ).
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By (28), it follows that 1 > ‖(Mν + Nν)
−1N‖(eTψx − 1); hence if

r0 >
‖ (Mν + Nν )−1b̂ ‖ + ‖ (Mν + Nν )−1N ‖ ( eTψx − 1 )( 1 + ‖ q0 ‖ + ‖ δ0 ‖ )

1 − ‖ (Mν + Nν )−1N ‖ ( eTψx − 1 )

(31)

then ‖Υ(ν)‖ < r0.

5.1. Final convergence. The remaining issue to be dealt with is the conver-
gence of the discrete-time trajectory to a weak solution of the continuous-time fric-
tional compliant contact problem. To deal with this issue, we use the discrete-time
iterates {xh,0,xh,1, . . . ,xh,Nh+1} to construct a continuous-time state trajectory by
linear interpolation. Specifically, define the affine function x̂h : [0, T ] → �n as follows:

x̂h(t) ≡ xh,j +
t− th,j

h
(xh,j+1 − xh,j ) ∀ t ∈ [ th,j , th,j+1 ].

Let λ̂
h
(t) be the (possibly discontinuous) piecewise constant interpolants of the fam-

ilies {λh,j+1}, i.e., λ̂
h
(t) ≡ λh,j+1 for t ∈ (th,j , th,j+1].

The following theorem is the main convergence result of this paper. Part (c) of
the theorem assumes that the constitutive law of compliance for the normal forces is
decoupled from that for the tangential forces. In this case, the submatrices Ktn(q),

Kon(q), Ĉtn(q) and Ĉon(q) are zero, and the tangential friction QP becomes

minimize

(
λt

λo

)⎧⎨
⎩

1

2

⎡
⎣ Ĉtt(q) Ĉto(q)

Ĉot(q) Ĉoo(q)

⎤
⎦
(

λt

λo

)
+

[
Γt(q)

Γo(q)

]
ν

−

⎡
⎣ Ĉtt(q) Ĉto(q)

Ĉot(q) Ĉoo(q)

⎤
⎦
[

Ktt(q) Kto(q)

Kot(q) Koo(q)

](
δt

δo

)⎫⎬
⎭

subject to (λt, λo ) ∈
nδ∏
i=1

F(μi λin) .

(32)

Theorem 9. Under the setting of Theorem 8, the following statements hold:
(a) There is a sequence {h�} ↓ 0 such that x̂h� converges uniformly on [0, T ] to a

Lipschitz function x̂, and λ̂
hν

converge weakly to a function λ̂ in L2(0, T ); i.e.,

lim
�→∞

sup
t∈[0,T ]

‖ x̂(t) − x̂h�(t) ‖ = 0

and, for any function ϕ ∈ L2(0, T ),

lim
�→∞

∫ T

0

ϕ(t)Tλh�
n,t,o(t) dt =

∫ T

0

ϕ(t)T λ̂n,t,o(t) dt.

(b) All such limits (x̂, λ̂) satisfy properties (a), (b), and (d) in Definition 2 of a
weak solution of the frictional compliant contact problem.

(c) If Ktn(q), Kon(q), Ctn(q), and Con(q) are equal to zero for all q, then (x̂, λ̂)
also satisfies property (c) in Definition 2 and hence is a weak solution of the frictional
compliant contact problem.
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Proof. Combining (24) and (25), we deduce

‖ x̂h(t) − xh,j ‖ ≤ ‖xh,j+1 − xh,j ‖ ≤ hψx e
Tψx ( 1 + r0 ),(33)

where r0 satisfies (31). By the limit condition (3), we obtain

lim
h↓0

max
0≤j≤Nh

sup
t∈[th,j ,th,j+1]

‖Ψn(q̂h(t)) − Ψn(qh,j) − hΓn(qh,j)νh,θj ‖ = 0.(34)

Moreover, the former inequalities show that the piecewise interpolants x̂h are not only
Lipschitz continuous on [0, T ], but the Lipschitz constant is independent of h. Hence
there is a positive scalar h ′

0, which depends only on the model functions such that
the family of functions {x̂h} for h in (0, h ′

0] is an equicontinuous family of functions.
As in the proof of [11, Theorem 7.1], it follows from the Arzelá–Ascoli theorem (see,
e.g., [22, p. 167] or [9, pp. 57–59]) that there is a sequence {h�} ↓ 0 such that {x̂h�}
converges in the supremum (i.e., L∞) norm to a Lipschitz function x̂ on [0, T ]. Since

sup
h∈(0,h ′

0]

sup
t∈[0,T ]

‖x̂h(t)‖ < ∞,

by (26), we deduce that

sup
h∈(0,h ′

0]

sup
t∈[0,T ]

‖λ̂
h
(t)‖ < ∞.(35)

Moreover, by the same proof, it follows that, by working with an appropriate sub-
sequence of {h�} if necessary and by invoking Alaoglu’s theorem [9, pp. 71–72] and

Mazur’s theorem [9, p. 88], the sequence {λ̂
h�} is weakly convergent with a weak*

limit λ̂, which satisfies λ̂n(t) ≥ 0 and (λ̂it(t), λ̂io(t)) ∈ F(μiλ̂in(t)) for almost all t.
The proof of the latter frictional inclusion is based on the observation that a pair
(a, b) ∈ F(τ) if and only if the triple (a, b, τ) belongs to the closed convex graph of
the friction map F .

We need to verify the four properties (a)–(d) of a weak solution to the contact
problem. The boundary equation (d) requires no verification, as it is a simple matter
of passing to the limit in the discrete-time boundary equation (27). Hence we focus
on the verification of (a)–(c). We first deal with the dynamics equations. We have

νh,j+1 − νh,j = hM(qh,j)−1[f(th,j+1, q
h,θj , νh,θj ) + Γ(qh,j)Tλh,j+1]

=

∫ th,j+1

th,j

M(q̂h(t))−1[ f(t, q̂h(t), ν̂h(t)) + Γ(q̂h(t))T λ̂
h
(t) ] dt + O(h2).

Hence for 0 ≤ τ ≤ τ ′ ≤ T , we obtain

ν̂h(τ ′) − ν̂h(τ) =

∫ τ ′

τ

M(q̂h(t))−1[ f(t, q̂h(t), ν̂h(t)) + Γ(q̂h(t))T λ̂
h
(t) ] dt + O(h).

Restricted to the subsequence {h�}, we have

lim
�→∞

∫ τ ′

τ

M(q̂h�(t))−1 f(t, q̂h�(t), ν̂h�(t)) dt =

∫ τ ′

τ

M(q̂(t))−1 f(t, q̂(t), ν̂(t)) dt
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by the uniform convergence of (q̂h� , ν̂h� ) → (q̂, ν̂). We also have

∥∥∥∥∥
∫ τ ′

τ

[
M(q̂h�(t))−1Γ(q̂h�(t))Tλh�(t) −M(q̂(t))−1Γ(q̂(t))T λ̂(t)

] ∥∥∥∥∥
≤
∫ τ ′

τ

∥∥M(q̂h�(t))−1Γ(q̂h�(t))T −M(q̂(t))−1Γ(q̂(t))T
∥∥ ‖ λ̂

h�

(t) ‖ dt

+

∥∥∥∥∥
∫ τ ′

τ

M(q̂(t))−1Γ(q̂(t))T ( λ̂
h�

(t) − λ̂(t) ) dt

∥∥∥∥∥
The first summand on the right-hand side converges to zero because {q̂h�} → q̂ uni-

formly and λ̂
h�

is bounded; the second summand converges to zero because {λ̂
hν}

converges weakly in L2(0, T ) to λ̂. Consequently, we deduce

ν̂(τ ′) − ν̂(τ) = lim
�→∞

[ν̂h�(τ ′) − ν̂h�(τ)] =

∫ τ ′

τ

M(q̂(t))−1[f(t, q̂(t), ν̂(t)) + Γ(q̂(t))T λ̂(t)]dt.

Similarly, we can establish

q̂(τ ′) − q̂(τ) =

∫ τ ′

τ

G(q̂(t))ν̂(t) dt and

δ̂(τ ′) − δ̂(τ) =

∫ τ ′

τ

C(q̂(t))−1[ λ̂(t) − K(q̂(t))δ̂(t) ] dt,

completing the proof of property (a) of a weak solution. We next address property
(b). For t in [th,j , th,j+1], we can write

Ψn(q̂h(t)) + δ̂hn(t) = Ψn(q̂h(t)) − Ψn(qh,j) + δ̂hn(t) − δh,j+1
n

+ Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,j+1
n − hΓn(qh,j)νh,θj ;

since Ψn(qh,j) + hΓn(qh,j)νh,θj + δh,j+1
n ≥ 0, we deduce

Ψn(q̂h(t)) + δ̂hn(t) ≥ Ψn(q̂h(t)) − Ψn(qh,j) + δ̂hn(t) − δh,j+1
n − hΓn(qh,j)νh,θj .

Letting Φh
n(t) be the right-hand expression, we deduce from (34) and (33) that ‖Φh

n(t)‖
is bounded by a constant for all h > 0 sufficiently small and all t and Φh

n(t) → 0 for all
t as h ↓ 0. Restricted to the subsequence {h�}, the left-hand side converges uniformly

to Ψn(q̂(t)) + δ̂n(t); therefore, Ψn(q̂(t)) + δ̂n(t) ≥ 0 for all t ∈ [0, T ]. Next we show
that

∫ T

0

λ̂n(t)T [ Ψn(q̂(t)) + δ̂n(t) ] dt = 0.(36)

The left-hand side is equal to the limit

lim
�→∞

∫ T

0

λ̂h�
n (t)T [ Ψn(q̂(t)) + δ̂n(t) ] dt = lim

�→∞

∫ T

0

λ̂h�
n (t)T [ Ψn(q̂h�(t)) + δ̂h�

n (t) ] dt.
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For each h > 0, we have

∫ T

0

λ̂h
n(t)T [ Ψn(q̂h(t)) + δ̂hn(t) ] dt =

Nh∑
j=0

∫ th,j+1

th,j

λ̂h
n(t)T [ Ψn(q̂h(t)) + δ̂hn(t) ] dt

=

Nh∑
j=0

∫ th,j+1

th,j

(λh,j+1 )TΦh
n(t) dt.(37)

Since {λh,j+1} is bounded, by letting h ↓ 0 in (37) along the subsequence {h�}, (36)
follows readily from the dominated convergence theorem, thereby completing the proof
of property (b) of weak solution.

Finally, to prove property (c), let (λ̃t, λ̃o) : [0, T ] → �2nδ be continuous functions

such that (λ̃it(t), λ̃io(t)) ∈ F(μiλ̂in(t)) for almost all t ∈ [0, T ] and all i = 1, . . . , nδ.
We need to verify

∫ T

0

(
λ̃t(t) − λ̂t(t)

λ̃o(t) − λ̂o(t)

)T
⎧⎨
⎩
⎡
⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤
⎦
⎡
⎣
⎛
⎝ λ̂t(t)

λ̂o(t)

⎞
⎠

−
[

Ktt(q̂(t)) Kto(q̂(t))

Kot(q̂(t)) Koo(q̂(t))

]⎛
⎝ δ̂t(t)

δ̂o(t)

⎞
⎠
⎤
⎦+

(
Γt(q̂(t))

Γo(q̂(t))

)
ν̂(t)

⎫⎬
⎭ dt ≥ 0.

Since

∫ T

0

(
λ̂h�

t (t)

λ̂h�
o (t)

)T
⎡
⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤
⎦
⎛
⎝ λ̂h�

t (t)

λ̂h�
o (t)

⎞
⎠ dt

=

∫ T

0

(
λ̂h�

t (t) − λ̂t(t)

λ̂h�
o (t) − λ̂o(t)

)T [
Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

](
λ̂h�

t (t) − λ̂t(t)

λ̂h�
o (t) − λ̂o(t)

)
dt

− 2

∫ T

0

(
λ̂h�

t (t) − λ̂t(t)

λ̂h�
o (t) − λ̂o(t)

)T [
Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

](
λ̂t(t)

λ̂o(t)

)
dt

+

∫ T

0

(
λ̂t(t)

λ̂o(t)

)T
⎡
⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤
⎦
⎛
⎝ λ̂t(t)

λ̂o(t)

⎞
⎠ dt,

and since the first integral on the right-hand side is nonnegative (by the positive
semidefiniteness of the quadratic form), the second integral converges to zero because

λ̂h�
t,o converge to λ̂t,o in L2(0, T ), we deduce

∞ > lim inf
�→∞

∫ T

0

(
λ̂h�

t (t)

λ̂h�
o (t)

)T
⎡
⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤
⎦
⎛
⎝ λ̂h�

t (t)

λ̂h�
o (t)

⎞
⎠ dt

≥
∫ T

0

(
λ̂t(t)

λ̂o(t)

)T
⎡
⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤
⎦
⎛
⎝ λ̂t(t)

λ̂o(t)

⎞
⎠ dt,

(38)
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where the left-hand limit is finite by (35). Consequently, it follows that

∫ T

0

⎛
⎝ λ̃t(t) − λ̂t(t)

λ̃o(t) − λ̂o(t)

⎞
⎠

T ⎧⎨
⎩
⎡
⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤
⎦
⎡
⎣
⎛
⎝ λ̂t(t)

λ̂o(t)

⎞
⎠

−
[

Ktt(q̂(t)) Kto(q̂(t))

Kot(q̂(t)) Koo(q̂(t))

]⎛
⎝ δ̂t(t)

δ̂o(t)

⎞
⎠
⎤
⎦+

(
Γt(q̂(t))

Γo(q̂(t))

)
ν̂(t)

⎫⎬
⎭ dt

≥ lim sup
�→∞

∫ T

0

⎛
⎝ λ̃t(t) − λ̂h�

t (t)

λ̃o(t) − λ̂h�
o (t)

⎞
⎠

T ⎧⎨
⎩
⎡
⎣ Ĉtt(q̂(t)) Ĉto(q̂(t))

Ĉot(q̂(t)) Ĉoo(q̂(t))

⎤
⎦
⎡
⎣
⎛
⎝ λ̂h�

t (t)

λ̂h�
o (t)

⎞
⎠

−
[

Ktt(q̂(t)) Kto(q̂(t))

Kot(q̂(t)) Koo(q̂(t))

]⎛
⎝ δ̂t(t)

δ̂o(t)

⎞
⎠
⎤
⎦+

(
Γt(q̂(t))

Γo(q̂(t))

)
ν̂(t)

⎫⎬
⎭ dt by (38)

≥ lim sup
�→∞

∫ T

0

⎛
⎝ λ̃t(t) − λ̂h�

t (t)

λ̃o(t) − λ̂h�
o (t)

⎞
⎠

T ⎧⎨
⎩
⎡
⎣ Ĉtt(q̂

h�(t)) Ĉto(q̂
h�(t))

Ĉot(q̂
h�(t)) Ĉoo(q̂

h�(t))

⎤
⎦
⎡
⎣
⎛
⎝ λ̂h�

t (t)

λ̂h�
o (t)

⎞
⎠

−
[

Ktt(q̂
h�(t)) Kto(q̂

h�(t))

Kot(q̂
h�(t)) Koo(q̂

h�(t))

]⎛
⎝ δ̂h�

t (t)

δ̂h�
o (t)

⎞
⎠
⎤
⎦+

(
Γt(q̂

h�(t))

Γo(q̂
h�(t))

)
ν̂h�(t)

⎫⎬
⎭ dt,

where the second inequality holds because {(q̂h� , ν̂h� , δ̂h�
t,o)} converges to (q̂, ν̂, δ̂t,o)

uniformly. For each h > 0, we have

∫ T

0

⎛
⎝ λ̃t(t) − λ̂h

t (t)

λ̃o(t) − λ̂h
o (t)

⎞
⎠

T ⎧⎨
⎩
⎡
⎣ Ĉtt(q̂

h(t)) Ĉto(q̂
h(t))

Ĉot(q̂
h(t)) Ĉoo(q̂

h(t))

⎤
⎦
⎡
⎣
⎛
⎝ λ̂h

t (t)

λ̂h
o (t)

⎞
⎠

−
[

Ktt(q̂
h(t)) Kto(q̂

h(t))

Kot(q̂
h(t)) Koo(q̂

h(t))

]⎛
⎝ δ̂ht (t)

δ̂ho (t)

⎞
⎠
⎤
⎦+

(
Γt(q̂

h(t))

Γo(q̂
h(t))

)
ν̂h(t)

⎫⎬
⎭ dt

=

Nh∑
j=1

∫ th,j+1

th,j

⎛
⎝ λ̃t(t) − λh,j+1

t

λ̃o(t) − λh,j+1
o

⎞
⎠

T ⎧⎨
⎩
⎡
⎣ Ĉtt(q̂

h(t)) Ĉto(q̂
h(t))

Ĉot(q̂
h(t)) Ĉoo(q̂

h(t))

⎤
⎦
[(

λh,j+1
t

λh,j+1
o

)

−
[

Ktt(q̂
h(t)) Kto(q̂

h(t))

Kot(q̂
h(t)) Koo(q̂

h(t))

]⎛
⎝ δ̂ht (t)

δ̂ho (t)

⎞
⎠
⎤
⎦+

(
Γt(q̂

h(t))

Γo(q̂
h(t))

)
ν̂h(t)

⎫⎬
⎭ dt.

Since for almost all t ∈ (th,j , th,j+1], we have (λ̃it(t), λ̃io(t)) ∈ F(μiλ
h,j+1
in ), it follows
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that

⎛
⎝ λ̃t(t) − λh,j+1

t

λ̃o(t) − λh,j+1
o

⎞
⎠

T ⎧⎨
⎩
⎡
⎣ Ĉtt(q

h,j) Ĉto(q
h,j)

Ĉot(q
h,j) Ĉoo(q

h,j)

⎤
⎦
[(

λh,j+1
t

λh,j+1
o

)

−
[

Ktt(q
h,j) Kto(q

h,j)

Kot(q
h,j) Koo(q

h,j)

](
δh,jt

δh,jo

)]
+

(
Γt(q

h,j)

Γo(q
h,j)

)
νh,θj

}
≥ 0

for almost all t ∈ (th,j , th,j+1]. Since the state variables satisfy

lim
�→∞

t∈(th�,j
,th�,j+1]

(x̂h�(t) − xh�,j) = 0

uniformly on [0, T ], we easily derive the desired limiting friction property (c).

6. Conclusion and discussion. This paper provided an in-depth investigation
of time-stepping methods for rigid body dynamics problems with multiple contacts
characterized by friction and local compliance. The main results are (a) the exis-
tence of a discrete-time solution trajectory the boundary-value problem (Theorem 8),
and (b) the convergence of such a solution to a weak solution of the corresponding
continuous-time problem (Theorem 9). Whereas the convergence results obtained are
in a sense stronger than those in [19, 1], it is worth noting that this is because of our
choice of a phenomenologically correct model that explicitly characterizes the com-
pliance at each contact. Even so, there are limitations in our investigation. First, the
friction coefficients are required to be sufficiently small in the main results (this is
the result of our discretization which respects the nonlinear friction conditions at all
iterates λh,ν+1). Second, we are not able to establish convergence to a strong solution.
This limitation begs the question of whether such a solution can be proved to exist in
a continuous-time model under an appropriate compliance constitutive law. The key
difficulty lies in the fact that the friction forces are not continuous functions of the
system states with the model (5). This issue remains unresolved to date. Third, in our
convergence analysis, the parameters of the compliance model (i.e., the stiffness and
damping) are fixed. It would be very interesting to extend the analysis to allow these
parameters to tend to infinity, with the goal of recovering a solution of some kind to a
fully rigid-body model. Such an extended analysis is beyond the scope of this paper.
In the previous paper [17], we considered, in a discrete-time framework with a fixed
discretization step, the issue of convergence when the stiffness and damping both tend
to infinity and obtained some positive results; nevertheless, such a convergence issue
in a continuous-time model seems difficult and has not been studied.

In view of the unresolved issues associated with strong solutions, which are seem-
ingly very difficult, our results are significant and provide a first step for a deeper
analysis. Needless to say, we are interested in extending the analysis to models
with nonlinear constitutive laws for which the existence of strong solutions to the
continuous-time model could be shown and for which the convergence of a numerical
time-stepping method to such a solution could be established. Our future work will
address such extensions and the application of numerical methods for solving bound-
ary value problems to the optimal design of manufacturing processes with frictional
contacts.
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A POSTERIORI ERROR ANALYSIS OF THE LINKED
INTERPOLATION TECHNIQUE FOR PLATE BENDING PROBLEMS∗
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Abstract. We develop a posteriori error estimates for the so-called linked interpolation technique
to approximate the solution of plate bending problems. We show that the proposed (residual-based)
estimator is both reliable and efficient.
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1. Introduction. In this paper we present an a posteriori error analysis for
the so-called linked interpolation technique (cf. [2], [3], and [21], for instance) to
approximate the solution of the Reissner–Mindlin plate problem.

It is worth noticing that the main effort concerning the finite element discretiza-
tion of the plate bending problems has been focused on proposing and analyzing
locking-free schemes. As a consequence, most of the mathematical literature on
the subject is addressed to establish a priori error estimates. We mention here the
works [1], [4], [6], [12], [13], [15], [18], [20], and the references therein, for example.
On the contrary, when considering the a posteriori error analysis for plates, only very
few results are available (see [7], [8], and [14]).

In this work we consider the so-called linked interpolation technique focusing on
two triangular elements: the low-order element proposed in [21] (see also [22]), and
the quadratic scheme proposed in [3]. An a priori error analysis has been developed
for both the methods in [16], [17] and [3], respectively. We also remark that our a
posteriori error analysis may be straightforwardly extended to other schemes taking
advantage of the linked interpolation technique, such as the quadrilateral elements
considered in [2] and [3], for example.

An outline of the paper is as follows. In section 2 we briefly recall the Reissner–
Mindlin problem, together with a mixed variational formulation and some useful reg-
ularity results. The linked interpolation technique is described in section 3, where we
develop an a priori analysis for the sake of completeness (see also [16] or [17]). Sec-
tion 4 is devoted to the a posteriori error estimates. In particular we introduce our
estimator, and we prove its reliability (section 4.1) and efficiency (section 4.2). We
consider the case of a clamped plate only for simplicity. Indeed, both the a priori and
the a posteriori error analysis can be easily adapted to cover other relevant boundary
conditions.

Throughout the paper we use standard notations for Sobolev norms and semi-
norms (see [5], for example). Moreover, we denote with C a generic constant
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independent of the mesh parameter h and the plate thickness t, which may take
different values in different occurrences.

2. The Reissner–Mindlin problem. The Reissner–Mindlin equations for a
clamped plate with polygonal midplane Ω require one to find (θ, w,γ) such that

(2.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div C ε(θ) − γ = 0 in Ω,

−div γ = g in Ω,

γ = μt−2(∇w − θ) in Ω,

θ = 0, w = 0 on ∂Ω.

Here, C is the tensor of bending moduli, θ represents the rotations, w the transversal
displacement, γ the scaled shear stresses, and g a given transversal load. Moreover,
ε is the usual symmetric gradient operator, μ is the shear modulus, and t is the
thickness. The classical variational formulation of problem (2.1) is

(2.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find (θ, w,γ) ∈ Θ ×W × (L2(Ω))2 :

a(θ,η) + (∇v − η,γ) = (g, v), (η, v) ∈ Θ ×W,

(∇w − θ, τ ) − μ−1t2(γ, τ ) = 0, τ ∈ (L2(Ω))2,

where Θ = (H1
0 (Ω))2, W = H1

0 (Ω), (·, ·) is the inner product in L2(Ω) and

a(θ,η) :=

∫
Ω

C ε(θ) : ε(η).

Following [9], we write the pair (θ, w) as

(2.3) (θ, w) = (θ0 + θr, w0 + wr),

where the pair (θ0, , w0) is the solution of the limit problem,

(2.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find (θ0, w0,γ0) ∈ Θ ×W × Γ :

a(θ0,η)+ < ∇v − η,γ0 >= (g, v), (η, v) ∈ Θ ×W,

< ∇w0 − θ0, τ >= 0, τ ∈ Γ,

and (θr, wr) can be thought of as a remainder. Furthermore, Γ = H−1(div,Ω) and
< ·, · > is the duality pairing between H0(rot,Ω) and H−1(div,Ω). One has the
following proposition (cf. [9]).

Proposition 2.1. Suppose that Ω is convex and g ∈ L2(Ω). Then it holds

(2.5) ||w0||3 + ||θ||2 + ||γ||0 + t ||γ||1 ≤ C(||g||−1 + t ||g||0),

(2.6) ||θr||1 ≤ Ct ||g||−1,

(2.7) ||wr||2 ≤ Ct(||g||−1 + t ||g||0).
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3. The linked interpolation scheme and an a priori analysis. In this sec-
tion we present the general idea of the linked interpolation technique (see [3] and [21],
for instance), together with two examples of triangular elements. Furthermore, for
the sake of completeness, we develop an a priori error analysis, focusing on the lowest-
order element (see [16] and [17]).

3.1. The linked interpolation scheme. Let {Th}h>0 be a sequence of decom-
positions of Ω into triangular elements T , satisfying the usual compatibility conditions
(see [11]). We also assume that the family {Th}h>0 is regular, i.e., there exists a con-
stant σ > 0 such that

(3.1) hT ≤ σρT ∀T ∈ Th,

where hT is the diameter of the element T and ρT is the maximum diameter of the
circles contained in T . We recall (see [11], for instance) that regularity implies the
minimum angle condition: there exists a constant α > 0 such that

(3.2) αT ≥ α ∀T ∈ Th,

where αT denotes the smallest inner angle of T . Moreover, given the decomposition
Th we will denote with Eh the set of the edges e of the triangles T ∈ Th. We now
select the finite element spaces Θh ⊂ Θ, Wh ⊂ W , Γh ⊂ L2(Ω)2, together with a
suitable linear operator (the so-called linking operator)

(3.3) L : Θh −→ H1
0 (Ω).

We then form the finite dimensional subspace of X := Θ ×W

(3.4) Xh =
{
(ηh, v

∗
h) = (ηh, vh + Lηh) : ηh ∈ Θh , vh ∈ Wh

}
,

and we finally consider the discrete problem

(3.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find (θh, w
∗
h; γh) ∈ Xh × Γh :

a(θh,ηh) + (γh,∇v∗h − ηh) = (g, v∗h), (ηh, v
∗
h) ∈ Xh,

(∇w∗
h − θh, τh) − μ−1t2(γh, τh) = 0, τh ∈ Γh.

Remark 3.1. We point out that eliminating γh from system (3.5), our scheme
is equivalent to the following problem involving only the rotations and the vertical
displacements:

(3.6)⎧⎨
⎩

Find (θh, w
∗
h) ∈ Xh :

a(θh,ηh) + μt−2
(
Ph(∇w∗

h − θh), Ph(∇v∗h − ηh)
)

= (g, vh) ∀(ηh, v
∗
h) ∈ Xh,

where Ph denotes the L2-projection operator onto Γh.

We are now ready to present the following two elements. (For other methods
based on the same strategy, see, e.g., [2], [3].)



2230 CARLO LOVADINA AND ROLF STENBERG

3.1.1. The linear element. This element (see [21]) is described by the finite
element spaces

(3.7) Θh =
{
η ∈ Θ : η|T ∈ (P1(T ) ⊕B3(T ))2

}
,

(3.8) Wh =
{
v ∈ W : v|T ∈ P1(T )

}
,

(3.9) Γh =
{
τ ∈ L2(Ω)2 : τ |T ∈ P0(T )2

}
,

where Pk(T ) is the space of polynomials of degree at most k defined on T and B3(T ) =
P3(T ) ∩H1

0 (T ) is the space of cubic bubbles on T . The linking operator L : Θh −→
H1

0 (Ω) is defined as follows. For each T ∈ Th, we set

(3.10) ϕi = λjλk and EB2(T ) = Span {ϕi}1≤i≤3 ,

where {λi}1≤i≤3 are the barycentric coordinates of the triangle T and the indices
(i, j, k) form a permutation of the set (1, 2, 3). Then, the operator L is locally defined
as

(3.11) Lηh|T =

3∑
i=1

αiϕi ∈ EB2(T ),

where the coefficients αi are determined by requiring that

(3.12) (∇Lηh − ηh) · t is constant on each e.

Above, t denotes the tangential vector to the edge e. We recall that for the linking
operator it holds (see [16] and [17])

(3.13) ||Lηh||0,T ≤ ChT ||∇Lηh||0,T , ||∇Lηh||0,T ≤ ChT |ηh|1,T .

3.1.2. The quadratic element. This element (see [3]) is described by the finite
element spaces

(3.14) Θh =
{
η ∈ Θ : η|T ∈ P2(T )2 ⊕ (P1(T )2 ⊕∇B3(T ))bT

}
,

(3.15) Wh =
{
v ∈ W : v|T ∈ P2(T ) ⊕B3(T )

}
,

(3.16) Γh =
{
τ ∈ L2(Ω)2 : τ |T ∈ P1(T )2 ⊕∇B3(T )

}
,

where bT = 27λ1λ2λ3. The linking operator L : Θh −→ H1
0 (Ω) is defined as follows.

For each T ∈ Th, we set

(3.17) ϕi = λjλk(λk − λj) and EB3(T ) = Span {ϕi}1≤i≤3 ,

where the indices (i, j, k) form a permutation of the set (1, 2, 3). Then, the operator
L is locally defined as

(3.18) Lηh|T =

3∑
i=1

αiϕi ∈ EB3(T ),

where the coefficients αi are determined by requiring that

(3.19) (∇Lηh − ηh) · t is linear on each e.

For this linking operator it holds (see [3])

(3.20) ||Lηh||0,T ≤ ChT ||∇Lηh||0,T , ||∇Lηh||0,T ≤ Ch2
T |ηh|2,T ≤ ChT |ηh|1,T .
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3.2. A priori error estimates. Following the lines of [9], [10], [16], [18], [20],
we prove a priori error estimates with respect to the norms

(3.21) |||(η, v)|||2h := ||η||21 + ||v||21 +
∑
T∈Th

1

h2
T + t2

||∇v − η||20,T ∀(η, v) ∈ Θ ×W

and

(3.22) ||τ ||−1 + t ||τ ||0 ∀τ ∈ L2(Ω)2.

We will also use the following discrete norm:

(3.23) ||τ ||2h :=
∑
T∈Th

h2
T ||τ ||20,T + t2||τ ||20 ∀τ ∈ L2(Ω)2.

Before proceeding, we need the following lemma, which establishes a suitable
norm equivalence in the used finite element spaces.

Lemma 3.1. Consider the finite element spaces and the linking operator detailed
in section 3.1.1 (or in section 3.1.2), and let Ph denote the L2-projection operator on
Γh. Then for each (ηh, v

∗
h) ∈ Xh it holds

(3.24)

(
||ηh||21 +

∑
T∈Th

1

h2
T + t2

||Ph(∇v∗h − ηh)||20,T

)1/2

≤ |||(ηh, v
∗
h)|||h

and

(3.25) |||(ηh, v
∗
h)|||h ≤ C

(
||ηh||21 +

∑
T∈Th

1

h2
T + t2

||Ph(∇v∗h − ηh)||20,T

)1/2

.

Proof. Since (3.24) is trivial, we consider only (3.25). Therefore, take ηh ∈ Θh,
vh ∈ Wh and form (ηh, v

∗
h) = (ηh, vh + Lηh) ∈ Xh. We first notice that

(3.26)

||∇v∗h||20 ≤ 2
(
||∇v∗h − ηh||20 + ||ηh||20

)

≤ C

( ∑
T∈Th

1

h2
T + t2

||∇v∗h − ηh||20,T + ||ηh||21

)
,

so that, by Poincaré’s inequality, we have

(3.27) ||v∗h||21 ≤ C

( ∑
T∈Th

1

h2
T + t2

||∇v∗h − ηh||20,T + ||ηh||21

)
,

Next, we write ∇v∗h − ηh as

(3.28)

∇v∗h − ηh = ∇vh + ∇Lηh − ηh = Ph∇vh + ∇Lηh − ηh

= Ph∇v∗h − (Ph∇Lηh −∇Lηh) − ηh

= Ph(∇v∗h − ηh) − (Ph∇Lηh −∇Lηh) + (Phηh − ηh).
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Therefore, we have

(3.29)
||∇v∗h − ηh||0,T ≤ ||Ph(∇v∗h − ηh)||0,T

+ ||Ph∇Lηh −∇Lηh||0,T + ||Phηh − ηh||0,T .

Since (see also (3.13) and (3.20))

(3.30) ||Ph∇Lηh −∇Lηh||0,T ≤ 2||∇Lηh||0,T ≤ ChT |ηh|1,T

and

(3.31) ||Phηh − ηh||0,T ≤ ChT |ηh|1,T ,

from (3.29) we obtain
(3.32)

1

h2
T + t2

||∇v∗h − ηh||20,T ≤ C

(
1

h2
T + t2

||Ph(∇v∗h − ηh)||20,T +
h2
T

h2
T + t2

|ηh|21,T
)

≤ C

(
1

h2
T + t2

||Ph(∇v∗h − ηh)||20,T + |ηh|21,T
)
.

Therefore, we get

(3.33)∑
T∈Th

1

h2
T + t2

||∇v∗h − ηh||20,T ≤ C

( ∑
T∈Th

1

h2
T + t2

||Ph(∇v∗h − ηh)||20,T + ||ηh||21

)
.

Using (3.27) and (3.31) we deduce estimate (3.25).
It is now useful to set

(3.34)
A(θ, w,γ; η, v, τ ) := a(θ,η) + (∇v − η,γ)

− (∇w − θ, τ ) + μ−1t2(γ, τ ).

Therefore, the continuous problem (2.2) reads

(3.35)

⎧⎨
⎩

Find (θ, w; γ) ∈ X × L2(Ω)2 such that

A(θ, w,γ; η, v, τ ) = (g, v) ∀(η, v; τ ) ∈ X × L2(Ω)2,

while the discrete problem (3.5) is

(3.36)

{
Find (θh, w

∗
h; γh) ∈ Xh × Γh such that

A(θh, w
∗
h,γh; ηh, v

∗
h, τh) = (g, v∗h) ∀(ηh, v

∗
h; τh) ∈ Xh × Γh.

We have the following stability result, for which we only sketch the proof, since
it takes advantage of the same techniques detailed in [9] and [16].

Proposition 3.2. Given (βh, z
∗
h; ρh) ∈ Xh × Γh there exists (ηh, v

∗
h; τh) ∈

Xh × Γh such that

(3.37) A(βh, z
∗
h,ρh; ηh, v

∗
h, τh) ≥ C

(
|||(βh, z

∗
h)|||2h + ||ρh||2h

)
,
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(3.38) |||(ηh, v
∗
h)|||h + ||τh||h ≤ C (|||(βh, z

∗
h)|||h + ||ρh||h) .

Proof. Let us (βh, z
∗
h; ρh) be given in Xh×Γh. Using exactly the same arguments

of [9] and [16] we get that there exists (ηh, v
∗
h; τh) in Xh × Γh such that

(3.39)

A(βh, z
∗
h,ρh; ηh, v

∗
h, τh) ≥ C

(
||βh||21 +

∑
T∈Th

1

h2
T + t2

||Ph(∇z∗h − βh)||20,T + ||ρh||2h

)

and
(3.40)

||ηh||1+
( ∑

T∈Th

1

h2
T + t2

||Ph(∇v∗h − ηh)||20,T

)1/2

+ ||τh||h

≤ C

⎛
⎝||βh||1 +

( ∑
T∈Th

1

h2
T + t2

||Ph(∇z∗h − βh)||20,T

)1/2

+ ||ρh||h

⎞
⎠ .

We now use Lemma 3.1 to infer that given (βh, z
∗
h; ρh) ∈ Xh × Γh, there exists

(ηh, v
∗
h; τh) ∈ Xh × Γh such that

(3.41) A(βh, z
∗
h,ρh; ηh, v

∗
h, τh) ≥ C

(
|||(βh, z

∗
h)|||2h + ||ρh||2h

)
and

(3.42) |||(ηh, v
∗
h)|||h + ||τh||h ≤ C (|||(βh, z

∗
h)|||h + ||ρh||h) .

We are now ready to prove our error estimate (see also [17] and [16]). We focus on
the lowest-order element detailed in section 3.1.1, but a similar technique (together
with the ideas developed in [18]) may be applied to appropriately treat the higher-
order case of section 3.1.2.

Proposition 3.3. Suppose that Ω is a convex polygon and g ∈ L2(Ω) and
consider the element detailed in section 3.1.1. Let (θ, w; γ) ∈ X × L2(Ω)2 and
(θh, w

∗
h; γh) ∈ Xh × Γh be the solutions of problem (3.35) and (3.36), respectively.

Then the following a priori estimates holds:

(3.43) |||(θ − θh, w − w∗
h)|||h + ||γ − γh||−1 + ||γ − γh||h ≤ C h(||g||−1 + t ||g||0).

Proof. Since our method is consistent (cf. (3.35) and (3.36)) and stable (see Propo-
sition 3.2), error estimates with respect to the norms in question can be established
in the standard way. Hence, let

(3.44) (θI , w
∗
I ; γI) = (θI , wI + LθI ; γI) ∈ Xh × Γh

be a suitable interpolant (to be specified later) of the continuous solution (θ, w∗; γ).
Corresponding to (θh − θI , w

∗
h − w∗

I ; γh − γI) ∈ Xh × Γh there exists (see Proposi-
tion 3.2) (ηh, v

∗
h; τh) ∈ Xh × Γh such that

(3.45)
A(θh − θI , w

∗
h − w∗

I ,γh − γI ;ηh, v
∗
h, τh) ≥ C

(
|||(θh − θI , w

∗
h − w∗

I )|||2h + ||γh − γI ||2h
)
,

and

(3.46) |||(ηh, v
∗
h)|||h + ||τh||h ≤ C (|||(θh − θI , w

∗
h − w∗

I )|||h + ||γh − γI ||h) .
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By consistency it holds

(3.47)
A(θh − θI , w

∗
h − w∗

I ,γh − γI ; ηh, v
∗
h, τh) = A(θ − θI , w − w∗

I ,γ − γI ; ηh, v
∗
h, τh)

= a(θ − θI ,ηh) + (∇v∗h − ηh,γ − γI)

−
(
∇(w − w∗

I ) − (θ − θI), τh

)
+ μ−1t2(γ − γI , τh)

= (I) + (II) + (III) + (IV).

To bound the four terms above, we first choose the interpolants θI , w∗
I and γI as

follows. According to the splitting (2.3), θI is given by

(3.48) θI := Iθ = Iθ0 + Iθr,

where I is the Lagrange interpolating operator. To define w∗
I , we need to specify wI

(cf. (3.44)). Again, the splitting (2.3) suggests to set

(3.49) wI := Iw = Iw0 + Iwr.

Therefore, w∗
I turns out to be w∗

I = wI + LθI = Iw + L(Iθ). Finally, γI is simply
the L2-projection of γ onto Γh.

Estimate for (I). Using the H1-continuity of the bilinear form a(·, ·), standard
approximation results, and estimate (2.5) we have

(3.50) (I) = a(θ − θI ,ηh) ≤ Ch||θ||2||ηh||1 ≤ Ch(||g||−1 + t ||g||0)||ηh||1.

Estimate for (II). We notice that

(3.51)
(II) = (∇v∗h − ηh,γ − γI)

≤
( ∑

T∈Th

1

h2
T + t2

||∇v∗h − ηh||20,T

)1/2 ( ∑
T∈Th

(h2
T + t2)||γ − γI ||20,T

)1/2

,

by which, using again (2.5) and standard approximation estimates, we get

(3.52) (II) ≤ Ch(||g||−1 + t ||g||0)
( ∑

T∈Th

1

h2
T + t2

||∇v∗h − ηh||20,T

)1/2

.

Estimate for (III).

(3.53)
(III) = −

(
∇(w − w∗

I ) − (θ − θI), τh

)

≤
( ∑

T∈Th

1

h2
T + t2

||∇(w − w∗
I ) − (θ − θI)||20,T

)1/2 ( ∑
T∈Th

(h2
T + t2)||τh||20,T

)1/2

.

We now notice that we have (see (2.3), (3.44) and (3.48)–(3.49))

(3.54)
∇(w − w∗

I ) − (θ − θI) =
{
∇
(
w0 − Iw0 − L(Iθ0)

)
− (θ0 − Iθ0)

}

+
{
∇
(
wr − Iwr − L(Iθr)

)
− (θr − Iθr)

}
.
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In [16] it has been proved that

(3.55)
∣∣∇(

w0 − Iw0 − L(Iθ0)
)∣∣

0,T
≤ Ch2

T |w0|3,T ,

while standard approximation results give

(3.56) |θ0 − Iθ0|0,T ≤ Ch2
T |θ0|2,T ,

(3.57) |θr − Iθr|0,T ≤ Ch2
T |θr|2,T .

Furthermore, using also (3.13) it holds

(3.58)

∣∣∇(
wr − Iwr − L(Iθr)

)∣∣
0,T

≤ |∇(wr − Iwr)|0,T + |∇L(Iθr)|0,T

≤ |∇(wr − Iwr)|0,T + |∇L(Iθr − θr)|0,T + |∇L(θr)|0,T

≤ C
(
hT |wr|2,T + hT |Iθr − θr|1,T + hT |θr|1,T

)

≤ C
(
hT |wr|2,T + h2

T |θr|2,T + hT |θr|1,T
)
.

From (3.54)–(3.58) we obtain
(3.59)∑

T∈Th

1

h2
T + t2

||∇(w − w∗
I ) − (θ − θI)||20,T

≤ C
∑
T∈Th

1

h2
T + t2

(
h4
T |w0|23,T + h4

T |θ|22,T + h2
T |wr|22,T + h2

T |θr|21,T
)

≤ Ch2
(
|w0|23 + |θ|22

)
+

∑
T∈Th

h2
T

h2
T + t2

(
|wr|22,T + |θr|21,T

)

≤ Ch2
(
|w0|23 + |θ|22

)
+

∑
T∈Th

h2
T

(
|wr|22,T

t2
+

|θr|21,T
t2

)

≤ Ch2

(
|w0|23 + |θ|22 +

|wr|22
t2

+
|θr|21
t2

)
.

Using (2.5)–(2.7), from (3.59) it follows that

(3.60)

( ∑
T∈Th

1

h2
T + t2

||∇(w − w∗
I ) − (θ − θI)||20,T

)1/2

≤ Ch

(
||w0||3 + ||θ||2 +

||wr||2
t

+
||θr||1

t

)

≤ Ch(||g||−1 + t ||g||0).

Therefore, we obtain (see (3.53))

(3.61) (III) ≤ Ch(||g||−1 + t ||g||0)
( ∑

T∈Th

(h2
T + t2)||τh||20,T

)1/2

.
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Estimate for (IV). We simply notice that

(3.62)
(IV) = μ−1t2(γ − γI , τh) ≤ Ct ||γ − γI ||0t ||τh||0 ≤ Ch(||g||−1 + t ||g||0)t ||τh||0.

Collecting (3.50), (3.52), (3.61), and (3.62), from (3.47) we get

(3.63)
A(θh − θI , w

∗
h − w∗

I ,γh − γI ; ηh, v
∗
h, τh)

≤ Ch(||g||−1 + t ||g||0) (|||(ηh, v
∗
h)|||h + ||τh||h) .

From (3.45), (3.46), (3.63), and the triangle inequality, we infer

(3.64) |||(θ − θh, w − w∗
h)|||h + ||γ − γh||h ≤ C h(||g||−1 + t ||g||0).

To obtain the error in the H−1-norm for the shears, we use the Pitkäranta–
Verfürth trick (cf. [19], [23], and [20]). Hence, we recall that

(3.65) ||γ − γh||−1 = sup
η∈Θ

(γ − γh,η)

||η||1
.

For a generic η ∈ Θ we consider its Clemént’s interpolant ηc ∈ Θh (see [11], for
instance), and we write

(3.66) (γ − γh,η) = (γ − γh,η − ηc) + (γ − γh,η
c).

On the one hand, we have

(3.67)
(γ − γh,η − ηc) ≤

( ∑
T∈Th

h2
T ||γ − γh||20,T

)1/2 ( ∑
T∈Th

h−2
T ||η − ηc||20,T

)1/2

≤ C||γ − γh||h||η||1.

On the other hand, recalling (2.2) and (3.5), we get

(3.68) (γ − γh,η
c) = a(θ − θh,η

c) ≤ C||θ − θh||1||ηc||1 ≤ C||θ − θh||1||η||1.

From (3.65)–(3.68), we obtain

(3.69) ||γ − γh||−1 ≤ C (||γ − γh||h + ||θ − θh||1) .

Estimate (3.43) now follows from (3.64) and (3.69).

Using the technique in [9], one may also get the following improved estimates.

Proposition 3.4. Suppose that Ω is a convex polygon and g ∈ L2(Ω). Then the
following a priori estimates hold:

(3.70) ||θ − θh||0 ≤ Ch2(||g||−1 + t ||g||0),

(3.71) ||w − w∗
h||1 ≤ Ch(h + t)(||g||−1 + t ||g||0).
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4. A posteriori error estimates. The aim of this section is to introduce suit-
able error estimator for the elements based on the linked interpolation technique and
to prove its reliability and efficiency. To begin, for each T ∈ Th and e ∈ Eh we
introduce the following quantities:

(4.1)

η̃2
T := h2

T ||div C ε(θh) + γh||20,T + h2
T (h2

T + t2)||div γh + gh||20,T

+
μ2

h2
T + t2

||μ−1t2 γh − (∇w∗
h − θh)||20,T ,

(4.2) η2
e := he|| [[C ε(θh)n]] ||20,e + he(h

2
e + t2)|| [[γh · n]] ||20,e,

where gh is some approximation of the load g. Moreover, he is the length of the side
e and [[·]] denotes the jump operator. We then define a local indicator ηT as

(4.3) ηT :=

(
η̃2
T +

∑
e⊂∂T

η2
e

)1/2

and a global indicator η as

(4.4) η :=

( ∑
T∈Th

η̃2
T +

∑
e∈Eh

η2
e

)1/2

.

Remark 4.1. When considering the element described in section 3.1.1, the ex-
pression in (4.1) becomes simpler, since we locally have div γh = 0 (see (3.9)).

We now introduce some useful notation. Given a generic e ∈ Eh, we denote with
ωe the union of the triangles in Th having e as a side. Furthermore, for T ∈ Th we set
ωT as the union of the ωe, with e ⊂ ∂T . We proceed with the following result.

Lemma 4.1. Given e ∈ Eh, let Pk(e) be the space of polynomials of degree at most
k defined on e. There exists a linear operator

(4.5) Πe : Pk(e) −→ H2
0 (ωe)

such that for all pk ∈ Pk(e) it holds

C1||pk||20,e ≤
∫
e

pk
(
Πepk

)
≤ ||pk||20,e,(4.6)

||Πepk||0,ωe ≤ C2h
1/2
e ||pk||0,e,(4.7)

|∇(Πepk)|0,ωe
≤ C3h

−1/2
e ||pk||0,e,(4.8)

|∇(Πepk)|1,ωe ≤ C4h
−3/2
e ||pk||0,e.(4.9)

Above, the constants Ci depend only on k and on the minimum angle of the triangles
in the meshes Th.

Proof. We consider only the case of an interior edge e: if e is a boundary edge
(i.e., e ⊂ ∂Ω), the required modifications are obvious. Due to the minimum angle

condition, there exists a fixed reference rhomb D̂, as depicted in Figure 4.1, where,
e.g., δ = α/2 (see (3.2)), with the following property: for each e ∈ Eh it is possible to

determine a rhomb De ⊆ ωe similar to D̂ (see Figure 4.2). According to Figure 4.2,
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Fig. 4.1. The reference rhomb D̂.
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Fig. 4.2. Relevant objects associated with the edge e.

on ωe we now introduce local Cartesian coordinates (s, t), as well as the functions

(4.10) di(s, t) = “distance of (s, t) from the edge li”, i = 1, . . . , 4 (see Figure 4.2).

Next, we define ψe(s, t) : ωe −→ R as

(4.11) ψe(s, t) := αe χDe
(s, t)

4∏
i=1

di(s, t)
2,

where χDe(s, t) is the characteristic function of the set De, while αe is a normalization
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constant in order to have ||ψe||∞ = 1. We also notice that in the coordinates (s, t) a
generic polynomial pk ∈ Pk(e) can be simply written as pk(s). We are ready to define
Πe : Pk(e) −→ H2

0 (ωe) by setting

(4.12)
(
Πepk

)
(s, t) := ψe(s, t)pk(s), (s, t) ∈ ωe.

Estimates (4.6)–(4.9) easily follows from standard scaling arguments, using the fixed

reference rhomb D̂.

4.1. Upper bounds. We now prove that the indicator just introduced can be
used as a reliable error estimator. We will prove our upper bounds for the linear
element of section 3.1.1 by means of a saturation assumption involving its quadratic
version. Therefore, to avoid confusion, we will denote all the quantities relative to
the quadratic element described in section 3.1.2 by a tilde. For example, the approx-
imation spaces and linking operator in (3.14)–(3.19) will be renamed as Θ̃h, W̃h, Γ̃h,

and L̃, respectively. Accordingly, we define

(4.13) X̃h =
{
(η̃h, ṽ

∗
h) = (η̃h, ṽh + L̃η̃h) : η̃h ∈ Θ̃h , ṽh ∈ W̃h

}
.

We need to make the following assumption.
Saturation assumption. Let (θh, w

∗
h,γh) ∈ Xh × Γh (resp., (θ̃h, w̃

∗
h, γ̃h) ∈ X̃h ×

Γ̃h) be the discrete solution using the linear (resp., quadratic) element. We assume
that there exists 0 < ρ < 1 such that

(4.14)

|||(θ − θ̃h, w − w̃∗
h)|||h + ||γ − γ̃h||−1 + t ||γ − γ̃h||0

≤ ρ
(
|||(θ − θh, w − w∗

h)|||h + ||γ − γh||−1 + t ||γ − γh||0
)
.

By using the saturation assumption (4.14), it is easily seen that one gets the
reliability estimate

(4.15)

|||(θ − θh, w − w∗
h)|||h + ||γ − γh||−1 + t ||γ − γh||0

≤ C

( ∑
T∈Th

(
η2
T + h2

T (h2
T + t2)||g − gh||20,T

))1/2

,

provided one is able to bound

(4.16) |||(θ̃h − θh, w̃
∗
h − w∗

h)|||h + ||γ̃h − γh||−1 + t ||γ̃h − γh||0.

To this aim, we need the next result, which states that Xh ⊆ X̃h, and that functions
in X̃h can be approximated by functions in Xh.

Lemma 4.2. It holds Xh ⊆ X̃h; moreover, given (η̃h, ṽ
∗
h) ∈ X̃h, there exists

(ηh, v
∗
h) ∈ Xh such that

(4.17)

∑
T∈Th

h−2
T

(
||η̃h − ηh||20,T +

1

h2
T + t2

||ṽ∗h − v∗h||20,T
)

+
∑
e∈Eh

h−1
e

(
||η̃h − ηh||20,e +

1

h2
e + t2

||ṽ∗h − v∗h||20,e
)

≤ C|||(η̃h, ṽ
∗
h)||| 2h .
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Proof. First, we need to show that a generic (ηh, v
∗
h) = (ηh, vh +Lηh) ∈ Xh can

be written as (η̃h, ṽ
∗
h) = (η̃h, ṽh + L̃η̃h) ∈ X̃h for suitable η̃h ∈ Θ̃h and ṽh ∈ W̃h.

This forces η̃h = ηh, which is an admissible choice, since obviously Θh ⊆ Θ̃h. Noting

that vh +Lηh ∈ W̃h, we set ṽh = vh +Lηh. We now observe (see (3.18)–(3.19)) that

L̃η̃h = L̃ηh = 0. Indeed, given ηh ∈ Θh, the equation

(4.18) (∇L̃ηh − ηh) · t is linear on each e

has unique solution L̃ηh = 0, since ηh is already linear on each edge e. Therefore we
have

(η̃h, ṽ
∗
h) = (η̃h, ṽh + L̃η̃h) = (ηh, vh + Lηh + L̃ηh) = (ηh, vh + Lηh) = (ηh, v

∗
h),

which proves Xh ⊆ X̃h.
To prove estimate (4.17), let (η̃h, ṽ

∗
h) = (η̃h, ṽh + η̃h) ∈ X̃h be given. We define

(recalling that I denotes the Lagrange interpolating operator):

(4.19) ηh = Iη̃h ∈ Θh, vh = I ṽh ∈ Wh.

Accordingly, we set

(4.20) (ηh, v
∗
h) =

(
Iη̃h, I ṽh + L(Iη̃h)

)
∈ Xh.

By standard approximation results and scaling arguments, we have

(4.21)
∑
T∈Th

h−2
T ||η̃h − ηh||20,T +

∑
e∈Eh

h−1
e ||η̃h − ηh||20,e ≤ C||η̃h||21.

To continue, let us note that

(4.22)

∑
T∈Th

h−2
T

h2
T + t2

||ṽ∗h − v∗h||20,T ≤ 2
∑
T∈Th

h−2
T

h2
T + t2

||ṽh − vh||20,T

+ 2
∑
T∈Th

h−2
T

h2
T + t2

||L̃η̃h − Lηh||20,T .

From standard approximation theory we have

(4.23)

||ṽh − vh||20,T ≤ Ch4
T |ṽh|22,T = Ch4

T |∇ṽh|21,T

≤ Ch4
T

(
|∇ṽ∗h − η̃h|21,T + |η̃h −∇L̃η̃h|21,T

)
.

Using an inverse inequality and (3.20) we get

(4.24) ||ṽh − vh||20,T ≤ Ch2
T ||∇ṽ∗h − η̃h||20,T + Ch4

T |η̃h|21,T .
Therefore, we obtain

(4.25)

∑
T∈Th

h−2
T

h2
T + t2

||ṽh − vh||20,T ≤ C
∑
T∈Th

1

h2
T + t2

||∇ṽ∗h − η̃h||20,T

+ C
∑
T∈Th

h2
T

h2
T + t2

|η̃h|21,T

≤ C

( ∑
T∈Th

1

h2
T + t2

||∇ṽ∗h − η̃h||20,T + ||η̃h||21

)
.



A POSTERIORI ESTIMATES FOR PLATES 2241

Furthermore, from (3.13), (3.20), and (4.19), we have

(4.26)
||L̃η̃h − Lηh||20,T ≤ 2

(
||L̃η̃h||20,T + ||Lηh||20,T

)

≤ Ch4
T

(
|η̃h|21,T + |ηh|21,T

)
≤ Ch4

T |η̃h|21,T .

As a consequence, we get

(4.27)
∑
T∈Th

h−2
T

h2
T + t2

||L̃η̃h − Lηh||20,T ≤ C
∑
T∈Th

h2
T

h2
T + t2

|η̃h|21,T ≤ C||η̃h||21,T .

Using (4.25) and (4.27), from (4.22) we have

(4.28)
∑
T∈Th

h−2
T

h2
T + t2

||ṽ∗h − v∗h||20,T ≤ C|||(η̃h, ṽ
∗
h)||| 2h .

The shape regularity of Th, scaling arguments, and estimate (4.28) show that

(4.29)
∑
e∈Eh

h−1
e

h2
e + t2

||ṽ∗h − v∗h||20,e ≤ C
∑
T∈Th

h−2
T

h2
T + t2

||ṽ∗h − v∗h||20,T ≤ C|||(η̃h, ṽ
∗
h)||| 2h .

Collecting (4.21), (4.28) and (4.29), we infer estimate (4.17).
We are now ready to prove the following proposition.
Proposition 4.3. We have

(4.30)

|||(θ̃h − θh, w̃
∗
h − w∗

h)|||h + ||γ̃h − γh||−1 + t ||γ̃h − γh||0

≤ C

( ∑
T∈Th

(
η2
T + h2

T (h2
T + t2)||g − gh||20,T

))1/2

.

Proof. Consider (θ̃h − θh, w̃
∗
h − w∗

h; γ̃h − γh) ∈ X̃h × Γ̃h. Discrete stability for
the quadratic element (see Proposition 3.2) implies that there exists (η̃h, ṽ

∗
h; τ̃h) in

X̃h × Γ̃h such that

(4.31) |||(η̃h, ṽ
∗
h)|||h + ||τ̃h||h ≤ 1

and

(4.32)

C
(
|||(θ̃h − θh, w̃

∗
h − w∗

h)|||h + ||γ̃h − γh||h
)

≤
{
a(θ̃h − θh, η̃h) + (γ̃h − γh,∇ṽ∗h − η̃h)

}

+
{
−
(
∇(w̃∗

h − w∗
h) − (θ̃h − θh), τ̃h) + μ−1t2(γ̃h − γh, τ̃h)

}

= (I) + (II).

On one hand, since (θ̃h, w̃
∗
h; γ̃h) (resp., (θh, w

∗
h; γh)) solves the higher-order (resp.,

low-order) discrete problem, we have

(4.33)

(I) = a(θ̃h − θh, η̃h) + (γ̃h − γh,∇ṽ∗h − η̃h)

= (g, ṽ∗h) − a(θh, η̃h) − (γh,∇ṽ∗h − η̃h)

= (g, ṽ∗h − v∗h) − a(θh, η̃h − ηh) −
(
γh,∇(ṽ∗h − v∗h) − (η̃h − ηh)

)
,
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where we choose (ηh, v
∗
h) ∈ Xh satisfying estimate (4.17). An elementwise integration

by parts gives

(4.34)

(I) =
∑
T∈Th

{∫
T

(
div C ε(θh) + γh

)
· (η̃h − ηh) −

∫
∂T

C ε(θh)n · (η̃h − ηh)

}

+
∑
T∈Th

{∫
T

(
div γh + g

)
(ṽ∗h − v∗h) −

∫
∂T

γh · n (ṽ∗h − v∗h)

}
,

by which

(4.35)

(I) =
∑
T∈Th

∫
T

(
div C ε(θh) + γh

)
· (η̃h − ηh) −

∑
e∈Eh

∫
e

[[C ε(θh)n]] · (η̃h − ηh)

+
∑
T∈Th

∫
T

(
div γh + g

)
(ṽ∗h − v∗h) −

∑
e∈Eh

∫
e

[[γh · n]] (ṽ∗h − v∗h).

Hence, it holds

(4.36)

(I) ≤ C

⎛
⎝
( ∑

T∈Th

h2
T ||div C ε(θh) + γh||20,T

)1/2( ∑
T∈Th

h−2
T ||η̃h − ηh||20,T

)1/2

+

( ∑
e∈Eh

he|| [[C ε(θh)n]] ||20,e

)1/2( ∑
e∈Eh

h−1
e ||η̃h − ηh||20,e

)1/2

+

( ∑
T∈Th

h2
T (h2

T + t2)||div γh + g||20,T

)1/2( ∑
T∈Th

1

h2
T (h2

T + t2)
||ṽ∗h − v∗h||20,T

)1/2

+

( ∑
e∈Eh

he(h
2
e + t2)|| [[γh · n]] ||20,e

)1/2( ∑
e∈Eh

1

he(h2
e + t2)

||ṽ∗h − v∗h||20,e

)1/2
⎞
⎠ .

Using Lemma 4.2, we get

(4.37)

(I) ≤ C

⎛
⎝
( ∑

T∈Th

h2
T ||div C ε(θh) + γh||20,T

)1/2

+

( ∑
e∈Eh

he|| [[C ε(θh)n]] ||20,e

)1/2

+

( ∑
T∈Th

h2
T (h2

T + t2)||div γh + g||20,T

)1/2

+

( ∑
e∈Eh

he(h
2
e + t2)|| [[γh · n]] ||20,e

)1/2
⎞
⎠

× |||(η̃h, ṽ
∗
h)|||h.

Therefore, one has
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(4.38)

(I) ≤ C

⎛
⎝
( ∑

T∈Th

h2
T ||div C ε(θh) + γh||20,T

)1/2

+

( ∑
e∈Eh

he|| [[C ε(θh)n]] ||20,e

)1/2

+

( ∑
T∈Th

h2
T (h2

T + t2)||div γh + gh||20,T

)1/2

+

( ∑
T∈Th

h2
T (h2

T + t2)||g − gh||20,T

)1/2

+

( ∑
e∈Eh

he(h
2
e + t2)|| [[γh · n]] ||20,e

)1/2
⎞
⎠ |||(η̃h, ṽ

∗
h)|||h.

On the other hand, since (θ̃h, w̃
∗
h; γ̃h) solves the higher-order discrete problem, we

have

(4.39)

(II) = −
(
∇(w̃∗

h − w∗
h) − (θ̃h − θh), τ̃h) + μ−1t2(γ̃h − γh, τ̃h)

= −
(
μ−1t2 γh − (∇w∗

h − θh), τ̃h

)

≤
( ∑

T∈Th

1

h2
T + t2

||μ−1t2 γh − (∇w∗
h − θh)||20,T

)1/2 ( ∑
T∈Th

(h2
T + t2)||τ̃h||20,T

)1/2

.

As a consequence, from (4.32), (4.38), (4.39), using (4.31) and recalling defini-
tions (4.1)–(4.3), we have
(4.40)

|||(θ̃h−θh, w̃
∗
h−w∗

h)|||h+ ||γ̃h−γh||h ≤ C

( ∑
T∈Th

(
η2
T + h2

T (h2
T + t2)||g − gh||20,T

))1/2

.

The same arguments as in (3.65)–(3.69), applied to γ̃h − γh, give

(4.41) ||γ̃h − γh||−1 ≤ C
(
||γ̃h − γh||h + ||θ̃h − θh||1

)
.

Combining (4.40) and (4.41) we infer estimate (4.30). The proof is complete.

4.2. Lower bounds. We now prove the efficiency of our error estimator by
establishing the following proposition.

Proposition 4.4. Let (θ, w; γ) (resp., (θh, w
∗
h; γh)) be the solution of the con-

tinuous (resp., discrete) problem. Given T ∈ Th, it holds

(4.42)

ηT ≤C

(
1

(h2
T + t2)1/2

∣∣∣∣∇(w∗
h − w) − (θh − θ)

∣∣∣∣
0,T

+ ||θh − θ||1,ωT

+ ||γh − γ||−1,ωT
+ t ||γh − γ||0,ωT

+

( ∑
T ′⊂ωT

h2
T ′(h2

T ′ + t2)||g − gh||20,T ′

)1/2
⎞
⎠ ,

where ηT is defined by (4.1)–(4.3).
Proof. Fix T ∈ Th and a generic edge e ⊂ ∂T . We proceed in three steps.
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First step. Since

(4.43) μ−1t2γ = ∇w − θ,

we get

(4.44)

1

(h2
T + t2)1/2

||μ−1t2 γh − (∇w∗
h − θh)||0,T

=
1

(h2
T + t2)1/2

∣∣∣∣μ−1t2 (γh − γ) −
(
∇(w∗

h − w) − (θh − θ)
)∣∣∣∣

0,T

≤ C

(
t ||γh − γ||0,T +

1

(h2
T + t2)1/2

∣∣∣∣∇(w∗
h − w) − (θh − θ)

∣∣∣∣
0,T

)
.

Second step. We choose

(4.45) ηT = h2
T (div C ε(θh) + γh) bT ,

where bT is the standard cubic bubble on T . We observe that

(4.46) |ηT |1,T ≤ ChT ||div C ε(θh) + γh||0,T .

Taking advantage of the equilibrium equation

(4.47) −div C ε(θ) − γ = 0,

we get

(4.48)

h2
T ||div C ε(θh) + γh||20,T

≤ C
(
div C ε(θh) + γh,ηT

)
= C

(
div C ε(θh − θ) + (γh − γ),ηT

)
= C (−a(θh − θ,ηT ) + (γh − γ,ηT ))

≤ C (||θh − θ||1,T + ||γh − γ||−1,T ) |ηT |1,T .

Using (4.46), from (4.48) we thus obtain

(4.49) hT ||div C ε(θh) + γh||0,T ≤ C (||θh − θ||1,T + ||γh − γ||−1,T ) .

Next, we choose

(4.50) ηe = heP ([[C ε(θh)n]]) be,

where P is the prolongation operator introduced in [24] and be is the usual edge bubble
on e. We observe that it holds

(4.51)

( ∑
T⊂ωe

h−2
T ||ηe||20,T

)1/2

≤ C|ηe|1,ωe
≤ Ch1/2

e || [[C ε(θh)n]] ||0,e.
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Integrating by parts and using again the equilibrium equation (4.47), we have

(4.52)

he|| [[C ε(θh)n]] ||20,e

≤ C

∫
e

[[C ε(θh)n]] · ηe = C

(∫
ωe

div C ε(θh) · ηe +

∫
ωe

C ε(θh) : ε(ηe)

)

= C
((

div C ε(θh) + γh,ηe

)
+ a(θh − θ,ηe) − (γh − γ,ηe)

)

≤ C

⎛
⎝
( ∑

T⊂ωe

h2
T ||div C ε(θh) + γh||20,T

)1/2( ∑
T⊂ωe

h−2
T ||ηe||20,T

)1/2

+
(
||θh − θ||1,ωe + ||γh − γ||−1,ωe

)
|ηe|1,ωe

)
.

Therefore, using (4.51) and (4.49), from (4.52) we get

(4.53) h1/2
e || [[C ε(θh)n]] ||0,e ≤ C (||θh − θ||1,ωe + ||γh − γ||−1,ωe) .

Third step. We first define

(4.54) ϕT = (div γh + gh) b2T .

We observe that ϕT ∈ H2
0 (T ) and one has

(4.55)
|ϕT |1,T ≤ Ch−1

T ||div γh + gh||0,T ,

|∇ϕT |1,T ≤ Ch−2
T ||div γh + gh||0,T .

We then set

(4.56) vT = h2
T (h2

T + t2)ϕT .

Using the equilibrium equation

(4.57) −div γ = g,

we get

(4.58)

h2
T (h2

T + t2)||div γh + gh||20,T ≤ C
(
div γh + gh, vT

)

= C
((

div(γh − γ), vT
)

+ (gh − g, vT )
)
.

We now separately treat the two terms at the right-hand side of (4.58). Integrating
by parts, recalling (4.54) and (4.56), and using (4.55), we have

(4.59)(
div(γh − γ), vT

)
= −(γh − γ,∇vT )

= −h4
T (γh − γ,∇ϕT ) − t2h2

T (γh − γ,∇ϕT )

≤ ||γh − γ||−1,Th
4
T |∇ϕT |1,T + t ||γh − γ||0,Th2

T t ||∇ϕT ||0,T

≤ C
(
||γh − γ||−1,Th

2
T ||div γh + gh||0,T + t ||γh − γ||0,ThT t ||div γh + gh||0,T

)

≤ C
(
||γh − γ||−1,T + t ||γh − γ||0,T

)
hT (h2

T + t2)1/2||div γh + gh||0,T .
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Furthermore, it holds

(4.60)
(gh − g, vT ) ≤ hT (h2

T + t2)1/2||gh − g||0,T hT (h2
T + t2)1/2||ϕT ||0,T

≤ ChT (h2
T + t2)1/2||gh − g||0,T hT (h2

T + t2)1/2||div γh + gh||0,T .

Therefore, using (4.59) and (4.60), from (4.58) we infer

(4.61)

hT (h2
T + t2)1/2||div γh + gh||0,T ≤ C

(
||γh − γ||−1,T

+ t ||γh − γ||0,T + hT (h2
T + t2)1/2||gh − g||0,T

)
.

Next, we define

(4.62) ϕe = Πe([[γh · n]]),

where Πe is the linear operator of Lemma 4.1. Therefore, we have

|| [[γh · n]] ||20,e ≤ C

∫
e

[[γh · n]]ϕe,(4.63)

||ϕe||0,ωe
≤ Ch1/2

e || [[γh · n]] ||0,e,(4.64)

||∇ϕe||0,ωe
≤ Ch−1/2

e || [[γh · n]] ||0,e,(4.65)

|∇ϕe|1,ωe ≤ Ch−3/2
e || [[γh · n]] ||0,e.(4.66)

We then set

(4.67) ve = he(h
2
e + t2)ϕe.

Integrating by parts using (4.63) and the equilibrium equation (4.57), we get

(4.68)

he(h
2
e + t2)|| [[γh · n]] ||20,e ≤ C

∫
e

[[γh · n]] ve

≤ C

(∫
ωe

ve div γh +

∫
ωe

γh ·∇ve

)

= C
(
(div γh + g, ve) + (γh − γ,∇ve)

)

= C
(
(div γh + gh, ve) + (g − gh, ve) + (γh − γ,∇ve)

)
.

We now estimate the three terms above. Recalling (4.67) and using (4.64), we obtain
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(4.69)
(div γh + gh, ve) = he(h

2
e + t2)

(
div γh + gh, ϕe

)

=
∑
T⊂ωe

∫
T

(
he(h

2
e + t2)1/2(div γh + gh)

)(
(h2

e + t2)1/2ϕe

)

≤
( ∑

T⊂ωe

h2
e(h

2
e + t2)||div γh + gh||20,T

)1/2( ∑
T⊂ωe

(h2
e + t2)||ϕe||20,T

)1/2

≤
( ∑

T⊂ωe

h2
T (h2

T + t2)||div γh + gh||20,T

)1/2( ∑
T⊂ωe

(h2
e + t2)||ϕe||20,T

)1/2

≤ C

( ∑
T⊂ωe

h2
T (h2

T + t2)||div γh + gh||20,T

)1/2

h1/2
e (h2

e + t2)1/2|| [[γh · n]] ||0,e.

The same argument shows that it holds

(4.70)

(g − gh, ve) ≤ C

( ∑
T⊂ωe

h2
T (h2

T + t2)||g − gh||20,T

)1/2

h1/2
e (h2

e + t2)1/2|| [[γh · n]] ||0,e.

We now notice that

(4.71) (γh − γ,∇ve) = h3
e(γh − γ,∇ϕe) + het

2(γh − γ,∇ϕe).

On one hand, using (4.66), we have

(4.72)
h3
e(γh − γ,∇ϕe) ≤ ||γh − γ||−1,ωe

h3
e|∇ϕe|1,ωe

≤ C||γh − γ||−1,ωeh
3/2
e || [[γh · n]] ||0,e.

On the other hand, from (4.65) we get

(4.73)
het

2(γh − γ,∇ϕe) ≤ t ||γh − γ||0,ωe
het ||∇ϕe||0,ωe

≤ Ct ||γh − γ||0,ωe
h1/2
e t || [[γh · n]] ||0,e.

Therefore, using (4.72) and (4.73) from (4.71) we obtain

(4.74) (γh−γ,∇ve) ≤ C
(
||γh−γ||−1,ωe+t ||γh−γ||0,ωe

)
h1/2
e (h2

e+t2)1/2|| [[γh·n]] ||0,e.
Collecting (4.69), (4.70) and (4.74), we infer from (4.68) that

(4.75)

h1/2
e (h2

e + t2)1/2|| [[γh · n]] ||0,e ≤ C

⎛
⎝
( ∑

T⊂ωe

h2
T (h2

T + t2)||div γh + gh||20,T

)1/2

+ ||γh − γ||−1,ωe
+ t ||γh − γ||0,ωe

+

( ∑
T⊂ωe

h2
T (h2

T + t2)||g − gh||20,T

)1/2
⎞
⎠ .
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Hence, from (4.61) we get
(4.76)

h1/2
e (h2

e + t2)1/2|| [[γh · n]] ||0,e ≤ C

(
||γh − γ||−1,ωe + t ||γh − γ||0,ωe

+

( ∑
T⊂ωe

h2
T (h2

T + t2)||g − gh||20,T

)1/2)
.

Estimate (4.42) now follows from (4.44), (4.49), (4.53), (4.61), and (4.76).
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[8] C. Carstensen and J. Schöberl, Residual-Based a Posteriori Error Estimate for a Mixed
Reissner–Mindlin Plate Finite Element, preprint.

[9] D. Chapelle and R. Stenberg, An optimal low-order locking-free finite element method for
Reissner-Mindlin plates, Math. Models Methods Appl. Sci., 8 (1998), pp. 407–430.

[10] D. Chapelle and R. Stenberg Stabilized finite element formulations for shells in a bending
dominated state, SIAM J. Numer. Anal., 36 (1999), pp. 32–73.

[11] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam,
1978.

[12] R. Duran and E. Liberman, On mixed finite-element methods for the Reissner-Mindlin plate
model, Math. Comp., 58 (1992), pp. 561–573.

[13] R. S. Falk and T. Tu, Locking-free finite elements for the Reissner-Mindlin plate, Math.
Comp., 69 (2000), pp. 911–928.

[14] E. Liberman, A posteriori error estimator for a mixed finite element method for Reissner-
Mindlin plate, Math. Comp., 70 (2000), pp. 1383–1396.

[15] C. Lovadina, A new class of mixed finite element methods for Reissner-Mindlin plates, SIAM
J. Numer. Anal., 33 (1996), pp. 2457–2467.

[16] C. Lovadina, Analysis of a mixed finite element method for the Reissner-Mindlin plate prob-
lems, Comput. Methods Appl. Mech. Engrg., 163 (1998), pp. 71–85.

[17] M. Lyly, On the connection between some linear triangular Reissner-Mindlin plate bending
elements, Numer. Math., 85 (2000), pp. 77–107.

[18] M. Lyly and R. Stenberg, Stabilized Finite Element Methods for Reissner-Mindlin Plates,
Forschungsbericht 4, Universität Innsbruck, Institut für Mathematik und Geometrie,
(1999).
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Abstract. Matrix compression techniques in the context of wavelet Galerkin schemes for bound-
ary integral equations are developed and analyzed that exhibit optimal complexity in the following
sense. The fully discrete scheme produces approximate solutions within discretization error accu-
racy offered by the underlying Galerkin method at a computational expense that is proven to stay
proportional to the number of unknowns. Key issues are the second compression, which reduces the
near field complexity significantly, and an additional a posteriori compression. The latter is based
on a general result concerning an optimal work balance that applies, in particular, to the quadrature
used to compute the compressed stiffness matrix with sufficient accuracy in linear time.

Key words. wavelets, norm equivalences, multilevel preconditioning, first and second compres-
sion, a posteriori compression, asymptotic complexity estimates
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1. Introduction. Many mathematical models concerning, e.g., field calcula-
tions, flow simulation, elasticity, or visualization are based on operator equations with
global operators, especially boundary integral operators. Discretizing such problems
will then lead in general to possibly very large linear systems with densely populated
matrices. Moreover, the involved operator may have an order different from zero,
which means that it acts on different length scales in a different way. This is well
known to entail the linear systems to become more and more ill-conditioned when the
level of resolution increases. Both features pose serious obstructions to the efficient
numerical treatment of such problems to an extent that desirable realistic simulations
are still beyond the current computing capacities.

This fact has stimulated enormous efforts to overcome these obstructions. The
resulting significant progress made over the past 10 or 15 years manifests itself in
several different approaches such as panel clustering (PC) [18], multipole expansions
(FMM) [16], and wavelet compression (WC) [2]. Each of these methodologies has
its recognized advantages and drawbacks whose balance may depend on the problem
at hand. The first two (PC, FMM) are quite similar in spirit and exploit perhaps
in the best way the (typical) smoothness of the potential kernel in the space rather
than the integral kernel on the boundary manifold. As a consequence, they are fairly
robust with regard to the shape and complexity of the boundary manifold. This is
also the case for further developments like hierarchical matrices (H-matrices) [17] and
adaptive cross approximation (ACA) [1] based on a low rank approximation in the far
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field; see also [30]. Common experience seems to indicate that the third option (WC)
depends in a more sensitive way on the underlying geometry, and its performance
may suffer from strong domain anisotropies. On the other hand, WC allows one in
a natural way to incorporate preconditioning techniques, which very much supports
the fast solution of the resulting sparsified systems. Moreover, recent developments
suggest a natural combination with adaptive discretizations to keep from the start,
for a given target accuracy, the size of the linear systems as small as possible. Perhaps
the main difference between PC, FMM on the one hand and WC on the other is that
the former are essentially agglomeration techniques, while WC is more apt for refining
a given coarse discretization. Since these methodologies are, in that sense, somewhat
complementary in spirit, it is in our opinion less appropriate to contrapose them, but
one should rather try to extract the best from each option.

As indicated before, a preference for any of the above-mentioned solution strate-
gies will, in general, depend on the concrete application at hand. The objective of
this paper is therefore to provide a complete analysis of the wavelet approach (WC)
from the following perspectives. Recall that WC has been essentially initiated by the
pioneering paper [2], where it was observed that certain operators have an almost
sparse representation in wavelet coordinates. Discarding all entries below a certain
threshold in a given principal section of the wavelet representation will then give rise
to a sparse matrix that can be further processed by efficient linear algebra tools. This
idea has since then initiated many subsequent studies. The diversity as well as the
partly deceiving nature of the by now existing rich body of literature is one reason
for us to take up this subject here again. Our attempt to provide a unified analysis
is certainly based, to some extent, on previously used techniques. However, on the
one hand we have extended these concepts essentially by several new analytical tools,
to be detailed later below. On the other hand, the numerical implementation has
been brought now to a state that makes the method applicable to practically relevant
problems. The main objective of this paper is to present these new theoretical and
practical developments centering on the following issues.

When dealing with large-scale problems, a sharp asymptotic analysis of the com-
plexity is in our opinion ultimately essential for assessing its potential. It is important
to clarify the meaning of “complexity” in this context. It is always understood as the
work/accuracy rate of the method under consideration when the level of resolution
increases, i.e., the overall accuracy of the computed approximate solution is to be tied
to the computational work required to obtain it. There is no point in increasing the
number of degrees of freedom, i.e., the size of the linear systems, without improving
the accuracy of the resulting solutions. On the other hand, since one is ultimately in-
terested in the “exact solution of the infinite-dimensional problem” it makes no sense
to determine the solution to the discrete finite-dimensional problem with much more
accuracy than that offered by the discretization. Thus, a reasonable target accuracy
for the solutions of the discrete systems is discretization error accuracy which will
guide all our subsequent considerations. A method will therefore be said to exhibit
asymptotically optimal complexity if the discrete solution can be computed, for any
discretization level, within discretization error accuracy at a computational expense
that stays proportional to the number N of unknowns, i.e., when not even logarithmic
factors are permitted. Obviously, computational optimality refers here to the given
discretization framework based on the chosen hierarchy of trial spaces.

In the present context, this means that the solutions of the compressed systems
should exhibit the same asymptotic convergence rates as the solutions to unperturbed
discretizations. In connection with WC, this in turn means that any threshold param-
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eters and truncation strategies have to be adapted to the current number N of degrees
of freedom. Such an asymptotic analysis is missing in [2] and in many subsequent
investigations. The program carried out in [11, 12, 24, 25, 27] aimed at determining
exactly such work/accuracy rates for various types of boundary integral equations.
Roughly speaking, it could be shown that discretization error accuracy can be realized
for appropriately chosen wavelet bases at a computational work that stays bounded
by C N(logN)a for some constants C, a independent of the size N of the linear sys-
tems. Moreover, in [27] it was shown for the first time that, by incorporating a second
compression, an overall optimal compression strategy can be devised that even avoids
additional logarithmic factors, while the complexity estimates for a corresponding
adaptive quadrature scheme were confined to collocation methods.

The purpose of the present paper can now be summarized as follows.

We present a complete, in several respects new and improved analysis of wavelet
compression schemes for boundary integral equations based on Galerkin discretiza-
tions that exhibit overall asymptotically optimal complexity. This means that dis-
cretization error accuracy is obtained at a computational expense that stays propor-
tional to the size N of the arising linear systems, uniformly in N . In contrast to the
earlier treatments of the authors it is based on bilinear forms and Strang’s lemma;
see also [25].

The analysis significantly simplifies previous studies including the effect of the sec-
ond compression. In fact, the analysis of the second compression is completely new,
resulting in slightly different conclusions; see section 6. The complete work balance
synchronizing quadrature and compression accuracy is based on new balance estimates
given in section 11; see Theorem 11.1. In particular, it reveals the right work balance
for the compression and the quadrature needed to compute the compressed matri-
ces with sufficient accuracy, so as to realize asymptotically optimal computational
complexity of the fully discretized scheme. Specifically, the computational work for
computing and assembling the compressed stiffness matrix remains proportional to
the number N of degrees of freedom.

This also lays the foundation for an additional new a posteriori compression whose
analysis is again based on the above-mentioned balance estimate. This improves the
quantitative performance of the scheme significantly as shown in [20, 22].

Our analysis concerns what is called the standard wavelet representation. A pref-
erence for using the so-called nonstandard form is frequently reported in the literature.
The reason is that the entries in this latter form only involve scaling functions and
wavelets on the same level. This indeed simplifies assembling the matrices and offers
essential advantages when dealing with shift-invariant problems. However, aside from
the problem of preconditioning in connection with operators of nonzero order, to our
knowledge it has so far not been shown that, for a fixed order of vanishing moments,
optimal computational complexity in the above sense can be obtained with the non-
standard form. In fact, for regular solutions approximate solutions with prescribed
accuracy can be obtained at (asymptotically) a lower computational cost with the aid
of the standard form when compared with the nonstandard form. This is backed by
theory and confirmed by numerical experience; see [20, 22].

As mentioned before, it is important to employ the “right” wavelet bases. This
question has been discussed extensively in previous work [3, 6, 13, 14]. The theory
tells us that, depending on the order of the operator, a proper relation between the
approximation order of the underlying multiresolution spaces and the order of vanish-
ing moments matters, which often rules out orthonormal wavelets. Given the validity
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of this relation it is important to keep supports as small as possible; see Remark 7.1 in
section 7. Moreover, our present analysis of the second compression refers exclusively
to biorthogonal spline wavelets whose singular supports are well defined; see [21] for
examples and graphical illustrations.

We shall frequently write a � b to express that a is bounded by a constant multiple
of b, uniformly with respect to all parameters on which a and b may depend. Then
a ∼ b means a � b and b � a.

2. Problem formulation and preliminaries. We consider boundary integral
equations on a closed boundary surface Γ of an (n+1)-dimensional domain Ω ⊂ R

n+1

Au(x̂) =

∫
Γ

k(x̂, ŷ)u(ŷ)dΓŷ = f(x̂), x̂ ∈ Γ,(2.1)

where the boundary integral operator is assumed to be an operator of order 2q, that
is, A : Hq(Γ) → H−q(Γ). The kernel functions under consideration are supposed to
be smooth as functions in the variables x̂, ŷ, apart from the diagonal {(x̂, ŷ) ∈ Γ×Γ :
x̂ = ŷ} and may have a singularity on the diagonal. Such kernel functions arise,
for instance, by applying a boundary integral formulation to a second-order elliptic
problem. In general, they decay like a negative power of the distance of the arguments
which depends on the spatial dimension n and the order 2q of the operator.

Throughout the remainder of this paper we shall assume that the boundary man-
ifold Γ is given as a parametric surface consisting of smooth patches. More precisely,
let � := [0, 1]n denote the unit n cube. The manifold Γ ⊂ R

n+1 is partitioned into a
finite number of patches,

Γ =

M⋃
i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M,(2.2)

where each γi : � → Γi defines a diffeomorphism of � onto Γi. We also assume
that there exist smooth extensions Γi ⊂⊂ Γ̃i and γ̃i : �̃ := [−1, 2]n → Γ̃i. The
intersection Γi ∩ Γi′ , i �= i′, of the patches Γi and Γi′ is supposed to be either ∅ or a
lower-dimensional face.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of the unit cube
into 2nj cubes Cj,k ⊆ �, where k = (k1, . . . , kn) with 0 ≤ km < 2j . This generates
2njM elements (or elementary domains) Γi,j,k := γi(Cj,k) ⊆ Γi, i = 1, . . . ,M .

In order to ensure that the collection of elements {Γi,j,k} on the level j forms
a regular mesh on Γ, the parametric representation is subjected to the following
matching condition: for all x̂ ∈ Γi ∩ Γi′ there exists a bijective, affine mapping Ξ :
� → � such that γi(x) = (γi′ ◦ Ξ)(x) = x̂ for x = (x1, . . . , xn) ∈ � with γi(x) = x̂.

The first fundamental tensor of differential geometry is given by the matrix
Ki(x) ∈ R

n×n defined by

Ki(x) :=

[(
∂γi(x)

∂xj
,
∂γi(x)

∂xj′

)
l2(Rn+1)

]n
j,j′=1

.(2.3)

Since γi is supposed to be a diffeomorphism, the matrix Ki(x) is symmetric and
positive definite. The canonical inner product in L2(Γ) is then given by

〈u, v〉 =

∫
Γ

u(x)v(x)dΓx =

M∑
i=1

∫
�
u
(
γi(x)

)
v
(
γi(x)

)√
detKi(x)dx.(2.4)
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The corresponding Sobolev spaces are denoted by Hs(Γ), endowed with the norms
‖ ·‖s, where for s < 0 it is understood that Hs(Γ) = (H−s(Γ))′. Of course, depending
on the global smoothness of the surface, the range of permitted s ∈ R is limited to
s ∈ (−sΓ, sΓ). In the case of general Lipschitz domains we have at least sΓ = 1 since
for all 0 ≤ s ≤ 1 the spaces Hs(Γ) consist of traces of functions ∈ Hs+1/2(Ω); cf. [7].

We can now specify the kernel functions. To this end, we denote by α =
(α1, . . . , αn) and β = (β1, . . . , βn) multi-indices of dimension n and define |α| :=
α1 + · · · + αn. Recall that x̂ and ŷ are points on the surface, i.e., x̂ := γi(x) and
ŷ := γi′(y) for some 1 ≤ i, i′ ≤ M .

Definition 2.1. A kernel k(x̂, ŷ) is called standard kernel of order 2q if the
partial derivatives of the transported kernel function

k̃(x, y) := k
(
γi(x), γi′(y)

)√
detKi(x)

√
detKi′(y)(2.5)

are bounded by

|∂α
x ∂

β
y k̃(x, y)| ≤ cα,β dist(x̂, ŷ)−(n+2q+|α|+|β|),(2.6)

provided that n + 2q + |α| + |β| > 0.
We emphasize that this definition requires patchwise smoothness but not global

smoothness of the geometry. The surface itself needs to be only Lipschitz. Generally,
under this assumption, the kernel of a boundary integral operator A of order 2q is a
standard kernel of order 2q. Hence, we may assume this property in the following.
We shall encounter further specifications below in connection with discretizations.

3. Galerkin scheme. We shall be concerned with the Galerkin method with
respect to a hierarchy of conforming trial spaces VJ ⊂ VJ+1 ⊂ Hq(Γ): find uJ ∈ VJ

solving the variational problem

〈AuJ , vJ〉 = 〈f, vJ〉 for all vJ ∈ VJ .(3.1)

Here the index J reflects a meshwidth of the order 2−J . Moreover, we say that the
trial spaces have (approximation) order d ∈ N and regularity γ > 0 if

γ = sup{s ∈ R : VJ ⊂ Hs(Γ)},
d = sup{s ∈ R : infvJ∈VJ

‖v − vJ‖0 � 2−Js‖v‖s for all v ∈ Hs(Γ)}.
(3.2)

Thus conformity requires, of course, that γ > max{0, q}.
In order to ensure that (3.1) is well posed we shall make the following assumptions

on the operator A throughout the remainder of the paper.
Assumptions:
1. A is strongly elliptic, i.e., there exists a symmetric compact operator C :

Hq(Γ) → H−q(Γ) such that 〈(A + A� + C)u, u〉 � ‖u‖2
q.

2. The operator A : Hq(Γ) → H−q(Γ) is injective, i.e., KerA = {0}.
Remark. 1. Most boundary integral equations of the first kind, resulting from

a direct approach, are known to be strongly elliptic, even if Γ is supposed to be the
boundary of a Lipschitz domain [7]. In particular, this is the case for boundary integral
equations of the first kind for the Laplacian, the system of Navier–Lamé equations,
and the Stokes system. For integral equations of the second kind the condition is
obvious if the double layer potential operator is compact, or in the case of smooth
boundaries, since the principal symbol satisfies a G̊arding inequality.



2256 W. DAHMEN, H. HARBRECHT, AND R. SCHNEIDER

2. For several boundary integral operators like the single layer operator of the
Stokes system, for operators associated with Neumann problems or multiply connected
domains, the second assumption is not valid. But in these cases the kernel of the
operator A is finite-dimensional and known a priori. The kernels can be factored out,
i.e., A : Hq(Γ)/Ker(A) → (Hq(Γ)/Ker(A))′. A standard approach uses constrained
conditions and Lagrange multipliers. With a minor modification our method can be
applied also to these cases. Therefore, the second assumption is only for the sake of
simplicity and not a restriction of generality.

Lemma 3.1 (see, e.g., [31]). Under the above assumptions the Galerkin discretiza-
tion is stable, i.e.,

〈(A + A�)vJ , vJ〉 � ‖vJ‖2
q, vJ ∈ VJ ,(3.3)

for J sufficiently large, and

|〈AvJ , wJ〉| � ‖vJ‖q‖wJ‖q, vJ , wJ ∈ VJ .(3.4)

Furthermore, let u, uJ denote the solution of the original equation Au = f , respec-
tively, of (3.1). Then one has

‖u− uJ‖t � 2J(t−t′)‖u‖t′(3.5)

provided that 2q − d ≤ t < γ, t ≤ t′, q ≤ t′ ≤ d and Γ is sufficiently regular.
Note that the best possible convergence rate is given by

‖u− uJ‖2q−d � 2−2J(d−q)‖u‖d(3.6)

provided that u ∈ Hd(Γ), which is only possible when Γ is sufficiently regular. Since
this case gives rise to the highest convergence rate, it will be seen later to impose the
most stringent demands on the matrix compression.

4. Wavelets and multiresolution analysis. The nested trial spaces Vj ⊂ Vj+1

that we shall employ in (3.1) are spanned by so-called single-scale bases Φj = {φj,k :
k ∈ Δj}, where Δj denote suitable index sets of cardinality dimVj . The elements of Φj

are normalized in L2(Γ) and their compact supports scale like diam suppφj,k ∼ 2−j .

Associated with these collections are always dual bases Φ̃j = {φ̃j,k : k ∈ Δj}, i.e.,

one has 〈φj,k, φ̃j,k′〉 = δk,k′ , k, k′ ∈ Δj . For the current type of boundary surfaces Γ

the Φj , Φ̃j are generated by constructing first dual pairs of single-scale bases on the
interval [0, 1], using B-splines for the primal bases and the dual components from [5]
adapted to the interval [10]. Tensor products yield corresponding dual pairs on �.
Using the parametric liftings γi and gluing across patch boundaries leads to globally
continuous single-scale bases Φj , Φ̃j on Γ [3, 6, 14, 19]. For B-splines of order d and

duals of order d̃ ≥ d such that d + d̃ is even, the Φj , Φ̃j have approximation orders

d, d̃, respectively. It is known that the respective regularity indices γ, γ̃ (inside each

patch) satisfy γ = d− 1/2, while γ̃ > 0 is known to increase proportionally to d̃. We
refer the reader to [21] for a detailed description of the construction of wavelets on
manifolds, including examples and figures.

In view of the biorthogonality of Φj , Φ̃j , it will be convenient to employ the
canonical projectors

Qjv :=
∑
k∈Δj

〈v, φ̃j,k〉φj,k, Q�
jv :=

∑
k∈Δj

〈v, φj,k〉φ̃j,k,(4.1)
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associated with the multiresolution sequences {Vj}j>j0 , {Ṽj}j>j0 . Here and below
j0 +1 always stands for some fixed coarsest level of resolution that may depend on Γ.

It follows from the L2-boundedness of the Qj that one has the following Jackson-
and Bernstein-type estimates uniformly in j, namely,

‖v −Qjvj‖s � 2−j(t−s)‖v‖t, v ∈ Ht(Γ),(4.2)

for all −d̃ ≤ s ≤ t ≤ d, s < γ, −γ̃ < t and

‖Qjv‖s � 2j(s−t)‖Qjv‖t, v ∈ Ht(Γ),(4.3)

for all t ≤ s ≤ γ.
We introduce the index sets ∇j := Δj+1 \ Δj . Given the single-scale bases

Φj , Φ̃j , one can construct now biorthogonal complement bases Ψj = {ψj,k : k ∈ ∇j},
Ψ̃j = {ψ̃j,k : k ∈ ∇j}, i.e., 〈ψj,k, ψ̃j′,k′〉 = δ(j,k),(j′,k′), such that

diam suppψj,k ∼ 2−j , j > j0;(4.4)

see, e.g., [3, 6, 13, 14] and [19] for particularly useful local representations of important
construction ingredients. In fact, for these types of bases, the dual wavelets scale in the
same way, but this will not be needed and does not hold for alternative constructions
based on finite elements [15].

Denoting by Wj , W̃j the span of Ψj , respectively, Ψ̃j , biorthogonality implies that

Vj+1 = Wj ⊕ Vj , Ṽj+1 = W̃j ⊕ Ṽj , Ṽj ⊥ Wj , Vj ⊥ W̃j .

Hence VJ and ṼJ can be written as a direct sum of the complement spaces Wj ,

respectively, W̃j , j0 ≤ j < J (using the convention Wj0 := Vj0+1, W̃j0 := Ṽj0+1,

Qj0 = Q�
j0

:= 0). In fact, one has for vJ ∈ VJ , ṽJ ∈ ṼJ

vJ =

J−1∑
j=j0

(Qj+1 −Qj)vJ , ṽJ =

J−1∑
j=j0

(Q�
j+1 −Q�

j )ṽJ ,

where

(Qj+1 −Qj)v =
∑
k∈∇j

〈v, ψ̃j,k〉ψj,k, (Q�
j+1 −Q�

j )v =
∑
k∈∇j

〈v, ψj,k〉ψ̃j,k.

A biorthogonal or dual pair of wavelet bases is now obtained by taking the
coarse single-scale basis and the union of the complement bases Ψ =

⋃
j≥j0

Ψj ,

Ψ̃ =
⋃

j≥j0
Ψ̃j , where we have set for convenience Ψj0 := Φj0+1, Ψ̃j0 := Φ̃j0+1.

We will refer to Ψ and Ψ̃ as the primal, respectively, dual, basis. Throughout the
paper, all basis functions (scaling functions and wavelets) are normalized in L2(Γ).

From biorthogonality and the fact that the dual single-scale bases on � represent
all polynomials of order d̃ exactly, one infers vanishing polynomial moments of the
primal wavelets on �, which, on account of the locality (4.4), entails the first key
feature of the primal wavelets, namely, vanishing moments or the cancellation property

|〈v, ψj,k〉| � 2−j(d̃+n/2)|v|W d̃,∞(suppψj,k).(4.5)
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Here |v|W d̃,∞(Ω) := sup|α|=d̃, x∈Ω |∂αv(x)| denotes the seminorm in W d̃,∞(Ω). The

fact that the concept of biorthogonality allows us to choose the order d̃ of vanishing
moments higher than the approximation order d will be essential for deriving optimal
compression strategies that could not be realized by orthonormal bases.

Of course, in the infinite-dimensional case the notion of basis has to be made
more specific. The second key feature of the basis Ψ is the fact that (properly scaled

versions of) Ψ, Ψ̃ are actually Riesz bases for a whole range of Sobolev spaces, i.e.,

‖v‖2
t ∼

∑
j≥j0

∑
k∈∇j

22jt|〈v, ψ̃j,k〉|2, t ∈ (−γ̃, γ),

‖v‖2
t ∼

∑
j≥j0

∑
k∈∇j

22jt|〈v, ψj,k〉|2, t ∈ (−γ, γ̃).
(4.6)

The validity of these norm equivalences hinges on the estimates (4.2) and (4.3) for
both the primal and dual multiresolution sequences. The equivalences (4.6) will be
essential for preconditioning.

5. Wavelet Galerkin schemes—preconditioning. As before let A : Hq(Γ) →
H−q(Γ) be a boundary integral operator of order 2q. Since the wavelet basis Ψ is, in
particular, a Riesz basis for L2(Γ), the associated system matrices

AJ = [〈Aψj′,k′ , ψj,k〉]j0≤j,j′<J, k∈∇j , k′∈∇j′

become more and more ill-conditioned when J increases. In fact, one has condl2 AJ ∼
22J|q|. However, as a consequence of the stability of the Galerkin discretization under
the given circumstances and the norm equivalences (4.6), the following simple diagonal
preconditioner gives rise to uniformly bounded spectral condition numbers [8, 9, 11].

Theorem 5.1. Let the diagonal matrix Dr
J be defined by

[
Dr

J

]
(j,k),(j′,k′)

= 2rjδ(j,k),(j′,k′), k ∈ ∇j , k′ ∈ ∇j′ , j0 ≤ j, j′ < J.

If A : Hq(Γ) → H−q(Γ) is a boundary integral operator of order 2q, satisfying the
assumptions (1), (2) from section 3, and if γ̃ > −q, the diagonal matrix D2q

J defines

an asymptotically optimal preconditioner for AJ , i.e., condl2(D
−q
J AJD

−q
J ) ∼ 1.

Although the above scaling is asymptotically optimal, it should be stressed that
the quantitative performance may vary significantly among different scalings with
the same asymptotic behavior. In particular, since Ψ is, on account of the mapping
properties of A and the norm equivalences (4.6), also a Riesz basis with respect to the
energy norm, it would be natural to normalize the wavelets in the energy norm which
would suggest the specific scaling 〈Aψj,k, ψj,k〉 ∼ 22qj . In fact, this latter diagonal
scaling improves and simplifies the wavelet preconditioning.

In view of the above simple preconditioning, the iterative solution of the Galerkin
systems is feasible and its overall efficiency relies now on the cost of matrix/vector
multiplications, which brings us to the central issue, namely, matrix compression.

6. Basic estimates. The basic ingredients in the analysis of the compression
procedure are estimates for the matrix entries 〈Aψj′,k′ , ψj,k〉 with k ∈ ∇j , k

′ ∈ ∇j′

and j, j′ ≥ j0. The convex hulls of the supports of the wavelets will be denoted by

Ωj,k := conv hull(suppψj,k).(6.1)

A complete proof of the following estimates can be found, e.g., in [15, 27].
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Theorem 6.1. Suppose n + 2d̃ + 2q > 0 and j, j′ > j0. Then one has

|〈Aψj′,k′ , ψj,k〉| � 2−(j+j′)(d̃+n/2) dist(Ωj,k,Ωj′,k′)−(n+2q+2d̃)

uniformly with respect to J .
However, in order to arrive ultimately at solution schemes with linear complexity,

the number of nonzero entries in the compressed matrices should remain proportional
to their size while preserving discretization error accuracy. To achieve this, it is not
sufficient to consider only coefficients where the supports of the involved wavelets do
not overlap. There are still O(NJ logNJ) = O(2JnJ) coefficients that would remain.
To avoid the logarithmic term we propose an additional, so-called second compression.
For this purpose, we require that our primal basis functions be piecewise polynomial,
in the sense that ψj,k

∣∣
Γi,j+1,l

= p ◦ γ−1
i , where p is a polynomial. By

Ω′
j,k := sing suppψj,k(6.2)

we denote the singular support of ψj,k, which is that subset of Γ where the function
ψj,k is not smooth. Thus the singular support of the wavelet ψj,k consists of the
boundaries of some of the elements Γi,j+1,l. The goal of the subsequent investigation
is to estimate those matrix entries for which dist(Ωj,k,Ω

′
j′,k′), j ≥ j′, is sufficiently

large.
To this end, we require the following extension lemma which follows, e.g., imme-

diately from the well-known extension theorem of Calderón [28].
Lemma 6.2. The function fi,j,k,l, defined by

fi,j,k,l := ψj,k

∣∣
Γi,j+1,l

◦ γi = (ψj,k ◦ γi)
∣∣
Cj+1,l

∈ C∞(Cj+1,l),

can be extended to a function f̃i,j,k,l ∈ C∞
0 (Rn) in such a way that diam supp f̃i,j,k,l �

2−j, f̃i,j,k,l ≡ ψj,k ◦ γi on Cj+1,l, and that for all s ≥ 0 there holds
∥∥f̃i,j,k,l∥∥Hs(Rn)

�
2js, independently of i, j, k, l.

Proof. Suppose that f� ∈ C∞(�) with ‖f�‖Hs(�) � 1. By virtue of Calderón’s
extension theorem, there exists an extension f ∈ C∞

0 (Rn), i.e., f(x) ≡ f�(x) on �,
satisfying ‖f‖Hs(Rn) � ‖f�‖Hs(�). Let us consider an affine map κ with κ(Cj+1,l) =

� and choose fi,j,k,l(x) := f�
(
κ(x)

)
. The claim follows now from |∂xiκ| = 2j+1,

i = 1, . . . , n.
It is well known that boundary integral operators A of order 2q, acting on smooth

surfaces, are classical pseudodifferential operators [28]. Since the patches Γi are

smooth and have smooth extensions Γ̃i, there exists for each i a pseudodifferential
operator A� : Hq(Rn) → H−q(Rn) such that

A�f(x) =

∫
Rn

χ(x)χ(y)k
(
γ̃i(x), γ̃i(y)

)
f(y)

√
det K̃i(y)dy,(6.3)

where χ is a C∞-cut-off function with respect to �, i.e., χ(x) = 1 on � and χ(x) = 0
outside [−1, 2]n. Therefore A�f(x) = A(f ◦ γi)(γi(x)) for all f ∈ C∞

0 (�), x ∈ �, and
A� is compactly supported [29]. Moreover, it is well known [28] that the Schwartz
kernel of pseudodifferential operators satisfies the standard estimate (2.6).

A compactly supported pseudodifferential operator A� : Hs(Rn) → Hs−2q(Rn)
of order 2q acts continuously on Sobolev spaces [28, 29]. Therefore, for any function
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f̃i,j,k,l ∈ C∞
0 (Rn), satisfying diam supp f̃i,j,k,l ∼ 2−j and ‖f̃i,j,k,l‖Hs(Rn) � 2js for all

s ≥ 0, one has A�f̃i,j,k,l ∈ C∞
0 (Rn) with

‖A�f̃i,j,k,l‖Hs−2q(Rn) � 2js.(6.4)

With these preparations at hand, we are able to formulate the following result.

Theorem 6.3. Suppose that n + 2d̃ + 2q > 0 and j′ > j ≥ j0. Then, the
coefficients 〈Aψj′,k′ , ψj,k〉 and 〈Aψj,k, ψj′,k′〉 satisfy

|〈Aψj′,k′ , ψj,k〉|, |〈Aψj,k, ψj′,k′〉| � 2jn/22−j′(d̃+n/2) dist(Ω′
j,k,Ωj′,k′)−(2q+d̃),

uniformly with respect to j, provided that

dist(Ω′
j,k,Ωj′,k′) � 2−j′ .(6.5)

Proof. We shall consider three cases.

(i) The first observation concerns an estimate for disjoint supports that will be
applied several times.

Lemma 6.4. Suppose that Ωj,k ∩ Ωj′,k′ = ∅ and that f is any function supported
on Ωj,k satisfying |f(x)| � 2jn/2, x ∈ Ωj,k. Then one has

|〈Aψj′,k′ , f〉| � 2jn/22−j′(d̃+n/2) dist(Ωj,k,Ωj′,k′)−(2q+d̃).(6.6)

To prove (6.6) note that our assumption implies dist(Ω′
j,k,Ωj′,k′) = dist(Ωj,k,Ωj′,k′).

On account of the cancellation property (4.5) of the wavelet bases and the decay prop-
erty (2.6) of the kernel, we obtain

|Aψj′,k′(x)| = |〈k(x, ·), ψj′,k′〉| � 2−j′(d̃+n/2)|k(x, ·)|W∞,d̃(Ωj′,k′ )

� 2−j′(d̃+n/2) dist(x,Ωj′,k′)−(n+2q+d̃)

for all x ∈ suppψj,k. Therefore, we conclude that

|〈Aψj′,k′ , f〉| � ‖f‖L∞(Γ)

∫
Ωj,k

|Aψj′,k′(x)|dΓx

� 2jn/22−j′(d̃+n/2)

∫
Ωj,k

dist(x,Ωj′,k′)−(n+2q+d̃)dΓx

≤ 2jn/22−j′(d̃+n/2) dist(Ωj,k,Ωj′,k′)−(2q+d̃),

which proves the lemma. Of course, the same reasoning applies to the adjoint bound-
ary integral operator A�.

(ii) Next, we treat the case Ωj,k ∩ Ωj′,k′ �= ∅ and Ωj,k ⊂ Γi. By (6.5) we have
Ωj′,k′ ⊂ Ωj,k i.e., both wavelets are supported on the same patch. We infer from (6.5)
that there exists an element Ωj′,k′ ⊂ Γi,j+1,l ⊂ Ωj,k such that

fi,j,k,l := ψj,k

∣∣
Γi,j+1,l

◦ γi = (ψj,k ◦ γi)
∣∣
Cj+1,l
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is a C∞(Cj+1,l) function. On account of Lemma 6.2, we can choose an extension of

fi,j,k,l, denoted by f̃i,j,k,l. Decomposing ψj,k ◦ γi = f̃i,j,k,l + f̃C
i,j,k,l, we obtain

|〈Aψj,k, ψj′,k′〉| =

∣∣∣∣
∫

Rn

A�(f̃i,j,k,l + f̃C
i,j,k,l)(x)(ψj′,k′ ◦ γi)(x)dx

∣∣∣∣
≤
∣∣∣∣
∫

Rn

A�f̃i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx

∣∣∣∣
+

∣∣∣∣
∫

Rn

A�f̃C
i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx

∣∣∣∣ .
The second term on the right-hand side can be treated analogously to (6.6), i.e.,∣∣∣∣

∫
Rn

A�f̃C
i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx

∣∣∣∣ � 2jn/22−j′(d̃+n/2) dist(Ω′
j,k,Ωj′,k′)−(2q+d̃),

because dist
(
supp f̃C

i,j,k,l, supp(ψj′,k′ ◦ γi)
)
∼ dist(Ω′

j,k,Ωj′,k′). Invoking (4.5) and
(6.4), the first term can be estimated by∣∣∣∣
∫

Rn

A�f̃i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx

∣∣∣∣ � 2−j′(d̃+n/2)‖A�f̃i,j,k,l(x)‖W∞,d̃(supp(ψj′,k′◦γi))
.

By virtue of Sobolev’s embedding theorem, this implies, in view of (6.4),∣∣∣∣
∫

Rn

A�f̃i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx

∣∣∣∣ � 2−j′(d̃+n/2)‖A�f̃i,j,k,l(x)‖Hd̃+n/2(Rn)

� 2−j′(d̃+n/2)2j(d̃+2q+n/2).

Since Ωj,k ∩ Ωj′,k′ �= ∅, one has, in view of (6.5) and j′ ≥ j, that dist(Ω′
j,k,Ωj′,k′) �

2−j , so that we arrive at the desired estimate∣∣∣∣
∫

Rn

A�f̃i,j,k,l(x)(ψj′,k′ ◦ γi)(x)dx

∣∣∣∣ � 2jn/22−j′(d̃+n/2) dist(Ω′
j,k,Ωj′,k′)−(2q+d̃).

(iii) It remains to consider the case Ωj,k ∩ Ωj′,k′ �= ∅, where, however, ψj,k is not
supported completely in the patch Γi. In this case, we decompose ψj,k = (ψj,k −
ψj,k

∣∣
Γi

) + ψj,k

∣∣
Γi

. Invoking (6.6), we derive

∣∣〈A(ψj,k − ψj,k

∣∣
Γi

), ψj′,k′〉
∣∣ � 2jn/22−j′(d̃+n/2) dist(Ω′

j,k,Ωj′,k′)−(2q+d̃)

because we have again dist
(
supp(ψj,k − ψj,k

∣∣
Γi

),Ωj′,k′
)
≥ dist(Ω′

j,k,Ωj′,k′). Finally,

estimating
∣∣〈A(ψj,k

∣∣
Γi

), ψj′,k′〉
∣∣ as in step (ii) finishes the proof.

Remark. We recall from [8, 27] that there is a general estimate which states
that the matrix entries for wavelets with overlapping supports decay with increasing
difference of scales. In fact, for each 0 ≤ δ < γ−q we have |〈Aψj′,k′ , ψj,k〉| � 2−δ|j−j′|.
Since γ < d this estimate is, however, not sufficient to achieve the optimal order of
convergence within the desired linear complexity.

7. Matrix compression. The discretization of a boundary integral operator
A : Hq(Γ) → H−q(Γ) by wavelets with a sufficiently strong cancellation property (4.5)
yields, in view of the above estimates, quasi-sparse matrices. In the first compression
step all matrix entries, for which the distance of the supports of the corresponding trial
and test functions is larger than a level depending cut-off parameter Bj,j′ , are set to
zero. In the second compression step also some of those matrix entries are neglected,
for which the corresponding trial and test functions have overlapping supports.
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A priori compression. Let Ωj,k and Ω′
j,k be given as in (6.1) and (6.2). Then,

the compressed system matrix Aε
J , corresponding to the boundary integral operator

A, is defined by

[Aε
J ](j,k),(j′,k′) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, dist(Ωj,k,Ωj′,k′) > Bj,j′ and j, j′ > j0,

0, dist(Ωj,k,Ωj′,k′) � 2−min{j,j′} and

dist(Ω′
j,k,Ωj′,k′) > B′

j,j′ if j′ > j ≥ j0,

dist(Ωj,k,Ω
′
j′,k′) > B′

j,j′ if j > j′ ≥ j0,

〈Aψj′,k′ , ψj,k〉, otherwise.

(7.1)

Fixing

a, a′ > 1, d < d′ < d̃ + 2q,(7.2)

the cut-off parameters Bj,j′ and B′
j,j′ are set as follows:

Bj,j′ = a max

{
2−min{j,j′}, 2

2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q)

}
,

B′
j,j′ = a′ max

{
2−max{j,j′}, 2

2J(d′−q)−(j+j′)d′−max{j,j′}d̃
d̃+2q

}
.

(7.3)

Remark 7.1. Relation (7.2) requires the order of vanishing moments, viz. the
order of exactness of the dual basis, to exceed the order of the primal basis by an
amount determined by the order of the operator d < d̃ + 2q. In the case of equality
the matrices are still compressible, but additional log terms arise in the complexity
estimates. One can find many pairs of biorthogonal wavelets from the family in [14, 21]
satisfying this relation. To obtain quantitatively best performance we employ those
with possibly small support, i.e., with possibly small d̃ satisfying d < d̃ + 2q. This
choice is confirmed by numerical experience.

The parameter a is a fixed constant which determines the bandwidth in the block
matrices Aε

j,j′ := [Aε
J ](j,∇j),(j′,∇j′ )

, j0 ≤ j, j′ < J . We emphasize that the parameters

a and a′ are independent of J .
When the entries of the compressed system matrix Aε

J have been computed, we
apply an a posteriori compression by setting all entries to zero, which are smaller
than a level-depending threshold. In this way, a matrix Ãε

J is obtained which has
even less nonzero entries than the matrix Aε

J . Although this does not accelerate the
computation of the matrix coefficients, the amount of necessary memory for storing
the system matrix is reduced considerably.

A posteriori compression. We define the a posteriori compression by

[
Ãε

J

]
(j,k),(j′,k′)

=

{
0 if

∣∣[Aε
J ](j,k),(j′,k′)

∣∣ ≤ εj,j′ ,

[Aε
J ](j,k),(j′,k′) if

∣∣[Aε
J ](j,k),(j′,k′)

∣∣ > εj,j′ .
(7.4)

Here the level-dependent threshold εj,j′ is chosen as

εj,j′ = a′′ min
{

2−
|j−j′|n

2 , 2
−n(J− j+j′

2 ) d′−q

d̃+q

}
22Jq2−2d′(J− j+j′

2 )(7.5)

with a′′ < 1 and d′ ∈ (d, d̃ + 2q) from (7.2).
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8. Matrix estimates. In order to study the accuracy of the solutions to the
compressed systems, we investigate the perturbation introduced by discarding spe-
cific matrix elements. The perturbation matrices are of scalewise blocks of the type
Rj,j′ := Aj,j′ − Aε

j,j′ . By ‖Rj,j′‖p we denote the operator norm of the matrix Rj,j′

with respect to the norm lp.
In order to analyze the error introduced by our compression strategy, we decom-

pose the complete compression into three subsequent steps.
Theorem 8.1 (first compression). We define the matrix Aε1

J by

[Aε1
J ](j,k),(j′,k′) :=

{
0, dist(Ωj,k,Ωj′,k′) > Bj,j′ and j, j′ > j0,

〈Aψj′,k′ , ψj,k〉, otherwise.

Here the parameter Bj,j′ is given by (7.2) and (7.3). Then, one has for the perturba-
tion matrix Rj,j′ := Aj,j′ − Aε1

j,j′

‖Rj,j′‖2 � a−2(d̃+q)22Jq2−2d′(J− j+j′
2 ).

Proof. We proceed in two steps.
(i) We abbreviate Rj,j′ :=

[
r(j,k),(j′,k′)

]
k∈∇j ,k′∈∇j′

. Invoking Theorem 6.1, we

find for the column sum∑
k∈∇j

|r(j,k),(j′,k′)| =
∑

{k∈∇j : dist(Ωj,k,Ωj′,k′ )>Bj,j′}
|〈Aψj′,k′ , ψj,k〉|

�
∑

{k∈∇j : dist(Ωj,k,Ωj′,k′ )>Bj,j′}

× 2−(j+j′)(d̃+n/2) dist
(
Ωj,k,Ωj′,k′

)−(n+2d̃+2q)
.

Since Bj,j′ ≥ amax{2−j , 2−j′}, we can estimate this sum by an integral which yields

∑
k∈∇j

|r(j,k),(j′,k′)| � 2−(j+j′)(d̃+n/2)2jn
∫
‖x‖>Bj,j′

‖x‖−(n+2d̃+2q)dx

� 2−(j+j′)(d̃+n/2)2jnB−2(d̃+q)
j,j′ .

On the other hand, inserting the estimate Bj,j′ ≥ a2
2J(d′−q)−(j+j′)(d̃+d′)

2(d̃+q) (see (7.3)), we
arrive at ∑

k∈∇j

|r(j,k),(j′,k′)| � a−2(d̃+q)2
(j−j′)n

2 22Jq2−2d′(J− j+j′
2 ).

In complete analogy, one proves an analogous estimate for the row sums,∑
k′∈∇j′

|r(j,k),(j′,k′)| � a−2(d̃+q)2
(j′−j)n

2 22Jq2−2d′(J− j+j′
2 ).

(ii) From the estimate for the operator norms of matrices ‖Rj,j′‖2
2≤‖Rj,j′‖1‖Rj,j′‖∞,

it is easy to conclude the following version of the Schur lemma (see, e.g., [23, 27]):

‖Rj,j′‖2 ≤
[

max
k∈∇j

∑
k′∈∇j′

2
(j−j′)n

2 |r(j,k),(j′,k′)|
]1/2[

max
k′∈∇j′

∑
k∈∇j

2
(j′−j)n

2 |r(j,k),(j′,k′)|
]1/2

� a−2(d̃+q)22Jq2−2d′(J− j+j′
2 ),
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which proves the assertion.
The following so-called second compression concerns entries involving basis func-

tions with overlapping supports. It is important that here the coarse scale basis
function may be a scaling function which greatly affects the near field compression.

Theorem 8.2 (second compression). In addition to the first compression we
apply the following second compression:

[Aε2
J ](j,k),(j′,k′) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, dist(Ωj,k,Ωj′,k′) � 2−min{j,j′} and

dist(Ω′
j,k,Ωj′,k′) > B′

j,j′ if j′ > j ≥ j0,

dist(Ωj,k,Ω
′
j′,k′) > B′

j,j′ if j > j′ ≥ j0,

[Aε1
J ](j,k),(j′,k′), otherwise,

where the parameter B′
j,j′ is set in accordance with (7.2) and (7.3). Then, the corre-

sponding perturbation matrix Sj,j′ := Aε1
j,j′ − Aε2

j,j′ satisfies

‖Sj,j′‖2 � (a′)−(d̃+2q)22Jq2−2d′(J− j+j′
2 ).

Proof. Abbreviating Sj,j′ := [s(j,k),(j′,k′)]k∈∇j ,k′∈∇j′ and assuming without loss
of generality that j′ > j, we infer from Theorem 6.3 that

|s(j,k),(j′,k′)| � 2jn/22−j′(d̃+n/2)B−(2q+d̃)
j,j′

� (a′)−(d̃+2q)2jn/22−j′(d̃+n/2)2−2J(d′−q)+(j+j′)d′+j′d̃

= (a′)−(d̃+2q)2(j−j′)n/222Jq2−2d′(J− j+j′
2 ).

The condition dist(Ωj,k,Ωj′,k′) � 2−min{j,j′} guarantees that in each row and column

of Sj,j′ we have set at most O(2(j′−j)n), respectively, O(1) entries to zero. Therefore,
we obtain for the weighted row sums

∑
k∈∇j

2
(j−j′)n

2 |s(j,k),(j′,k′)| �
∑

k′∈∇j′

(a′)−(d̃+2q)2j
′n2(j−j′)n22Jq2−2d′(J− j+j′

2 )

� (a′)−(d̃+2q)22Jq2−2d′(J− j+j′
2 ),

and likewise for the weighted column sums

∑
k′∈∇j′

2
(j′−j)n

2 |s(j,k),(j′,k′)| � (a′)−(d̃+2q)22Jq2−2d′(J− j+j′
2 )

for all j0 ≤ j < j′ < J . In complete analogy to the proof of Theorem 8.1 we conclude
the assertion.

Theorem 8.3 (a posteriori compression). Let the matrix Aε
J be compressed

according to Theorems 8.1 and 8.2. Then the a posteriori compression defined by
(7.4) with the level-dependent threshold εj,j′ from (7.5) causes a block perturbation

Tj,j′ := Ãε
j,j′ − Aε

j,j′ satisfying

‖Tj,j′‖2 � a′′22Jq2−2d′(J− j+j′
2 ).

Proof. We organize the proof in four steps.
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(i) Abbreviating Tj,j′ := [t(j,k),(j′,k′)]k∈∇j ,k′∈∇j′ , one obviously has

∣∣t(j,k),(j′,k′)

∣∣ ≤ a′′ min
{

2−
|j−j′|n

2 , 2
−n(J− j+j′

2 ) d′−q

d̃+q

}
22Jq2−2d′(J− j+j′

2 ).(8.1)

We shall use the first compression in order to derive from this inequality the desired.
To this end, we find in each row and column of Tj,j′ only O([Bj,j′2

j′ ]n), respectively,

O([Bj,j′2
j ]n) nonzero entries. Setting M := d′+d̃

2(d̃+q)
, one has

2
2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q) = 2−J2
(J−j)(d′+d̃)

2(d̃+q) 2
(J−j′)(d′+d̃)

2(d̃+q) = 2−J2(J−j)M2(J−j′)M .

Hence, by (7.3), the cut-off parameter for the first compression takes the form

Bj,j′ ∼ max
{
2−min{j,j,′}, 2−J2(J−j)M2(J−j′)M

}
.(8.2)

From (7.2) and q < d− 1
2 , one concludes 1

2 < M < 1. Moreover, we shall make use of
the identity

2
−n(J− j+j′

2 ) d′−q

d̃+q = 2−2n(J− j+j′
2 )(M− 1

2 ).(8.3)

Without loss of generality, we assume in the following that j′ ≥ j.
(ii) With these preparations at hand we shall first estimate the block matrices

Tj,j′ with 2−
(j′−j)n

2 ≤ 2−2n(J− j+j′
2 )(M− 1

2 ). One readily verifies that this relation is

equivalent to 2−j ≥ 2−J2(J−j)M2(J−j′)M , which, by (8.2), implies that the cut-off
parameter satisfies Bj,j′ ∼ 2−j . Thus, from (8.1) one infers the estimate

∑
k′∈∇j′

2
(j−j′)n

2 |t(j,k),(j′,k′)| � a′′2
(j+j′)n

2 2−jn2−
(j′−j)n

2 22Jq2−2d′(J− j+j′
2 )

= a′′22Jq2−2d′(J− j+j′
2 )

for the weighted row sums of Tj,j′ . Analogously, one derives
∑
k∈∇j

2
(j′−j)n

2 |t(j,k),(j′,k′)| � a′′22Jq2−2d′(J− j+j′
2 )

for the weighted column sums.

(iii) We still have to estimate the errors in the remaining blocks, where 2−
(j′−j)n

2 >

2−2n(J− j+j′
2 )(M− 1

2 ). Then, by (8.3), the cut-off parameter is given by Bj,j′

∼ 2−J2(J−j)M2(J−j′)M . Therefore, we obtain for the weighted row sums∑
k′∈∇j′

2
(j−j′)n

2 |t(j,k),(j′,k′)|

� a′′2
(j+j′)n

2 2−Jn2(J−j)Mn2(J−j′)Mn2−2n(J− j+j′
2 )(M− 1

2 )22Jq2−2d′(J− j+j′
2 )

= a′′22Jq2−2d′(J− j+j′
2 ),

and a similar estimate for the weighted column sums.
(iv) Combining the estimates in steps (ii) and (iii), we conclude that∑

k′∈∇j′

2
(j−j′)n

2 |t(j,k),(j′,k′)|,
∑
k∈∇j

2
(j′−j)n

2 |t(j,k),(j′,k′)| � a′′22Jq2−2d′(J− j+j′
2 )

for all j0 ≤ j, j′ < J . The proof can now be completed in complete analogy to the
proof of Theorem 8.1.



2266 W. DAHMEN, H. HARBRECHT, AND R. SCHNEIDER

9. Consistency. We shall establish next the consistency of the compressed
scheme with the original operator equation in the corresponding Sobolev norms. To
this end, note that the operator Ãε

J : Hs(Γ) → Hs−2q(Γ), −γ̃ < s < γ̃ + 2q, defined
by

Aε
Ju =

J−1∑
j,j′=j0

∑
k,k′

ψ̃j,k[Ã
ε
J ](j,k),(j′,k′)〈ψ̃j,k, u〉,

is represented by the compressed system matrix, since apparently 〈Ãε
Jψj′,k′ , ψj,k〉 =

[Ãε
J ](j,k),(j′,k′).

Theorem 9.1. Let d < d̃+2q and Ãε
J be the compressed matrix, defined according

to section 7. Then, for q ≤ t, t′ ≤ d the estimate

|〈(A− Ãε
J)QJu,QJv〉| � ε2J(2q−t−t′)‖u‖t‖v‖t′(9.1)

holds uniformly with respect to J , where

ε := a−2(d̃+q) + (a′)−(d̃+2q) + a′′,(9.2)

and a, a′, a′′ are the constants from (7.2) and (7.5).

Proof. By definition of the block perturbation matrices Rj,j′ , Sj,j′ , Tj,j′ , one has

|〈(A− Ãε
J)ψj′,k′ , ψj,k〉| ≤

∣∣[Rj,j′ + Sj,j′ + Tj,j′ ]k,k′
∣∣.

Hence, we can estimate

|〈(A− Ãε
J)QJu,QJv〉|(9.3)

=

∣∣∣∣∣
J−1∑

j,j′=j0

〈(A− Ãε
J)(Qj′+1 −Qj′)u, (Qj+1 −Qj)v〉

∣∣∣∣∣

≤
J−1∑

j,j′=j0

|〈(A− Ãε
J)(Qj′+1 −Qj′)u, (Qj+1 −Qj)v〉|

=

J−1∑
j,j′=j0

∣∣∣∣∣
∑
k∈∇j

∑
k∈∇j′

〈(A− Ãε
J)ψj′,k′ , ψj,k〉〈u, ψ̃j′,k′〉〈v, ψ̃j,k〉

∣∣∣∣∣

≤
J−1∑

j,j′=j0

∥∥Rj,j′ + Sj,j′ + Tj,j′
∥∥

2

∥∥[〈u, ψ̃j′,k′〉]k′∈∇j′

∥∥
2

∥∥[〈v, ψ̃j,k〉]k∈∇j

∥∥
2
.

Invoking the inverse estimate (4.3) and the approximation property (4.2) yields

∥∥[〈u, ψ̃j′,k′〉]k′∈∇j′

∥∥
2
∼ ‖(Qj′+1 −Qj′)u‖0 � 2−j′t‖u‖t,∥∥[〈v, ψ̃j,k〉]k∈∇j

∥∥
2
∼ ‖(Qj+1 −Qj)v‖0 � 2−jt′‖v‖t′ .

Further, from Theorems 8.1, 8.2, and 8.3, we conclude

‖Rj,j′ + Sj,j′ + Tj,j′‖2 � ε22Jq2−2d′(J− j+j′
2 ).
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Inserting these estimates in (9.3) provides

|〈(A− Ãε
J)QJu,QJv〉| � ε2J(2q−t−t′)‖u‖t‖v‖t′

J−1∑
j,j′=j0

2−j′(d′−t)2−j(d′−t′)

� ε2J(2q−t−t′)‖u‖t‖v‖t′

since t, t′ ≤ d < d′.

10. Convergence. With the estimates of section 8 at hand we can prove that
the proposed compression strategy retains the optimal order of convergence of the
underlying Galerkin scheme. In this context, we shall encounter conditions on the
parameters a, a′, a′′ defining ε in (9.2). From Theorem 9.1 we deduce

|〈(A− Ãε
J)uJ , uJ〉| ≤ ε‖uJ‖2

q,

which implies the VJ ellipticity. Indeed, inserting this result into (3.3), we get for
J > J0 that

|〈(Ãε
J + Ãε�

J )uJ , uJ〉| ≥ (c− 2ε)‖uJ‖2
q � ‖uJ‖2

q,

with c > 0, if ε from (9.2) is sufficiently small.
Theorem 10.1 (stability). Let ε from (9.2) be sufficiently small. Then, the

matrix Ãε
J , which arises by the compression according to (7.1) and (7.4), defines a

stable scheme, i.e., ‖Ãε
JuJ‖−q ∼ ‖uJ‖q, uniformly in J > J0.

This theorem is an immediate consequence of Lemma 3.1 and the norm equiv-
alences, which already requires that γ̃ > −q. In the limit case γ̃ = −q a more
sophisticated proof presented in [26] shows that Theorem 10.1 remains valid.

Theorem 10.2 (convergence). Let ε from (9.2) be sufficiently small to ensure

uniform stability of Ãε
J . Then, the solution uJ =

∑J−1
j=j0

∑
k∈∇j

uj,kψj,k of the com-

pressed scheme Ãε
JuJ = fJ , where uJ = [uj,k]j0≤j<J, k∈∇j , differs from the exact

solution u, satisfying Au = f , in the energy norm only by

‖u− uJ‖q � 2J(q−d)‖u‖d

uniformly in J .
Proof. Strang’s first lemma [4] provides

‖u− uJ‖q � inf
vJ∈VJ

{
‖u− vJ‖q + sup

wJ∈VJ

|〈(A− Ãε
J)vJ , wJ〉|

‖wJ‖q

}
.

The consistency (Theorem 9.1) implies that

|〈(A− Ãε
J)QJu,wJ〉| = |〈(A− Ãε

J)QJu,QJwJ〉 � 2J(q−d)‖u‖d‖wJ‖q

for all u ∈ Hd(Γ) and wJ ∈ VJ . Hence, choosing vJ := QJu, we arrive at

‖u− uJ‖q � ‖u−QJu‖q + sup
wJ∈VJ

|〈(A− Ãε
J)QJu,QJwJ〉|
‖wJ‖q

� 2J(q−d)‖u‖d.
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Theorem 10.3 (Aubin–Nitsche). In addition to the assumptions of Theorem 10.2
suppose that ‖A�v‖t−q ∼ ‖v‖t+q for all 0 ≤ t ≤ d− q, i.e., A� : Ht+q(Γ) → Ht−q(Γ)
is an isomorphism. Then the error estimate

‖u− uJ‖q−t � 2J(q−d−t)‖u‖d

holds for all 0 ≤ t ≤ d− q.
Proof. Recalling that

‖u− uJ‖q−t = sup
g∈Ht−q(Γ)

〈u− uJ , g〉
‖g‖t−q

.

we obtain for v ∈ Ht+q(Γ) with A�v = g

‖u− uJ‖q−t = sup
v∈Ht+q(Γ)

|〈A(u− uJ), v〉|
‖v‖t+q

.

Utilizing the Galerkin orthogonality 〈Ãε
JuJ , QJv〉 = 〈Au,QJv〉, we can decompose

〈A(u− uJ), v〉 = 〈A(u− uJ), v −QJv〉 + 〈A(u− uJ), QJv〉
= 〈A(u− uJ), v −QJv〉 − 〈(A− Ãε

J)uJ , QJv〉.

The first term on the right-hand side is estimated by Theorem 10.2 in combination
with the approximation property (4.2),

|〈A(u− uJ), v −QJv〉| � ‖u− uJ‖q‖v −QJv‖q � 2J(q−d−t)‖u‖d‖v‖t+q.

For the second term we obtain, on account of Theorem 9.1,

|〈(A− Ãε
J)uJ , QJv〉| ≤ |〈(A− Ãε

J)(uJ −QJu), QJv〉| + |〈(A− Ãε
J)QJu,QJv〉|

� 2−Jt‖uJ −QJu‖q‖v‖t+q + 2J(q−d−t)‖u‖d‖v‖t+q.

Inserting ‖uJ −QJu‖q ≤ ‖u− uJ‖q + ‖u−QJu‖q � 2J(q−d)‖u‖d yields

|〈(A− Ãε
J)uJ , QJv〉| � 2J(q−d−t)‖u‖d‖v‖t+q.

Therefore, we conclude

‖u− uJ‖q−t = sup
v∈Ht+q(Γ)

〈A(u− uJ), v〉
‖v‖t+q

� 2J(q−d−t)‖u‖d,

which finishes the proof.
Note that in the extreme case t = d− q we obtain the best possible convergence

rate of the Galerkin scheme (3.6).

11. Complexity. In this section, we present a general theorem which shows
that the overall complexity of assembling the compressed system matrix with suffi-
cient accuracy can be kept of the order O(NJ), even when a computational cost of
logarithmic order is allowed for each entry. This theorem is used in [19, 22] as the
essential ingredient to provide a quadrature strategy which scales linearly.

Theorem 11.1. Assume that Aε
J is obtained by compressing the system ma-

trix AJ = [〈Aψj′,k′ , ψj,k〉]j0≤j,j′<J, k∈∇j , k′∈∇j′ according to (7.1). The complexity of
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computing this compressed matrix is O(NJ) provided that for some α ≥ 0 at most

O
([
J − j+j′

2

]α)
operations are spent on the approximate calculation of the nonvan-

ishing entries 〈Aψj′,k′ , ψj,k〉.
Proof. (i) We begin with some technical preparations. Recall from the proof of

Theorem 8.3 that the cut-off parameter of the first compression is given by

Bj,j′ ∼ max
{
2−min{j,j,′}, 2−J2(J−j)M2(J−j′)M

}
,

where, as in the proof of Theorem 8.3, M = d′+d̃

2(d̃+q)
< 1. Moreover, we set M ′ := 2d′−2q

d̃+d′

and N ′ := d̃+d′

d̃+2q
with d′ given by (7.2). Note that M ′ and N ′ satisfy the relations

0 < M ′ < 1 and 0 < N ′. As one readily verifies, the cut-off parameter with respect
to the second compression may now be rewritten as

B′
j,j′ ∼ max

{
2−j , 2−j′2[JM ′+(1−M ′)j′−j]N ′}

, j ≥ j′.(11.1)

Further, we make use of the inequality xα � 22δx which holds for all x > 0 and any

fixed α, δ > 0. Thus, it suffices to prove the claim for O
([
J − j+j′

2

]α)
replaced by

O
(
2δ(J−j)2δ(J−j′)

)
where δ is chosen sufficiently small.

(ii) First, we determine now the complexity C(1) of computing, within the above
cost allowance, all matrix entries found in the block matrices Aε

j,j′ = [Aε
J ](j,∇j),(j′,∇j′ )

with Bj,j′ ∼ 2−J2(J−j)M2(J−j′)M . In such blocks, we have to process all coefficients
〈Aψj′,k′ , ψj,k〉 with

dist(Ωj,k,Ωj′,k′) � dist
(1)
j,j′ := 2−J2(J−j)M2(J−j′)M .(11.2)

In each block, we find only O
([

2j
′
dist

(1)
j,j′

]n)
entries satisfying (11.2) per row, and

hence a total of O
([

2j+j′ dist
(1)
j,j′

]n)
. Summing over all blocks yields

C(1) �
J∑

j,j′=0

2(j+j′)n2−Jn2(J−j)(M+δ)n2(J−j′)(M+δ)n

= 2Jn
J∑

j,j′=0

2(J−j)(M+δ−1)n2(J−j′)(M+δ−1)n � 2Jn,

provided that δ is chosen so as to ensure M + δ < 1.
(iii) It remains to show that the complexity for computing the omitted blocks is

likewise O(NJ). Without loss of generality, we assume j ≥ j′ in the remainder of
this proof, since the roles of j and j′ can be reversed. Observing that, because of
0 < M ′ < 1, one has 0 < JM ′ + (1 − M ′)j′ ≤ J , we consider first the blocks Aε

j,j′

with (j, j′) ∈ S, where the index set S is given by

S := {(j, j′) : 0 ≤ j′ ≤ J, JM ′ + (1 −M ′)j′ ≤ j ≤ J}.(11.3)

In these blocks, we estimate the complexity C(2) required for the approximate com-
putation of the matrix entries 〈Aψj′,k′ , ψj,k〉 satisfying the relation

dist(Ω′
j,k,Ωj′,k′) � dist

(2)
j,j′ := 2−j′2[JM ′+(1−M ′)j′−j]N ′

,(11.4)

where we refer to expression (11.1) for B′
j,j′ . Since dist

(2)
j,j′ ≤ 2−j′ for all (j, j′) ∈ S,

in each block one finds only O([2jn2−j′(n−1) dist
(2)
j,j′ ]) nontrivial matrix entries per
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column with (11.4), and thus a total of O([2jn2j
′
dist

(2)
j,j′ ]). Therefore, noting that the

set S is equivalent to S = {(j, j′) : JM ′ ≤ j ≤ J, 0 ≤ j′ ≤ j−JM ′

1−M ′ }, the complexity is
bounded by

C(2) �
J∑

j=JM ′

j−JM′
1−M′∑
j′=0

2jn2[JM ′+(1−M ′)j′−j]N ′
2δ(J−j)2δ(J−j′)

=

J∑
j=JM ′

2jn2[JM ′−j]N ′
2δ(J−j)2δJ

j−JM′
1−M′∑
j′=0

2j
′[(1−M ′)N ′−δ]

� 2δJ
2−M′
1−M′

J∑
j=0

2j(n−δ 2−M′
1−M′ ) � 2Jn.

C(2) estimates the complexity for those blocks with (j, j′) ∈ S when B′
j,j′ ∼ dist

(2)
j,j′ .

But according to (11.1), the cut-off parameter B′
j,j′ is bounded from below by 2−j .

In the case of B′
j,j′ ∼ 2−j we find O

([
2jn2j

′
dist

(3)
j,j′

])
matrix entries 〈Aψj′,k′ , ψj,k〉

with dist(Ω′
j,k,Ωj′,k′) � dist

(3)
j,j′ := 2−j . Arguing analogously as above, summing over

all blocks with (j, j′) ∈ S, one obtains

C(3) �
J∑

j=JM ′

j−JM′
1−M′∑
j′=0

2j(n−1)2j
′
2δ(J−j)2δ(J−j′) =

J∑
j=JM ′

2j(n−1)2δ(2J−j)

j−JM′
1−M′∑
j′=0

2j
′(1−δ)

� 2δJ
2−M′
1−M′

J∑
j=0

2j(n−δ 2−M′
1−M′ ) � 2Jn.

(iv) Finally, we consider the blocks Aε
j,j′ with j ≥ j′ and (j, j′) �∈ S. In view of

step (ii), it suffices to consider all entries 〈Aψj′,k′ , ψj,k〉 which fulfill

dist(Ωj,k,Ωj′,k′) � dist(4) := 2−min{j′,j} = 2−j′ .(11.5)

Each block Aε
j,j′ consists of only O

([
2j2j

′
dist(4)

]n)
entries with (11.5). Hence, ac-

cording to (11.3), the complexity C(4) for the computation of these entries is

C(4) �
J∑

j′=0

JM ′+(1−M ′)j′∑
j=j′

2jn2δ(J−j)2δ(J−j′) �
J∑

j′=0

22δ(J−j′)2j
′n

(J−j′)M ′∑
j=0

2j(n−δ)

� 2Jn
J∑

j′=0

2(J−j′)((M ′−1)(n−δ)+δ) � 2Jn,

since (M ′ − 1)(n− δ) + δ < 0. This completes this proof.
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Abstract. This paper addresses the construction of nonlinear integro-differential artificial
boundary conditions for one-dimensional nonlinear cubic Schrödinger equations. Several ways of
designing such conditions are provided and a theoretical classification of their accuracy is given.
Semidiscrete time schemes based on the method developed by Durán and Sanz-Serna [IMA J. Nu-
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1. Introduction. In many physical and technological domains of interest, the
numerical solution to a one-dimensional cubic nonlinear Schrödinger (NLS) equation
of the form

i∂tu + ∂2
xu + q|u|2u = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(1.1)

is required. The real parameter q corresponds to a focusing (q > 0) or defocusing
(q < 0) effect of the cubic nonlinearity. One example of such an equation is given in
nonlinear optic for laser beam propagation where the polarization of the material has
a cubic nonlinearity according to the electric field. Using the slowly varying envelope
assumption of the electric field and several approximations, it can be shown that the
problem reduces to (1.1). The solution is then the unknown amplitude of the electric
field. Other applications come from plasma physics or quantum mechanics [11].

The numerical treatment of (1.1) is often realized by restricting the computational
domain to a finite one. More precisely, let us assume that the initial datum u0

is compactly supported in a finite domain Ωi =]xl, xr[⊂ R, with xr > xl. The
Dirichlet boundary condition is usually imposed on the boundary Σ = {xl, xr} of
Ωi. However, the wave reflects back into the computational domain when u strikes
Σ. If the Neumann boundary condition is preferred, then reflection still occurs. The
problem of the choice of a suitable boundary condition is linked to the construction
of a nonreflecting (also called transparent) boundary condition which models the
propagation of the solution into the complementary unbounded domain R/Ωi.
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Such conditions have been widely studied in the linear case (q = 0) where the
exact boundary condition is given through the Dirichlet–Neumann (DN) operator [8]

∂nu + e−iπ
4 ∂

1/2
t u = 0 on Σ × R

∗+.(1.2)

The operator ∂
1/2
t designates the fractional time derivative operator of half-order

given by the Riemann–Liouville nonlocal integral representation

∂
1/2
t f(t) =

1√
π
∂t

∫ t

0

f(s)√
t− s

ds.(1.3)

Another equivalent continuous representation is given by the Neumann–Dirichlet
(ND) operator

u + ei
π
4 I

1/2
t ∂nu = 0 on Σ × R

∗+,

where the fractional integral operator of half-order is given by the convolution operator

I
1/2
t f(t) =

1√
π

∫ t

0

f(s)√
t− s

ds.

Even if the above two boundary conditions are transparent in the linear case, it ap-
pears that they still generate a lot of reflection at the boundary when the nonlinear
perturbation is added [20]. This is finally quite natural since the nonlinear term
generally compensates the dispersion due to the linear part of the NLS equation.
Therefore, we cannot expect that a linear boundary condition simulates the nonlinear
phenomenon. To the best of the authors’ knowledge, no nonlinear artificial bound-
ary conditions (NLABCs) have been derived and studied until now for a nonlocal
NLS equation. The goal of this paper is to propose some efficient NLABCs for the
model problem (1.1) (section 2), to construct some suitable and (if possible) stable
schemes for their discretization (sections 3 and 4), and finally to numerically test them
(section 4) in some interesting situations (e.g., interaction of two solitons).

2. A first construction of NLABCs for the cubic NLS equation. This
section is devoted to the construction of NLABCs for the one-dimensional cubic NLS
equation. Two ways of designing such conditions are proposed and energy bounds are
derived.

2.1. Construction of NLABCs. The adopted strategy for constructing some
artificial boundary conditions for the NLS equation is issued from linear analysis. It
consists first in designing some suitable artificial boundary conditions for the linear
Schrödinger equation being given a potential V

i∂tu + ∂2
xu + V u = 0,(2.1)

and next in making the formal substitution V (x, t) = q|u(x, t)|2 to deduce some
NLABCs.

Let us assume that V is a sufficiently smooth potential. First, we consider a
time-dependent potential, V : V (x, t) = V (t). Then, considering the new unknown
v(x, t) = e−iV(t)u(x, t) in (2.1), where the phase function V is given by

V(t) =

∫ t

0

V (s)ds,
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we reduce the initial equation to a linear Schrödinger equation without potential,

i∂tv + ∂2
xv = 0,(2.2)

where v(x, 0) = u0(x). Now, we assume that the initial datum u0 is compactly
supported in an open bounded computational domain Ωi =]xl, xr[ of boundary Σ =
{xl, xr}. We can therefore directly show that the DN transparent boundary condition
for this latter equation is [3, 6, 16]

∂nv(x, t) + e−iπ
4 ∂

1/2
t v(x, t) = 0 on Σ × R

+,

which can be rewritten according to the initial unknown u as the exact boundary
condition

∂nu(x, t) + e−iπ
4 eiV(t)∂

1/2
t (e−iV(t)u(x, t)) = 0 on Σ × R

+.(2.3)

The operator ∂
1/2
t stands for the Riemann–Liouville fractional derivative operator of

order 1/2 defined by (1.3). Following the proposed approach, we consider the formal
NLABC

∂nu(x, t) + e−iπ
4 eiU(x,t)∂

1/2
t (e−iU(x,t)u(x, t)) = 0 on Σ × R

+,(2.4)

with

U(x, t) = q

∫ t

0

|u(x, s)|2ds.(2.5)

The boundary condition (2.4)–(2.5) is denoted by NLABC1
1 in the rest of the paper.

We have seen that we can explicitly write the transparent boundary condition for
a potential which depends only on the time variable. Now a question is: How can
we extend this approach to the case of a potential which also depends on the spatial
variable x? To give a possible answer to this problem, let us denote by u the solution to
(2.1) and by v the new unknown defined by the relation v(x, t) = e−iV(x,t)u(x, t). We
straightforwardly remark that v0(x) = u0(x) and then the initial solutions coincide.
Moreover, the time and spatial derivatives of u are given in terms of derivatives of v
by

i∂tu = eiV(i∂t − V )v

and

∂2
xu = ieiV(∂2

xv + 2i∂xV∂xv + i∂2
xVv − (∂xV)2v).

As a consequence, the function v satisfies the Schrödinger equation

L(x, t, ∂x, ∂t)v = i∂tv + ∂2
xv + A∂xv + Bv = 0,(2.6)

where we have defined the two functions A and B by the relations A = 2i∂xV and
B = (i∂2

xV − (∂xV)2). For a potential which depends only on the time variable t,
the operators A and B vanish and the approach coincides with the previous case.
However, in the general situation, (2.6) is a variable coefficients Schrödinger equa-
tion. For this reason, we propose to develop a constructive approach of the artificial
boundary conditions based on the theory of pseudodifferential operators as proposed
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by Engquist and Majda [14, 15] in the seventies. Many authors have extended and im-
proved this technique to various equations and systems. In the particular case of the
Schrödinger equation, a fractional pseudodifferential operators calculus [2] is required
to include the inhomogeneity appearing between the time and space derivatives. Us-
ing a Nirenberg-like factorization theorem [2, 18] for the Schrödinger operator L, we
can compute an asymptotic expansion in inhomogeneous symbols of the transparent
operator for (2.6).

The inhomogeneous pseudodifferential operator calculus used here has been in-
troduced by Lascar [17]. We just give the main results adapted to our situation and
refer to [17] for further details. Let us consider a real number α and Ω an open subset
of the space R

n. Then (see, e.g., [18]), Sα(Ω×Ω) denotes the linear space of C∞ func-
tions a(x, t, τ) in Ω × Ω × R

n such that for each K ⊆ Ω × Ω and for any multiindices
β, δ, γ there exists a constant Cβ,δ,γ(K) such that we get

|∂β
τ ∂

δ
t ∂

γ
xa(x, t, τ)| ≤ Cβ,δ,γ(K)(1 + |τ |2)α−|β|

for all (x, t) ∈ K and τ ∈ R
n. Here, |β| denotes the length of a multi-index β and τ is

the time Fourier symbol. Let us introduce now some specific notation and definitions
for our problem (setting n = 1). A function f is said to be inhomogeneous of degree
m if it fulfills f(x, t, μ2τ) = μmf(x, t, τ) for any μ > 0. Then, a pseudodifferential
operator P = P (x, t, ∂t) is called inhomogeneous and classical of order M , M ∈
Z/2, if its total symbol, denoted by p = σ(P ), admits an asymptotic expansion in
inhomogeneous symbols {pM−j/2}+∞

j=0 under the form

p(x, t, τ) ∼
+∞∑
j=0

pM−j/2(x, t, τ),

where functions pM−j/2 are inhomogeneous of degree 2M − j for j ∈ N. The sense to
give to this last approximation is that

∀m̃ ∈ N, p−
m̃∑
j=0

pM−j/2 ∈ SM−(m̃+1)/2.

A symbol p satisfying the above property is quoted by p ∈ SM
S and the associated

operator P = Op(p) by inverse Fourier transform by P ∈ OPSM
S . For instance, if we

consider the fractional derivative operator P = e−iπ
4 ∂

1/2
t , a direct calculation shows

that its symbol is equal to
√
τ , where τ is the time covariable. Notation

√
z designates

the standard principal determination of the complex square root of a complex number
z for a branch-cut along the negative real axis. Function

√
τ is inhomogeneous of

degree 1 and is an element of S
1/2
S . So, P is a pseudodifferential operator of OPS

1/2
S .

Similarly, the fractional integration operators i−α/2I
α/2
t defined by the relations

I
α/2
t f(t) =

1

Γ(α/2)

∫ t

0

(t− s)α/2−1f(s)ds for α ∈ N

have τ−α/2 as symbol, where Γ stands for the Gamma function. This symbol is

inhomogeneous of degree −α and is an element of S
−α/2
S . Therefore, i−α/2I

α/2
t defines

a pseudodifferential operator of OPS
−α/2
S .

Under the previous notation, the following proposition holds.
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Proposition 2.1. Let L be the variable coefficients Schrödinger operator defined
by (2.6). There exist two inhomogeneous and classical pseudodifferential operators

Λ± = Λ±(x, t, ∂t) ∈ OPS
1/2
S , regular with respect to the spatial variable x and such

that

L = (∂x + iΛ−)(∂x + iΛ+) + R,(2.7)

where R is a smoothing operator of OPS−∞
S and the principal symbols λ±

1/2 of the

operators Λ± are given by λ±
1/2 = ∓

√
−τ . Furthermore, the total symbol λ± = σ(Λ±)

of Λ± admits an asymptotic expansion in inhomogeneous symbols as

λ± = σ(Λ±) ∼
+∞∑
j=0

λ±
1/2−j/2.(2.8)

Proof. Expanding the factorization (2.7) (of Nirenberg-type [18]) and using similar
calculations to those in [1, 2], we get

(∂x + iΛ−)(∂x + iΛ+) = ∂2
x + i(Λ+ + Λ−)∂x + iOp(∂xλ

+) − Λ−Λ+.

By identification with the terms appearing in front of the spatial derivatives ∂x in the
expression (2.6) of L, we deduce the system of operators

i(Λ+ + Λ−) = A,

iOp(∂xλ
+) − Λ−Λ+ = i∂t + B,

(2.9)

which yields the symbolic system of equations

li(λ+ + λ−) = a,

i∂xλ
+ −

+∞∑
α=0

(−i)α

α!
∂α
τ λ

−∂α
t λ

+ = −τ + b,
(2.10)

setting a = A and b = B. These two functions correspond to zero order operators.
If we identify the terms of order 1/2 in the first relation of system (2.10), we obtain
λ−

1/2 = −λ+
1/2. Using now the second equation, we deduce that

λ+
1/2 = ±

√
−τ .

For a potential which depends only on the time variable, the DN operator corresponds
to the choice λ+

1/2 = −
√
−τ which can be extended to the space-dependent case. If

we consider now the next order of identification, the first equation of the symbolic
system gives the zero order term λ−

0 = −λ+
0 − ia. Substituting this expression into

the second equation of system (2.10), we get

i∂xλ
+
1/2 − (λ−

0 λ
+
1/2 + λ+

0 λ
−
1/2) = 0.

But since ∂xλ
+
1/2 = 0, the previous relation yields

λ+
0 = −i

a

2
.
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Let us now consider the next term. Developing the computations and using the fact
that λ+

−1/2 = −λ−
−1/2, the zero order identification gives

i∂xλ
+
0 − (λ−

−1/2λ
+
1/2 + λ−

0 λ
+
0 + λ+

−1/2λ
−
1/2) = b

since ∂α
t λ

±
−1/2 = 0 and ∂α

τ λ
±
0 = 0 for any α ∈ N. After some simplifications, we

conclude that

λ+
−1/2 =

1

2λ+
1/2

(b− i∂xλ
+
0 + (λ+

0 )2 + iaλ+
0 ),

with b = i∂2
xV − (∂xV)2. An explicit computation yields λ+

−1/2 = 0. Following the

process initialized above, we obtain that the next symbol is given by

λ+
−1 = i

∂xV

4τ
.

The computation of the four first symbols shows how to construct the symbolic
asymptotic expansion. Using the same inductive arguments as in [2], we end the proof
of the proposition.

The factorization (2.7) yields a splitting of the Schrödinger operator into two
parts: one corresponding to an outgoing wave to the computational domain and an-
other one yielding the reflected part of the wave. Then we can show that a condition
for having a vanishing reflected wave is given by the DN transparent boundary con-
dition applied to the unknown field v

(∂n + iΛ+)v = 0 on Σ × R
∗.

Since the operator Λ+ has an infinite expansion in inhomogeneous symbols, we choose
to approximate the above condition by retaining the M first terms yielding the fol-
lowing definition.

Definition 2.2. Let M be a nonnegative integer. We consider the operator Λ+
M/2

approximating iΛ+ in OPS
1/2−M/2
S and given by

Λ+
M/2 = iOp

⎛
⎝M−1∑

j=0

λ+
1/2−j/2

⎞
⎠.

Then, the artificial boundary condition of order M/2 (acting on u) is defined by

∂nu + eiVΛ+
M/2(e

−iVu) = 0 on Σ × R
∗,

where we have set

V(x, t) =

∫ t

0

V (x, s)ds.

Using the computation of the symbols obtained during the proof of Proposition
2.1, we show that the first order boundary condition is given by

∂nu + e−iπ
4 eiV∂

1/2
t (e−iVu) = 0 on Σ × R

∗,(2.11)
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and the second order one by

∂nu + e−iπ
4 eiV∂

1/2
t (e−iVu) + i

∂xV

4
eiVIt(e

−iVu) = 0 on Σ × R
∗.(2.12)

In the case of an x-independent potential, we straightforwardly observe that all these
conditions coincide with the transparent boundary condition (2.3). Moreover, the
conditions of order 1 and 3/2 are exactly the same. This indicates that, even for a
space varying potential, the first order artificial boundary condition should be quite
efficient.

Before writing the formal transposition to the nonlinear operator, we emphasize
the fact that, in the linear situation, the function ∂xV is seen as an operator of order
zero since it just multiplies u. In the nonlinear case, the situation is completely
different if we make the substitution V → q|u|2 since we have ∂xV → ∂x(q|u|2). For
this reason, we must specify this aspect in the deduced boundary conditions by adding
the dependence of the nonlinear operators according to ∂x. Following the proposed

strategy, we formally deduce the two NLABCs of order M/2 (NLABC
M/2
1 )

∂nu + ΛNLS
M/2 (x, t, ∂x, ∂t, |u|)u = 0 on Σ × R

∗,(2.13)

where the nonlinear operators are defined by

ΛNLS
1 (x, t, ∂x, ∂t, |u|) = e−iπ

4 eiU∂
1/2
t (e−iUu),

ΛNLS
2 (x, t, ∂x, ∂t, |u|) = ΛNLS

1 (x, t, ∂x, ∂t, |u|) + i
q

4
∂n(|u|2)eiUIt(e−iUu).

(2.14)

The function U is defined by the relation (2.5).
Remark 2.3. The particular form of the asymptotic expansion (2.8) for the op-

erators Λ± suggests that we use a high-frequency assumption on the solution to the
linear Schrödinger equation. This should also be the case for the formal extension to
the nonlinear case. We will see during the numerical experiments that these NLABCs
are particularly accurate for a “fast” soliton.

2.2. An energy bound on the solution to the approximate initial bound-
ary value problems. In the case of the linear Schrodinger equation sets in the whole
space with a smooth real-valued time-dependent potential V , the conservation of the
L2-norm of the solution can be proved. When the infinite domain is truncated by the
transparent boundary condition (2.3), the conservation of the L2-norm becomes an
energy bound; the L2(Ωi)-norm, denoted by ‖u‖0,Ωi

, of the solution u at a given time
is bounded by ‖u0‖0,Ωi

. This implies the uniqueness of the solution to the bounded
initial boundary value problem. In the case of the cubic NLS equation defined on the
whole space, both the L2-norm of the solution and its Hamiltonian defined by

H(t) = ‖∂xu‖2
0 (t) − 1

2

∥∥|u|2∥∥2

0
(t)

are conserved. The question which naturally arises is to know if the L2(Ωi)-norm
of the solution to the truncated NLS is bounded by ‖u0‖0,Ωi

. In the case of the
first-order condition, the following results hold.

Proposition 2.4. Let u0 ∈ L2(Ωi) be a compactly supported initial datum such
that Supp(u0) ⊂ Ωi and u is a solution to the initial boundary value problem

i∂tu + ∂2
xu + q|u|2u = 0 in Ωi × R

+,

∂nu + ΛNLS
1 (x, t, ∂x, ∂t, |u|)u = 0 on Σ × R

+,

u(x, 0) = u0(x) ∀x ∈ Ωi,

(2.15)



ABCs FOR CUBIC NLS EQUATIONS 2279

with the function U given by (2.5). Then, u fulfills the energy bound

∀t > 0,∀u0 ∈ L2(Ωi), ‖u(t)‖0,Ωi
≤ ‖u0‖0,Ωi

.(2.16)

Proof. Let us multiply the NLS equation, given by the first equation of system
(2.15), by −iu, where u designates the conjugate complex value of u. Integrating by
parts on Ωi and next taking the real part of the resulting equation, we obtain the
following expression after integration on an arbitrary time interval [0, T ], with T > 0:

1

2
(‖u‖2

0,Ωi
(T ) − ‖u0‖2

0,Ωi
) = �

(
i

∫ T

0

[u∂xu]xr
xl
dt

)
.(2.17)

To get the result of the proposition, let us prove the positiveness of the term involved in
the right-hand side of (2.17). To simplify the presentation, we consider only the term
at point xr; the other one at xl can be treated in a similar way. Using the expression
of the first order artificial boundary condition and considering the extension ũ of u
by zero for any time t > T , we have

�
(
i

∫ T

0

u(xr, t)∂nu(xr, t)dt

)
= −�

(
ei

π
4

∫ ∞

0

∂
1/2
t (e−iŨ(xr,t)ũ)(e−iŨ(xr,t)ũ)dt

)
.

(2.18)

The control of the sign of the term on the right-hand side is a consequence of the

property that the operator ei
π
4 ∂

1/2
t is a positive memory-type operator [5, 7]. The

proof is based on the Plancherel theorem of the Laplace transform.
Lemma 2.5. Let ϕ ∈ H1/4(0, T ) be a function extended by zero for any time

s > t. Then, we have the inequality

�
(
ei

π
4

∫ ∞

0

∂1/2
s ϕ(s)ϕ(s)ds

)
≥ 0.

Moreover, the following estimate holds for the imaginary part:

�
(
ei

π
4

∫ ∞

0

∂1/2
s ϕ(s)ϕ(s)ds

)
≥ 0.

Applying this lemma to (2.18) and using (2.17), we prove the needed inequal-
ity.

If we develop the same approach for the second order artificial boundary condition,
it does not seem possible to control the sign of the corrective term. This is essentially
due to the quantity ∂n(|u|2) which does not have a well-defined sign. Another point
is that the Hamiltonian H of the nonlinear cubic Schrodinger equation defined on
Rx × R

+
t is conserved. A similar bound as (2.16) for the Hamiltonian of the solution

to (2.15) cannot be obtained by direct arguments.

2.3. Other asymptotic NLABCs. We consider now the artificial boundary
conditions (2.11) and (2.12) derived for a potential V . These boundary conditions in-
volve some time fractional derivative and integration operators applied to the product
of two functions. To expand these quantities, we can use the Leibnitz derivation rule
for fractional operators. To this end, let us recall that if f and g are two functions,
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where f is C∞ on [0, t] and g is continuous, then the fractional derivative of fg is
given by

∂p
t (fg) =

∞∑
k=0

Γ(p + 1)

k!Γ(p− k + 1)
f (k)∂p−k

t g.(2.19)

(A similar formula with a finite number of terms and an integral rest also holds [22].)
Using formula (2.19), we can expand the fractional derivative operator as

∂
1/2
t (e−iVu) =

∞∑
k=0

Γ(3/2)

k!Γ(3/2 − k)
∂k
t (e−iV)∂

1/2−k
t u.

Considering the relation Γ(z + 1) = zΓ(z) for the Gamma function, we have Γ(z) =

Γ(z − k)
∏k

j=1(z − j) for any k ≥ 1. We then deduce the expression

∂
1/2
t (e−iVu) = e−iV∂

1/2
t u +

∞∑
k=1

∏k
j=1(3/2 − j)

k!
∂k
t (e−iV)I

k−1/2
t u.

Truncating this series to a finite number M of terms, we get some new approximations
of the artificial boundary conditions (2.11) and (2.12). For instance, keeping three
terms in the above expression yields the approximation of (2.11)

∂nu + e−iπ/4∂
1/2
t u− eiπ/4

2
V I

1/2
t u +

eiπ/4

8
∂tV I

3/2
t u + e−iπ/4V

2

8
I
3/2
t u = 0.(2.20)

Let us notice that the condition (2.11) has been constructed modulo some operators
of OPS−1 for the modified Schrödinger equation defined by the operator (2.6). As
a consequence, we should keep only the first two time operators of the previous ex-
pression. However, if we try to prove an energy bound for the L2(Ωi)-norm of the
solution to the truncated nonlinear initial boundary value problem, it appears that
we cannot derive an a priori estimate to control the operator of order −1/2. There
is a lack of symmetry of this latter term. To circumvent this drawback, we propose a
modification of the conditions. To this end, let us recall that we have from the Leib-
nitz derivation rule for any strictly positive real number ν and real analytic functions
v and u on [0; +∞[

Iνt (vu) =

∞∑
k=0

Γ(−ν + 1)

k!Γ(−ν − k + 1)
∂k
t vI

ν+k
t u.

In particular, the first two coefficients are 1 and −1/2 for ν = 1/2. If we now consider
v =

√
V , the following approximation holds:

√
V I

1/2
t (

√
V u) = V I

1/2
t u−

√
V

2
∂t
√
V I

3/2
t u mod(OPS−5/2).

Moreover, we also have the symmetrization

e−iπ/4

8
V 2I

3/2
t u =

e−iπ/4

8
V I

3/2
t (V u) mod(OPS−5/2).(2.21)
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Since the artificial boundary condition (2.11) is designed modulo an operator of
OPS−1, we can modify it by using the above relation and considering the new bound-
ary condition

∂nu + e−iπ/4∂
1/2
t u− eiπ/4

2

√
V I

1/2
t (

√
V u) +

e−iπ/4

8
V I

3/2
t (V u) = 0 on Σ × R

+.

(2.22)

If we now come back to the NLS, we can deduce some symmetric NLABCs by using
the formal substitution: V u = q|u|2u. Following this process, one gets different
alternative boundary conditions of order M ∈ N. For instance, the modification of
the NLABC2

1 artificial boundary condition (2.13)–(2.14) leads to

∂nu + e−iπ/4∂
1/2
t u− q

eiπ/4

2
|u|I1/2

t (|u|u) + q2 e
−iπ/4

8
|u|2I3/2

t (|u|2u) + i
q

4
∂n(|u|2)Itu = 0.

(2.23)

More generally, one gets the following definition.
Definition 2.6. The symmetric approximate NLABC of order M/2 (denoted by

NLABC
M/2
2 ) for M ∈ N

∗ is given by

∂nu + TNLS
M/2 (x, t, ∂x, ∂t, |u|)u = 0 on Σ × R

∗+,(2.24)

defining the different nonlinear fractional artificial boundary operators TM/2 as

TNLS
1 u = e−iπ/4∂

1/2
t u,

TNLS
2 u = TNLS

1 u− q
eiπ/4

2
|u|I1/2

t (|u|u) + i
q

4
∂n(|u|2)Itu,

TNLS
5/2 u = TNLS

2 u + q2 e
−iπ/4

8
|u|2I3/2

t (|u|2u).

(2.25)

Once again and similarly to the artificial boundary conditions (2.11) and (2.12),
it seems impossible to control the sign of ∂n(|u|2)Itu. However, if we do not consider
this term in the definition of the above boundary conditions, we can prove that the
L2(Ωi)-norm of the solution to the truncated nonlinear initial boundary value problem
is bounded by the norm of the initial datum. The proof (not detailed here) uses
some lemmas similar to Lemma 2.5 to treat the quantities issued from the integral

operators I
1/2
t [3] and I

3/2
t . Moreover, in the particular case of the first order condition

where only the time fractional operator of order 1/2 appears, one can show that the
Hamiltonian of the solution at a given instant t is bounded by the Hamiltonian at
t = 0.

3. Semidiscrete approximation of the cubic NLS equation and the
NLABC. We investigate the construction of stable time discretization schemes of
the NLABC associated to the NLS equation. The developments are based on the
method of Dúran and Sanz-Serna [13] and on works for treating the linear transpar-
ent boundary condition [3].

3.1. Preliminary results. Several time discretization schemes can be devel-
oped for solving the cubic NLS equation. The most widely used approach is based
on the second order Strang splitting formula for the time discretization and on the
application of the FFT for the spatial part [10, 19]. This method requires the ap-
plication of some periodic boundary conditions to bound the computational domain.
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Since these conditions do not reproduce the real physical propagation phenomenon
at the boundary, this limits the applicability of this method (for instance, to simulate
the evolution of the interaction of two solitons). Furthermore, this technique does
not take into account more complicated boundary conditions such as the one that
we propose here. Another possibility consists in using an interior Crank–Nicolson
scheme. The Schrödinger equation is then discretized at time tn+1/2 = (tn+1 + tn)/2
by a second order approximation. In what follows, if δt designates the time step,
then tn = nδt stands for the nth time step, where n ∈ N. The first approximation
introduced by Delfour, Fortin, and Payne [12] consists in approximating both u and
|u|2 by the midpoint formula. More recently, Durán and Sanz-Serna [13] proposed
another second order scheme based on the only discretization of u by the midpoint
rule. The usual Crank–Nicolson scheme is given by

i
un+1 − un

δt
+ ∂2

x

un+1 + un

2
+ q

(
|un+1|2 + |un|2

2

)
un+1 + un

2
= 0(3.1)

and the Durán–Sanz-Serna scheme by

i
un+1 − un

δt
+ ∂2

x

un+1 + un

2
+ q

∣∣∣∣u
n+1 + un

2

∣∣∣∣
2
un+1 + un

2
= 0.(3.2)

We recall, following [13], that this scheme is very well adapted for computing soliton-
like solutions. We denote here by un the approximate value of u at time tn. Let us
notice that the scheme (3.2) has a lower computational cost than (3.1). Indeed, if we
set 2vn+1 = un+1 + un, the scheme reads for n ≥ 0

2i
vn+1 − un

δt
+ ∂2

xv
n+1 + q|vn+1|2vn+1 = 0,(3.3)

imposing v0 = 0. Moreover, the simple form of the scheme (3.2) leads to an easier
implementation of the NLABCs. In the developments below, we focus our attention
on the presentation of this latter scheme.

Remark 3.1. The approximation of the artificial boundary conditions for the
Crank–Nicolson scheme (3.1) is however possible. We do not present the results here
since this approach has proved to be less accurate than for the Durán–Sanz-Serna
scheme.

In the linear case, the fractional operators defining the boundary conditions need
to be discretized by the trapezoidal rule to yield the stability of the Crank–Nicolson
scheme coupled to a discrete transparent artificial boundary condition. This is still
the case for the NLS equation. To prove it, we begin by recalling the main results
stated in [3].

Proposition 3.2. If {fn}n∈N is a sequence of complex values approximating

{f(tn)}n∈N, then the approximations of ∂
1/2
t f(tn) and I

1/2
t f(tn) are given by the

numerical quadrature formulas

I
1/2
t f(tn) ≈

√
2δt

2

n∑
k=0

αkf
n−k(3.4)

and

∂
1/2
t f(tn) ≈ 2√

2δt

n∑
k=0

βkf
n−k,(3.5)
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where (αk)k∈N and (βk)k∈N designate the sequences defined by

⎧⎨
⎩

(α0, α1, α2, α3, α4, α5, . . . ) =

(
1, 1,

1

2
,
1

2
,
1 · 3
2 · 4 ,

1 · 3
2 · 4 , . . .

)
,

βk = (−1)kαk ∀k ≥ 0.

3.2. Approximation and stability result for the Dúran–Sanz-Serna-type
scheme and the boundary conditions NLABCj

1, j = 1, 2. Let us recall that
the initial boundary value problem in the truncated domain with a NLABCj

1-type
condition is

⎧⎨
⎩

i∂tu + ∂2
xu + q|u|2u = 0, (x, t) ∈ Ωi × R

∗+,
∂nu + ΛNLS

j (x, t, ∂x, ∂t, |u|)u = 0 on Σ × R
∗+ for j = 1/2, 1, or 2,

u(x, 0) = u0(x), x ∈ Ωi,
(3.6)

where the artificial boundary operators are given by the expressions (2.14).

To define the semidiscretization in the time of the boundary conditions, we in-
troduce the approximation U

p of

U(x, t) = q

∫ t

0

|u(x, s)|2ds

by the trapezoidal formula for p ≥ 2

U
p = qδt

(
p−1∑
l=1

∣∣ul
∣∣2 +

1

2
|up|2

)
,(3.7)

with U
0 = 0 and U

1 = qδt
∣∣u1

∣∣2 /2. Let E
p and Ẽp−1 be the quantities defined by

E
p = exp(iUp) = exp

(
iqδt

p−1∑
l=1

∣∣ul
∣∣2
)

exp

(
iq
δt

2
|up|2

)
= Ẽp−1 exp

(
iq
δt

2
|up|2

)
,(3.8)

setting E
0 = 1 and E

1 = exp (iU1). Using relations (3.5), we can define the semi-
discrete approximations, denoted by ΛNLS

j,n+1, of the continuous artificial operators

ΛNLS
j by

ΛNLS
1,n+1(x, ∂x, |un+1|)un+1 = e−iπ

4

√
2

δt
E
n+1

n+1∑
k=0

βkEn+1−kun+1−k(3.9)

and

ΛNLS
2,n+1(x, ∂x, |un+1|)un+1 = ΛNLS

1,n+1(x, |un+1|)un+1

+ i
q

4
∂n

(
|un+1|2

)
E
n+1δt

n+1∑
k=0

γkEn+1−kun+1−k,(3.10)

where (γk)k∈N is the sequence defined by (γ0, γ1, γ2, γ3, . . . ) =
(

1
2 , 1, 1, 1, . . .

)
.
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Proposition 3.3. The Durán–Sanz-Serna semidiscrete scheme for the initial
boundary value problem (3.6) is given by

2i
vn+1 − un

δt
+ ∂2

xv
n+1 + q|vn+1|2vn+1 = 0, x ∈ Ωi,

∂nv
n+1 + ΛNLS

j,n+1(x, ∂x, |vn+1|)vn+1 = 0 on Σ for j = 1 or 2,

u0 = u0, x ∈ Ωi,

(3.11)

where vn+1 = un+1+un

2 . Furthermore, the following energy inequality holds for j = 1:

‖uN+1‖L2(Ωi) ≤ ‖u0‖L2(Ωi) ∀N ≥ 0,(3.12)

implying the stability of the scheme.
Proof. The construction of the Durán–Sanz-Serna semidiscrete scheme is imme-

diate in view of the preliminary results. We just sketch the proof of the stability
result. Essentially, the arguments are adapted from the analysis developed in [3] for
the one-dimensional linear Schrödinger equation (the techniques are mainly based on
the Z-transform). The particular symmetrical form of the continuous NLABCs and
the property of dissipation of the fractional operators used in Proposition 2.4 extend
in a certain way at the semidiscrete level. This is finally quite natural since the semi-
discretization of the boundary conditions has been written a priori to be consistent
with the interior scheme.

Remark 3.4. Like in the continuous case, we cannot prove the estimate (3.12) for
the second order condition. This is due to a lack of control of the sign of the corrective
term.

3.3. Approximation and stability result for the Dúran–Sanz-Serna-type
scheme and the boundary conditions NLABCj

2, j = 1, 2. The initial boundary
value problem in the bounded computational domain for an NLABCj

2 condition is
given by ⎧⎨

⎩
i∂tu + ∂2

xu + q|u|2u = 0, (x, t) ∈ Ωi × R
+,

∂nu + TNLS
j (x, t, ∂x, ∂t, |u|)u = 0 on Σ × R

∗+ for j = 1 or 2,
u(x, 0) = u0(x) x ∈ Ωi.

(3.13)

Using the semidiscrete versions (3.4) and (3.5) of the half-order integral and
derivative operators, we introduce the following semidiscretizations of the artificial
operators TNLS

1 and TNLS
2 , respectively, given by

TNLS
1,n+1(x, ∂x, |vn+1|)vn+1 = e−iπ

4

√
2

δt

n+1∑
k=0

βkv
n+1−k(3.14)

and

TNLS
2,n+1(x, ∂x, |vn+1|)vn+1 = TNLS

1,n+1(x, ∂x, |vn+1|)vn+1

− q
ei

π
4

2
|vn+1|

√
2δt

2

n+1∑
k=0

αk|vn+1−k|vn+1−k(3.15)

+ i
q

4
∂n(|vn+1|2)δt

(
n∑

k=1

vk +
vn+1

2

)
.

As for the NLABCs of the first type, the following proposition holds.
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Proposition 3.5. Let us define vn+1 = un+1+un

2 . Then, the Durán–Sanz-Serna
semidiscrete scheme for the initial boundary value problem (3.13) reads

2i
vn+1 − un

δt
+ ∂2

xv
n+1 + q|vn+1|2vn+1 = 0, x ∈ Ωi,

∂nv
n+1 + TNLS

j,n+1(x, ∂x, |vn+1|)vn+1 = 0 on Σ for j = 1 or 2,

u0 = u0, x ∈ Ωi.

(3.16)

Moreover, we have the inequality

‖uN+1‖L2(Ωi) ≤ ‖u0‖L2(Ωi) ∀N ≥ 0,

for j = 1 or for j = 2 by neglecting the last term of the expression (3.15). In this
case, this implies the stability of the scheme (3.16).

Proof. Once again, we do not detail the proof of Proposition 3.5 which is obtained
by some arguments close to the ones used in the linear case [3].

4. Numerical implementation and simulations.

4.1. Some aspects of the numerical implementation. Since the Jacobian
of the map associated to the nonlinear problems (3.11) and (3.16) is complicated
to obtain, we propose to rather use a classical fixed point method. To this end, let
us begin by writing the artificial boundary conditions as some nonlinear Fourier–
Robin-type boundary conditions. We choose to develop only the calculations for the
conditions ΛNLS

j,n+1. We get the relation

∂nv
n+1 + e−iπ

4

√
2

δt

(
vn+1 + Ẽn exp

(
iqδt

∣∣vn+1
∣∣2

2

)
n∑

k=1

βn+1−kEkvk

)
= 0(4.1)

for the operator ΛNLS
1,n+1. The corrective term involved in the definition of ΛNLS

2,n+1 can
be rewritten as

i
q

4
∂n(|vn+1|2)

(
δt

2
vn+1 + δtẼn exp

(
iqδt

∣∣vn+1
∣∣2

2

)
n∑

k=1

Ekvk

)
.(4.2)

The fixed point algorithm is applied for treating the nonlinearities appearing both
in the Schrödinger equation and in the artificial boundary conditions. The resulting
scheme is summarized in Table 4.1.

At each iteration of the algorithm, we incorporate the linear Fourier–Robin bound-
ary condition by using the weak formulation

∫
Ωi

2i

δt
ws+1ψdx−

∫
Ωi

∂xw
s+1∂xψdx−

∫
Σ

e−iπ
4

√
2

δt
ws+1ψdΣ

= −
∫

Ωi

q|ws|2wsψdx +

∫
Ωi

2i

δt
unψdx−

∫
Σ

gsψdΣ,

where ψ designates a sufficiently smooth function. The spatial discretization is per-
formed by a conform linear Galerkin finite element method for u, |u|2, and ψ providing
hence the stability of the whole scheme. This variational approach leads to a tridiag-
onal banded matrix. The solution to the associated linear system is therefore simple
and realized by a direct LU solver. The involvement of the other NLABCs follows the
same approach.
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Table 4.1

Fixed point algorithm for solving the cubic NLS equation using the NLABC2
1-type nonlinear

artificial boundary condition.

let w0 = un

s = 0
while ‖ws+1 − ws‖L2(Ωi) > ε do

solve the linear boundary-value problem⎧⎪⎨
⎪⎩

2i

δt
ws+1 + ∂2

xw
s+1 = −q|ws|2ws +

2i

δt
un in Ωi,

∂nw
s+1 + e−iπ

4

√
2

δt
ws+1 = gs on Σ,

setting

gs = −e−iπ
4

√
2

δt

(
Ẽn exp

(
iqδt

|ws|2

2

)
n∑

k=1

βn+1−kEkvk

)

−i
q

4
∂n(|ws|2)

(
δt

2
ws + δtẼn exp

(
iqδt

|ws|2

2

)
n∑

k=1

Ekvk

)

end while

vn+1 = ws+1

un+1 = 2vn+1 − un

4.2. Numerical results. The one-dimensional cubic NLS equation is integrable
by using the inverse scattering theory [21]. This approach yields the so-called exact
soliton solution given by

uex(x, t) =

√
2a

q
sech(

√
a(x− ct)) exp

(
i
c

2
(x− ct)

)
exp

(
i

(
a +

c2

4

)
t

)
.(4.3)

From now on, we fix the focusing parameter q to 1. The real parameter a gives the
amplitude of the wavefield. Finally, c is the velocity of the soliton. Since the derivation
of the NLABCs has been constructed under a high-frequency assumption (see Remark
2.3), we can expect that our approach will be more efficient for a high-speed soliton.
Throughout the computations, we have taken ε = 10−6 in the fixed point algorithm
(4.1).

To perform an exhaustive study of the proposed artificial boundary conditions,
we compare the nonlinear conditions NLABCj

i for 1 ≤ i, j ≤ 2 to the linear artificial
boundary condition (LABC) (1.2) for the soliton defined by a = 2 and c = 15. The
numerical parameters are δt = 10−3 for a final time Tf = 2. The finite computa-
tional spatial domain is Ωi = [−10, 10] discretized by 4000 equally spaced points. To
focus on the spurious reflections link to the different methods, we plot the contour
of log10(|u|) in Figures 1–5. The curves are presented with respect to the increasing
accuracy of the artificial boundary conditions. We see in Figure 1 that the maxi-
mal reflection is approximately equal to 10−2 for an initial amplitude of 2 and the
LABC. For Figures 2–5, the reflection attains a maximal value around 5× 10−3. The
reflection occurring at the right boundary decreases according to the order of the
different conditions NLABCj

1 or NLABCj
2. Moreover, the most accurate results are

obtained for the condition NLABC2
1 with a minimal region of maximal reflection.

Unlike the LABC, the reflection at the left boundary has an amplitude inferior to
10−4.
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Fig. 1. Contour plot of log10(|u|) for the linear artificial boundary condition (LABC).

Fig. 2. Contour plot for the nonlinear
artificial boundary condition NLABC1

2.
Fig. 3. Contour plot for the nonlinear

artificial boundary condition NLABC2
2.

Fig. 4. Contour plot for the nonlinear
artificial boundary condition NLABC1

1.
Fig. 5. Contour plot for the nonlinear

artificial boundary condition NLABC2
1.

To specify these results, we plot in Figure 6 the relative error for the L2(Ωi)-norm

‖uex − unum‖0,Ωi

‖unum‖0,Ωi

,

where unum denotes the numerical solution. For the linear case, the error is about 2%,
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Fig. 6. Relative error for the different linear and nonlinear artificial boundary conditions.

Fig. 7. Representation of the amplitude of the computed “fast” soliton.

whereas the best result is obtained for the NLABC2
1 for a final error of 0.2%. This

last error is less than the intrinsic phase error of the Sanz-Serna scheme generally
linked to the Crank–Nicolson-type schemes (see, for instance, [9]). The most accurate
NLABC does not require any additional cost. The numerical classification of the ar-
tificial boundary conditions coincides with the theoretical one. To end with this test
case, we depict in Figure 7 the evolution of this “fast” soliton. We emphasize the very
small spurious reflections by adding a light to the figure. This allows to visualize it
by showing the associated shadow zones. Without this brightness, the reflections are
too small to be seen in the representation.
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Fig. 8. Relative error for the different linear and nonlinear artificial boundary conditions.

Fig. 9. Representation of the amplitude of the computed “slow” soliton.

The next experiment concerns a “slow” propagative soliton defined by a velocity
c = 4 and an amplitude a = 2. The finite domain of computation is reduced to
Ωi = [−5, 5] and discretized with 4000 points. The time step is now δt = 5 × 10−3

and the final time is fixed to Tf = 5. Let us recall that all the conditions have been
derived under an assumption of high frequency. Since we consider a slower soliton,
the reflection should be larger. We get an acceptable error of 5% (see Figure 8) for the
NLABC2

1. This is not the case of the LABC which yields a large error of 30%. Even
if the error occurring in this situation for the NLABC1

1 and NLABC2
1 is larger than

for the “fast” soliton, this always allows us to reproduce the behavior of the solution
as can be seen in Figure 9. Once again, an artificial light has been added to show the
numerical reflection involving in the approximation. Finally, from all the above tests,
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Fig. 10. Interaction of two fast solitons with opposite directions.

Fig. 11. Interaction of slow and fast solitons with opposite directions.

we conclude that the most accurate results are obtained with the NLABC2
1, which is

from now on taken as the reference.

We consider now the problem of simulating the interaction of two solitons. The
domain of computation Ωi = [−15, 15] is discretized with 6000 points. The final time
is Tf = 2 for a time step δt = 10−3. We consider in Figure 10 two fast solitons
evolving in two opposite directions and centered at x = −5 and x = 5 at the initial
time. The two velocities are c = 12 and c = −12. As for one soliton, we observe a
small reflection which is made visible by the added artificial light.

We now consider in Figure 11 the interaction of a slow soliton centered at x = 7
for a velocity c = −4 and a fast soliton of velocity c = 16 and centered at a point
x = −6. We see that some small reflections can be visualized with the help of the
light. The last example, presented in Figure 12, consists in the same interaction as in
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Fig. 12. Interaction of slow and fast solitons with same directions.

Fig. 13. Propagation of the solution for the gaussian initial datum.

the previous case but with the velocity c = 4 for the slowest soliton. In this situation,
the two solitons interact near the right boundary. Once again, the artificial boundary
condition reveals a satisfactory behavior and generates some relatively low-amplitude
reflections (however more important than in the previous case).

To end the numerical experiments, we consider a gaussian initial datum

u(x, 0) = exp (icx/2) exp (−5x2)

to observe the pure dispersion phenomenons involved in the NLS equation. The
velocity is taken to c = 15. The finite spatial domain Ωi = [−5, 5] is discretized with
4000 points, the time discretization being unchanged. As can be noticed in Figures 13
and 14, no reflection occurs and the dispersion is not affected by any wave reflected
back into the computational domain.
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Fig. 14. Contour plot of the solution for the gaussian initial datum.

5. Conclusion. We have introduced different kinds of NLABCs for the one-
dimensional nonlinear cubic Schrödinger equation. They are constructed with the
help of some general pseudodifferential techniques usually involved in the derivation
of artificial boundary conditions associated to linear operators. Stable and accu-
rate semidiscretizations in time have been proposed. These conditions appear to be
efficient for simulating the propagation of sufficiently fast solitons (simple soliton,
interaction of two solitons). A loss of accuracy occurs for slower solutions but the
artificial reflection is always much lower than for the LABC without any additional
cost. These results are currently being extended for two-dimensional problems using
the approach analyzed in [4].
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homogènes, Ann. Inst. Fourier (Grenoble), 27 (1977), pp. 79–123.

[18] L. Nirenberg, Pseudodifferential operators and some applications, in Lectures on Linear Par-
tial Differential Equations, CBMS Reg. Conf. Ser. Math. 17, AMS, Providence, RI, 1973,
pp. 19–58.

[19] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal.,
5 (1968), pp. 506–517.

[20] J. Szeftel, Design of absorbing boundary conditions for Schrödinger equations in Rd, SIAM
J. Numer. Anal., 42, (2004), pp. 1527–1551.

[21] V. E. Zakharov, Theory of solitons, the inverse scattering method, Contemp. Soviet Math.
(1868).

[22] A. I. Zayed, Handbook of Function and Generalized Function Transformation, CRC Press,
Boca Raton, FL, 1996.



SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 43, No. 6, pp. 2294–2319

A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT
APPROXIMATION OF PARABOLIC p-LAPLACIAN∗

CARSTEN CARSTENSEN† , WENBIN LIU‡ , AND NINGNING YAN§

Abstract. In this paper, we derive a posteriori error estimates in the quasi-norm for the finite
element approximation of the parabolic p-Laplacian. We obtain a posteriori error bounds for the
semidiscrete scheme and the fully backward Euler discretization. We show that the new a posteriori
error estimators provide both upper and lower bounds on the discretization error.

Key words. finite element approximation, backward Euler discretization, parabolic p-Laplacian,
a posteriori error estimators, quasi-norm error bounds

AMS subject classifications. 65N30, 49J40

DOI. 10.1137/040611008

1. Introduction. In this paper, we derive a posteriori error estimates for the
finite element approximation of the parabolic p-Laplacian with homogeneous Dirichlet
data

ut(x, t) − div(|∇u(x, t)|p−2∇u(x, t)) = f(x, t), x ∈ Ω, t ∈ [0, T ],

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],(1.1)

u(x, 0) = u0(x), x ∈ Ω,

where 1 < p < ∞ and Ω is a bounded open subset of R2 with a Lipschitz boundary
∂Ω. Assumptions on the data f and u0 will be specified later. This equation is viewed
as one of the typical examples of a large class of nonlinear problems—parabolic de-
generate nonlinear systems, where many existing techniques (such as the linearization
or deformation procedure) in the finite element method do not seem to work well.

Finite element approximations of the p-Laplacian have been extensively studied
in the literature; see [Ci, GM, Ch] for some previous work. Sharp a priori error
bounds were obtained in [BL1] and [LB] via the quasi-norm techniques; see [BL2]
for an overview of some recent work. The quasi-norm approach, which has proved
successful in deriving sharper a priori error bounds for the conforming finite element
approximation of the degenerate systems, was summarized in [LY1, LY2] with a re-
view of relevant recent work. Furthermore, sharp a priori error bounds in the space
variable approximation were derived in [BL4] for the parabolic p-Laplacian, although
the error bounds in time variable approximation are only suboptimal there. In [BB],
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sharp a priori error bounds were obtained for both space and time approximation of
the parabolic p-Laplacian. Another important area is a posteriori error estimation of
the p-Laplacian. The work in this area seems to date back to [ODSD], and some of
the recent work can be found in [BA, BL2, P, GS, V1], where among other things, a
posteriori error estimates on the conforming and nonconforming discretization errors
were derived with both upper and lower bounds. In these contributions, however,
there are gaps in the power between the established upper and lower estimates. Re-
cently in [LY1, LY2], the quasi-norm techniques were further developed, and improved
a posteriori error estimates of residual type were derived for the p-Laplacian. Initial
analysis and numerical tests indicate that the new estimators are sharper than the
existing ones and, indeed, lead to more efficient computational meshes [CK, LY1].

It is the purpose of this work to extend our a posteriori error estimates to the
finite element approximation of the parabolic p-Laplacian by combining the quasi-
norm techniques developed in [LY1, LY2] and the weighted Clement-type interpolation
introduced in [Ca, CF2, CF3, CF4] and further modified in [CLY].

The plan of this paper is as follows. In section 2 we state some important in-
equalities. In section 3 we give the parabolic p-Laplacian a variational formulation.
We then set up the finite element approximation for the equation. We also introduce
some quasi-norms and related results. In section 4, we derive a posteriori upper and
lower error estimates in quasi-norm for the semidiscrete finite element approximation.
In section 5, we derive quasi-norm a posteriori error estimates for the fully discrete
scheme-backward Euler discretization. In the appendix, we introduce the weighted
Clement-type interpolator and prove interpolation error estimates in the quasi-norm.

Let Ω be a bounded open set in R2 with a Lipschitz boundary ∂Ω. In this
paper we adopt the standard notation Wm,q(Ω) for Sobolev spaces on Ω with norm
‖ · ‖Wm,q(Ω) (or ‖ · ‖m,q,Ω as a simplification) and seminorm | · |Wm,q(Ω) (or | · |(m,q,Ω)).
We set Wm,q

0 (Ω) ≡ {w ∈ Wm,q(Ω) : w|∂Ω = 0}. We denote Wm,2(Ω) by Hm(Ω) with
norm ‖ · ‖m,Ω and seminorm | · |m,Ω. We also denote by Ls(0, T ;Wm,q(Ω)) the Ba-
nach space of Ls functions from (0, T ) into Wm,q(Ω) with norm ‖v‖Ls(0,T ;Wm,q(Ω)) =
(
∫ T

0
‖v‖sWm,q(Ω)dt)

1
s for s ∈ [1,∞) with the standard modification for s = ∞. Simi-

larly, one can define H1(0, T ;Wm,q(Ω)) and Ck(0, T ;Wm,q(Ω)). In addition, c or C
denotes a general positive constant independent of h, and A ≤ CB is abbreviated as
A � B. The generic constant C is allowed to depend only on p, Ω, and the aspect
ratio of the finite elements.

2. Preliminaries. The following inequalities play an essential role in our error
analysis. Therein, the generic positive constant C in A ≤ CB (abbreviated A � B)
depends only on p. The first two lemmas have been used in our work on a priori
quasi-norm error bounds for the finite element approximation of degenerate nonlinear
PDEs [BL1, LB, BL3].

Lemma 2.1 (see [BL3]). For all p > 1, ξ, η ∈ R
n, there holds

||ξ|p−2ξ − |η|p−2η | � |ξ − η|(|ξ| + |η|)p−2,(2.1)

|ξ − η|2(|ξ| + |η|)p−2 � (|ξ|p−2ξ − |η|p−2η, ξ − η).(2.2)

Lemma 2.2 (see [BL3, LY1, LY2]). For all a, σ1, σ2 ≥ 0, p > 1, θ > 0, there
holds

(a + σ1)
p−2σ1σ2 ≤ θ−γ(a + σ1)

p−2σ2
1 + θ(a + σ2)

p−2σ2
2 ,
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where

γ =

⎧⎪⎨
⎪⎩

1 1 < p ≤ 2, θ ∈ [1,∞) or 2 < p < ∞, θ ∈ (0, 1),

1

p− 1
1 < p ≤ 2, θ ∈ (0, 1) or 2 < p < ∞, θ ∈ [1,∞).

The following generalization of the Young inequality (for a = 0) is essential for
estimating a bilinear form via the quasi-norms.

Lemma 2.3 (see [LY1, LY2]). For all a, σ1, σ2 ≥ 0, p > 1, and δ > 0, there holds

σ1σ2 ≤ δ−β(ap−1 + σ1)
p′−2σ2

1 + δ(a + σ2)
p−2σ2

2 ,

where β is such that δ−β = max{δ−1, δ−
1

p−1 }, and p′ is such that 1
p + 1

p′ = 1.
The following two lemmas will be used to prove some triangle-inequality like

results for a power of the quasi-norms.
Lemma 2.4 (see [LY1, LY2]). For all 1 < p < ∞, σ1, σ2 ∈ R

n, and a ≥ 0, there
holds

(a + |σ1 + σ2|)p−2|σ1 + σ2|2 � (a + |σ1|)p−2|σ1|2 + (a + |σ2|)p−2|σ2|2.

Lemma 2.5 (see [LY1, LY2]). For all 1 < p < ∞ and σ, σ1, σ2 ∈ R
n, there holds

(|σ1|+ |σ2|)p−2|σ1 − σ2|2 � (|σ|+ |σ− σ1|)p−2|σ− σ1|2 + (|σ|+ |σ− σ2|)p−2|σ− σ2|2.

3. Discretization of the parabolic p-Laplacian. In this section we consider
the weak formulation of the parabolic p-Laplacian and its semidiscrete and full-
discrete finite element approximation. We also introduce some quasi-norms which
naturally arise in degenerate problems of this type.

The weak form (WP) of the p-Laplacian reads as follows: Given f ∈ C(0, T ;L2(Ω))
and u0 ∈ W 1,p

0 (Ω), find u ∈ L∞(0, T ;W 1,p
0 (Ω)) ∩H1(0, T ;L2(Ω)) such that

(ut, v) + a(u, v) = (f, v) ∀v ∈ W 1,p
0 (Ω),(3.1)

u(x, 0) = u0(x),

where

a(u, v) =

∫
Ω

|∇u|p−2∇u · ∇v and (w, v) =

∫
Ω

wv.

It can be shown that WP has a unique solution u ∈ C([0, T ], L2(Ω)); see [BL4], for
instance. There has been a great deal of work on the regularity of the solution u to
WP. For sufficiently regular data, global C1,α regularity was established in [DeB].

Let Ωh be a polygonal approximation to Ω with boundary ∂Ωh. Let Th be a
partitioning of Ωh into disjoint open regular triangles K, so that Ω̄h =

⋃
K∈Th K̄

. Each element has at most one edge on ∂Ωh, and K̄ and K̄ ′ have either only one
common vertex or a whole edge if K and K ′ ∈ Th. We further require that Pi ∈
∂Ωh ⇒ Pi ∈ ∂Ω, where {Pi}(i = 1, . . . , J) is the vertex set associated with the
partitioning Th. Let hK denote the maximum diameter of the element K in Th and let
ρK denote the diameter of the largest ball contained in K. We assume that there is a
regularity constant R of Th, independent of h, such that 1 ≤ maxK∈Th(hK/ρK) ≤ R.
Let h = maxK∈Th hK .
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Because of limited regularity for the solution of the p-Laplacian, we shall discuss
only the conforming piecewise linear elements in this paper.

Associated with Th is a finite-dimensional subspace V h of H1
0 (Ωh) such that χ|K

are linear functions for all χ ∈ V h and K ∈ Th. For ease of exposition we will assume
that Ωh = Ω ⊂ R2, though all the results can be extended to the more general case,
where Ωh ⊂ Ω. Let

uh
0 ∈ V h

0 = {v ∈ V h : v = 0 on ∂Ω}

be an approximation to u0 and let Wh = L∞(0, T ;V h) ∩ H1(0, T ;V h), Wh
0 =

L∞(0, T ;V h
0 ) ∩H1(0, T ;V h

0 ).
The weak form of the semidiscrete finite element approximation (WPh) for (3.1)

reads as follows: Find uh ∈ Wh
0 such that

(
∂uh

∂t
, vh

)
+ a(uh, vh) = (f, vh) ∀vh ∈ V h

0 ,(3.2)

uh(x, 0) = uh
0 (x).

Furthermore, we can consider fully discrete approximation of WP. In this paper we
consider the following the backward Euler discretization applied to (WPh): (WPhk).

Let 0 = t0 < t1 < t2 < · · · < tN−1 < tN = T , kn = tn − tn−1, In = (tn−1, tn],
n = 1, 2, . . . , N , k = maxn{kn}. Then for n = 1, 2, . . . , N , find Un ∈ V h such that

(
Un − Un−1

kn
, vh

)
+ a(Un, vh) = (f(x, tn), vh) ∀vh ∈ V h

0 ,(3.3)

U0(x) = uh
0 (x).

For the purposes of the error analysis it is convenient to introduce the fact that for
t ∈ (tn−1, tn], n = 1, 2, . . . , N ,

U(x, t) =
t− tn−1

kn
Un(x) +

tn − t

kn
Un−1(x),

Û(x, t) = U(x, tn), f̂(x, t) = f(x, tn).

Then (WPhk) can be restated as follow: For almost every t ∈ (0, T ] there holds

(
∂U

∂t
, vh

)
+ a(Û , vh) = (f̂ , vh) ∀vh ∈ V h

0 ,(3.4)

U(x, 0) = uh
0 (x).

One of the key ideas in our approach is to introduce some quasi-norms to handle
the degeneracy of the p-Laplacian in order to obtain sharp error bounds. We briefly in-
troduce a quasi-norm and some relations between it and the standard Sobolev norms.
Given v, w ∈ W 1,p(Ω), set

|v|2(w,p) ≡
∫

Ω

|∇v|2(|∇w| + |∇v|)(p−2).(3.5)

We shall simply write | · |(u,p) as | · |(p) when doing so causes no confusion.

Proposition 3.1. (i) There holds |v|(w,p) ≥ 0 and, when v ∈ W 1,p
0 (Ω), |v|(w,p) =

0 if and only if v = 0.
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(ii) There holds |v1 + v2|(w,p) � |v1|(w,p) + |v2|(w,p) for any v1, v2 ∈ W 1,p(Ω).
(iii) Furthermore, for 1 < p ≤ 2, there holds

|v|W 1,p(Ω) � (|w|W 1,p(Ω), |v|W 1,p(Ω))|v|(w,p) and |v|2(w,p) ≤ |v|pW 1,p(Ω).(3.6)

(iv) For 2 ≤ p < ∞, s ∈ [2, p], r = s(2 − p)/(2 − s), there holds

|v|pW 1,p(Ω) ≤ |v|2(w,p) ≤ C(|w|W 1,r(Ω), |v|W 1,r(Ω))|v|2W 1,s(Ω).(3.7)

Proof. Conclusion (ii) can be proved with Lemma 2.4. The rest of the proposition
can be shown as in [BL3]. We, therefore, omit the details.

The essential relations between the quasi-norm and the equation are reflected in
the following inequalities. If u solves WP and v ∈ W 1,p(Ω), then it follows from
Lemma 2.1 that

|u− v|2(u,p) � a(u, u− v) − a(v, u− v).(3.8)

For any θ > 0, v, w ∈ W 1,p(Ω), it follows from Lemmas 2.1 and 2.2 that there exists
a γ > 0 such that

|a(u,w) − a(v, w)| � θγ |u− v|2̃(̃u,p) + θ|w|2(u,p).(3.9)

Then it follows from (3.8)–(3.9) that for any u, v ∈ W 1,p(Ω),

a(u, u− v) − a(v, u− v) � |u− v|2(u,p) � a(u, u− v) − a(v, u− v).

Thus the quasi-norm is naturally related to the total energy difference.
The relations (3.8)–(3.9) are important in proving the following optimal a priori

error bound in the quasi-norm [BL1, LB] for the finite element approximation of the
p-Laplacian:

|u− uh|2(p) � min
vh∈V h

0

|u− vh|2(p).

Explicit error bounds can then be obtained. For example, if 1 < p ≤ 2, one has the
optimal a priori error bound in W 1,p ([BL1]),

‖u− uh‖W 1,p � h,

provided u is smooth enough. Furthermore, (3.8) and (3.9) are among the keys to
the proof of the optimal a priori error bound for the parabolic p-Laplacian in [BL4].
For the semidiscrete finite element approximation of the parabolic p-Laplacian, for
example, one can show that for sufficiently smooth u and almost all s ∈ (0, T ]

‖(u− uh)(s)‖2
L2(Ω) +

∫ s

0

|u− uh|2(p) dt ≤ Ch2.

Remark 3.1. In the a priori error analysis, the error |u− uh|(w,p) is considered
with w = u. To make this norm computable within an a posteriori error analysis, one
considers w = uh. The triangle inequality shows equivalence of the two error terms,
that is,

|u− uh|(u,p) � |u− uh|(uh,p) � |u− uh|(u,p).
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Recently, the quasi-norm techniques have been further developed towards a pos-
teriori error estimates for the p-Laplacian [LY1, LY2]. For instance, let uh be the
finite element approximation of the p-Laplacian and let 1/p + 1/p′ = 1. Then

η2
1 + η2

2 − ε1 � |u− uh|2(p) � (η2
1 + η2

2) + ε2,

where ε1 and ε2 are higher order terms and

|u− uh|2(p) =

∫
Ω

(|∇u| + |∇(u− uh)|)p−2|∇(u− uh)|2,

η2
1 =

∑
K

∫
K

(|∇uh|p−1 + hK |f |)p′−2h2
K |f |2,

η2
2 =

∑
l

∫
Kl

(|∇uh|p−1 + |Al|)p
′−2A2

l ,

where Al is the jump of the A-normal derivative of uh ∈ V h on the edge l = K̄1
l ∩ K̄2

l ,

Al = ((|∇uh|p−2∇uh)K1
l
− (|∇uh|p−2∇uh)K2

l
)n

with n being the unit normal vector on l = K̄1
l ∩ K̄2

l outwards K1
l .

In the next section, we shall derive such a posteriori error estimates for the finite
element approximation of the parabolic p-Laplacian. To this end let us introduce a
weighted Clement-type interpolator in the finite element space V h

0 introduced in [Ca].
Definition 3.1. Let D be the set of nodes,

Λ = {z ∈ D : z ∈ ∂Ω}.

Given the nodal basis function ϕz of z in V h, set ωz = {x ⊂ Ω : ϕz(x) > 0},

ψz = ϕz/ψ and ψ =
∑
z∈Λ

ϕz.

Then, for all v ∈ W 1,p
0 (Ω), define the interpolation of v by

πv =
∑
z∈Λ

vzϕz ∈ V h
0 , vz =

(∫
Ω

ψzv

)/(∫
Ω

ϕz

)
.

Some interpolation error estimates for the interpolator in the quasi-norm will be
given in the appendix.

4. A posteriori error estimates for the semidiscrete scheme. In the fol-
lowing sections we derive a posteriori error estimates for the semidiscrete finite ele-
ment approximation of WP. First we need some further notation. Let l be an edge
of an element K ∈ Th. If l is on the boundary of Ωh, then we define the element
Kl

max = Kl
min = K. Otherwise let l = K̄1

l ∩ K̄2
l , where K1

l ,K
2
l are the two elements

sharing the common edge l. Then we define the element Kl
max(Kl

min) = Ki
l (i = 1 or

2) be such that

|∇uh|p−2
Kl

max
= max

i=1,2

{
|∇uh|p−2

Ki
l

}
and |∇uh|p−2

Kl
min

= min
i=1,2

{
|∇uh|p−2

Ki
l

}
.

We will take Kl
max = Kl

min = K1
l just for fixing the idea if |∇uh|p−2

K1
l

= |∇uh|p−2
K2

l
.

Let [w]l = w|K1
l
− w|K2

l
. The purpose of introducing Kmin and Kmax is to make
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the estimators η and η2 below sharper. The necessity of introducing them will be
discussed after Lemmas 4.1 and 4.2.

Theorem 4.1. Let u and uh be solutions of (3.1) and (3.2), respectively. Let
p > 1 and p′ > 1 be such that 1

p + 1
p′ = 1. Assume that f ∈ L1(0, T ;W 1,p′

(Ω)). Then
there exists a δ0 > 0 such that for all s ∈ [0, T ], 0 < δ ≤ δ0, there exist C, C1 (where
only C1 depends on δ) such that

‖(u− uh)(s)‖2
0,Ω +

∫ s

0

|u− uh|2(p) dt ≤ C1η
2 + Cη2

0 + C1η
2
1 + Cδη2

2 ,(4.1)

with

η2 =

∫ s

0

∑
l∩∂Ω=∅

∫
Kl

max

(|∇uh|p−1 + |Al|)p
′−2|Al|2 dx dt,

η2
0 = ‖u0 − uh

0‖2
0,Ω,

η2
1 =

∫ s

0

∑
K

∫
K

(
|∇uh|p−1 + h2

K

∣∣∣∇(
f − ∂uh

∂t

)∣∣∣)p′−2

h4
K

∣∣∣∇(
f − ∂uh

∂t

)∣∣∣2 dx dt,

η2
2 =

∫ s

0

∑
l∩∂Ω=∅

∫
Kl

min

(
|∇uh| +

∣∣∣[∂uh

∂n

]
l

∣∣∣)p−2∣∣∣[∂uh

∂n

]
l

∣∣∣2,

where [∂uh

∂n ]l is the jump of the normal derivative of uh on the edge l and Al is the
jump of the A-normal derivative of uh ∈ V h on the edge l = K̄1

l ∩ K̄2
l ,

Al =
(
(|∇uh|p−2∇uh)K1

l
− (|∇uh|p−2∇uh)K2

l

)
n,

with n being the unit normal vector on l = K̄1
l ∩ K̄2

l outwards K1
l .

Proof. Let e = u − uh, eI(x, t) = πe(x, t) ∈ V h
0 be the weighted Clement-type

interpolation of e(x, t) defined in Definition 3.1 for almost all t ∈ [0, T ]. It follows
from Lemma 2.1 and (3.1), (3.2) that

1

2
‖(u− uh)(s)‖2

0,Ω + c

∫ s

0

|u− uh|2(p)dt

≤ 1

2
‖(u− uh)(0)‖2

0,Ω +

∫ s

0

∫
Ω

∂

∂t
(u− uh)e +

∫ s

0

∫
Ω

(|∇u|p−2∇u− |∇uh|p−2∇uh)∇e

=
1

2
η2
0 +

∫ s

0

∫
Ω

∂

∂t
(u− uh)(e− eI) +

∫ s

0

∫
Ω

(|∇u|p−2∇u− |∇uh|p−2∇uh)∇(e− eI)

=
1

2
η2
0 +

∫ s

0

∫
Ω

(
f − ∂uh

∂t

)
(e− eI) −

∫ s

0

∑
K

∫
∂K

|∇uh|p−2 ∂uh

∂n
(e− eI)

=
1

2
η2
0 + I1 + I2,

where the constant c results from that in Lemma 2.1. It follows from Lemma 6.4 that
for any δ1 > 0 there exist constants C and C1 (where only C1 depends on δ1) such
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that

I1 =

∫ s

0

∫
Ω

(
f − ∂uh

∂t

)
(e− eI)

≤ C1

∫ s

0

∑
K

∫
K

(
|∇uh|p−1 + h2

K

∣∣∣∇(
f − ∂uh

∂t

)∣∣∣)p′−2

h4
K

∣∣∣∇(
f − ∂uh

∂t

)∣∣∣2

+Cδ1

∫ s

0

∑
K

∫
K

(|∇uh| + |∇e|)p−2|∇e|2

+Cδ1

∫ s

0

∑
l∩∂Ω=∅

∫
Kl

min

(
|∇uh| +

∣∣∣[∂uh

∂n

]
l

∣∣∣)p−2∣∣∣[∂uh

∂n

]
l

∣∣∣2

≤ C1η
2
1 + Cδ1

(∫ s

0

|u− uh|2(p) + η2
2

)
.

Similarly, by Lemmas 2.3, 6.3, and 6.5, for any δ2 > 0

I2 = −
∫ s

0

∑
K

∫
∂K

|∇uh|p−2 ∂uh

∂n
(e− eI) = −

∫ s

0

∑
l∩∂Ω=∅

∫
l

Al(e− eI)

�
∫ s

0

∑
l∩∂Ω=∅

∫
Kl

max

|Al|(h−1
Kl

max
|e− eI | + |∇(e− eI)|)

� δ−β
2

∫ s

0

∑
l∩∂Ω=∅

∫
Kl

max

(|∇uh|p−1 + |Al|)p
′−2A2

l

+ δ2

∫ s

0

∑
K

∫
K

(|∇uh| + h−1
K |e− eI |)p−2h−2

K |e− eI |2

+ δ2

∫ s

0

∑
K

∫
K

(|∇uh| + |∇(e− eI)|)p−2|∇(e− eI)|2

� δ−β
2 η2 + δ2

(∫ s

0

|u− uh|2(p) + η2
2

)
.

Hence, by letting δ0 = c
4C , we have that for all 0 < δ ≤ δ0, there exist C,C1 (where

only C1 depends on δ) such that

‖(u− uh)(s)‖2
2,Ω +

∫ s

0

|u− uh|2(p) dt ≤ Cη2
0 + C1(η

2
1 + η2) + Cδη2

2 .

This proves (4.1).
Remark 4.1. Let Pk denote the space of k-degree polynomials and set

V k
h = {v ∈ C1(Ω̄) ∩H1

0 (Ω) : v|K ∈ Pk ∀K ∈ Th}.

Lemmas 2.5 and 6.6 imply, for all vkh ∈ V k
h , that

η2
2 =

∑
l∩∂Ω=∅

∫
Kl

min

(
|∇uh| +

∣∣∣[∂uh

∂n

]
l

∣∣∣)p−2∣∣∣[∂uh

∂n

]
l

∣∣∣2

�
∑

l∩∂Ω=∅
hKl

min

∫
l

(
|∇uh|Kl

min
+
∣∣∣[∂uh

∂n

]
l

∣∣∣)p−2∣∣∣[∂uh

∂n

]
l

∣∣∣2
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�
∑

l∩∂Ω=∅
hKl

min

∫
l

(
|∇uh|Kl

min
+
∣∣∣[∂uh

∂n
− ∂vkh

∂n

]
l

∣∣∣)p−2∣∣∣[∂uh

∂n
− ∂vkh

∂n

]
l

∣∣∣2

�
∑

l∩∂Ω=∅

∫
K1

l ∪K2
l

(
|∇uh|Kl

min
+ |∇(uh − vkh)|

)p−2|∇
(
uh − vkh

)
|2

�
∑
K

∫
K

(|∇uh| + |∇
(
uh − vkh)|

)p−2|∇
(
uh − vkh

)
|2

� |u− uh|2(p) + |u− vkh|2(p).

Let vkh be the Hermite interpolation of u in V k
h . Then, if u is smooth enough, say

u ∈ W 1+ 2
p ,p(Ω) when 1 < p ≤ 2 or u ∈ W 2,p(Ω) when p > 2, |u− vkh|2(p) = o(h2).

Moreover, note that η2
0 = ‖u0 − uh

0‖2
0,Ω = O(h4), η2

1 ≤ Ch2s, s = min{p′, 2} if f, ∂u
∂t ∈

L1(0, T ;W 1,p′
(Ω)).

Remark 4.2. It follows from the proofs of Theorem 4.1 and Lemma 6.4 that for
the case where f is not so smooth, we still have the a posteriori error estimates if we
replace η2

1 by

η̄2
1 =

∫ s

0

∑
K

∫
K

(
|∇uh|p−1 +

∣∣∣f − ∂uh

∂t

∣∣∣)p′−2

h2
K

∣∣∣f − ∂uh

∂t

∣∣∣2 dx dt.
To derive a lower bound we need two lemmas.
Lemma 4.1. Let l be an edge shared by two elements K1

l ,K
2
l ∈ Th: l = K̄1

l ∩ K̄2
l .

Let Kl
max be defined as in the beginning of this section. Then for any constant A,

there exists a function wl ∈ H1
0 (Ω) such that there holds wl|Ω\(K̄1

l ∪K̄2
l ) = 0,

∫
l

Awl =

∫
Kl

max

(|∇uh|p−1 + |A|)p′−2A2,(4.2)

‖wl‖0,∞ � hKl
max

(
|∇uh|p−1

Kl
max

+ |A|
)p′−2

|A|,(4.3)

∫
K1

l ∪K2
l

(|∇uh| + |∇wl|)p−2|∇wl|2 �
∫
Kl

max

(|∇uh|p−1 + |A|)p′−2A2.(4.4)

Lemma 4.2. For any element K ∈ Th and any constant f , there exists a polyno-
mial wK on K such that there holds wK |∂K = 0,∫

K

fwK =

∫
K

(|∇uh|p−1 + hK |f |)p′−2h2
K |f |2,

‖wK‖0,∞ � (|∇uh|p−1 + hK |f |)p′−2h2
K |f |,

∫
K

(|∇uh| + |∇wK |)p−2|∇wK |2 �
∫
K

(
|∇uh|p−1 + hK |f |

)p′−2
h2
K |f |2.

Lemmas 4.1 and 4.2 have been proved in [LY1, LY2]. In the fact, let wl in Lemma
4.1 be such that wl = αlλ1λ2, where λ1, λ2 are the base functions of linear triangular
elements (barycentric co-ordinates) for the two vertices on l, and

αl =

∫
Kl

max

(|∇uh|p−1 + |A|)p′−2|A|2
/∫

l

Aλ1λ2.
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Let wK in Lemma 4.2 be such that wK = αKλ1λ2λ3, where λ1, λ2, and λ3 are the
base functions of linear triangular elements on three vertices of K,

αK =

∫
K

(|∇uh|p−1 + hK |f |)p′−2h2
K |f |2∫

K
fλ1λ2λ3

.

Then one can check that all the conclusions in the Lemmas 4.1 and 4.2 hold. It can
be shown that the first two inequalities in Lemma 4.1 still hold without using Kmax.
However, there are counterexamples for the third inequality. Thus it is necessary to
introduce Kmax (Kmin) in this sense.

Theorem 4.2. Let u and uh be the solutions of (3.1) and (3.2), respectively. Let
p > 1 and p′ > 1 be such that 1

p + 1
p′ = 1. Assume that f, ∂u

∂t ∈ L1(0, T ;Lp′
(Ω)). Then

η2 �
∫ s

0

|u− uh|2(p) dt + ε,

with f̄ |K =
∫
K
f/|K|, ∂u

∂t |K =
∫
K

∂u
∂t /|K|, and

ε =

∫ s

0

∑
K

∫
K

(
|∇uh|p−1 + hK |f − f̄ |

)p′−2
h2
K |f − f̄ |2

+

∫ s

0

∑
K

∫
K

(
|∇uh|p−1 + hK

∣∣∣∂u
∂t

− ∂u

∂t

∣∣∣
)p′−2

h2
K

∣∣∣∂u
∂t

− ∂u

∂t

∣∣∣2,

Proof. It follows from Lemmas 2.1, 2.2, and 4.1 that, for any θ1, θ2 > 0,

η2 =

∫ s

0

∑
l∩∂Ω=∅

∫
Kl

max

(|∇uh|p−1 + |Al|)p
′−2A2

l =

∫ s

0

∑
l∩∂Ω=∅

∫
l

Alwl

=

∫ s

0

∑
l∩∂Ω=∅

∫
l

[
|∇uh|p−2 ∂uh

∂n
− |∇u|p−2 ∂u

∂n

]
l
wl

=

∫ s

0

∑
l∩∂Ω=∅

∫
∂K1

l ∪∂K2
l

(
|∇uh|p−2 ∂uh

∂n
− |∇u|p−2 ∂u

∂n

)
wl

=

∫ s

0

∑
l∩∂Ω=∅

(∫
K1

l ∪K2
l

(|∇uh|p−2∇uh − |∇u|p−2∇u)∇wl +

∫
K1

l ∪K2
l

(
f − ∂u

∂t

)
wl

)

�
∫ s

0

∑
l∩∂Ω=∅

∫
K1

l ∪K2
l

(|∇uh| + |∇(u− uh)|)p−2|∇(uh − u)| |∇wl|

+

∫ s

0

∑
l∩∂Ω=∅

∫
K1

l ∪K2
l

∣∣∣f − ∂u

∂t

∣∣∣hKl
max

(
|∇uh|p−1

Kl
max

+ |Al|
)p′−2|Al|

� θ−γ
1

∫ s

0

∑
l∩∂Ω=∅

∫
K1

l ∪K2
l

(|∇uh| + |∇(uh − u)|)p−2|∇(uh − u)|2

+ θ1

∫ s

0

∑
l∩∂Ω=∅

∫
K1

l ∪K2
l

(|∇uh| + |∇wl|)p−2|∇wl|2

+ θ−γ
2

∫ s

0

∑
l∩∂Ω=∅

∫
K1

l ∪K2
l

(
|∇uh|p−1

Kl
max

+ |Al|
)p′−2

A2
l
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+ θ2

∫ s

0

∑
l∩∂Ω=∅

∫
K1

l ∪K2
l

(
|∇uh|p−1

Kl
max

+ hKl
max

∣∣∣f − ∂u

∂t

∣∣∣)p′−2

h2
Kl

max

∣∣∣f − ∂u

∂t

∣∣∣2

� θ−γ
1

∫ s

0

|u− uh|2(p) + θ2L + C(θ1 + θ−γ
2 )η2,

where γ is defined in Lemma 2.2, and

L =

∫ s

0

∑
K

∫
K

(
|∇uh|p−1 + hK

∣∣∣f − ∂u

∂t

∣∣∣)p′−2

h2
K

∣∣∣f − ∂u

∂t

∣∣∣2.

Let θ1 = 1
4C , θ2 = (4C)

1
γ . Then we have

η2 �
∫ s

0

|u− uh|2(p) dt + L.(4.5)

Let F = f − ∂u
∂t . It follows from Lemma 2.4 that

L =

∫ s

0

∑
K

∫
K

(|∇uh|p−1 + hK |F |)p′−2h2
K |F |2

�
∫ s

0

∑
K

∫
K

(|∇uh|p−1 + hK |F̄ |)p′−2h2
K |F̄ |2

+

∫ s

0

∑
K

∫
K

(|∇uh|p−1 + hK |f − f̄ |)p′−2h2
K |f − f̄ |2(4.6)

+

∫ s

0

∑
K

∫
K

(
|∇uh|p−1 + hK

∣∣∣∣∂u∂t − ∂u

∂t

∣∣∣∣
)p′−2

h2
K

∣∣∣∣∂u∂t − ∂u

∂t

∣∣∣∣
2

� I + ε,

where we have simply written f̄ |K as f̄ and ∂u
∂t |K as ∂u

∂t . It follows from Lemma 4.2
that

I =

∫ s

0

∑
K

∫
K

(|∇uh|p−1 + hK |F̄ |)p′−2h2
K |F̄ |2

=

∫ s

0

∑
K

∫
K

F̄wK =

∫ s

0

∑
K

∫
K

FwK +

∫ s

0

∑
K

∫
K

(F̄ − F )wK(4.7)

= I1 + I2.

It follows from Lemmas 2.1, 2.2, and 4.2 that, for any θ > 0,

I1 =

∫ s

0

∑
K

∫
K

FwK = −
∫ s

0

∑
K

∫
K

div
(
|∇u|p−2∇u− |∇uh|p−2∇uh

)
wK

=

∫ s

0

∑
K

∫
K

(|∇u|p−2∇u− |∇uh|p−2∇uh)∇wK

≤ C

∫ s

0

∑
K

∫
K

(
|∇uh| + |∇(u− uh)|

)p−2|∇(u− uh)| |∇wK |

� θ−γ
1

∫ s

0

∑
K

∫
K

(|∇uh| + |∇(u− uh)|)p−2|∇(u− uh)|2(4.8)
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+ θ1

∫ s

0

∑
K

∫
K

(|∇uh| + |∇wK |)p−2|∇wK |2

� θ−γ
1

∫ s

0

|u− uh|2(p)+θ1

∫ s

0

∑
K

∫
K

(|∇uh|p−1 + hK |F̄ |)p′−2h2
K |F̄ |2

≈ θ−γ
1

∫ s

0

|u− uh|2(p) + θ1I.

It follows from Lemmas 4.2 and 2.2 that, for any θ2 > 0,

I2 =

∫ s

0

∑
K

∫
K

(F̄ − F )wK ≤
∑
K

∫
K

|F − F̄ | ‖wK‖0,∞

�
∫ s

0

∑
K

∫
K

|F − F̄ |(|∇uh|p−1 + hK |F̄ |)p′−2h2
K |F̄ |

� θ−γ
2

∫ s

0

∑
K

∫
K

(|∇uh|p−1 + hK |F̄ |)p′−2h2
K |F̄ |2(4.9)

+ θ2

∫ s

0

∑
K

∫
K

(|∇uh|p−1 + hK |F − F̄ |)p′−2h2
K |F − F̄ |2

� θ−γ
2 I + θ2ε.

From (4.7)–(4.9),

I � θ−γ
1

∫ s

0

|u− uh|2(p) + (θ1 + θ−γ
2 )I + θ2ε.

Let θ1 + θ−γ
2 = 1

2C . Then

I �
∫ s

0

|u− uh|2(p) + ε.(4.10)

It follows from (4.6) and (4.10) that

L �
∫ s

0

|u− uh|2(p)dt + ε.(4.11)

Therefore, Theorem 4.2 follows from (4.5) and (4.11).
Remark 4.3. Note that when f, ∂u

∂t ∈ L1(0, T ;W 1,p′
(Ω)), ε � h2s, s = min{2, p′}.

Then, combined with the results of Remark 4.1, we have that when the solution is
smooth enough,

∫ s

0

|u− uh|2(p) dt− ε∗ � η2 �
∫ s

0

|u− uh|2(p) dt + ε with ε∗, ε = o(h2).

5. A posteriori error estimates for the full discrete scheme.
Theorem 5.1. Let u and U be solutions of (3.1) and (3.4), respectively. Let

p > 1 and p′ > 1 be such that 1
p + 1

p′ = 1. Assume that f ∈ L1(0, T ;W 1,p′
(Ω)). Then

there exists a δ0 > 0 such that for all s ∈ [0, T ], 0 < δ ≤ δ0,

‖(u− U)(s)‖2
0,Ω +

∫ s

0

|u− Û |2(p) dt � η2
0 + C(δ)

(
η̂2
1 + η̂2

2

)
+ η̂2

3 + η̂2
4 + δη̂2

5(5.1)
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with Âl = ((|∇Û |p−2∇Û)K1
l
− (|∇Û |p−2∇Û)K2

l
)n and η0 = ‖u0 − uh

0‖0,Ω,

η̂2
1 =

∫ s

0

∑
K

∫
K

(
|∇Û |p−1 + h2

K

∣∣∣∣∇
(
f̂ − ∂U

∂t

)∣∣∣∣
)p′−2

h4
K

∣∣∣∣∇
(
f̂ − ∂U

∂t

)∣∣∣∣
2

dx dt,

η̂2
2 =

∫ s

0

∑
l∩∂Ω=∅

∫
Kl

max

(|∇Û |p−1 + |Âl|)p
′−2|Âl|2,

η̂2
3 =

∫ s

0

‖f − f̂‖2
L2(Ω) dt, η̂2

4 =

∫ s

0

|U − Û |2
(Û,p)

dt,

η̂2
5 =

∫ s

0

∑
l∩∂Ω=∅

∫
Kl

min

(
|∇Û | +

∣∣∣∣
[
∂Û

∂n

]
l

∣∣∣∣
)p−2∣∣∣∣

[
∂Û

∂n

]
l

∣∣∣∣
2

.

Proof. Let ê = u − U , êI(x, t) = πhê(x, t) ∈ V h
0 be the interpolation of ê(x, t)

defined in Definition 3.1 for almost all t ∈ [0, T ]. It follows from Lemma 2.1 and (3.1),
(3.4) that

1

2
‖(u− U)(s)‖2

0,Ω + α

∫ s

0

|u− Û |2(p) dt

≤ 1

2
‖(u− U)(0)‖2

0,Ω +

∫ s

0

∫
Ω

∂

∂t
(u− U)(u− U)

+

∫ s

0

∫
Ω

(|∇u|p−2∇u− |∇Û |p−2∇Û)∇(u− Û)

=
1

2
η̂2
0 +

∫ s

0

∫
Ω

∂

∂t
(u− U)(ê− êI) +

∫ s

0

∫
Ω

(|∇u|p−2∇u− |∇Û |p−2∇Û)∇(ê− êI)

+

∫ s

0

∫
Ω

∂

∂t
(u− U)êI +

∫ s

0

∫
Ω

(|∇u|p−2∇u− |∇Û |p−2∇Û)∇êI

+

∫ s

0

∫
Ω

(|∇u|p−2∇u− |∇Û |p−2∇Û)∇(U − Û)

=
1

2
η̂2
0 +

∫ s

0

∫
Ω

(
f − ∂U

∂t

)
(ê− êI) −

∫ s

0

∑
K

∫
∂K

|∇Û |p−2 ∂Û

∂n
(ê− êI)

+

∫ s

0

(f − f̂)êI +

∫ s

0

∫
Ω

(|∇u|p−2∇u− |∇Û |p−2∇Û)∇(U − Û)

=
1

2
η̂2
0 +

∫ s

0

∫
Ω

(
f̂ − ∂U

∂t

)
(ê− êI) −

∫ s

0

∑
K

∫
∂K

|∇Û |p−2 ∂Û

∂n
(ê− êI)

+

∫ s

0

(f − f̂)ê +

∫ s

0

∫
Ω

(|∇u|p−2∇u− |∇Û |p−2∇Û)∇(U − Û)

=
1

2
η2
0 + I1 + I2 + I3 + I4.

Similarly, as in Theorem 4.1, it follows from Lemma 6.4 that
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I1 =

∫ s

0

∫
Ω

(
f̂ − ∂U

∂t

)
(ê− êI)

� C(δ1)

∫ s

0

∑
K

∫
K

(
|∇Û |p−1 + h2

K

∣∣∣∇(
f̂ − ∂U

∂t

)∣∣∣)p′−2

h4
K

∣∣∣∇(
f̂ − ∂U

∂t

)∣∣∣2

+ δ1

∫ s

0

∑
K

∫
K

(|∇Û | + |∇ê|)p−2|∇ê|2

+ δ1

∫ s

0

∑
l∩∂Ω=∅

∫
Kl

min

(
|∇Û | +

∣∣∣[∂Û
∂n

]
l

∣∣∣)p−2∣∣∣[∂Û
∂n

]
l

∣∣∣2

� C(δ1)η̂
2
1 + δ1

(∫ s

0

|u− U |2
(Û,p)

+ η̂2
5

)
.

By Lemmas 2.3, 6.3, and 6.5, we similarly have

I2 = −
∫ s

0

∑
K

∫
∂K

|∇Û |p−2 ∂Û

∂n
(ê− êI) = −

∫ s

0

∑
l∩∂Ω=∅

∫
l

Âl(ê− êI)

�
∫ s

0

∑
l∩∂Ω=∅

∫
Kl

max

|Al|
(
h−1
Kl

max
|ê− êI | + |∇(ê− êI)|

)

� δ−β
2

∫ s

0

∑
l∩∂Ω=∅

∫
Kl

max

(|∇Û |p−1 + |Âl|)p
′−2Â2

l

+ δ2

∫ s

0

∑
K

∫
K

(|∇Û | + h−1
K |ê− êI |)p−2h−2

K |ê− êI |2

+ δ2

∫ s

0

∑
K

∫
K

(|∇Û | + |∇(ê− êI)|)p−2|∇(ê− êI)|2

� δ−β
2 η̂2

2 + δ2

(∫ s

0

|u− U |2
(Û,p)

+ η̂2
5

)
.

Then, by Lemma 2.4,

I1 + I2 � C(δ1, δ2)(η̂
2
1 + η̂2

2) + (δ1 + δ2)

(∫ s

0

|u− U |2
(Û,p)

+ η̂2
5

)

� C(δ1, δ2)(η̂
2
1 + η̂2

2) + (δ1 + δ2)

(∫ s

0

|u− Û |2(p) + η̂2
4 + η̂2

5

)
.

It follows from the Schwarz inequality that

I3 =

∫ s

0

∫
Ω

(f − f̂)ê �
∫ s

0

‖f − f̂‖2
0,Ω dt +

∫ s

0

‖ê‖2
0,Ω dt ≈ η̂2

3 +

∫ s

0

‖u− U‖2
0,Ω dt.

It follows from Lemmas 2.1 and 2.2 that

I4 =

∫ s

0

∫
Ω

(|∇u|p−2∇u− |∇Û |p−2∇Û)∇(U − Û)

� θ−γ

∫ s

0

(|∇Û | + |∇(u− Û)|)p−2|∇(u− Û)|2

+ θ

∫ s

0

(|∇Û | + |∇(U − Û)|)p−2|∇(U − Û)|2

≈ θ−γ

∫ s

0

|u− Û |2(p) + θη̂2
4 .
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Hence, letting 2δ0 + θ−γ = α
2C , we have that

‖(u− U)(s)‖2
0,Ω+

∫ s

0

|u− Û |2(p) dt � η̂2
0 +C(δ)(η̂2

1+ η̂2
2)+ η̂2

3+ η̂2
4 + δη̂2

5+

∫ s

0

‖u− U‖2
0,Ωdt.

Then the estimate (5.1) follows from a Gronwall-type inequality.
Theorem 5.2. Let u and U be the solutions of (3.1) and (3.4), respectively. Let

p > 1 and p′ > 1 be such that 1
p + 1

p′ = 1. Assume that f, ∂u
∂t ∈ L1(0, T ;Lp′

(Ω)), and
that c ≤ kj/kj−1 ≤ C. Then

η̂2
2 �

∫ s

0

|u− Û |2(p)dt + ε̂,(5.2)

with

ε̂ =

∫ s

0

∑
K

∫
K

(|∇Û |p−1 + hK |f − f̄ |)p′−2h2
K |f − f̄ |2

+

∫ s

0

∑
K

∫
K

(
|∇Û |p−1 + hK

∣∣∣∣∂u∂t − ∂u

∂t

∣∣∣∣
)p′−2

h2
K

∣∣∣∣∂u∂t − ∂u

∂t

∣∣∣∣
2

,

where f̄ |K =
∫
K
f/|K|, ∂u

∂t |K =
∫
K

∂u
∂t /|K|. Furthermore, for each V ∈ C (0, T ;W 1,2

(Ω)) which is affine in time on each time interval (tj−1, tj ], j = 1, . . . , N , there holds

η̂2
4 �

∫ s

0

|u− Û |2(p) dt +

∫ s

0

|u− V |2(p) dt.(5.3)

Proof. Similarly as in Theorem 4.2, it can be proved that

η̂2
2 �

∫ s

0

|u− Û |2(p) dt + L,

where

L =

∫ s

0

∑
K

∫
K

(
|∇Û |p−1 + hK |f − ∂u

∂t
|
)p′−2

h2
K

∣∣∣f − ∂u

∂t

∣∣∣2.

Similarly, as in Theorem 4.2, it also can be proved that

L �
∫ s

0

|u− Û |2(p) dt + ε̂.

Then (5.2) follows. For x, y ≥ 0 and 1 < p < ∞, let

G(x, y) :=

{
y2(x + y)p−2 if x + y > 0,
0 if x = y = 0.

(5.4)

Then

η̂2
4 :=

∫ s

0

|U − Û |2
(Û,p)

dt =

∫ s

0

∫
Ω

G(|∇Û |, |∇U −∇Û |) dx dt

=
∑
K

n∑
j=1

∫
K

∫ tj

tj−1

G(|∇Û |, |∇U −∇Û |) dt dx.
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We consider one contribution

∫
K

∫ tj

tj−1

G(|∇Û |, |∇U −∇Û |) dt dx ≤ kj

∫
K

G(|∇Uj |, |∇Uj −∇Uj−1|) dx.(5.5)

The inequality follows from (U−Û)(t) = −(tj−t)(Uj−Uj−1)/kj for t ∈ Ij := (tj−1, tj)

and |(U − Û)(t)| ≤ |Uj − Uj−1| combined with the monotonicity of G(x, y) in y. It
follows from Lemma 2.5 that for all a, b, c ∈ Rn,

G(|a|, |a− b|) � (|a| + |b|)p−2|b− a|2 � G(|c|, |a− c|) + G(|c|, |b− c|)
� G(|a|, |a− c|) + G(|b|, |b− c|).

Given V ∈ C(Ij−1 ∪ Ij ;W
1,2(K)), let a := ∇Uj , b := ∇Uj−1, and c := ∇V (tj−1) =

∇Vj−1. Then

∫
K

G(|∇Uj |, |∇Uj −∇Uj−1|) dx

�
∫
K

G(|∇Uj−1|, |∇Uj−1 −∇Vj−1|) dx +

∫
K

G(|∇Uj |, |∇Uj −∇Vj−1|) dx.

A direct calculation shows the estimate

k

2
= min

m∈R

∫ k

0

|1 + mt| dt

for all k > 0. Therefore, for any b ∈ R and k > 0,

k

2
|b| = min

m∈R

∫ k

0

|b + mt| dt.

From this and a decomposition of b ∈ Rn and m ∈ Rn in the direction b and its
orthogonal complement, one infers for all b ∈ Rn and k > 0

k

2
|b| = min

m∈Rn

∫ k

0

|b + mt| dt = min
m∈Rn

∫ 0

−k

|b + mt| dt.

Therefore, for all b,m ∈ Rn,

|b| ≤ 2

kj

∫ tj

tj−1

|b + m(tj − s)| ds, |b| ≤ 2

kj

∫ tj

tj−1

|b + m(tj−1 − s)| ds.

Since G(|a|, ·) is monotone increasing and convex in | · |,

G(|a|, |b|) ≤ G

(
|a|, 2

kj

∫ tj

tj−1

|b + m(tj−1− s)| ds
)

≤ 1

kj

∫ tj

tj−1

G(|a|, 2|b + m(tj−1− s)|) ds.

The latter inequality follows Jensen’s inequality for G(|a|, | · |) convex and so the value
G(|a|, 2b) for the mean value b = 1

kj

∫ tj
tj−1

|b + m(tj−1 − s)| ds of |b + m(tj−1 − s)| is
smaller than or equal to the mean value of G(|a|, 2|b + m(tj−1 − s)|). Note that

Û − V = Uj − Vj−1 +
Vj − Vj−1

kj
(tj−1 − t).
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The last inequality is employed to bound

kj

∫
K

G(|∇Uj |, |∇Uj −∇Vj−1|) dx ≤
∫ tj

tj−1

∫
K

G(|∇Uj |, 2|∇(Û − V )|) dxdt(5.6)

�
∫
K

∫ tj

tj−1

G(|∇Uj |, |∇Û −∇V )| dt dx.

Similarly (with another interval but the same argument), we have

kj

∫
K

G(|∇Uj−1|, |∇Uj−1 −∇Vj−1|) dx �
∫
K

∫ tj−1

tj−2

G(|∇Uj−1|, |∇Û −∇V |) dtdx,

(5.7)

using the condition c ≤ kj/kj−1 ≤ C and

Û − V = Uj−1 − Vj−1 +
Vj−1 − Vj−2

kj−1
(tj−1 − t).

The combination of (5.5)–(5.7) proves that for each V ∈ C(0, T ;W 1,2(Ω)) which is
affine in time on each time interval (tj−1, tj ], j = 1, . . . , N , there holds

η̂2
4 �

∫ s

0

|Û − V |2
(Û,p)

dt.

From this estimate and the aforementioned estimate

G(|a|, |b− a|) � G(|c|, |a− c|) + G(|c|, |b− c|) ∀ a, b, c ∈ Rn,

we deduce

η̂2
4 �

∫ s

0

∫
Ω

G(|∇Û |, |∇Û −∇V |) dt dx

�
∫ s

0

∫
Ω

G(|∇u|, |∇u−∇V |) dt dx +

∫ s

0

∫
Ω

G(|∇u|, |∇u−∇Û |) dt dx.

Then the estimate (5.3) follows.

6. Appendix. In this section, we state some results on the interpolation error
in the quasi-norm from [CLY]. For the readers’ convenience, we include the proofs
here. First, we prove a lemma which is a quasi-norm version of quotient theorem. We
take a general approach here so that the results obtained can be applied to a class of
degenerate systems.

Recall the definition of G(x, y) from (5.4). Without further (explicit) notice, we
shall use the fact that G(x, y) is monotone increasing and convex with respect to the
variable y.

First, we prove a quasi-norm version of the quotient theorem.
Lemma 6.1. Let Ω be a bounded connected open set in R2. Let 1 < p < ∞

and f ∈ (W 1,p(Ω))∗ with P0(Ω) ∩ Ker(f) = {0}. Then there exists a constant c1 =
c(f, p,Ω) such that, for all a ∈ R, a ≥ 0, and v ∈ W 1,p(Ω),

∫
Ω

G(a, |v|) dx ≤ c1 G(a, |f(v)|) + c1

∫
Ω

G(a, |∇v|) dx.
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Proof. We argue by contradiction and suppose the lemma is false. Then there
would exist a sequence vj in W 1,p(Ω) with δj := ‖vj‖1,q > 0, q = min{2, p}, and a
sequence aj of nonnegative real numbers such that

G(aj , |f(vj)|) +

∫
Ω

G(aj , |∇vj |) dx ≤ 1/j

∫
Ω

G(aj , |vj |) dx(6.1)

for all j ∈ N . We observe in any case there exists a u ∈ W 1,q(Ω) with

uj := vj/δj satisfies ‖uj‖1,q = 1, uj ⇀ u in W 1,q(Ω).(6.2)

Here we have chosen a weak convergent subsequence with Banach Alaoglu’s theorem.
In the first case we suppose that there exists a constant γ, 0 < γ < ∞, with

aj ≤ γ δj for j = 1, 2, 3, . . . .(6.3)

At least we suppose (6.3) for a subsequence we have not relabeled. If 1 < p ≤ 2, then
G(a, x) ≤ xp for all x ≥ 0. Therefore, even without (6.3),

∫
Ω

G(aj/δj , |uj |) dx ≤ ‖uj‖pp ≤ 1.

If 2 ≤ p, then G(·, |uj |) is monotone increasing. Hence, (6.2)–(6.3) yields

∫
Ω

G(aj/δj , |uj |) dx ≤
∫

Ω

(γ + |uj |)p−2|uj |2 dx ≤ ‖γ + |uj |‖pp ≤ (1 + γ|Ω|1/p)p.

Hence, for all 1 < p < ∞,
∫
Ω
G(aj/δj , |uj |) dx is bounded. A scaling of (6.1) then

shows

lim
j→∞

∫
Ω

G(aj/δj , |∇uj |) dx = lim
j→∞

G(aj/δj , |f(uj)|) = 0.(6.4)

If 1 < p ≤ 2, a Hölder inequality with exponents 2/p and 2/(2 − p) leads to

‖∇uj‖pp =

∫
Ω

|∇uj |p(aj/δj + |∇uj |)p(p−2)/2(aj/δj + |∇uj |)p(2−p)/2 dx

≤
(∫

Ω

G(aj/δj , |∇uj |) dx
)p/2(∫

Ω

(aj/δj + |∇uj |)p dx
)1−p/2

.(6.5)

The last factor is bounded as j → ∞ by (6.2)–(6.3) and the second last tends to zero
by (6.4). Again, for 1 < p ≤ 2 (when G(·, |f(uj)|) is monotone decreasing), (6.4)
shows that G(γ, |f(uj)|) tends to zero and, hence, so does |f(uj)|. Consequently,

lim
j→∞

‖∇uj‖q = lim
j→∞

|f(uj)| = 0.(6.6)

So far we have established (6.6) for 1 < p ≤ 2. For 2 < p < ∞, |∇uj |p ≤
G(aj/δj , |∇uj |) and |f(uj)|p ≤ G(aj/δj , |f(uj)|) and so (6.4) implies (6.6) directly.
From (6.6) we deduce a contradiction to (6.2): Since W 1,q(Ω) is compactly embed-
ded in Lq(Ω) we have uj → u in Lq(Ω). With (6.6), uj → u in W 1,q(Ω) and so
‖u‖1,q = 1. Conversely, u is constant (as ∇uj → 0 in Lq(Ω)). Since f is a bounded
linear form, f(uj) → f(u) and f(u) = 0. Since u ∈ P0(Ω) ∩ Ker(f), we have u = 0.
This contradiction with ‖u‖1,q = 1 concludes the proof in case (6.3).
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In the remaining second case we suppose that aj/δj is not bounded (not even for
a subsequence). Hence, limj→∞ aj/δj = +∞. One can assume that

δj ≤ γ aj for q = min{2, p} and for j = 1, 2, 3, . . .(6.7)

for a constant γ (and at least for sufficiently large j which we have not relabeled). If
1 < p ≤ 2, we use (1 + δj/aj |uj |)p−2 ≤ 1. If 2 ≤ p < ∞, we use δj/aj ≤ γ. This leads
to

1

j

∫
Ω

(1 + δj/aj |uj |)p−2|uj |2 dx ≤
{

‖uj‖2
2/j if 1 < p ≤ 2,

‖uj‖2
p(γ‖uj‖p + |Ω|1/p)p−2/j if 2 ≤ p < ∞.

(6.8)

Since q = min{2, p} and ‖uj‖1,q = 1, we conclude that (6.8) tends to zero as j → ∞
from embedding. A scaling of (6.1) therefore yields

lim
j→∞

∫
Ω

(1 + δj/aj |∇uj |)p−2|∇uj |2 dx = 0(6.9)

and

lim
j→∞

(1 + δj/aj |f(uj)|)p−2|f(uj)|2 = 0.(6.10)

If 2 ≤ p < ∞, we directly deduce (6.6) for q = 2 and finish the proof as in the first
case since ‖uj‖1,2 = 1. If 1 < p ≤ 2, we argue with a Hölder inequality analogy to
(6.5) and infer

‖∇uj‖2
p ≤

∫
Ω

(1 + δj/aj |∇uj |)p−2|∇uj |2 dx
(∫

Ω

(1 + δj/aj |∇uj |)p dx
) 2−p

p

.

The last factor is bounded according to (6.7) and ‖uj‖1,p = 1. This and (6.9) show
(6.6) with p = q ≤ 2. The proof is then finished as in the first case.

Remark 6.1. Lemma 6.1 is employed in connection with a scaling argument. If
we scale the domain Ω from a reference size 1 to a patch-size h, the first term obtains
the factor h2 from a change of variables while the last term in values h |∇v| instead
of |∇v|. With a different a > 0, this yields

∫
Ω

G(a, |v|) dx �
∫

Ω

G(a, h|∇v|) dx

for all v ∈ W 1,p(Ω) ∩ Ker(f) and h = diam(Ω); the generic constant depends on the
shape of Ω but is h-independent.

Now, let us recall a weighted Clement-type interpolation on the finite element
space V h

0 defined in Definition 3.1. It is essential for later analysis to establish ap-
proximation error estimates in the quasi-norm for the operator π.

Lemma 6.2. For any 1 < p < ∞ and positive integers d and n there exists a
constant c2 = c(p, d, n) such that, for all a1, a2, . . . , an ∈ Rd, there holds

n∑
j=1

j−1∑
k=1

G(|aj |, |aj − ak|) ≤ c2

n−1∑
�=1

min
m=1,...,n

G(|am|, |a�+1 − a�|).
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Proof. Let α := (a1+· · ·+an)/n ∈ Rd and bj := aj−α ∈ Rd so that b1+· · ·+bn =
0. Define

f(α; b1, . . . , bn) :=

n∑
j=1

j−1∑
k=1

G(|α + bj |, |bj − bk|),

g(α; b1, . . . , bn) :=

n−1∑
�=1

min
m=1,...,n

G(|α + bm|, |b�+1 − b�|).

Observe that g(α, ·) is positive for nonzero arguments on

X := {(b1, . . . , bn) ∈ Rd×n : b1 + · · · + bn = 0},

since g(α; b1, . . . , bn) = 0 implies b1 = b2 = · · · = bn. Let

B := {(b1, . . . , bn) ∈ X : |b1|2 + · · · + |bn|2 = 1}

denote the unit ball surface in X. Then, for any β ∈ Rd,

c(β) := max
(b1,...,bn)∈B

f(β; b1, . . . , bn)/g(β; b1, . . . , bn) < ∞,

since the denominator is positive and f(α; ·), g(α; ·) are continuous on the compact
set B. The same argument shows

c∞ := max
(b1,...,bn)∈X\{0}

n∑
j=1

j−1∑
k=1

|bj − bk|2
/ n−1∑

�=1

|b�+1 − b�|2 < ∞.

Note that

lim sup
|β|→∞

c(β) ≤ c∞ < ∞,

and so c(β) is a bounded continuous function in β ∈ Rd. For all a1, . . . , an ∈ Rd, we
have α ∈ Rd and (b1, . . . , bn) ∈ X as above. Since f and g are positively homogeneous
functions we have, for λ := (|b1|2 + · · · + |bn|2)1/2 > 0,

f(α; b1, . . . , bn) = λpf(α/λ; b1/λ, . . . , bn/λ)

� λpg(α/λ, b1/λ, . . . , bn/λ) � g(α; b1, . . . , bn).

Then we have following interpolation error estimates for the interpolator π in the
quasi-norm.

Lemma 6.3. Let π be the operator of Definition 3.1. For any 1 < p < ∞,
uh ∈ Vh, v ∈ W 1,p

0 (Ω), and K ∈ Th, there holds

∫
K

G(|∇uh|, |v − πv|/hK) dx +

∫
K

G(|∇uh|, |∇(v − πv)|) dx(6.11)

�
∑

z∈Λ∩K

(∫
ωz

G(|∇uh|, |∇v|) dx + min
K′∈TK

∫
∪EK

G(|∇uh|K′ |, |[∂uh/∂nε]|) ds
)
.

Here, TK := {K ′ ∈ Th : K̄ ′ ∩ K̄ �= ∅}, ∪EK := ∪{l ⊂ ∂K ′ : K ′ ∈ TK , l ∩ ∂Ω = ∅},
and [∂uh/∂nε] denotes the jump of the discrete normal fluxes across inner element
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boundaries. Consequently,

∑
K

(∫
K

G(|∇uh|, |v − πv|/hK) dx +

∫
K

G(|∇uh|, |∇(v − πv)|) dx
)

�
∑
K

∫
K

G(|∇uh|, |∇v|) dx + η̃2,(6.12)

where

η̃2 =
∑

l∩∂Ω=∅

∫
Kl

min

(
|∇uh| +

∣∣∣∣
[
∂uh

∂n

]
l

∣∣∣∣
)p−2∣∣∣∣

[
∂uh

∂n

]
l

∣∣∣∣
2

.

Proof. In the first step, we show that the first term of the left-hand side of (6.11) is
bounded by the right-hand side. Fix a := ∇uh|K and set vz := (πv)(z) for all z ∈ D.
Since (ψz)z∈Λ∩K is a partition of unity on K, and G satisfies a triangle inequality in
the sense of Lemma 2.4, we have

∫
K

G(|∇uh|, |v − πv|/hK) dx =

∫
K

G(|a|, |
∑

z∈Λ∩K

(vψz − vzϕz)|/hK)dx

�
∑

z∈Λ∩K

∫
K

G(|a|, |vψz − vzϕz|/hK) dx.(6.13)

Let ωz be the support of φz. Since K ⊆ ωz, we have for any fixed z ∈ Λ ∩ K̄,

∫
K

G(|a|, |vψz − vzϕz|/hK) dx ≤
∫
ωz

G(|a|, |vψz − vzϕz|/hK) dx.(6.14)

In the first case, we suppose ψz = ϕz, i.e., all nodes in ωz are free nodes. A scaled
version of Lemma 6.1 with w := (v − vz)/hK , f(w) =

∫
ωz

ϕzw dx, and ψz = ϕz and

|ϕz| ≤ 1 yield

∫
ωz

G(|a|, |vψz − vzϕz|/hK) dx ≤
∫
ωz

G(|a|, |v − vz|/hK) dx

�
∫
ωz

G(|a|, |∇v|) dx.(6.15)

In the remaining second case, ψ �≡ 1 on ωz and so ∂ωz ∩ ∂Ω includes at least one
outer age E. With f(w) =

∫
E
w dx, we deduce from Lemma 6.1 that

∫
ωz

G(|a|, |vψz|/hK)dx ≤
∫
ωz

G(|a|, |v|/hK)dx �
∫
ωz

G(|a|, |∇v|)dx.(6.16)

Since |vz| � |−
∫
ωz
ψzv dx| and G(|a|, ·/hK) is convex, Jensen’s inequality shows

∫
ωz

G(|a|, |vz|/hK) dx �
∫
ωz

G(|a|,
∣∣∣−
∫

ωz

ψzv dx
∣∣∣/hK) dy(6.17)

≤
∫
ωz

−
∫

ωz

G(|a|, |ψzv|/hK) dx dy =

∫
ωz

G(|a|, |ψzv|/hK) dx,
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where the sign −
∫
ωz

represents the integral average over ωz. It follows from the triangle-

like inequality of Lemma 2.4, (6.16)–(6.17), monotonicity in the second argument of
G, and the inequalities 0 ≤ ϕz ≤ 1, 0 ≤ ψ ≤ 1 that

∫
ωz

G(|a|, |vψz − vzϕz|/hK) dx �
∫
ωz

G(|a|, |vψz|/hK) dx(6.18)

+

∫
ωz

G(|a|, |vzϕz|/hK) dx �
∫
ωz

G(|a|, |∇v|) dx.

Notice that a + |∇uh − a| ≈ a + |∇uh| ≈ |∇uh| + |a−∇uh| and so

G(|a|, |∇v|) ≤ G(|a|, |∇v| + |a−∇uh|)
= (|a| + |a−∇uh| + |∇v|)p−2(|∇v| + |a−∇uh|)2

� (|∇uh| + |∇v| + |a−∇uh|)p−2(|∇v| + |a−∇uh|)2(6.19)

= G(|∇uh|, |∇v| + |a−∇uh|).

Then, the triangle inequality of Lemma 2.4 shows

G(|a|, |∇v|) � G(|∇uh|, |∇v|) + G(|∇uh|, |a−∇uh|).(6.20)

This, (6.15), and (6.18) result in

∫
ωz

G(|a|, |vψz − vzϕz|/hK) dx(6.21)

�
∫
ωz

G(|∇uh|, |∇v|) dx +

∫
ωz

G(|∇uh|, |a−∇uh|) dx.

This and Lemma 6.2 with aj = ∇uh|Kj for K1, . . . ,Kn ∈ Th with K1 ∪ · · · ∪Kn = ωz

and {K1 ∩K2, . . . ,Kn−1 ∩Kn} ⊂ ωz proves that (6.13) is bounded by the right-hand
side of (6.11). The second step is to show that the second term on the left-hand side
of (6.11) is bounded in this way as well. To this end, we let c be the integral mean of
v on K. The triangle like inequality of Lemma 2.4 shows

∫
K

G(|∇uh|, |∇(v − πv)|) dx(6.22)

�
∫
K

G(|∇uh|, |∇v|) dx +

∫
K

G(|∇uh|, |∇(πv − c)| dx.

The first term on the right-hand side of (6.22) is already bounded as asserted. To
estimate the second term, note that πv−c is an affine function on K. Then an inverse
estimate shows

|∇(πv − c)| � −
∫

K

|πv − c| dx/hK .(6.23)

It follows from the Jensen’s inequality that

∫
K

G(|∇uh|, |∇(πv − c)|) dx �
∫
K

−
∫

K

G(∇uh|, |πv − c|/hK) dxdy

=

∫
K

G(|∇uh|, |πv − c|/hK) dx.
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The triangle like inequality of Lemma 2.4 yields

∫
K

G(|∇uh|, |πv − c|/hK) dx(6.24)

�
∫
K

G(|∇uh|, |v − πv|/hK) dx +

∫
K

G(|∇uh|, |v − c|/hK) dx.

The first term on the right-hand side of (6.24) is already shown to be bounded by the
right side of (6.11). The same conclusion for the second term follows from Lemma 6.1
with f(w) =

∫
K
w dx and Ω = K as in (6.15):

∫
K

G(|∇uh|, |v − c|/hK) dx �
∫
K

G(|∇uh|, |∇v|) dx.(6.25)

Then it follows from (6.22)–(6.25) that

∫
K

G(|∇uh|, |∇(v − πv)|) dx(6.26)

�
∫
K

G(|∇uh|, |∇v|) dx +

∫
K

G(|∇uh|, |v − πv|/hK) dx.

Hence the desired estimate of the second term on the left-hand side of (6.11) follows
from (6.26) and the first step of the proof.

The next lemma establishes a quasi-norm estimate for the inner produce of a
function and an interpolation error.

Lemma 6.4. For any δ > 0, 1 < p < ∞, uh ∈ Vh, v ∈ W 1,p
0 (Ω), and f ∈

W 1,p′
(Ω), where 1/p + 1/p′ = 1, there exist constants C and C1 (where only C1

depends on δ) such that

∫
Ω

f(v − πv) dx ≤ Cδ

∫
Ω

G(|∇uh|, |∇v|) dx(6.27)

+C1

∫
Ω

(
|∇uh|p−1 + h2

z|∇f |
)p′−2

h4
z|∇f |2 dx

+Cδ
∑
K

min
K′∈TK

∫
∪EK

G(|∇uh|K′ |, |[∂uh/∂nε]|) ds,

where G(·, ·) is defined by (5.4). Therefore, with η̃ defined in Lemma 6.3, there holds

∫
Ω

f(v − πv) ≤ C1

∑
K

∫
K

(|∇uh|p−1 + h2
K |∇f |)p′−2h4

K |∇f |2

+Cδ
∑
K

∫
K

(|∇u| + |∇v|)p−2|∇v|2 + Cδη̃2.(6.28)

Proof. First note that
∫

(vψz − vzϕz) dx = 0. Thus, with fz :=−
∫
ωz
f(x) dx,

∫
Ω

f(v − πv) dx =
∑
z∈Λ

∫
Ω

f(vψz − vzϕz) dx

=
∑
z∈Λ

∫
ωz

(f − fz)hz (vψz − vzϕz)/hz dx.(6.29)
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We use Lemma 2.3 to estimate the product inside the integral. This yields∫
ωz

(f − fz)hz (vψz − vzϕz)/hz dx

≤ δ−β

∫
ωz

(|a|p−1 + |f − fz|hz)
p′−2h2

z|f − fz|2 dx(6.30)

+ δ

∫
ωz

G(|a|, |vψz − vzϕz)|/hz) dx.

Here a is one of the discrete gradients |∇uh| on ωz. Lemma 6.1 will be employed for
f − fz and the functional g(w) =

∫
ωz

w (so it vanishes for w := f − fz). Notice that

a is replaced by |a|p−1 and p is replaced by p′. Then we obtain∫
ωz

(|a|p−1 + |f − fz|hz)
p′−2h2

z|f − fz|2 dx(6.31)

�
∫
ωz

(|a|p−1 + h2
z|∇f |)p′−2h4

z|∇f |2 dx.

Arguing as we had done in proving (6.14)–(6.18), we deduce from (6.30)–(6.31) that∫
ωz

(f − fz)hz (vψz − vzϕz)/hz dx � δ

∫
ωz

G(|a|, |∇v|) dx(6.32)

+ δ−β

∫
ωz

(|a|p−1 + h2
z|∇f |)p′−2h4

z|∇f |2 dx.

So far, a is a constant vector on ωz. Depending on p′, we choose a so that |a| is
minimal or maximal among (|∇uh|K′ : K ′ ∈ TK), and thus∫

ωz

(|a|p−1 + h2
z|∇f |)p′−2h4

z|∇f |2 dx ≤
∫
ωz

(|∇uh|p−1 + h2
z|∇f |)p′−2h4

z|∇f |2 dx.

Arguing as in the first step of the proof of Lemma 6.3, we have∫
ωz

G(|a|, |∇v|) dx �
∫
ωz

G(|∇uh|, |∇v|) dx

+
∑

K∈ωz

min
K′∈TK

∫
∪EK

G(|∇uh|K′ |, |[∂uh/∂nε]|) ds.

Thus the desired estimate follows from (6.32) and the above two inequalities.
Remark 6.2. It follows from the above proofs that Lemmas 6.1–6.4 hold for any

continuous function G(·, ·) such that it is increasing (decreasing) as p ≥ 2 (p ≤ 2) in
the first argument, and is convex and increasing in the second argument.

Next is a well-known trace theorem [KJF].
Lemma 6.5. For all v ∈ W 1,q(K), 1 ≤ q < ∞,

‖v‖0,q,∂K � h
− 1

q

K ‖v‖0,q,K + h
1− 1

q

K |v|1,q,K .(6.33)

We need a quasi-norm version of the trace theorem for polynomials.
Lemma 6.6. Let K ∈ Th and v be a polynomial of degree s ≤ k. Then

hK

∫
∂K

(|∇uh| + |∇v|)p−2|∇v|2 �
∫
K

(|∇uh| + |∇v|)p−2|∇v|2.(6.34)
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The generic constant depends only on k and the aspect ratio of the finite elements.
Proof. Because v is a polynomial in K, by an inverse inequality, we have that,

for any x ∈ K,

|∇v(x)| ≤ |v|1,∞,K � h−2
K

∫
K

|∇v| .

Therefore, it follows from Jensen’s inequality that

hK

∫
∂K

(|∇uh| + |∇v|)p−2|∇v|2 � h2
K

(
|∇uh| +

∫
K

h−2
K |∇v|

)p−2(∫
K

h−2
K |∇v|

)2

≤
∫
K

(|∇uh| + |∇v|)p−2|∇v|2.
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SOME NEW ERROR ESTIMATES OF A SEMIDISCRETE FINITE
VOLUME ELEMENT METHOD FOR A PARABOLIC

INTEGRO-DIFFERENTIAL EQUATION WITH NONSMOOTH
INITIAL DATA∗
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Abstract. A semidiscrete finite volume element (FVE) approximation to a parabolic integro-
differential equation (PIDE) is analyzed in a two-dimensional convex polygonal domain. An optimal-
order L2-error estimate for smooth initial data and nearly the same optimal-order L2-error estimate
for nonsmooth initial data are obtained. More precisely, for homogeneous equations, an elementary

energy technique and a duality argument are used to derive an error estimate of order O
(
t−1h2 lnh

)
in the L2-norm for positive time when the given initial function is only in L2.

Key words. parabolic equation, integro-differential equation, optimal-order error estimate,
smooth and nonsmooth initial data
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1. Introduction. The aim of this paper is to analyze a semidiscrete finite vol-
ume element (FVE) method for solving initial-boundary value problems for an integro-
differential equation of the form

ut −∇ · (A∇u) = −
∫ t

0

∇ · (B∇u(s))ds + f(x, t) in Ω × J,(1.1)

u = 0 on ∂Ω × J,

u(·, 0) = u0 in Ω.

Here, Ω ⊂ R
2 is a bounded convex polygonal domain with boundary ∂Ω, J = (0, T ]

with T < ∞, and ut = ∂u/∂t. Further, A = {ai,j(x)} is a symmetric and uniformly
positive definite matrix of size 2 × 2 in Ω and B = {bi,j(x, t, s)} is a 2 × 2 matrix.
The nonhomogeneous term f = f(x, t) and the coefficients aij(x), bij(x; t, s) are
assumed to be smooth for our purpose. For the sake of simplicity, we shall denote
Au = −∇·(A∇u) and B(t, s)u(s) = −∇·(B∇u(s)). For references to studies regarding
existence, uniqueness, and regularity of such problems, one may refer to [33].

Parabolic integro-differential equations (PIDEs) of the above type arise naturally
in many applications, such as, for instance, heat conduction in materials with memory
[27], nonlocal reactive flows in porous media [10, 11], and non-Fickian flow of fluid in
porous media [15]. One very important characteristic of these models is that they all
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express the conservation of a certain quantity (mass, momentum, heat, etc.) in any
moment for any subdomain. This in many applications is the most desirable feature of
the approximation method when it comes to numerical solution of the corresponding
initial-boundary value problem. For references to studies of existence, uniqueness,
and regularity of such problems, one may refer to [33].

To put our work into proper perspective, we first give a brief account of the
development of the finite element methods for such problems. Over the last decade,
various numerical methods based on finite element approximations in space and special
quadrature in time have been developed and studied for this type of problem [20, 24,
25, 29, 31, 32, 34]. The crucial tools used in the analysis are the Ritz and Ritz–
Volterra projections which are instrumental in deriving optimal-order error estimates
in various Sobolev norms [5, 6, 20]. In [31], the authors studied this type of problem
for both smooth and nonsmooth initial data cases. In particular, for a homogeneous
equation with nonsmooth initial data, an optimal-order L2-error estimate is proved via
a semigroup theoretic approach. Subsequently, using the energy method, the authors

of [25] derived convergence of order O
(
h2

t

)
for the L2-norm and O

(
h2

t log( 1
h )
)

for the
L∞-norm for the homogeneous equation when the initial function is in H1

0 (Ω)∩H2(Ω).
Recently, in [26], the analysis from [21] of the case B(t, s) = 0 was carried over to
a time dependent PIDE. An optimal-order error estimate by energy techniques and
a duality argument for the homogeneous equation with both smooth and nonsmooth
initial data were carried over. In both [21] and [26], negative norm estimates are
used in a crucial way in their analyses. In the absence of the memory term, i.e.,
when B(t, s) ≡ 0, the error estimates for finite element methods for both smooth and
nonsmooth data cases are described in [2, 18, 28, 30] and the references cited therein.

In recent years, the numerical methods for problem (1.1) by means of FVE dis-
cretizations were considered in [13] and [14]. The interest in such methods is due
to certain conservation features of FVE methods that are desirable in many applica-
tions. In [13] and [14], the authors studied FVE approximation of such a problem
in the framework of the standard Petrov–Galerkin formulation and obtained L2-error
estimate of the form (cf. [14, p. 305])

‖u(t) − uh(t)‖ ≤ Ch2(‖u0‖3,p + ‖u(t)‖3,p

+

∫ t

0

(‖u(s)‖3,p + ‖ut(s)‖3,p)ds), p > 1,(1.2)

where u and uh represent the solution of (1.1) and its FVE approximation, respec-
tively. Note that the estimate (1.2) is optimal with respect to the approximation
property, but its regularity requirement on the exact solution seems to be too high
when compared with that for finite element methods. This is primarily due to the
fact that the bounds in the L2-norm of a new variant of the Ritz–Volterra projection
(the so-called Petrov–Volterra projection introduced in [13, 14]) are not optimal with
respect to the regularity of the solution.

In this paper, we analyze the FVE method for the problem (1.1) and derive
optimal-order L2-error estimates for both smooth and nonsmooth initial data. For
the homogeneous problem with smooth initial data, we are able to show an L2-error
estimate which is optimal with respect to the order of convergence as well as the
regularity of the solution. This is exactly the result known for finite element methods
(cf. [25]). More precisely, we prove an optimal-order L2-error estimate for f = 0
and initial data u0 ∈ H2(Ω) ∩ H1

0 (Ω). This technique, quite new and promising, is
based on improved estimates for a new variant of the Ritz–Volterra projection (see
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Theorems 3.1 and 3.2).
The main concern of this paper is to prove an L2-error estimate for the homo-

geneous equation (f = 0) with nonsmooth initial data. This is motivated by the
fact that the solutions of a homogeneous linear parabolic equation have the so-called
smoothing property. That is, the solution is smooth for positive time t, even when the
initial data are not. In quantitative form, this may be expressed by the inequality

‖u(t)‖α ≤ Ct−α/2‖u0‖, t ∈ J,(1.3)

which is valid for any α ≥ 0. Here ‖ · ‖α is a Sobolev norm. However, this is not
the case with PIDEs as they have a limited smoothing property. This fact is proved
in [31], where the inequality (1.3) is shown to be valid only for α ≤ 2. Since the
smoothing property plays a significant role in the error analysis in the semidiscrete
solution, an attempt has been made in this paper to derive an L2-error estimate for
the FVE method when the initial data u0 is only in L2(Ω). More importantly, our
analysis uses only energy techniques and a duality argument.

The proposed techniques have several attractive features. Unlike the analyses of
[21] and [26], we do not require error estimates in negative-indexed Sobolev norms
while dealing with L2-error estimates with nonsmooth initial data. Thus, these re-
sults hold for convex polygonal domains with corners, unlike [21] and [26]. Since the
FVE method is thought of as a perturbation of the Galerkin finite element method,
the proposed technique can easily be adopted to the finite element method as well.
However, to the best of our knowledge the error estimates for nonsmooth initial data
using the FVE method were not established earlier.

The previous work on the theoretical framework and the basic tools for the
analysis of the FVE methods for elliptic and parabolic problems are described in
[3, 4, 9, 7, 8, 12, 16, 17, 19, 22, 23] and references therein.

The outline of this paper is as follows. In section 2, we introduce some notation,
formulate FVE approximations for piecewise linear finite element spaces defined on
a triangulation, and recall some basic estimates from the literature. Further, the
Ritz–Volterra projection is introduced and related estimates are obtained in section
3. Section 4 is devoted to the error estimates for smooth initial data. Finally, error
estimates with nonsmooth initial data are carried out in section 5.

Throughout this paper C denotes a generic positive constant which does not
depend on the mesh parameter h but may depend on T .

2. Notation and preliminaries. Let H1
0 (Ω) =

{
φ ∈ H1(Ω) | φ = 0 on ∂Ω

}
.

Further, let A(·, ·) and B(t, s; ·, ·) be the bilinear forms on H1
0 (Ω) ×H1

0 (Ω) given by

A(u, v) =

∫
Ω

A(x)∇u · ∇vdx; B(t, s;u(s), v) =

∫
Ω

B(x, t, s)∇u(s) · ∇vdx.(2.1)

For the purpose of FVE approximations we now consider the following weak formu-
lation: Find u : J̄ → H1

0 (Ω) such that

(ut, v) + A(u, v) =

∫ t

0

B(t, s;u(s), v)ds + (f, v) ∀v ∈ H1
0 (Ω), t ∈ J,(2.2)

with u(0) = u0.
Here and below, (·, ·) and ‖ · ‖ denote the L2 inner product and the induced norm

on L2(Ω). Further, we shall use the standard notation for Sobolev spaces Wm,p(Ω)
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with 1 ≤ p ≤ ∞. The norm on Wm,p(Ω) is defined by

‖u‖m,p,Ω = ‖u‖m,p =

(∫
Ω

∑
|α|≤m

|Dαu|pdx
)
, 1 ≤ p < ∞,

with the standard modification for p = ∞. When p = 2, we write Wm,2(Ω) by Hm(Ω)
and denote the norm by ‖ · ‖m. Further, H−1(Ω) denotes the space of all bounded
linear functionals on H1

0 (Ω). For a functional f ∈ H−1(Ω), its action on a function
u ∈ H1

0 (Ω) is denoted by (f, u), which represents the duality pairing between H−1(Ω)
and H1

0 (Ω). To simplify notation, we use (·, ·) to denote both the L2(Ω) inner product
and the duality pairing between H−1(Ω) and H1

0 (Ω).

2.1. A priori estimates. In the following lemmas, we state some a priori
bounds for the solution u satisfying (1.1) under appropriate regularity assumptions
on the initial function u0. For a proof, one may refer to [25, 26, 21].

Lemma 2.1. Let u satisfy (1.1). If u0 ∈ L2(Ω) and f ∈ L2(Ω), then

‖u(t)‖2 +

∫ t

0

‖u(s)‖2
1ds ≤ C

(
‖u0‖2 +

∫ t

0

‖f(s)‖2
ds

)
.

Moreover, when u0 ∈ H1
0 (Ω) and f ∈ L2(Ω), we have

‖u(t)‖2
1 +

∫ t

0

{‖us(s)‖2 + ‖u(s)‖2
2}ds ≤ C

(
‖u0‖2

1 +

∫ t

0

‖f(s)‖2ds

)
.

Lemma 2.2. Let u satisfy (1.1). If u0 ∈ H2(Ω) ∩H1
0 (Ω) and f ∈ L2(Ω), then

‖ut(t)‖2 +

∫ t

0

‖us(s)‖2
1ds ≤ C

(
‖ut(0)‖2 +

∫ t

0

‖f(s)‖2
ds

)
.

Lemma 2.3. Let u satisfy (1.1) with f = 0, and let 0 ≤ i, j, k ≤ 2. If 0 ≤
k + 2j − i ≤ 2, then

ti
∥∥∥∥∂

ju

∂tj
(t)

∥∥∥∥
2

k

≤ C‖u0‖2
k+2j−i.

Further, if 0 ≤ k + 2j − i− 1 ≤ 2, then

∫ t

0

si
∥∥∥∥∂

ju

∂sj
(s)

∥∥∥∥
2

k

ds ≤ C‖u0‖2
k+2j−i−1.

2.2. FVE approximation. Let Th be a quasi-uniform family of triangulations
of Ω such that Ω̄ = ∪K∈Th

K, where K is a closed triangle element. Let Nh be the set
of all nodes or vertices of Th, i.e.,

Nh = {p : p is a vertex of element K ∈ Th and p ∈ Ω̄}.

Further, we denote N0
h = Nh ∩ Ω. For a vertex xi ∈ Nh, let Π(i) be the index set of

those vertices that, along with xi, are in some element of Th.
For a given triangulation Th, we now introduce a dual mesh T ∗

h as follows: In
each element K ∈ Th with vertices xi, xj , and xk, select a point q ∈ K, select a point
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Vi

xi

xij

xj

V

xi xij

γij

xj

γ ij

i

Fig. 2.1. Control volumes with barycenter as internal point and interface γij of Vi and Vj .

xij on the edge connecting xi and xj , and connect q with xij by straight lines γij,K .
Then for a vertex xi we let Vi be the polygon whose edges are γij,K in which xi is a
vertex of the element K. We call this Vi a control volume centered at xi. Further, we
note that ∪xi∈Nh

Vi = Ω̄. Thus, the dual mesh T ∗
h is then defined as the collection of

these control volumes. A control volume centered at a vertex xi is given in Figure 2.1.
We call the control volume mesh T ∗

h regular or quasi-uniform if there exists a
positive constant C > 0 such that

C−1h2 ≤ meas(Vi) ≤ Ch2 ∀ Vi ∈ T ∗
h ,

where h is the maximum diameter of all elements K ∈ Th.
There are various ways to introduce a regular dual mesh T ∗

h depending on the
choices of the point q in an element K ∈ Th and the points xij on its edges. In this
paper, we choose q to be the barycenter of an element K ∈ Th, and the points xij are
chosen to be the midpoints of the edges of K. Obviously, if Th is regular, i.e., there
is a constant C such that

Ch2
K ≤ meas(K) ≤ h2

K ,

where hK = diam(K) for all elements K ∈ Th, then the dual mesh T ∗
h is also regular.

For the purpose of FVE approximation, let Sh be the standard linear finite element
space defined on the triangulation Th,

Sh = {v ∈ C(Ω) : v|K is linear ∀ K ∈ Th and v|∂Ω = 0},

and its dual volume element space S∗
h,

S∗
h = {v ∈ L2(Ω) : v|V is constant ∀ V ∈ T ∗

h and v|∂Ω = 0}.

Obviously, Sh = span{φi(x) : xi ∈ N0
h} and S∗

h = span{ψi(x) : xi ∈ N0
h}, where

φi are the standard nodal basis functions associated with the node xi, and ψi are the
characteristic functions of the volume Vi. Let Ih : C(Ω) → Sh and I∗h : C(Ω) → S∗

h

be the usual interpolation operators, i.e.,

Ihu(x) =
∑

xi∈Nh

uiφi(x) and I∗hu(x) =
∑

xi∈Nh

uiψi(x),

where ui = u(xi).
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The FVE approximation is then defined to be the function uh : J̄ → Sh such that

(uht, I
∗
hχ) + A(uh, I

∗
hχ) =

∫ t

0

B(t, s;uh(s), I∗hχ)ds + (f, I∗hχ) ∀χ ∈ Sh.(2.3)

Here uh(0) = P̃hu0, where P̃hu0 is the L2-projection of u0 onto Sh defined by

(P̃hu0, I
∗
hχ) = (u0, I

∗
hχ) ∀χ ∈ Sh,(2.4)

the bilinear forms A(·, ·) and B(t, s; ·, ·) in (2.3) are defined by

A(u, v) = −
∑

xi∈Nh

vi

∫
∂Vi

A(x)∇u · ndSx,

B(t, s;u, v) = −
∑

xi∈Nh

vi

∫
∂Vi

B(x, t, s)∇u · ndSx

for (u, v) ∈ ((H1
0 ∩H2) ∪ Sh) × S∗

h, and n is the outer-normal vector of the involved
integration domain. Note that when (u, v) ∈ H1

0 (Ω)×H1
0 (Ω), the bilinear forms A(·, ·)

and B(t, s; ·, ·) are given by (2.1).
In order to describe features of the bilinear forms defined in (2.2) and (2.3), we

use some discrete norms on Sh and S∗
h,

|uh|20,h = (uh, uh)0,h, |uh|21,h =
∑

xi∈Nh

∑
xj∈Π(i)

meas(Vi)((uhi − uhj)/d
2
ij ,

‖uh‖2
1,h = |uh|20,h + |uh|21,h, ‖|uh‖|2 = (uh, I

∗
huh),

where (uh, vh)0,h =
∑

xi∈Nh
meas(Vi)uhivhi = (I∗huh, I

∗
hvh) and dij = d(xi, xj) is the

Euclidean distance between xi and xj .
The discrete norms | · |0,h and ‖ · ‖1,h are equivalent to the usual norms ‖ · ‖ and

‖ · ‖1, respectively, on Sh. Some properties of the bilinear forms are stated below
without proof. For a proof, see, e.g., [1, 12, 14].

Lemma 2.4. There exist positive constants C1 and C2 such that for all vh ∈ Sh,
we have

C1|vh|0,h ≤ ‖vh‖ ≤ C2|vh|0,h,

C1‖|vh‖| ≤ ‖vh‖ ≤ C2‖|vh‖|,

C1‖vh‖1,h ≤ ‖vh‖1 ≤ C2‖vh‖1,h.

Lemma 2.5. There exist positive constants C and c such that for all φh, ψh ∈ Sh,
we have

|A(φh, I
∗
hψh)| ≤ C‖φh‖1‖ψh‖1,

|B(t, s;φh, ψh)| ≤ C‖φh‖1‖ψh‖1,

and

A(φh, I
∗
hφh) ≥ c‖φh‖2

1.

Lemma 2.6. If the matrix A(x) is constant over each element K ∈ Th, then we
have

A(uh, χ) = A(uh, I
∗
hχ) ∀uh, χ ∈ Sh.
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Following the arguments of Lemma 2.3 on the discrete level, it is easy to derive
the following stability estimates for the FVE solution uh satisfying (2.3).

Lemma 2.7. Let uh satisfy (2.3) with f = 0. Then we have

‖uh(t)‖2 +

∫ t

0

‖uh(s)‖2
1ds ≤ C‖uh(0)‖2,

∫ t

0

s‖uhs(s)‖2 + t‖uh(t)‖2
1ds ≤ C‖uh(0)‖2,

t2‖uht(t)‖2 +

∫ t

0

s2‖uhs(s)‖2
1ds ≤ C‖uh(0)‖2.

The following lemma gives the key feature of the bilinear forms in the FVE
method. For a proof, see [12] or [7].

Lemma 2.8. Let φ ∈ H1
0 (Ω). Then we have

A(φ, χ) = A(φ, I∗hχ) +
∑

K∈Th

∫
∂K

(A∇φ · n)(χ− I∗hχ)dS

−
∑

K∈Th

∫
K

(∇ ·A∇φ)(χ− I∗hχ)dx ∀χ ∈ Sh.

The above identity holds true when A(·, ·) is replaced by B(t, s; ·, ·).
Remark 2.9. We note that the above identity is proved in [12, 7] for φ, χ ∈ Sh.

In fact, identities in Lemma 2.8 holds true even if φ ∈ H1
0 (Ω).

3. Ritz–Volterra projection and related estimates. Following Lin et al.
[20], we define the Ritz–Volterra projection Whu of a function u(x, t) defined on
Ω × J̄ in the context of the FVE method and obtain bounds for the error in H1 and
L2 norms. The Ritz–Volterra projection Wh : L∞(H1

0 ∩H2) → L∞(Sh) is defined by

A((u−Whu)(t), I∗hχ) =

∫ t

0

B(t, s; (u−Whu)(s), I∗hχ)ds ∀ χ ∈ Sh, t ∈ J̄ .(3.1)

Below, we shall prove a lemma which is frequently used in our subsequent analysis.
Lemma 3.1. For any function φ ∈ Hr(Ω)(r = 0, 1), we have

|(φ, χ− I∗hχ)| ≤ Ch1+r‖φ‖r‖χ‖1 ∀ χ ∈ Sh.(3.2)

Further, for φ ∈ H1
0 (Ω), we have

|A(φ, χ− I∗hχ)| ≤ Ch‖φ‖1‖χ‖1 ∀ χ ∈ Sh.(3.3)

The second inequality also holds true when A(·, ·) is replaced by B(t, s; ·, ·).
Proof. We borrow the proof of (3.2) from [8]. To show (3.3), we have [7]

A(φ, χ− I∗hχ) = −
∑

K∈Th

∫
K

(∇ · A∇φ)(χ− I∗hχ)dx

+
∑

K∈Th

∫
∂K

((A− ĀK)∇φ · n)(χ− I∗hχ)dS.(3.4)
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Here, ĀK is a function designed in a piecewise manner such that for any edge E
of a triangle K ∈ Th and x ∈ E, ĀK(x) = A(xc), where xc is the midpoint of E.
Applying the Cauchy–Schwarz inequality and using the fact that ‖χ−I∗hχ‖ ≤ Ch‖χ‖1

and |A(x) − ĀK | ≤ h‖A‖1,∞, we obtain

|A(φ, χ− I∗hχ)| ≤ Ch‖φ‖1‖χ‖1,

and this completes the proof.
Set ρ = u−Whu. We now establish the H1-error estimate for ρ and its temporal

derivative.
Theorem 3.1. Let Whu be defined by (3.1). Then we have

‖ρ(t)‖1 ≤ Ch

(
‖u(t)‖2 +

∫ t

0

‖u(s)‖2ds

)
,

‖ρt(t)‖1 ≤ Ch

(
‖u(t)‖2 + ‖ut(t)‖2 +

∫ t

0

‖u(s)‖2ds

)
.

Proof. With φh = Ihu−Whu, we have

c‖ρ‖2
1 ≤ A(ρ, ρ) = A(ρ, u− Ihu) + A(ρ, Ihu−Whu)

= A(ρ, u− Ihu) + A(ρ, φh − I∗hφh) +

∫ t

0

B(t, s; ρ(s), I∗hφh)ds.

An application of (3.3) yields

c‖ρ‖2
1 ≤ Ch(‖u‖2 + ‖u‖1)‖ρ‖1 + C

(∫ t

0

‖ρ‖1ds

)
(‖ρ‖1 + h‖u‖2),

where for the last term on the right we have used the fact that ‖φh‖1 ≤ C(‖ρ‖1 +
h‖u‖2). Kicking back ‖ρ‖1, we get

‖ρ‖2
1 ≤ C

(
h2‖u‖2

2 +

∫ t

0

‖ρ‖2
1ds

)
.

Now applying Gronwall’s lemma, we obtain the first inequality. To estimate ‖ρt‖1,
we differentiate (3.1) with respect to time t to get

A(ρt, I
∗
hχ) = B(t, t, ρ(t), I∗hχ) +

∫ t

0

Bt(t, s; ρ(s), I
∗
hχ)ds.(3.5)

As before, with φh = Ihut −Whut we obtain

c‖ρt‖2
1 ≤ A(ρt, ρt) = A(ρt, ut − Ihut) + A(ρt, φh − I∗hφh) + B(t, t, ρ(t), I∗hφh)

+

∫ t

0

Bt(t, s; ρ(s), I
∗
hφh)ds.

Now apply (3.3), the estimate of ‖ρ‖1, and the standard kickback argument to obtain
the second inequality.

Next, we derive L2 estimates for ρ = u−Whu and its temporal derivative in the
following theorem.
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Theorem 3.2. Let Whu be defined by (3.1). Then we have

‖ρ(t)‖ ≤ Ch2

(
‖u(t)‖2 +

∫ t

0

‖u(s)‖2ds

)
,

‖ρt(t)‖ ≤ Ch2

(
‖u(t)‖2 + ‖ut(t)‖2 +

∫ t

0

‖u(s)‖2ds

)
.

Proof. The proof will proceed by the duality argument. For t ∈ (0, T ) let ψ(t) ∈
H2(Ω) ∩H1

0 (Ω) be the solution of

Aψ = ρ in Ω,(3.6)

ψ = 0 on ∂Ω,

satisfying the following regularity estimate (recall that Ω is convex):

‖ψ‖2 ≤ C‖ρ‖.(3.7)

Multiplying (3.6) by ρ and then integrating over Ω, we obtain

‖ρ‖2 = A(ρ, ψ − Ihψ) + A(ρ, Ihψ − I∗h(Ihψ))

+

∫ t

0

B(t, s; ρ(s), I∗h(Ihψ) − Ihψ)ds +

∫ t

0

B(t, s; ρ(s), Ihψ − ψ)ds

+

∫ t

0

B(t, s; ρ(s), ψ)ds = I1 + I2 + I3 + I4 + I5.

In view of Theorem 3.1, I1 and I4 are bounded as

|I1| + |I4| ≤ Ch2

(
‖u‖2 +

∫ t

0

‖u‖2ds

)
‖ψ‖2.

For I2 and I3, an application of Lemma 3.3 and Theorem 3.1 yields

|I2| + |I3| ≤ Ch

(
‖ρ‖1 +

∫ t

0

‖ρ‖1ds

)
‖ψ‖1 ≤ Ch2

(
‖u‖2 +

∫ t

0

‖u‖2ds

)
‖ψ‖1.

Finally, I5 is estimated as

|I5| ≤
∣∣∣∣
∫ t

0

(ρ(s), B∗(t, s)ψ)

∣∣∣∣ ds ≤ C

(∫ t

0

‖ρ‖ds
)
‖ψ‖2,

where B∗(t, s) is the adjoint of B(t, s). Now putting these estimates together and with
an aid of (3.7) we obtain

‖ρ‖ = Ch2

(
‖u‖2 +

∫ t

0

‖u‖2ds

)
+ C

∫ t

0

‖ρ‖ds.

Finally, an application of Gronwall’s lemma yields the first estimate. To estimate
‖ρt‖, we again use the duality argument, (3.5), and the estimate of ‖ρ‖ to complete
the proof.

Remark 3.2. (i) The estimates in Theorem 3.2 are optimal with respect to the
order of convergence as well as the regularity requirement on the solution. This
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improves upon the earlier result of [13] and [14] by requiring less regularity on the
solution.

(ii) In the absence of an integral term (when B(t, s) = 0), as a consequence of
Theorems 3.1 and 3.2, error estimates associated with the Petrov–Ritz projection
Rh : H1

0 → Sh defined by

A(Rhu− u, I∗hχ) = 0 ∀ χ ∈ Sh, t ∈ J̄ ,

can easily be obtained. Thus, we immediately have

‖Rhu− u‖ + h‖Rhu− u‖1 ≤ Chj‖u‖j , u ∈ H1
0 (Ω) ∩Hj(Ω), j = 1, 2.(3.8)

Below, we shall prove a lemma which is crucial for the error estimate in the case
of nonsmooth initial data to be discussed in section 5.

Define ρ̂(t) =
∫ t

0
ρ(τ)dτ . Then, integrating by parts we rewrite (3.1) as

A(ρ̂t(t), I
∗
hχ) =

∫ t

0

B(t, s; ρ̂s(s), I
∗
hχ)ds

= B(t, t, ρ̂, I∗hχ) −
∫ t

0

Bs(t, s; ρ̂(s), I
∗
hχ)ds.

Integrate from 0 to t to obtain

A(ρ̂(t), I∗hχ) =

∫ t

0

B(s, s, ρ̂(s), I∗hχ)ds−
∫ t

0

∫ s

0

Bs(s, τ ; ρ̂(τ), I∗hχ)dτds.(3.9)

Lemma 3.2. Let u be the solution of the initial value problem (1.1) with f = 0

and ρ̂(t) =
∫ t

0
(u−Whu)(s)ds. Then we have

‖ρ̂‖ + h‖ρ̂‖1 ≤ Ch2‖u0‖.

Proof. With φh = Ihû−Whû, we have

c‖ρ̂‖2
1 ≤ A(ρ̂, ρ̂) = A(ρ̂, û− Ihû) + A(ρ̂, Ihû−Whû)

≤ A(ρ, û− Ihû) + A(ρ̂, φh − I∗hφh) +

∫ t

0

B(s, s; ρ̂(s), I∗hφh)ds

−
∫ t

0

∫ s

0

Bs(s, τ ; ρ̂(τ), I∗hφh)dτds,

where û(t) =
∫ t

0
u(s)ds. Then proceeding as in the estimate of ‖ρ‖1 in Theorem 3.1

we obtain

‖ρ̂‖1 ≤ Ch

(
‖û‖2 +

∫ t

0

‖û‖2ds

)
.(3.10)

Now it remains to estimate ‖û‖2. From (1.1) with f = 0, we have

Au = −ut +

∫ t

0

B(t, s)ûs(s)ds = −ut + B(t, t)û(t) −
∫ t

0

Bs(t, s)û(s)ds.

Integrating from 0 to t and then using elliptic regularity and Lemma 2.1, we obtain

‖û‖2 ≤ ‖u0‖ + ‖u(t)‖ + C

∫ t

0

‖û‖2ds ≤ C‖u0‖ + C

∫ t

0

‖û‖2ds.
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Now an application of Gronwall’s lemma yields

‖û‖2 ≤ C‖u0‖.(3.11)

Combine (3.10) and (3.11) to obtain ‖ρ̂‖1. Next, using (3.9), the proof technique of
‖ρ‖ in Theorem 3.2, and (3.11), the estimate of ‖ρ̂‖ can be easily obtained. This
completes the rest of the proof.

4. Error estimates for problems with smooth initial data. In this section,
we estimate the error of the semidiscrete FVE method for problems with smooth
initial data. In particular, an optimal-order L2-error estimate is obtained when u0 ∈
H1

0 (Ω) ∩H2(Ω).
As usual we write the error e(t) = u(t) − uh(t) as a sum of two terms e(t) =

(u−Whu) + (Whu− uh) = ρ + θ. The estimate of ‖ρ‖ is already established, so it is
enough to estimate ‖θ‖. Using (2.3), an equation of the form (2.3) with uh replaced
by u, and (3.1), it is easy to verify that θ satisfies an error equation of the form

(θt, I
∗
hχ) + A(θ, I∗hχ) =

∫ t

0

B(t, s; θ(s), I∗hχ)ds− (ρt, I
∗
hχ) ∀χ ∈ Sh.(4.1)

Analogously, integrating (2.3) from 0 to t and then using the resulting equation with

uh replaced by u, (3.9), and uh(0) = P̃hu0, we obtain an error equation in θ̂ as

(θ̂t, I
∗
hχ) + A(θ̂, I∗hχ) =

∫ t

0

B(s, s; θ̂(s), I∗hχ)ds

−
∫ t

0

∫ s

0

Bτ (s, τ ; θ̂(τ), I∗hχ)dτds− (ρ, I∗hχ), χ ∈ Sh,(4.2)

where θ̂(t) =
∫ t

0
θ(s)ds. Below, we shall prove a sequence of lemmas that will lead us

to the desired result.
Lemma 4.1. There is a positive constant C such that

‖θ̂(t)‖2
+

∫ t

0

‖θ̂(s)‖2

1ds ≤ C

∫ t

0

‖ρ(s)‖2
ds.

Proof. Choose χ = θ̂ in (4.2) to have

1

2

d

dt
(θ̂, I∗hθ̂) + A(θ̂, I∗hθ̂) =

∫ t

0

B(s, s; θ̂(s), I∗hθ̂(t))ds

−
∫ t

0

∫ s

0

Bτ (s, τ ; θ̂(τ), I∗hθ̂)dτds− (ρ, I∗hθ̂).

Integrating from 0 to t and using the standard kickback argument yield

‖θ̂(t)‖2
+

∫ t

0

‖θ̂(s)‖2

1ds ≤ C

∫ t

0

‖ρ(s)‖2ds + C

∫ t

0

∫ s

0

‖θ̂(τ)‖2

1dτds.

Finally, apply Gronwall’s lemma to complete the rest of the proof.
Lemma 4.2. There is a positive constant C such that

∫ t

0

‖θ(s)‖2
ds + ‖θ̂(t)‖2

1 ≤ C

∫ t

0

‖ρ(s)‖2
ds.
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Proof. Take χ = θ in (4.2) and integrate from 0 to t to have

∫ t

0

(θ, I∗hθ)ds +
1

2
A(θ̂, I∗hθ̂) =

∫ t

0

∫ s

0

B(τ, τ ; θ̂(τ), I∗hθ(s))dτds

−
∫ t

0

∫ s

0

∫ τ

0

Bτ ′(τ, τ ′; θ̂(τ ′), I∗hθ(s))dτ
′dτds− (ρ, I∗hθ)

= I1 + I2 + I3.

For I1, we note that

I1 =

∫ t

0

∫ t

τ

B(τ, τ ; θ̂(τ), I∗hθ̂s(s))dsdτ

=

∫ t

0

B(τ, τ ; θ̂(τ), I∗hθ̂(t))dτds−
∫ t

0

B(τ, τ ; θ̂(τ), I∗hθ̂(τ))dτ.

Similarly, we rewrite the term I2. Now use the standard kickback argument to obtain

∫ t

0

‖θ(s)‖2ds + ‖θ̂‖2
1 ≤ C

∫ t

0

‖θ̂‖2
1ds + C

∫ t

0

‖ρ‖2ds.

Finally, an application of Lemma 4.1 completes the rest of the proof.
Lemma 4.3. There is a positive constant C such that

t‖θ(t)‖2
+

∫ t

0

s‖θ(s)‖2
1ds ≤ C

∫ t

0

{‖ρ(s)‖2
+ s2‖ρs(s)‖2}ds.

Proof. Take χ = tθ in (4.1) and integrate by parts to have

1

2

d

dt
{t(θ, I∗hθ)} + tA(θ, I∗hθ) =

1

2
(θ, I∗hθ) + tB(t, t; θ̂(t), I∗hθ(t))

−
∫ t

0

tBs(t, s; θ̂(s), I
∗
hθ(t))ds− t(ρt, I

∗
hθ).

Integrating from 0 to t and applying the standard kickback argument, we obtain

t‖θ(t)‖2
+ c

∫ t

0

s‖θ(s)‖2
1ds ≤ C

∫ t

0

‖θ̂(s)‖2

1ds + C

∫ t

0

∫ s

0

‖θ̂(τ)‖2

1dτds

+C

∫ t

0

{‖θ‖2
+ s2‖ρs‖2}ds.

Then use Lemmas 4.1 and 4.2 to complete the proof.
The main result of this section is given in the following theorem.
Theorem 4.1. Let u and uh, respectively, satisfy (1.1) and (2.3) with f = 0.

Then for u0 ∈ H2(Ω) ∩H1
0 (Ω) and uh(0) = P̃hu0, we have

‖e(t)‖ ≤ Ch2‖u0‖2.

Proof. By the triangle inequality, we write

t1/2‖e(t)‖ ≤ t1/2‖ρ(t)‖ + t1/2‖θ(t)‖.
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By Theorem 3.2 and a priori estimates in Lemma 2.3, the first term on the right is
bounded by

t1/2‖ρ(t)‖ ≤ Ch2t1/2‖u0‖2.

For the second term, we use Lemma 4.3, Theorem 3.2, and a priori estimates in
Lemma 2.3 to have

t1/2‖θ‖ ≤ C

(∫ t

0

{‖ρ(s)‖2
+ s2‖ρs(s)‖2}ds

)1/2

≤ Ch2t1/2‖u0‖2.

Altogether these estimates yield the desired result and this completes the proof.
Remark 4.4. Note that the result presented in Theorem 4.1 is optimal with respect

to the approximation property as well as the regularity of the solution. Similar result
for finite element methods is established in [31, 25, 26].

5. Error estimates for nonsmooth initial data. In this section we establish
one of the main results of the paper, namely, an error estimate for problems with
nonsmooth initial data. More precisely, an almost optimal-order L2-error estimate is
obtained when u0 ∈ L2(Ω).

The following lemma is useful in our subsequent analysis.
Lemma 5.1. For all χ1, χ2 ∈ Sh, we have

A(χ1, χ2 − I∗hχ2)| ≤ Ch2(‖χ1‖1 + h−1/2‖û− χ1‖1)‖χ2‖1,

where û(t) =
∫ t

0
u(s)ds. The above estimate also holds true when A(·, ·) is replaced by

B(t, s; ·, ·).
Proof. From (3.4), we have

A(χ1, χ2 − I∗hχ2) = −
∑

K∈Th

∫
K

(∇ · A∇χ1)(χ2 − I∗hχ2)dx

+
∑

K∈Th

∫
∂K

((A− ĀK)∇χ1 · n)(χ2 − I∗hχ2)dS = I1 + I2.

Since the dual mesh is formed by the barycenters, we have∫
K

(χ− I∗hχ)dx = 0 ∀χ ∈ Th,

and hence, we apply the Cauchy–Schwarz inequality to have

|I1| =

∣∣∣∣∣
∑

K∈Th

∫
K

(
∇ · A∇χ1 − (∇ · A∇χ1)K

)
(χ2 − I∗hχ2) dx

∣∣∣∣∣ ≤ Ch2‖χ1‖1‖χ2‖1,

where (∇ · A∇χ1)K = 1
area(K)

∫
K
∇ ·A∇χ1 dx. Since ∇û · n is continuous across any

edge E ∈ Th, we may rewrite I2 as

I2 =
∑

K∈Th

∫
∂K

(
(A− ĀK)∇(û− χ1) · n

)
(χ2 − I∗hχ2)dS,

and hence using the fact that |A(x)−ĀK | ≤ h‖A‖1,∞, the Cauchy–Schwarz inequality,
and trace results, we obtain

|I2| ≤ Ch
∑

K∈Th

‖∇(û− χ1)‖L2(∂K)‖χ2 − I∗hχ2‖L2(∂K) ≤ Ch3/2‖û− χ1‖1‖χ2‖1.
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Combining these estimates we complete the proof.
Below, we shall prove several lemmas which will be used to derive error estimates

for problems with nonsmooth initial data.
Lemma 5.2. Let u and uh be the solution of (1.1) and (2.3), respectively. Then

for u0 = 0, we have

∫ t

0

‖u(s) − uh(s)‖2
1ds ≤ Ch2

(
‖f(0)‖2 +

∫ t

0

‖f‖2
ds

)
.

Proof. Set χ = Rhe in the error equation

(et, I
∗
hχ) + A(e, I∗hχ) =

∫ t

0

B(t, s; e(s), I∗hχ)ds(5.1)

to get

1

2

d

dt
‖|e‖|2 + A(e, e) = (et, u− I∗h(Rhu)) + A(e, u− I∗h(Rhu))

−
∫ t

0

B(t, s; e(s), I∗h(Rhu) − I∗huh)ds + (et, I
∗
huh − uh)

+A(e, I∗huh − uh) = I1 + I2 + I3 + I4 + I5.

By (3.8), (3.2), and (3.3), we have

|I1| + |I2| ≤ |(et, u−Rhu)| + |(et, Rhu− I∗h(Rhu))|
+ |A(e, u−Rhu)| + |A(e,Rhu− I∗h(Rhu))|

≤ Ch2(‖et‖‖u‖2 + ‖et‖1‖u‖1) + Ch‖e‖1(‖u‖2 + ‖u‖1).

Again, in view of (3.2) and (3.3), I4 and I5 can be estimated as

|I4| + |I5| ≤ C(h2‖et‖1 + h‖e‖1)‖uh‖1.

To estimate I3, we first rewrite it as

I3 =

∫ t

0

B(t, s; e(s), I∗h(Rhu) −Rhu)ds +

∫ t

0

B(t, s; e(s), Rhu− u)ds

+

∫ t

0

B(t, s; e(s), e)ds +

∫ t

0

B(t, s; e(s), uh − I∗huh)ds.

Apply (3.3) and (3.8) to obtain

|I3| ≤ Ch

(∫ t

0

‖e(s)‖1ds

)
(‖u‖1 + ‖u‖2 + ‖uh‖1) + C

(∫ t

0

‖e(s)‖1ds

)
‖e‖1.

Combining these estimates now leads to

1

2

d

dt
‖e‖2

+ A(e, e) ≤ Ch2‖et‖‖u‖2 + Ch2‖et‖1(‖u‖1 + ‖uh‖1) + Ch‖e‖1‖u‖1

+ h

(∫ t

0

‖e‖1ds

)
(‖u1‖ + ‖u‖2 + ‖uh‖1) + C

(∫ t

0

‖e(s)‖1ds

)
‖e‖1.
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Integrate from 0 to t, use the fact that e(0) = 0, and then apply the standard kickback
argument to obtain

∫ t

0

‖e(s)‖2
1ds ≤ Ch2

[∫ t

0

(‖uh‖2
1 + ‖u‖2

2 + ‖et‖2 + ‖et‖2
1)ds

]
+ C

∫ t

0

∫ s

0

‖e(τ)‖2
1dτds.

The desired estimate now easily follows from Lemmas 2.1 and 2.2, its discrete ana-
logue, and Gronwall’s lemma.

Define ê(t) =
∫ t

0
e(s)ds. Then, as a consequence of Lemmas 4.2 and 3.2 and a

priori estimates we have the following lemma.
Lemma 5.3. Assume that u0 ∈ L2(Ω) and f = 0. Then there is a positive

constant C independent of h such that

‖ê(t)‖1 ≤ Ch‖u0‖.

In order to obtain optimal L2-error estimate for problems with nonsmooth data,
it is convenient to prove an estimate of ‖ê‖. For this purpose, we now consider the
following backward problems. For fixed time t > 0 and given any f̄ ∈ L2(Ω), let
v(s) ∈ H2(Ω) ∩H1

0 (Ω) be the solution of the backward problem

vs −Av = −
∫ t

s

B∗(τ, s)v(τ)dτ + f̄ , s ≤ t,(5.2)

with v(t) = g, where B∗(τ, s) is the adjoint of B(τ, s).
The associated weak solution is then defined to be the function v : [0, t) → H1

0 (Ω)
such that

(φ, vs) −A(φ, v) = −
∫ t

s

B(τ, s;φ, v(τ))dτ + (φ, f̄) ∀φ ∈ H1
0 (Ω), s ≤ t,(5.3)

with v(t) = g. Analogous to (2.3), the FVE approximation is then defined to be the
function vh : [0, t) → Sh such that

(I∗hχ, vhs) −A(I∗hχ, vh) = −
∫ t

s

B(τ, s; I∗hχ, vh(τ))dτ + (I∗hχ, f̄)(5.4)

for all χ ∈ Sh, s ≤ t, with vh(t) = gh, where gh is a suitable approximation of g in
Sh to be defined later.

Remark 5.4. With a simple change of variables in the proofs of Lemmas 2.1–2.3
and using the backward Gronwall lemma, it is easy to obtain a priori bounds for the
backward solutions v and vh.

Lemma 5.4. Assume that u0 ∈ L2(Ω) and f = 0. Then there is a generic constant
C such that

‖ê(t)‖ ≤ Ch2‖u0‖ ∀t > 0.(5.5)

Proof. Let w(s) ∈ H2(Ω) ∩H1
0 (Ω) be the solution of the backward problem (5.2)

with f̄ = ê and g = 0. Then, with a change of variables in the proofs of Lemmas 2.1–
2.3 and its discrete analogue, Lemma 5.2 and using the backward Gronwall lemma, it
is an easy exercise to check that the solution w(s) and its FVE solution wh(s), which
may be stated in a manner similar to (5.3)–(5.4), satisfy the following estimate:

∫ t

0

{‖ws − whs‖2 + ‖ws − whs‖2
1 + h−2‖w − wh‖2

1 + ‖w‖2
2}ds ≤ C

∫ t

0

‖ê‖2ds.(5.6)
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We take an L2 inner product of (5.2) with e and use (5.1) to obtain

1

2

d

ds
‖ê(s)‖2 =

d

ds
(e, I∗hwh) + (e, ws − whs) − (e, whs − I∗hwhs) −A(e, w − wh)

−A(e, wh − I∗hwh) +

∫ t

s

B(τ, s; e(s), (w − wh)(τ))dτ

+

∫ t

s

B(τ, s; e(s), (wh − I∗hwh)(τ))dτ +

∫ t

s

B(τ, s; e(s), I∗hwh(τ))dτ

−
∫ s

0

B(s, τ ; e(τ), I∗hwh(s))dτ.

With η = u− I∗h(Rhu) and ζ = I∗huh − uh, we rewrite the above equation as

1

2

d

ds
‖ê(s)‖2 =

d

ds
(e, I∗hwh) + (η, ws − whs) −A(η, w − wh)

+

∫ t

s

B(τ, s; η(s), (w − wh)(τ))dτ + (e, whs − I∗hwhs) −A(e, wh − I∗hwh)

+

∫ t

s

B(τ, s; e(s), wh(τ) − I∗hwh(τ))dτ + (ζ, ws − whs) −A(ζ, w − wh)

+

∫ t

s

B(τ, s; ζ(s), (w − wh)(τ))dτ.

Multiply both sides by s and integrate from 0 to t to have

1

2
t‖ê(t)‖2 =

1

2

∫ t

0

‖ê(s)‖2ds +

∫ t

0

(e, I∗hwh)ds +

∫ t

0

s(η, ws − whs)ds

−
∫ t

0

sA(η, w − wh)ds +

∫ t

0

∫ t

s

sB(τ, s; η, (w − wh))(τ)dτds

+

∫ t

0

s(e, whs − I∗hwhs)ds−
∫ t

0

sA(e, wh − I∗hwh)ds

−
∫ t

0

∫ s

0

sB(s, τ ; e(τ), I∗hwh(s) − wh(s))dτds +

∫ t

0

s(ζ, ws − whs)ds

−
∫ t

0

sA(ζ, w − wh)ds +

∫ t

0

∫ t

s

sB(τ, s; ζ(s), (w − wh)(τ))dτds

=
1

2

∫ t

0

‖ê(s)‖2ds +

10∑
i=1

Ii.

Since ê(0) = 0 = I∗hw(t), we obtain using (5.6)

|I1| =

∣∣∣∣−
∫ t

0

(ê, I∗hwhs)ds

∣∣∣∣ ≤ C

∫ t

0

‖ê‖‖whs‖ds

≤
(∫ t

0

‖ê‖2ds

)1/2 (∫ t

0

‖whs‖2ds

)1/2

≤ C

∫ t

0

‖ê(s)‖2ds.
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For I2, an application of (3.2), (3.8), (5.6), and a priori estimates yield

|I2| =

∣∣∣∣∣
∫ t

0

s(u−Rhu,ws − whs)ds +

∫ t

0

s(Rhu− I∗h(Rhu), ws − whs)ds

∣∣∣∣∣
≤ Ch4

∫ t

0

(s2‖u‖2
2 + s‖u‖2

1)ds + C

∫ t

0

‖ws − whs‖2
1ds

≤ Ch4t‖u0‖2 + C

∫ t

0

‖ê‖2ds.

Similarly, for I3 and I4, using (3.8), (3.3), and (5.6), we obtain

|I3| + |I4| ≤ C

∫ t

0

s‖u−Rhu‖1‖w − wh‖1ds + h

∫ t

0

s‖Rhu− I∗h(Rhu)‖1‖w − wh‖1ds

≤ Ch4

∫ t

0

(s2‖u‖2
2 + s2‖u‖2

1)ds + Ch−2

∫ t

0

‖w − wh‖2
1ds

≤ Ch4t‖u0‖2 + C

∫ t

0

‖ê‖2ds.

Apply (3.2), (5.6), and a priori estimates to have

|I5| = Ch4

∫ t

0

s‖e‖2
1ds + C

∫ t

0

‖whs‖2
1ds ≤ Ch4t‖u0‖2 + C

∫ t

0

‖ê‖2ds.

For I7, with a change of variables and integration by parts, we note that
∫ t

0

∫ t

s

sB(τ, s; e(s), (wh − I∗hwh)(τ))dτds =

∫ t

0

∫ s

0

τB(s, τ ; êτ (τ), (wh − I∗hwh)(s))dτds

=

∫ t

0

sB(s, s; ê(s), (wh − I∗hwh)(s))ds

−
∫ t

0

∫ s

0

τBτ (s, τ ; ê(τ), (wh − I∗hwh)(s))dτds

−
∫ t

0

∫ s

0

B(s, τ ; ê(τ), (wh − I∗hwh)(s))dτds.

Similarly, we rewrite the term I6 as

I6 =

∫ t

0

sA(ê, whs − I∗hwhs)ds +

∫ t

0

A(ê, wh − I∗hwh)ds,

where we have used the fact that wh(t) = 0 = ê(0). Thus, applying (3.3), Lemma 5.3,
and (5.6), I6 and I7 are bounded by

|I6| + |I7| ≤ Cth4‖u0‖2 + C

∫ t

0

(‖wh‖2
1 + ‖whs‖2

1)ds ≤ Cth4‖u0‖2 + C

∫ t

0

‖ê‖2ds.

Finally, using (3.2), (3.3), and (5.6), we obtain

|I8| + |I9| + |I10| ≤ Ch4

∫ t

0

s‖uh‖2
1ds + C

∫ t

0

(‖ws − whs‖2
1 + h−2‖w − wh‖2

1)ds

≤ Ch4t‖u0‖2 + C

∫ t

0

‖ê‖2ds.
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Altogether this now leads to

t‖ê(t)‖ ≤ Ch4t‖u0‖2 + C

∫ t

0

‖ê(s)‖2ds.(5.7)

It now remains to estimate
∫ t

0
‖ê‖2ds. Multiply (5.2) by ê and integrate by parts with

respect to x to have

‖ê(s)‖2 =
d

ds
(ê, I∗hwh) + (ê, ws − whs) −A(ê, w − wh)

+

∫ t

s

B(τ, s; ê(s), w(τ) − wh(τ))dτ + (ê, whs − I∗hwhs) −A(ê, wh − I∗hwh)

−
∫ s

0

B(τ, τ ; ê(τ), I∗hwh(s))dτ +

∫ s

0

∫ τ

0

Bτ ′(τ, τ ′; ê(τ ′), I∗hwh(s))dτ ′dτ

+

∫ t

s

B(τ, s; ê(s), wh(τ))dτ.(5.8)

Here, we have used the relation

(e, I∗hχ) + A(ê, I∗hχ) =

∫ t

0

B(s, s; ê(s), I∗hχ)ds−
∫ t

0

∫ s

0

Bτ (s, τ ; ê(τ), I∗hχ)dτds,

which is obtained by integrating (5.1) from 0 to t and using (2.4). Now integrate (5.8)
from 0 to t and use the fact that ê(0) = 0 = I∗hwh(t) to have

∫ t

0

‖ê(s)‖2ds =

∫ t

0

(η̂, ws − whs)ds−
∫ t

0

A(η̂, w − wh)ds

−
∫ t

0

∫ t

s

B(τ, s; η̂(s), (w − wh)(τ))dτds

−
∫ t

0

∫ s

0

B(τ, τ ; ê(τ), I∗hwh(s))dτds

+

∫ t

0

∫ s

0

∫ τ

0

Bτ ′(τ, τ ′; ê(τ ′), I∗hwh(s))dτ ′dτds

+

∫ t

0

(ê(s), whs − I∗hwhs)ds−
∫ t

0

A(ê, wh − I∗hwh)ds

+

∫ t

0

∫ t

s

B(τ, s; ê(s), wh(τ))dτds +

∫ t

0

(ζ̂, ws − whs)ds

−
∫ t

0

A(ζ̂, w − wh)ds−
∫ t

0

∫ t

s

B(τ, s; ζ̂(s), (w − wh)(τ))dτds

=
11∑
i=1

Ji,

where η̂ = û− I∗h(Rhû) and ζ̂ = I∗hûh− ûh. Let us estimate each term separately. For
J1, use of (3.8), (3.11), (5.1), and (5.6) yields

|J1| ≤
∫ t

0

{|(û−Rhû, ws − whs)| + |(Rhû− I∗h(Rhû), ws − whs)|}ds

≤ C(ε)h4

∫ t

0

‖û‖2
2ds + ε

∫ t

0

‖ws − whs‖2ds ≤ C(ε)th4‖u0‖2 + εC

∫ t

0

‖ê‖2ds.
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Similarly,

|J2| + |J3| ≤ C(ε)th4‖u0‖2 + εh−2

∫ t

0

‖w − wh‖2
1ds ≤ C(ε)th4‖u0‖2 + εC

∫ t

0

‖ê‖2ds.

For J4, we note that

J4 = −
∫ t

0

∫ s

0

B(τ, τ ; ê(τ), I∗hwh(s) − wh(s))dτds

−
∫ t

0

∫ s

0

B(τ, τ ; ê(τ), wh(s) − w(s))dτds−
∫ t

0

∫ s

0

B(τ, τ ; ê(τ), w(s))dτds,

and hence, using (3.3), Lemma 5.3, and (5.6), we obtain

|J4| ≤ C

∫ t

0

∫ s

0

{h‖ê(τ)‖1(‖wh(s)‖1 + h−1‖w(s) − wh(s)‖1) + ‖ê(τ)‖‖w(s)‖2}dτds

≤ Cth4‖u0‖2 + C

∫ t

0

∫ s

0

‖ê(τ)‖2dτds.

Similarly,

|J5| ≤ Cth4‖u0‖2 + C

∫ t

0

∫ s

0

‖ê(τ)‖2dτds.

Using (3.1)–(3.3), Lemma 5.3, and (5.6), we obtain

|J6| + |J7| ≤ C(ε)h2

∫ t

0

‖ê‖2
1ds + ε

∫ t

0

{‖whs‖2
1 + ‖wh‖2

1}ds

≤ Cth4‖u0‖2 + εC

∫ t

0

‖ê‖2ds.

By changing the order of integration, rewrite the term J8 as

J8 =

∫ t

0

∫ s

0

B(τ, s; ê(s), (wh − w)(τ))dsdτ +

∫ t

0

∫ s

0

B(τ, s; ê(s), w(τ))dsdτ.

In view of Lemma 5.3 and (5.6), we obtain

|J8| ≤ Cth4‖u0‖2 + C

∫ t

0

∫ s

0

‖ê(τ)‖2dτds.

Finally, using (3.2), (3.3), and (5.6), we have

|J9| + |J10| + |J11| ≤ C(ε)th4‖u0‖2 + ε

∫ t

0

(‖ws − whs‖2
1 + h−2‖w − wh‖2

1)ds

≤ C(ε)th4‖u0‖2 + εC

∫ t

0

‖ê(s)‖2ds.

Putting these estimates together and choosing ε appropriately, we arrive at∫ t

0

‖ê(s)‖2ds ≤ Cth4‖u0‖2 + C

∫ t

0

∫ s

0

‖ê(τ)‖2dτds.

An application of Gronwall’s lemma yields∫ t

0

‖ê‖2ds ≤ Cth4‖u0‖2,

and this combined with (5.7) completes the rest of the proof.
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Remark 5.5. Defining the error ē = v−vh associated with the backward problem
(5.3) and its FVE approximation (5.4), set ˜̄e(s) = −

∫ t

s
ē(τ)dτ , s ≤ t. Then, for

g ∈ L2(Ω) and f̄ = 0, analogous to Lemmas 5.3 and 5.4, it is easy to show that

‖˜̄e‖j ≤ Ch2−j‖g‖, j = 0, 1.(5.9)

We conclude this section by showing our main result in the following theorem.
Theorem 5.1. Let u and uh be solutions of (1.1) and (1.4), respectively, with

f = 0. Assume that u0 ∈ L2(Ω) and the matrix A is constant over each element
K ∈ Th. Then there is a generic positive constant C independent of h such that

‖e(t)‖ ≤ Ct−1h2 lnh‖u0‖, t ∈ J.

Proof. Using (5.3) and (5.4) with f̄ = 0 and Lemma 2.6, we first note that

d

ds

{
s2[(u, v) − (I∗huh, vh)]

}

= 2s {(u, v) − (I∗huh, vh)} +

∫ s

0

s2B(s, τ ;u(τ), v(s))dτ

−
∫ t

s

s2B(τ, s;u(s), v(τ))dτ −
∫ s

0

s2B(s, τ ;uh(τ), I∗hvh(s) − vh(s))dτ

+

∫ t

s

s2B(τ, s; I∗huh(s) − uh(s), vh(τ))dτ −
∫ s

0

s2B(s, τ ;uh(τ), vh(s))dτ

+

∫ t

s

s2B(τ, s;uh(s), vh(τ))dτ − s2(uhs, vh − I∗hvh) − s2(I∗huhs − uhs, vh).

Integrate the above equation from 0 to t. Then, with gh = Lhg, where Lh : L2(Ω) →
Sh defined by (Lhg, I

∗
hχ) = (g, χ), χ ∈ Sh, we have

t2(e(t), g) = 2

∫ t

0

s {(u(s), v(s)) − (uh(s), vh(s))} ds

−
∫ t

0

∫ s

0

s2B(s, τ ;uh(τ), I∗hvh(s) − vh(s))dτ

+

∫ t

0

∫ t

s

s2B(τ, s; I∗huh(s) − uh(s), vh(τ))dτ −
∫ t

0

s2(uhs, vh − I∗hvh)ds

−
∫ t

0

s2(uhs − I∗huhs, vh)ds = 2I1 + I2 + I3 + I4 + I5.(5.10)

For the term I2, with ûh(t) =
∫ t

0
uh(s)ds, we integrate by parts to have

I2 = −
∫ t

0

∫ s

0

s2B(s, τ ; ûhτ (τ), (I∗hvh − vh)(s))dτds

= −
∫ t

0

s2B(s, s; ûh(s), (I∗hvh − vh)(s))ds

+

∫ t

0

∫ s

0

s2Bτ (s, τ ; ûh(τ), (I∗hvh − vh)(s))dτds

= I1
2 + I2

2 .
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For I1
2 , apply Lemma 5.1 with χ1 = ûh and χ2 = vh, Lemma 5.3, and a priori

estimates to obtain

|I1
2 | ≤ Ch2

∫ t

0

s2(‖ûh‖1 + h−1/2‖ê‖1)‖vh(s)‖1ds ≤ Cth2‖u0‖‖g‖.

The term I2
2 is treated in a similar manner and hence

|I2| ≤ Cth2‖u0‖‖g‖.

Similarly, defining ṽh(s) = −
∫ t

s
vh(τ)dτ, s ≤ t, we rewrite the term I3 as

I3 =

∫ t

0

∫ t

s

s2B(τ, s; I∗huh(s) − uh(s), ṽh,τ (τ))dτds

= −
∫ t

0

s2B(s, s; I∗huh(s) − uh(s), ṽh(s))ds

−
∫ t

0

∫ t

s

s2Bτ (τ, s; I
∗
huh(s) − uh(s), ṽh(τ))dτds

= I1
3 + I2

3 .

As before, again an application of Lemma 5.1 (analogous result for the backward
problem), (5.9), and a priori bounds for the discrete solution yield

|I1
3 | ≤ Ch2

∫ t

0

s2(‖vh‖1 + h−1/2‖˜̄e‖1)‖uh(s)‖1ds ≤ Cth2‖u0‖‖g‖.

The term I2
3 is treated in a similar fashion and hence

|I3| ≤ Cth2‖u0‖‖g‖.

For I4 and I5, apply (3.2) and a priori estimates to have

|I4| + |I5| ≤ Cth2

(∫ t

0

‖vh‖2
1ds

)1/2 (∫ t

0

s2‖uhs‖2
1ds

)1/2

≤ Cth2‖u0‖‖g‖.

It now remains to estimate the term I1. We first rewrite I1 as

I1 =

∫ t

0

s(e(s), v)ds−
∫ t

0

s(e(s), ē(s))ds +

∫ t

0

s(u, ē(s))ds−
∫ t

0

s(I∗huh − uh, vh)ds

= I1
1 + I2

1 + I3
1 + I4

1 .

To estimate I1
1 , we note that

I1
1 =

∫ t−h2

0

s(e(s), v(s))ds +

∫ t

t−h2

s(e(s), v(s))ds = II1 + II2.

For II1, we integrate by parts and use the fact that ê(0) = 0 to have

II1 =

∫ t−h2

0

s(ês, v)ds = (t− h2)(ê(t− h2), v(t− h2))

−
∫ t−h2

0

(ê, v)ds−
∫ t−h2

0

s(ê, vs)ds,
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and hence, by the Cauchy–Schwarz inequality, Lemma 5.4, and Lemma 2.3 (with time
reversed), we obtain

|II1| ≤ t‖ê(t− h2)‖v(t− h2)‖ +

∫ t−h2

0

‖ê(s)‖‖v(s)‖ds +

∫ t−h2

0

s‖ê(s)‖‖vs(s)‖ds

≤ Cth2‖u0‖‖g‖ + Cth2‖u0‖‖g‖
∫ t−h2

0

1

(t− s)
ds

≤
(
Cth2‖u0‖‖g‖ + Cth2 lnh‖u0‖‖g‖

)
≤ Cth2 lnh‖u0‖‖g‖.(5.11)

By Lemma 2.3, its semidiscrete analogue, and further using a priori estimates for the
backward solution v, we obtain

|II2| ≤ Ct

∫ t

t−h2

‖e(s)‖‖v(s)‖ds ≤ Cth2‖u0‖‖g‖,

which together with (5.11) yields

|I1
1 | ≤ Cth2 lnh‖u0‖‖g‖.

Since ˜̄e(t) = 0, integrate I2
1 by parts to have

I2
1 = −

∫ t

0

s(e, ˜̄es)ds =

∫ t

0

(e, ˜̄e)ds +

∫ t

0

s(es, ˜̄e(s))ds.

Apply the Cauchy–Schwarz inequality, (5.9), and a priori estimates in Lemma 2.3 to
obtain

|I2
1 | ≤

∫ t

0

‖e‖‖˜̄e(s)‖ds +

∫ t

0

s‖es‖‖˜̄e‖ds ≤ Cth2‖u0‖‖g‖.

Similarly, using (5.9) and Lemma 2.3 we estimate I3
1 as

|I3
1 | ≤

∫ t

0

‖˜̄e‖‖u‖ds +

∫ t

0

s‖˜̄e‖‖us‖ds ≤ Cth2‖u0‖‖g‖.

Finally, for I4
1 , apply (3.2) and a priori estimates to have

|I4
1 | ≤ Cth2

(∫ t

0

‖uh‖2
1

)1/2 (∫ t

0

‖vh‖2
1ds

)1/2

≤ Cth2‖u0‖‖g‖.

Altogether these estimates yield the desired result and this completes the proof.
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EROSION AND SEDIMENTATION∗
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Abstract. We consider the following problem, arising within a geological model of sedimentation-
erosion: For a given vector field g and a given nonnegative function F defined on a one- or two-
dimensional domain Ω, find a vector field under the form g̃ = ug, with 0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω,
such that divg̃ + F ≥ 0 and (u − 1)(divg̃ + F ) = 0 in Ω. We first give a weak formulation of this
problem, and we prove a comparison principle on a weak solution of the problem. Thanks to this
property, we get the proof of the uniqueness of the weak solution. The existence of a solution results
from the proof of the convergence of an original scheme. Numerical examples show the efficiency of
this scheme and illustrate its convergence properties.

Key words. hyperbolic inequalities, doubling variable technique, process solutions, finite vol-
ume methods, erosion and sedimentation models
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1. Introduction. In the framework of the petroleum industry, geological sim-
ulations are used more and more in order to get a better knowledge of the history
of the sedimentary basins. Among them, the computation of the sedimentation and
erosion processes leads to a better knowledge of the geometry of the layers and of
their lithological nature (see, for example, [15], [11], or [5]). An unknown of such
models is the thickness H(x, t) of the sediments at a point (x, t) ∈ Ω × (0, T ), where
Ω describes the horizontal extension of the basin (the magnitude of the diameter of Ω
can be about several hundreds of kilometers) and T is the age of the basin (between
0 and 107 years for example). The simplest model is a diffusion equation

Ht(x, t) − div[Λ(x)∇H(x, t)] = 0 for a.e. (x, t) ∈ Ω × (0, T ),(1)

where Λ(x) is a matrix in the general case, reducing in most of the cases to a scalar
function. But the model (1) is not sufficient for actual applications, in particular,
because it does not account for the assymetry between the erosion process (due to
the action of the weather) and the sedimentation process. Indeed, more realistic
models (see [1] or [6] and references therein) are based on the introduction in (1) of a
multiplier u(x, t) on the fluxes of sediments:

Ht(x, t) − div[Λ(x)u(x, t)∇H(x, t)] = 0 for a.e. (x, t) ∈ Ω × (0, T ),(2)

in order to satisfy the following constraints on (u,H),

Ht(x, t) ≥ −F (x) for a.e. (x, t) ∈ Ω × (0, T ),(3)

0 ≤ u(x, t) ≤ 1 for a.e. (x, t) ∈ Ω × (0, T ),(4)
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and

(u(x, t) − 1) (Ht(x, t) + F (x)) = 0 for a.e. (x, t) ∈ Ω × (0, T ).(5)

In (3) and (5), we denote by F (x) ≥ 0 the maximum erosion rate at point x.
In practical situations, F is estimated by the geological study of the sedimental

history, and may be improved by solving an inverse problem (which is quite com-
plicated, by the way), using (2)–(5) as the direct problem. In large parts of the
simulation domain, the transport of sediments is due mainly to gravity effects, taken
into account by a scalar value for the matrix Λ(x). In a same way as above, this scalar
value can be estimated by some geological studies or by solving an inverse problem.
However, the main mechanism for the transport of sediments is the action of surface
water flows. These flows, located in river basins, can be represented by introducing
anisotropic values for this matrix Λ(x). The determination of realistic values for these
parameters is not an easy task and is still a challenging subject of research for the
simulation of the sedimentary basins. The function u is a complete unknown factor,
reducing the flux of sediments in order to respect the constraint (3). Despite these
difficulties of data identification, this model is considered interesting enough to be
actually implemented in an industrial simulator (see [11], [6]).

Existence and uniqueness for the full problem (2)–(5) is an open problem (some
partial results can be found in [10] or [2]). Thus we consider a semidiscretization in
time of this system of equations. We define a time step δt > 0, and for an integer n such
that nδt < T , we assume that the function H(n) is an approximation of H(·, nδt). We
then look for the functions H(n+1) and u(n+1), respective approximations of H(·, (n+
1)δt) and u(·, (n + 1)δt), which are solutions of the system of equations

1

δt
(H(n+1)(x) −H(n)(x)) − div[Λ(x)u(n+1)(x)∇H(n)(x)] = 0 for a.e. x ∈ Ω,(6)

under the constraints

1

δt
(H(n+1)(x) −H(n)(x)) ≥ −F (x) for a.e. x ∈ Ω,(7)

0 ≤ u(n+1)(x) ≤ 1 for a.e. x ∈ Ω,(8)

and

(u(n+1)(x) − 1)

(
1

δt
(H(n+1)(x) −H(n)(x)) + F (x)

)
= 0 for a.e. x ∈ Ω.(9)

Denoting by g(x) = Λ(x)∇H(n)(x) and reporting in (7)–(9) the expression of 1
δt (H

(n+1)−
H(n)) taken from (6), the unknown function u(n+1) is then a solution u of the following
system of equations:

div[u(x)g(x)] + F (x) ≥ 0 for a.e. x ∈ Ω,

0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω,
(10)

and

(u(x) − 1) (div[u(x)g(x)] + F (x)) = 0 for a.e. x ∈ Ω.(11)
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Hence, if we are able to prove that problem (10)–(11) has one and only one solution
g̃ = u(·)g(·), the function H(n+1) is then given by the relation H(n+1)(x) = H(n)(x)+
δt divg̃(x) for a.e. x ∈ Ω.

Remark 1.1. If there exist some regions where g = 0 and F = 0 simultaneously,
it is clear that any value in [0, 1] is possible for u. Nevertheless, g̃ is uniquely defined
by the value 0 in such a region.

A fully implicit version of this method (namely ∇H(n)(x) is replaced by ∇H(n+1)(x)
in (6)) in addition to a finite volume space discretization are used in an industrial sim-
ulator (see [11], [6]).

The aim of this paper is to focus on both the analytical and the numerical aspects
of the subproblem (10)–(11). Although it is not clear that the resolution of this
subproblem yields the complete theoretical resolution of the fully coupled problem (2)–
(5), we emphasize that it leads to the key points of a correct numerical implementation.

In this paper, the following hypotheses, denoted Hypotheses (H), are assumed.
Hypotheses (H).
1. Ω is a bounded open subset of R

d, d ∈ N
� = N \ {0} (in applications, d = 2),

with a Lipschitz continuous boundary ∂Ω (this gives the existence, for a.e.
x ∈ ∂Ω, of the unit outward vector n(x) normal to the boundary).

2. There exist two functions, h ∈ C1(Ω) and Λ : Ω −→ Md (the set of bounded,
symmetric, definite positive, d× d matrices) such that the function g : Ω →
R

d, defined by g(x) = Λ(x)∇h(x) for all x ∈ Ω, is Lipschitz continuous on Ω
and satisfies g(x) · n(x) = 0 for a.e. x ∈ ∂Ω.

3. F ∈ L∞(Ω) is such that F (x) ≥ 0 for a.e. x ∈ Ω.
As we see below in section 2, there does not always exist a continuous function

u : Ω → R such that (10)–(11) are satisfied, and the regularity of g̃ = ug in the
general case is an open problem. Therefore we first look for a weak formulation of
problem (10)–(11). For this purpose, let ϕ ∈ C1(Ω,R+), and let ξ ∈ C1(R) be such
that ξ′(1) ≥ 0. We multiply the first inequality of (10) by ξ′(u(x))ϕ(x), and we
integrate on Ω. We get

(12)∫
Ω

ξ′(u(x))ϕ(x)(div[u(x)g(x)] + F (x))dx =

∫
Ω

ξ′(1)ϕ(x)(div[u(x)g(x)] + F (x))dx

+

∫
Ω

(ξ′(u(x)) − ξ′(1))ϕ(x)(div[u(x)g(x)] + F (x))dx.

The second term of the right-hand side vanishes, using (11), and the first one is
nonnegative. This leads to

∫
Ω

ξ′(u(x))ϕ(x)(div[u(x)g(x)] + F (x))dx ≥ 0.(13)

We remark that, for any function ξ which is such that ξ′(1) ≥ 0 and ξ′ is decreasing,
we can get (13) from (12) for any function u which only verifies (10). For this reason,
we now assume that ξ is convex (in the sense that ξ′ is nondecreasing, this terminology
is used in the sequel of this paper), and we develop equation (13), integrating by parts.
We then derive the following weak sense for a solution to problem (10)–(11).

Definition 1.1 (weak solution to problem (10)–(11)). Under Hypotheses (H),
we say that a function g̃ ∈ L∞(Ω)d is a weak solution to problem (10)–(11) if there
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exists u ∈ L∞(Ω) such that g̃(x) = u(x)g(x) for a.e. x ∈ Ω, and u satisfies the
following inequalities: 0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω and

∫
Ω

(
ξ(u(x))(−g(x) · ∇ϕ(x)) + [ξ′(u(x))u(x) − ξ(u(x))]ϕ(x)divg(x)

+ ξ′(u(x))ϕ(x)F (x)
)
dx ≥ 0

∀ξ ∈ C1(R) convex such that ξ′(1) ≥ 0 ∀ϕ ∈ C1(Ω,R+).

(14)

The following proposition expresses that any weak solution in the above sense
satisfies (10) in a weak sense, and the next one shows that any regular weak solution
satisfies (10)–(11), thus completing the justification of Definition 1.1.

Proposition 1.2. Under Hypotheses (H), let g̃ : Ω → R
d be a weak solution to

problem (10)–(11) in the sense of Definition 1.1. Then

∫
Ω

(−g̃(x) · ∇ϕ(x)dx + F (x)ϕ(x))dx ≥ 0 ∀ϕ ∈ C1(Ω,R+).(15)

Proof. Let us assume that u ∈ L∞(Ω) is such that g̃(x) = u(x)g(x) and 0 ≤
u(x) ≤ 1 for a.e. x ∈ Ω, and (14) is satisfied. Let us take ξ : s �→ s in (14). We then
obtain (15).

Proposition 1.3. Under Hypotheses (H), let g̃ : Ω → R
d be a Lipschitz

continuous function. Then g̃ is a weak solution to problem (10)–(11) in the sense of
Definition 1.1 if and only if there exists a function u ∈ L∞(Ω) with g̃(x) = u(x)g(x)
and 0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω such that (10) and (11) are satisfied by the function
u.

Proof. Let us assume that g̃ is a weak solution to problem (10)–(11) in the sense
of Definition 1.1. Then there exists u ∈ L∞(Ω) such that g̃(x) = u(x)g(x) and
0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω, and (14) is satisfied. Proposition 1.2 shows that (10) is
satisfied by the function u for a.e. x ∈ Ω. In order to prove that (11) is satisfied for
a.e. x ∈ Ω by the function u, we shall separate the cases x ∈ Ω0 := {x ∈ Ω, g(x) = 0}
and x ∈ Ω \Ω0. Let us take in (14) a test function ϕ whose support is included in the
open set Ω \Ω0. Since the function u verifies u(x) = |g̃(x)|/|g(x)| for a.e. x ∈ Ω \Ω0,
u is Lipschitz continuous on the support of ϕ; we can thus integrate by parts, which
produces, from (14), that (13) is satisfied by u. Let us now prove that u verifies (11).

Choosing ξ : s �→ (s−1)2, we get that
∫
Ω
(u(x)−1)ϕ(x)(div[u(x)g(x)]+F (x))dx ≥

0 holds. This implies that (u(x) − 1)(div[u(x)g(x)] + F (x)) ≥ 0 for a.e. x ∈ Ω such
that g(x) 	= 0. But on one hand, u(x) ≤ 1 for a.e. x ∈ Ω, and on the other hand, (10)
is satisfied for a.e. x ∈ Ω. Therefore, u verifies (11) for a.e. x ∈ Ω \ Ω0.

Let us now obtain the same conclusion for a.e. x ∈ Ω0. Let η ∈ C1(R) be a
function such that 0 ≤ η(x) ≤ 1 for all x ∈ R, η(0) = 1 and support(η) ⊂ [−1, 1].
For all n ∈ N

�, let us define the Lipschitz continuous function ϕn : x �→ η(n|g(x)|).
On one hand, we have that for a.e. x ∈ Ω0, g(x) · ∇ϕn(x) = 0 holds. On the other
hand, for all x ∈ Ω \Ω0, we get that g(x) · ∇ϕn(x) tends to 0 as n → ∞ and remains
bounded (indeed, it suffices to consider the cases |g(x)| ≤ 1/n and |g(x)| ≥ 1/n and
to use the property ∇gi ∈ L∞(Ω)d, where gi, i = 1, . . . , d are the components of g).

We then introduce ξ : s → (s− 1)2 and ϕ = ϕn in (14) (this is possible, taking
regularizations in C1(Ω,R+) of ϕn). We then get

T
(n)
1 + T

(n)
2 + T

(n)
3 ≥ 0,(16)
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with T
(n)
1 =

∫
Ω
(u(x) − 1)2(−g(x) · ∇ϕn(x))dx, T

(n)
2 =

∫
Ω
(u(x)2 − 1)ϕn(x)divg(x)dx,

and T
(n)
3 = 2

∫
Ω
(u(x) − 1)F (x)ϕn(x)dx. Thus, thanks to the convergence properties

of g · ∇ϕn and to the dominated convergence theorem, we get that T
(n)
1 tends to 0 as

n → ∞.
Since ϕn(x) tends to 0 for all x ∈ Ω \Ω0 and to 1 for all x ∈ Ω0, we get that T

(n)
2

tends to
∫
Ω0

(u(x)2 − 1)divg(x)dx. Since g(x) = 0 for all x ∈ Ω0, then ∂ig(x) = 0 for

a.e. x ∈ Ω0 and all i = 1, . . . , d (this classical property has been shown, for example,
in [17]), which produces

∫
Ω0

(u(x)2 − 1)divg(x)dx = 0.

We finally get that T
(n)
3 tends to 2

∫
Ω0

(u(x) − 1)F (x)dx as n → ∞.

We thus get, passing to the limit n → ∞ in (16),
∫
Ω0

(u(x)−1)F (x)dx ≥ 0, which

proves that u(x) = 1 for a.e. x ∈ Ω0 such that F (x) > 0.
Therefore, for a.e. x ∈ Ω0, either F (x) > 0 and u(x) = 1, or F (x) = 0 and

div(g̃(x)) + F (x) = 0, since g̃(x) = 0 for a.e. x ∈ Ω0. Thus (11) is satisfied for a.e.
x ∈ Ω0.

Reciprocally, let us assume that (10) and (11) are satisfied a.e. by the function u.
We then get that (13) is satisfied, and therefore equation (14) is satisfied. This proves
that g̃ is a weak solution to problem (10)–(11) in the sense of Definition 1.1.

This paper is organized as follows. We first give, in section 2, the analytical
expression of the weak solution in the one-dimensional case (the uniqueness result,
proved in section 3, indeed holds in this case). In section 3, we first give a char-
acterization of the set C(g, F ) of functions which weakly satisfy (10). We prove a
comparison result between a weak process solution to problem (10)–(11) (defined in
Definition 3.3) and any element of C(g, F ). This result suffices to prove the unique-
ness of the weak solution to problem (10)–(11) in the sense of Definition 1.1. We then
present a numerical scheme in section 4. The existence and uniqueness of a discrete
solution is itself a nontrivial problem, which we solve by proving the convergence of an
iterative method. This scheme is then proven to converge to a weak process solution
to problem (10)–(11) in the sense of Definition 3.3. Thanks to the uniqueness result
of the weak solution, we deduce the strong convergence result of the numerical scheme
to this weak solution. We then give some numerical results in section 5 and conclude
with some open problems.

2. Weak solutions in the one-dimensional case. We have the following
result.

Proposition 2.1 (expression of the weak solution in the one-dimensional case).
Let (a, b) ∈ R

2 be such that a < b, let F ∈ L∞((a, b)) be a nonnegative function, and
let g ∈ C0([a, b]) be a Lipschitz continuous function with g(a) = g(b) = 0.

Then, the function g̃ : [a, b] → R defined by

g̃(x) = min
y∈[x,b]

(
g+(y) +

∫ y

x

F (t)dt

)
− min

y∈[a,x]

(
g−(y) +

∫ x

y

F (t)dt

)

∀x ∈ [a, b],

(17)

where for all s ∈ R we denote s+ = max(s, 0) and s− = max(−s, 0), is the unique
weak solution to problem (10)–(11) in the sense of Definition 1.1.

Proof. Let us first remark that g̃ defined as such verifies that for all x ∈ [a, b],
g̃+(x) = miny∈[x,b]

(
g+(y) +

∫ y

x
F (t)dt

)
and g̃−(x) = miny∈[a,x](g

−(y) +
∫ x

y
F (t)dt)

with 0 ≤ g̃+(x) ≤ g+(x) and 0 ≤ g̃−(x) ≤ g−(x). Then the function g̃+ satisfies
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g̃+(x) = miny∈[a,b] Gp(x, y) for all x ∈ [a, b] with

Gp(x, y) = g+(max(x, y)) +

∫ max(x,y)

x

F (t)dt ∀(x, y) ∈ [a, b]2.

Similarly, we have g̃−(x) = miny∈[a,b] Gm(x, y) for all x ∈ [a, b] with

Gm(x, y) = g−(min(x, y)) +

∫ x

min(x,y)

F (t)dt ∀(x, y) ∈ [a, b]2.

It is then clear that the functions Gp and Gm are Lipschitz continuous on [a, b]2 with
any Lipschitz constant M such that M is a bound of F + |g′| in L∞((a, b)). Let
(x, x̄) ∈ [a, b]2 be given, and let (Y, Ȳ ) ∈ [a, b]2 be such that g̃+(x) = Gp(x, Y ) and
g̃+(x̄) = Gp(x̄, Ȳ ). Since we have

g̃+(x) − g̃+(x̄) ≤ Gp(x, Ȳ ) −Gp(x̄, Ȳ ) ≤ M |x− x̄|,

and, inverting the roles of x and x̄,

g̃+(x̄) − g̃+(x) ≤ Gp(x, Y ) −Gp(x̄, Y ) ≤ M |x− x̄|,

we thus get that g̃+ is Lipschitz continuous. Since the same proof holds for g̃−, we
thus get that g̃ = g̃+− g̃− is Lipschitz continuous as well. We thus define the function
u : [a, b] → [0, 1] by u(x) = 1 for all x ∈ Ω such that g(x) = 0 and u(x) = g̃(x)/g(x)
for all x ∈ [a, b] such that g(x) 	= 0. Let us prove that u satisfies (10)–(11) (from
Proposition 1.3, since Hypotheses (H) are satisfied, this is sufficient to conclude).
Since for all x ∈ [a, b] such that g(x) = 0, g̃(x) = 0 holds, g̃′(x) + F (x) ≥ 0 for a.e.
x ∈ [a, b] such that g(x) = 0 [17]. Let x ∈ [a, b] be such that g(x) > 0. Then there
exists α > 0 such that x+α ≤ b and g(y) > 0 for all y ∈ (x, x+α). For x̄ ∈ (x, x+α),
let Ȳ ∈ [x̄, b] be such that g̃(x̄) = Gp(x̄, Ȳ ). We have

g̃(x) − g̃(x̄) ≤ Gp(x, Ȳ ) −Gp(x̄, Ȳ ) =

∫ x̄

x

F (t)dt.(18)

The above inequality proves that g̃′(x)+F (x) ≥ 0 for a.e. x ∈ [a, b] such that g(x) > 0.
Similarly, we obtain that g̃′(x) + F (x) ≥ 0 for a.e. x ∈ [a, b] such that g(x) < 0. This
proves that (10) is satisfied. Let x ∈ (a, b) such that u(x) < 1. Let us assume
that g(x) > 0. Again, there exists α > 0 such that x + α ≤ b and g(y) > 0 for
all y ∈ (x, x + α), and again, for all x̄ ∈ (x, x + α), (18) holds. Since we have
0 ≤ g̃(x) < g(x), there exists Y ∈ (x, b) such that g̃(x) = Gp(x, Y ). Therefore, for all
x̄ ∈ (x, Y ), since Y > x̄, we get

g̃(x) − g̃(x̄) ≥ Gp(x, Y ) −Gp(x̄, Y ) =

∫ x̄

x

F (t)dt.

Thus, for all x̄ ∈ (x,min(Y, x+α)), we get g̃(x)− g̃(x̄) =
∫ x̄

x
F (t)dt, which implies that

g̃′(x) = −F (x) for a.e. x ∈ Ω such that u(x) < 1 and g(x) > 0. The case u(x) < 1 and
g(x) < 0 can be similarly handled. Therefore g̃ is Lipschitz continuous and (10)–(11)
are satisfied. Thanks to Proposition 1.3, this completes the proof that g̃ is a weak
solution to problem (10)–(11) in the sense of Definition 1.1.

Since, within the hypotheses of the above proposition, Hypotheses (H) are satisfied
(in particular, g = h′ with h : x �→

∫ x

a
g(t)dt), we can apply Proposition 3.5, which
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implies the uniqueness of the weak solution to problem (10)–(11) in the sense of
Definition 1.1.

Let us take two simple examples (one can find some examples inspired by geolog-
ical problems in [6]). We consider a one-dimensional case (see Figure 1 below), with
Ω = (−1, 1), g : x �→ x3 − x, and F : x �→ 1/2. In this case, it is easy to verify that
the function g̃ defined by (17) is such that g̃ = ug, where the function u is such that
u : x �→ 1 for all x ∈ (−1,−

√
1/2) ∪ (

√
1/2, 1) and u : x �→ 1/(2(1 − x2)) for all

x ∈ (−
√

1/2,
√

1/2). We thus obtain that the function u is continuous over Ω, but
this is not always the case.

Indeed, let us consider the case Ω = (−1, 1), g : x �→ x3 − x for all x ∈ [−1, 0],
g : x �→ 1

2 (x3 − x) for all x ∈ [0, 1], and F : x �→ 1/2. In such a case, g is only
Lipschitz continuous, and the function g̃ = ug given by (17) is such that u : x �→ 1
for all x ∈ (−1,−

√
1/2) ∪ (0, 1) and u : x �→ 1/(2(1 − x2)) for all x ∈ (−

√
1/2, 0).

This function u is therefore discontinuous in 0, although the function g̃ = ug remains
Lipschitz continuous.

3. Uniqueness results.

3.1. Properties of the set of functions which satisfy (10). We consider in
this section the set C(g, F ) of functions which satisfy (10) in the sense of distributions.
We shall prove below that the weak solution g̃ to problem (10)–(11) in the sense of
Definition 1.1 is the projection of g in L2(Ω)d on C(g, F ), and it is an extremal point
of C(g, F ) in the sense that |g̃| ≥ |γ| for all γ ∈ C(g, F ) (see Proposition 3.5). The
proof of this property is obtained thanks to the characterization of C(g, F ) given by
Proposition 3.2.

Definition 3.1 (the set C(g, F )). Under Hypotheses (H), we define the set
C(g, F ) of functions γ ∈ L2(Ω)d such that there exists v ∈ L∞(Ω), with γ(x) =
v(x)g(x) and 0 ≤ v(x) ≤ 1, for a.e. x ∈ Ω and

∫
R+

∫
Ω

([−γ(x) · ∇ϕ(x)] + ϕ(x)F (x)) dx ≥ 0 ∀ϕ ∈ C1(Ω,R+).(19)

Remark 3.1 (some properties of C(g, F )). The set C(g, F ) is nonempty (because
0 ∈ C(g, F )), convex (since the left-hand side of (19) is linear with respect to γ), and
closed (in L2(Ω)d).

Remark 3.2 (weak solutions and C(g, F )). Thanks to Proposition 1.2, any weak
solution to problem (10)–(11) in the sense of Definition 1.1 belongs to C(g, F ).

We have the following proposition, which gives a characterization of the functions
of C(g, F ).

Proposition 3.2 (characterization of C(g, F )). Under Hypotheses (H), let v ∈
L∞(Ω), such that 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω, and let γ(x) = v(x)g(x). Then
γ ∈ C(g, F ) (defined in Definition 3.1) holds if and only if the following property
holds: ∫

Ω

(
ξ(v(x))[−g(x) · ∇ϕ(x)] + [ξ′(v(x))v(x) − ξ(v(x))]ϕ(x) divg(x)

+ ξ′(v(x))ϕ(x)F (x)
)
dx ≥ 0

∀ϕ ∈ C1(Ω,R+), ∀ξ ∈ C1(R) s.t. ∀κ ∈ [0, 1], ξ′(κ) ≥ 0.

(20)

Proof. Under the hypotheses of the above proposition, let us assume that γ ∈
C(g, F ). We introduce a sequence of mollifiers in R

d. Let ρ ∈ C∞
c (Rd,R+) (the set of
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smooth functions with a compact support) be such that

{x ∈ R
d; ρ(x) 	= 0} ⊂ {x ∈ R

d; |x| ≤ 1}(21)

and ∫
Rd

ρ(x)dx = 1.(22)

For n ∈ N
�, we define

ρn(x) = ndρ(nx) ∀x ∈ R
d.(23)

We then define the functions vn(y) =
∫
Ω
v(x)ρn(x−y)dx. Let ψ ∈ C1(Ω,R+) be given.

For a given y ∈ Ω, we introduce the function ϕ : x → ξ′(vn(y))ψ(y)ρn(y − x) ∈
C1(Ω,R+) in (19), and we integrate with respect to y. We thus get T

(n)
4 + T

(n)
5 ≥ 0

with

T
(n)
4 = −

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)v(x)g(x) · ∇ρn(y − x)dxdy(24)

and

T
(n)
5 =

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)F (x)ρn(y − x)dxdy.(25)

The limit of the last term, as n → ∞, satisfies

lim
n→∞

T
(n)
5 =

∫
Ω

(ξ′(v(y))ψ(y)F (y)) dy.

We then turn to the study of T
(n)
4 as n → ∞. We have T

(n)
4 = T

(n)
6 + T

(n)
7 + T

(n)
8

with

T
(n)
6 =

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)v(x)g(y) · ∇ρn(y − x)dxdy,

T
(n)
7 =

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)v(y)(g(x) − g(y)) · ∇ρn(y − x)dxdy,

and

T
(n)
8 =

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)(v(x) − v(y))(g(x) − g(y)) · ∇ρn(y − x)dxdy.

We then have

T
(n)
6 =

∫
Ω

ξ′(vn(y))ψ(y)g(y) · ∇vn(y)dy =

∫
Ω

ψ(y)g(y) · ∇ξ(vn)(y)dy,

which delivers, thanks to an integration by parts with respect to y,

T
(n)
6 = −

∫
Ω
ξ(vn(y))div[ψ(y)g(y)]dy.

This leads to

lim
n→∞

T
(n)
6 =

∫
Ω

ξ(v(y))div[ψ(y)g(y)]dy.
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We also have, thanks to an integration by parts with respect to x,

T
(n)
7 = −

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)v(y)ρn(y − x)divg(x)dxdy,

which produces

lim
n→∞

T
(n)
7 =

∫
Ω

ξ′(v(y))v(y)ψ(y)divg(y)dy.

Finally, we get

lim
n→∞

T
(n)
8 = 0

thanks to the continuity in means of v and to the fact that x �→ (g(x)−g(y))·∇ρn(y−x)
belongs to L1(Ω). Then (20) is obtained by gathering all the results obtained above
by passing to the limit n → ∞.

Conversely, it suffices to choose the function ξ : s �→ s in (20), for obtaining
(19).

3.2. Weak process solutions. Since we consider below the convergence of nu-
merical schemes, on which the only estimate that we obtain in this case is an L∞(Ω)
estimate, we must therefore consider weaker solutions than that defined in Defini-
tion 1.1, namely, weak process solutions. This notion of a weak process solution, intro-
duced in [7], is related to the notion of Young measure first used by [3] in the nonlinear
scalar hyperbolic framework. Young measures are extensively used in optimal control,
nonconvex variational problems, phase transitions, microstructure problems, . . . (see,
e.g., [14], [16]).

The uniqueness result proven below leads to the uniqueness of such a weak process
solution and to the fact that any weak process solution is indeed a weak solution. We
then obtain the uniqueness of the weak solution to problem (10)–(11) in the sense
of Definition 1.1. Moreover, this result is mainly used in the study of the numerical
scheme in order to prove its strong convergence.

Definition 3.3 (weak process solutions to problem (10)–(11)). Under Hypothe-
ses (H), we say that a function ĝ is a weak process solution to problem (10)–(11)
if there exists u ∈ L∞(Ω × (0, 1)) such that ĝ : (x, α) �→ u(x, α)g(x) for a.e.
(x, α) ∈ Ω × (0, 1). And u satisfies the following inequalities: 0 ≤ u(x, α) ≤ 1 for
a.e. (x, α) ∈ Ω × (0, 1) and

(26)∫
Ω

∫ 1

0

(
ξ(u(x, α))(−g(x) · ∇ϕ(x)) + [ξ′(u(x, α))u(x, α) − ξ(u(x, α))]ϕ(x)divg(x)

+ ξ′(u(x, α))ϕ(x)F (x)
)
dαdx ≥ 0

∀ξ ∈ C1(R), convex s.t. ξ′(1) ≥ 0, ∀ϕ ∈ C1(Ω,R+).

We first prove the following property, which at the same time, gives some elements
to conclude to the uniqueness of the weak process solution but also helps to prove
that this solution is an extremal point of C(g, F ).

Proposition 3.4 (comparison of a weak process solution and an element of
C(g, F )). Under Hypotheses (H), let γ ∈ C(g, F ) be given, where C(g, F ) is defined
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in Definition 3.1, and let v ∈ L∞(Ω), such that γ(x) = v(x)g(x) and 0 ≤ v(x) ≤ 1
for a.e. x ∈ Ω. Let ĝ be a weak process solution to problem (10)–(11) in the sense of
Definition (3.3). Let u ∈ L∞(Ω×(0, 1)) be such that 0 ≤ u(x, α) ≤ 1 and ĝ : (x, α) �→
u(x, α)g(x) for a.e. (x, α) ∈ Ω×(0, 1) and such that u satisfies (27). Then the following
inequality holds:

∫
Ω

∫ 1

0

(v(x) − u(x, α))+ [−g(x) · ∇ϕ(x)] dαdx ≥ 0 ∀ϕ ∈ C1(Ω,R+).(27)

Proof. This proof uses the method of doubling variables (first introduced by
Krushkov [12]) adapted to weak process solutions [8].

Let us assume the hypotheses of the proposition. Let η ∈ C1(R2,R) be given such
that η(·, b) is convex for all b ∈ (−∞, 1]. We also assume that ∂1η, the derivative of η
with respect to its first argument, is such that ∂1η(1, b) ≥ 0 for all b ∈ [0, 1], and that
∂2η, the derivative of η with respect to its second argument, is such that ∂2η(a, b) ≥ 0
for all a, b ∈ [0, 1]. Let ψ ∈ C1(Rd × R

d,R+) be given.
Then, for all x ∈ Ω, we have ψ(x, ·) ∈ C1(Ω,R+) and for all y ∈ Ω, ψ(·, y) ∈

C1(Ω,R+). We introduce ξ(·) = η(·, v(y)) and ϕ = ψ(·, y) in (27) for y ∈ Ω, and we
integrate the result on Ω. This produces

∫
Ω

∫
Ω

∫ 1

0

(
η(u(x, α), v(y)) [−g(x) · ∇xψ(x, y)]

+ [∂1η(u(x, α), v(y))u(x, α) − η(u(x, α), v(y))]ψ(x, y)divg(x)

+ ∂1η(u(x, α), v(y))ψ(x, y)F (x)
)
dαdxdy ≥ 0.

(28)

We now consider (20) for v, with ξ(·) = η(u(x, α), ·) and ϕ = ψ(x, ·), and we integrate
the result on Ω × (0, 1). We thus get

∫
Ω

∫
Ω

∫ 1

0

(
η(u(x, α), v(y)) [−g(y) · ∇yψ(x, y)]

+ [∂2η(u(x, α), v(y))v(y) − η(u(x, α), v(y))]ψ(x, y)divg(y)

+ ∂2η(u(x, α), v(y))ψ(x, y)F (y)
)
dαdxdy ≥ 0.

(29)

We now add (28) and (29). This delivers

T9 + T10 + T11 ≥ 0,(30)

where

T9 = −
∫

Ω

∫
Ω

∫ 1

0

η(u(x, α), v(y))

×
(
g(x) · ∇xψ(x, y) + g(y) · ∇yψ(x, y)

)
dαdxdy,

(31)

T10 =

∫
Ω

∫
Ω

∫ 1

0

((
∂1η(u(x, α), v(y))u(x, α) − η(u(x, α), v(y))

)
ψ(x, y)divg(x)

+
(
∂2η(u(x, α), v(y))v(y, β) − η(u(x, α), v(y))

)
ψ(x, y)divg(y)

)
dαdxdy,

(32)
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and

T11 =

∫
Ω

∫
Ω

∫ 1

0

(
∂1η(u(x, α), v(y))F (x) + ∂2η(u(x, α), v(y))F (y)

)
ψ(x, y)dαdxdy.

(33)
We again use the sequence of mollifiers in R and R

d, defined by (21)–(23). Let
φ ∈ C1(Rd,R+) and n ∈ N

� be given. We then take ψ(x, y) = φ(x)ρn(x− y) in (28)
and (29), which gives ψ ∈ C1(Rd × R

d,R+). We thus get, from (30),

T
(n)
9 + T

(n)
10 + T

(n)
11 ≥ 0,(34)

with

T
(n)
9 = −

∫
Ω

∫
Ω

∫ 1

0

η(u(x, α), v(y))

×
(
ρn(x− y)g(x) · ∇φ(x) + φ(x)(g(x) − g(y)) · ∇ρn(x− y)

)
dαdxdy,

(35)

T
(n)
10 =

∫
Ω

∫
Ω

∫ 1

0

(
[∂1η(u(x, α), v(y))u(x, α) − η(u(x, α), v(y))] divg(x)

+ [∂2η(u(x, α), v(y))v(y) − η(u(x, α), v(y))] divg(y)
)
φ(x)ρn(x− y)dαdxdy,

(36)

T
(n)
11 =

∫
Ω

∫
Ω

∫ 1

0

(
∂1η(u(x, α), v(y))F (x) + ∂2η(u(x, α), v(y))F (y)

)
×φ(x)ρn(x− y)dαdxdy.

(37)

We have T
(n)
9 = T

(n)
12 + T

(n)
13 + T

(n)
14 , with

T
(n)
12 = −

∫
Ω

∫
Ω

∫ 1

0

η(u(x, α), v(y))ρn(x− y)g(x) · ∇φ(x)dαdxdy,(38)

T
(n)
13 = −

∫
Ω

∫
Ω

∫ 1

0

η(u(x, α), v(x))

×φ(x)(g(x) − g(y)) · ∇ρn(x− y)dαdxdy,

(39)

T
(n)
14 = −

∫
Ω

∫
Ω

∫ 1

0

(
η(u(x, α), v(y)) − η(u(x, α), v(x))

)

×φ(x)(g(x) − g(y)) · ∇ρn(x− y)dαdxdy.

(40)

The limit of T
(n)
12 as n −→ ∞ is given by

lim
n→∞

T
(n)
12 = −

∫
Ω

∫ 1

0

η(u(x, α), v(x))g(x) · ∇φ(x)dαdx.

Thanks to an integration by parts with respect to y and to Hypotheses (H), we get

T
(n)
13 = T

(n)
15 + T

(n)
16 , where

T
(n)
15 =

∫
Ω

∫
∂Ω

∫ 1

0

η(u(x, α), v(x))φ(x)ρn(x− y)g(x) · n(y)dαdydx(41)
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and

T
(n)
16 =

∫
Ω

∫
Ω

∫ 1

0

η(u(x, α), v(x))φ(x)ρn(x− y)divg(y)dαdxdy.(42)

We have, for a.e. y ∈ ∂Ω,

lim
n→∞

∫
Ω

∫ 1

0

η(u(x, α), v(x))φ(x)ρn(x− y)g(x) · n(y)dαdx = 0,

which produces

lim
n→∞

T
(n)
15 = 0,

and therefore

lim
n→∞

T
(n)
13 = lim

n→∞
T

(n)
16 =

∫
Ω

∫ 1

0

η(u(x, α), v(x))φ(x)divg(x)dαdx.

Thanks to the theorem of continuity in means applied to the function v and thanks
to the fact that (x, y) �→ (g(x) − g(y)) · ∇ρn(x − y) vanishes for |x − y| > 1/n and
belongs to L1(Ω) since g is regular, we get

lim
n→∞

T
(n)
14 = 0.

We have, again using the Lebesgue dominated convergence theorem,

lim
n→∞

T
(n)
10 =

∫
Ω

∫ 1

0

(
∂1η(u(x, α), v(x))u(x, α) + ∂2η(u(x, α), v(x))v(x)

− 2η(u(x, α), v(x))
)
φ(x)divg(x)dαdx

and

lim
n→∞

T
(n)
11 =

∫
Ω

∫ 1

0

(∂1η(u(x, α), v(x)) + ∂2η(u(x, α), v(x)))F (x)φ(x)dαdx.

We thus get, passing to the limit n → ∞ in (34),

(43)∫
Ω

∫ 1

0

(
η(u(x, α), v(x)) [−g(x) · ∇φ(x)]

+
(
∂1η(u(x, α), v(x))u(x, α) + ∂2η(u(x, α), v(y))v(x) − η(u(x, α), v(x))

)
φ(x)divg(x)

+
(
∂1η(u(x, α), v(x)) + ∂2η(u(x, α), v(x))

)
F (x)φ(x)

)
dαdx ≥ 0.

We now consider, for a given ε > 0, the function Sε ∈ C1(R) defined by

Sε(s) = 0 ∀s ∈ (−∞, 0],
Sε(s) = s2(3ε− 2s)/ε3 ∀s ∈ [0, ε],
Sε(s) = 1 ∀s ∈ [ε,+∞).

(44)

We define ξε(s) =
∫ s

0
Sε(τ)dτ , and we set, for all (a, b) ∈ R

2, ηε(a, b) = ξε(b− a). We
then easily get that this function ηε satisfies ∂1ηε(1, b) = −Sε(b − 1) = 0 ≥ 0 for all
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b ≤ 1, ηε(·, b) is convex for all b ≤ 1, and ∂2ηε(a, b) = Sε(b− a) ≥ 0 for all (a, b) ∈ R
2.

We can then use this function in (44). We remark that, for all (a, b) ∈ R
2,

a∂1ηε(a, b) + b∂2ηε(a, b) − ηε(a, b) = (b− a)Sε(b− a) − ηε(a, b)

leads to

lim
ε→0

(a∂1ηε(a, b) + b∂2ηε(a, b) − ηε(a, b)) = 0,

and we also remark that

∂1ηε(a, b) + ∂2ηε(a, b) = 0.

Thus, using the Lebesgue dominated convergence theorem, we can let ε → 0 in (44)
which produces

∫
Ω

∫ 1

0

(v(x) − u(x, α))+ [−g(x) · ∇φ(x)] dαdx ≥ 0,(45)

which is (27) and thus concludes the proof of the proposition.
The above result is now used to yield the uniqueness of the weak process solution,

and thus to obtain that this weak process solution is in fact a weak solution. Note
that, in the proof of all the above propositions, the hypothesis that g can be written
under the form g(x) = Λ(x)∇h(x) for all x ∈ Ω is not used (g being Lipschitz
continuous is sufficient). A uniqueness result for the weak solution could then be
obtained assuming that F > 0 a.e. in addition to g being Lipschitz continuous, but
the uniqueness result for the weak process solution remains an open problem under
such hypotheses. The proof of the uniqueness result given below explicitly uses the
hypothesis g(x) = Λ(x)∇h(x) for all x ∈ Ω, which fortunately holds in the physical
problem.

Proposition 3.5 (uniqueness of the weak process solution). Under Hypothe-
ses (H), there exists at most one weak process solution ĝ to problem (10)–(11) in the
sense of Definition 3.3. Moreover, if û ∈ L∞(Ω × (0, 1)) is such that 0 ≤ u(x, α) ≤ 1
and ĝ : (x, α) �→ u(x, α)g(x) for a.e. (x, α) ∈ Ω × (0, 1) and if u satisfies (27),
then u(x, α) does not depend on α on a.e. x ∈ Ω such that g(x) 	= 0 (g(x) = 0 and
F (x) > 0). Then the function g̃ defined by g̃(x) = u(x, α)g(x) for a.e. x ∈ Ω and
α ∈ (0, 1) is the unique weak solution to problem (10)–(11) in the sense of Defini-
tion 1.1. Moreover, this function g̃ is an extremal point of C(g, F ) in the sense that
|g̃| ≥ |γ| for all γ ∈ C(g, F ) (the set C(g, F ) is defined in Definition 3.1), and it is
also the projection in L2(Ω)d of g on the convex set C(g, F ).

Proof. Let us assume that ĝ is a weak process solution to problem (10)–(11) in
the sense of Definition 3.3. Let u ∈ L∞(Ω × (0, 1)) correspond to ĝ in Definition 3.3.
We again denote Ω0 = {x ∈ Ω, g(x) = 0} and we remark that (27), proven in
Proposition 3.4, gives for all γ ∈ C(g, F ), letting v ∈ L∞(Ω) be such that γ(x) =
v(x)g(x) and 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω, that

∫
Ω\Ω0

∫ 1

0

(v(x) − u(x, α))+ [−g(x) · ∇ϕ(x)] dαdx ≥ 0.

Thanks to Hypotheses (H), we can define the nonnegative function ϕ by ϕ(x) = h(x)−
miny∈Ω h(y) for all x ∈ Ω, where h ∈ C1(Ω) is such that g(x) = Λ(x)∇h(x) for all
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x ∈ Ω. We then get that, for all x ∈ Ω\Ω0, −g(x) ·∇ϕ(x) = −Λ(x)∇h(x).∇h(x) < 0.
This produces

(v(x) − u(x, α))+ = 0 for a.e. (x, α) ∈ Ω \ Ω0 × (0, 1).(46)

We then remark that the function γ : x �→
∫ 1

0
u(x, α)dαg(x) belongs to the convex

set C(g, F ). Therefore, setting v =
∫ 1

0
u(·, α)dα in (46), we get that for a.e. x ∈ Ω\Ω0,∫ 1

0
(
∫ 1

0
u(x, β)dβ − u(x, α))+dα = 0, which proves that u(x, α) does not depend on α

for a.e. x ∈ Ω \Ω0. We define T (u) ∈ L∞(Ω) by T (u)(x) = u(x, α) for a.e. x ∈ Ω \Ω0

and α ∈ (0, 1) and by T (u)(x) = 1 for a.e. x ∈ Ω0. We then get that the function
g̃ : Ω → R

d such that g̃ = T (u)g is such that g̃(x) = ĝ(x, α) for a.e. x ∈ Ω and
α ∈ (0, 1).

Let us assume that ĝ and ˆ̂g are two weak process solutions to problem (10)–(11)
in the sense of Definition 3.3. Let u and û be some elements of L∞(Ω× (0, 1)) which

correspond to ĝ and ˆ̂g, respectively, in Definition 3.3. We then get, setting v = T (û)
in (46), that (T (û)(x) − T (u)(x))+ = 0 for a.e. x ∈ Ω \ Ω0 and, inverting the roles of
u and û, (T (u)(x)−T (û)(x))+ = 0. This suffices to prove that T (û)(x) = T (u)(x) for
a.e. x ∈ Ω\Ω0, which completes the proof of uniqueness of the weak process solution.

Let us prove that the function g̃ = T (u)g is a weak solution to problem (10)-(11)
in the sense of Definition 1.1. We introduce in (27) the functions ξ : s → (s−1)2 and,
for all n ∈ N

�, ϕ = ϕn, as defined in the proof of Proposition 1.3. The same analysis
as that which is done in the proof of Proposition 1.3 delivers that, passing to the limit

n → ∞,
∫
Ω0

∫ 1

0
(u(x, α) − 1)dαF (x)dx ≥ 0. This proves that u(x, α) = 1 = u(x) for

a.e. α ∈ (0, 1) and a.e. x ∈ Ω0 such that F (x) > 0. Since all the terms of (27) under
the symbols

∫
vanish a.e. on {x ∈ Ω, g(x) = 0 and F (x) = 0}, we get that (27) with

u implies (14) with T (u). Thus the function g̃ is a weak solution to problem (10)–(11)
in the sense of Definition 1.1. Since it is obvious that any weak solution is a weak
process solution, we thus deduce, from the uniqueness of the weak process solution,
that of this weak solution.

Let us now show that g̃ is an extremal point of C(g, F ). Let γ ∈ C(g, F ), and
let v ∈ L∞(Ω) such that γ(x) = v(x)g(x) and 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω. Thanks
to (46), we get that, for a.e. x ∈ Ω \ Ω0, v(x) ≤ T (u)(x). This proves that, for a.e.
x ∈ Ω, |γ(x)| ≤ |g̃(x)|. This property implies that

∫
Ω
(g(x)− g̃(x)) · (g̃(x)− γ(x))dx =∫

Ω
|g(x)|2(1 − T (u)(x))(T (u)(x) − v(x))dx ≥ 0 for all γ ∈ C(g, F ), which shows that

g̃ is the projection of g on C(g, F ) in L2(Ω)d.

4. Passing to the limit in numerical schemes. We now start the study of
the convergence of a numerical scheme, which is based on finite volume methods. Such
methods proved their efficiency for various nonlinear problems such as, for instance,
nonlinear degenerate problems (see, e.g., [9], [13] and references therein) and nonlin-
ear hyperbolic problems (see [8], but there exists a huge literature on this subject).
The main additional difficulty of the present problem is due to the introduction of
the limiter u in (2) in order to satisfy the constraints (3)–(5) (recall that (2)–(5) lead
to (10) and (11) using a time discretization). The “equation” on this unknown u
seems to lead to a new type of problem which is unexpectedly not really related to
variational inequalities but has some similarity with a scalar conservation law, leading
to a nonlinear hyperbolic equation. From the numerical point of view, this similarity
may be viewed in the upwinding choice for u in (50) (more precisely, the choice of
uK or uL, on the interface between the control volumes K and L, depends on the
sign of gK,L). This upwinding is crucial, for instance, in order to have a solution
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u taking values in [0, 1] (which is a constraint given by (10)). Numerical simula-
tions using a centered choice of u often lead to troubles (such as oscillations) and the
simulation has to stop (this is also true in the industrial framework). Another simi-
larity with scalar conservation laws appears in the choice of the convex function ξ in
Definition 1.1.

Let us first define the notion of admissible mesh of R
d (this definition is inspired

by [8]).
Definition 4.1 (admissible meshes). An admissible finite volume mesh of Ω,

denoted by T , is given by a finite family of disjoint polygonal (one uses here the
two space dimensions terms for the setting of the general space dimension) connected
subsets of R

d such that Ω is the union of the closure of the elements of T (which
are called control volumes in the following) and such that the common interface of
any pair of neighboring control volumes is included in a hyperplane of R

d (this is
not necessary but is introduced in order to simplify the formulation). We denote by
size(T ) := sup{diam(K),K ∈ T }, by mK the measure of K for all K ∈ T , and by
NK the subset of T of all the control volumes having a common interface with K. We
then denote by E one set of pairs of neighbors (K,L) ∈ T 2 such that, if (K,L) ∈ E,
(L,K) /∈ E, and for all K ∈ T and L ∈ NK , (K,L) ∈ E or (L,K) ∈ E. For K ∈ T
and L ∈ NK , we denote by mKL the measure of the common interface between K and
L. We measure the regularity of the mesh by means of the following expression:

regul(T ) := max

{ ∑
L∈NK

mKLdiam(K)/mK , K ∈ T
}
.

Let T be an admissible mesh of Ω. Let gT := (gK,L)K∈T ,L∈NK
be a family of

real numbers such that

gK,L = −gL,K ∀K ∈ T , ∀L ∈ NK(47)

and

∑
L∈NK

gK,L =

∫
K

divg(x)dx := GK ∀K ∈ T .(48)

Denoting

FK =

∫
K

F (x)dx,(49)

the finite volume scheme, in order to approximate problem (10)–(11), is given by

∑
L∈NK

(g+
K,LuL − g−K,LuK) + FK = 0 and uK ≤ 1 or

∑
L∈NK

(g+
K,LuL − g−K,LuK) + FK ≥ 0 and uK = 1.

(50)

We define the function uT by

uT (x) = uK ∀x ∈ K, ∀K ∈ T .(51)

We then define the following value, which measures the consistency of the approxi-
mation gT of the fluxes by means of a discrete L2(Ω)d norm and which is expected
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to tend to 0 with size(T ):

cons(gT ) :=
∑
K∈T

∑
L∈NK

diam(K)

mKL
(gK,L − ḡK,L)

2
,(52)

where

ḡK,L =

∫
K|L

g(x) · nK,Lds(x) ∀K ∈ T , ∀L ∈ NK .(53)

Different choices are possible for gT . We can propose the following, for example.
• The choice gK,L = ḡK,L for all K ∈ T and L ∈ NK is the simplest one which

satisfies that cons(gT ) tends to 0 as size(T ) tends to 0. Unfortunately, it
demands in the general case the knowledge of g.

• In the framework of the coupled problem given in the introduction to this
paper, the field g = Λ∇h is not analytically known, and it must be approx-
imated. This can be achieved, assuming that Λ is scalar (this is the case
in some of the geological applications), using for example the finite volume
method (see [8]). The notion of admissible meshes must then be restricted to
the case where there exists, for all K ∈ T , a point xK in the control volume
K such that, for a pair of two neighboring grid blocks K and L, the line
(xK , xL) is orthogonal to the interface K̄ ∩ L̄ between these grid blocks. One
then defines τKL =

∫
K̄∩L̄

Λ(x)ds(x)/d(xK , xL), where we denote by ds(x)
the d− 1 Lebesgue measure at point x ∈ K̄ ∩ L̄. One can then compute the
family (hK)K∈T of reals such that (48) holds under the condition

gK,L = τKL(hL − hK) ∀K ∈ T , ∀L ∈ NK(54)

in addition to such a relation as
∑

K∈T mKhK = 0 (this corresponds to the
discrete solution of a homogeneous Neumann problem). One can then prove
that, under Hypotheses (H), cons(gT ) tends to 0 as size(T ) tends to 0 (see
[8] and [18]).

• In the same way, one can compute a mixed finite element approximate for
gK,L which also satisfies that cons(gT ) tends to 0 as size(T ) tends to 0 (see
[4]).

In order to compute a solution of (47)–(50), we shall now describe an algorithm,
denoted by Algorithm (A) below.
Algorithm (A).

Initialization: u
(0)
K = 1 and p

(0)
K = 1 for all K ∈ T .

Iterations: Let n ∈ N
�. Assume that u

(n−1)
K and p

(n−1)
K are known for all K ∈ T .

1. Computation of {p(n)
K , K ∈ T }:

If
∑

L∈NK

(g+
K,Lu

(n−1)
L − g−K,Lu

(n−1)
K ) + FK < 0, then p

(n)
K = 0.

If
∑

L∈NK

(g+
K,Lu

(n−1)
L − g−K,Lu

(n−1)
K ) + FK ≥ 0, then p

(n)
K = p

(n−1)
K .

(55)

2. Computation of {u(n)
K , K ∈ T }, solution to the following linear system:∑

L∈NK

(g+
K,Lu

(n)
L − g−K,Lu

(n)
K ) = −FK ∀K ∈ T s.t. p

(n)
K = 0,

u
(n)
K = 1 ∀K ∈ T s.t. p

(n)
K = 1.

(56)
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The following proposition gives a monotonicity property of Algorithm (A).
Proposition 4.2 (a monotonicity property of Algorithm (A)). Under Hypothe-

ses (H), let T be an admissible mesh of Ω, and let (gK,L)K∈T ,L∈NK
be a family of

real numbers such that (47) and (48) are satisfied. Let n ∈ N
� be given such that there

exists a family {(p(k)
K , u

(k)
K ), K ∈ T , k = 0, . . . , n− 1} such that (55) and (56) hold in

addition to u
(k)
K ≥ 0 for all K ∈ T , k = 0, . . . , n− 1. Let (p

(n)
K )K∈T be given by (55).

Then, for all family of reals (wK , sK)K∈T such that sK ≥ 0 for all K ∈ T and
such that

∑
L∈NK

(g+
K,LwL − g−K,LwK) = −sK ∀K ∈ T s.t. p

(n)
K = 0,

wK = sK ∀K ∈ T s.t. p
(n)
K = 1,

(57)

the property wK ≥ 0 for all K ∈ T holds.
Let us first remark that Proposition 4.2 suffices to prove that the matrix of the

linear system (57) is invertible. Since in the case sK = 0 for all K ∈ T , for any
family (wK)K∈T satisfying (57), then (−wK)K∈T also satisfies (57), which proves
that wK = 0 for all K ∈ T . We therefore state the following corollary.

Corollary 4.3. Under the hypotheses of Proposition 4.2, for all families (sK)K∈T
of reals, there exists one and only one family of reals (wK)K∈T such that (57) holds.

Proof of Proposition 4.2. Let us assume the hypotheses of Proposition 4.2, and
let (wK , sK)K∈T be a family of reals such that sK ≥ 0 for all K ∈ T and such that
(57) holds. Let us assume that the set T− = {K ∈ T ; wK < 0} is not empty. Then,

if K ∈ T−, one has p
(n)
K = 0, since wK = sK ≥ 0 for K ∈ T such that p

(n)
K = 1. We

therefore have

∑
L∈NK

(g+
K,LwL − g−K,LwK) + sK = 0 ∀K ∈ T−.(58)

Summing (58) for K ∈ T− leads to

∑
K∈T−

∑
L∈NK\T−

(g+
K,LwL − g−K,LwK) +

∑
K∈T−

sK = 0.(59)

Since wK < 0 for K ∈ T− and wL ≥ 0 for L 	∈ T−, (59) gives sK = 0 for all K ∈ T−
and gK,L ≥ 0 for all (K,L) such that K ∈ T− and L ∈ NK \ T−. Let k < n be the

greatest integer such that there exists K ∈ T− with p
(k)
K = 1 and p

(k+1)
K = 0 (such

a k exists since p
(0)
K = 1 for all K ∈ T ). We then have, for all K ∈ T−, p

(k+1)
K = 0

(otherwise this would be in contradiction with the choice of k), and therefore one has∑
L∈NK

(g+
K,Lu

(k)
L − g−K,Lu

(k)
K ) + FK ≤ 0.

For K ∈ T− such that p
(k)
K = 1 and p

(k+1)
K = 0, one has

∑
L∈NK

(g+
K,Lu

(k)
L −

g−K,Lu
(k)
K ) + FK < 0. We thus get

∑
K∈T−

∑
L∈NK , L 	∈T−

(g+
K,Lu

(k)
L − g−K,Lu

(k)
K ) +

∑
K∈T−

FK < 0.

On the other hand, since u
(k)
L ≥ 0 and since gK,L ≥ 0 for all (K,L) such that K ∈ T−
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and L ∈ NK \ T− and FK ≥ 0, we can write

0 ≤
∑

K∈T−

∑
L∈NK , L 	∈T−

g+
K,Lu

(k)
L

≤
∑

K∈T−

∑
L∈NK , L 	∈T−

(g+
K,Lu

(k)
L − g−K,Lu

(k)
K ) +

∑
K∈T−

FK < 0,

which is impossible. This contradiction proves that T− is empty, which concludes the
proof of the proposition.

We can now prove the following proposition, which states that Algorithm (A) is
well defined and leads to a solution of (50) for some n ≤ card(T ).

Proposition 4.4 (convergence of an algorithm and existence of a discrete solu-
tion). Under Hypotheses (H), let T be an admissible mesh of Ω, and let (gK,L)K∈T ,L∈NK

be a family of real numbers such that (47) and (48) are satisfied. Then the following
hold.

1. There exists a unique family {(p(n)
K , u

(n)
K ), K ∈ T , n ∈ N} solution of Algo-

rithm (A).

2. For all K ∈ T and all n ∈ N, one has u
(n)
K ≥ 0.

3. For all K ∈ T , the sequence (u
(n)
K )n∈N is nonincreasing.

4. There exists n ≤ card(T ) such that, setting uK = u
(n)
K for all K ∈ T , the

family {uK , K ∈ T } is such that u
(p)
K = uK for all K ∈ T and p ≥ n. This

family is therefore a solution of (49) and (50) such that

0 ≤ uK ≤ 1 ∀K ∈ T .(60)

Proof. The family {(p(0)
K , u

(0)
K ), K ∈ T } is uniquely defined and satisfies u

(0)
K ≥ 0

for all K ∈ T .
Let us prove the first two items of the above proposition by induction. Let n ∈ N

�;

we assume that there exists a family {(p(k)
K , u

(k)
K ), K ∈ T , k = 0, . . . , n− 1} such that

(55) and (56) hold in addition to u
(k)
K ≥ 0 for all K ∈ T , k = 0, . . . , n − 1. Let

(p
(n)
K )K∈T be given by (55). We can then apply Proposition 4.2 and Corollary 4.3,

setting sK = 1 for all K ∈ T such that p
(n)
K = 1 and sK = FK ≥ 0 for all K ∈ T such

that p
(n)
K = 0. We thus immediately get the existence and the uniqueness of u

(n)
K ≥ 0

for all K ∈ T such that (56) holds. This suffices to prove the first two items at the
level n.

We can now prove that u
(n)
K ≤ u

(n−1)
K for all K ∈ T . Indeed let us consider

wK = u
(n−1)
K − u

(n)
K for all K ∈ T . We have, for all K ∈ T such that p

(n)
K = 0,∑

L∈NK
(g+

K,Lu
(n)
L −g−K,Lu

(n)
K )+FK = 0 and

∑
L∈NK

(g+
K,Lu

(n−1)
L −g−K,Lu

(n−1)
K )+FK ≤

0, which gives, by subtraction

∑
L∈NK

(g+
K,LwL − g−K,LwK) := −sK ,

with sK ≥ 0. For all K ∈ T such that p
(n)
K = 1, we have

wK = sK := 0.

We can then apply Proposition 4.2, and we get that 0 ≤ wK for all K ∈ T , which is
the third item of the proposition. Let us prove the last item.
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The definition of the algorithm gives p
(n)
K = p

(n−1)
K or p

(n)
K = 0 for all K and all

n ∈ N
�. Then, setting An = {K ∈ T ; p

(n)
K = 0}, one has card(An) ≥ card(An−1) for

all n ∈ N
�. Since card(A0) =0, there exists n ≤ card(T ) + 1 such that card(An)

= card(An−1). For this value of n one has p
(n)
K = p

(n−1)
K for all K ∈ T . If

p
(n−1)
K = 1, one has u

(n−1)
K = 1 and

∑
L∈NK

(g+
K,Lu

(n−1)
L − g−K,Lu

(n−1)
K ) + FK ≥ 0

(since
∑

L∈NK
(g+

K,Lu
(n−1)
L − g−K,Lu

(n−1)
K ) + FK < 0 gives p

(n)
K = 0).

If p
(n−1)
K = 0, one has

∑
L∈NK

(g+
K,Lu

(n−1)
L −g−K,Lu

(n−1)
K )+FK = 0 and u

(n−1)
K ≤ 1

thanks to the fact that the sequence (u
(n)
K )n∈N is nonincreasing and u

(0)
K = 1.

Therefore, setting uK = u
(n−1)
K for all K ∈ T , the family {uK , K ∈ T } is a

solution of (49) and (50). It is also obvious to see that u
(p)
K = uK for all K ∈ T and

for all p ≥ n− 1.
This concludes the proof of Proposition 4.4.
Remark 4.1. Under Hypotheses (H), assuming that Λ is a scalar function and

following a method similar to the proof of uniqueness of Proposition 3.5, it is possible
to prove that there exists a unique solution to (49) and (50), with the choice (54) for
the discrete fluxes.

We then have the following proposition.
Proposition 4.5 (weak bounded variation inequality). Under Hypotheses (H),

let T be an admissible mesh of Ω in the sense of Definition 4.1, and let gT be a family
of reals which satisfies (47) and (48). Let (uK)K∈T be a solution of scheme (49) and
(50) such that (60) holds. Then there exists C > 0, which only depends on d,Ω, g, F
and not on T , such that ∑

(K,L)∈E
|gK,L|(uK − uL)2 ≤ C.(61)

Proof. We multiply (50) by (1 − uK); we sum on K. We get T17 + T18 = 0 with

T17 =
∑
K∈T

(1 − uK)
∑

L∈NK

(g+
K,LuL − g−K,LuK)

and

T18 =
∑
K∈T

(1 − uK)FK .

We have T17 = T19 + T20, with

T19 =
∑
K∈T

(1 − uK)
∑

L∈NK

g+
K,L(uL − uK)

and, using (48),

T20 =
∑
K∈T

(1 − uK)uKGK .

We develop T19: we get

T19 =
1

2

∑
K∈T

(1 − uK)2
∑

L∈NK

g+
K,L +

1

2

∑
K∈T

∑
L∈NK

g+
K,L(uL − uK)2

−1

2

∑
K∈T

(1 − uL)2
∑

L∈NK

g+
K,L.
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Since g+
K,L = g−L,K , we get

T19 =
1

2

∑
K∈T

(1 − uK)2GK +
1

2

∑
(K,L)∈E

|gK,L|(uL − uK)2.

Gathering the previous results, we get the conclusion.
We can now state the convergence of the scheme to a weak process solution.

This convergence result is obtained in the sense of the nonlinear weak-� convergence,
defined in [7], which is a convenient way to understand the convergence towards a
Young measure. Indeed, a bounded sequence (un)n∈N of L∞(Ω) converges in the
nonlinear weak-� sense to some function u ∈ L∞(Ω × (0, 1)) if, for all ξ ∈ C0(R),
the sequence (ξ(un))n∈N converges for the weak-� topology of L∞(Ω) to the function

x �→
∫ 1

0
ξ(u(x, α))dα (the notation dα stands here for the Lebesgue measure on (0, 1)).

A main compactness result is that from a bounded sequence of L∞(Ω), it is possible
to extract a subsequence converging in the nonlinear weak-� sense (see [7] or [8] for
more details).

Proposition 4.6 (convergence of the scheme to a weak process solution). Under
Hypotheses (H), let (T (m), gT (m))m∈N be a sequence such that, for all m ∈ N, T (m)

is an admissible mesh of Ω in the sense of Definition 4.1 and gT (m) is a family of
reals such that (47) and (48) are satisfied. We assume that limm→∞ size(T (m)) = 0,
that there exists R > 0 s.t regul(T (m)) ≤ R for all m ∈ N (see Definition 4.1 for
the definitions of size and regul), and that limm→∞ cons(gT (m)) = 0. For all m ∈ N,
we denote by uT (m) a solution of scheme (49)–(50) such that (60) holds. Then, from
the sequence (T (m))m∈N, one can extract a subsequence, again denoted (T (m))m∈N,
such that the corresponding sequence (uT (m)g)m∈N converges in the nonlinear weak-
� sense (see above for the sense of this convergence) to a weak process solution of
problem (10)–(11) in the sense of Definition 1.1.

Proof. Using the property (60) satisfied by uT (m) , we can deduce the existence
of a subsequence, again denoted (T (m))m∈N, such that the corresponding sequence
(uT (m))m∈N converges in the nonlinear weak-� sense to some function u ∈ L∞(Ω ×
(0, 1)). We shall now prove that u is the weak process solution of problem (10)–
(11) in the sense of Definition 1.1. Let ϕ ∈ C1(Ω,R+), and let ξ ∈ C1(R) be a
convex function with ξ′(1) ≥ 0. Let m ∈ N, and let (T (m)) be the corresponding
admissible mesh of the subsequence. For simplicity, we do not mention the index m
until we consider some convergence properties as m → ∞. We get from (50), using
ξ′(uK) = ξ′(1) + ξ′(uK) − ξ′(1), that

ξ′(uK)

( ∑
L∈NK

(g+
K,LuL − g−K,LuK) + FK

)
≥ 0 ∀K ∈ T .(62)

We can then multiply (62) by ϕK , where we denote ϕK = 1
mK

∫
K
ϕ(x)dx, and we

sum on K ∈ T . We get T21 + T22 ≥ 0, with

T21 =
∑
K∈T

ξ′(uK)ϕK

∑
L∈NK

(g+
K,LuL − g−K,LuK)

and

T22 =
∑
K∈T

ξ′(uK)ϕKFK .
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We have T21 = T23 + T24 with

T23 =
∑
K∈T

ξ′(uK)uKϕK

∑
L∈NK

gK,L

and

T24 =
∑
K∈T

ξ′(uK)ϕK

∑
L∈NK

g+
K,L(uL − uK).

Since
∑

L∈NK
gK,L =

∫
K

divg(x)dx, we thus get that

lim
m→∞

T
(m)
23 =

∫
Ω

∫ 1

0

ξ′(u(x, α))u(x, α)ϕ(x)divg(x)dαdx.

On the other hand, we have

T24 ≤ T25 :=
∑
K∈T

ϕK

∑
L∈NK

g+
K,L(ξ(uL) − ξ(uK)).

Gathering by edges, we get

T25 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK))(ϕKg+

K,L − ϕLg
−
K,L).

Let us compare T25 with T26 defined by

T26 = −
∑
K∈T

ξ(uK)

∫
K

div(ϕ(x)g(x))dx.

We have, on one hand, that

lim
m→∞

T
(m)
26 = −

∫
Ω

∫ 1

0

ξ(u(x, α))div(ϕ(x)g(x))dαdx,

and on the other hand, we have

T26 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK))

∫
K|L

ϕ(x)g(x) · nK,Lds(x).

Thus we get that

T25 − T26 = T27 + T28 + T29,

with

T27 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK))

(
ϕKg+

K,L − ϕLg
−
K,L − gK,L

mKL

∫
K|L

ϕ(x)ds(x)

)
,

T28 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK)) (gK,L − ḡK,L)

(
1

mKL

∫
K|L

ϕ(x)ds(x)

)
,

T29 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK))

(∫
K|L

(
ḡK,L

mKL
− g(x) · nK,L)ϕ(x)ds(x)

)

(recall that ḡK,L is defined by (53)). In the following, we designate by Ci various real
numbers which can depend on d,Ω, g, F, ϕ, ξ but not on T . Using |ξ(uK) − ξ(uL)| ≤
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C1 |uK − uL| and the Cauchy–Schwarz inequality,
∣∣∣∣∣ϕK − 1

mKL

∫
K|L

ϕ(x)ds(x)

∣∣∣∣∣ ≤ diam(K)C2 ,

and ∣∣∣∣∣ϕL − 1

mKL

∫
K|L

ϕ(x)ds(x)

∣∣∣∣∣ ≤ diam(L)C2 ,

we get

|T27|2 ≤ C3

⎛
⎝ ∑

(K,L)∈E
|gK,L|(uK − uL)2

⎞
⎠

⎛
⎝ ∑

(K,L)∈E
|gK,L|(diam(K)2 + diam(L)2)

⎞
⎠ .

Using (61) and

∑
(K,L)∈E

|gK,L|(diam(K)2 + diam(L)2) ≤ C4 size(T ),

we thus get that

lim
m→∞

|T (m)
27 | = 0.

We now turn to the study of T28. Since we have

T28 = −
∑
K∈T

ξ(uK)
∑

L∈NK

(gK,L − ḡK,L)

(
1

mKL

∫
K|L

ϕ(x)ds(x)

)
,

we get, using the property (48),

T28 = −
∑
K∈T

ξ(uK)
∑

L∈NK

(gK,L − ḡK,L)

(
1

mKL

∫
K|L

ϕ(x)ds(x) − ϕK

)
.

Thus, thanks to the Cauchy–Schwarz inequality and using (52), we get

T 2
28 ≤ C5 cons(gT ).

Thus

lim
m→∞

|T (m)
28 | = 0.

We conclude with the study of T29. Since

T29 = −
∑
K∈T

ξ(uK)
∑

L∈NK

(∫
K|L

(
ḡK,L

mKL
− g(x) · nK,L

)
(ϕ(x) − ϕK)ds(x)

)

and since
∫
K|L(

ḡK,L

mKL
− g(x) · nK,L)(ϕ(x) − ϕK)ds(x) ≤ C6 mKLdiam(K)2, we easily

get

lim
m→∞

|T (m)
29 | = 0.
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Gathering these results gives

lim
m→∞

T
(m)
25 = −

∫
Ω

∫ 1

0

ξ(u(x, α))div(ϕ(x)g(x))dαdx.

Finally, we easily get

lim
m→∞

T
(m)
22 =

∫
Ω

∫ 1

0

ξ′(u(x, α))ϕ(x)F (x)dαdx.

Gathering the previous results, we get T23 + T25 + T22 ≤ 0. Passing to the limit
m → ∞ in this inequality, we get

+

∫
Ω

∫ 1

0

u(x, α)ξ′(u(x, α))ϕ(x)divg(x)dαdx

−
∫

Ω

∫ 1

0

ξ(u(x, α))div(ϕ(x)g(x))dαdx

+

∫
Ω

∫ 1

0

ξ′(u(x, α))ϕ(x)F (x)dαdx ≥ 0,

which is exactly Definition 3.3.
Thanks to the uniqueness result, we now classically conclude with the following

convergence theorem (similar proofs can be found in [8]).
Theorem 4.7 (strong convergence of the scheme to a weak solution). Under

Hypotheses (H), let T be an admissible mesh of Ω in the sense of Definition 4.1, and
let gT be a family of reals such that (47) and (48) are satisfied. Then the function uT g,
where uT is a solution of scheme (49)–(50) such that (60) holds, converges in Lp(Ω)d

for all p ∈ [1,∞) to g̃, the unique weak solution to problem (10)–(11) in the sense
of Definition 1.1, as size(T ) tends to 0, cons(gT ) tends to 0, and regul(T ) remains
bounded (see Definition 4.1 for the definitions of size(T ) and regul(T ), and see (52)
for the definition of cons(gT )).

Proof. Under Hypotheses (H), let (T (m))m∈N be a sequence of admissible meshes
of Ω in the sense of Definition 4.1 such that limm→∞ size(T (m)) = 0. For all m ∈ N, we
denote by uT (m) a solution of scheme (47)–(50) such that (60) holds. Using Proposi-
tion 4.6, from the sequence (T (m))m∈N, one can extract a subsequence, again denoted
(T (m))m∈N, such that the corresponding sequence (uT (m))m∈N converges in the non-
linear weak-� sense to a weak process solution u of problem (10)–(11) in the sense of

Definition 1.1. We then get that the limit of
∫
Ω
g(x)2(uT (m)(x)−

∫ 1

0
u(x, α)dα)2dx as

m → ∞ is equal to
∫
Ω
g(x)2(

∫ 1

0
u(x, α)2dα−2(

∫ 1

0
u(x, α)dα)2 +(

∫ 1

0
u(x, α)dα)2)dx =

0, using Proposition 3.5 which stands that g̃(x) = u(x, α)g(x), for a.e. x ∈ Ω and
α ∈ (0, 1). This proves that (uT (m)g)m∈N converges to g̃ in L2(Ω)d. The uniqueness
of g̃ gives the conclusion of the theorem.

5. Numerical results.

5.1. One-dimensional example. We again consider the following data, stud-
ied in section 2: Ω = (−1, 1), g : x �→ x3 − x, and F : x �→ 1/2. We recall that
the weak solution is the function g̃ given by g̃ = ug, where the function u is such that
u : x �→ 1 for all x ∈ (−1,−

√
1/2) ∪ (

√
1/2, 1) and u : x �→ 1/(2(1 − x2)) for all

x ∈ (−
√

1/2,
√

1/2). We use Algorithm (A) to solve the nonlinear system (49)–(50)
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Fig. 1. Approximate solution (ap.sol) and exact solution (ex.sol) with 100 control volumes.

with gK,L = ḡK,L (ḡK,L is defined in (53)). We get, with 100 uniform control volumes,
the results given in Figure 1. The exact solution g̃ is represented by the dashed line
(and denoted by “ex.sol.” in the legend). The approximate solution of (49)–(50) is
uT . Figure 1 gives, with the solid line, the product of uT with the exact function
g (and this product is denoted by “ap.sol.” in the legend). The dashed line and the
solid line are very close to one another. The last line, namely the grey dotted one,
represents the exact function g.

It is interesting to remark that Algorithm (A) converges for a significantly smaller
number of iterations than card(T ). The table below gives, for different numbers of

control volumes, the number of iterations until p
(n)
K = p

(n+1)
K for all K ∈ T .

Number of control volumes Number of iterations ‖g̃ − uT g‖L1(Ω)

10 3 0.031757
50 9 0.006969
100 17 0.003488
500 76 0.000699
1000 151 0.000348
5000 748 0.000070
10000 1496 0.000035
50000 7473 0.000007

We observe that this number behaves as 1/size(T ), whereas the error in L1(Ω)
behaves as size(T ).

5.2. Two-dimensional examples. We use the coupled finite volume scheme
(48)–(54) in order to compute gT . We consider the following data: Ω = (0, 1)2,
Λ(x) = Id, and F (x) = 1/100 for a.e. x ∈ Ω, g = ∇h, where h is a solution of
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Fig. 2. Value of h from 0 (black) to 0.00111 (white): rectangular 60 × 60 mesh (left) and
triangular mesh with 3650 triangles (right).

Fig. 3. Value of u from 0.48 (black) to 1 (white): rectangular 60×60 mesh (left) and triangular
mesh with 3650 triangles (right).

the homogeneous Neumann problem

−Δh(x, y) = y(1 − y)(−x2 + x− 1/6) ∀(x, y) ∈ (0, 1)2,

∇h · n = 0 on ∂Ω.

These data have been chosen since they represent a kind of generalization in two di-
mensions of the one-dimensional case presented above. Two meshes have been tested.
With a rectangular 60× 60 mesh, the convergence of Algorithm (A) is obtained after
10 iterations; with a triangular mesh with 3650 triangles, 14 iterations are necessary
to converge. The results obtained after the resolution of h by the finite volume method
are presented in Figure 2. The corresponding values of the function u such that ug is
the weak solution are given in Figure 3, and the values of gx, gy, g̃x, g̃y which are the
components of g and g̃ are given in Figures 4 and 5 for the rectangular mesh.

These results show the efficiency of the numerical method. In particular, we can
remark that the approximate solution obtained with the rectangular mesh is very
close to the approximate solution obtained with the triangular mesh.

The following table gives, for rectangular meshes, the number of iterations needed
by Algorithm (A) for convergence.

Number of control volumes Number of iterations
10×10 3
50×50 9

100×100 16
150×150 23
200×200 30

We again observe that this number behaves as 1/size(T ).
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Fig. 4. Value of gx (left) and of g̃x (right) from −0.00342 (black) to 0.00342 (white).

Fig. 5. Value of gy (left) and of g̃y (right) from −0.00094 (black) to 0.00094 (white).

6. Conclusions. We have been able to prove the existence and the uniqueness
of the weak solution to problem (10)–(11) in the sense of Definition 1.1, and we have
proved the convergence of a numerical scheme, under Hypotheses (H). At this time, we
have not yet derived an error estimate although we can guess that it will be possible to
follow the same steps as that of a scalar nonlinear hyperbolic problem, since the basis
of proof of the uniqueness theorem is the doubling variable technique of Krushkov. It
is, however, probable that the error estimate that we shall obtain will be not sharp.
Moreover, the mathematical problem is not directly formulated as a function of h but
on g. We have only briefly mentioned in remarks that some of the results of this paper
can be obtained without the assumption g = Λ∇h. However, this is not the case for
all of them. Finally, much work remains to be done in order to handle the complete
problem (2)–(5).
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Abstract. A new monotone finite difference scheme is introduced that approximates viscosity
solutions of first-order nonlinear Hamilton–Jacobi equations. The main feature of the scheme is that
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1. Introduction. We consider Hamilton–Jacobi equations

ut + H(t, x, u,∇u) = 0 in R
d × (0, T ),

where H is a nondecreasing function of u. These equations arise in many areas of
applied mathematics, like optimal control, differential games, seismic wave propaga-
tion, terrain navigation of robotic navigation, and financial mathematics [16], among
many others. They also appear when modeling evolving interfaces in geometry, fluid
mechanics, computer vision [34, 28, 21, 42], and materials science [36]; they are essen-
tial when dealing with level set methods [30], numerical methods that have reached
widespread popularity. Therefore, there is general interest in designing efficient nu-
merical methods for such equations; see [26, 24, 27, 41, 6, 7] and references therein.

Osher and Sanders [29] designed a class of monotone schemes for scalar conserva-
tion laws with locally varying time and space grids. Inspired by this work, we design a
new class of monotone schemes for Hamilton–Jacobi equations. In this paper, we shall
obtain an upper bound of the L∞-norm of the difference between the approximate
solution vh and the viscosity solution of the model Hamilton–Jacobi equation

ut + H(∇u) = 0 in R
d × (0, T ).

The class of monotone schemes we consider here includes the classical Lax–Friedrichs
scheme, the monotone schemes considered by Crandall and Lions [15], the intrinsic
monotone scheme of Abgrall [1], and the monotone schemes devised by Kossioris,
Makridakis, and Souganidis [22]; it consists of numerical schemes that can be char-

acterized in terms of the so-called numerical Hamiltonian Ĥ which approximates the
exact Hamiltonian H. Therefore, all the schemes proposed in [15, 1, 22] can be for-
mulated under this new framework.

Our error estimate is of the form

‖u− vh ‖L∞(Qh) ≤ C1 h
1
2 ,

∗Received by the editors April 15, 2004; accepted for publication (in revised form) June 14, 2005;
published electronically January 6, 2006. This research was supported by ONR Grant N00014-02-1-
0720.

http://www.siam.org/journals/sinum/43-6/60682.html
†Department of Mathematics, UCLA, Los Angeles, CA 90095-1555 (qian@math.ucla.edu).

2371



2372 JIANLIANG QIAN

where Qh denotes the set of space-time points at which vh is defined, h denotes the so-
called mesh-size, and C1 depends on the W 1,∞-norm of u. The order of convergence
in h, 1

2 , is the now classical order of convergence already obtained in the previously
mentioned papers. However, if the solution is smooth, then we can also prove that

‖u− vh ‖L∞(Qh) ≤ C2 h,

where C2 depends on the W 2,∞-norm of u; this seems to be a new result.
Just as was done in [15], the error estimate we present is obtained by using the

structure of the numerical scheme and three key properties of its numerical Hamil-
tonian Ĥ, namely, consistency, monotonicity, and local smoothness. In this respect,
our result is similar to the error estimates for monotone schemes for nonlinear scalar
hyperbolic conservation laws obtained by Cockburn and Gremaud [9, 10] and by
Cockburn, Gremaud, and Yang [11].

The technique we use to prove our result is a variation of the technique used by
Albert et al. [2] to prove a posteriori error estimates for steady-state Hamilton–Jacobi
equations. Those estimates are of the form

‖u− vh ‖L∞(Rd) ≤ Φ(vh)

and are obtained by using a modification of the elegant technique that Crandall,
Evans, and Lions [14] devised to study viscosity solutions of Hamilton–Jacobi equa-
tions, where Φ is a nonlinear functional depending only on the computed solution vh.
Our technique is also related to the one used by Cockburn and Qian [12] to prove con-
tinuous dependence results for steady-state Hamilton–Jacobi equations, but in that
work we dealt only with steady Hamilton–Jacobi equations and no time variable is
involved in the error estimates. In this work we apply this doubling variable technique
to deal with time-dependent Hamilton–Jacobi equations with locally varying time and
space grids.

The devising of such schemes with locally varying time and space grids is funda-
mental to the development of efficient adaptive methods for Hamilton–Jacobi equa-
tions. As is well known, the viscosity solution for Hamilton–Jacobi equations is contin-
uous but may develop kinks in finite time; namely, its gradient might be discontinuous
although the initial data is smooth. To resolve such sharp kinks with high resolution,
one might use higher-order schemes [30, 31, 26, 20, 41, 6]. On the other hand, one
might also use an adaptive strategy to resolve the kinks with lower-order methods.

In general there are two distinct starting points for devising adaptive methods
for PDEs. One is getting the most accurate solution for a fixed cost, and the other is
attaining a fixed accuracy for a minimum cost.

The so-called adaptive mesh redistribution method is based on the former start-
ing point: getting the most accurate solution with a fixed number of mesh points; see
[19, 33, 35, 25, 8, 38, 39, 37] and references therein. In such methods, one dynam-
ically maps the physical domain to a computational domain via an invertible mesh
generator. The mesh generator is derived from a variational principle so that the
dynamic behavior of the solution can be taken into account. However, the resulting
mesh typically concentrates a high number of mesh points around a localized region
where the solution is singular or nearly singular [19, 8, 39]; therefore, globally chosen
time steps need to be small to be proportional to the smallest mesh size in space,
according to the Courant-Friedrichs-Lewy (CFL) stability condition. Nevertheless,
for Hamilton–Jacobi equations viscosity solutions are usually Lipschitz continuous
and thus are differentiable almost everywhere, and the resulting kinks are expected
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to develop in quite localized regions. Hence, the small time steps are really needed
only in those localized regions, and it is meaningful to develop schemes with locally
varying time and space grids. In [37], Tan et al. successfully tested a class of adaptive
mesh redistribution methods with locally varying time steps for nonlinear hyperbolic
conservation laws. Although an adaptive mesh redistribution method was proposed
for Hamilton–Jacobi equations in [39], the method can be made more efficient based
on a monotone scheme with locally varying time and space grids. For a nice review
on mesh redistribution methods for computational fluid dynamics, see [40].

The so-called adaptive mesh refinement method is based on the following start-
ing point: attaining a prespecified accuracy with a minimum cost; see [3, 5, 23, 17]
for such methods for nonlinear hyperbolic conservation laws and see [32, 13] for such
methods for Hamilton–Jacobi equations. The local adaptive mesh refinement meth-
ods in [3, 5] are based on ad hoc local truncation error estimation procedures and
thus are not optimal. The adaptive methods in [23, 17] are based on a posteriori error
estimates for hyperbolic conservation laws and thus are optimal to some extent. In
particular, the adaptive algorithm proposed by Gosse and Makridakis [17] enforces
a strict error control mechanism on each mesh cell by refining and coarsening com-
putational grids according to their local a posteriori error estimates so that a given
error tolerance is satisfied for each cell at every time step. Interestingly, a similar
error control mechanism was used for solving a class of Hamilton–Jacobi equations
in [32], where an adaptive mesh refinement method for eikonal equations is designed
based on asymptotic truncation error estimates and some numerical ODE techniques.
However, an optimal approach for triggering mesh refinement and coarsening should
be based on a posteriori error estimates. The adaptive mesh refinement method pro-
posed by Cockburn and Yenikaya [13] is based on such an a posteriori error estimate
[2] and thus has a rigorous error control for steady Hamilton–Jacobi equations; the
study of the effectivity index carried out in that paper indicates that the adaptive
method has optimal complexity. However, for the time-dependent Hamilton–Jacobi
equations the adaptive mesh refinement method must allow time space meshes to
vary locally. In this work, we construct a class of monotone finite difference methods
for Hamilton–Jacobi equations with locally varying time and space grids and obtain
convergence rates. As mentioned above, this class of methods can be used for both
adaptive mesh redistribution and adaptive mesh refinement methods.

The results obtained for the model time-dependent Hamilton–Jacobi equation can
be extended to the more general case,

H(x, t, u, ut,∇u) = 0,

without major difficulty, provided that the mapping u �→ H(x, t, u, pt, px) is nonde-
creasing and the mapping pt �→ H(x, t, u, pt, px) is strictly increasing.

We are currently incorporating the proposed scheme with a posteriori error es-
timates to design optimal adaptive methods for Hamilton–Jacobi equations. This
constitutes the subject of an ongoing work. However, to demonstrate the effective-
ness of the new scheme we will present some numerical examples for one- and two-
dimensional Hamilton–Jacobi equations; in particular, we present adaptive mesh re-
finement (AMR) examples for two-dimensional Hamilton–Jacobi equations using the
monotone scheme presented here as the driving method and a local truncation error
estimator in [3] as the indicator for the mesh refinement.

The paper is organized as follows. In section 2, we define the viscosity solution
and describe the new monotone schemes. In section 3, we state, discuss, and prove
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our main results. Section 4 presents some examples of monotone schemes for which
our results hold. In section 5 we present some numerical experiments to demonstrate
the effectiveness of the scheme.

2. New monotone schemes for Hamilton–Jacobi equations. We consider
the following model time-dependent Hamilton–Jacobi equation:

ut + H(∇u) = 0 in R
d × (0, T ),(2.2.1)

u(t = 0) = u0 in R
d,(2.2.2)

where u and u0 are periodic in each coordinate with period 1, and H ∈ C(Rd). We
begin by defining the notion of viscosity solution and describing the monotone schemes
of interest. Then, we state, discuss, and prove the main results.

2.1. Viscosity solutions. We begin by defining the viscosity solutions of the
initial value problem (2.2.1) and (2.2.2). To do this, we need the notions of semidif-
ferentials of a function on R

d× (0, T ). The superdifferential of a function u at a point
(x, t) ∈ R

d× (0, T ), D+u(x, t), is the set of all vectors p = (px, pt) in R
d×R such that

lim sup
(y,s)∈Rd×(0,T )→(x,t)

(
u(y, s) − {u(x, t) + (s− t) pt + (y − x) · px}

‖(y, s) − (x, t)‖

)
≤ 0,

and the subdifferential of u at a point (x, t), D−u(x, t), is the set of all vectors p in
R

d+1 such that

lim inf
(y,s)∈Rd×(0,T )→(x,t)

(
u(y, s) − {u(x, t) + (s− t) pt + (y − x) · px}

‖(y, s) − (x, t)‖

)
≥ 0.

We are now ready to define the viscosity solution of (2.2.1).
Definition 2.1 (see [14]). A viscosity solution u of the initial-value problem for

the Hamilton–Jacobi equation (2.2.1) is a periodic, continuous function on R
d× [0, T ]

satisfying u(t = 0) = u0 such that for all (x, t) in R
d × (0, T ],

σ ( pt + H(px) ) ≤ 0 ∀ p = (px, pt) ∈ Dσu(x, t), σ ∈ {+,−}.

2.2. The monotone schemes. The numerical schemes we consider determine
the values of a function vh on a standard grid Qh = Gh × {tn}NT

n=0 of R
d × [0, T ]; the

spatial grid Gh is periodic with period 1 in each of the canonical directions of R
d. To

avoid cluttered notation, we use v instead of vh to denote the numerical solution in
the following derivation. These schemes take the form

v(y, 0) = u0(y) ∀ y ∈ Gh,(2.2.3)

v(y, tn+1) = v(y, tn) − ΔtnĤy(∂δyv(y, t
n)) ∀ y ∈ Gh, n = 0, . . . , NT − 1,(2.2.4)

where Ĥy(∂δyv(y, t
n)) is an approximation to H(∇v(y, tn)),

∂δyv(y, t
n) = (∂δy,1v(y, t

n), . . . , ∂δy,Ny
v(y, tn)),

and

∂δy,iv(y, t
n) =

v(y, tn) − v(y − δy,i, t
n)

| δy,i |
, where y − δy,i ∈ Gh, i = 1, . . . , Ny.
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Here Ny denotes the number of edges at node y and δy,i denotes the position vector
of the ith edge at node y. We shall show later that many important numerical
Hamiltonians found in current literature have such a structure.

We denote bounded functions on Gh by l∞(Gh) equipped with the norm

‖v‖∞ = sup
y∈Gh

|v(y)|,

where v ∈ l∞(Gh). Such functions can be identified with piecewise linear functions,
still denoted by v.

In addition, we assume that the numerical Hamiltonian Ĥ has the following prop-
erties:

(i) consistency: Ĥy(∂δyv(y)) = H(p) if ∇v = p ∈ R
d;

(ii) monotonicity: Ĥy is nondecreasing in each of its arguments;

(iii) smoothness: Ĥy is locally Lipschitz, that is,

| Ĥy(z1) − Ĥy(z2) | ≤ L(M) ‖ z1 − z2 ‖∞, where ‖ zi ‖∞ ≤ M, i = 1, 2.

As is well known, the first property ensures that Ĥy is exact for v with constant
gradients on the whole domain so that we are approximating the viscosity solution
with the correct Hamiltonian. The second property is precisely the one on the nu-
merical Hamiltonian that is required to obtain the a priori error estimates. The third
property, unlike the previous two, is not really essential and can be relaxed; however,
we do not know of any numerical scheme used in practice that does not satisfy it.

It is not difficult to verify that the function

Gy(v(y, t); v(y − δy,1, t), . . . , v(y − δy,Ny , t)) = v(y, t) − ΔtĤy(∂δyv(y, t))(2.2.5)

is nondecreasing in each of its arguments for all y ∈ Gh for a small enough Δt ≥ 0.
As is well known, when this is the case, the scheme is said to be a monotone scheme.
In what follows, we assume that the above schemes are monotone.

Next, we show that the well-known Lax–Friedrichs scheme satisfies the above
conditions.

Example 2.2. The Lax–Friedrichs scheme. The Lax–Friedrichs scheme [15, 31]
on the uniform Cartesian grid

Gh = {(i, j) = (x0 + (i− 1)Δx, y0 + (j − 1)Δy)}

reads as follows:

vn+1
i,j = vni,j − ΔtnH

(
vni+1,j − vni−1,j

2Δx
,
vni,j+1 − vni,j−1

2Δy

)

+ Δtnωx

vni+1,j − 2vni,j + vni−1,j

Δx2
+ Δtnωy

vni,j+1 − 2vni,j + vni,j−1

Δy2
,

where

ωx = sup
(x,y)∈Rd

1

2
|H1(·, ·)|Δx,

ωy = sup
(x,y)∈Rd

1

2
|H2(·, ·)|Δy,

and Hi(p1, p2) = ∂H
∂pi

(p1, p2) for i = 1, 2.
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Since the grid Gh is Cartesian, for each y = (i, j) ∈ Gh we have Ny = 4; the
quantities ∂δy,iv(y) are thus the following:

∂−Δxvi,j =
vi,j − vi+1,j

Δx
, ∂Δxvi,j =

vi,j − vi−1,j

Δx
,

∂−Δyvi,j =
vi,j − vi,j+1

Δy
, ∂Δyvi,j =

vi,j − vi,j−1

Δy
;

therefore,

Ĥy = H

(
1

2
(∂Δxvi,j − ∂−Δxvi,j),

1

2
(∂Δyvi,j − ∂−Δyvi,j)

)

+
ωx

Δx
(∂−Δxvi,j + ∂Δxvi,j) +

ωy

Δy
(∂−Δyvi,j + ∂Δyvi,j).

It is easy to verify that the above Ĥy satisfies properties (i), (ii), and (iii).
In section 4, we give more examples of schemes satisfying these three properties.

2.3. A new class of monotone schemes. Consider a regular triangulation Th
of R

d and define the grid Gh to be the collection of vertices yj of simplexes in Th.
In the two-dimensional case, these simplexes are triangles. Consider a function v on
the standard grid Qh. Here we enumerate the points yj of the grid Gh and identify
the function v defined on Gh with the point (v1, . . . , vN ), where vj = v(yj); similar
considerations lead to vnj = v(yj , t

n) on Qh.
Next we denote by Ωj a control-volume centered at yj used to define the average

of the solution u(x, t) and its numerical gradients at yj and time t. The control-volume
can be taken as Abgrall’s intrinsic control-volume [1], the covolume introduced in [22],
or the nonconforming dual-volume in [22]. Denote the collection of control-volumes
Ωj as Ωh.

At each time level tn, decompose Ωh into two sets,
⋃

j∈Cn Ωj and
⋃

j �∈Cn Ωj , where

Cn is any subset of integers. Let Δtn = tn+1 − tn be the time increment associated
to j ∈ Cn. For j 
∈ Cn, define the following fractional time increment: [tn, tn+1) =⋃M−1

l=0 [tn+ηl , tn+ηl+1), where tn+ηl is defined below. Let {σk}Mk=1 satisfy σk > 0 for

k = 1, . . . ,M and
∑M

k=1 σk = 1. Define ηl to be the partial sum: ηl=
∑l

k=1 σk with
η0 = 0. Then define tn+ηl+1 = tn+ηl + σl+1Δtn. See Figure 1 for an illustration of
such a decomposition in the one-dimensional case.

In the adaptive computation, the set Cn can be constructed through a posteriori
error estimates so that it identifies where the solution is smooth and the complement
of the set Cn identifies where the solution has higher or discontinuous gradients.
Therefore, for j ∈ Cn we may use large time steps; for j 
∈ Cn we may use small time
steps according to the local CFL condition shown below; see [13] for such identification
mechanisms for the one-dimensional steady case of Hamilton–Jacobi equations.

We shall consider the piecewise linear continuous approximation of the solution on
Qh; namely, the gradient of the numerical solution is piecewise constant. We propose
to advance from time level tn to time level tn+1 via a predictor-corrector type scheme.
Next we give a formal derivation of the scheme.

Integrating (2.2.1) over Ωj from t
′
to t

′′
, we have

1

|Ωj |

∫
Ωj

u(x, t
′′
)dx =

1

|Ωj |

∫
Ωj

u(x, t
′
)dx− 1

|Ωj |

∫ t
′′

t′

∫
Ωj

H(∇u(x, t))dxdt;(2.2.6)
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x

t

j j+1 j+2 j+3

n

n+1

n+2

Fig. 1. An illustration of decomposing nodes into two different sets and substepping in time.

denote

vj(t) =
1

|Ωj |

∫
Ωj

u(x, t)dx.(2.2.7)

For j ∈ Cn, define

vj(t) =
(tn+1 − t)

Δtn
vj(t

n) +
(t− tn)

Δtn
vj(t

n+1) when t ∈ [tn, tn+1);

for j 
∈ Cn, define

vj(t) =
(tn+ηk+1 − t)

σk+1Δtn
vj(t

n+ηk) +
(t− tn+ηk)

σk+1Δtn
vj(t

n+ηk+1)

when t ∈ [tn+ηk , tn+ηk+1) for k = 0, . . . ,M − 1.
In (2.2.6), for j ∈ Cn, we take t

′
= tn and t

′′
= tn+1; for j 
∈ Cn, we take

t
′
= tn+ηk and t

′′
= tn+ηk+1 for k = 0, . . . ,M − 1. Formally substitute the numerical

Hamiltonian Ĥ for H in (2.2.6). For j ∈ Cn, we obtain

vn+1
j = vnj − Δtn

1

|Ωj |

∫
Ωj

Ĥj(∂δjv
n
j )dx;

for j 
∈ Cn, we obtain

v
n+ηk+1

j = vn+ηk

j − σk+1Δtn
1

|Ωj |

∫
Ωj

Ĥj(∂δjv
n+ηk

j )dx

for k = 0, . . . ,M − 1. Here j corresponds to node y,

∂δjv
n
j = (∂δj,1v(y, t

n), . . . , ∂δj,Ny
v(y, tn))

and

∂δj,iv
n
j =

v(y, tn) − v(y − δj,i, t
n)

| δj,i |
, where y − δj,i ∈ Gh, i = 1, . . . , Nj ;
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Nj denotes the number of edges at node y indexed by j, δj,i denotes the position
vector of the ith edge at node y, and |δj,i| is the length of the ith edge associated to
node j.

Because the approximation is piecewise linear on Gh, we can simplify the above
formulation to the following: for j ∈ Cn,

vn+1
j = vnj − ΔtnĤj(∂δjv

n
j );

for j 
∈ Cn,

v
n+ηk+1

j = vnj −
k∑

l=0

σl+1ΔtnĤj(∂δjv
n+ηl

j )

for k = 0, . . . ,M − 1.
Therefore we have the predictor scheme

vn+ηk

j =

{
vnj − ηkΔtnĤj(∂δjv

n
j ), j ∈ Cn,

vnj −
∑k−1

l=0 σl+1ΔtnĤj(∂δjv
n+ηl

j ), j 
∈ Cn
(2.2.8)

for k = 1, . . . ,M − 1; the corrector is

vn+1
j =

{
vnj − ΔtnĤj(∂δjv

n
j ), j ∈ Cn,

vnj −
∑M−1

l=0 σl+1ΔtnĤj(∂δjv
n+ηl

j ), j 
∈ Cn.
(2.2.9)

The above predictor-corrector type scheme is monotone under the following local
CFL condition:

Nj∑
i=1

Δtn

|δj,i|
∂Ĥj

∂pj,i
≤ 1 for j ∈ Cn,(2.2.10)

Nj∑
i=1

σl+1Δtn

|δj,i|
∂Ĥj

∂pj,i
≤ 1 for j 
∈ Cn,(2.2.11)

where

Ĥj = Ĥj(∂δjvj) = Ĥj(pj,1, . . . , pj,Nj ).

The above CFL condition is obtained by using the definition of monotone schemes
defined through the operator (2.2.5). The condition (2.2.10) is the usual CFL restric-
tion to make the scheme stable. The condition (2.2.11) is to enforce smaller time
steps when local directional derivatives vary significantly.

Notice that in practice we do not need to compute all the solutions at the inter-
mediate steps for i ∈ Cn; only at those is involved in the computation for j 
∈ Cn is
there a need for computation and storage; this, in turn, can be dealt with by using
ghost points around those j 
∈ Cn as illustrated in the numerical examples.

2.4. Stability properties of the new monotone scheme. Let �GΔtn be the
self-map of l∞(Gh) defined by (2.2.9), i.e.,

vn+1 = �GΔtn(vn)(2.2.12)
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at each time step tn.
We identify λ ∈ R with the constant function on Gh. From the form of �GΔtn , it

is clear that

�GΔtn(v + λ) = �GΔtn(v) + λ

for all v ∈ l∞(Gh) and λ ∈ R. Since �GΔtn is monotone by the CFL condition (2.2.10)

and (2.2.11), �GΔtn is a nonexpansive operator on l∞(Gh) [15]. Namely,

‖�GΔtn(w) − �GΔtn(v)‖∞ ≤ ‖w − v‖∞

for all w, v ∈ l∞(Gh).
Next we assume that the Lipschitz constant of v is preserved by the operator

�GΔtn at each time step tn if v is Lipschitz continuous; this assumption can be verified
for individual schemes, for example, the monotone finite difference schemes in [15] and
the intrinsic monotone scheme [1]. Therefore, if the given initial data v0 is Lipschitz
continuous with L0 as a Lipschitz constant, then L0 will be the Lipschitz constant for
each vn (n = 1, 2, . . . ).

Because the numerical Hamiltonian Ĥ is locally Lipschitz continuous, we have

K = sup{|Ĥj(pj,1, . . . , pj,Nj )| : |pj,i| ≤ L0, 1 ≤ i ≤ Nj , j ∈ Gh, 0 ≤ n ≤ NT } < ∞.

(2.2.13)

Furthermore, we can estimate, for any j ∈ Gh,

|vn+m
j − vnj | ≤ |vn+m

j − vn+m−1
j | + · · · + |vn+1

j − vnj |(2.2.14)

≤KΔtn+m−1 + · · · + KΔtn

=K(tn+m − tn);

thus

‖vn+m − vn‖∞ ≤ K(tn+m − tn).

We can summarize the above properties in the following.
Proposition 2.3. Let the scheme be monotone and �GΔtn be the self-map of

l∞(Gh) as given in (2.2.12). Then we have

(1) �GΔtn(u) ≤ �GΔtn(v) for u, v ∈ l∞(Gh), u ≤ v;

(2) �GΔtn(v + λ) = �GΔtn(v) + λ for u ∈ l∞(Gh), λ ∈ R;

(3) ‖�GΔtn(u) − �GΔtn(v)‖∞ ≤ ‖u− v‖∞ for all u, v ∈ l∞(Gh);
(4) ‖vn+m − vn‖∞ ≤ K(tn+m − tn) for m,n ≥ 0, where K is defined as (2.2.13),

for a given initial Lipschitz continuous function v0 with L0 as a Lipschitz con-
stant, provided that the Lipschitz constant of vn is preserved by the operator
�GΔtn at each time step tn if vn is Lipschitz continuous.

3. The error estimate for the scheme.

3.1. The main result. The main result of this section gives an upper bound
for the following seminorms:

|w − v |−,Qh
= sup

(x,t)∈Qh

(w(x, t) − v(x, t) )+,

|w − v |+,Qh
= sup

(x,t)∈Qh

( v(x, t) − w(x, t) )+,
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where w+ ≡ max{0, w}.
In addition, we need to introduce the quantity

ωε(w; y, t, px) = w(y + εx px, t) − w(y, 0) − t2

2 εt
− εx

2
| px |2,(3.3.1)

which can be bounded in terms of the moduli of continuity of w. For example, if
w(t = 0) ∈ W 1,∞(Rd) and wt ∈ L∞(0, T ; Rd) we easily get

|ωε(w; y, t, px) | ≤
|wt |2L∞(0,T ;Rd)

2
εt +

|w(0) |W 1,∞(Rd)

2
εx.(3.3.2)

With the notation introduced above, we have the following result.
Theorem 3.1 (a priori error estimate). Assume that H is continuous in R

d

and u0 is Lipschitz continuous with L0 as a Lipschitz constant. Let u be the viscosity
solution of the equation (2.2.1), (2.2.2) and let v be the approximate solution given
by the scheme (2.2.3), (2.2.8), and (2.2.9) under the local CFL condition (2.2.10)
and (2.2.11). In addition, the assumption for Proposition 2.3(4) holds. Define h =
maxy∈Gh

maxi=1,...,Ny
| δi | and Δt = max0≤i≤NT

Δti. Let h
Δt be fixed. Then we have

‖u− v ‖L∞(Qh) ≤ C3

√
Δt,

where C3 is a constant depending only on u0, L0, T , and Ĥy as well as the solution
u.

Note that the above L∞-norm is implied by

‖u− v ‖L∞(Qh) = max{|u− v |+,Qh
, |u− v |−,Qh

}.

Theorem 3.2 (a priori error estimate for smooth solutions). Assume that H
is smooth in R

d and u0 is Lipschitz continuous with L0 as a Lipschitz constant. Let
u be the smooth viscosity solution of the equation (2.2.1), (2.2.2) and let v be the
approximate solution given by the scheme (2.2.3), (2.2.8), and (2.2.9) with the CFL
condition (2.2.10) and (2.2.11). Define h = maxy∈Gh

maxi=1,...,Ny
| δi | and Δt =

max0≤i≤NT
Δti. Let h

Δt be fixed. Then we have

‖u− v ‖L∞(Qh) ≤ C4Δt,

where C4 is a constant depending only on u0, L0, T , and Ĥy as well as the second-
order derivatives of the solution u.

Remark. The technique used to prove Theorem 3.1 and Theorem 3.2 is related
to the one used to prove a posteriori error estimates [2, 12]. One may also use
such a technique to establish local a posterior error estimates for Hamilton–Jacobi
equations. Analogous ideas can be used in the context of hyperbolic conservation
laws. For example, borrowing some continuous dependence results from nonlinear
conservation laws, Gosse and Makridakis [17] have established such local a posterior
error estimates in the context of one-dimensional scalar hyperbolic conservation laws.

3.2. Proof of Theorem 3.1. We prove the above result for σ = −; the proof
for σ = + is entirely analogous.

We attempt to obtain an estimate of the quantity

Δ = |u− v |−,Qh
,
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which we assume to be strictly positive since otherwise there is nothing to prove. We
introduce the auxiliary function

ψ(x, y, t, s) = u(x, t) − v(y, s) − (1 − θ)
(t + s)

2T
Δ − (t− s)2

2εt
− |x− y|2

2εx
,

where the parameter θ belongs to (0, 1) and εx, εt to (0,∞); there is a point (x̂, ŷ, t̂, ŝ):
(x̂, t̂) ∈ R

d × [0, T ] and (ŷ, ŝ) ∈ Qh such that

ψ(x̂, ŷ, t̂, ŝ) ≥ ψ(x, y, t, s) ∀ (x, t) ∈ R
d × [0, T ] and ∀ (y, s) ∈ Qh.

The existence of such a point easily follows from the fact that both u and v are
continuous and periodic in space with the same period.

To obtain the desired estimate, we proceed in four steps.

Step 1. The case ŝ > 0 and t̂ > 0. By the construction of the function ψ, we
have that (x̂, t̂) is a maximum point on R

d × (0, T ] for

(x, t) → u(x, t) − v(ŷ, ŝ) − (1 − θ)
(t + ŝ)

2T
Δ − (t− ŝ)2

2εt
− |x− ŷ|2

2εx
;

thus (p̂t, p̂x) ∈ D+u(x̂, t̂), where

p̂t =
t̂− ŝ

εt
+

1 − θ

2T
Δ and p̂x =

x̂− ŷ

εx
.

By the assumption, u being the viscosity solution gives us that

p̂t + H(p̂x) ≤ 0.(3.3.3)

On the other hand, we note that (ŷ, ŝ) is a maximum point on Qh for

(y, s) → u(x̂, t̂) − v(y, s) − (1 − θ)
(t̂ + s)

2T
Δ − (t̂− s)2

2εt
− |x̂− y|2

2εx
;

therefore, it follows that

v(y, s) ≥ v(ŷ, ŝ) +

(
(t̂− ŝ)

εt
− (1 − θ)Δ

2T

)
(s− ŝ) − (s− ŝ)2

2 εt

+ (y − ŷ) · (x̂− ŷ)

εx
− |y − ŷ|2

2 εx
=: V (y, s) ∀ (y, s) ∈ Qh;

furthermore, the above inequality can be rewritten as

v(y, s) ≥ v(ŷ, ŝ) − (1 − θ)Δ

T
(s− ŝ) + p̂t(s− ŝ) − (s− ŝ)2

2 εt

+ (y − ŷ) · p̂x − |y − ŷ|2
2 εx

= V (y, s) ∀ (y, s) ∈ Qh.
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In the current case, for some n0 ≥ 0 and j0, we have ŝ = tn0+1 and ŷ = yj0 ; thus,
taking s = tn0 and y = yj in the above inequality leads to

vn0
j ≥ vn0+1

j0
+

(1 − θ)Δ

T
Δtn0 − p̂tΔtn0 − (Δtn0)2

2 εt

+ (yj − ŷ) · p̂x − |yj − ŷ|2
2 εx

= V n0
j ∀ yj ∈ Gh.

Next we use the scheme (2.2.8) and (2.2.9) to propagate the above relation from
level s = tn0 to level s = tn0+1. To do this, we shall make use of the boundedness of
the stencil size of the scheme.

Let Dn0+ηl

j0
denote at time level tn0+ηl the set of points yj ∈ Qh involved in

computing vn0+1
j0

from time level tn0 to tn0+1 by the predictor-corrector scheme (2.2.8),
(2.2.9). Therefore,

Dn0+ηM

j0
= {yj0} and Dn0+ηM−1

j0
= {yj0 , yj0,1, . . . , yj0,Nj0

};

then Dn0+ηM−2

j0
consists of all the points needed in evaluating v

n0+ηM−1

j0
and v

n0+ηM−1

j0,i

for i = 1, . . . , Nj0 , and so on. Because M is finite, every Dn0+ηl

j0
for l = 0, . . . ,M is

a finite set and

Dn0+ηM

j0
⊂ Dn0+ηM−1

j0
⊂ · · · ⊂ Dn0

j0
.

Now define

Cj0h = max{|yj − ŷ| = |yj − yj0 | : yj ∈ Dn0+η1

j0
},(3.3.4)

where Cj0 is a fixed positive constant and h is the mesh size.

Next we estimate vn0+η1

j for all yj ∈ Qh. By the predictor (2.2.8), it follows for
all yj ∈ Qh,

vn0+η1

j = vn0
j − η1Δtn0Ĥj(∂δjv

n0
j )

≥ V n0
j − η1Δtn0Ĥj(∂δjV

n0
j )

= V n0
j − η1Δtn0Ĥj

(
V n0
j − V n0

j,1

| δj,1 |
, . . . ,

V n0
j − V n0

j,Nj

| δj,Nj |

)

by the monotonicity of the scheme which is guaranteed by the local CFL condition
(2.2.10), (2.2.11) and the relation that vn0

j ≥ V n0
j , for all yj ∈ Gh, shown above. Since

for i = 1, . . . , Nj ,

V n0
j − V n0

j,i

| δj,i |
=

δj,i
| δj,i |

· p̂x +
δj,i
| δj,i |

· δj,i − 2(yj − ŷ)

2 εx
,
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we obtain by using the Lipschitz continuity of the Hamiltonian Ĥj that

vn0+η1

j ≥ V n0
j − η1Δtn0Ĥj

(
δj,1
| δj,1 |

· p̂x, . . . ,
δj,Nj

| δj,Nj
| · p̂x

)
(3.3.5)

− Lη1Δtn0

2 εx
max

1≤i≤Nj

∣∣∣∣ δj,i
| δj,i |

· (δj,i − 2(yj − ŷ))

∣∣∣∣
≥ V n0

j − η1Δtn0H (p̂x) − Lη1Δtn0

2 εx
max

1≤i≤Nj

|δj,i − 2(yj − ŷ)|

≥ V n0
j − η1Δtn0H (p̂x) − Lη1Δtn0

2 εx
max

1≤i≤Nj

|δj,i | −
Lη1Δtn0

εx
|yj − ŷ|

≥ V n0
j − η1Δtn0H (p̂x) − Lhη1Δtn0

2 εx
− Lη1Δtn0

εx
|yj − ŷ|.

In the above derivation, we used the consistency of numerical Hamiltonian in the
following way: setting Lu(x, t) = u(yj , t

n0) + p̂x · (x− yj) + pt(t− tn0), we have

H(p̂x) = Ĥj(∂δjLu(yj , t
n0)) and ∂δj,iLu(yj , t

n0)) = p̂x · δj,i
| δj,i |

.

Hence, for j ∈ Dn0+η1

j0
, invoking (3.3.4) we find from (3.3.5) that

vn0+η1

j ≥ V n0
j − η1Δtn0H (p̂x) − η1 LhΔtn0

2 εx
− η1 LΔtn0

εx
|yj − ŷ|(3.3.6)

≥ V n0
j − η1Δtn0H (p̂x) − η1 LhΔtn0

2 εx
− η1 LCj0 hΔtn0

εx

= V n0
j − η1Δtn0H (p̂x) − η1 LhΔtn0(1 + 2Cj0)

2 εx

=: V n0+η1

j .

Next we estimate vn0+η2

j . Apparently, for j ∈ Cn0 and j ∈ Dn0+η2

j0
, by the

predictor (2.2.8), we have that

vn0+η2

j = vn0
j − η2Δtn0Ĥj(∂δjv

n0
j )

≥ V n0
j − η2Δtn0Ĥj(∂δjV

n0
j )

≥ V n0
j − η2Δtn0H (p̂x) − Lhη2Δtn0

2 εx
− Lη2Δtn0

εx
|yj − ŷ|

≥ V n0
j − η2Δtn0H (p̂x) − η2 LhΔtn0(1 + 2Cj0)

2 εx

=: V n0+η2

j .

For j 
∈ Cn0 and j ∈ Dn0+η2

j0
, still by the predictor (2.2.8) the inequality (3.3.6),

and the monotonicity of the scheme, we get

vn0+η2

j = vn0+η1

j − σ2Δtn0Ĥj(∂δjv
n0+η1

j )

≥ V n0+η1

j − σ2Δtn0Ĥj(∂δjV
n0+η1

j )

= V n0+η1

j − σ2Δtn0Ĥj

(
V n0+η1

j − V n0+η1

j,1

| δj,1 |
, . . . ,

V n0+η1

j − V n0+η1

j,Nj

| δj,Nj |

)
.
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Since for i = 1, . . . , Nj ,

V n0+η1

j − V n0+η1

j,i

| δj,i |
=

V n0
j − V n0

j,i

| δj,i |
;

moreover, by the smoothness and consistency of the numerical Hamiltonian, we get

vn0+η2

j ≥ V n0+η1

j − σ2Δtn0Ĥj

(
V

n0
j

−V
n0
j,1

| δj,1 | , . . . ,
V

n0
j

−V
n0
j,Nj

| δj,Nj
|

)

≥ V n0+η1

j − σ2Δtn0

(
H(p̂x) + Lh

2 εx
+ L

εx
|yj − ŷ|

)
= V n0

j − η2Δtn0H (p̂x) − η1 LhΔtn0 (1+2Cj0 )

2 εx

− σ2 LhΔtn0

2 εx
− σ2 LΔtn0

εx
|yj − ŷ|

≥ V n0
j − η2Δtn0H (p̂x) − η1 LhΔtn0 (1+2Cj0 )

2 εx

− σ2 LhΔtn0

2 εx
− σ2 LΔtn0Cj0 h

εx

= V n0
j − η2Δtn0H (p̂x) − η2 LhΔtn0 (1+2Cj0

)

2 εx

=: V n0+η2

j , j ∈ Dn0+η2

j0
.

Inductively, we get for j ∈ Dn0+ηk

j0
, whether j ∈ Cn or not,

vn0+ηk

j ≥ V n0
j − ηkΔtn0H (p̂x) − ηk LhΔtn0(1 + 2Cj0)

2 εx

=: V n0+ηk

j , k = 1, . . . ,M.

Therefore, taking k = M in the above: for j ∈ Dn0+1
j0

,

vn0+1
j ≥V n0

j − Δtn0H (p̂x) − LhΔtn0(1 + 2Cj0)

2 εx
;(3.3.7)

that is, for j = j0 in the inequality (3.3.7), we have

vn0+1
j0

≥ V n0
j0

− Δtn0H (p̂x) − LhΔtn0(1 + 2Cj0)

2 εx

= vn0+1
j0

+
(1 − θ)Δ

T
Δtn0 − p̂tΔtn0 − (Δtn0)2

2 εt
− Δtn0H (p̂x)

− LhΔtn0(1 + 2Cj0)

2 εx
;

hence

(1 − θ)Δ

T
≤ p̂t + H (p̂x) +

Δtn0

2 εt
+

Lh(1 + 2Cj0)

2 εx
(3.3.8)

≤ Δtn0

2 εt
+

Lh(1 + 2Cj0)

2 εx
,

where we have used the relation (3.3.3).
Step 2. The case ŝ = 0 and t̂ ≥ 0. In this case, we no longer can use

the definition of the approximate solution, so we rely instead on simple algebraic
manipulations. We proceed as follows. Let (y, t) ∈ Qh be such that |u − v |−,Qh

=
u(y, t) − v(y, t). Then

ψ(y, y, t, t) = |u− v |−,Qh
− (1 − θ)

t

T
Δ.
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On the other hand,

ψ(y, y, t, t) ≤ ψ(x̂, ŷ, t̂, ŝ) = ψ(x̂, ŷ, t̂, 0)

= u(x̂, t̂) − v(ŷ, 0) − t̂2

2εt
− |x̂− ŷ|2

2εx
− (1 − θ)

t̂

2T
Δ

≤ u(x̂, t̂) − u(ŷ, 0) − t̂2

2εt
− |x̂− ŷ|2

2εx
− (1 − θ)

t̂

2T
Δ

= ωε(u; ŷ, t̂, p̂x) − (1 − θ)
t̂

2T
Δ

since x̂ = ŷ + εx p̂x; see (3.3.1) for definition of ωε. This implies that

(
1 − (1 − θ)

2t− t̂

2T

)
Δ ≤ ωε(u; ŷ, t̂, p̂x);

therefore by (3.3.2)

Δ ≤ 1

θ

(
|ut |2L∞(0,T ;Rd)

2
εt +

|u(0) |W 1,∞(Rd)

2
εx

)

since

(1 − θ)
2t− t̂

2T
≤ (1 − θ).

Step 3. The case ŝ > 0 and t̂ = 0. In this case, we also rely on simple algebraic
manipulations. We proceed as follows. Let (y, t) ∈ Qh be such that |u − v |−,Qh

=
u(y, t) − v(y, t). Then

ψ(y, y, t, t) = |u− v |−,Qh
− (1 − θ)

t

T
Δ.

On the other hand,

ψ(y, y, t, t) ≤ ψ(x̂, ŷ, t̂, ŝ) = ψ(x̂, ŷ, 0, ŝ)

= u(x̂, 0) − v(ŷ, ŝ) − ŝ2

2εt
− |x̂− ŷ|2

2εx
− (1 − θ)

ŝ

2T
Δ

≤ u(x̂, 0) − u(ŷ, 0) + v(ŷ, 0) − v(ŷ, ŝ) − ŝ2

2εt
− |x̂− ŷ|2

2εx
− (1 − θ)

ŝ

2T
Δ

≤ ωε(u; ŷ, 0, p̂x) + Kŝ− ŝ2

2εt
− (1 − θ)

ŝ

2T
Δ

by x̂ = ŷ + εx p̂x and Proposition 2.3(4).
Now we have to estimate ŝ carefully. Since

ψ(x̂, ŷ, t̂, ŝ) = ψ(x̂, ŷ, 0, ŝ) ≥ ψ(x̂, ŷ, 0, 0),

we get

v(ŷ, 0) − v(ŷ, ŝ) ≥ (1 − θ)
ŝ

2T
Δ +

ŝ2

2εt
.
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By Proposition 2.3(4), we get

ŝ ≤ 2Kεt.

This implies that

(
1 − (1 − θ)

t

T

)
Δ ≤ ωε(u; ŷ, 0, p̂x) + 2K2εt;

therefore by (3.3.2)

Δ ≤ 1

θ

( |u(0) |W 1,∞(Rd)

2
εx + 2K2εt

)
,

since

(1 − θ)
t

T
≤ (1 − θ).

Step 4. Conclusion. Putting together the above inequalities and the bound
(3.3.8), we get

Δ ≤ max

{
A + C

θ
,

B

1 − θ

}
,

where

A =
|ut |2L∞(0,T ;Rd)

2
εt +

|u(0) |W 1,∞(Rd)

2
εx,

B = T

(
Δtn0

2 εt
+

Lh(1 + 2Cj0)

2 εx

)
,

C =
|u(0) |W 1,∞(Rd)

2
εx + 2K2εt.

Hence, we obtain that

Δ ≤ A + C + B

by taking the limit when θ tends to A+C
A+B+C ∈ [0, 1].

Note that according to classical results on the viscosity solution, L0 is also a
Lipschitz constant for u; see [15]. The result now follows from the above inequality
by minimizing the right-hand side with respect to ε. This completes the proof of
Theorem 3.1.

3.3. Proof of Theorem 3.2 when u is the smooth solution. Consider
σ = − only; the proof for σ = + is similar.

Let (y, t) ∈ Qh be such that |u− v |−,Qh
= u(y, t)− v(y, t). To estimate u(y, t)−

v(y, t) directly, we compute the local truncation error of the scheme (2.2.3), (2.2.8),
(2.2.9). To simplify the presentation, we concentrate on the scheme (2.2.3), (2.2.4)
only, since a similar analysis applies to (2.2.3), (2.2.8), (2.2.9).
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If u is the smooth solution of (2.2.2), (2.2.1), then

u(y, tn + Δtn) = u(y, tn) + Δtnut +
1

2
(Δtn)2utt + o((Δt)3)

= u(y, tn) − ΔtnH(∇u) +
1

2
(Δtn)2(∇pH)T (∂2

i,j u)(∇pH) + o((Δt)3),

where ∂2
i,j u is the Hessian matrix of u.

Substituting the true solution into the scheme (2.2.4) and using the Taylor series
expansion of the numerical scheme, we obtain

Gy = Gy(u(y, tn);u(y − δy,1, t
n), . . . , u(y − δy,Ny , t

n))

= u(y, tn) − ΔtnĤy(∂δyu(y, tn))

= u(y, tn) − ΔtnĤy

(
∇u · δy,1

|δy,1|
, . . . ,∇u ·

δy,Ny

|δy,Ny |

)

− 1

2
(Δtn)2

i=Ny∑
i=1

|δy,i|
Δtn

∂Ĥy

∂pi

(
δy,i
|δy,i|

)T

(∂2
l,m u)

(
δy,i
|δy,i|

)
+ o((Δt)3)

= u(y, tn) − ΔtnH(∇u)

− 1

2
(Δtn)2

i=Ny∑
i=1

|δy,i|
Δtn

∂Ĥy

∂pi

(
δy,i
|δy,i|

)T

(∂2
l,m u)

(
δy,i
|δy,i|

)
+ o((Δt)3),

where we have used the consistency of the numerical Hamiltonian.

Consequently, the local truncation error is

u(y, tn + Δtn) − Gy(u(y, tn);u(y − δy,1, t
n), . . . , u(y − δy,Ny

, tn))

=
1

2
(Δtn)2(∇pH)T (∂2

i,j u)(∇pH)

+
1

2
(Δtn)2

i=Ny∑
i=1

|δy,i|
Δtn

∂Ĥy

∂pi

(
δy,i
|δy,i|

)T

(∂2
l,m u)

(
δy,i
|δy,i|

)
+ o((Δt)3).

Since
∂Ĥy

∂pi
≥ 0 by the monotonicity of the numerical Hamiltonian, we have that

the first two terms on the right-hand side have the same sign, and they cannot be
identical to zero unless the solution is a linear function. This essentially shows that
the monotone finite-difference schemes for Hamilton–Jacobi equations have only first-
order accuracy; see [18] for similar results for hyperbolic conservation laws.

Next we estimate |u− v |−,Qh
= u(y, t) − v(y, t).

If t = 0, then we are done. So assume y = yj0 for some j0 and t = tn0+1 for
some integer n0 ≥ 0. Define Dn

j0
to be the set of points yj ∈ Qh at the time level

t = tn involved in computing v(yj0 , t
n0+1) by marching the scheme (2.2.4) from t = 0

to t = tn0+1. Apparently,

Dn0
j0

⊂ Dn0−1
j0

⊂ · · · ⊂ D0
j0 ;

D0
j0

is a finite set according to the boundedness of the stencil size of the scheme.
Therefore, using the above local truncation error analysis, we have the following
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Fig. 2. Triangulation for the intrinsic monotone scheme.

estimates for computed solutions:

v(yj , 0) = u(yj , 0) for j ∈ D0
j0
,

v(yj , t
1) = u(yj , t

1) + o((Δt)2) for j ∈ D1
j0
,

· · ·
v(yj , t

n0) = u(yj , t
n0) + o(n0(Δt)2) for j ∈ Dn0

j0
.

Finally, we obtain that

|u− v |−,Qh
= v(yj0 , t

n0+1) − u(yj0 , t
n0+1) ≤ C4Δt,

where C4 depends on the initial condition u0, T , H, and Ĥy as well as second-order
derivatives of the solution u.

This completes the proof.

4. Examples of monotone schemes. In this section, we display several ex-
amples of monotone schemes for which our results hold.

Example 4.1 (The monotone schemes of [15, 31]). In a way similar to that used
to deal with the Lax–Friedrich scheme, the monotone schemes considered in [15, 31]
can be recast in our framework and proven to have the desired properties.

Example 4.2 (Abgrall’s intrinsic monotone scheme [1]). To describe this scheme,
we need to introduce some notation. Let T be a triangulation of R

2. We denote the
triangles by T and their vertices by Mi; the grid Gh is the collection of the vertices
Mi. To each vertex Mi we associate a family of angular sectors {Ωi

l}
Ni

l=1, defined as
the inner angles at Mi of all the triangles, T i

l , having Mi as a vertex. Denote by θil
the angle of Ωi

l and by ni
l the unit vector of the half-line Di

l = Ωi
l ∩ Ωi

l+1 pointing
outward; see Figure 2.

For any set {vi}, we denote by v the piecewise-linear function on T such that
v(Mi) = vi; note that ∇v|T i

l
= ∇vT i

l
is constant in the triangle T i

l . The intrinsic
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monotone scheme for (2.2.1) at a generic point Mi reads

vn+1
i = vni − Δtn

(
H

(
1

2π

Ni∑
l=1

θil∇vT i
l

)
− ω

Ni∑
l=1

βi
l∇vT i

l
· ni

l

)
,

where

ω =
ηC(L)

π
, βi

l = tan

(
θil
2

)
+ tan

(
θil+1

2

)
.

Here η is a suitably chosen positive parameter, and C(L) is the Lipschitz constant for
H in the ball BL = {p : ‖p‖ ≤ L}; we denote by ‖ · ‖ the usual Euclidean norm.

We have Ni directional derivatives at Mi:

pil = −∇vT i
l
· ni

l = −∇vT i
l+1

· ni
l, l = 1, . . . , Ni.

Furthermore,

∇vT i
l

=
1

sin2 θil

(
(pil cos θil − pil−1)n

i
l−1 + (pil−1 cos θil − pil)n

i
l

)
;

thus the numerical Hamiltonian can be expressed as

Ĥi

(
pi1, . . . , p

i
Ni

)
= H

(
1

2π

Ni∑
l=1

θil∇vT i
l

)
+ ω

Ni∑
l=1

βi
lp

i
l.

The consistency of Ĥi holds since

Ni∑
l=1

βi
lp · ni

l = 0

for all ∇v = p ∈ R
2 [1].

Differentiating the above Ĥ with respect to pij , we have that

∂Ĥi

∂pij
=

1

2π

θij

sin2 θij
∇H · (cos θijn

i
j−1 − ni

j)

+
1

2π

θij+1

sin2 θij+1

∇H · (cos θij+1n
i
j+1 − ni

j) + ωβj ≥ 0

if η is chosen as follows:

η =
1

4 sin2 α
2

max(α, sinα + (π − α) cosα),

where α denotes the smallest angle of the triangles T of the triangulation T . Therefore,
Ĥi is nondecreasing in each of its arguments.

The smoothness of Ĥi follows by the local smoothness of H.
Example 4.3 (The covolume scheme of [22]). Following [22], we consider a regular

triangulation Th of R
2 and define the grid Gh to be the collection of vertices Mi of

triangles in Th. Next, we construct a dual mesh by joining the circumcenters of
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Fig. 3. Triangulation for the co-volume scheme.

the triangles in Th and denote by Vi the covolume bounded by all the edges of the
dual mesh that are perpendicular to edges containing the vertex Mi. Denote by M i

l ,
1 ≤ l ≤ Ni, the vertices linked to Mi by an edge; we enumerate them in the clockwise
direction. Denote by eil the line segment joining Mi and M i

l and by eil,⊥ the edge of

Vi that intersects perpendicularly eil. Moreover, the triangle with vertices Mi, M
i
l ,

and M i
l+1 is denoted by T i

l , the angle between eil and eil+1 by θil , and the unit vector
along eil directed towards M i

l by ni
l. Finally, let m(Vi) and m(eil) denote the area and

length of Vi and eil, respectively; see Figure 3.
Just like in the case of Abgrall’s intrinsic monotone scheme, given the set of values

{vi}, we define a piecewise-linear interpolant v on Th by v(Mi) = vi. The covolume
scheme for (2.2.1) is

vn+1
i = vni − Δtn

(
Ĥi(∇vnT i

1
, . . . ,∇vnT i

Ni

)
)
,

where

Ĥi =
1

m(Vi)

∑
l:T i

l
∩Vi �=∅

m(Vi ∩ T i
l )H(∇vT i

l
) − εh,i

m(Vi)

∑
l

(∇vT i
l
, ni

l)m(eil,⊥).

We have Ni directional derivatives at Mi:

pil = −∇vT i
l−1

· ni
l = −∇vT i

l
· ni

l,

l = 1, . . . , Ni.

Furthermore, we can express ∇vT i
l

in terms of pil,

∇vT i
l

=
1

sin2 θil

(
(pil+1 cos θil − pil)n

i
l + (pil cos θil − pil+1)n

i
l+1

)
.

Ĥi is consistent by the fact that∑
l

(p, ni
l)m(eil,⊥) = 0

for all p ∈ R
2 [22].
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Fig. 4. Triangulation for the edge-centered scheme.

Differentiating the above Ĥi with respect to pij , we have that

∂Ĥi

∂pij
=

m(Vi ∩ T i
j )

m(Vi)

1

sin2 θij
∇H · (cos θijn

i
j+1 − ni

j)

+
m(Vi ∩ T i

j−1)

m(Vi)

1

sin2 θij−1

∇H · (cos θij−1n
i
j−1 − ni

j)

+
εh,i

m(Vi)
m(eil,⊥) ≥ 0

provided that εh,i is chosen such that

εh,i ≥ C
′
C(L) max

l
(hT i

l
),

where hT i
l

is the diameter of the triangle T i
l and C

′
is a constant independent of

the triangulation. To estimate the constant C
′
, we have used the regularity of the

triangulation [22]. The monotonicity of Ĥi follows.

The smoothness of Ĥi is implied by the local smoothness of H.
Example 4.4 (The edge-centered schemes of [22]). To describe these schemes, we

need to introduce more notation. Consider a regular triangulation Th of R
2 with the

property that all the inner angles α of the triangles in Th satisfy that α ≤ ω0 < π
2 .

Given a triangle T of Th, we denote by e	, � = 1, 2, 3 the edges of the triangle and by
T1 the triangle that shares the edge e1 with T . The midpoints of the edges of T , T	

are denoted by A	 and A1
	 , respectively; � = 1, 2, 3, are named in the counterclockwise

direction. The common midpoints are A1, A
1
1. The unit normal vector ν1 to the

common edge is directed toward T1. Denote the inner angles facing e	 by α	. At the
common midpoint A1, we introduce four outward unit direction vectors n	, n

1
	 such

that n	 ‖ e	, n
1
	 ‖ e1

	 , � = 2, 3. See Figure 4.
Define the grid Gh to be the collection of the midpoints of the edges of all the

triangles in Th. The approximating function vh will lie in the space Xh of nonconform-
ing piecewise linear functions defined on Th [22]; namely, vh is continuous at every
A ∈ Gh and piecewise linear in every triangle T ∈ Th.

The edge-centered scheme for (2.2.1) at a generic point A1 is

vn+1
A1

= vnA1
− Δtn

(
ĤA1(∇vnT ,∇vnT1

)
)
,
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where

ĤA1
= H

(
1

m(T ) + m(T1)
(m(T )∇vT + m(T1)∇vT1

)

)
− θA1

h (∇vT1
−∇vT ) · ν1.

At A1, we have four possible directions n	, n
1
	 , � = 2, 3; thus NA1

= 4. Accordingly,
we define four quantities:

p1 =
vA1 − vA2

m(A1A2)
= −∇vT · n3,

p2 =
vA1 − vA3

m(A1A3)
= −∇vT · n2,

p3 =
vA1 − vA1

2

m(A1A1
2)

= −∇vT1 · n1
3,

p4 =
vA1 − vA1

3

m(A1A1
3)

= −∇vT1 · n1
2.

Furthermore, we have that

ν1 = −cosα3

sinα1
n3 −

cosα2

sinα1
n2,

−ν1 = ν1
1 = −cosα1

3

sinα1
1

n1
3 −

cosα1
2

sinα1
1

n1
2,

∇vT =
1

sin2 α1

((p1 cosα1 − p2)n2 + (p2 cosα1 − p1)n3) ,

∇vT1
=

1

sin2 α1
1

(
(p3 cosα1

1 − p4)n
1
2 + (p4 cosα1

1 − p3)n
1
3

)
.

Therefore, we can express ĤA1 as

ĤA1
(p1, p2, p3, p4) = H

(
1

m(T ) + m(T1)
(m(T )∇vT + m(T1)∇vT1

)

)

+ θA1

h

(
cosα3

sinα1
p1 +

cosα2

sinα1
p2 +

cosα1
3

sinα1
1

p3 +
cosα1

2

sinα1
1

p4

)
.

Differentiating the above Hamiltonian with respect to, say, p1, we have that

∂ĤA1

∂p1
=

m(T )

m(T ) + m(T1)

1

sin2 α1

∇H · (cosα1n2 − n3) + θh
cosα3

sinα1
≥ 0

if

θA1

h ≥ m(T )

m(T ) + m(T1)

‖∇H‖
cosω0

.

By similar considerations for pi, i = 2, 3, 4, we have that

∂ĤA1

∂pi
≥ 0, i = 1, 2, 3, 4,

provided that

θA1

h =
max(m(T ),m(T1))

m(T ) + m(T1)

‖∇H‖
cosω0

.
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Fig. 5. Local time stepping for the convex Hamiltonian. Numerical solution (in dots) and exact
solution (in solid lines). (a): a uniform mesh; (b): a nonuniform mesh.

Hence the monotonicity of ĤA1 follows.

The consistency of ĤA1
is obvious and the smoothness follows by the local smooth-

ness of H.

5. Numerical experiments. We show some numerical examples to demon-
strate the effectiveness of the new scheme.

Example 5.1 (A one-dimensional Hamilton–Jacobi equation). We solve

ut + H(ux) = 0, −1 ≤ x ≤ 1,(5.5.1)

u(x, 0) = − cos πx,(5.5.2)

with a convex H(p) = (p+α)2

2 and a nonconvex H(p) = − cos(p + α).
We take α = 1 and use the first order monotone scheme based on the Lax–

Friedrichs numerical Hamiltonian to compute the viscosity solution. We use both
uniform meshes and locally varying time and space grids to compute the solution up
to t = 1.5

π2 when the solution has a discontinuous derivative.
Figure 5 shows solutions for the case of the convex Hamiltonian. Figure 5(a) shows

the exact solution (in solid lines) and the solution computed with a uniform mesh of
dx = 0.02 (in stars). Figure 5(b) shows the exact solution (in solid lines) and the
solution computed with a nonuniform mesh (in stars). In the nonuniform mesh case,
we have predetermined to use a mesh size of dx = 0.025 on the intervals [−1,−0.5]
and [0.5, 1] and a mesh size of dx = 0.05 on the interval [−0.5, 0.5]; correspondingly we
have used time steps on these different intervals according to the local CFL conditions.
Although we did not use an optimal strategy to indicate where the solution is smooth
or has kinks, the results show that the scheme based on locally varying space and
time grids is convergent.

Figure 6 shows solutions for the case of the nonconvex Hamiltonian. Figure 6(a)
shows the exact solution (in solid lines) and the solution computed with a uniform
mesh of dx = 0.025 (in stars). Figure 6(b) shows the exact solution (in solid lines)
and the solution computed with a nonuniform mesh (in stars). In the nonuniform
mesh case, we have predetermined to use a mesh size of dx = 0.0125 on the intervals
[−1,−0.5] and [0.5, 1] and a mesh size of dx = 0.05 on the interval [−0.5, 0.5]; corre-
spondingly we have used time steps on these different intervals according to the local
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Fig. 6. Local time stepping for the nonconvex Hamiltonian. Numerical solution (in dots) and
exact solution (in solid lines). (a): a uniform mesh; (b): a nonuniform mesh.

CFL conditions. Although we did not use an optimal strategy to indicate where the
solution is smooth or has kinks, the results show that the scheme based on locally
varying space and time grids is convergent.

Example 5.2 (A two-dimensional non-convex Hamilton–Jacobi equation: a Rie-
mann problem). We use the proposed scheme in the AMR method [3, 5] to solve a
two-dimensional nonconvex Riemann problem [31],

ut + sin(ux + uy) = 0, −2 ≤ x, y ≤ 2,(5.5.3)

u(x, y, 0) = π(|y| − |x|),(5.5.4)

to investigate the behavior of the AMR method and the convergence to the viscosity
solution. In the following we assume that the reader is familiar with the version of
AMR presented in [3].

We use the first-order Lax–Friedrichs monotone scheme [31] as the driving method
in the AMR method to compute the viscosity solution. To simplify the implementa-
tion, we use the local truncation error estimator [3, 5] to flag where the computational
mesh should be refined or coarsened; then a grid generation procedure dynamically
creates or removes rectangular fine patches. On different patches, the time step-size
is set according to the local CFL condition (2.2.10) and (2.2.11) so that efficient time
stepping can be achieved on different levels of computational grids (or patches). Dif-
ferent from the AMR method for hyperbolic conservation laws where conservation
has to be ensured across interfaces between coarse and fine grid patches [3, 5], the
AMR method for Hamilton–Jacobi equations only needs to update the solution on a
coarse patch by using the solution on a fine patch if available. To further simplify the
implementation, we only allow the mesh refinement ratio to be two.

In the computation shown here, we have taken the coarsest mesh to be 40 × 40,
the CFL number to be 0.85, the tolerance for the Richardson error estimator [3] to
be 0.002528, the maximum mesh refinement to be 2, and the number of ghost points
to be 4.

We compute the solution up to t = 1.0 by the AMR method. Figure 7 shows the
solution in pseudocolor and its computational mesh; the AMR method has refined
the mesh in the neighborhood of the two axes where the solution has rapid changes
according to the local truncation error estimator; see the solution shown in Figure
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Fig. 7. The solution at t = 1 by the AMR method and its computational mesh.
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Fig. 8. The two-dimensional Hamilton–Jacobi equation by the AMR method. (a): t = 1 with
seven grids, including the underlying coarsest mesh; (b): the solution at t = 1. Notice that the
refined meshes are along the two axes, where the solution changes rapidly.

8(b). Figure 8(a) shows the computational mesh at t = 1 consisting of seven patches
(or grids) including the underlying coarsest mesh; Figure 8(b) shows the solution
obtained by the AMR method at t = 1.

Figure 9 shows the calibration results at t = 1, where we have compared three
solutions: the one computed by the AMR method, and the two solutions computed
on the uniform 40 × 40 mesh by the first-order monotone Lax–Friedrichs scheme
[31] and the third-order weighted essentially nonoscillatory (WENO) Lax–Friedrichs
scheme [20]; as we can see, the solution by the AMR method based on the first-order
monotone Lax–Friedrichs scheme is much more accurate than the one by the first-
order monotone Lax–Friedrichs scheme on the uniform mesh if the solution by the
third WENO scheme is accepted as the “true” solution.
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Fig. 9. Calibration for the solution at t = 1 by the AMR method. WENO third-order: o;
AMR: *; first-order Lax–Friedrichs scheme: +. (a): y = 0.05; (b): y = −1.75.

We also point out that since in this example the coarsest mesh size is h = 0.1,
the finest mesh size in the AMR method is h

2 = 0.05, and h3 = 0.001, the AMR
solution based on the first-order scheme is not as accurate as the one by the third-
order WENO scheme on the coarsest mesh. Therefore, the advantage of the AMR
method will be more significant if a third-order WENO scheme is incorporated into
the AMR method; this is an ongoing work.

Example 5.3 (A two-dimensional convex Hamilton–Jacobi equation). Now we
use the proposed scheme in the AMR method [3, 5] to solve a two-dimensional convex
periodic problem [31],

ut +
(ux + uy + 1)2

2
= 0, −2 ≤ x, y ≤ 2,(5.5.5)

u(x, y, 0) = − cosπ

(
x + y

2

)
,(5.5.6)

to further investigate the behavior of the AMR method and the convergence to the
viscosity solution.

We still use the first-order Lax–Friedrichs monotone scheme [31] as the driving
method in the AMR method to compute the viscosity solution. Other implementation
details are the same as those for the nonconvex Riemann problem.

In the computation shown here, we have taken the coarsest mesh to be 40 × 40,
the CFL number to be 0.85, the tolerance for the Richardson error estimator [3] to
be 0.0004525, the maximum mesh refinement to be 3, the mesh refinement ratio to
be 2, and the number of ghost points to be 4.

We compute the solution up to t = 0.152 by the AMR method, when the solution
has developed discontinuous gradients. Figure 10 shows the solution in pseudocolor
and its computational mesh; the AMR method has refined the mesh where the solution
has rapid changes according to the local truncation error estimator; see the solution
shown in Figure 11(b). Figure 11(a) shows the computational mesh at t = 0.152
consisting of six patches (or grids) including the underlying coarsest mesh, the refined
mesh in all the domain at the second level, and four local patches at the third level;
Figure 11(b) shows the solution obtained by the AMR method at t = 0.152. Because
the rapid changes in the solution are not aligned with horizontal or vertical direc-
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Fig. 10. The solution at t = 0.152 by the AMR method and its computational mesh.
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Fig. 11. The two-dimensional Hamilton–Jacobi equation by the AMR method. (a): t = 0.152
with six grids, including the underlying coarsest mesh, the refined mesh in all the domain at the
second level and four local patches at the third level; (b): the solution at t = 0.152.

tions, the AMR method based on rectangular meshes without rotation has refined
the mesh everywhere so as to capture those sharp features; therefore, to have a more
efficient AMR method for such features, one may use a version of the AMR method
with rotations [4] or use a posteriori error estimators rather than local truncation
error estimators to indicate more accurately where the computational mesh should be
refined.

Figure 12 shows the calibration results at t = 0.152, where we have compared four
solutions: the exact solution, the one computed by the AMR method presented here
and the two solutions computed on the uniform 40×40 mesh by the first-order mono-
tone Lax–Friedrichs scheme [31] and the third-order WENO Lax–Friedrichs scheme
[20]; as we can see, the solution by the AMR method based on the first-order mono-
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Fig. 12. Calibration for the solution at t = 0.152 for y = −1.75. (a) exact: -; AMR: *;
first-order Lax–Friedrichs scheme: +. (b) exact: -; AMR: *; WENO third-order: o; first-order
Lax–Friedrichs scheme: +.

tone Lax–Friedrichs scheme is much more accurate than the one by the first-order
monotone Lax–Friedrichs scheme on the uniform mesh; moreover, the AMR method
provides very sharp resolution at the kink which is as good as the one by the third-
order WENO scheme.

Example 5.4 (A two-dimensional Hamilton–Jacobi equation from geometrical op-
tics). Now we use the proposed scheme in the AMR method [3, 5] to solve a two-
dimensional periodic problem from geometrical optics [30, 26, 39],

ut +
√
u2
x + u2

y + 1 = 0, 0 ≤ x, y ≤ 1,(5.5.7)

u(x, y, 0) = 0.25(cos(2πx) − 1)(cos(2πy) − 1) − 1.(5.5.8)

We still use the first-order Lax–Friedrichs monotone scheme [31] as the driving
method in the AMR method to compute the viscosity solution. Other implementation
details are the same as those for the nonconvex Riemann problem.

In the computation shown here, we have taken the coarsest mesh to be 40 × 40,
the CFL number to be 0.85, the tolerance for the Richardson error estimator [3] to
be 0.0008250, the maximum mesh refinement to be 3, the mesh refinement ratio to
be 2, and the number of ghost points to be 4.

We compute the solution up to t = 0.60562 by the AMR method, when the
solution has developed discontinuous gradients. Figure 13 shows the solution in pseu-
docolor and its computational mesh; the AMR method has refined the mesh where
the solution has rapid changes according to the local truncation error estimator; see
the solution shown in Figure 14(b). Figure 14(a) shows the computational mesh at
t = 0.60562 consisting of two grids including the underlying coarsest mesh and a re-
fined patch in a neighborhood of (0.5, 0.5) at the second level; Figure 14(b) shows the
solution obtained by the AMR method at t = 0.60562. Because the rapid changes in
the solution are near the point (0.5, 0.5), the AMR method has refined the mesh in a
neighborhood of that point so as to capture those sharp features. The results shown
here can be compared with those in [39], in which a mesh redistribution method was
used to cluster more mesh points in a neighborhood of (0.5, 0.5); see [39] for more
details.
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Fig. 13. The solution at t = 0.60562 by the AMR method and its computational mesh.
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Fig. 14. The two-dimensional Hamilton–Jacobi equation by the AMR method. (a): t = 0.60562
with two grids, including the underlying coarsest mesh and a refined patch in a neighborhood of
(0.5, 0.5) at the second level; (b): the solution at t = 0.60562.

The above AMR examples based on the first-order Lax–Friedrichs scheme show
that the proposed scheme fares well in comparison with existing methods. Currently
we are incorporating a posteriori error estimators and WENO schemes into the AMR
method so that we can have optimal mesh refinement and higher-order accuracy
during the computation; a fully numerical assessment of such AMR methods and
their performance as well as various conditions on the spatial and temporal meshes is
an ongoing work.
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NUMERICAL APPROXIMATION OF A TWO-PHASE FLOW
PROBLEM IN A POROUS MEDIUM WITH DISCONTINUOUS

CAPILLARY FORCES∗

GUILLAUME ENCHÉRY† , R. EYMARD‡ , AND A. MICHEL§

Abstract. We consider a simplified model of a two-phase flow through a heterogeneous porous
medium. Focusing on the capillary forces motion, a nonlinear degenerate parabolic problem is
approximated in a domain shared in two homogeneous parts, each of them being characterized by
its relative permeability and capillary curves functions of the phase saturations. We first give a
weak form of the conservation equations on the whole domain, with a new general expression of the
conditions at the interface between the two regions. We then propose a finite volume scheme for
the approximation of the solution, which is shown to converge to a weak solution in one-, two-, or
three-dimensional domains. We conclude with some numerical tests.

Key words. flows in porous media, capillarity, nonlinear PDE of parabolic type, finite volume
methods
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1. Introduction. Simulations of two-phase flows through heterogeneous porous
media are widely used in petroleum engineering. For example, for exploration pur-
poses, the basin modeling aims to reconstruct the geological history of a sedimentary
basin and in particular the migration of hydrocarbon components at geological time
scale. The reservoir simulation is devoted to the understanding and the prediction of
fluid flows occurring during production processes.

One of the most important consequences of the presence of heterogeneities in a
porous medium is the phenomenon of capillary entrapment. This phenomenon occurs
at the interface between two geological layers where discontinuous capillary thresholds
appear. Indeed, if the mean pore radius in one layer is smaller than in the other, the
oil phase must reach an access pressure so that the oil phase can enter the least
permeable layer. In a sedimentary basin, this mechanism can induce the formation
of oilfields. On the other hand, in reservoir engineering, the capillary trapping can
reduce the recovery factor since large quantities of oil can remain trapped. Therefore,
for this kind of application, one needs a precise understanding of this phenomenon on
the physical plane as on the mathematical plane.

The physical principles which govern these flows and the mathematical models
can be found in [2], [3], [4], [7]. However, the phenomenon of capillary trapping and
its mathematical modelization have been completed only in some simplified cases [5],
[9], [14].
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The aim of this paper is to propose a general model for this phenomenon and to
give the mathematical study of the convergence of a scheme which can be used in the
industrial context.

We thus consider an incompressible and immiscible oil-water flow through a one-,
two-, or three-dimensional heterogeneous and isotropic porous medium Ω. Using
Darcy’s law, the conservation of oil and water phases is given for all (x, t) ∈ Ω× (0, T )
by ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−φ(x)
∂u(x, t)

∂t
− div

(
μw(x, u(x, t))(∇pw(x, t) − ρwg)

)
= 0,

φ(x)
∂u(x, t)

∂t
− div

(
μo(x, u(x, t))(∇po(x, t) − ρog)

)
= 0,

po(x, t) − pw(x, t) = π(x, u(x, t)),

(1.1)

where the function φ is the porosity of the medium, u ∈ [0, 1] is the oil saturation
(and therefore 1 − u is the water saturation), π(x, u) is the capillary pressure, and g
is the gravity acceleration. The indices o and w, respectively, stand for the oil and
the water phase. Thus, for β = o, w, pβ is the pressure of the phase β, μβ(x, u) is the
mobility of the phase β, and ρβ is the density of the phase β. The unknowns of the
problem are the functions u, pw, and po.

Focusing on the modeling of flow at the interface between two different porous
materials, we make the following assumptions.

Assumption 1.1.

H1-1. The domain Ω is such that Ω = Ω1

⋃
Ω2. The subdomains Ω1 and Ω2 are

disjoint open segments (if d = 1), polygonal (if d = 2), or polyhedral (if d = 3)
bounded connected subsets of R

d. We assume that the common boundary
between Ω1 and Ω2, Γ = ∂Ω1

⋂
∂Ω2, has a strictly positive and finite d − 1-

measure. The real T > 0 is the length of the considered time period.
H1-2. The function φ takes the strictly positive constant value 0 < φi < 1 in Ωi for

i = 1, 2.
H1-3. For β ∈ {o, w}, i = 1, 2, and for all x ∈ Ωi μβ(x, .) = μβ,i. μo,i is a strictly

increasing continuous function satisfying μo,i(u) = μo,i(0) = 0 for all u ≤ 0
and μo,i(u) = μo,i(1) for all u ≥ 1. μw,i is a strictly decreasing continuous
function satisfying μw,i(u) = μw,i(1) = 0 for all u ≥ 1 and μw,i(u) = μw,i(0)
for all u ≤ 0.

H1-4. For all x ∈ Ωi, π(x, .) = πi ∈ C0(R,R) and πi is such that its restriction
πi|[0,1] to [0, 1] is strictly increasing, belongs to C1([0, 1],R), and satisfies
πi(u) = πi(0) for all u ≤ 0 and πi(u) = πi(1) for all u ≥ 1. We assume
that π1(0) ≤ π2(0) ≤ π1(1) ≤ π2(1). We denote by u�

1 the unique real in [0, 1]
satisfying π1(u

�
1) = π2(0). Thus, for all u ∈ [0, u�

1), we have π1(u) < π2(u).
We denote by u�

2 the unique real in [0, 1] satisfying π2(u
�
2) = π1(1). Thus, for

all u ∈ (u�
2, 1], we have π1(u) < π2(u). (See Figure 1.1.)

H1-5. The initial condition in saturation uini ∈ L∞(Ω) and 0 ≤ uini(x) ≤ 1 for
almost everywhere (a.e.) x ∈ Ω.

The following conditions must be satisfied on the traces of ui, pβ,i, and ∇pβ,i on
Γ × (0, T ), respectively, denoted by ui,Γ, pβ,i,Γ, and (∇p)β,i,Γ (see [3]):

1. For any β = o, w, the flux of the phase β must be continuous:

μβ,1(u1,Γ)((∇p)β,1,Γ − ρβg).−→n 1,Γ = −μβ,2(u2,Γ)((∇p)β,2,Γ − ρβg).−→n 2,Γ,(1.2)

where −→n i,Γ is the unit normal of Γ outward to Ωi.



2404 GUILLAUME ENCHÉRY, R. EYMARD, AND A. MICHEL

π
1
(u)

0 1

π
2
(u)

u1
* u2

*

π
2
(1)

π (1)
1

2
(0)π

π (0)
1

Fig. 1.1. Functions πi, i = 1, 2.

2. For any β = o, w, either (pβ is continuous) or (pβ is discontinuous and μβ = 0);
since the saturation is itself discontinuous across Γ, one must express the
mobility at the upstream side of the interface. This gives

μβ,1(u1,Γ)(pβ,1,Γ − pβ,2,Γ)+ − μβ,2(u2,Γ)(pβ,2,Γ − pβ,1,Γ)+ = 0(1.3)

along with po,i,Γ − pw,i,Γ = πi(ui,Γ), for i = 1, 2, where we denote, for all
a ∈ R, a+ = max(a, 0).

The relations (1.3) can be directly expressed in terms of relations between ui,Γ and
pβ,i,Γ, β = o, w, i = 1, 2:

1. If 0 ≤ u1,Γ < u�
1, then μw,1(u1,Γ) > 0; this implies pw,1,Γ ≤ pw,2,Γ. Since

π1(u1,Γ) < π2(0) ≤ π2(u2,Γ), we get po,1,Γ < po,2,Γ, which in turn implies
μo,2(u2,Γ) = 0, and thus u2,Γ = 0. Therefore μw,2(u2,Γ) > 0 and pw,2,Γ ≤
pw,1,Γ. Thus pw,2,Γ = pw,1,Γ. In this case, the oil phase is trapped in Ω1, and
the water flows across Γ.

2. If u�
1 ≤ u1,Γ and u2,Γ ≤ u�

2, then π2(0) ≤ π1(u1,Γ), and π2(u2,Γ) ≤ π1(1).
Since μo,1(u1,Γ) > 0, then po,1,Γ ≤ po,2,Γ and μo,2(u2,Γ) = 0 or po,1,Γ = po,2,Γ.
Similarly, since μw,2(u2,Γ) > 0, then pw,1,Γ ≥ pw,2,Γ and μw,1(u1,Γ) = 0 or
pw,1,Γ = pw,2,Γ. Therefore, we get po,1,Γ−pw,1,Γ ≤ po,2,Γ−pw,2,Γ, which gives
π1(u1,Γ) ≤ π2(u2,Γ). If we consider the case μo,2(u2,Γ) = 0, we get u2,Γ = 0
and thus π2(0) = π1(u1,Γ). Similarly, if we consider the case μw,1(u1,Γ) =
0, we get π2(u2,Γ) = π1(1). If we have at the same time μo,2(u2,Γ) > 0
and μw,1(u1,Γ) > 0, then po,1,Γ = po,2,Γ and pw,1,Γ = pw,2,Γ, which implies
π1(u1,Γ) = π2(u2,Γ). Therefore, in all cases, we get π1(u1,Γ) = π2(u2,Γ), and
consequently po,1,Γ = po,2,Γ and pw,1,Γ = pw,2,Γ. In this case, both phases
flow across Γ.

3. If u�
2 < u2,Γ ≤ 1, a similar discussion yields u1,Γ = 1 and po,1,Γ = po,2,Γ. In

this case, the water phase is trapped in Ω1, and the oil flows across Γ.
A consequence of this discussion is that in all cases, the resulting condition on the oil
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saturations at the boundary Γ is given by π̂1(u1,Γ) = π̂2(u2,Γ), defining the functions
π̂1 and π̂2 by π̂1 : u �→ max(π1(u), π2(0)) and π̂2 : u �→ min(π2(u), π1(1)).

Now let us introduce the global pressure

p̃i(x, t) = pw,i(x, t) +

∫ ui(x,t)

0

μo,i(a)

μo,i(a) + μw,i(a)
π′
i(a)da

(first introduced by Chavent; see, for example, [7]) and the functions ηi : u �→
μo,i(u)μw,i(u)
μo,i(u)+μw,i(u) and ϕi : u �→

∫ u

0
ηi(a)π

′
i(a)da. We denote by Lϕi

the Lipschitz

constant of ϕi and by Cη an upper bound of ηi(u), u ∈ R, i = 1 and 2. Using these
notations we have for (x, t) ∈ Ωi × (0, T ), i = 1, 2,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φi
∂ui(x, t)

∂t
− div

(
μo,i(ui(x, t))(∇p̃i(x, t) − ρog)

)
− Δϕi(ui(x, t)) = 0,

−div

⎛
⎝ ∑

β=o,w

μβ,i(ui(x, t))∇p̃i(x, t) −
∑

β=o,w

μβ,i(ui(x, t))ρβg

⎞
⎠ = 0.

(1.4)

We neglect in the first equation of (1.4) the term div [μo,i(ui(x, t))(∇p̃i(x, t) − ρog)] in
front of Δϕi(ui(x, t)), since this is sufficient to get the mathematical properties which
are involved in the oil trapping phenomenon, as shown in the numerical examples
at the end of this paper. Equations (1.2), (1.3), and (1.4) then produce within this
simplified case the following equations, the solution of which are the functions ui(x, t),
(x, t) ∈ Ωi × (0, T ):

φi
∂ui

∂t
− Δϕi(ui) = 0, in Ωi × (0, T ) for all i ∈ {1, 2},(1.5)

∇ϕ1(u1,Γ).−→n 1,Γ = −∇ϕ2(u2,Γ).−→n 2,Γ on Γ × (0, T ),(1.6)

and

π̂1(u1,Γ) = π̂2(u2,Γ),(1.7)

which summarizes the discussion induced by (1.3). Considering the problem of the
migration of oil, we prescribe a homogeneous Neumann condition, which is expressed
by

η(., u)∇π(., u).−→n = 0 on ∂Ω × (0, T ).(1.8)

For t = 0, we have

u(x, 0) = uini in Ω.(1.9)

Before giving the weak formulation of the problem we prove the following lemma.
Lemma 1.2. Under Assumption 1.1, let Ψ : [π2(0), π1(1)] → R be the strictly

increasing function defined by p �→ Ψ(p) =
∫ p

π2(0)
min(η1(π

(−1)
1 (a)), η2(π

(−1)
2 (a)))da.

For all i ∈ {1, 2}, the function Ψ ◦ π̂i ◦ ϕ(−1)
i is Lipschitz continuous with a constant

lower than 1.
Proof. For i = 1 or 2, let a be real such that ϕ1(u

�
1) < a < ϕ1(1) if i = 1, 0 <

a < ϕ2(u
�
2) if i = 2. Within such a condition, we have π̂i(ϕ

(−1)
i (a)) = πi(ϕ

(−1)
i (a)).



2406 GUILLAUME ENCHÉRY, R. EYMARD, AND A. MICHEL

Let us calculate the derivative of the function πi ◦ ϕ
(−1)
i . Let b 	= a be a real such

that ϕ1(u
�
1) < b < ϕ1(1) if i = 1, 0 < b < ϕ2(u

�
2) if i = 2; setting A = ϕ

(−1)
i (a) and

B = ϕ
(−1)
i (b), we have

πi(ϕ
(−1)
i (b)) − πi(ϕ

(−1)
i (a))

b− a
=

πi(B) − πi(A)

ϕi(B) − ϕi(A)
.

Let us denote by I(A,B) the interval [A,B] if B ≥ A, [B,A] otherwise. Using the
definition of ϕi, we have(

min
C∈I(A,B)

ηi(C)

)
(πi(B) − πi(A)) ≤ ϕi(B) − ϕi(A)

≤
(

max
C∈I(A,B)

ηi(C)

)
(πi(B) − πi(A)),

and therefore there exists C ∈ I(A,B) such that ϕi(B) − ϕi(A) = ηi(C)(πi(B) −
πi(A)). Thus

πi(ϕ
(−1)
i (b)) − πi(ϕ

(−1)
i (a))

b− a
=

1

ηi(C)
,

which gives, letting b → a, (πi◦ϕ(−1)
i )′(a) = 1

ηi(ϕ
(−1)
i

(a))
. We thus get that the function

Ψ ◦ π̂i ◦ ϕ(−1)
i has a derivative in a which is

(Ψ ◦ π̂i ◦ ϕ(−1)
i )

′
(a) = Ψ′(πi(ϕ

(−1)
i (a)))(πi ◦ ϕ(−1)

i )′(a) =
Ψ′(πi(ϕ

(−1)
i (a)))

ηi(ϕ
(−1)
i (a))

.

Using the definition of Ψ, we get Ψ′(πi(y)) ≤ ηi(y) for y = ϕ
(−1)
i (a). Gathering these

results, we get that

(Ψ ◦ π̂i ◦ ϕ(−1)
i )

′
(a) ≤ 1.

If i = 1 and 0 < a < ϕ1(u
�
1), or if i = 2 and ϕ2(u

�
2) < a < 1, then the function

Ψ ◦ π̂i ◦ ϕ(−1)
i is constant, which implies a zero derivative. This completes the proof

of the lemma.
The system (1.5)–(1.9) is a nonlinear parabolic problem defined on a heteroge-

neous domain. Since in the general case, such a problem does not have any strong
solution, we now give the definition of a weak solution to this problem.

Definition 1.3. Under Assumption 1.1, a weak solution u of the problem (1.5)–
(1.9) is defined by

1. for all i ∈ {1, 2}, u = ui in Ωi × (0, T ) with

ui ∈ L∞(Ωi × (0, T )), 0 ≤ ui ≤ 1 a.e. and ϕi(ui) ∈ L2(0, T ;H1(Ωi));

2. for all ψ ∈ Ctest = {h ∈ H1(Ω × (0, T )), h(., T ) = 0},

2∑
i=1

⎡
⎢⎢⎣
∫ T

0

∫
Ωi

[φiui(x, t)ψt(x, t) −∇ϕi(ui(x, t)).∇ψ(x, t)] dxdt+∫
Ωi

φiuini(x, 0)ψ(x, 0)dx

⎤
⎥⎥⎦ = 0,
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3. the function w : Ω × (0, T ) → R defined by (x, t) �→ Ψ(π̂i(ui(x, t))) for a.e.
(x, t) ∈ Ωi × (0, T ), i = 1, 2, belongs to L2(0, T ;H1(Ω)).

Remark 1.4. This weak formulation is sufficient to impose (1.5), (1.6), (1.8), (1.9)
on regular solutions. The last condition given in Definition 1.3 is a functional method
to impose the condition (1.7).

In the homogeneous case, i.e., φ1 = φ2, π1 = π2, and η1 = η2, classical results
of existence and uniqueness of a solution are available (see, for instance, [1] and [6]
for a uniqueness result in more general cases). A simplified case of (1.5)–(1.9) has
been handled in the heterogeneous case in [5], where the authors handle the case
d = 1, Ω1 = (−∞, 0), Ω2 = (0,+∞), and for i = 1, 2, φi = 1, ηi(u) = kiu, and
πi(u) = (1 + u)/

√
ki, where 0 < k2 < k1. (Note that only the problem of the oil

trapping is considered here, since the physical conditions ηi(1) = 0 is not ensured.)
Under additional hypotheses of regularity on the initial data, the authors get the
existence and the uniqueness of the solution to the problem (1.5)–(1.9). We focus
in this paper on the convergence of a numerical scheme for the approximation of u,
in the general framework of Assumption 1.1. Up to a subsequence, we prove (see
Theorem 2.15) the convergence of the finite volume scheme given by (2.2)–(2.4) to
a weak solution in the sense of Definition 1.3. As an immediate consequence, the
convergence of the scheme gives the existence of a solution to the problem (1.5)–(1.9)
(see Corollary 2.17). Similar works have already been done, for example, in [12], [13]
in the case of a homogeneous domain. Therefore, in the following proofs, we only
insist on the new elements which appear in our study, mainly related to the presence
of two domains linked by (1.6)–(1.7) (or (2.4) for the discrete problem). We end this
study with numerical results (see section 3) and concluding remarks on ongoing works
and future prospects (see section 4).

2. Study of a finite volume scheme. In this section, we study a finite volume
scheme discretizing (1.5)–(1.9). First we define an admissible discretization of Ω ×
(0, T ).

2.1. Admissible discretization of Ω × (0, T ).
Definition 2.1 (admissible mesh). We denote by M an admissible finite volume

discretization on a domain Ω; M is composed of a triplet (T , E ,P) with T = T1

⋃
T2,

E = E1

⋃
E2, and P = P1

⋃
P2, which satisfy the following properties:

• For i ∈ {1, 2}, Ti is a family of control volumes which are nonempty open
polygonal convex disjoint subsets of Ωi. These elements satisfy ∪K∈TiK = Ωi.
We denote by ∂K = K \ K the boundary of volume K and by m(K) its
measure (its length for d = 1, its area for d = 2, its volume for d = 3).

• For i ∈ {1, 2}, Ei stands for the set of the edges of the control volumes in Ti.
For all σ ∈ Ei, there exist a hyperplane E of R

d and a control volume K ∈ Ti
such that σ = E

⋂
∂K and σ is a nonempty open subset of E. We denote

by EK the subset of E composed of the edges of the volume K. Then we have
∂K = ∪σ∈EK

σ. For any σ ∈ Ei, we have
– either σ ∈ Eint,i = {σ ∈ Ei, ∃ (K,L) ∈ T 2

i , K 	= L, such that σ =
K ∩ L 	= ∅} (in that case σ is also denoted by K|L),

– or σ ∈ EΓ = {σ ∈ Ei, ∃ (K,L) ∈ T1×T2, K 	= L, such that σ = K
⋂
L 	=

∅},
– or σ ∈ Eext,i = {σ ∈ Ei, ∃ K ∈ Ti such that σ̄ = ∂K

⋂
(∂Ωi \ Γ) 	= ∅}.

• For i ∈ {1, 2}, Pi refers to a family of points (xK)K∈T satisfying the following
properties:

– xK ∈ K,
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– for all L ∈ Tj, j ∈ {1, 2}, the straight line (xK , xL) going through xK

and xL is orthogonal to K|L.
We also set

– TΓ = {(K,L), K ∈ T1, L ∈ T2, K|L ∈ EΓ},
– Eint = Eint,1

⋃
Eint,2

⋃
EΓ,

– Eext = Eext,1
⋃
Eext,2.

For i = 1, 2, the set of the neighboring volumes of a volume K ∈ Ti within
Ωi is represented by N(K) = {L ∈ Ti, K|L ∈ EK}. The unit normal of an
edge K|L ∈ Eint outward to K is denoted by −→nK,L. The area of an edge σ
is denoted by m(σ). For all K ∈ T , σ ∈ EK , dK,σ stands for the euclidean
distance between xK and the edge σ and for K|L ∈ Eint, dK|L is the euclidean
distance between xK and xL. Using these notations the transmissivity τK|L
through K|L is equal to m(K|L)/dK|L and, for σ ∈ Eext with σ ∈ EK , the
transmissivity τK,σ through σ is equal to m(σ)/dK,σ. For i ∈ {1, 2} and
K|L ∈ Eint,i, we denote by DK|L the union of the two cones with the respective
vertices xK and xL and the basis K|L. For σ ∈ Eext such that σ ∈ EK , Dσ is
the cone with vertex xK and basis σ.

We set size(M) = sup{diam(K),K ∈ T }. The regularity of the mesh is defined by

regul(M) =
size(M)

minK∈T ,σ∈EK
dK,σ

.(2.1)

In this paper, for the sake of simplicity, we restrict our study to constant time
steps. But all results stated in the following can be adjusted to variable time steps.

Definition 2.2 (admissible time discretization of (0, T )). A discretization of
(0, T ) is given by an integer M ∈ N such that δt = T

M+1 . The increasing sequence of
times (tn)n∈{0...M+1} which discretizes (0, T ) is then given by tn = nδt.

Definition 2.3 (admissible discretization of Ω × (0, T )). An admissible dis-
cretization D of Ω × (0, T ) is composed of a pair (M,M), where M is an admissi-
ble discretization of Ω and M ∈ N (see Definitions 2.1 and 2.2). We then denote
size(D) = max(size(M), δt).

2.2. Discrete functional properties. Let D be an admissible discretization
of the domain Ω × (0, T ) (see Definition 2.3), K ∈ T , and n ∈ {0 . . .M}. For a
variable u, we denote by un+1

K its approximation over the volume K and over the time
interval ]nδt, (n + 1)δt] and by (u0

K)K∈T a piecewise constant approximation of the
initial condition. We denote by

• X (T ) the set of piecewise constant functions over the mesh T : uT ∈ X (T )
is defined for all x ∈ Ω by uT (x) = uK for x ∈ K,

• X (D) the set of piecewise constant functions over the discretization D : uD ∈
X (D) is defined for all n ∈ {0 . . .M} by uD(., t) = un+1

T ∈ X (T ) for t ∈
]nδt, (n + 1)δt].

We introduce the notation δuK,L = uL − uK .
For i ∈ {1, 2}, the discrete L2(0, T ;H1(Ωi))-seminorm is defined as follows.
Definition 2.4. Let Ω × (0, T ) be a domain satisfying H1-1 and D be an ad-

missible discretization of this domain in the sense of Definition 2.3. For i ∈ {1, 2},
the L2(0, T ;H1(Ωi))-seminorm of a function uD ∈ X (D) is defined by

|uD|21,D,i =

M∑
n=0

δt
∑

K|L∈Eint,i

τK|L(δun+1
K,L)2.
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2.3. An implicit scheme. The initial condition u0
K is given by

u0
K =

1

m(K)

∫
K

uini(x) dx, ∀K ∈ T .(2.2)

For the following time steps, n ∈ {0, . . . ,M}, we compute a discrete solution in
saturation (un+1

K )K∈T thanks to the scheme

m(K)φi
un+1
K − un

K

δt

∑
L∈N(K)

τK|L
(
ϕi(u

n+1
K ) − ϕi(u

n+1
L )

)

+
∑

σ∈EΓ

⋂
EK

τK,σ

(
ϕi(u

n+1
K ) − ϕi(u

n+1
K,σ )

)
= 0, K ∈ Ti, i ∈ {1, 2},

(2.3)

where for all (K,L) ∈ TΓ and for given values of un+1
K and un+1

L , the values un+1
K,K|L,

un+1
L,K|L ∈ [0, 1] are the unique solutions (according to Lemma 2.5 below) of the system

{
τK,K|L(ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,σ )) = τL,K|L(ϕ2(u

n+1
L,σ ) − ϕ2(u

n+1
L )),

π̂1(u
n+1
K,σ ) = π̂2(u

n+1
L,σ ).

(2.4)

Lemma 2.5. Under Assumption 1.1, let αi > 0 be given for i = 1, 2. Let
(a, b) ∈ R

2. Then there exists one and only one pair (c, d) ∈ [0, 1]2 such that

α1(ϕ1(a) − ϕ1(c)) = α2(ϕ2(d) − ϕ2(b))

and

π̂1(c) = π̂2(d).

We then denote c = U1(a, b, α1, α2) and d = U2(a, b, α1, α2). Then the functions
U1 and U2 are continuous and nondecreasing with respect to a and b. Moreover, the
following inequalities hold:

0 ≤ (ϕ1(a) − ϕ1(c))(π1(a) − π1(c)) ≤ (ϕ1(a) − ϕ1(c))(π1(a) − π2(b)),
0 ≤ (ϕ2(d) − ϕ2(b))(π2(d) − π2(b)) ≤ (ϕ2(d) − ϕ2(c))(π1(a) − π2(b)).

(2.5)

Proof. Let us take as unknowns the values C = ϕ1(c) and D = ϕ2(d) and let us
denote A = ϕ1(a) and B = ϕ2(b). Then (C,D) is solution of

α1C + α2D = α1A + α2B,(2.6)

π̂1(ϕ
(−1)
1 (C)) = π̂2(ϕ

(−1)
2 (D)).(2.7)

Let us first consider the case where α1A + α2B ≤ α1ϕ1(u
�
1). Since this implies

C ≤ ϕ1(u
�
1), we have necessarily D = 0 according to (2.7). Thus the solution is

obtained, taking D = 0 and C = (α1A + α2B)/α1. In this case, since D ≤ B, we
have C ≥ A, and since π2(b) ≥ π2(0) ≥ π1(c) ≥ π1(a), we get (2.5).

We now consider the case where α1ϕ1(u
�
1) < α1A + α2B < α1ϕ1(1) + α2ϕ2(u

�
2).

Since in this case we necessarily have ϕ1(u
�
1) < C and D < ϕ2(u

�
2) (see (2.7)),

the relation C = ϕ1(π
(−1)
1 (π2(ϕ

(−1)
2 (D)))) holds, and since the function D �→ α1ϕ1

(π
(−1)
1 (π2(ϕ

(−1)
2 (D))))+α2D is continuous and strictly increasing, the system has one

and only one solution (C,D). We then get in this case that π1(c) = π2(d), and since
π1(a) − π1(c) has the same sign as π2(d) − π2(b), we get (2.5).
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Finally, the case α1ϕ1(1) + α2ϕ2(u
�
2) ≤ α1A + α2B is symmetric with the first

case, and we get C = ϕ1(1) and D = (α1(A − ϕ1(1)) + α2B)/α2. We then have in
this case C ≥ A and thus D ≤ B, and since π2(b) ≥ π2(d) ≥ π1(1) ≥ π1(a), we again
get (2.5).

In all these cases, C and D have been expressed as continuous nondecreasing
functions of A and B, so the same conclusion holds for c and d as functions of a and
b.

Remark 2.6. It is possible to show that C and D, seen as functions of A = ϕ1(a)
and B = ϕ2(b), verify, for a.e. (a, b) ∈ R

2,

0 ≤ ∂C

∂A
≤ 1, 0 ≤ ∂D

∂A
≤ α1

α2
, 0 ≤ ∂C

∂B
≤ α2

α1
, and 0 ≤ ∂D

∂B
≤ 1.

Now we can state the L∞-stability of the scheme and then the existence of a
solution to (2.2)–(2.4).

2.4. L∞-stability of the scheme. If Ω were a homogeneous porous medium
we could prove that the discrete solution in saturation satisfies a maximum principle
depending on the initial condition [12]. Here, in presence of a heterogeneity, this result
no longer holds.

Proposition 2.7. Under Assumption 1.1, let D be an admissible discretization
of the domain Ω × (0, T ) (see Definition 2.3) and un+1

T ∈ X (T ), n ∈ {0 . . .M}, the
solution to the system (2.2)–(2.4). (The existence and uniqueness of such a solution
is shown in Proposition 2.8.) Then un+1

T satisfies

for all K ∈ T , 0 ≤ un+1
K ≤ 1.(2.8)

Proof. For all K ∈ Ti, i ∈ {1, 2}, (2.2)–(2.4) imply

un+1
K = HK(un

K , (un+1
L )L∈T )

with

HK(a, (aL)L∈T ) =
1

1 + λK

⎛
⎜⎜⎝a + λKaK

+
δt

m(K)φi

⎛
⎜⎜⎜⎝

∑
L∈N(K)

τK|L (ϕi(aL) − ϕi(aK))

+
∑

σ∈EΓ

⋂
EK

τK,σ (ϕi(aK,σ) − ϕi(aK))

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

and

λK =
δtLϕ

m(K)φi

⎛
⎜⎝ ∑

L∈N(K)

τK|L +
∑

σ∈EΓ

⋂
EK

τK,σ

⎞
⎟⎠

and where for all (K,L) ∈ TΓ, aK,K|L is defined by aK,K|L = U1(aK , aL, τK,K|L, τL,K|L)
and aL,K|L = U2(aK , aL, τK,K|L, τL,K|L). (The functions U1 and U2 are defined in
Lemma 2.5.)
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Lemma 2.5 implies that the function HK(a, (aL)L∈T ) is nondecreasing with re-
spect to a and to aL for all L ∈ T (including the case L = K).

Let us prove the above proposition by induction on n. It is true for n = 0. We as-
sume that is true for n, and that there is Kmax ∈ T such that Kmax = maxK∈T (un+1

K )
and un+1

Kmax
> 1. Using the monotony of the function HKmax , we have

1 < un+1
Kmax

≤ HKmax(1, (u
n+1
Kmax

)L∈T ) =
1 + λKmaxu

n+1
Kmax

1 + λKmax

.

We then get a contradiction with the existence of such a Kmax. In the same way,
we prove that there is no Kmin ∈ Ti such that Kmin = minK∈T (un+1

K ) and
un+1
Kmin

< 0.

2.5. Existence and uniqueness of a discrete solution.
Proposition 2.8. Under Assumption 1.1, let D be an admissible discretization

of the domain Ω× (0, T ) (see Definition 2.3). Then for all n ∈ {0 . . .M}, there exists
one and only one solution un+1

T ∈ X (T ) to the system (2.2)–(2.4).
Proof. The system composed of (2.2)–(2.4) can be seen as a system with unknowns

(un+1
K )K∈T thanks to Lemma 2.5.

We set N = card(T ) and we consider the application ψ : R
N × [0, 1] → R

N

defined by ((uK)K∈T , λ) �→ (vK)K∈T with for all K ∈ T

vK = m(K)φi
uK − un

K

δt
+ λ

∑
L∈N(K)

τK|L (ϕi(uK) − ϕi(uL))

+ λ
∑

σ∈EΓ

⋂
EK

τK,σ (ϕi(uK) − ϕi(uK,σ)) ,

where for all (K,L) ∈ TΓ we take uK,K|L = U1(uK , uL, τK,K|L, τL,K|L) and uL,K|L =
U2(uK , uL, τK,K|L, τL,K|L). (The functions U1 and U2 are defined in Lemma 2.5.)

The function ψ is continuous with respect to each one of its arguments. Moreover,
reproducing the proof of the Proposition 2.7 we can prove that for all λ ∈ [0, 1],
ψ((uK)K∈T , λ) = (0)K∈T implies uK ∈ [0, 1] for all K ∈ T . Since ψ((uK)K∈T , 0) is
linear, an argument based on the topological degree (see [11] and references therein)
implies that ψ((uK)K∈T , 1) = (0)K∈T admits at least one solution.

Turning now to the proof of uniqueness, we assume that for a given n ∈ {0 . . .M},
(uK)K∈T and (ũK)K∈T are two solutions of (2.2)–(2.4). Using for all K ∈ T , the
functions HK defined in the proof of Proposition 2.7, we get that

max(uK , ũK) ≤ HK(un
K , (max(uL, ũL))L∈T )

and

min(uK , ũK) ≥ HK(un
K , (min(uL, ũL))L∈T ).

If we multiply the above inequalities by (1 + λK)m(K)φi, if we substract the second
inequality from the first one, and if we sum the result over K ∈ T , the exchange terms
between all the pairs of neighboring grid blocks and in particular the terms including
λK vanish, and we obtain ∑

i=1,2

∑
K∈Ti

m(K)φi|uK − ũK | ≤ 0,

which proves the uniqueness of the solution.
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2.6. Convergence. The remaining part of this section is devoted to the con-
vergence proof of the scheme (2.2)–(2.4). The first step consists in obtaining some
compactness properties for the sequence of approximated solutions. This will be done
thanks to Kolmogorov’s theorem. In particular this theorem requires that the space
and time translates of the approximated solutions remain bounded.

2.6.1. Upper bound on the space translates.
Proposition 2.9. Under Assumption 1.1, let D be an admissible discretization

of the domain Ω×(0, T ) in the sense of Definition 2.3. Let uD ∈ X (D) be the solution
of (2.2)–(2.4). Then, there is C1 > 0 only depending on ηj, πj, Ωj, j ∈ {1, 2} such
that

0 ≤
M∑
n=0

δt
∑

(K,L)∈EΓ

τK,K|L

(
ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,K|L)

) (
π1(u

n+1
K ) − π2(u

n+1
L )

)

=

M∑
n=0

δt
∑

(K,L)∈EΓ

τL,K|L

(
ϕ2(u

n+1
L,K|L) − ϕ2(u

n+1
L )

) (
π1(u

n+1
K ) − π2(u

n+1
L )

)
≤ C1

(2.9)

and for i ∈ {1, 2} there exists C2 > 0 depending on C1 and on Cη such that

|ϕi(uD)|21,D,i ≤ C2 .(2.10)

Proof. For n ∈ {0 . . .M} and K ∈ Ti, we multiply the equation (2.3) by πi(u
n+1
K )

and we sum over the discretization D. This leads to

∑
i = 1 . . . 2,
n = 0 . . .M,

K ∈ Ti

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝m(K)φi(u

n+1
K − un

K) + δt

⎛
⎝ ∑

L∈N(K)

τK|L
(
ϕi(u

n+1
K ) − ϕi(u

n+1
L )

)

+
∑

σ∈EΓ

⋂
EK

τK,σ

(
ϕi(u

n+1
K ) − ϕi(u

n+1
K,σ )

)
⎞
⎟⎠
⎞
⎟⎠πi(u

n+1
K )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Accumulation term. Since the function πi(.) is nondecreasing, the function gi
defined by gi(u) =

∫ u

0
πi(a) da is therefore convex. So we have

(un+1
K − un

K)πi(u
n+1
K ) ≥ gi(u

n+1
K ) − gi(u

n
K).

Thus we get

M∑
n=0

∑
K∈Ti

m(K)φi(u
n+1
K − un

K)πi(u
n+1
K ) ≥

∑
K∈Ti

m(K)φi(gi(u
M+1
K ) − gi(u

0
K)).

Moreover, we notice that∣∣∣∣∣
∑
K∈Ti

m(K)φi(gi(u
M+1
K ) − gi(u

0
K))

∣∣∣∣∣ ≤ m(Ωi)
(∫ 1

0

|πi(a)| da
)
.

Diffusion term. As ϕi(b) − ϕi(a) ≤ Cη

∫ b

a
π

′

i(u) du, we have

M∑
n=0

δt
∑

K|L∈Eint,i

τK|L
(
ϕi(u

n+1
K ) − ϕi(u

n+1
L )

) (
πi(u

n+1
K ) − πi(u

n+1
L )

)

≥ 1

Cη

M∑
n=0

δt
∑

K|L∈Eint,i

τK|L

(
ϕi(u

n+1
K ) − ϕi(u

n+1
L )

)2

.
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For (K,L) ∈ TΓ, we apply (2.5). This leads to

τK,σ(ϕ1(u
n+1
K ) − ϕ1(u

n+1
K,σ ))(π1(u

n+1
K ) − π2(u

n+1
L )) ≥ 0.

Finally, gathering the lower and upper bounds we obtained, we get

2∑
i=1

|ϕi(uD)|21,D,i ≤ Cη

2∑
i=1

m(Ωi)
(∫ 1

0

|πi(a)| da
)

= C2

and

0 ≤
M∑
n=0

δt
∑

σ=K|L∈EΓ

τK,σ

(
ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,σ )

) (
π1(u

n+1
K ) − π2(u

n+1
L )

)

≤
2∑

i=1

m(Ωi)
(∫ 1

0

|πi(a)| da
)

= C1 ,

which concludes the proof.
We recall the following result, given in [11].
Lemma 2.10. Under Assumption 1.1, let D be an admissible discretization of

the domain Ω × (0, T ) in the sense of Definition 2.3. Let uD ∈ X (D) be given by
(2.2)–(2.4). Let i = 1, 2 and ξ ∈ R

d. We define the domain Ωi,ξ by

Ωi,ξ = {x ∈ Ωi / [x, x + ξ] ⊂ Ωi}.

Then the function ϕi(uD) satisfies

∫ T

0

∫
Ωi,ξ

|ϕi(uD(x + ξ, t) − ϕi(uD(x, t)|2dxdt ≤ |ξ|
(
|ξ| + 2size(M)

)
|ϕi(uD)|21,D,i.(2.11)

This result produces the following proposition.
Proposition 2.11. Under Assumption 1.1, let D be an admissible discretization

of the domain Ω × (0, T ) in the sense of Definition 2.3. Let uD ∈ X (D) be given
by (2.2)–(2.4). Let i = 1, 2 and ωi be an open bounded subset of Ωi with a regular
boundary. We define the function ϕD,ωi by ϕD,ωi(x, t) = ϕi(uD(x, t)) for a.e. (x, t) ∈
ωi × (0, T ), ϕD,ωi(x, t) = 0 if (x, t) /∈ ωi × (0, T ). Then there exists C3 > 0, only
depending on T , ηj, πj, Ωj, j ∈ {1, 2} and of ωi, such that

‖ϕD,ωi(. + ξ, .) − ϕD,ωi‖2
L2(Rd+1) ≤ C3 |ξ|

(
|ξ| + 1

)
for all ξ ∈ R

d.(2.12)

Proof. This result is a direct consequence of Proposition 2.9 and of Lemma
2.10 and of the fact that the measure of {x ∈ ωi, [x, x + ξ] 	⊂ ωi} is bounded by
Cωi |ξ|.

2.6.2. Upper bound on the time translates.
Proposition 2.12. Under Assumption 1.1, let D be an admissible discretization

of the domain Ω × (0, T ) in the sense of Definition 2.3. Let uD ∈ X (D) be given
by (2.2)–(2.4). Let i = 1, 2 and ωi be an open bounded subset of Ωi with a regular
boundary. We define the function ϕD,ωi by ϕD,ωi(x, t) = ϕi(uD(x, t)) for a.e. (x, t) ∈
ωi × (0, T ), ϕD,ωi(x, t) = 0 if (x, t) /∈ ωi × (0, T ). Then there exists C4 > 0, only
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depending on T , ηj, πj, φj, Ωj, j ∈ {1, 2} and of ωi, such that, for size(M) small
enough, ∫

R

∫
Ω

(
ϕD,ωi

(x, t + τ) − ϕD,ωi
(x, t)

)2

dxdt ≤ C4 |τ | for all τ ∈ R.(2.13)

Proof. We suppose that τ ∈ (0, T ) (the case τ < 0 is deduced from τ > 0
and the case τ > T is a consequence of an easy bound of

∫
R

∫
Ω
(ϕD,ωi(x, t + τ) −

ϕD,ωi(x, t))
2)dxdt). Let i = 1, 2 and let Θi ∈ C∞

c (Ωi, [0, 1]) be such that for all x ∈ ωi,
Θi(x) = 1. We suppose that size(M) is small enough so that Θi vanishes on all K ∈ Ti
having edges on the boundary of Ωi. For all K ∈ Ti, we set Θi,K = 1

m(K)

∫
K

Θi(x) dx.

Since the function ϕi is Lipschitz continuous, we have∫ T−τ

0

∫
Ω

Θi(x)φi

(
ϕi(uD(x, t + τ)) − ϕi(uD(x, t))

)2

dxdt ≤ Lϕ

∫ T−τ

0

A(t) dt

with

A(t) =

∫
Ω

Θi(x)φi

(
ϕi(u(x, t + τ)) − ϕi(u(x, t))

)(
u(x, t + τ) − u(x, t)

)
dx.

Following the method used in [11], we first write A(t) as

A(t) =
∑
K∈Ti

(
m(K)Θi,Kφi

(
ϕi(u

n1(t)+1
K )−ϕi(u

n0(t)+1
K )

) M∑
n=0

Xn(t, t+τ)(un+1
K −un

K)

)
,

where the indices n0(t) and n1(t) satisfy n0(t)δt < t ≤ (n0(t) + 1)δt, n1(t)δt < t+ τ ≤
(n1(t)+1)δt and the function Xn(a, b) is such that Xn(a, b) = 1 if a < b and nδt ∈ [a, b[,
and Xn(a, b) = 0 otherwise.

Using the definition of the scheme, we get

A(t) =
∑
K∈Ti

(
Θi,K

(
ϕi(u

n1(t)+1
K ) − ϕi(u

n0(t)+1
K )

)

M∑
n=0

Xn(t, t + τ)
∑

L∈N(K)

δtτK|L

(
ϕi(u

n+1
K ) − ϕi(u

n+1
L )

))
.

Gathering the terms by edges leads to

A(t) =

M∑
n=0

δtXn(t, t + τ)
∑

K|L∈Eint,i

τK|L

⎡
⎢⎣

Θi,K

(
ϕi(u

n1(t)+1
K ) − ϕi(u

n0(t)+1
K )

)

−Θi,L

(
ϕi(u

n1(t)+1
L ) − ϕi(u

n0(t)+1
L )

)
⎤
⎥⎦

×
(
ϕi(u

n+1
K ) − ϕi(u

n+1
L )

)
.

Applying the equality 2(Θi,Ka−Θi,Lb) = (Θi,K + Θi,L)(a− b) + (Θi,K −Θi,L)(a+ b)
we get that

A(t) ≤ A0(t) + A1(t) + A2(t)

with

A0(t) =

M∑
n=0

δtXn(t, t + τ)
∑

K|L∈Eint,i

τK|L

∣∣∣ϕi(u
n1(t)+1
K ) − ϕi(u

n1(t)+1
L )

∣∣∣
×
∣∣ϕi(u

n+1
K ) − ϕi(u

n+1
L )

∣∣ ,
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A1(t) =

M∑
n=0

δtXn(t, t + τ)
∑

K|L∈Eint,i

τK|L

∣∣∣ϕi(u
n0(t)+1
K ) − ϕi(u

n0(t)+1
L )

∣∣∣
×
∣∣ϕi(u

n+1
K ) − ϕi(u

n+1
L )

∣∣
and

A2(t) =

M∑
n=0

δtXn(t, t + τ)
∑

K|L∈Eint,i

τK|LLϕ |Θi,K − Θi,L|
∣∣ϕi(u

n+1
K ) − ϕi(u

n+1
L )

∣∣ .

We then use Young’s inequality, Proposition 2.9, and the regularity of the function Θ
to bound A0(t), A1(t), and A2(t) by a sum of terms under the form

∑M
n=0 δtXn(t, t+

τ)an,
∑M

n=0 δtXn(t, t+ τ)an0(t), and
∑M

n=0 δtXn(t, t+ τ)an1(t) such that 0 ≤ an for all

n = 0 . . . ,M and such that δt
∑M

n=0 a
n is bounded independently on the discretization.

We then use the properties∫ T−τ

0

∑M
n=0 δtXn(t, t + τ)andt ≤ τδt

∑M
n=0 a

n,∫ T−τ

0

∑M
n=0 δtXn(t, t + τ)an0(t)dt ≤ τδt

∑M
n=0 a

n, and∫ T−τ

0

∑M
n=0 δtXn(t, t + τ)an1(t)dt ≤ τδt

∑M
n=0 a

n, proven in [11].

2.6.3. Upper bound on the discrete L2(0, T ; H1(Ω))-seminorm of the
function wD. Let uD be given by (2.2)–(2.4). We consider wD defined by wn+1

K =
Ψ(π̂i(u

n+1
K )) for all i = 1, 2 and K ∈ Ti. The following proposition states that the

discrete L2(0, T ;H1(Ω))-seminorm of the function wD remains bounded. We first
recall the definition of this seminorm defined on the whole domain Ω.

Definition 2.13. Let Ω×(0, T ) be a domain satisfying H1-1 and D be an admis-
sible discretization of this domain in the sense of Definition 2.3. The L2(0, T ;H1(Ω))-
seminorm of a function uD ∈ X (D) is defined by

|uD|21,D =

M∑
n=0

δt
∑

K|L∈Eint

τK|L(δun+1
K,L)2 =

∑
i=1,2

|uD|21,D,i +

M∑
n=0

δt
∑

(K,L)∈TΓ

τK|L(δun+1
K,L)2.

Proposition 2.14. Under Assumption 1.1, let D be an admissible discretization
in the sense of Definition 2.3. Let uD ∈ X (D) be the solution of (2.2)–(2.4). Then,
there exists C5 > 0 only depending on ηj, πj, Ωj, j ∈ {1, 2} such that

|wD|21,D ≤ C5 .(2.14)

Proof. For K ∈ Ti and L ∈ N(K), using the property of Lipschitz continuity of

Ψ ◦ π̂i ◦ ϕ(−1)
i (see Lemma 1.2), we get

(wn+1
K − wn+1

L )2 ≤ (ϕi(u
n+1
K ) − ϕi(u

n+1
L ))2

and therefore we deduce from (2.10)

|wD|21,D,i ≤ C2 .

We now consider the case (K,L) ∈ TΓ. We have, since π̂1(u
n+1
K,K|L) = π̂2(u

n+1
L,K|L),

τK|L(Ψ(π̂1(u
n+1
K )) − Ψ(π̂2(u

n+1
L )))2 ≤ τK,K|L(Ψ(π̂1(u

n+1
K )) − Ψ(π̂1(u

n+1
K,K|L)))2

+ τL,K|L(Ψ(π̂2(u
n+1
L,K|L)) − Ψ(π̂2(u

n+1
L )))2,
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thanks to the convexity of the function x �→ x2 and to 1/τK|L = 1/τK,K|L +1/τL,K|L.

We again use the properties of Ψ ◦ π̂i ◦ ϕ(−1)
i (see Lemma 1.2):

(Ψ(π̂1(u
n+1
K )) − Ψ(π̂1(u

n+1
K,K|L)))2 ≤ (ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,K|L))2

and

(Ψ(π̂2(u
n+1
L,K|L)) − Ψ(π̂2(u

n+1
L )))2 ≤ (ϕ2(u

n+1
L ) − ϕ2(u

n+1
L,K|L))2.

Now, using (2.5), we have, for all (K,L) ∈ TΓ,

(
ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,K|L)

)2

≤
(
ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,K|L)

)
Cη

(
π1(u

n+1
K ) − π1(u

n+1
K,K|L)

)

≤
(
ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,K|L)

)
Cη

(
π1(u

n+1
K ) − π2(u

n+1
L )

)
.

(2.15)

Then, from (2.9) and (2.15), we get

M∑
n=0

δt
∑

(K,L)∈TΓ

τK,K|L

(
Ψ(π̂1(u

n+1
K )) − Ψ(π̂1(u

n+1
K,K|L))

)2

≤ CηC1 ,

and in the same way

M∑
n=0

δt
∑

(K,L)∈TΓ

τL,K|L

(
Ψ(π̂2(u

n+1
L,K|L)) − Ψ(π̂2(u

n+1
L ))

)2

≤ CηC1 .

Thus we get

M∑
n=0

δt
∑

(K,L)∈TΓ

τK|L(wn+1
K − wn+1

L )2 ≤ 2C1 Cη.

Gathering the above results proves that there exists C6 > 0, only depending on ηj ,
πj , Ωj , j ∈ {1, 2} such that

|wD|21,D ≤ C6

2.6.4. Convergence of the scheme toward the weak problem. Thanks
to the previous propositions, we are now able to prove the following theorem, which
states the convergence of the scheme (2.2)–(2.4) toward a solution to the weak problem
introduced in Definition 1.3.

Theorem 2.15. Under Assumption 1.1, let us consider a sequence (Dm)m∈N, of
admissible discretizations in the sense of Definition 2.3, such that there exists α > 0
with regul(Mm) ≤ α for all m ∈ N and such that size(Dm) → 0 as m → +∞.
Let uDm = um ∈ X (Dm) be the solution of (2.2)–(2.4) for D = Dm. Then there
exists a subsequence of (Dm, um)m∈N, again denoted by (Dm, um)m∈N, and a weak
solution u of problem (1.5)–(1.9) in the sense of Definition 1.3, such that um → u in
Lp(Ω × (0, T )) for all p < ∞.

Remark 2.16. A proof that the problem (1.5)–(1.9) admits at most one regular
solution can be obtained following the method of [5]. A uniqueness result on the
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solution of the weak problem given in Definition 1.3 implies that the whole sequence
of discrete solutions converges.

Proof.

Step 1: Existence of a convergent subsequence of (Dm, um)m∈N. For
any open subset ωi of Ωi, i = 1, 2, Propositions 2.7, 2.11, and 2.12 ensure that
the hypotheses of Kolmogorov’s theorem are satisfied. We thus get the existence
of a subsequence of (ϕDm,ωi

)m∈N, converging in L2(ωi × (0, T )) to some function
ϕωi

∈ L2(ωi × (0, T )). Using an increasing sequence of domains ωi,k which converges
toward Ωi, we can extract, thanks to a diagonal process, a subsequence again denoted
by (Dm, um)m∈N such that (ϕDm,ωi,m

)m∈N converges in L2(ωi,k× (0, T )) for all k ∈ N,
to some bounded function ϕ̃i ∈ L2(ωi,k × (0, T )) for all k ∈ N. We then obtain
that (ϕi(um))m∈N converges in L2(Ωi × (0, T )) to ϕ̃i. Since ϕi is continuous and
strictly increasing, this implies that, up to a subsequence, (um)m∈N converges toward
a function ui ∈ L2(Ωi × (0, T ))

⋂
L∞(Ωi × (0, T )) for all i ∈ {1, 2}.

To prove that ϕi(ui) ∈ L2(0, T ;H1(Ωi)) for all i ∈ {1, 2}, it is sufficient to show

that ∂ϕi(ui)
∂x ∈ L2(Ωi × (0, T )). Let m ∈ {0 . . .M}, ψi ∈ C∞

c (Ωi × (0, T )) and ε > 0
be such that supp(ψi) = {(x, t) ∈ Ωi × (0, T ) / dist(x,Rd \ Ωi) ≤ ε}. Using the
Cauchy–Schwarz inequality and Lemma 2.10, we have for all |ξ| ≤ ε

∫
Ωi,ξ×(0,T )

(
ϕi(um(x + ξ, t)) − ϕi(um(x, t))

)
ψi(x, t)dxdt

≤
(
|ξ|(|ξ| + 2size(Mm))C2

) 1
2 ‖ψi‖L2(Ωi×(0,T)).

Passing to the limit and after a change of variable we obtain

∫
Ωi,ξ×(0,T )

(
ψi(x− ξ, t) − ψi(x, t)

)
ϕi(ui(x, t))dxdt

≤ |ξ|(C2 )
1
2 ||ψi||L2(Ωi×(0,T )).

(2.16)

Now if we denote by {ei, i = 1 . . . d} the canonical basis of R
d and if we take ξ =

λei, i ∈ {1 . . . d} with |λ| < ε in (2.16), we then have as ε → 0

−
∫

Ωi,ξ×(0,T )

∂ψi(x, t)

∂xi
ϕi(ui(x, t))dxdt ≤ (C2 )

1
2 ‖ψi‖L2(Ωi×(0,T ))

for all ψi ∈ C∞
c (Ωi × (0, T )),

which implies that ∂ϕi(ui)
∂x ∈ L2(Ωi × (0, T )).

Step 2: u is a weak solution to the problem (1.5)–(1.9). Let us consider
C̃test = {h ∈ C2(Ω × [0, T ]) / h(., T ) = 0} which is dense in Ctest. Let ψ ∈ C̃test

and, for m ∈ N, let um be given by (2.2)–(2.4) for D = Dm. For all n ∈ {0 . . .M}
and for all K ∈ T , we multiply the equation (2.3) by ψn

K = ψ(xK , nδt), and we sum

these equalities over the volume control set and n = 0, . . . ,M . We get
∑2

i=1(Ei,1,m +
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Ei,2,m) + E1|2,m = 0 with

Ei,1,m =

M∑
n=0

∑
K∈Ti

m(K)φi(u
n+1
K − un

K)ψn
K ,

Ei,2,m = −
M∑
n=0

δt
∑
K∈Ti

∑
L∈N(K)

τK|L

(
ϕi(u

n+1
L ) − ϕi(u

n+1
K )

)
ψn
K ,

E1|2,m =

M∑
n=0

δt
∑

(K,L)∈TΓ

τK,K|L

(
ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,K|L)

)(
ψn
K − ψn

L

)
.

Following some classical proofs (see [11]), we get that

lim
m→+∞

Ei,1,m = −
∫ T

0

∫
Ωi

φiui(x, t)ψt(x, t)dxdt−
∫

Ωi

φiuini(x)ψ(x, 0)dx.

Convergence of Ei,2,m. Gathering the terms by edges in Ei,2,m leads to

Ei,2,m =

M∑
n=0

δt
∑

σ=K|L∈Eint,i

τK|L

(
ϕi(u

n+1
K ) − ϕi(u

n+1
L )

)(
ψn
K − ψn

L

)
.

We apply the method presented, for example, in [10] (which is a discrete version of a
strong-weak convergence) to conclude that

lim
m→+∞

Ei,2,m =

∫ T

0

∫
Ωi

∇ϕi(ui)(x, t).∇ψ(x, t) dx dt.(2.17)

Convergence of E1|2,m. We have

E2
1|2,m ≤

⎛
⎝ M∑

n=0

δt
∑

(K,L)∈TΓ

τK,K|L

(
ϕ1(u

n+1
K ) − ϕ1(u

n+1
K,K|L)

)2

⎞
⎠

×

⎛
⎝ M∑

n=0

δt
∑

(K,L)∈TΓ

m(K|L)
(ψn

K − ψn
L)2

dK,K|L

⎞
⎠ .

But we notice that, thanks to the regularity of the function ψ, there exists Cψ > 0
such that |ψn

K − ψn
L| ≤ CψdK|L, which implies with (2.1)

M∑
n=0

δt
∑

(K,L)∈TΓ

m(K|L)
(ψn

K − ψn
L)2

dK,K|L
≤ 4Tm(Γ)C2

ψαsize(M).

Thus, using (2.9) and (2.15), we get

M∑
n=0

δt
∑

(K,L)∈TΓ

τK,K|L

(
ϕi(u

n+1
K ) − ϕi(u

n+1
K,K|L)

)2

≤ CηC1 .
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Gathering the above results produces

lim
m→+∞

E1|2,m = 0.

Step 3: Let us prove that w ∈ L2(0, T ; H1(Ω)). Following the proofs
of Lemma 2.10 and of ϕ(ui) ∈ L2(0, T ;H1(Ωi)) (see Step 1), we obtain that w ∈
L2(0, T ;H1(Ω)) using inequality (2.14).

As an immediate consequence of Theorem 2.15 we get the following corollary.

Corollary 2.17. Under Assumption 1.1, problem (1.5)–(1.9) admits at least
one weak solution in the sense of Definition 1.3.

As an illustration of the previous results we now give numerical results.

3. Numerical results. Let us consider a domain Ω such that Ω1 = (0, 1) and
Ω2 = (1, 2). The mobilities are given by

ηo(u) =

⎧⎨
⎩

u if 0 ≤ u ≤ 1,
0 if u < 0,
1 otherwise,

ηw(u) =

⎧⎨
⎩

1 − u if 0 ≤ u ≤ 1,
1 if u < 0,
0 otherwise,

and the capillary pressure is given by

π1(u) =

⎧⎨
⎩

5u2 if 0 ≤ u ≤ 1,
0 if u < 0,
5 otherwise,

π2(u) =

⎧⎨
⎩

5u2 + 1 if 0 ≤ u ≤ 1,
1 if u < 0,
6 otherwise.

In that case, u�
1 = 1√

5
, u�

2 = 2√
5
. For the initial condition we take

uini(x) =

{
0.9 if x < 0.9,
0 otherwise.

To discretize the domains Ωi, we use a regular mesh such that dx = size(M) = 10−2

for all i ∈ {1, 2} and we use a constant time step δt = 1
6 .10−3. Figure 3.1 represents

functions u(., t), π(., u(., t)), ϕ(., u(., t)) for t = 0.007 and t = 0.05. In the first case
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Fig. 3.1. u(., t), π(., u(., t)), ϕ(., u(., t)) for t = 0.007 (a) and t = 0.05 (b).
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Fig. 3.2. Evolution of the flux and of the saturations on the interface.
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Fig. 3.3. u(., t), π(., u(., t)), ϕ(., u(., t)) for t = 0.007 (a) and t = 0.05 (b).

oil is trapped under the interface Γ located in x = 1 and the capillary pressure is
discontinuous, whereas in the second case oil can flow through Γ and the continuity
of the capillary pressure is ensured. Figure 3.2 represents the evolution of the flux
and of the saturations on the interface Γ according to the time variable. We have also
done tests with the initial condition

uini(x) =

{
0.9 if x > 1.2,
0 otherwise,

where oil already lies in the capillary barrier. Figures 3.3 and 3.4 show the results we
obtained. We notice that although the capillary pressure is discontinuous, oil can flow
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Fig. 3.4. Evolution of the flux and of the saturations on the interface.

through Γ from Ω2 to Ω1 while satisfying the conditions (2.4) since for all t ∈ [0, 0.05],
u2(t) = 0.

4. Concluding remarks. In this paper we have established a convergence prop-
erty for the scheme (2.2)–(2.4) toward a weak solution of the problem (1.5)–(1.9) in
the sense of Definition 1.3. It remains to prove the uniqueness of such a weak solution.
Further work will be done taking into account a total flux and the gravity gradient
(see [8]).
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ERROR ESTIMATES FOR FINITE VOLUME APPROXIMATIONS
OF CLASSICAL SOLUTIONS FOR NONLINEAR SYSTEMS OF

HYPERBOLIC BALANCE LAWS∗

VLADIMIR JOVANOVIĆ† AND CHRISTIAN ROHDE‡

Abstract. We consider a general class of finite volume schemes on unstructured but quasi-
uniform meshes for first-order systems of hyperbolic balance laws on unstructured meshes. Provided
the system is equipped with at least one entropy-entropy flux tuple and the associated Cauchy
problem allows for a classical solution u we give conditions such that the finite volume approximation
uh converges to u if the mesh parameter h tends to zero. In fact we prove an error estimate of the
form ‖u− uh‖L2 ≤ C

√
h, where C is independent of h. The proof relies on a stability result for

classical solutions in the class of entropy solutions due to Dafermos [Arch. Rational Mech. Anal., 94
(1979), pp. 373–389] and DiPerna [Indiana Univ. Math. J., 28 (1979), pp. 137–188].

Finally, we present examples such that the conditions to apply the general convergence estimate
can be satisfied (at least in part). The examples cover general scalar equations, weakly coupled
systems, and the system of elastodynamics in one dimension. Moreover, we generalize the concept of
entropy conservative methods due to Tadmor [Math. Comp., 49 (1987), pp. 91–103] and show how
this can be used to establish the convergence of finite volume methods for the system’s case.

Key words. hyperbolic conservation laws, entropy-entropy flux tuples, classical solutions, finite
volume schemes on unstructured meshes, entropy conservative schemes

AMS subject classifications. 65M12, 35L60

DOI. 10.1137/S0036142903438136

1. Introduction. Let us consider a nonlinear convection process for a vector
valued state variable u = u(x, t) ∈ U of m ∈ N components, where the state space U
is an open subset of R

m, x = (x1, . . . , xd)
T denotes the vector of spatial coordinates

and t ≥ 0 stands for time. Assume that the dynamics for u in the time interval [0, T ),
T > 0, are given by the solution of the Cauchy problem

∂tu +

d∑
i=1

∂iGi(u) = B(u) in R
d × (0, T ),(1.1)

u(., 0) = u0 in R
d.(1.2)

Here Gi ∈ [C2(U)]m, i = 1, . . . ,m, is the flux in xi-direction and B ∈ [C1(U)]m some
source. We suppose that there exists a vector ū ∈ U with B(ū) = 0 and for the initial
function we have u0 − ū ∈ [L∞(Rd)]m ∩ [H1(Rd)]m ∩ [C1(Rd)]m.

As a structural prerequisite we suppose that (1.1) is equipped with an entropy-
entropy flux tuple (η, q1, . . . , qd)

T ∈ C3(U) × [C2(U)]d, i.e., η is a function that is
uniformly convex on compact sets and the consistency relation

(∇qi(w))T = (∇η(w))TDGi(w)(1.3)

holds for i = 1, . . . , d and all w ∈ U .
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This work is devoted to classical solutions of (1.1). A function u ∈ [C1(Rd ×
[0, T ])]m is called a classical solution of (1.1), (1.2) if (1.1), (1.2) are satisfied pointwise
everywhere. Throughout the paper we suppose that the following assumption is true.

Assumption 1.1. There is classical solution u of the Cauchy problem (1.1), (1.2).

In addition we have
∫ T

0

∫
Rd |Du|2 dxdt < ∞, supRd×[0,T ] |Du| < ∞ and there exists a

convex compact set S ⊂⊂ U such that

u(x, t), ū ∈ S for all (x, t) ∈ R
d × [0, T )].(1.4)

It is well known that in general classical solutions for the Cauchy problem (1.1),
(1.2) can exist only for short times [23]. For important exceptions due to the presence
and structure of the source term B we refer to the last paragraph of the introduction.
As a not-so-strong notion of solutions, entropy solutions are considered. A function
v ∈ [L∞

loc(R
d × [0, T ))]m is called an entropy solution of (1.1), (1.2) if it is a weak

solution of (1.1), (1.2) and if

∫ T

0

∫
Rd

η(u)∂tω +

d∑
i=1

qi(u)∂iω + ∇η(u) ·B(u)ω dxdt ≥ −
∫

Rd

η(u0)ω(., 0) dxdt

(1.5)

holds for all nonnegative functions ω ∈ C0,1
0 (Rd× [0, T )). Here C0,1

0 (Rd× [0, T )) is the
space of Lipschitz-continuous functions with compact support on R

d× [0, T ). There is
no general multidimensional well-posedness theory for globally-in-time defined entropy
solutions. The only result in this direction is the following stability result for classical
solutions in the class of entropy solutions. We cite it from the book [5] (where it is
proven for the case B ≡ 0).

Theorem 1.2 (see [5, Theorem 5.2.1]). Let u from Assumption 1.1 be given.
Suppose furthermore that v ∈ [L∞(Rd × [0, T ))]m is an entropy solution of (1.1) with
v(., 0) = v0 for some v0 ∈ [L∞(Rd)]m.

If also v takes values in S there is a constant λ > 0 and a positive function
C ∈ C0([0, T ]) depending on S such that we have for all t ∈ [0, T ) and R > 0

∫
{|x|≤R}

|u(x, t) − v(x, t)|2 dx ≤ C(t)

∫
{|x|≤R+λt}

|u0 − v0|2 dx.(1.6)

In particular we observe for u0 = v0 that classical solutions of (1.1), (1.2) are unique
in the class of entropy solutions.

We shall use this stability theory for classical solutions due to Dafermos [4] and
DiPerna [6] to set up a convergence theory for finite volume schemes applied to the
Cauchy problem (1.1), (1.2). We point out that our results hold only if (1.1), (1.2) is
classically solvable.

In section 2 we present the precise setting of our problem and introduce an ex-
tension of Theorem 1.2: in Theorem 2.2, we estimate the L2-difference between u and
an arbitrary discontinuous function v in terms of some error measures. This theo-
rem generalizes Theorem 1.2 to the inhomogeneous case. In section 3 we describe a
class of standard finite volume schemes in d space dimensions on an unstructured but
quasi-uniform mesh. Denote the mesh parameter by h which is the diameter of the
largest volume. We assume that the numerical approximation uh : R

d × [0, T ] → R
m

is uniformly bounded in [L∞(Rd × [0, T ])]m and satisfies a cell entropy inequality
(Assumption 3.1).
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These strong but realistic assumptions are then used in section 4 to establish the
error bound. With our main result, Theorem 4.4, we prove an estimate of the form

‖u− uh‖L2(Rd×[0,T ]) ≤ C
√
h,(1.7)

where C is some constant independent of h. The proof relies on the generalized
stability estimate in Theorem 2.2. We point out that the estimate is given in terms of
the L2-norm (in space) rather than in the L1-norm, as in the results of Kruzkov [19]
and Kuznetsov [20] for scalar equations such that we cannot follow these more usual
convergence proofs for finite volume schemes.

In the final part of the paper (section 5) we consider several applications of the
convergence theorem. First we consider the example of weakly coupled hyperbolic
systems and apply monotone numerical fluxes for each component. Then it is possible
to satisfy all assumptions required in Theorem 4.4. The result improves the known
estimates which give an estimate of order h1/4 in the L1-norm [3, 8, 34]. These
estimates are probably not optimal (see the sharpness results in [32, 26] in the scalar
convex case and [31] in the nonconvex case). However, the h1/4 results are proven for
less regular discontinuous solutions! We stress that our result holds in particular in
the scalar case m = 1. It gives then a new improved estimate.

As an example for a (strongly coupled) system for which all assumptions on the
discrete solution can be verified we consider the one-dimensional system of elastody-
namics in section 5.2.

For the final application we return to the general Cauchy problem (1.1), (1.2).
Tadmor has introduced in one space dimension a class of semidiscrete second-order en-
tropy conservative schemes [29], (see also [30]). Fully discrete and high-order entropy
conservative schemes were established later in [21, 22]. Here we generalize this con-
cept to the multidimensional case on unstructured meshes. To our knowledge, entropy
conservative schemes in multiple space dimensions have not been introduced before.
Adding artificial viscosity terms, we obtain a new class of finite volume schemes such
that the numerical approximation satisfies a cell entropy inequality and an entropy
dissipation bound. If the numerical approximation is uniformly bounded we can apply
Theorem 4.4 without further restrictions on the system (1.1).

We conclude the introduction with a number of remarks.

The use of Dafermos’ approach to derive estimates for approximations of classical
solutions goes back to [1]. Another recent application in nonlinear electrodynamics
can be found in [2]. Let us note that in one space dimension a result similar to
(1.7) has been communicated by Vila [35]. Convergence rates for numerical methods
in one space dimension for smooth parts of a weak solution (which might contain
singularities!) were established in [28].

In the general case, (1.1), (1.2) has no global smooth solution but there are many
physically relevant situations where a classical solution pertains for all times, among
these of course problems for linear systems. In the context of hydromechanics we
mention the results for special initial data obtained in [10, 27]. If one takes into
account a source term B, much more interesting scenarios exist where dissipative
effects lead to smooth solutions close to equilibrium states. We mention just a few,
like relaxation effects, damping effects through radiation or through gravitational
forces, frictional damping, or memory effects [11, 16, 15, 36, 37]. Surveys on general
systems with classical solutions and the rôle of the so-called null condition are [17,
33].
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Notation. By C,C0, C1, . . . we shall denote nonnegative constants depending on
a given classical solution but not on the mesh parameter h.

2. Preliminaries and an L2-stability theorem. Throughout this section we
consider the general problem (1.1), (1.2) and suppose that Assumption 1.1 holds.

We mention that the existence of an entropy-entropy flux tuple implies that the
symmetry relation

(∇2η(w)DGi(w))T = ∇2η(w)DGi(w)(2.1)

holds for i = 1, . . . , d and w ∈ U .

Without loss of generality, we can assume that we have for ū with B(ū) = 0 the
relations

η(ū) = 0, ∇η(ū) = 0,(2.2)

qi(ū) = 0, ∇qi(ū) = 0 (i = 1, . . . , d).(2.3)

We define

a := min
v∈S

‖∇2η(v)‖, b := max
v∈S

‖∇2η(v)‖.(2.4)

Note that a, b > 0. Thanks to (2.2), (2.3) we see that we have for all v ∈ S the
inequalities

a|v − ū|2 ≤ η(v) ≤ b|v − ū|2, |∇η(v)| ≤ c|v − ū|,

|qi(v)| ≤ c|v − ū|2, |∇qi(v)| ≤ c|v − ū| (i = 1, . . . , d),

(2.5)

where the constant c depends only on the set S.

Our aim now is to derive an L2-stability result similar to but more general than
Theorem 1.2. For that purpose, we introduce Dafermos’ relative entropy h and entropy
fluxes fi, i = 1, . . . , d, by

h(v, w) = η(w) − η(v) −∇η(v) · (w − v),

fi(v, w) = qi(w) − qi(v) −∇η(v) · [Gi(w) −Gi(v)].

Note that the function h has locally quadratic growth in w − v. This is also true for
fi thanks to (1.3). We conclude that

a|v − w|2 ≤ h(v, w) ≤ b|v − w|2 (v, w ∈ S)(2.6)

holds and that there is a constant λ = λ(S) > 0, such that

{
d∑

i=1

[fi(v, w)]2

}1/2

≤ λh(v, w) (v, w ∈ S).(2.7)
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Similarly, there exists a constant α = α(S, ‖Du‖L∞) ≥ 0, such that we have for all
v ∈ S

d∑
i=1

∣∣∇2η(u)∂iu ·
[
Gi(v) −Gi(u) −DGi(u)(v − u)

]∣∣ ≤ α

3
h(u, v),

∣∣B(u) ·
[
∇η(v) −∇η(u) −∇2η(u)(v − u)

]∣∣ ≤ α

3
h(u, v),

∣∣[B(u) −B(v)] · [∇η(u) −∇η(v)]
∣∣ ≤ α

3
h(u, v)

(2.8)

on R
d × [0, T ] for a solution u of (1.1) that satisfies Assumption 1.1. For R, λ > 0

define the cone

CR = {(x, t) | |x| ≤ R + λ(T − t), x ∈ R
d, t ∈ [0, T ]}.

We introduce the following measures.

Definition 2.1. Let v ∈ [L∞
loc(R

d×(0, T ))]m be an arbitrary function with values

in U . The weak consistency measure μv : [C0,1
0 (Rd×[0, T ])]m → R and the dissipation

measure νv : C0,1
0 (Rd × [0, T ]) → R are defined by

〈μv, π〉 = −
∫ T

0

∫
Rd

v · ∂tπ +

d∑
i=1

Gi(v) · ∂iπ + B(v) · π dxdt−
∫

Rd

u0 · π(., 0) dx,

〈νv, ω〉 = −
∫ T

0

∫
Rd

η(v) ∂tω +

d∑
i=1

qi(v) ∂iω

+ ∇η(v) ·B(v)ω dxdt−
∫

Rd

η(u0)ω(., 0) dx.

These measures are important since one can estimate the L2-distance between
the solution u and an arbitrary function v in terms of the measures.

Theorem 2.2. Suppose that Assumption 1.1 for the solution u of (1.1), (1.2)
holds. Let v ∈ [L∞

loc(R
d × (0, T ))]m be a function with values in the set S (from

Assumption 1.1). Then, for α given by (2.8), the following estimate holds:

∫ T

0

∫
Rd

e−αtξR h(u, v) dxdt ≤ 〈νv, ϕR〉 − 〈μv, ψR〉.(2.9)

Here we have ϕR(x, t) = e−αt(T − t)ξR(x, t), ψR = ϕR∇η(u), and

ξR(x, t) = γ(|x| −R− λ(T − t)), γ(s) =

⎧⎪⎨
⎪⎩

1 : s ≤ 0,

1 − s : s ∈ (0, 1),

0 : s ≥ 1.

R > 0 is an arbitrary number and the parameter λ is given by (2.7).

Proof. Let ω ∈ C0,1
0 (Rd × [0, T ]) be any function with ω(., T ) = 0 and let

π = ω∇η(u). Note that the classical solution u satisfies (1.5) with equality. Par-
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tial integration and application of (1.1) yield

−
∫ T

0

∫
Rd

h(u, v) ∂tω +

d∑
i=1

fi(u, v) ∂iω dxdt

= 〈νv, ω〉 +

∫ T

0

∫
Rd

ωB(v) · ∇η(v) − ωB(u) · ∇η(u) dxdt

+

∫ T

0

∫
Rd

[
∂tω∇η(u) · (v − u) +

d∑
i=1

∂iω∇η(u) · [Gi(v) −Gi(u)]

]
dxdt

= 〈νv, ω〉 +

∫ T

0

∫
Rd

ωB(v) · ∇η(v) − ωB(u) · ∇η(u) dxdt

+

∫ T

0

∫
Rd

[
∂t[ω∇η(u)] − ω∇2η(u)∂tu

]
·
[
v − u

]
dxdt

+

∫ T

0

∫
Rd

d∑
i=1

[
∂i[ω∇η(u)] − ω∇2η(u)∂iu

]
·
[
Gi(v) −Gi(u)

]
dxdt

= 〈νv, ω〉 − 〈μv, π〉 +

∫ T

0

∫
Rd

ωB(v) · ∇η(v) −B(v) · π − ω∇2η(u)B(u) · (v − u) dxdt

+

∫ T

0

∫
Rd

d∑
i=1

ω
[
∇2η(u)DGi(u)∂iu · (v − u) −∇2η(u)∂iu · [Gi(v) −Gi(u)]

]
dxdt.

The symmetry of the operators ∇2η(u) and ∇2η(u)DGi(u) (see (2.1)) implies

−
∫ T

0

∫
Rd

h(u, v) ∂tω +

d∑
i=1

fi(u, v) ∂iω dxdt

= 〈νv, ω〉 − 〈μv, π〉 +

∫ T

0

∫
Rd

ωB(u) ·
[
∇η(v) −∇η(u) −∇2η(u)(v − u)

]
dxdt

+

∫ T

0

∫
Rd

ω [B(u) −B(v)] · [∇η(u) −∇η(v)] dxdt

−
∫ T

0

∫
Rd

d∑
i=1

ω∇2η(u)∂iu ·
[
Gi(v) −Gi(u) −DGi(u)(v − u)

]
dxdt.

Using the definition (2.8) of the constant α, one obtains

−
∫ T

0

∫
Rd

h(u, v) ∂tω +

d∑
i=1

fi(u, v) ∂iω dxdt ≤ 〈νv, ω〉 − 〈μv, π〉 + α

∫ T

0

∫
Rd

ω h(u, v) dxdt.

(2.10)

Since

∂tϕR(x, t) = −αϕR(x, t) − e−αtξR(x, t) + λe−αt(T − t)γ′(|x| −R− λ(T − t)
)
,

∂iϕR(x, t) = γ′(|x| −R− λ(T − t)
) xi

|x|e
−αt(T − t),
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for i = 1, . . . , d, we have

−
∫ T

0

∫
Rd

h(u, v) ∂tϕR +

d∑
i=1

fi(u, v) ∂iϕR dxdt

= α

∫ T

0

∫
Rd

h(u, v)ϕR dxdt +

∫ T

0

∫
Rd

e−αtξR h(u, v) dxdt

+

∫ T

0

∫
Rd

e−αt(T − t)
[
− γ′(|x| −R− λ(T − t))

]

·
[ d∑

i=1

fi(u, v)
xi

|x| + λh(u, v)
]
dxdt

≥ α

∫ T

0

∫
Rd

h(u, v)ϕR dxdt +

∫ T

0

∫
Rd

e−αtξR h(u, v) dxdt.

The last estimate follows from γ′ ≤ 0 almost everywhere (a.e.) on R and

d∑
i=1

fi(u, v)
xi

|x| + λh(u, v) ≥ 0 for (x, t) ∈ R
d × [0, T ], x �= 0,

due to (2.7). Finally, if we plug ω = ϕR in (2.10) we get (2.9).
Theorem 2.2 gives an estimate in terms of Dafermos’ relative entropy. Due to the

properties of the entropy and our assumptions we can pass to the more convenient
L2-norm.

Corollary 2.3. Under the conditions stated in Theorem 2.2 we have

a

∫ T

0

∫
{|x|≤R}

e−αt|u− v|2dxdt ≤ 〈νv, ϕR〉 − 〈μv, ψR〉.

Here a > 0 is the constant from (2.4).
Proof. The statement is a direct consequence of (2.6), Theorem 2.2, and the fact

that ξR = 1 on {x ∈ R
d | |x| ≤ R} × [0, T ].

Remark 2.4.

(i) To recover the statement of Theorem 1.2 from Theorem 2.2 let v be an entropy
solution as in Theorem 1.2. Then we compute from (2.9)

a

∫ T

0

∫
Rd

e−αtξR|u− v|2 dxdt ≤ T

∫
Rd

h(v0, u0)ξR(x, 0) dx

≤ b T

∫
{|x|≤R+λT}

|u0 − v0|2 dx.

The pointwise estimate in time as in Theorem 1.2 can be obtained by a slightly
different choice of test functions in Theorem 2.2.

(ii) Due to B(ū) = 0 the function u = ū is a classical solution of (1.1) and initial
condition u0 = ū. If we choose v ≡ u, v0 ≡ u0 in (i) and let R → ∞, we
obtain ∫ T

0

∫
Rd

|u− ū|2 dxdt ≤ d1

∫
Rd

|u0 − ū|2 dx(2.11)

with a constant d1 depending on the set S, since ξR → 1 and α = 0.
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(iii) From (1.1), Assumption 1.1, and (ii) we conclude that there is a constant
d2 > 0 such that

∫ T

0

∫
Rd

|∂tu|2 dxdt ≤ d2.(2.12)

3. Discretization. We introduce a class of finite volume schemes to solve (1.1),
(1.2) numerically. Beside that we make some assumptions on the corresponding nu-
merical approximation.

3.1. The unstructured mesh. We consider a quasiuniform triangulation Th of
R

d: this is a set of convex polyhedra, with the property

diam(K) ≤ h, |K| ≥ c0h
d (K ∈ Th),(3.1)

and

|e| ≥ c0h
d−1 (e ∈ E(K)),(3.2)

for some constants h, c0 > 0, where |K| is the Lebesgue measure of K on R
d and |e|

the R
d−1-Lebesgue measure of the edge e. For a given K ∈ Th the set E(K) contains

all edges of K. Note that for simplices (triangles, tetrahedra) (3.2) is a consequence
of (3.1).

We assume that for each K ∈ Th and each edge e of K, there exists exactly one
neighboring cell Ke ∈ Th. Let furthermore F =

⋃
K∈Th

E(K) be the set of all edges.
The mesh with respect to t is uniform: tn = nΔt (n ∈ N ∪ {0}). Here Δt > 0

is such that there is a N ∈ N with NΔt = T . With this number we define the set
N = {0, 1, . . . , N − 1}.

We will impose on Δt and h the following condition: there exists a constant c1 > 0
independent on Δt, h, such that

Δt

h
≥ c1.(3.3)

Denote by hK,e the height of K that corresponds to e ∈ E(K). Then, we have
|e| |hK,e| = c(d)|K| for a constant c(d) that depends only on the dimension d. For
later use we note that the mesh condition (3.3) yields

Δt|e| =
(Δt|e|)2
|K|

|K|hK,e

Δt|e|hK,e
≤ 1

c(d)

h

Δt

(Δt|e|)2
|K| ≤ 1

c(d)c1

(Δt|e|)2
|K|(3.4)

and

(Δt|e|)2
|K| =

c2(d)(Δt)2|K|
h2
K,e

≥ c2(d)
Δt|K|

h

Δt

h
≥ c2(d)c1

Δt|K|
h

.(3.5)

By Bramble–Hilbert-like techniques one can deduce that for K ∈ Th, e ∈ E(K), and
z ∈ [C1(K)]m ∫

K

∣∣∣z − 1

|K|

∫
K

z dx
∣∣∣2dx ≤ C0h

2

∫
K

|Dz|2dx,(3.6)

∣∣∣ 1

|K|

∫
K

z dx− 1

|e|

∫
e

z dσ
∣∣∣ ≤ C0

h1/2

|e|1/2
(∫

K

|Dz|2dx
)1/2

(3.7)

holds for some constant C0 = C0(d, c0), under the mesh conditions (3.1), (3.2).



METHODS FOR BALANCE LAWS WITH SMOOTH SOLUTIONS 2431

3.2. The finite volume method. To solve the Cauchy problem (1.1), (1.2)
numerically we use the finite volume scheme

un+1
K = un

K − Δt

|K|
∑

e∈E(K)

|e| gnK,e(u
n
K , un

Ke
) + ΔtB(un

K),

u0
K =

1

|K|

∫
K

u0(x) dx.

(3.8)

From the iteratives un
K we define the piecewise constant approximation uh : R

d ×
[0, T ] → R

m of u by

uh(x, t) = un
K for x ∈ K, t ∈ [tn, tn+1),(3.9)

where K ∈ Th and n ∈ N .
For the numerical flux gnK,e in (3.8) we suppose the usual consistency and conser-

vation properties.
• For all n ∈ N , K ∈ Th, e ∈ E(K) we have

gnK,e(v, v) =

d∑
i=1

ni
K,eGi(v) (v ∈ U),(3.10)

where nK,e = (n1
K,e, . . . , n

d
K,e)

T is the unit outward normal to e ∈ E(K).
• For all n ∈ N , K ∈ Th, e ∈ E(K), it holds

gnK,e(v, w) = −gnKe,e(w, v) (v, w ∈ U).(3.11)

A special consequence of (3.10) is

∑
e∈E(K)

|e| gnK,e(u
n
K , un

K) = 0 (n ∈ N , K ∈ Th).(3.12)

We introduce now the numerical entropy flux qnK,e, having the following properties.
• For all M > 0 there exists a constant c(M) > 0, such that for all n ∈ N , K ∈

Th, e ∈ E(K),

|qnK,e(v, w)| ≤ c(M)
(
|v − ū|2 + |w − ū|2

)
(|v − ū|, |w − ū| ≤ M).(3.13)

• For all n ∈ N , K ∈ Th, e ∈ E(K), we have

qnK,e(v, v) =

d∑
i=1

ni
K,eqi(v) (v ∈ U).(3.14)

• For all n ∈ N , K ∈ Th, e ∈ E(K), it is

qnK,e(v, w) = −qnKe,e(w, v) (v, w ∈ U).(3.15)

The conditions on the numerical flux functions can be satisfied by standard choices.
In particular this is true for the Lax–Friedrichs flux (cf. [18]).

Before we proceed with the convergence proof we make the following strong as-
sumption on uh.

Assumption 3.1. Let uh be the finite volume approximation defined by (3.8),
(3.9). Suppose that
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(H.1) uh takes values in the set S (from Assumption 1.1).

(H.2) For each n ∈ N , K ∈ Th, the following relation holds:

η(un+1
K ) − η(un

K) +
Δt

|K|
∑

e∈E(K)

|e| qnK,e(u
n
K , un

Ke
)

+

(
Δt

|K|

)2 ∑
e∈E(K)

|e|2
∣∣gnK,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)
∣∣2

≤ Δt∇η(un
K) ·B(un

K) + C(Δt)2|un
K − ū|2.

The assumption (H.2) expresses that we are supposed to have a cell entropy
inequality for the approximate solution uh. Moreover, the scheme should provide
some entropy dissipation to get the weak derivative bound on the fluxes. Together
with the L∞-bound in (H.1) this will restrict the choice of possible flux functions
and moreover introduce a CFL-like restriction on the time step. In section 5 we shall
consider examples where (H.1) and (H.2) are met.

We conclude this section with several important a priori estimates for uh, which
are essential for our further considerations and are induced by Assumption 3.1. We
present them in the next proposition and in the corollary following it. They can be
proven in the linear case [13, 34]. Therefore we omit the proofs.

Proposition 3.2. Let uh be given by (3.8), (3.9) and suppose that it obeys
Assumption 3.1. For the numerical flux gnK,e and the numerical entropy flux qnK,e

assume (3.10), (3.11) and (3.13), (3.15), respectively. Under the mesh condition (3.1),
we have

(a)
∑

K∈Th

∑
e∈E(K)

|e| qnK,e(u
n
K , un

Ke
) = 0 (n ∈ N ),

(b)

∫ T

0

∫
Rd

|uh − ū|2 dxdt ≤ C,

(c)
∑
n∈N

∑
K∈T

∑
e∈E(K)

(Δt|e|)2
|K|

∣∣gnK,e(u
n
K , un

Ke
) − gnK,e(u

n
K , un

K)
∣∣2 ≤ C.

The a priori estimate (c) in Proposition 3.2 is not optimal with respect to h (and
therefore doesn’t lead to the optimal error estimate scaling with h instead of

√
h

later). It can be improved a posteriori. For that purpose we introduce the term

Qh =
∑
n∈N

∑
K∈T

∑
e∈E(K)

θn
(Δt |e|)2

|K|
∣∣gnK,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)
∣∣2(3.16)

with

θn =
1

Δt

∫ tn+1

tn
θ(t) dt

and θ(t) = e−αt(T − t).
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Corollary 3.3. Under the assumptions in the previous proposition, we have

∫ T

0

∫
Rd

|u− uh|2 dxdt ≤ C,(3.17)

∑
n∈N

∑
K∈Th

|K| |un+1
K − un

K |2 ≤ C,(3.18)

∑
n∈N

∑
K∈Th

θn|K| |un+1
K − un

K |2 ≤ CQh + CΔt.(3.19)

4. The error estimate for classical solutions. By the L2-stability result
from section 2 we can now tackle the convergence proof. Throughout this section
we consider the general problem (1.1), (1.2) and suppose that Assumption 1.1 holds.
Moreover we take Assumption 3.1 for the numerical approximation uh to be valid.

4.1. Identification of the error measure and estimates. We are now in a
position to replace the function v in Corollary 2.3 by uh. Furthermore, it turns out
that one can pass to limits for R → ∞. This is the subject of the next proposition. In
addition, since ϕR → θ, the limit function becomes independent of x. This is essential
for the derivation of error estimates.

Proposition 4.1. Suppose that u is the solution of (1.1), (1.2) which satisfies
Assumption 1.1. For the numerical fluxes gnK,e and qnK,e we assume the properties
(3.10), (3.11) and (3.13), (3.15), respectively. Assume further that for uh defined by
(3.9) Assumption 3.1 holds. Then, under the mesh condition (3.1), it holds that

a

∫ T

0

∫
Rd

e−αt|u− uh|2dxdt ≤ 〈νh, θ〉 − 〈μh, ψ〉,

for α given by (2.8), θ(t) = e−αt(T − t), ψ = θ∇η(u), and

〈μh, ψ〉 = −
∫ T

0

∫
Rd

(uh − ū) · ∂tψ +

d∑
i=1

[Gi(uh) −Gi(ū)] · ∂iψ + B(uh) · ψ dxdt

−
∫

Rd

(u0 − ū) · ψ(., 0) dx,

〈νh, θ〉 = −
∫ T

0

∫
Rd

η(uh) θ′ + ∇η(uh) ·B(uh) θ dxdt−
∫

Rd

η(u0) θ(0) dx.

Proof. From Definition 2.1 we deduce

〈μuh
, ψR〉 = −

∫ T

0

∫
Rd

(uh − ū) · ∂tψR +

d∑
i=1

[Gi(uh) −Gi(ū)] · ∂iψR + B(uh) · ψR dxdt

−
∫

Rd

(u0 − ū) · ψR(., 0) dx

because ψR has a compact support. According to (b) in Proposition 3.2, we have
uh − ū ∈ [L2(Rd × (0, T ))]m. Due to (2.11), (2.12), and (2.5) one infers ψ, ∂tψ, ∂iψ,
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B(uh), ∇η(uh) ∈ [L2(Rd × (0, T ))]m, and η(uh), qi(uh) ∈ [L1(R
d × (0, T ))]m. On

the other side ξR → 1, ∂tξR → 0, ∂iξR → 0 a.e. on R
d × [0, T ], i = 1, . . . , d, for

R → ∞, and all these terms remain bounded. Therefore one can pass to limits in
Corollary 2.3.

To obtain error estimates, it remains to estimate the expression 〈νh, θ〉 − 〈μh, ψ〉.
This is done in the next two lemmas. We need the following inequality:

max
[tn,tn+1]

θ(t) ≤ 2eαΔtθn (n ∈ N ).(4.1)

Lemma 4.2. Under the assumptions in Proposition 4.1 we have

〈νh, θ〉 − 〈μh, ψ〉 ≤ L + R +

∫ T

0

∫
Rd

θ(t)B(uh) · [∇η(u) −∇η(uh)] dxdt + Ch2,

where

L =
∑
n∈N

∑
K∈Th

∫
K

θ(tn+1)
[
η(un+1

K ) − η(un
K) −∇η(u(x, tn+1)) · (un+1

K − un
K)
]
dx,

R =
1

2

∑
n∈N

∑
K∈T

∑
e∈E(K)

[
d∑

i=1

ni
K,e

(
Gi(u

n
K) −Gi(u

n
Ke

)
)]

·
∫ tn+1

tn

∫
e

ψ dσdt.

Proof. For the sake of simplicity assume that ū = 0 and Gi(ū) = 0 for i = 1, . . . , d.
Partial integration with respect to t yields

∫ T

0

∫
Rd

uh · ψt dxdt +

∫
Rd

u0(x) · ψ(x, 0) dx

=
∑
n∈N

∑
K∈Th

∫
K

ψ(x, tn+1) · (un
K − un+1

K ) dx +
∑

K∈Th

∫
K

ψ(x, 0) · (u0(x) − u0
K) dx

and

−
∫ T

0

∫
Rd

η(uh)θ′(t) dxdt−
∫

Rd

η(u0(x))θ(0) dx

=
∑
n∈N

∑
K∈Th

∫
K

θ(tn+1)
[
η(un+1

K ) − η(un
K)
]
dx +

∑
K∈Th

∫
K

ϕ(x, 0)
[
η(u0

K) − η(u0(x))
]
dx.

After applying the Gauss theorem, one obtains

d∑
i=1

∫ tn+1

tn

∫
K

Gi(u
n
K) · ∂iψ dxdt =

∑
e∈E(K)

[
d∑

i=1

ni
K,eGi(u

n
K)

]
·
∫ tn+1

tn

∫
e

ψ dσdt.

Therefore, taking into account that

ni
K,e

(
Gi(u

n
K) −Gi(u

n
Ke

)
)

=
1

2

[
ni
K,e

(
Gi(u

n
K) −Gi(u

n
Ke

)
)

+ ni
Ke,e

(
Gi(u

n
Ke

) −Gi(u
n
K)
)]
,
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we have

∫ T

0

∫
Rd

d∑
i=1

Gi(uh) · ∂iψ dxdt

=
∑
n∈N

∑
K∈T

∑
e∈E(K)

[
d∑

i=1

ni
K,eGi(u

n
K)

]
·
∫ tn+1

tn

∫
e

ψ dσdt

=
∑
n∈N

∑
e∈F

[
d∑

i=1

ni
K,e

(
Gi(u

n
K) −Gi(u

n
Ke

)
)]

·
∫ tn+1

tn

∫
e

ψ dσdt

=
1

2

∑
n∈N

∑
K∈T

∑
e∈E(K)

[
d∑

i=1

ni
K,e

(
Gi(u

n
K) −Gi(u

n
Ke

)
)]

·
∫ tn+1

tn

∫
e

ψ dσdt.

From the equation

〈νh, ϕ〉 − 〈μh, ψ〉 =

∫ T

0

∫
Rd

uh · ψt +

d∑
i=1

Gi(uh) · ∂iψ dxdt +

∫
Rd

u0(x) · ψ(x, 0) dx

+

∫ T

0

∫
Rd

θB(uh) · [∇η(u) −∇η(uh)] − η(uh)θ′ dxdt−
∫

Rd

η(u0(x))θ(0) dx,

the relations derived above, and the fact that ψ = θ∇η(u), one concludes that

〈νh, ϕ〉 − 〈μh, ψ〉 = L + R + J +

∫ T

0

∫
Rd

θ(t)B(uh) · [∇η(u) −∇η(uh)] dxdt,(4.2)

where

J =
∑

K∈Th

∫
K

θ(0)
[
η(u0

K) − η(u0(x)) −∇η(u0(x)) · (u0
K − u0(x))

]
dx.

The inequality (3.6) implies
∥∥u0

K − u0

∥∥
L2(K)

≤ Ch‖Du0‖L2(K), which leads to

J =
∑

K∈Th

∫
K

θ(0)h(u0(x), u0
K) dx

≤ bT
∑

K∈Th

∫
K

|u0
K − u0(x)|2dx ≤ Ch2

∫
Rd

|Du0|2dx.

In the next step we estimate L from Lemma 4.2.
Lemma 4.3. Let the assumptions in Proposition 4.1 hold. Assume additionally

the mesh conditions (3.2), (3.3). Then for the term L from Lemma 4.2, we have

L ≤ P − 1

2
Qh +

a

2

∫ T

0

∫
Rd

e−αt|u− uh|2 dxdt

+

∫ T

0

∫
Rd

θ B(uh) · [∇η(uh) −∇η(u)] dxdt + C(Δt + h),

where

P =
∑
n∈N

∑
K∈T

∑
e∈E(K)

[
gnK,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)
]
·
∫ tn+1

tn

∫
e

ψ dσdt.
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Proof. Assume again that ū = 0. The term L can be rewritten as

L = E + I,(4.3)

where

E =
1

Δt

∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

θ(t)
[
η(un+1

K ) − η(un
K) −∇η(u(x, tn+1))

· (un+1
K − un

K)
]
dxdt,

I =
1

Δt

∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

[
[θ(tn+1) − θ(t)]

[
η(un+1

K ) − η(un
K) −∇η(u(x, tn+1)) · (un+1

K − un
K)
]]

dxdt.

We split up I = I1 + I2 + I3 according to

I1 =
1

Δt

∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

[
[θ(tn+1) − θ(t)]

[
η(un+1

K ) − η(un
K) −∇η(un

K) ·
(
un+1
K − un

K

)]]
dxdt,

I2 =
1

Δt

∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

[θ(tn+1) − θ(t)]

[
∇η(u(x, t)) −∇η(u(x, tn+1))

]
·
[
un+1
K − un

K

]
dxdt,

I3 =
1

Δt

∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

[θ(tn+1) − θ(t)]

[
∇η(un

K) −∇η(u(x, t))
]
·
[
un+1
K − un

K

]
dxdt.

Because of |θ(tn+1) − θ(t)| ≤ CΔt for t ∈ [tn, tn+1] and

|η(un+1
K ) − η(un

K) −∇η(un
K) · (un+1

K − un
K)| ≤ b|un+1

K − un
K |2,

we obtain by applying the a priori estimate (3.18)

I1 ≤ C
∑
n∈N

∑
K∈Th

Δt |K| |un+1
K − un

K |2 ≤ CΔt.

For t ∈ [tn, tn+1] one obtains

∣∣∇η(u(x, t)) −∇η(u(x, tn+1))
∣∣ = ∣∣∣

∫ t

tn+1

∇2η(u(x, s))∂tu(x, s) ds
∣∣∣ ≤ C

∫ tn+1

tn
|∂tu| ds.

The integral Cauchy–Schwarz inequality implies

I2 ≤ CΔt
∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

|∂tu| |un+1
K − un

K | dxdt

≤ CΔt
∑
n∈N

∑
K∈Th

(∫ tn+1

tn

∫
K

|∂tu|2 dxdt
)1/2

(Δt |K|)1/2|un+1
K − un

K |.
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Finally, the Cauchy–Schwarz inequality applied to the last sum together with (2.12),
(3.18) gives

I2 ≤ CΔt

(∫ T

0

∫
Rd

|∂tu|2 dxdt
)1/2(∑

n∈N

∑
K∈Th

Δt |K| |un+1
K − un

K |2
)1/2

≤ C(Δt)3/2.

For the term I3, we have

I3 ≤ C
∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

|u− un
K | |un+1

K − un
K | dxdt

≤ C

(∫ T

0

∫
Rd

e−αt|u− uh|2 dxdt
)1/2(∑

n∈N

∑
K∈Th

Δt |K| |un+1
K − un

K |2
)1/2

≤ C(Δt)1/2

(∫ T

0

∫
Rd

e−αt|u− uh|2 dxdt
)1/2

≤ a

2

∫ T

0

∫
Rd

e−αt|u− uh|2 dxdt + CΔt.

Note that we needed here the fact, that
∫ T

0

∫
Rd e

−αt|u− uh|2 dxdt < ∞ (see (3.17)).

Decompose E as E = E1 + E2 + E3 with

E1 =
1

Δt

∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

θ(t)
[
η(un+1

K ) − η(un
K)
]
dxdt,

E2 =
1

Δt

∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

θ(t)
[
∇η(u(x, t)) −∇η(u(x, tn+1))

]
·
[
un+1
K − un

K

]
dxdt,

E3 = − 1

Δt

∑
n∈N

∑
K∈Th

∫ tn+1

tn

∫
K

θ(t)∇η(u(x, t)) · (un+1
K − un

K) dxdt.

If we apply (H.2) in Assumption 3.1, we infer using (a) in Proposition 3.2 that

E1 ≤ −Qh +

∫ T

0

∫
Rd

θ∇η(uh) ·B(uh) dxdt + CΔt

∫ T

0

∫
Rd

|uh − ū|2 dxdt

≤ −Qh +

∫ T

0

∫
Rd

θ∇η(uh) ·B(uh) dxdt + CΔt

(here we used (b) in Proposition 3.2).

Proceeding similarly as for the term I2, one obtains, with the help of (4.1) and (3.19),

E2 ≤ C

(∫ T

0

∫
Rd

|∂tu|2 dxdt
)1/2(∑

n∈N

∑
K∈Th

θn Δt |K| |un+1
K − un

K |2
)1/2

≤ C(Δt)1/2(Qh)1/2 + CΔt

≤ Qh

4
+ CΔt.
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From (3.8) and (3.12) follows

E3 =
∑
n∈N

∑
K∈T

∑
e∈E(K)

|e|
[
gnK,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)
]

·
∫ tn+1

tn
θ(t)

∫
K

1

|K|∇η(u) dxdt

−
∫ T

0

∫
Rd

θ∇η(u) ·B(uh) dxdt.

Define a new term

E3 =
∑
n∈N

∑
K∈T

∑
e∈E(K)

|e|
[
gnK,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)
]

·
∫ tn+1

tn
θ

{
1

|K|

∫
K

∇η(u) dx− 1

|e|

∫
e

∇η(u) dσ

}
dt.

Then, we have

E3 = P + E3 −
∫ T

0

∫
Rd

θ∇η(u) ·B(uh) dxdt.(4.4)

The term E3 can be estimated, using (3.7), as follows:

E3 ≤ Ch1/2
∑
n∈N

∑
K∈T

∑
e∈E(K)

|e|1/2
∣∣gnK,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)
∣∣

∫ tn+1

tn
θ(t)

(∫
K

|Du|2 dx
)1/2

dt

≤ Ch1/2
∑
n∈N

∑
K∈T

∑
e∈E(K)

(Δt |e|)1/2
∣∣gnK,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)
∣∣

·
(

max
[tn,tn+1]

θ(t)

)(∫ tn+1

tn

∫
K

|Du|2 dxdt
)1/2

≤ Ch1/2(Qh)1/2

(∫ T

0

∫
Rd

|Du|2 dxdt
)1/2

(here we used (3.4))

≤ Qh

4
+ Ch.

Finally, the conclusion follows from (4.3), the estimates for I1, I2, I3, E1, E2, E3, and
(4.4).

4.2. ‘. The main theorem The assertions of Proposition 4.1, Lemma 4.2, and
Lemma 4.3 are summarized in the error estimate given in the next theorem.

Theorem 4.4. Let u be the classical solution of the Cauchy problem (1.1), (1.2),
satisfying Assumption 1.1. Let further the numerical fluxes gnK,e and qnK,e have the
properties (3.10), (3.11) and (3.13), (3.15), respectively. Then, for the finite volume
approximation uh defined by (3.8), (3.9) that obeys Assumption 3.1 and the mesh
which satisfies (3.1), (3.2), (3.3), the a priori error estimate

a

∫ T

0

∫
Rd

e−αt|u− uh|2 dxdt + Qh ≤ C(Δt + h)
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holds for a constant C which doesn’t depend on the mesh. The constant α is given by
(2.8), the constant a by (2.4), and the term Qh by (3.16).

Proof. From Lemma 4.2 and Lemma 4.3 we get

〈νh, θ〉 − 〈μh, ψ〉 ≤ P + R− 1

2
Qh +

a

2

∫ T

0

∫
Rd

e−αt|u− uh|2 dxdt + C(Δt + h).

(4.5)

Taking into account the consistency (3.10) and conservation (3.11) properties of the
flux gnK,e, one obtains

1

2

d∑
i=1

ni
K,e

(
G(un

K) −G(un
Ke

)
)

+ gnK,e(u
n
K , un

Ke
) − gnK,e(u

n
K , un

K)

=
1

2

[
gnK,e(u

n
K , un

K) − gnK,e(u
n
Ke

, un
Ke

)
]
+ gnK,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)

=
1

2

[
gnK,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)
]
− 1

2

[
gnKe,e(u

n
Ke

, un
K) − gnKe,e(u

n
Ke

, un
Ke

)
]
.

After rearranging the sums in P and R, we obtain that P+R = 0. Now, the conclusion
follows from (4.5) and Proposition 4.1.

As discussed in section 3.2 after Proposition 3.2 one can improve the weak deriva-
tive estimate in the cell entropy inequality in (H.2). This is done in the concluding
corollary.

Corollary 4.5. Under the assumptions of Theorem 4.4, it is

∑
tn+1≤T/2

∑
K∈Th

∑
e∈E(K)

Δt |K|
∣∣∣∣g

n
K,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)

h

∣∣∣∣
2

≤ C.

Proof. From Qh ≤ Ch and (3.5) we deduce

∑
n∈N

∑
K∈T

∑
e∈E(K)

θn Δt |K|
∣∣∣∣g

n
K,e(u

n
K , un

Ke
) − gnK,e(u

n
K , un

K)

h

∣∣∣∣
2

≤ C.

Because of

θn ≥ 1

Δt

∫ tn+1

tn
e−αtn+1

T/2 dt ≥ T

2
e−αT/2,

for tn+1 ≤ T/2, we get the statement.

5. Applications. To apply Theorem 4.4 the Assumptions 1.1, 3.1 have to es-
tablished. Although the latter assumption for the numerical scheme is reasonable, it
is hard to verify it for general systems of type (1.1). In the concluding section we
discuss subclasses of (1.1) and corresponding finite-volume discretizations such that
both assumptions can be satisfied at least in part.

5.1. Monotone schemes for weakly coupled systems. We shall now apply
the theory previously developed in this paper to the class of weakly coupled systems
with bounded source terms. The system (1.1) is called weakly coupled if the flux
functions Gi = (Gi1(u), . . . , Gim(u))T , i = 1, . . . , d, satisfy

Gik(u) = Gik(uk) (k = 1, . . . ,m).(5.1)
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The coupling is only due to the source term vector B. For simplicity assume U = R
m.

As before let ū ∈ R
m with B(ū) = 0 and assume that there is a constant β > 0 such

that

|∇Bk(w)| ≤ β (w ∈ R
m, k = 1, . . . ,m).(5.2)

In this case the growth of the solution can be controlled and there is for each T > 0 a
unique Kruzkov solution u ∈ L∞(0, T ; [L∞(Rd) ∩BV (Rd)]m) of the Cauchy problem
provided that we have u0 ∈ [L∞(Rd)∩BV (Rd)]m [24]. Moreover, due to (5.1), entropy
tuples can be constructed by

η(w) =

m∑
k=1

ηk(wk), qi(w) =

m∑
k=1

qik(wk) (w ∈ R
m, i = 1, . . . , d)(5.3)

such that ηk ∈ C3(R) are uniformly convex functions and

qik = qik(wk) =

∫ wk

ū

η′k(z)G
′
ik(z) dz (k = 1, . . . ,m, i = 1, . . . , d).

Of course a scalar inhomogeneous conservation law can be written in terms of a weakly
coupled system, but moreover there are physically relevant examples of weakly coupled
systems with m > 1 that admit global-in-time classical solutions for initial data close
to a constant state ū [37].

To discretize the initial value problem for a weakly coupled system we use the
finite volume scheme (3.8) such that the numerical flux function gnK,e : R

2m → R
m

satisfies (3.10), (3.11) for all n ∈ N , K ∈ Th, e ∈ E(K). Moreover we suppose that
we have

gnK,e(w, w̃) = (hn
K,e(w1, w̃1), . . . , h

n
K,e(wm, w̃m))T (w, w̃ ∈ R

m),(5.4)

where hn
K,e is a scalar locally Lipschitz continuous numerical flux function, i.e., for all

M > 0, there exists a constant LG(M) > 0, such that we have for all z1, z2, z̃1, z̃2 ∈
[−M,M ]

|hn
K,e(z1, z2) − hn

K,e(z̃1, z̃2)| ≤ LG(M)
(
|z1 − z̃1| + |z2 − z̃2|

)
.(5.5)

We suppose that hn
K,e is a monotone flux, i.e., we have for all n ∈ N , K ∈ Th,

e ∈ E(K), z1, z2 ∈ R

∂

∂z2
hn
K,e(z1, z2) ≤ 0.(5.6)

Finally, let there be a numerical entropy flux function qnK,e for gnK,e such that

(3.13), (3.14), and (3.15) hold.(5.7)

Taking the Lax–Friedrichs flux or the Engquist–Osher flux for hn
K,e provides us with

examples of fluxes that can satisfy all above conditions [18].
The property (5.6) is fundamental to ensure the L∞-stability of a finite volume

scheme, and the following statement can be found in any textbook on the subject
(e.g., [18]). Let M > 0 and K ∈ Th. Assume that z ∈ R and ze ∈ R, e ∈ E(K), are
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from [z̄−M, z̄+M ] for z̄ ∈ R. Then there exists a constant c0 depending only on the
mesh such that under the CFL-like time restriction

Δt ≤ c0
LG(M)

h(5.8)

we have

z − Δt

|K|
∑

e∈E(K)

|e|hn
K,e(z, ze) ∈ [z̄ −M, z̄ + M ].(5.9)

Monotone finite volume schemes for weakly coupled systems has been analyzed in
[14, 25] by variants of Diperna’s theory of measure-valued solutions and Kruzkov’s
L1-stability estimate for scalar equations. For the Kruzkov solution it is shown that
the approximation uh obtained by the monotone finite volume scheme converges and
satisfies the estimate

‖u− uh‖L1(Q×[0,T ]) ≤ Ch1/4

on each compact subset Q ⊂ R
d. Theorem 4.4 allows us to prove a better estimate

with respect to the order if u is a classical solution.
Theorem 5.1. Consider the Cauchy problem (1.1), (1.2) for fluxes Gi, i =

1, . . . , d, and source B such that (5.1) and (5.2) hold. Assume that this Cauchy
problem has a classical solution u such that Assumption 1.1 for u (and u0) is satisfied
with some ū ∈ R

m.
Let for M = exp(βT )‖u0 − ū‖L∞(Rd) the time step restriction (5.8) hold and

assume the mesh conditions (3.1), (3.2), (3.3).
Let a finite volume approximation uh obtained by a finite volume scheme (3.8)

with numerical fluxes satisfying (3.10), (3.11), (5.4), (5.5), (5.6), and (5.7) be given.
Then there exists constants C1, C2 > 0 such that we have

‖uh(., t) − ū‖L∞(Rd) ≤ M (t ∈ [0, T ]),(5.10)

‖uh(., t) − ū‖L2(Rd) ≤ exp(C1βT )‖u0 − ū‖L2(Rd) (t ∈ [0, T ]),(5.11)

and

‖u− uh‖L2(Rd×[0,T ]) ≤ C2h
1/2.(5.12)

The constant C1 depends on B and the constant C2 depends on T , Gi, β, and u0 but
not on h.

Proof. Assume that we have have proven for some n ∈ N

‖uh(., t) − ū‖L∞(Rd) ≤ exp
(
βtn
)
‖u0 − ū‖L∞(Rd).(5.13)

Since Δt satisfies the condition (5.8) we deduce from (5.2) and (5.9) for k = 1, . . . ,m
with z̄ = ūk

|un+1
K,k − ūk| ≤

∣∣∣∣∣un
K,k − ūk − Δt

|K|
∑

e∈E(K)

|e|hn
K,e(u

n
K,k, u

n
Ke,k)

∣∣∣∣∣+ Δtβ‖uh(., tn) − ū‖L∞(Rd)

≤ (1 + Δtβ)‖uh(., tn) − ū‖L∞(Rd)

≤ exp
(
βtn+1

)
‖u0 − ū‖L∞(Rd).
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The statement (5.10) follows now by induction.
Finite volume schemes for weakly coupled systems are analyzed in [25]. In Lemma

4.4 of [25] it has been proven under the assumptions of the theorem that (H.2) in
Assumption 3.1 holds provided uh is bounded in L∞ and we choose our entropy tuple
(η, q1, . . . , qd) according to ηk(wk) = (wk − ū)2/2, k = 1, . . . ,m), in (5.3). This
implies in particular (5.11) if we proceed iteratively like for the L∞-bound. Since
Assumption 1.1 and 3.1 hold we can apply Theorem 4.4 and get (5.12).

5.2. System of elastodynamics. The next application is the system of elas-
todynamics in one dimension. For the unknown vector u = (w, v)T with strain
w : R × [0, T ) → [−1,∞) and velocity v : R × [0, T ) → R the system is given
by

∂tw − ∂xv = 0, ∂tv − ∂xσ(w) = 0 in R × (0, T ),(5.14)

w(x, 0) = w0(x), v(x, 0) = v0(x) in R.(5.15)

The stress-strain relation σ ∈ C2(R) is supposed to satisfy σ′(w) > 0, w σ′′(w) > 0
for all w ∈ R. Then the system has the strictly convex entropy pair η(w, v) =
1
2v

2 +
∫ w

σ(s) ds, q(w, v) = −vσ(w). It is known (see [7]) for N > 0 that the compact
set

SN = {(w, v) ⊂ [−1,∞) × R : |y(w, v)| ≤ N, |z(w, v)| ≤ N}(5.16)

is convex and invariant for the underlying system, where y(w, v) = −
∫ w

w0

√
σ′(s) ds+

v, z(w, v) = −
∫ w

w0

√
σ′(s) ds− v are the Riemann invariants.

Moreover SN is invariant for the discrete solution operator defined through the
Lax–Friedrichs scheme

un+1
i = un

i − α

2

(
f(un

i+1) − f(un
i−1)
)

+
1

2

(
un
i−1 − 2un

i + un
i+1

)
,

provided α sup(w,v)∈SN

√
σ′(w) ≤ 1. Here we used f(u) = (−v,−σ(w))T . This can

be shown in the analogous way as it was done in [12] for the appropriate invariant
regions of the p-system.

As the numerical scheme for (5.14), (5.15) we consider now

un+1
i = un

i − λ
[
g(un

i , u
n
i+1) − g(un

i−1, u
n
i )
]
,(5.17)

u0
i =

1

Δx

∫ xi+1

xi

u0(x) dx(5.18)

with the uniform mesh parameters Δx, Δt > 0, λ = Δt
Δx . The numerical flux is given

by g(u1, u2) = 1
2 [f(u1) + f(u2)] + 1

2μ (u1 − u2), where μ is a positive parameter. For

the mesh we assume only that (3.3) holds. Since (5.17) may be rewritten as

un+1
i = un

i − λ

2

[
f(un

i+1) − f(un
i−1)
]
+

λ

2μ

(
un
i−1 − 2un

i + un
i+1

)

=
(
1 − λ

μ

)
un
i +

λ

μ

[
un
i − μ

2

(
f(un

i+1) − f(un
i−1)
)

+
1

2

(
un
i−1 − 2un

i + un
i+1

)]
,

one infers that SN is an invariant region for (5.17) as well, if λ/μ ≤ 1 and μ sup(w,v)∈SN√
σ′(w) ≤ 1.
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Lemma 5.2. Let SN be an arbitrary invariant region of the form (5.16) and sup-
pose that the parameters λ, μ satisfy 0 < μ ≤ μ0, λ/μ ≤ 1, μ sup(w,v)∈SN

√
σ′(w) ≤

1,

2λ(1 + γ)L2

μl
≤ 1,(5.19)

for some positive constants μ0, L, l, γ (defined below in the proof) depending only on
SN and σ. Thereby L/μ is the Lipschitz constant for g on SN . If u0 ∈ L∞(R) takes
values in SN , then we have for the scheme (5.17), (5.18)

(A1) un
i ∈ SN ,

(A2) η(un+1
i ) − η(un

i ) + λ[qh(un
i , u

n
i+1) − qh(un

i−1, u
n
i )]

+ L2
(λ
μ

)2(
|un

i+1 − un
i |2 + |un

i − un
i−1|2

)
≤ 0

for all i ∈ Z, n ∈ N .
The numerical entropy flux in this case is qh(u1, u2) := 1

2 [q(u1)+q(u2)]+
1
2μ [η(u1)−

η(u2)].
Proof. (A1) has already been proved above. By the Taylor expansion, we get

Ein := η(un+1
i ) − η(un

i ) + λ
[
qh(un

i , u
n
i+1) − qh(un

i−1, u
n
i )
]

= ∇η(un
i ) ·
[
− λ
(
g(un

i , u
n
i+1) − g(un

i−1, u
n
i )
)]

+ λ
[
qh(un

i , u
n
i+1) − qh(un

i−1, u
n
i )
]

+
1

2
λ2
[
g(un

i , u
n
i+1) − g(un

i−1, u
n
i )
]T∇2η(ξ)

[
g(un

i , u
n
i+1) − g(un

i−1, u
n
i )
]

= E
(1)
in + E

(2)
in +

1

2
λ2
[
g(un

i , u
n
i+1) − g(un

i−1, u
n
i )
]T∇2η(ξ)

[
g(un

i , u
n
i+1) − g(un

i−1, u
n
i )
]
,

where

E
(1)
in = λ∇η(un

i ) ·
[
g(un

i , u
n
i ) − g(un

i , u
n
i+1)
]
+ λ
[
qh(un

i , u
n
i+1) − qh(un

i , u
n
i )
]
,

E
(2)
in = λ∇η(un

i ) ·
[
g(un

i−1, u
n
i ) − g(un

i , u
n
i )
]
+ λ
[
qh(un

i , u
n
i ) − qh(un

i−1, u
n
i )
]
.

Define H(a, b) := λ∇η(a) · [g(a, a) − g(a, b)] + λ[qh(a, b) − qh(a, a)]. In our particular
case, one easily verifies that for a = (a1, a2), b = (b1, b2),

H(a, b) =
λ

2

[
σ(a1)(b2 − a2) + a2

(
σ(b1) − σ(a1)

)
+

1

μ
σ(a1)(b1 − a1) +

1

μ
a2(b2 − a2)

+ a2σ(a1) − b2σ(b1) +
1

2μ
a2
2 +

1

μ

∫ a1

σ(s) ds− 1

2μ
b22 −

1

μ

∫ b1

σ(s) ds
]
,

∇2
bH(a, b) = −λ

μ

[
1
2σ

′(b1) − μ
2 (a2 − b2)σ

′′(b1)
μ
2σ

′(b1)

μ
2σ

′(b1)
1
2

]
=: −λ

μ
A(a, b).

Moreover, H(a, a) = 0, ∇bH(a, a) = 0. Since A(a, b) is positive definite for μ = 0 and
infSN

σ′ > 0, we conclude that there exist positive constants μ0, l with the property
λ2 ≥ l for all 0 ≤ μ ≤ μ0 and a, b ∈ S, where λ2 is the lower eigenvalue of A(a, b).
Summarizing the considerations presented above, one obtains H(a, b) ≤ −λ

μ · l
2 |a− b|2

for all a, b ∈ SN . From E
(1)
in = H(un

i , u
n
i+1) we conclude E

(1)
in ≤ −λ

μ · l
2 |un

i+1 − un
i |2.
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Considering H̄(a, b) := λ∇η(a) · [g(b, a)− g(a, a)] +λ[qh(a, a)− qh(b, a)] in the similar

way, we have E
(2)
in ≤ −λ

μ · l
2 |un

i − un
i−1|2. Let L > 0 be a constant which depends

on SN , such that L/μ is a Lipschitz constant for g on SN . Finally, by (5.19), with
γ = max {supa∈S σ′(a1), 1}, it is

Ein ≤
(

− λl

2μ
+

(
λ

μ

)2

γL2

)(
|un

i+1 − un
i |2 + |un

i − un
i−1|2

)

≤ −L2

(
λ

μ

)2 (
|un

i+1 − un
i |2 + |un

i − un
i−1|2

)
.

Taking into account (A1), (A2) we see that Assumption (3.1) can be satisfied for
d = 1. Note that the scheme (5.17), (5.18) matches with the multidimensional scheme
(3.8), if one takes K = (e−, e+), E(K) = {e−, e+}, |e±| = 1, and nKe±

= ±1.

Thus Theorem (4.4) applies and we have an error estimate for the Lax–Friedrichs
finite volume approximation for (5.14), (5.15) if the latter has a classical solution
(which for general smooth initial data can only be guaranteed for T small).

Theorem 5.3. Suppose that the Cauchy problem (5.14), (5.15) has a classical
solution u that satisfies Assumption 1.1 for d = 1 with S having the form (5.16).
Furthermore let λ, μ satisfy the conditions stated in the Lemma 5.2.

Then for the numerical solution uh defined from the scheme (5.17), (5.18) and
the uniform mesh satisfying (3.3), the error estimate from Theorem 4.4 holds with the
constant C depending only on u, c1, σ, and S.

5.3. Entropy conservative and entropy dissipative schemes for arbi-
trary sytems. We consider finally general systems (1.1) of balance laws and sup-
pose that the initial value problem (1.1), (1.2) has a classical solution u that obeys
Assumption 1.1.

We shall construct a finite volume scheme that satisfies the cell entropy inequality
(H.2) together with the weak H1-bound. The technique relies on the auxiliary con-
struction of a scheme that satisfies a cell entropy equation, i.e., provides no entropy
dissipation. Adding of artificial viscosity then leads to an entropy dissipative scheme.
The scheme will be constructed in three steps starting from two semidiscrete versions
to exemplify the idea behind the construction and a final step in section 5.3.3. The
final finite volume scheme will be given as an implicit-in-time scheme. Throughout
the section we assume d = 3.

5.3.1. Entropy variables and entropy conservative schemes. As the first
step to derive the entropy conservative schemes we introduce entropy variables [9].
Since the entropy η is supposed to be uniformly convex function the relation

ũ(u) = ∇η(u) (u ∈ U)

defines a change of variables on U . The function ũ = ũ(u) is called entropy variable.
We define furthermore the entropy variable state space Ũ = ũ(U) and denote for
i = 1, 2, 3

G̃i = G̃i(ũ) := Gi(u), q̃i = q̃i(ũ) := qi(u).

Thus we can in particular rewrite the system (1.1) in the equivalent form (neglecting
the source term B for simplicity)

∂tu +

3∑
i=1

∂iG̃i(ũ) = 0 in R
3 × (0, T ).
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It turns out to be convenient to work with the function

ψ(ũ) =

⎛
⎝ ψ1(ũ)

ψ2(ũ)
ψ3(ũ)

⎞
⎠ :=

⎛
⎝ ũ · G̃1(ũ) − q̃1(ũ)

ũ · G̃2(ũ) − q̃2(ũ)

ũ · G̃3(ũ) − q̃3(ũ)

⎞
⎠ (ũ ∈ Ũ).(5.20)

We observe that ψ satisfies

G̃i(ũ) = ∇ψi(ũ) (i = 1, 2, 3, ũ ∈ Ũ).(5.21)

Let us consider for t ∈ [0, T ] the following semidiscrete finite volume scheme

u′
K(t) = − 1

|K|
∑

e∈E(K)

|e|g̃K,e(ũK(t), ũKe(t)), uK(0) =
1

|K|

∫
K

u0(x) dx.(5.22)

The numerical flux function g̃K,e : R
2m → R

m is given for ũ1, ũ2 ∈ Ũ by

g̃K,e(ũ1, ũ2) =

3∑
i=1

ni
K,eg̃

∗
i (ũ1, ũ2),(5.23)

where nK,e = (n1
K,e, n

2
K,en

3
K,e)

T is as before the unit outward normal of the edge e of
K and g̃∗i , i = 1, 2, 3 is given by the three-dimensionally generalized Tadmor flux

g̃∗i (ũ1, ũ2) =

∫ 1

0

G̃i(ũ1 + s(ũ1 − ũ2)) ds.(5.24)

The vector ũK(t) in (5.22) is given for t ∈ [0, T ] by

ũK(t) = ũ(uK(t)).

The flux function g̃∗i has been introduced in [29] to construct entropy conservative
schemes in one space dimension. An overview on this type of scheme can be found in
[30].

Theorem 5.4. Let there be a solution uK : [0, T ] → R
m of (5.22). Then for

K ∈ T and t ∈ [0, T ] the function uK satisfies the cell entropy equation

d

dt
η(uK(t)) +

1

|K|
∑

e∈E(K)

|e|q̃K,e(ũK(t), ũKe(t)) = 0.(5.25)

The numerical entropy flux q̃K,e : R
2m → R is given for ũ1, ũ2 ∈ Ũ by

q̃K,e(ũ1, ũ2) =
1

2
(ũ1 + ũ2) · g̃K,e(ũ1, ũ2) −

1

2
nK,e · (ψ(ũ2) + ψ(ũ1)).(5.26)

q̃K,e is consistent with the entropy flux, i.e.,

q̃K,e(ũ, ũ) =

3∑
i=1

ni
K,eq̃i(ũ) (ũ ∈ Ũ).

Proof. From (5.21) and the definition (5.24) of the Tadmor flux we observe for
i = 1, 2, 3 and t ∈ [0, T ]

ψi(ũKe(t)) − ψi(ũK(t)) =

∫ 1

0

∇ψi(ũK(t) + s(ũKe(t) − ũK(t))) · (ũK,e(t) − ũK(t)) ds

=

(∫ 1

0

G̃i(ũK(t) + s(ũKe(t) − ũK(t))) ds

)
· (ũKe(t) − ũK(t))

= g̃∗i (ũK(t), ũKe(t)) · (ũKe(t) − ũK(t)).
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Thus we compute with the definition of the numerical entropy flux q̃K,e∑
e∈E(K)

|e|q̃Ke
(ũK(t), ũKe

(t))

=
1

2

∑
e∈E(K)

|e|(ũK(t) + ũKe(t)) · g̃K,e(ũK(t), ũKe(t))

− 1

2

∑
e∈E(K)

|e|nK,e · (ψ(ũK(t)) + ψ(ũKe(t)))

=
1

2

∑
e∈E(K)

|e|(ũK(t) + ũKe
(t)) · g̃K,e(ũK(t), ũKe

(t))

− 1

2

∑
e∈E(K)

|e|nK,e · (ψ(ũKe
(t)) − ψ(ũK(t)))

=
1

2

∑
e∈E(K)

|e|(ũK(t) + ũKe(t)) · g̃K,e(ũK(t), ũKe(t))

− 1

2

∑
e∈E(K)

|e|nK,e ·

⎛
⎝ g̃∗1(ũK(t), ũKe(t)) · (ũKe(t) − ũK(t))

g̃∗2(ũK(t), ũKe
(t)) · (ũKe

(t) − ũK(t))
g̃∗3(ũK(t), ũKe

(t)) · (ũKe
(t) − ũK(t))

⎞
⎠

=
1

2

∑
e∈E(K)

|e|(ũK(t) + ũKe
(t)) · g̃K,e(ũK(t), ũKe

(t))

− 1

2

∑
e∈E(K)

|e|g̃K,e(ũK(t), ũKe
(t)) · (ũKe(t) − ũK(t))

=
∑

e∈E(K)

|e|g̃K,e(ũK(t), ũKe(t)) · ũK(t).

From the last equation we conclude that multiplication of (5.22) with ũK(t) =
∇η(uK(t)) implies (5.25). The consistency of q̃K,e can be checked in a straightforward
manner.

5.3.2. Entropy dissipative schemes. Based on the results of section 5.3 we
shall now propose a class of schemes that satisfies condition (H.2) from Assumption
3.1 written in the semidiscrete case.

For K ∈ T and e ∈ E(K) let the numbers λK,e ∈ R>0 be given such that we
have for all K ∈ T and e ∈ E(K) the relation λKe,e = λK,e. Here Ke denotes
the volume that shares the edge e with K. We define the entropy dissipative flux
g̃�K,e : R

2m → R
m by

g̃�K,e(ũ1, ũ2) = g̃K,e(ũ1, ũ2) +
1

λK,e
(ũ1 − ũ2) (ũ1, ũ2 ∈ Ũ).
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Using this (consistent) numerical flux we get for t ∈ [0, T ] the following semidiscrete
finite volume scheme to approximate solutions of (1.1), (1.2).

u′
K(t) = − 1

|K|
∑

e∈E(K)

|e|g̃�K,e(ũK(t), ũKe(t)), uK(0) =
1

|K|

∫
K

u0(x) dx.(5.27)

The construction is based on artificial viscosity and therefore it is possible to get a
cell entropy inequality as stated below.

Theorem 5.5. Let there be a solution uK : [0, T ] → R
m of (5.27). Then for

K ∈ T and t ∈ [0, T ] the function uK satisfies

d

dt
η(uK(t)) +

1

|K|
∑

e∈E(K)

|e|q̃�K,e(ũK(t), ũKe(t))

= − 1

2|K|
∑

e∈E(K)

|e|
λK,e

|ũKe
(t) − ũK(t)|2 ≤ 0.

(5.28)

The numerical entropy flux q̃�K,e : R
2m → R is given for ũ1, ũ2 ∈ R

m by

q̃�K,e(ũ1, ũ2) = q̃K,e(ũ1, ũ2) +
1

2λK,e
(ũ1 − ũ2) · (ũ1 + ũ2).(5.29)

q̃�K,e is consistent with the entropy flux, i.e.,

q̃�K,e(ũ, ũ) =

3∑
i=1

ni
K,eq̃i(ũ) (ũ ∈ U).

Proof. For K ∈ T and t ∈ [0, T ] we consider the term

∑
e∈E(K)

|e|
λK,e

(ũK(t) − ũKe
(t)) · ũK(t)

=
∑

e∈E(K)

|e|
2λK,e

|ũK(t) − ũKe(t)|2

+
∑

e∈E(K)

|e|
2λK,e

(ũK(t) − ũKe(t)) · (ũK(t) + ũKe(t)).

The inequality (5.28) follows as in (the proof of) Theorem 5.4 and using the definition
(5.29).

5.3.3. Fully discrete entropy dissipative schemes. In this final step we
propose a class of schemes that satisfies condition (H.2) from Assumption 3.1 in the
fully discrete case. Relying on entropy conservative schemes and artificial dissipation
these seem to be possible only in an implicit manner. Theorem 4.4 does not apply
directly to implicit schemes (5.30) since the theorem is formulated and proven for the
explicit case. However, the implicit version can be proven along the same lines.

We rely on the notations from section 5.3.2.
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Consider the following fully discrete finite volume scheme for (1.1), (1.2) neglect-
ing the source term for simplicity:

un+1
K = un

K − Δt

|K|
∑

e∈E(K)

|e|g̃�K,e(ũ
n,n+1
K , ũn,n+1

Ke
),

ũn,n+1
K =

∫ 1

0

ũ
(
sun+1

K + (1 − s)un
K

)
ds,

u0
K =

1

|K|

∫
K

u0(x) dx.

(5.30)

For this implicit version we get the following theorem.
Theorem 5.6. For Δt/h sufficiently small there is a solution un

K ∈ R
m of (5.30)

for each n ∈ N and K ∈ T .
The function uh : R

3 × [0, T ] → R
m defined as in (3.9) satisfies

η(un+1
K ) − η(un

K) +
Δt

|K|
∑

e∈E(K)

|e|q̃�K,e(ũ
n,n+1
K , ũn,n+1

Ke
)

+
Δt

2|K|
∑

e∈E(K)

|e|
λK,e

|ũn,n+1
K − ũn,n+1

Ke
|2 ≤ 0.

(5.31)

Proof. The proof of existence follows easily with the implicit function theorem.
To prove the cell entropy inequality we multiply (5.30) with ũn,n+1

K . Then we
obtain the numerical entropy flux term and the dissipation term in (5.31) exactly as
in the proof of Theorem 5.5 if we interchange ũK(t) with ũn,n+1

K (and ũKe
(t) with

ũn,n+1
Ke

). It remains to consider the product

(
un+1
K − un

K

)
· ũn,n+1

K =

∫ 1

0

∇η
(
sun+1

K + (1 − s)un
K

)
·
(
un+1
K − un

K

)
ds = η(un+1

K ) − η(un
K).

This concludes the proof.
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A WAVENUMBER INDEPENDENT BOUNDARY ELEMENT
METHOD FOR AN ACOUSTIC SCATTERING PROBLEM∗

S. LANGDON† AND S. N. CHANDLER-WILDE†

Abstract. In this paper we consider the impedance boundary value problem for the Helmholtz
equation in a half-plane with piecewise constant boundary data, a problem which models, for example,
outdoor sound propagation over inhomogeneous flat terrain. To achieve good approximation at high
frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary
element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance
and a special set of basis functions so that, on each element, the approximation space contains
polynomials (of degree ν) multiplied by traces of plane waves on the boundary. We prove stability

and convergence and show that the error in computing the total acoustic field is O(N−(ν+1) log1/2 N),
where the number of degrees of freedom is proportional to N logN . This error estimate is independent
of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level
of accuracy does not increase as the wavenumber tends to infinity.

Key words. Galerkin method, high frequency, Helmholtz equation
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1. Introduction. High-frequency scattering problems are of enormous interest
to the mathematics, physics, and engineering communities, with applications to elec-
tromagnetic scattering, radar problems, high frequency acoustics, and geophysical
waves. Although these problems have a long pedigree, their numerical solution con-
tinues to pose considerable difficulties. Many problems of scattering of time-harmonic
acoustic or electromagnetic waves can be formulated as the Helmholtz equation

Δu + k2u = 0,(1.1)

in R
d\Ω, d = 2, 3, supplemented with appropriate boundary conditions. Here Ω is

the scattering object and k > 0 (the wavenumber) is an arbitrary positive constant,
proportional to the frequency of the incident wave.

Standard schemes for solving (1.1) become prohibitively expensive as k → ∞.
For standard boundary element or finite element schemes, where the approximation
space typically consists of piecewise polynomials, the number of degrees of freedom per
wavelength must remain fixed in order to maintain accuracy, with the rule of thumb
in the engineering literature a requirement for 6 to 10 elements per wavelength. Often
in applications this results in excessively large systems when the wavelength is small
compared to the size of the obstacle. These difficulties have been well documented;
see, for example, [44, 45]. For the finite element method the situation is arguably
worse in that additional pollution effects are known to be important [5, 33], these
being phase errors in wave propagation across the domain, so that the degrees of
freedom per wavelength need to increase somewhat to retain accuracy as k increases.

The development of more efficient numerical schemes for high frequency scatter-
ing problems has attracted much recent attention in the literature. In the case of
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boundary element methods, a great deal of effort has focused on the fast solution
of the large systems which arise, using preconditioned iterative methods (e.g., [22])
combined with fast multipole (e.g., [24, 25]) or fast Fourier transform based methods
(e.g., [9, 21]) to carry out the matrix-vector multiplications efficiently. The reduction
in the computing cost achieved by the use of these schemes increases the upper limit
on the frequency for which accurate results can be obtained in a reasonable time.
However, as the size of the system still grows at least linearly with k in two dimen-
sions (2D), quadratically in three dimensions (3D), this upper limit is not removed
altogether.

An increasingly popular approach in the literature for higher frequencies is to use
either a finite element or a boundary element method in which the approximation
space is enriched with plane wave or Bessel function solutions of (1.1), in order to
represent efficiently the highly oscillatory solution when k is large. This idea has been
applied to both finite element (e.g., [4, 13, 41, 29, 14, 43]) and boundary element
schemes [26, 1, 24, 44, 45, 20, 43, 27, 10, 46, 28]. Promising numerical results are
reported, but most of the papers are lacking in mathematical analysis, especially with
regard to how any error estimates depend on the wavenumber k. As the present paper
follows the same general approach of enriching the approximation space, we survey
this body of work in a little more detail.

The methods in this category fall approximately into three groups, distinguished
by how the enrichment is carried out. In one group the distinguishing feature is
that a large number of solutions of the Helmholtz equation are used to form the
approximation space. Most commonly the approximation space consists of standard
finite element basis functions multiplied by plane waves traveling in a large number
of directions, approximately uniformly distributed on the unit circle (in 2D) or sphere
(in 3D). This is the approach in the generalized finite element method of Babuška and
Melenk [4], the ultra weak variational formulation of Cessenat and Després [13, 14],
and the least squares method of Monk and Wang [41]; see also [43, 32, 37]. In
the boundary element context this approach is used in the microlocal discretization
method of de La Bourdonnaye et al. [26, 27] and in the work of Perrey-Debain et
al. [44, 45, 43, 46]. The theoretical analysis carried out (e.g., [4]) and computational
results (e.g., [43]) confirm that these methods converge very rapidly as the number
of plane wave directions used increases. Moreover, the computational results suggest
that to achieve a required accuracy, the number of degrees of freedom needed is
reduced by a large factor compared with conventional h-version finite or boundary
element methods. However, in the case of boundary element methods, while constants
of proportionality are reduced very significantly [44, 45, 43, 46], it is not clear that,
asymptotically, the number of degrees of freedom increases any less fast than linearly
with k for 2D problems, the same rate of increase as for conventional boundary element
methods.

At the other extreme, the second group of papers, using direct integral equation
methods, are distinguished by using only one solution of the Helmholtz equation to
enrich the approximation space, namely, the known incident field. This approach
amounts to applying conventional boundary element methods to the ratio of the total
field to the incident field, rather than to the total field directly. This simple idea,
employed for the impedance boundary value problem we consider in this paper in
[15], seems particularly appropriate in the case of smooth convex obstacles, as phys-
ical optics predicts that this ratio is approximately constant on the illuminated side
and approximately zero on the shadow side at high frequencies. This approach is
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used for smooth convex obstacles in 2D in [1], where a standard Galerkin boundary
element method with uniform mesh is applied to the ratio of the scattered field to
the incident field. In fact, this paper appears to be the first in which the dependence
of the error estimates on the wavenumber k is indicated. The error estimate stated
in [1] is that the relative error in the best approximation from a boundary element
space of piecewise polynomials of degree ≤ ν is O(hν)+O((hk1/3)ν+1). While clearly
better than the (at least) linear dependence on k of conventional boundary element
methods, the number of degrees of freedom needed to maintain accuracy is still pre-
dicted to grow like k1/3 as k increases, and moreover the analysis does not guarantee
that the Galerkin method solution is close to this best approximation in the limit as
k → ∞.

The method of [1] is applied in [24], where results for realistic 3D scatterers
are shown. This approach has also recently been applied in [10]. In this latter paper,
which focuses on 2D scattering by a sound-soft circular obstacle, the numerical scheme
is not completely defined. However, one of the main features of the numerical scheme
is that a coordinate stretching is carried out in a k-dependent neighborhood of the
shadow boundary (of length O(k−1/3)). The numerical results in [10, 11] for scattering
by a circle suggest that after this transformation, the slowly varying normal derivative
of the ratio of scattered to incident field can be approximated using Fourier series basis
functions in the L2 norm with a number of degrees of freedom which remains fixed
as the wavenumber k tends to infinity. The authors do not attempt to establish this
wavenumber independence theoretically by a rigorous error analysis.

The third group of papers is intermediate in approach between the first and second
groups, attempting to identify, by geometrical optics or geometrical theory of diffrac-
tion considerations or otherwise, the important wave propagation directions at high
frequency. They then incorporate the oscillatory part of this high-frequency asymp-
totics into the approximation space for the numerical solution. This is the approach
in the finite element method of Giladi and Keller [29] and in the boundary integral
equation method of Bruno, Geuzaine, and Reitich [12], our own recent work [20], and
the present paper. The paper [12], generalizing [10], considers specifically the case of
multiple scattering between two 2D convex obstacles and employs a Neumann series
approach, solving for each of the multiple scatters in turn, and factoring out a geo-
metric optics estimate of the main oscillatory behavior at each step. We remark that
the distinction between the second and third groups of papers is somewhat blurred
in that, arguably, for a smooth convex obstacle the only important wave direction to
include in the ansatz for the scattered field and its normal derivative on the boundary
is the incident wave direction.

The last two groups of papers have in common that, while the number of de-
grees of freedom may be reduced, very significantly, by incorporating the oscillatory
behavior of the solution, the work required to compute a typical matrix entry of the
linear system to be solved increases significantly. In particular, in boundary integral
equation based methods, a typical entry of the full system matrix corresponds to an
integration over a part of the boundary which is large in diameter compared to the
wavelength so that the integrand is highly oscillatory. The problem of efficient evalu-
ation of these integrals is tackled by the fast multipole method in [24]. In [10], ideas
from the method of stationary phase are used to reduce the support of the integrand,
and quadrature rules based on the trapezoidal rule, exponentially accurate for smooth
periodic functions, are employed. Numerical results using this approach for 2D scat-
tering by a circle are encouraging and appear to indicate a fixed computational cost as
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k tends to infinity. A somewhat similar approach for evaluating the integrals to that
of Bruno et al. [10] is employed for scattering by smooth 3D convex scatterers in [28].
We note that there has been considerable recent interest in the efficient evaluation of
highly oscillatory integrals for a variety of applications; see [34, 35] and the references
therein.

As an instance of the third group of papers, the authors and Ritter recently
proposed [20] a new high-frequency boundary element method for the specific problem
of 2D acoustic scattering by an inhomogeneous impedance plane. For this new scheme
it was shown [20] that the number of degrees of freedom needed to maintain accuracy
as k → ∞ grows only logarithmically with k. This appears to be the best theoretical
estimate to date for a numerical method for a scattering problem in terms of the
dependence on the wavenumber.

In this paper we will be concerned with the numerical solution of the same prob-
lem, proposing modifications of the numerical scheme of [20]. For our modified scheme
we are able to show, employing somewhat more elaborate arguments than those of [20],
that for a fixed number of degrees of freedom the error is bounded independently of
the wavenumber k. To our knowledge, this is the first such numerical analysis result
for any scattering problem.

The problem we will consider is one of acoustic scattering of an incident wave by a
planar surface with spatially varying acoustical surface impedance. This problem has
attracted much attention in the literature (see, for example, [17, 30, 31, 16, 21, 6, 48]),
both in its own right and also as a model of the scattering of an incident acoustic
or electromagnetic wave by an infinite rough surface [8, 47, 36, 7]. In the case in
which there is no variation in the acoustical properties of the surface or the incident
field in some fixed direction parallel to the surface, the problem is effectively two-
dimensional. Adopting Cartesian coordinates 0x1x2x3, let this direction be that of
the x3-axis and the surface be the plane x2 = 0. Assuming further that the incident
wave and scattered fields are time harmonic, the total acoustic field ut ∈ C(U)∩C2(U)
then satisfies (1.1) in U := {(x1, x2) ∈ R

2 : x2 > 0}, supplemented with the impedance
boundary condition

∂ut

∂x2
+ ikβut = f on Γ := {(x1, 0) : x1 ∈ R}(1.2)

with f ≡ 0, where k = ω/c > 0. Here ω = 2πμ, μ is the frequency of the incident
wave and c is the speed of sound in U . The acoustic pressure at time t, position
(x1, x2, x3), is then given by Re(e−iωtut(x)) for x = (x1, x2) ∈ U .

In outdoor sound propagation, the relative surface admittance β depends on the
frequency and the ground properties and is often assumed in modeling to be piecewise
constant and constant outside some finite interval [a, b] (see, for example, [17, 30, 31]),
with β taking a different value for each ground surface type (grassland, forest floor,
road pavement, etc. [3]). Thus, for some real numbers a = t0 < t1 < · · · < tn = b, the
relative surface admittance at (x1, 0) on Γ is given by

β(x1) =

{
βj , x1 ∈ (tj−1, tj ],
βc, x1 ∈ R\(t0, tn].

(1.3)

If the ground surface is to absorb rather than emit energy, the condition Reβ ≥ 0
must be satisfied. We assume throughout that, for some ε > 0,

Reβc ≥ ε, Reβj ≥ ε, |βc| ≤ ε−1, |βj | ≤ ε−1, j = 1, . . . , n.(1.4)
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Fig. 1.1. Acoustic scattering by an impedance boundary.

For simplicity of exposition, we restrict our attention to the case of plane wave
incidence, so that the incident field ui is given by ui(x) = exp[ik(x1 sin θ − x2 cos θ)],
where θ ∈ (−π/2, π/2) is the angle of incidence. The reflected or scattered part of the
wave field is u := ut − ui ∈ C(U) ∩C2(U), and this also satisfies (1.1) and (1.2) with

f(x1) := ikeikx1 sin θ(cos θ − β(x1)), x1 ∈ R.(1.5)

In Figure 1.1 we show scattering by a typical impedance plane. In this particular
example, the surface admittance β is given by

β(x1) =

{
0.505 − 0.3i, x1 ∈ (−5λ, 5λ],
1, x1 ∈ R\(−5λ, 5λ],

where λ = c/μ = 2π/k is the wavelength. There are discontinuities in impedance at
x1 = −5λ and at x1 = 5λ. The incident plane wave (θ = π/4 in this example) can
be seen in the top left and the scattered wave in the top right of Figure 1.1. This
scattered wave is a combination of reflected and diffracted rays. The diffracted rays,
propagating radially from the points (−5λ, 0) and (5λ, 0), can be seen more clearly in
the bottom right of Figure 1.1, where we have subtracted from the total field ut the
(known) total field in the case that β ≡ 1.

To achieve good approximations with a relatively low number of degrees of free-
dom, a boundary element method approach was used in [20] with ideas in the spirit
of the geometrical theory of diffraction (GTD) being used to identify and subtract off
the leading order behavior (namely, the incident and reflected rays) as k → ∞. The
remaining scattered wave (consisting of the rays diffracted at impedance discontinu-
ities as visible in the lower right corner of Figure 1.1) can then be expressed (on the
boundary Γ) as the product of the known oscillatory functions e±ikx1 and unknown
nonoscillatory functions denoted as f±

j . Rigorous bounds were established in [20] on
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the derivatives of the nonoscillatory functions f±
j both adjacent to and away from

discontinuities in impedance. Using these bounds a Galerkin method was developed,
using a graded mesh with elements very large compared to the wavelength away from
discontinuities in β, in order to take advantage of the smooth behavior of f±

j away
from these points, and a special set of basis functions so that on each element the
approximation space consists of polynomials (of degree ν) multiplied by e±ikx1 , so as
to obtain a piecewise polynomial representation of the nonoscillatory functions f±

j .
Using this approach, it was shown in [20] that the error in computing an approxima-

tion to ut|Γ on [a, b] in the L2 norm is O(logν+3/2(k(b−a))M−(ν+1)), where M is the
number of degrees of freedom.

In this paper we consider the same problem as in [20] and use a similar approach.
We again subtract off the leading order behavior as k → ∞ on each interval and
express the scattered wave as a product of oscillatory and nonoscillatory functions.
However, here (in section 2) we prove sharper bounds on the nonoscillatory functions
f±
j away from impedance discontinuities. Based on these bounds, in section 3 we

propose a Galerkin method similar to that in [20], but with a different approximation
space. As in [20] this consists of polynomials (of degree ν) multiplied by e±ikx1 , but
unlike in [20] the choice of whether to use e+ikx1 or e−ikx1 on each element is dictated
by how close the element is to each impedance discontinuity, and the graded mesh
is chosen differently so that when k is large compared to N we do not discretize
the entire domain. This is key to achieving a convergence rate independent of the
wavenumber.

In section 3 we present an error analysis for this new approach, and we show
that the error in computing an approximation to ut|Γ on [a, b] is O(N−(ν+1) log1/2

min(N, k(b−a))), in the L2 norm, using a number of degrees of freedom proportional
to N log min(N, k(b − a)). As min(N, k(b − a)) ≤ N , this error estimate shows that
the error is bounded independently of k for a fixed number of degrees of freedom.
We believe this to be the first proof for any scattering problem that, for a fixed
discretization, the error does not grow as the size (in terms of number of wavelengths)
of the scattering object to be discretized tends to infinity. Moreover, for fixed k, as
N → ∞ the extra logarithmic dependence on N of the error estimate and the number
of degrees of freedom disappears, and we retain the same asymptotic convergence rate
as in [20].

Whereas in [20] results were proved regarding only the approximation of ut|Γ,
here we also show, in Theorem 3.6, that the total acoustic field at any point x ∈ U
can be computed to a similar order of accuracy. In section 4 we discuss the practical
implementation of our approach, and we present some numerical results demonstrat-
ing that the theoretically predicted behavior is achieved. Finally in section 5 we
present some conclusions and discuss possible future extensions of the ideas presented
here.

2. Integral equation formulation and regularity of the solution. In the
rest of this paper, ν is the degree of the polynomial approximations used in the
Galerkin method described in section 3, and ε, in the range 0 < ε < 1, is the constant
in the bound (1.4). Throughout Cε, Cν , and Cε,ν denote constants depending only on
ε, ν, and both ε and ν, respectively, each not necessarily the same at each occurence.

We begin by stating the problem we wish to solve precisely and reformulating
it as an integral equation. For H ≥ 0, let UH := {(x1, x2) : x2 > H} and ΓH :=
{(x1, H) : x1 ∈ R}. To determine the scattered field u uniquely we impose the
radiation condition proposed in [16] that, for some H > 0, u can be written in the
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half plane UH as the double layer potential

u(x) =

∫
ΓH

∂H
(1)
0 (k|x− y|)

∂y2
φ(y) ds(y), x ∈ UH ,(2.1)

for some density φ ∈ L∞(ΓH), where H
(1)
0 is the Hankel function of the first kind of

order zero. The boundary value problem that we wish to solve for u is thus as follows.
Boundary value problem. Given k > 0 (the wavenumber), θ ∈ (−π/2, π/2)

(the angle of incidence) and β given by (1.3), find u ∈ C(U) ∩ C2(U) such that
(i) u is bounded in the horizontal strip U\UH for every H > 0;
(ii) u satisfies the Helmholtz equation (1.1) in U ;
(iii) u satisfies the impedance boundary condition (1.2) on Γ (in the weak sense

explained in [16]), with f ∈ L∞(Γ) given by (1.5);
(iv) u satisfies the radiation condition (2.1), for some H > 0 and φ ∈ L∞(ΓH).
For β∗ ∈ C with Reβ∗ > 0 let Gβ∗(x, y) denote the Green’s function for the

above problem in the case of constant relative surface impedance, which satisfies (1.2),
with β ≡ β∗ and f ≡ 0, and the standard Sommerfeld radiation and boundedness
conditions. Explicit representations and efficient calculation methods for Gβ∗ are
discussed in [18]. We shall require later the following bounds on Gβ∗ [20, (2.9),
(2.10)], which hold provided Reβ∗ ≥ ε and |β∗| ≤ ε−1:

|Gβ∗(x, y)| ≤ Cε(1 + kx2)

(k|x− y|)3/2 , x ∈ U, y ∈ Γ, x 	= y,(2.2)

|Gβ∗(x, y)| ≤ Cε(1 − log(k|x− y|)), x ∈ U, y ∈ Γ, 0 < k|x− y| ≤ 1.(2.3)

The following result is shown in [20].
Theorem 2.1. If u satisfies the above boundary value problem, then

u(x) =

∫
Γ

Gβ∗(x, y)(ik(β(y) − β∗)u(y) − f(y)) ds(y), x ∈ U.(2.4)

Conversely, if u|Γ ∈ BC(Γ) (the space of bounded and continuous functions on Γ)
and u satisfies (2.4), for some β∗ with Reβ∗ > 0, then u satisfies the above boundary
value problem. Moreover, (2.4) has exactly one solution with u|Γ ∈ BC(Γ), and hence
the boundary value problem has exactly one solution.

We denote the (known) solution of the above boundary value problem in the
special case β ≡ β∗ by uβ∗ and the corresponding total field by ut

β∗ := ui+uβ∗ . Then it
is easily seen [20] that uβ∗ is the plane wave uβ∗(x) = Rβ∗(θ) exp[ik(x1 sin θ+x2 cos θ)],
where Rβ∗(θ) := (cos θ − β∗)/(cos θ + β∗) is a reflection coefficient. Moreover, it is
shown rigorously in [20] that ut satisfies

ut(x) = ut
β∗(x) + ik

∫
Γ

Gβ∗(x, y)(β(y) − β∗)ut(y) ds(y), x ∈ U.(2.5)

We note that the approximate and numerical solution of this integral equation has
been extensively studied; see, for example, [42, 30, 17, 21, 20].

To make explicit the dependence on the wavenumber k in the results we obtain, it
is useful to introduce new, dimensionless variables. Thus, define φ(s) := ut((s/k, 0)),
ψβ∗(s) := ut

β∗((s/k, 0)), and κβ∗(s) := Gβ∗((s/k, 0), (0, 0)), s ∈ R. Then (2.5) re-
stricted to Γ is the following second kind boundary integral equation for φ:

φ(s) = ψβ∗(s) + i

∫ ∞

−∞
κβ∗(s− t)(β(t/k) − β∗)φ(t) dt, s ∈ R.(2.6)
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It is the main concern in the remainder of the paper to solve this equation nu-
merically in the case when β∗ = βc. Clearly,

ψβ∗(s) = (1 + Rβ∗(θ))eis sin θ,(2.7)

and it is shown in [20], using the representation for Gβ∗ in [18], that

κβ∗(s) =
i

2
H

(1)
0 (|s|) +

β∗2ei|s|

π

∫ ∞

0

t−1/2e−|s|t

(t− 2i)1/2(t2 − 2it− β∗2)
dt + Cβ∗ei|s|(1−â+)(2.8)

= ei|s|κ̌β∗(s), s ∈ R\{0},(2.9)

where â± := 1 ∓ (1 − β∗2)
1
2 , with Re{(1 − β∗2)1/2} ≥ 0,

Cβ∗ :=

⎧⎪⎪⎨
⎪⎪⎩

β∗

(1−β∗2)1/2 , Imβ∗ < 0,Re(â+) < 0,

β∗

2(1−β∗2)1/2 , Imβ∗ < 0,Re(â+) = 0,

0, otherwise,

and

κ̌β∗(s) :=
1

π

∫ ∞

0

r
1
2 (r − 2i)

1
2

r2 − 2ir − β∗2 e−r|s| dr + Cβ∗e−i|s|â+ , s ∈ R\{0}.(2.10)

Clearly the only dependence on k in the known terms in (2.6) is in the impedance
function β(t/k). We shall see shortly that the oscillating part of κβ∗(s) is contained
in the factor ei|s| in (2.9), κ̌β∗(s) becoming increasingly smooth as s → ±∞.

In view of (1.3), if we set β∗ = βc in (2.6), the interval of integration reduces to
the finite interval [ã, b̃], where ã := ka = kt0, b̃ := kb = ktn. Explicitly, (2.6) becomes

φ(s) = ψβc(s) + i

∫ b̃

ã

κβc(s− t)(β(t/k) − βc)φ(t) dt, s ∈ R,(2.11)

with ψβc
and κβc

given by (2.7) and (2.8), respectively, with β∗ = βc. This integral
equation is studied, in the case βc = 1, in [16]. From [16, Theorem 4.17] it follows
that

‖φ‖∞ ≤ Cε‖ψ1‖∞ = Cε|1 + R1(θ)| ≤ Cε cos θ.(2.12)

As in [20], and as discussed in the introduction, our numerical scheme for solv-
ing (2.11) is based on a consideration of the contribution of the reflected and diffracted
ray paths in the spirit of the GTD. In particular, to leading order as k → ∞, on the
interval (tj−1, tj) it seems reasonable to suppose that the total field φ ≈ ψβj

, the
total field there would be if the whole boundary had the admittance βj of the in-
terval (tj−1, tj), given explicitly by (2.7) with β∗ = βj . In fact, for s 	= t̃j := ktj ,
j = 0, . . . , n, it follows from theorem 2.3 below that φ(s) → Ψ(s) as k → ∞, where

Ψ(s) :=

{
ψβj

(s), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,

ψβc(s), s ∈ R\(t̃0, t̃n].
(2.13)

In our numerical scheme we compute the difference between φ and Ψ, i.e.,

Φ(s) := φ(s) − Ψ(s), s ∈ R,(2.14)
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which may be thought of as the correction to the leading order field due to scattering
from impedance discontinuities. Clearly, from (2.11) we have that

Φ = Ψβc

β + Kβc

β Φ,(2.15)

where Ψβc

β ∈ L∞(R) is given by Ψβc

β := ψβc
− Ψ + Kβc

β Ψ, and

Kβc

β χ(s) := i

∫ b̃

ã

κβc
(s− t)(β(t/k) − βc)χ(t) dt.

Equation (2.15) will be the integral equation that we solve numerically. By setting
β∗ = βj in (2.6) we obtain explicit expressions for Φ on each subinterval, namely,

Φ(s) = eisf+
j (s− t̃j−1) + e−isf−

j (t̃j − s), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,(2.16)

where for j = 1, . . . , n, f+
j , f−

j ∈ C[0,∞) are defined by

f+
j (r) :=

∫ t̃j−1

−∞
κ̌βj (r + t̃j−1 − t)e−iti(β(t/k) − βj)φ(t) dt,(2.17)

f−
j (r) :=

∫ ∞

t̃j

κ̌βj
(t− t̃j + r)eiti(β(t/k) − βj)φ(t) dt(2.18)

with κ̌βj given by (2.10) with β∗ = βj . Similarly, from (2.11),

Φ(s) =

{
eisf+

n+1(s− t̃n), s > t̃n,

e−isf−
0 (t̃0 − s), s < t̃0,

(2.19)

where f+
n+1, f

−
0 are given by (2.17), (2.18), respectively, with β0 := βc and βn+1 := βc.

The first term in (2.16) can be viewed as an explicit summation of all the diffracted
rays scattered at the discontinuity in impedance at tj−1 which travel from left to
right along (tj−1, tj). Similarly, the other term in (2.16) is the contribution to the
diffracted field diffracted by the discontinuity at tj . In the remainder of this section,
so as to design an efficient discretisation for Φ, we investigate in detail the behavior

of the integrals f±
j . As a first step, we prove the following bounds on |κ̌(m)

β∗ (s)|, for
m = 0, 1, . . ., s ∈ (0,∞), which were stated without proof in [20].

Lemma 2.2. Suppose that Reβ∗ ≥ ε, |β∗| ≤ ε−1 hold for some ε > 0. Then, for
m = 0, 1, . . . , there exist constants cm, dependent only on m and ε, such that

|κ̌(m)
β∗ (s)| ≤

{
cm(1 + | log s|), m = 0,
cms−m, m ≥ 1,

for 0 < s ≤ 1,

|κ̌(m)
β∗ (s)| ≤ cms−

3
2−m for s > 1.

Proof. Throughout the proof, cm is a constant dependent only on m and ε, not
necessarily the same at each occurrence. Let

F (z) :=
z1/2(z − 2i)1/2

z2 − 2iz − β∗2 =
z1/2(z − 2i)1/2

(z − iâ+)(z − iâ−)
, z ∈ C,(2.20)

where Re z1/2,Re (z−2i)1/2 ≥ 0, and â± = 1∓
√

1 − β∗2, as before, with Re
√

1 − β∗2

≥ 0. Then F (z) has simple poles at z = iâ+ (which may lie near the real axis if Reâ+ is



WAVENUMBER INDEPENDENT BOUNDARY ELEMENT METHOD 2459

small) and z = iâ− (which cannot lie near the real axis as Reâ− ≥ 1). Recalling (2.10)
we then have, at least provided Reâ+ 	= 0 or Imâ+ > 0, so that the pole at iâ+ does
not lie on the positive real axis,

|κ̌(m)
β∗ (s)| ≤ 1

π

∣∣∣∣
∫ ∞

0

F (r)rme−rs dr

∣∣∣∣ +
∣∣Cβ∗ âm+ eImâ+s

∣∣ , s > 0.(2.21)

Now, since Reβ∗ ≥ ε, it is easy to see that Imâ+ = 0 if and only if β∗ ∈ [ε, 1],
and in this case Reâ+ ≥ 1 −

√
1 − ε2 = ε2/(1 +

√
1 − ε2) > ε2/2. We thus define

Sε := {β∗ : Reβ∗ ≥ ε, |β∗| ≤ ε−1,Reâ+ ≤ ε2/4}. Then Sε is closed and bounded, and

|Imâ+| and |
√

1 − β∗2| are both continuous and nonzero on Sε. Thus, for some η > 0,

|Imâ+| ≥ η and

∣∣∣∣
√

1 − β∗2

∣∣∣∣ ≥ η(2.22)

for all β∗ ∈ Sε.
Next, we note that if Reâ+ > 0, then Cβ∗ = 0, while if Reâ+ ≤ 0, then β∗ ∈ Sε,

so that (2.22) holds. Moreover, if Cβ∗ 	= 0, then Imβ∗ < 0, and so Imâ+ < 0. Since
also |â±| ≤ 1 +

√
1 + ε−2, we see that

∣∣Cβ∗ âm+ eImâ+s
∣∣ ≤ cme−ηs, s > 0.

We turn to bounding the first term on the right-hand side of (2.21). To do this
we consider the two cases |Reâ+| > ε2/4 and |Reâ+| ≤ ε2/4 separately.

First, suppose |Reâ+| > ε2/4. Then

|F (r)| ≤ Cεr
1/2, r > 0,(2.23)

and thus ∣∣∣∣
∫ ∞

0

F (r)rme−rs dr

∣∣∣∣ ≤ Cε

∫ ∞

0

rm+1/2e−rs dr ≤ cms−m−3/2, s > 0.(2.24)

This bound suffices when s > 1, but for 0 < s ≤ 1 we need a sharper bound.
We proceed by establishing bounds on the mth derivatives of the first two terms

on the right-hand side of (2.8) for 0 < s ≤ 1. It can easily be deduced from the
power series representations defining the Bessel functions that there exist constants
Cj , j = 0, . . . , such that, for 0 < z ≤ 1,

|H(1)
0 (z)| ≤ C0(1 + | log z|),(2.25) ∣∣∣∣ d

m

dzm
H

(1)
0 (z)

∣∣∣∣ ≤ Cmz−m, m = 1, 2, . . . .(2.26)

Next note that, for 0 < s ≤ 1, the mth derivative of the second term in (2.8) has
absolute value not more than∣∣∣∣β

∗2

π

∫ ∞

0

(i − t)me−stt−1/2 dt

(t− 2i)1/2(t2 − 2it− β∗2)

∣∣∣∣ ≤ ε−2

π

∫ ∞

0

(1 + t2)m/2e−stt−1/2 dt

(t2 + 4)1/4 |(t− iâ+)(t− iâ−)|(2.27)

≤ Cε

[∫ 1

0

t−1/2 dt +

∫ ∞

1

tm−1e−st dt

]
(2.28)

≤
{

Cε(1 − log s), m = 0,
cms−m, m = 1, 2, . . . .

(2.29)
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Combining (2.25), (2.26), and (2.29) and recalling (2.9) the result follows.
Now we consider the case 0 ≤ Reâ+ ≤ ε2/4. (The proof for the case −ε2/4 ≤

Reâ+ < 0 is similar.) As β ∈ Sε, (2.22) holds. If Imâ+ > 0, then the bounds (2.23)
and (2.28) hold and we proceed as above. If Imâ+ < 0, however, F (z) has a pole
at z = iâ+ with Re(iâ+) > η, 0 ≤ Im(iâ+) ≤ ε2/4. To bound the integrals on
the left-hand side of (2.24) and (2.27) in this case, uniformly in β∗, we first deform
the path of integration. Define Γε to be the semicircle, center (−Imâ+, 0), radius
η̃ := min(1/2, η), lying in the lower half plane. (Note that by (2.22), Rez > η/2 for
z ∈ Γε.) Let γε = [0,−Imâ+ − η/2]∪ [−Imâ+ + η/2,∞). Then, by Cauchy’s theorem,
it follows from (2.21) that, for Reâ+ > 0,

|κ̌(m)
β∗ (s)| ≤ 1

π

∣∣∣∣
∫
γε

F (r)rme−rs dr +

∫
Γε

F (r)rme−rs dr

∣∣∣∣ , s > 0.(2.30)

By continuity arguments, taking the limit Reâ+ → 0+ in (2.30), equation (2.30) holds
also for Reâ+ = 0. For r ∈ γε the bound (2.23) holds, and so the integral over γε is
bounded by the right-hand side of (2.24). Further,

∣∣∣∣
∫

Γε

F (r)rme−rs dr

∣∣∣∣ ≤ πη

2
max
r∈Γε

|F (r)rme−rs| ≤ cme−ηs/2,

so we obtain the required bound for s ≥ 1. To obtain the desired bound for 0 < s ≤ 1
we proceed as in the case |Reâ+| > ε2/4, but deforming the path of integration as
above to bound the left-hand side of (2.27).

The following result is a slight sharpening of [20, Theorem 2.6], obtained by com-
bining the bounds in Lemma 2.2 and (2.12) with the representations (2.17) and (2.18).

Theorem 2.3. Suppose (1.4) holds for some ε > 0. Then, for r > 0, j = 1, . . . , n,
m = 0, 1, . . ., there exist constants cm, dependent only on m and ε, such that

∣∣∣f±
j

(m)
(r)

∣∣∣ ≤ cm cos θEm(r),

where

Em(r) =

⎧⎨
⎩

1, m = 0,
1 − log r, m = 1,
r1−m, m ≥ 2,

for 0 < r ≤ 1,

Em(r) = r−
1
2−m for r > 1.

Remark. Using the identical argument it can easily be shown that |f+
n+1

(m)
(r)|,

|f−
0

(m)
(r)| ≤ cm cos θEm(r), r > 0, for m = 0, 1, . . ., where cm is the same constant

as in Theorem 2.3.
To prove the main result of this section, a sharper bound on |f±

j (r)| when r > 1
(Theorem 2.6), we require the bounds in the following two lemmas.

Lemma 2.4. Suppose p < −1 and q ≤ 0. Then there exists a constant C,
independent of r, such that, for r ≥ 1,

∫ ∞

0

(t + r)p(1 + t)q dt ≤
{

Crp+q+1, q 	= −1,
Crp log(1 + r), q = −1.
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Proof. ∫ ∞

0

(t + r)p(1 + t)q dt ≤ rp
∫ r

0

(1 + t)q dt + rq
∫ ∞

r

(t + r)p dt,

and the result follows.
Lemma 2.5. Suppose q ≤ 0. Then there exists a constant C, independent of r

and D, such that, for r ≥ 1 and D > 0,

∫ 2D

0

(s + r)−3/2(1 + 2D − s)q ds ≤

⎧⎨
⎩

Cr−3/2, q < −1,
Cr−3/2 log(1 + r), q = −1,
Cr−1/2+q, −1 < q ≤ 0.

Proof. Splitting the integration range as [0, 2D] = [0, D] ∪ [D, 2D], and making
the change of variable t := 2D − s, we see that

∫ 2D

0

(s + r)−3/2(1 + 2D − s)q ds ≤ IA + IB ,

where

IA := (1 + D)q
∫ D

0

(s + r)−3/2 ds, IB := (D + r)−3/2

∫ D

0

(1 + t)q dt.

Further,

IA =
2D(1 + D)q

r1/2(D + r)1/2((D + r)1/2 + r1/2)

≤ 2(1 + D)q+1

r1/2(D + r)
≤

{
2r−3/2, q ≤ −1,
2r−1/2+q, −1 < q ≤ 0.

(2.31)

For q 	= −1, IB = (1 + q)−1(D + r)−3/2((1 + D)q+1 − 1). Thus

|1 + q|IB ≤
{

r−3/2, q < −1,
r−1/2+q, −1 < q ≤ 0.

To bound IB in the case that q = −1 we need to consider the cases r ≥ D and r < D
separately. For r ≥ D,

IB = (D + r)−3/2 log(1 + D) ≤ r−3/2 log(1 + r).

For r < D we split the range of integration as [0, D] = [0, r] ∪ [r,D] and note that

(D + r)−3/2

∫ r

0

(1 + t)−1 dt ≤ r−3/2 log(1 + r),

(D + r)−3/2

∫ D

r

(1 + t)−1 dt ≤ (D − r)

(D + r)3/2(1 + r)
≤ r−3/2.

This completes the proof.
We are now ready to prove the main result of this section, the following sharper

bound on |f±
j (r)| when r > 1, on which the design of our numerical scheme is based.

Theorem 2.6. Suppose (1.4) holds for some ε > 0. Then for r > 1, j = 0, . . . , n,

∣∣f+
j+1(r)

∣∣ , ∣∣f−
j (r)

∣∣ ≤ Cε
r−3/2n3

cos θ
.
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Proof. First we consider f−
j (r). Recalling (2.14), for j = 0, . . . , n, f−

j (r) =
I1(r) + I2(r), where

I1(r) :=

∫ ∞

t̃j

κ̌βj (t− t̃j + r)eiti(β(t/k) − βj)Ψ(t) dt,

I2(r) :=

∫ ∞

t̃j

κ̌βj (t− t̃j + r)eiti(β(t/k) − βj)Φ(t) dt.

We begin by establishing a bound on I1. Recalling (2.13) and (2.7),

I1(r) =

n∑
m=j+1

i(βm − βj)

∫ t̃m

t̃m−1

κ̌βj (t− t̃j + r)(1 + Rβm(θ))eit(sin θ+1) dt

+ i(βc − βj)

∫ ∞

t̃n

κ̌βj
(t− t̃j + r)(1 + Rβc

(θ))eit(sin θ+1) dt.

Integrating by parts,

I1(r) =

n∑
m=j+1

(βm − βj)(1 + Rβm(θ))

sin θ + 1

([
κ̌βj

(t− t̃j + r)eit(sin θ+1)
]t̃m
t̃m−1

−
∫ t̃m

t̃m−1

κ̌′
βj

(t− t̃j + r)eit(sin θ+1) dt

)

+
(βc − βj)(1 + Rβc(θ))

sin θ + 1

([
κ̌βj

(t− t̃j + r)eit(sin θ+1)
]∞
t̃n

−
∫ ∞

t̃n

κ̌′
βj

(t− t̃j + r)eit(sin θ+1) dt

)
.

Now from Lemma 2.2, for r > 1,∣∣κ̌βj (t̃m − t̃j + r)
∣∣ ≤ Cε(t̃m − t̃j + r)−3/2 ≤ Cεr

−3/2, m = j, . . . , n.

Thus, noting that |1+Rβm(θ)| = |2 cos θ/(cos θ+βm)| ≤ 2 cos θ/ε and |βm−βj | ≤ 2/ε,
and using Lemma 2.2 again to bound κ̌′

βj
, we have, for r > 1,

|I1(r)| ≤ Cε
(n + 1 − j) cos θ

sin θ + 1

[
r−3/2 +

∫ ∞

t̃j

∣∣∣κ̌′
βj

(t− t̃j + r)
∣∣∣ dt

]

≤ Cε
r−3/2n cos θ

sin θ + 1
.(2.32)

We next bound I2. Recalling (2.16) and (2.19),

|I2(r)| ≤
2

ε

⎛
⎝J+

∞ +

n∑
m=j+1

(J+
m + J−

m)

⎞
⎠ ,(2.33)

where

J+
m :=

∫ t̃m

t̃m−1

|κ̌βj
(t− t̃j + r)||f+

m(t− t̃m−1)|dt,(2.34)

J−
m :=

∫ t̃m

t̃m−1

|κ̌βj (t− t̃j + r)||f−
m(t̃m − t)|dt,(2.35)

J+
∞ :=

∫ ∞

t̃n

|κ̌βj (t− t̃j + r)||f+
n+1(t− t̃n)|dt.(2.36)
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First we bound J+
∞. Applying Lemma 2.2 and Theorem 2.3, and noting the remark

after Theorem 2.3, for r > 1,

J+
∞ ≤ Cε cos θ

∫ ∞

t̃n

(t− t̃n + r)−3/2(1 + t− t̃n)−1/2 dt ≤ Cεr
−1 cos θ,

making the change of variables s = t − t̃n and using Lemma 2.4 with p = −3/2 and
q = −1/2. Arguing similarly, J+

m ≤ Cεr
−1 cos θ. To bound J−

m, again using Lemma 2.2
and Theorem 2.3 we have

J−
m ≤ Cε cos θ

∫ t̃m

t̃m−1

(t− t̃m−1 + r)−3/2(1 + t̃m − t)−1/2 dt ≤ Cεr
−1 cos θ,

making the change of variables s = t − t̃m−1 and using Lemma 2.5 with D = (t̃m −
t̃m−1)/2 and q = −1/2. Thus, recalling (2.33), |I2(r)| ≤ Cεr

−1n cos θ.
So far in the argument we have shown that, for r > 1, j = 0, . . . , n,

|f−
j (r)| ≤ |I1(r)| + |I2(r)| ≤ Cεr

−1n cos θ

(
r−1/2

1 + sin θ
+ 1

)
.(2.37)

Proceeding in a similar way, we can show that, for r > 1, j = 1, . . . , n + 1,

|f+
j (r)| ≤ Cεr

−1n cos θ

(
r−1/2

1 − sin θ
+ 1

)
.(2.38)

Next, starting from (2.33)–(2.36), we can use (2.37) and (2.38) to establish sharper
bounds on I2 and hence a sharper bound on f−

j . Using (2.38) in (2.36), we have for
r > 1 that

J+
∞ ≤ Cεn cos θ

∫ ∞

t̃n

(t− t̃n + r)−3/2(1 + t− t̃n)−1

(
1 +

(1 + t− t̃n)−1/2

1 − sin θ

)
dt

≤ Cεr
−3/2n cos θ(log(1 + r) + (1 − sin θ)−1),(2.39)

making the change of variable s = t − t̃n and using Lemma 2.4 with p = −3/2 and
q = −1,−3/2. Arguing similarly, we can show that

J+
m ≤ Cεr

−3/2n cos θ(log(1 + r) + (1 − sin θ)−1), m = j + 1, . . . , n,(2.40)

and, using (2.37) and Lemma 2.2,

J−
m ≤ Cεn cos θ

∫ t̃m

t̃m−1

(t− t̃m−1 + r)−3/2(1 + t̃m − t)−1

(
1 +

(1 + t̃m − t)−1/2

1 + sin θ

)
dt

≤ Cεr
−3/2n cos θ(log(1 + r) + (1 + sin θ)−1),

where again we make the change of variable s = t − t̃m−1 and use Lemma 2.5 with
D := (t̃m − t̃m−1)/2 and q = −1,−3/2. Combining this with (2.39) and (2.40),

|I2(r)| ≤ Cεr
−3/2n2 cos θ(log(1 + r) + (1 − sin2 θ)−1) ≤ Cε

r−3/2 log(1 + r)n2

cos θ
.

Thus

|f−
j (r)| ≤ |I1| + |I2| ≤ Cε

r−3/2 log(1 + r)n2

cos θ
.(2.41)
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In a similar way it can be proved that

|f+
j (r)| ≤ Cε

r−3/2 log(1 + r)n2

cos θ
.(2.42)

To obtain sharper bounds still on f±
j , removing the dependence on log r in (2.41),

(2.42), we note that it follows from (2.41) and (2.42) that

∫ ∞

0

|f±
j (r)|dr ≤ Cε

n2

cos θ
.

Using this bound and the bounds in Lemma 2.2 in (2.34)–(2.36), we see that

J±
m ≤ Cεr

−3/2

∫ ∞

0

|f±
m(s)|ds ≤ Cε

r−3/2n2

cos θ
,

and an identical bound holds on J+
∞. Hence, recalling (2.33),

|I2(r)| ≤ Cε
r−3/2n3

cos θ
,

and combining this with (2.32) the desired bound on f−
j (r) follows. The desired

bound on f+
j (r) follows similarly.

3. Galerkin method and error analysis. Our aim now is to design a numer-
ical method for the solution of (2.15), supported by a full error analysis, for which the
error bounds are independent of the parameter k(b− a). To achieve this we will work
in L2(R), and to that end we introduce the operator Q : L∞(R) → L2(R) defined by

Qχ(s) :=

{
χ(s), s ∈ [ã, b̃] = [t̃0, t̃n],

0, s ∈ R\[ã, b̃].

Writing Φ∗ := QΦ, and noting that Kβc

β Φ = Kβc

β Φ∗, it follows from (2.15) that

Φ∗ −QKβc

β Φ∗ = QΨβc

β ,(3.1)

where Φ∗ and QΨβc

β are both in L2(R).

Existence and boundedness of (I −QKβc

β )−1 : L2(R) → L2(R) are shown in [20],

where it is also shown that the unique solution Φ∗ = (I − QKβc

β )−1QΨβc

β of (3.1)

satisfies ‖Φ∗‖2 ≤ C1‖QΨβc

β ‖2 with C1 = Reβc/(Reβc − ‖β − βc‖∞) if

|βj − βc| < Reβc, j = 1, . . . , n,(3.2)

and C1 unspecified but dependent only on ε and βc if (3.2) does not hold.
To approximate the solution Φ∗ = QΦ of (3.1) we use a Galerkin method, similar

to that in [20], but with the approximation space chosen in a different way so as to
take advantage of our stronger bound on Φ (Theorem 2.6), in order to remove the
dependence of the error estimates on k(b− a). As in [20], on each interval (t̃j−1, t̃j),
we approximate f+

j (s− t̃j−1) and f−
j (t̃j − s) in (2.16) by conventional piecewise poly-

nomial approximations, rather than approximating Φ itself. This makes sense since,
as quantified by Theorems 2.3 and 2.6, the functions f+

j (s− t̃j−1) and f−
j (t̃j − s) are
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smooth (their higher order derivatives are small) away from t̃j−1 and t̃j , respectively.
To approximate f+

j (s− t̃j−1) and f−
j (t̃j − s) we use piecewise polynomials of a fixed

degree ν ≥ 0 on a graded mesh, the mesh grading adapted in an optimal way to the

bounds on f±
j

(m)
in Theorems 2.3 and 2.6.

To begin, we define a graded mesh on a general interval [0, A], for A > 1, with
more mesh points near 0 and less near A. This mesh is identical to that defined in
[20, Definition 3.1]; the difference here is in how we choose the value of A when we
apply this mesh to the discretization of each interval [t̃j−1, t̃j ]. Whereas in [20], A
was chosen as a function of t̃j − t̃j−1 and the functions f±

j were approximated over

the whole interval [t̃j−1, t̃j ], here we choose A as a function of N , a positive integer,
where the size of N also determines the density of the mesh on [0, A]. A judicious
choice of A = A(N), as described below, allows us to discretize only a subsection of
the interval [t̃j−1, t̃j ], near to t̃j−1 and t̃j , and to approximate f±

j by zero away from
these points without harming the overall accuracy of our scheme. This is the key to
achieving error estimates independent of k(b− a).

The mesh we use also has similarities to that used in [40] for solving (1.1) in the
case k = iτ , τ > 0, τ large, where a similar idea of only discretizing a subsection of
the boundary as k → ∞ was used to establish error bounds independent of τ .

Definition 3.1. For A > 1 and N = 2, 3, . . . , the mesh ΛN,A = {y0, . . . , yN+NA
}

consists of the points yi = (i/N)q, i = 0, . . . , N , where q = 1+2ν/3, together with the
points yN+j = Aj/NA , j = 1, . . . , NA, where NA = �N∗�, the smallest integer ≥ N∗,
and N∗ := − logA/[q log(1 − 1/N)].

The mesh ΛN,A is a composite mesh with a polynomial grading on [0, 1] and a
geometric grading on [1, A]. The definition of NA ensures a smooth transition between
the two parts of the mesh. Precisely, the definition of N∗ is such that, in the case
NA = N∗, it holds that yN+1/yN = yN/yN−1, so that yN−1 and yN are points in
both the polynomial and the geometric parts of the mesh. It is shown in [20] that the
total number of subintervals N + NA of the mesh on [0, A] satisfies

N + NA <

(
3

2
+

logA

q

)
N.(3.3)

Let ΠA,N,ν := {σ : σ|[yj−1,yj ] is a polynomial of degree ≤ ν, j = 1, . . . , N + NA},
and let P ∗

N be the orthogonal projection operator from L2(0, A) to ΠA,N,ν , so that

setting p = P ∗
Nf minimizes ‖f − p‖2,(0,A) = {

∫ A

0
|f(t) − p(t)|2 dt}1/2 over all p ∈

ΠA,N,ν . The mesh ΛN,A is designed to approximately minimize ‖f−P ∗
Nf‖2,(0,A), over

all meshes with the same number of points, when f ∈ C∞(0,∞) with |f (ν+1)(s)| =
Eν+1(s), s > 0, where Eν+1 is defined as in Theorem 2.3. It achieves this by ensuring
that ‖f − P ∗

Nf‖2,(yj−1,yj) is approximately constant for j = 1, . . . , N + NA, i.e., by
equidistributing the approximation error over the intervals of the mesh, as shown in
the proof of the following result in [20].

Theorem 3.2. Suppose that f ∈ C∞(0,∞) and |f ′(s)| ≤ E1(s), |f (ν+1)(s)| ≤
Eν+1(s), s > 0. Then

‖f − P ∗
Nf‖2,(0,A) ≤ Cν

1 + log1/2 A

Nν+1
.

To form our approximation space on [ã, b̃] = [t̃0, t̃n], we begin by defining

Aj := min

{
α
n3Nν+1

cos θ
, t̃j − t̃j−1

}
,(3.4)
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where α ≥ 1 is an absolute constant which will be determined experimentally and
whose value will not effect the asymptotic convergence rates. The reason for our
choice of Aj will become apparent shortly, in the proof of Theorem 3.3. Clearly
Aj is bounded independently of k(b − a). As we are primarily concerned with the
high-frequency problem, we assume for simplicity that Aj ≥ 1, j = 1, . . . , n, but
remark that in the case Aj < 1 for any value of j then we can define ΛN,Aj

to be an
appropriate subset of the points yi, and this will give similar approximation properties
to those achieved using ΛN,Aj when Aj ≥ 1. For j = 1, . . . , n we define the two meshes

Ω+
j := t̃j−1 + ΛN,Aj , Ω−

j := t̃j − ΛN,Aj . Letting e±(s) := e±is, s ∈ R, we then define
VΩ+

j
,ν := {σe+ : σ ∈ ΠΩ+

j
,ν}, VΩ−

j
,ν := {σe− : σ ∈ ΠΩ−

j
,ν}, for j = 1, . . . , n, where

ΠΩ+
j
,ν := {σ ∈ L2(R) : σ|(t̃j−1+ym−1,t̃j−1+ym) is a polynomial of degree ≤ ν, for

m = 1, . . . , N + NAj , and σ|
R\[t̃j−1,t̃j−1+Aj ]

= 0},
ΠΩ−

j
,ν := {σ ∈ L2(R) : σ|(t̃j−ym,t̃j−ym−1)

is a polynomial of degree ≤ ν, for

m = 1, . . . , N + NAj , and σ|
R\[t̃j−Aj ,t̃j ]

= 0},

and y0, . . . , yNAj
are the points of the mesh ΛN,Aj . Our approximation space is then

VΩ,ν , the linear span of
⋃

j=1,...,n{VΩ+
j
,ν ∪ VΩ−

j
,ν}.

Let (·, ·) denote the usual inner product on L2(R), (χ1, χ2) :=
∫∞
−∞ χ1(s)χ2(s) ds,

χ1, χ2 ∈ L2(R). Then our Galerkin method approximation, ΦN ∈ VΩ,ν , is defined by

(ΦN , ρ) = (Ψβc

β , ρ) + (Kβc

β ΦN , ρ) for all ρ ∈ VΩ,ν ;(3.5)

equivalently,

ΦN − PNKβc

β ΦN = PNQΨβc

β ,(3.6)

where PN : L2(R) → VΩ,ν is the operator of orthogonal projection onto VΩ,ν . Equation
(3.5) can be written explicitly as a system of MN linear algebraic equations, where
MN , the dimension of VΩ,ν , i.e., the number of degrees of freedom, is given by

MN = 2(ν + 1)

n∑
j=1

(N + NAj ).(3.7)

By (3.3) and (3.4), where Ā := (A1 . . . An)1/n ≤ (A1 + · · · + An)/n,

MN < (ν + 1)Nn

[
3+

2 log Ā

q

]
≤ (ν + 1)Nn

[
3+

2

q
log min

(
αn3Nν+1

cos θ
,
k(b− a)

n

)]
.

Using an argument similar to that for the Galerkin method in [20], it can be
shown that, provided (3.2) holds, (3.6) is uniquely solvable and

‖(I − PNKβc

β )−1‖ ≤ Reβc

Reβc − ‖β − βc‖∞
,(3.8)

and thus

‖Φ∗ − ΦN‖2 ≤ Reβc

Reβc − ‖β − βc‖∞
‖Φ∗ − PNΦ∗‖2.(3.9)
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There is also a description in [20] of how one can perturb the original problem in such
a way that the condition (3.2) on β is forced to hold, and the solution of the perturbed
problem is arbitrarily close in an arbitrarily large bounded region to the solution of
the original problem. In any case, numerical results in [38] suggest that the Galerkin
scheme we propose is stable and convergent even when (3.2) does not hold. In this
case the bound (3.9) does not apply, however.

It remains to bound ‖Φ∗−PNΦ∗‖2, showing that our approximation space is well
adapted to approximate Φ∗. We introduce P+

N and P−
N , the orthogonal projection

operators from L2(R) onto ΠΩ+,ν and ΠΩ−,ν , respectively, where ΠΩ±,ν denotes the
linear span of

⋃
j=1,...,n ΠΩ±

j
,ν . We also define

f+(s) :=

{
f+
j (s− t̃j−1), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,

0, s ∈ R\(t̃0, t̃n],

f−(s) :=

{
f−
j (t̃j − s), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,

0, s ∈ R\(t̃0, t̃n].

Then we have the following error estimate.
Theorem 3.3. If (1.4) holds for some ε > 0, then

‖f+ − P+
N f+‖2 ≤ Cε,ν

n1/2

Nν+1

(
1 + log1/2

(
min

(
α
n3Nν+1

cos θ
, k(b− a)

)))
,

where α is the constant in (3.4), and the identical bound holds on ‖f− − P−
N f−‖2.

Proof. We prove the result for ‖f+ − P+
N f+‖2, the bound on ‖f− − P−

N f−‖2 can
be proved in a similar way. Recalling (3.4),

‖f+ − P+
N f+‖2

2 = ‖f+ − P+
N f+‖2

2,(ã,b̃)

=

n∑
j=1

[
‖f+ − P+

N f+‖2
2,(t̃j−1,t̃j−1+Aj)

+ ‖f+ − P+
N f+‖2

2,(t̃j−1+Aj ,t̃j)

]
.

Now, by Theorems 2.3 and 3.2,

‖f+ − P+
N f+‖2,(t̃j−1,t̃j−1+Aj)

≤ Cε,ν cos θ
1 + log1/2 Aj

Nν+1
.

If αn3Nν+1/ cos θ ≥ t̃j − t̃j−1, then Aj = t̃j − t̃j−1, in which case

‖f+ − P+
N f+‖2,(t̃j−1+Aj ,t̃j)

= 0.

If αn3Nν+1/ cos θ < t̃j − t̃j−1, then Aj = αn3Nν+1/ cos θ, and then, recalling the
definition of ΠΩ+,ν and Theorem 2.6,

‖f+ − P+
N f+‖2

2,(t̃j−1+Aj ,t̃j)
= ‖f+‖2

2,(t̃j−1+Aj ,t̃j)
≤ Cε

n6

cos2 θ

∫ ∞

Aj

s−3 ds

= Cε
n6

2 cos2 θ
A−2

j =
Cε

2α2
N−2(ν+1),

and recalling that α ≥ 1 the result follows.
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To use the above error estimate, note from (2.16) that Φ∗ = e+f+ + e−f−. But
e+P

+
N f+ + e−P

−
N f− ∈ VΩ,ν , and PNΦ∗ is the best approximation to Φ∗ in VΩ,ν . So

‖Φ∗ − PNΦ∗‖2 ≤ ‖Φ∗ − (e+P
+
N f+ + e−P

−
N f−)‖2

= ‖e+(f+ − P+
N f+) + e−(f− − P−

N f−)‖2

≤ ‖e+‖∞‖f+ − P+
N f+‖2 + ‖e−‖∞‖f− − P−

N f−‖2.

Applying Theorem 3.3 we obtain the following result.
Theorem 3.4. If (1.4) holds for some ε > 0, then

‖Φ∗ − PNΦ∗‖2 ≤ Cε,ν
n1/2

Nν+1

(
1 + log1/2

(
min

(
α
n3Nν+1

cos θ
, k(b− a)

)))
,

where α is the constant in (3.4).
Combining this result with the stability bound (3.9) we obtain our final error

estimate for the approximation of Φ by ΦN .
Theorem 3.5. If (1.4) holds for some ε > 0, and (3.2) is satisfied, then

‖Φ−ΦN‖2,(ã,b̃) = ‖Φ∗−ΦN‖2 ≤ Cε,νn
1/2(1 + log1/2(min(αn3Nν+1/ cos θ, k(b− a))))

(Reβc − ‖β − βc‖∞)Nν+1
,

where α is the constant in (3.4). Further, the number of degrees of freedom MN

satisfies

MN ≤ CνNn

[
1 + log min

(
αn3Nν+1

cos θ
,
k(b− a)

n

)]
.

We finish by considering the computation of an approximation to ut throughout
the upper half plane U , once the Galerkin solution ΦN has been computed. Re-
calling (2.13) and (2.14) we define φN ∈ L2(ã, b̃), an approximation to φ on (ã, b̃),
by

φN (s) := ΦN (s) + ψβj (s), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,

where ψβj is given explicitly by (2.7). Then, recalling that ut((y1, 0)) = φ(ky1),
we define an approximation to ut by replacing ut(y) by its approximation φN (ky1)
in (2.5), to give the approximation ut

N defined by

ut
N (x) := ut

βc
(x) + ik

∫ b

a

Gβc(x, (y1, 0))(β(y1) − βc)φN (ky1) dy1.(3.10)

From (2.2) and (2.3), and using properties of standard single-layer potentials [23],
it follows that ut

N ∈ C2(U) ∩ C(U) and satisfies the Helmholtz equation (1.1) in U .
Further, from Theorem 3.5 we deduce the following error estimate.

Theorem 3.6. If (1.4) holds for some ε > 0, and (3.2) is satisfied, then

|ut(x) − ut
N (x)| ≤ Cε,νn

1/2(1 + log1/2(min(αn3Nν+1/ cos θ, k(b− a))))

(Reβc − ‖β − βc‖∞)Nν+1

for x ∈ U , where α is the constant in (3.4).
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Proof. Subtracting (3.10) from (2.5) and using the Cauchy–Schwarz inequality
and the definitions of Φ∗ and φN , we see that

|ut(x) − ut
N (x)| =

∣∣∣∣∣
∫ b̃

ã

Gβc(x, (t/k, 0))(β(t/k) − βc)(Φ(t) − ΦN (t)) dt

∣∣∣∣∣
≤ ‖β − βc‖∞

{∫ ∞

−∞
|Gβc

(x, (t/k, 0))|2 dt

}1/2

‖Φ − ΦN‖2,(ã,b̃).

Now, defining H = kx2 and using (2.2) we see that for H ≥ 1/2 it holds that

∫ ∞

−∞
|Gβc(x, (t/k, 0))|2 dt ≤ Cε(1 + H)2

∫ ∞

−∞

dt

(t2 + H2)3/2

= 2Cε
(1 + H)2

H2

∫ ∞

0

ds

(1 + s2)3/2
≤ Cε

∫ ∞

0

ds

(1 + s2)3/2
.

Using (2.2) and (2.3) we see that, for 0 ≤ H < 1/2,

∫ ∞

−∞
|Gβc(x, (t/k, 0))|2 dt ≤ Cε

(∫ ∞

√
1−H2

(1 + H)2dt

(t2 + H2)3/2
+

∫ √
1−H2

0

(
1 − 1

2
log(t2 + H2)

)
dt

)

≤ Cε

(
9

4

∫ ∞

√
3/2

dt

t3
+

∫ 1

0

(1 − log t) dt

)
.

Thus |ut(x) − ut
N (x)| ≤ Cε‖Φ − ΦN‖2,(ã,b̃), and the result follows from

Theorem 3.5.

4. Implementation and numerical results. We restrict our attention in this
section to the case ν = 0. The implementation of the scheme is similar for higher
values of ν. Recalling (3.5), the equation we wish to solve is

(ΦN , ρ) − (Kβc

β ΦN , ρ) = (Ψβc

β , ρ) for all ρ ∈ VΩ,0.(4.1)

Writing ΦN as a linear combination of basis functions of VΩ,0, we have ΦN (s) =∑MN

j=1 vjρj(s), where MN is given by (3.7) and ρj is the jth basis function, defined by

ρj(s) :=
eisχ[s+

j̃
,s+

j̃−1
)(s)

(s+

j̃
− s+

j̃−1
)1/2

, j = j̃ + 2

p−1∑
m=1

(N + NAm
), j̃ = 1, . . . , N + NAp

,

ρj(s) :=
e−isχ[s−

j̃
,s−

j̃−1
)(s)

(s−
j̃
− s−

j̃−1
)1/2

, j = j̃+N+NAp +2

p−1∑
m=1

(N + NAm), j̃ = 1, . . . , N + NAp ,

for p = 1, . . . , n, where s+
l ∈ Ω+

p , s−l ∈ Ω−
p for l = 0, . . . , N +NAp , and χ[s1,s2) denotes

the characteristic function of the interval [s1, s2). Equation (4.1) then becomes the
linear system

MN∑
j=1

vj((ρj , ρm) − (Kβc

β ρj , ρm)) = (Ψβc

β , ρm), m = 1, . . . ,MN .(4.2)

If k is large compared to N , then, from the definition of Aj in (3.4), it is clear
that the two meshes Ω+

j and Ω−
j will not overlap. In this case the basis functions ρj ,
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j = 1, . . . ,MN , form an orthonormal basis for VΩ,ν (this is not true for the Galerkin
method described in [20]), and hence the condition number of our linear system (4.2)
will be bounded by (see, e.g., [2, section 3.6.3])

‖(I − PNKβc

β )‖2‖(I − PNKβc

β )−1‖2 ≤ (1 + ‖Kβc

β ‖2)

(
Reβc

Reβc − ‖β − βc‖∞

)

≤
(

1 +
‖β − βc‖∞

Reβc

)(
Reβc

Reβc − ‖β − βc‖∞

)

=
Reβc + ‖β − βc‖∞
Reβc − ‖β − βc‖∞

,(4.3)

where we have used (3.8) (under the assumption that (3.2) holds) and the facts that

‖Kβc

β ‖2 ≤ ‖β − βc‖∞/Reβc (see, e.g., [20, (3.2)]) and ‖PN‖2 = 1. The fact that
we can establish such a bound on the condition number of our linear system is in
direct contrast to some other schemes in the literature where the approximation space
consists of plane wave basis functions, e.g., [41, 44, 45], where serious difficulties due
to ill-conditioning have been reported.

To evaluate the coefficients (Kβc

β ρj , ρm) and (Ψβc

β , ρm) of (4.2) we must compute
some integrals numerically. The exact formulas are given in [38], but note that after
some integrations are carried out analytically, the most difficult of these take the
forms ∫ ∞

0

(i − r)F (r)

r(r − 2i)
dr,

∫ ∞

0

(1 − ers)F (r)

r2
dr,

∫ ∞

0

(1 − ers)F (r)

r(r − 2i)
dr,

where s < 0 and F (r) is given by (2.20). These integrals are similar in difficulty to in-
tegral representations for the Green’s function Gβ∗ , for which very efficient numerical
schemes are proposed in [18]. The integrands are not oscillatory and the coefficients
do not become more difficult to evaluate as k → ∞.

As a numerical example, we take θ = π/4, n = 1, and

β(s) =

{
0.505 − 0.3i, s ∈ [−mλ,mλ],

1, s /∈ [−mλ,mλ],

for m = 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, and 5120, where k = 1 and
λ = 2π is the wavelength. This experiment is equivalent to fixing the interval [a, b] =
[t0, t1] and decreasing the wavelength. The assumption (3.2) is satisfied, so that
Theorem 3.5 holds. For each value of m, we compute ΦN with ν = 0, α = 25

√
2

(so that αn3/ cos θ =
√

2α = 50, this value chosen experimentally) and N = 2, 4,
8, 16, 32, 64. For the purpose of computing errors, we take the “exact” solution
(Φ∗) to be the solution computed with

√
2α = 1000 and N = 128. Whereas for the

scheme of [20] the number of degrees of freedom needed to maintain accuracy increases
logarithmically with respect to k(b− a) as k(b− a) → ∞, here the number needed to
maintain accuracy remains bounded as k(b− a) → ∞, as we shall see below.

In Figure 4.1 we plot |Φ∗| and |Φ2| for m = 10. Noting the logarithmic scales on
the plots, it is clear that |Φ∗| is highly peaked near the discontinuities in impedance.
Recalling that Φ is a correction term, namely, the difference between the true solution
and the solution that there would be if the impedance were constant everywhere, the
reason for this is clear. On the plot of |Φ2| we also show the two grids Ω+

1 and Ω−
1 . For



WAVENUMBER INDEPENDENT BOUNDARY ELEMENT METHOD 2471

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

s/λ

|Φ
* (s

)|

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

s/λ

|Φ
2(s

)|

Ω
1
+

Ω
1
−

Fig. 4.1. Plot of |Φ∗| and |Φ2|, m = 10, so that b− a = 20λ.
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Fig. 4.2. Plot of |ΦN |, N = 2, 4, 8, 16, 32, 64 for m = 160, so that b− a = 320λ.

s/λ less than about −6 and for s/λ greater than about 6 the grids do not overlap, and
on these regions Φ2(s) = eis× (piecewise constants) and Φ2(s) = e−is× (piecewise
constants), respectively. Thus |Φ2(s)| is piecewise constant where the grids do not
overlap, and this can be clearly seen in Figure 4.1. Where the grids overlap, (roughly
between s/λ = −6 and s/λ = 6) the oscillatory nature of Φ2(s) is more apparent.

In Figure 4.2 we plot |ΦN | for m = 160 and for N = 2, 4, 8, 16, 32, 64. Again
noting the logarithmic scales on each plot, |ΦN | is highly peaked near the impedance
discontinuities, much more so than for m = 10. As N increases so we discretize a larger
part of the domain [−mλ,mλ], as well as having a finer mesh near the discontinuities
in impedance at −mλ, mλ. For N = 2, 4, 8, 16 the piecewise constant approximation
can be clearly seen, as the grids Ω+

1 and Ω−
1 do not overlap. For N = 32 the grids

overlap between about sλ = −100 and sλ = 100. For N = 64, each grid covers the
whole domain [−mλ,mλ].
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Fig. 4.3. Plot of |Φ∗| and |Φ∗ − ΦN |, N = 4, 16, 64 for m = 5120, so that b− a = 10240λ.

Table 4.1

‖Φ∗ − ΦN‖2/‖Φ∗‖2 for m = 10, 160, and 5120, and increasing N .

(b− a)/λ N MN ‖Φ∗ − ΦN‖2/‖Φ∗‖2 EOC COND

20 2 18 1.635 × 10−1 1.1 1.8
4 42 7.393 × 10−2 1.1 2.6
8 90 3.525 × 10−2 1.0 8.1

16 182 1.773 × 10−2 1.0 94.0
32 370 8.875 × 10−3 1.0 625.5
64 742 4.557 × 10−3 2551.6

320 2 18 1.647 × 10−1 1.2 1.8
4 46 7.399 × 10−2 1.0 2.0
8 106 3.622 × 10−2 1.0 2.0

16 240 1.790 × 10−2 1.0 2.1
32 530 8.662 × 10−3 0.9 2.1
64 1094 4.537 × 10−3 92.7

10240 2 18 1.639 × 10−1 1.2 1.8
4 46 6.918 × 10−2 0.8 2.0
8 106 3.881 × 10−2 1.2 2.0

16 240 1.751 × 10−2 1.1 2.1
32 530 8.076 × 10−3 0.8 2.1
64 1154 4.579 × 10−3 2.1

In Figure 4.3 we plot |Φ∗| and |Φ∗ − ΦN | for m = 5120 and for N = 4, 16 and
64. In this case the interval [−mλ,mλ] is over 10,000 wavelengths long, and so even
for N = 64 the grids Ω+

1 and Ω−
1 do not overlap. As m increases, so |Φ∗| becomes

even more peaked, and the benefit of clustering the grid points around the impedance
discontinuities becomes even more apparent.

For m = 10, 160, and 5120 the relative L2 errors ‖Φ∗ − ΦN‖2/‖Φ∗‖2 are shown
in Table 4.1. (All L2 norms are computed by approximating by discrete L2 norms,
sampling at 100,000 evenly spaced points in the relevant interval for the function
whose norm is to be evaluated.) The estimated order of convergence is given by

EOC := log2

(
‖Φ∗ − ΦN‖2

‖Φ∗ − Φ2N‖2

)
.
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Table 4.2

‖Φ∗ − Φ16‖2/‖Φ∗‖2 for increasing interval length.

(b− a)/λ MN ‖Φ∗ − Φ16‖2/‖Φ∗‖2 ‖Φ∗ − Φ16‖2 COND

10 162 1.746 × 10−2 7.936 × 10−3 181.5
20 182 1.773 × 10−2 8.059 × 10−3 94.0
40 204 1.775 × 10−2 8.068 × 10−3 24.7
80 226 1.766 × 10−2 8.027 × 10−3 8.2

160 240 1.761 × 10−2 8.000 × 10−3 2.1
320 240 1.790 × 10−2 8.122 × 10−3 2.1
640 240 1.749 × 10−2 7.916 × 10−3 2.1

1280 240 1.650 × 10−2 7.435 × 10−3 2.1
2560 240 1.616 × 10−2 7.216 × 10−3 2.1
5120 240 1.556 × 10−2 6.831 × 10−3 2.1

10240 240 1.751 × 10−2 7.433 × 10−3 2.1

For this example, Theorem 3.5 predicts that

‖Φ∗ − ΦN‖2 ≤ C

N
(1 + log1/2(min(

√
2αN, 2mλ))),

so that we expect EOC ≈ 1, and this is what we see. For each value of m, the number
of degrees of freedom MN increases approximately in proportion to N logN as N
increases until the two grids Ω+

1 and Ω−
1 each cover the whole domain [−mλ,mλ]

(i.e., until
√

2αN ≥ 2mλ), after which MN increases only proportionally to N as N
increases further. For m = 10, the whole domain is covered by the grids for N = 4;
for m = 160 this occurs for N = 64 but for m = 5120 the two grids do not overlap
even for N = 64. The condition numbers for the matrix of the linear system (4.2)
(denoted by COND) satisfy the bound (4.3), which predicts that COND ≤ 3.75 if the
grids do not overlap, i.e., if N ≤ 16 for m = 160, for all values of N when m = 5120.
For N ≤ 32 the number of degrees of freedom is the same for m = 160 and m = 5120,
and yet the relative L2 error is almost the same for the two cases b − a = 320λ and
b− a = 10240λ.

In Table 4.2 we fix N = 16 and show ‖Φ∗ − Φ16‖2/‖Φ∗‖2 and also ‖Φ∗ − Φ16‖2

for increasing values of m = (b − a)/2λ. As m increases, the number of degrees
of freedom increases logarithmically for those values of m for which

√
2αN ≥ 2mλ,

i.e., for m ≤ 40, but as m increases further for m ≥ 80 the number of degrees of
freedom remains constant, and yet both the relative and the actual L2 error also
remain roughly constant as m grows. For m = 5120 the interval is of length greater
than 10,000 wavelengths, and yet we achieve almost 1% relative error with only 240
degrees of freedom. As in Table 4.1, the condition number of the linear system (4.2)
is bounded by (4.3), so that COND ≤ 3.75, when m is sufficiently large that the grids
Ω+

1 and Ω−
1 do not overlap, i.e., for m ≥ 160.

In the last figure and table we show numerical computations of the total field
above the boundary, i.e., ut

N (x) given by (3.10). We note that computing ut
N (x)

requires, for each point x, the computation of the highly oscillatory integral (3.10),
which is evaluated here using accurate but slow “black box” techniques. In the future
it is hoped that more efficient quadrature schemes can be developed, taking advantage
of the fact that the oscillatory parts of both Gβc and φN are known explicitly. We
note that Iserles [34, 35] has recently proposed and analyzed Filon-type quadrature
methods appropriate for the efficient evaluation of highly oscillatory integrals, which
we expect may be appropriate.



2474 S. LANGDON AND S. N. CHANDLER-WILDE

−10 −5 0 5 10

0.8

1

1.2

(i
)

−20 −10 0 10 20

0.8

1

1.2

(i
i)

−40 −20 0 20 40

0.8

1

1.2

(i
ii)

−50 0 50

0.8

1

1.2

(i
v)

−100 0 100

0.8

1

1.2

(v
)

−200 0 200

0.8

1

1.2

(v
i)

Fig. 4.4. |ut(x)| (on the y-axis) against x1/λ (on the x-axis) for x = (x1, λ), x1 ∈ [−2mλ, 2mλ],
plotted for m = 5 (plot (i)), m = 10 (plot (ii)), m = 20 (plot (iii)), m = 40 (plot (iv)), m = 80 (plot
(v)), and m = 160 (plot (vi)).

Table 4.3

|ut(x) − ut
N (x)| for m = 10 and m = 160, and increasing N .

x = (mλ/2, λ) x = (mλ, λ)

m N |ut(x) − ut
N (x)| EOC |ut(x) − ut

N (x)| EOC

10 2 3.894 × 10−4 1.5 1.108 × 10−4 1.3
4 1.421 × 10−4 2.5 4.514 × 10−5 3.5
8 2.432 × 10−5 1.0 4.068 × 10−6 0.2

16 1.183 × 10−5 2.7 3.448 × 10−6 0.8
32 1.841 × 10−6 1.0 2.014 × 10−6 1.1
64 9.350 × 10−7 9.108 × 10−7

160 2 1.059 × 10−4 2.0 5.278 × 10−4 2.6
4 2.572 × 10−5 0.4 8.790 × 10−5 2.8
8 1.978 × 10−5 0.0 1.283 × 10−5 0.3

16 1.981 × 10−5 2.1 1.060 × 10−5 0.8
32 4.474 × 10−6 0.9 6.029 × 10−6 3.4
64 2.431 × 10−6 5.634 × 10−7

In Figure 4.4 we plot |ut
128(x)| for x = (x1, λ), x1 ∈ [−2mλ, 2mλ], i.e., the absolute

value of the total acoustic field one wavelength above the plane, as computed with√
2α = 1000 and N = 128, for m = 5 (plot (i)), m = 10 (plot (ii)), m = 20 (plot (iii)),

m = 40 (plot (iv)), m = 80 (plot (v)), and m = 160 (plot (vi)). In each plot the x-axis
represents x1/λ and the y-axis represents |ut(x)|. One can clearly see that the wave
diffracted from the impedance discontinuities at x = (−mλ, 0) and x = (mλ, 0) is a
significant component of the total field only within a small number of wavelengths
of the impedance discontinuities. Figure 1.1 shows a surface plot of the incident,
scattered and total wave fields up to 10 wavelengths above the plane for this same
example with m = 5.

We also computed ut
N (x) for x = (mλ/2, λ) and x = (mλ, λ) for m = 10 and

m = 160 and for
√

2α = 50, N = 2, 4, 8, 16, 32, and 64. Taking the values for
α = 500

√
2, N = 128 to be the “exact” values, the errors are shown in Table 4.3. The
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estimated order of convergence is calculated as

EOC := log2

(
|ut(x) − ut

N |
|ut(x) − ut

2N |

)
,

and from Theorem 3.6 we would expect EOC ≈ 1. The convergence rate is rather
irregular, but broadly speaking it is at least as good as expected, and the actual and
relative errors are both very small. At every point x it holds that 0.7 < |ut(x)| < 0.9.

Further numerical results for θ ≈ π/2, i.e., grazing incidence, can be found in [39].

5. Conclusions and discussion. In this paper we have presented a Galerkin
boundary element method for an acoustic scattering problem, and we have demon-
strated, via both an a priori error analysis and numerical examples, that the number
of degrees of freedom required for an accurate solution is bounded independently of
the wavenumber. Our numerical method and analysis are for a specific scattering
problem, namely the 2D problem of scattering by an unbounded flat surface with
piecewise constant surface impedance, this problem being important in the theory of
outdoor noise propagation and in an electromagnetic context.

As we discussed in our review of the literature, our method is an instance of
the general idea of expressing the solution of the scattering problem as a finite sum
of known oscillatory terms (given by the leading order behavior of the solution as
k → ∞) multiplied by unknown more slowly oscillating terms, these smoother com-
ponents much more suitable for approximation by standard finite element functions
than the original solution. Our results add to the evidence of the theory and numeri-
cal experiments of other authors [1, 29, 24, 10, 12] that this general methodology has
promise for a range of scattering problems.

Specifically, we anticipate that many of the details of our numerical scheme and
analysis will be applicable to other interesting scattering problems. This is clearest in
the case of 2D acoustic scattering by a convex polygon, in the case that a homogeneous
Dirichlet condition or an impedance boundary condition with constant impedance
holds on each side. For this problem we expect that the behavior of the total field
on each side of the polygon (after subtraction of the leading order high frequency
asymptotics given by physical optics) will be very similar to the behavior quantified
in Theorems 2.3 and 2.6. Thus the same mesh may be applicable and much of the
same analysis. For more discussion of scattering by a 2D polygon see [20, section 6],
[19].

Moreover, we expect that our mesh design will be relevant more generally, at
least for representing certain components of the total field. In the case of three-
dimensional scattering by convex polyhedra it seems to us likely that the mesh we
propose will be useful in representing the variation of edge scattered waves in the
direction perpendicular to the edge. In the case of 2D convex curvilinear polygons
something close to the mesh we use on each interval [tj−1, tj ] may be appropriate
on each side of the polygon, especially at higher frequencies when our mesh becomes
more localized near the ends of the intervals just as the waves diffracted by the corners
become more localized near the corners.
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Abstract. We analyze the classical discontinuous Galerkin method for “implicit” parabolic
equations. Symmetric error estimates for schemes of arbitrary order are presented. The ideas de-
veloped allow certain assumptions frequently required in previous work to be relaxed. For example,
different discrete spaces are allowed at each time step, and the spatial operator is not required to be
self-adjoint or independent of time. Error estimates are posed in terms of projections of the exact
solution onto the discrete spaces and are valid under the minimal regularity guaranteed by the nat-
ural energy estimate. These projections are local and enjoy optimal approximation properties when
the solution is sufficiently regular.
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1. Introduction. We consider implicit parabolic partial differential equations
of the form

(M(t)u)t + A(t)u = F (t), u(0) = u0.(1.1)

The operators act on Hilbert spaces related through the standard pivot construction,
U ↪→ H � H ′ ↪→ U ′, where each embedding is continuous and dense. Then, A(.) :
U → U ′ is a linear map and F (.) ∈ U ′. It is assumed that M(.) : H → H is a
self-adjoint positive definite operator.

Conservation laws for systems undergoing diffusion may take the form of (1.1)
when the capacity changes with time; for example, in a porous medium the porosity
could change as the medium collapses due to oil being extracted from the reservoir.
Classical parabolic equations (i.e., equations with M the identity) also take the form of
(1.1) under a time-dependent change of coordinates, common examples being diffusion
on surfaces (more generally manifolds) which are in motion and the Lagrange (or
characteristic) Galerkin formulation of the convection diffusion equation [10, 19].

Here the classical discontinuous Galerkin (DG) scheme for approximating solu-
tions of (1.1) is analyzed, and fully discrete error estimates are derived under minimal
regularity assumptions. The class of DG schemes considered is classical in the sense
that the discrete solutions may be discontinuous in time but are conforming in space,
i.e., are in (a subspace of) U at each time. Our analysis extends the ideas intro-
duced in [6] and addresses the following issues which have not yet been adequately
considered in the literature.
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• A systematic treatment of DG approximations of implicit parabolic equations
of the form (1.1) has not been considered in the past.

• The natural setting for (1.1) involves time dependent norms (Hilbert scales);
this gives rise to technical problems not encountered in the analysis of classical
parabolic equations.

• The operator A(.) may depend upon time and is not required to be self-
adjoint.

• The subspaces of U used for the DG approximations may be different on each
time interval (tn−1, tn]. This adds a significant complication to the analysis
which is present even when A = 0. Indeed, the first step in our analysis is
to consider the DG scheme for an auxiliary equation which reduces to an
implicit ODE when the coercivity constant vanishes. This limiting case plays
an important role in the error analysis.
Different subspaces are an essential ingredient of adaptive strategies used
in conjunction with a posteriori error estimates to give guaranteed error
bounds. Retriangulation is also necessary for many algorithms based upon a
Lagrangian coordinate system; below we present an example.

• The operator A(.) is not required to be strictly coercive; semicoercivity of the
form 〈A(.)u, u〉 ≥ c|u|2U(.) − C‖u‖2

H(.) is assumed. Here |.|U(.) is a seminorm

such that ‖.‖2
U(.) = |.|2U(.) + ‖.‖2

H(.). This causes significant problems in the
analysis of DG schemes since the classical Gronwall argument, used for the
continuous problem, fails in the discrete setting. This failure is due to the
elementary observation that functions of the form χ[0,t̂)uh are not polynomial

in time unless t̂ is a partition point, so these functions are not available as
test functions in the discrete setting.1 Below these issues are circumvented by
constructing polynomial approximations to the characteristic functions χ[0,t̂).

As stated above, our analysis does not require any regularity above and beyond the
natural bounds that follow from the usual energy estimate. This is essential for control
problems where solutions of the dual problem typically will not exhibit any additional
regularity. Care is taken to keep track of how the various constants depend upon the
coercivity constant of A(.). This is important for the analysis of problems like the
convection diffusion equation where the coercivity constant is small.

We present an example which can be analyzed within the general framework
developed here but falls outside of the theory developed, for example, in Thomée’s
text [28].

Example: Diffusion on manifolds. As an illustrative example, consider diffusion
on a cell membrane, S(t) ⊂ R

3, which is being transported in an ambient fluid with
velocity V = V(t, x). In order to avoid triangulating the manifold at each step, a
numerical scheme may compute the triangulation of a reference configuration, Sr, and
at each time t construct a mapping x(t, .) : Sr → S(t) ⊂ R

3. The reference configura-
tion is typically S(0) or possibly the unit sphere S2. If Sr is locally parameterized by
coordinates X ∈ U ⊂ R

2, the diffusion equation with diffusion constant σ > 0 takes
the form

ut − (1/J)divX

(
σJ(FTF )−1∇Xu

)
= 0,(1.2)

where F is the 3 × 2 matrix with components Fiα = ∂xi/∂Xα and J =
√

det(FTF )

1Here χ[0,t̂) is the characteristic function equal to 1 on [0, t̂) and equal to zero otherwise.
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is the determinant of the first fundamental form. The determinant J satisfies

Jt = J (I − n ⊗ n) · (∇xV) = J
∑
ij

(δij − ninj)(∂Vi/∂xj),

where n = n(t,X) is the normal to S(.). It follows that the diffusion equation is of
the form (1.1) with M(.)u = Ju and

A(.)u = −(I − n ⊗ n) · (∇xV)uJ − divX

(
σJ(FTF )−1∇Xu

)
.

As S(.) and the solution u(.) evolve, adaptive error control may modify the triangula-
tion of Sr giving rise to different discrete subspaces on different intervals (tn−1, tn] of
[0, T ]. It is also possible that S(t) will undergo large shears in which case matrix FTF
will become ill conditioned; in this situation the geometry of Sr no longer resembles
that of S(t), so the reference configuration needs to be updated and retriangulated.
This example is considered in more detail in section 6 below.

1.1. Related results. The DG method was first introduced by Lasaint and
Raviart [17] to simulate neutron transport. There is an abundant literature concern-
ing applications of the DG scheme in hyperbolic problems; see, e.g., [5, 15, 29] and
references within. The DG method for ordinary differential equations was considered
by Delfour, Hager, and Trochu in [7]. They showed that the DG scheme was super
convergent at the partition points (order 2k + 2 for polynomials of degree k).

In the context of parabolic equations DG schemes were first analyzed for linear
parabolic problems by Jamet in [14] where O(τk) results were proved and then by
Eriksson, Johnson, and Thomée [13] where O(τ2k−1) estimates are established at the
partition points for smooth solutions. An excellent exposition of their results and,
more generally, the DG method for parabolic equations can be found in Thomée’s
book [28]. In [28] nodal and interior estimates are presented in various norms. One
may also consult [20] for the analysis of a related formulation based on the backward
Euler scheme. The relation between the DG scheme and adaptive techniques was
studied in [11] and [12]. Finally, some results concerning the analysis of parabolic
integro-differential equations by discontinuous Galerkin method are presented in [18]
(see also references therein).

In [10] DuPont and Liu introduce the concept of “symmetric error estimates” for
parabolic problems. They define such an error estimate to be one of the form

|‖u− uh|‖ ≤ C inf
wh∈Uh

|‖u− wh|‖,

where u and uh are the exact and approximate solutions respectively, |‖.|‖ is an ap-
propriate norm, and Uh is the discrete subspace in which approximation solutions
are sought. While estimates of this form are standard for elliptic problems, this is
not the case for evolution problems. For example, error estimates for evolution prob-
lems approximated by the implicit Euler scheme frequently involve terms of the form
‖utt‖L2(Ω). Symmetric error estimates are useful for problems where the solution u
may not be very regular, such as control problems, and are used to develop a posteri-
ori error estimates for adaptive schemes. Symmetric error estimates for moving mesh
finite element methods were studied in [10, 19] (see also references therein). Mesh
modification techniques for finite elements have also been introduced in [21] and [22].
For some earlier work on convection-dominated problems based on the methods of
characteristics and mesh modification, one may consult [8] and [9], respectively.
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An alternative to the symmetric error estimates are estimates of the form

|‖u− uh|‖ ≤ C|‖u− Phu|‖,(1.3)

where Ph : U → Uh is a projection which exhibits optimal interpolation properties if
u is sufficiently smooth. Estimates of this form enjoy the same advantages of those
proposed by DuPont and Liu. Theorem 5.1 below provides an estimate of the form
(1.3) for implicit parabolic equations of the form (1.1), where the projection Phu is
the numerical approximation of an auxiliary equation using the DG scheme and is
not local. However,

|‖u− Phu|‖ ≤ |‖u− P
loc
h u|‖ + |‖Phu− P

loc
h u|‖,

where P
loc
h is a local projection, so the first term can be estimated using classical

interpolation theory. The second term, |‖Phu−P
loc
h u|‖, vanishes if the same subspace

of U is used in each partition (tn−1, tn); otherwise, it depends solely upon the jump
in the interpolant of the exact solution at the partition points {tn}Nn=0. The size of
the constant C in (1.3) and its dependence on various constants play an important
role; below we are careful to state the dependence of the constant upon the various
coercivity constants and bounds assumed for the operator A.

Error estimates for Lagrange–Galerkin approximations of convection dominated
problems for divergence-free velocity fields vanishing on the boundary are presented
in [4]. Issues related to the stability of Lagrange–Galerkin approximations are also
discussed in [23]. Recently there has been a lot of work on the development and
analysis of discontinuous (in space) Galerkin methods for elliptic problems. A com-
prehensive survey and comparison of this work can be found in [3], which contains
many references related to this approach.

1.2. Outline. In section 2 we introduce spaces and structural assumptions on
the operators which guarantee that (1.1) is a well-posed implicit parabolic equation.
Discrete spaces used for the DG approximation of (1.1) are introduced in section 3,
and “discrete characteristic functions” are constructed on these spaces. These were
introduced in [6] and are modified here to accommodate the time-dependent spaces.

We formulate and analyze the DG scheme for an auxiliary equation in section 4.
This section focuses on the difficulties that arise in the presence of time-dependent
norms and when different subspaces of U are used at every time step. Finally in
section 5 error estimates are developed for the DG approximation of (1.1). The
approximate solution of (1.1) is first compared with that of the auxiliary equation in
Theorem 5.1. The results of section 4 are then used to obtain error estimates which
take the form of the sum of (i) the “local truncation error,” (ii) projection errors
between different subspaces, and (iii) errors in the initial data.

One technical distinction between the error estimate developed for the classical
parabolic problem in [6, Theorem 3.1] and Theorem 5.1 of section 5 is that the latter
assumes the existence of an inverse hypothesis of the form ‖uh‖U(t) ≤ Cinv(h)‖uh‖H(t)

for uh in the discrete subspaces of U . In Theorem 5.1 the product τCinv(h) enters into
the error estimate where τ is the time step size. For classical second order parabolic
problems, this term will be of order O(1) if τ ∼ h and quasi-uniform finite element
meshes with no small angles are used.

1.3. Notation. Spaces H(t) = (H, ‖.‖H(t)) and U(t) = (U, ‖.‖U(t)) with time
dependent norms are used. The pivot spaces H(t) have inner product (u, v)H(t) =
(M(t)u, v)H , and the norms on the these spaces are often denoted by |.|H(t) ≡ ‖.‖H(t).
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Each norm and inner product will be explicitly subscripted; while this is rather cum-
bersome, it helps to minimize confusion due the plethora of spaces and projections.
Notation of the form L2[0, T ;U(.)], H1[0, T ;U ′(.)], etc., is used to indicate the tem-
poral regularity of functions with values in U(.), U ′(.), etc.

Approximations of (1.1) will be constructed on a partition 0 = t0 < t1 < · · · <
tN = T of [0, T ] with time step size denoted by τn = tn − tn−1. On each interval
of the form (tn−1, tn] a subspace Un

h of U is specified, and the approximate solutions
will lie in the space

Uh = {uh ∈ L2[0, T ;U(.)] | uh|(tn−1,tn] ∈ Pk(t
n−1, tn;Un

h )}.

Here Pk(t
n−1, tn;Un

h ) is the space of polynomials of degree k or less having values in
Un
h . Notice that, by convention, functions in Uh have been chosen to be left continuous

with right limits. We will write un for uh(tn) = uh(tn−) and let un
+ denote u(tn+). This

notation is also used with functions like the error e = u− uh. The exact solution, u,
is assumed to be in C[0, T ;H(.)] so that the jump in the error at tn, denoted by [en],
is equal to [un] = un

+ − un.

2. Implicit parabolic equations. In this section structural assumptions re-
quired for the analysis of the implicit parabolic problem

(M(t)u)t + A(t)u = F (t), u(0) = u0,(2.1)

are introduced. To characterize the time dependence of A(.), equivalent norms on U of
the form ‖u‖2

U(t) = |u|2H(t)+|u|2U(t) are considered where |.|U(t) is a seminorm on U (the

principle part) and |.|H(t) = (M(t)., .)H is a norm on H with Riesz map (the symmetric
positive operator) M(t). Let a(.;u, v) denote the natural bilinear form associated with
A(.), and assume that the spaces (U(t), H(t)) satisfy U(t) ↪→ H(t) ↪→ U ′(t), where
each embedding is dense and continuous and the embedding constant is independent
of time.

2.1. Structural assumptions. The existence theory for implicit evolution equa-
tions of the form (2.1) almost always requires the operators M(.) to be Riesz maps
for a Hilbert space [26, 27], and this assumption is used in the analysis below.

Assumption 1. The operators M(·) are nonnegative and self-adjoint, and there
exist constants c(t) > 0 such that

(M(t)u, u)H ≥ c(t)|u|2H .

It follows for each t ≥ 0 that (M(t)u, v) is an inner product on H, which is denoted
by (., .)H(t).

Definition 2.1. H(t) is the Hilbert space with underlying set H and inner
product (u, v)H(t) = (M(t)u, v)H .

With this notation it is possible to state the structural hypotheses which guarantee
that (2.1) is parabolic in nature and facilitate the development of error estimates.

Assumption 2.

1. Smoothness of M(t): For each t > 0 there exists a symmetric bilinear form,
μ(t, ., .), satisfying

d

dt
(u, v)H(t) = (ut, v)H(t) + (u, vt)H(t) + μ(t;u, v)
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for u, v ∈ H1[0, T ;H], and there exists Cμ > 0 independent of time such that

|μ(t, u, v)| ≤ Cμ|u|H(t)|v|H(t).

2. Equivalence of norms on U(t): For each 0 < τ ≤ T there exists Cu > 0 such
that for all s, t ≥ 0 with |t− s| < τ

1/Cu ≤ ‖v‖U(t)/‖v‖U(s) ≤ Cu ∀ v ∈ U.

3. Continuity of the bilinear form and data: There exist nonnegative constants
0 ≤ ca ≤ Ca such that

|a(t;u, v)| ≤
(
ca|u|2U(t) + Ca|u|2H(t)

)1/2(
ca|v|2U(t) + Ca|v|2H(t)

)1/2

,

and there exists a (weighted dual) norm ‖.‖∗ equivalent to ‖.‖U ′ such that

|〈F (t), u〉| ≤ ‖F (t)‖∗
(
ca|u|2U(t) + Ca|u|2H(t)

)1/2

.

4. Coercivity of the bilinear form: There exist constants Cα ∈ R and cα > 0
such that

a(t;u, u) ≥ cα|u|2U(t) − Cα|u|2H(t).

In this context the natural weak statement of (2.1) is to find u ∈ U ≡ L2[0, T ;U(.)]∩
H1[0, T ;U ′(.)] such that

(u(T ), v(T ))H(T ) +

∫ T

0

(
− (u, vt)H(t) + a(.;u, v)

)

= (u0, v(0))H(0) +

∫ T

0

〈F, v〉 ∀ v ∈ U .(2.2)

2.2. Properties of H(t). The smoothness assumption 2.1 guarantees that the
norms on the pivot spaces H(t) vary continuously with t. The following lemma quan-
tifies this and will be used ubiquitously below.

Lemma 2.2. Let w, z ∈ H and s ≤ t. Then eCμ(s−t) ≤ |z|2H(t)/|z|2H(s) ≤ eCμ(t−s)

and

|(w, z)H(t) − (w, z)H(s)| ≤ (t− s)CμeCμ(t−s)|w|H(ξ1)|z|H(ξ2), ξ1, ξ2 ∈ [s, t].

Proof. The differentiability of (., .)H(.) implies

(w, z)H(t) − (w, z)H(s) =

∫ t

s

d

dξ
(w, z)H(ξ) dξ =

∫ t

s

μ(ξ, w, z).

Putting w = z gives

|z|2H(t) = |z|2H(s) +

∫ t

s

μ(ξ, z, z) dξ ≤ |z|2H(s) + Cμ

∫ t

s

|z|2H(ξ) dξ.

Gronwall’s inequality then shows |z|2H(t) ≤ |z|2H(s)e
Cμ(t−s). Since this argument is

symmetric in s and t, the first inequality follows.
The second inequality now follows from the intermediate value theorem:

|(w, z)H(t) − (w, z)H(s)| ≤ Cμ

∫ t

s

|w|H(ξ)|z|H(ξ) dξ = Cμ(t− s)|w|H(ξ̂)|z|H(ξ̂)

for some ξ̂ ∈ [s, t]. Upon introducing a factor of eCμ(t−s) each instance of ξ̂ on the
right may be replaced by any ξ ∈ [s, t].
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3. Discrete spaces. Discrete subspaces Uh of L2[0, T ;U(.)] are constructed from
a partition 0 = t0 < t1 < · · · < tN = T and a sequence of subspaces {Un

h }Nn=1 of U as

Uh = {uh ∈ L2[0, T ;U(.)] | uh|(tn−1,tn] ∈ Pk(t
n−1, tn;Un

h )}.

Projections of H onto the subspaces Un
h with respect to the norms H(t) appear in

the analysis below; the following notation is used to denote these.
Notation 1. Pn(t) is the projection Pn(t) : H(t) → Un

h characterized by Pn(t)u ∈
Un
h , (Pn(t)u, vh)H(t) = (u, vh)H(t) for all vh ∈ Un

h .

3.1. Discrete characteristic functions. Estimates for the solution u(t) of an
evolution equation are frequently obtained by multiplying the equation by χ[0,t)u.
This choice of test functions is not available in the discrete context unless the terminal
time is one of the partition points. To estimate the solution at times t ∈ [tn−1, tn) we
first recall the discrete characteristic functions introduced in [6, section 2.3].

The discrete characteristic functions on each interval are invariant under transla-
tion, so it is convenient to work on the interval [0, τ) with τ = tn − tn−1. The first
step is to consider polynomials p ∈ Pk(0, τ). A discrete approximation of χ[0,t)p is
the polynomial p̂ ∈ {p̂ ∈ Pk(0, τ)|p̂(0) = p(0)} satisfying

∫ τ

0

p̂q =

∫ t

0

pq ∀ q ∈ Pk−1(0, τ).

The above construction is motivated by the fact that it is possible to select q = p′ to
obtain

∫ τ

0
p̂p′ =

∫ t

0
pp′ = (1/2)(p2(t) − p2(0)).

This elementary construction extends to approximate functions of the form χ[0,t)v
for vh ∈ Pk(0, τ ;V ), where V is any semi-inner product space. If v ∈ Pk(0, τ ;V ), it

may be written as v =
∑k

i=0 pi(t)vi, where {pi} ⊂ Pk(0, τ) and {vi} ⊂ V . Defining

v̂ =
∑k

i=0 p̂i(t)vi it is clear that v̂ ∈ Pk(0, τ ;V ) satisfies

v̂(0) = v(0) and

∫ τ

0

(v̂, w)V =

∫ t

0

(v, w)V ∀w ∈ Pk−1(0, τ ;V ).(3.1)

We recall the following elementary lemma from [6, Lemma 2.7] which shows that the
mapping v �→ v̂ is continuous on Pk(0, τ, V ).

Lemma 3.1. Let V be a semi-inner product space. Then the mapping

v =

k∑
i=0

pi(t)vi �→ v̂ =

k∑
i=0

p̂i(t)vi

on Pk(0, τ ;V ) is continuous in ‖ · ‖L2[0,τ ;V ]. In particular, there exists Ck > 0 de-
pending upon only k such that

‖v̂‖L2[0,τ ;V ] ≤ Ck‖v‖L2[0,τ ;V ] and ‖v̂ − χ[0,t)v‖L2[0,τ ;V ] ≤ Ck‖v‖L2[0,τ ;V ].

Notice that the above construction is purely algebraic in the sense that (3.1) holds
for any choice of inner product on V . A major complication encountered with the
time-dependent spaces is that the analogous construction with V replaced by H(t) is
no longer algebraic; the time dependence of H(t) enters into the definition. In this
situation estimates in other spaces, such as U(t), are no longer automatic.
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For the implicit evolution problem it is necessary to modify the above construc-
tion. If u ∈ Pk(0, τ ;Uh), define a discrete approximation ũ of χ[0,τ)u by the following:
ũ ∈ Pk(0, τ ;Uh) is the function satisfying

ũ(0) = u(0) and

∫ τ

0

(ũ, w)H(.) =

∫ t

0

(u,w)H(.) ∀w ∈ Pk−1(0, τ ;Uh).(3.2)

A slight modification of Lemma 2.4 from [6] can be used to establish bounds for ũ in
L2[0, τ ;H(.)].

Lemma 3.2. The mapping u �→ ũ in Pk[0, τ ;H(.)] is linear and continuous, and
there exists a constant Ck depending only upon k such that

‖ũ− u‖L2[0,τ ;H(.)] ≤ Cke
Cμτ‖u‖L2[t,τ ;H(.)].

Moreover

‖ũ− χ[0,t)u‖L2[0,τ ;H(.)] ≤ (1 + Cke
Cμτ )‖u‖L2[t,τ ;H(.)],

and ‖ũ‖L2[0,τ ;H(.)] ≤ (1 + Cke
Cμτ )‖u‖L2[0,τ ;H(.)]

The proof is essentially the same as in [6, Lemma 2.4]; the only difference con-
cerns the scaling argument required to show that Ck can be chosen to be inde-
pendent of time. To do this Lemma 2.2 is used to bound ‖u− ũ‖L2[0,τ,H(.)] by
‖u− ũ‖L2[0,τ,H(τ/2)] to remove the implicit time dependence through H(t).

To bound ũ in L2[0, τ ;U(.)], the difference, ũ − û, with the algebraic projection
û is first estimated in the weaker norm L2[0, τ ;H(.)].

Lemma 3.3. Let u ∈ Pk(0, τ, U
n
h ) and ũ be the projections defined in (3.2). If û

is the algebraic projection characterized by (3.1), then

‖û− ũ‖L2[0,τ ;H(.)] ≤ C1/2
μ C(k, μ)τ‖u‖L2[0,τ ;H(.)],

where C(μ, k) is a constant depending on k and μ through Cμ and Ck, the constant
in Lemma 3.2.

Proof. In this proof C(k, μ) denotes a constant depending only on Ck and Cμ

which may change from step to step. Recall that û ∈ Pk(0, τ ;Uh) satisfies û(0) =
u(0) = ũ(0),

∫ τ

0

(û, w)H(0) =

∫ t

0

(u,w)H(0), w ∈ Pk−1(0, τ ;Uh),

and ‖û‖L2[0,τ,H(0)] ≤ Ck‖u‖L2[0,τ ;H(0)]. If w ∈ Pk−1(0, τ ;Uh), then

∫ τ

0

(ũ− û, w)H(.) =

∫ t

0

(u,w)H(.) −
∫ τ

0

(û, w)H(.)

=

∫ t

0

(
(u,w)H(.) − (u,w)H(0)

)
−
∫ τ

0

(
(û, w)H(.) − (û, w)H(0)

)
.

Since (û − ũ)(0) = 0 it follows that (û − ũ)(s) = sū(s), where ū ∈ Pk−1(0, τ ;Uh).
Putting w = ū and using Lemma 2.2 to estimate the right-hand side gives

∫ τ

0

s|ū|2H(s) ds ≤
∫ τ

0

sCμe
Cμs

(
|u(s)|H(0) + |û(s)|H(0)

)
|ū(s)|H(s) ds.
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An application of the Cauchy–Schwarz inequality then shows

∫ τ

0

s|ū(s)|2H(s) ds ≤ Cμe
Cμτ

∫ τ

0

s
(
|u(s)|2H(0) + |û(s)|2H(0)

)
ds ≤ CμC(k, μ)τ

∫ τ

0

|u|2H(0).

Lemma 2.2 is used to compare |.|H(s) with the fixed norm |.|H(0) to obtain

∫ τ

0

s|ū|2H(0) ds ≤ CμC(k, μ)τ

∫ τ

0

|u|2H(0) ≤ CμC(k, μ)τ

∫ τ

0

|u|2H(.).

Using the equivalence of norms on Pk−1(0, τ) and Lemma 2.2 once again to compare
|.|H(0) with |.|H(.) gives

∫ τ

0

|ũ− û|2H(.) =

∫ τ

0

s2|ū|2H(s) ds ≤ CμC(k, μ)τ2

∫ τ

0

|u|2H(.).

To estimate ‖ũ‖L2[0,τ ;U(.)] an inverse hypothesis is used to bound ‖uh‖U(.) by the
weaker norm |uh|H(.) for uh ∈ U .

h. Recall that in the usual finite element context, the
constant depends upon the minimum angle in the mesh.

Corollary 3.4. Define the “inverse hypothesis constant” Cinv(h) by

Cinv(h) = max
0≤n≤N

sup
uh∈Un

h

sup
t∈(tn−1,tn]

|uh|U(t)

|uh|H(t)
.

Then there exists a constant C(k, μ) depending only on Ck, and Cμ such that

|ũ|L2[0,τ ;U(.)] ≤ C(k, μ)
(
C2

u|u|L2[0,τ ;U(.)] + C1/2
μ τCinv(h)‖u‖L2[0,τ ;H(.)]

)
,

where Cu and cu are the constants in Assumption 2 and τ = max1≤n≤N (tn − tn−1).
Remark 1. When U ⊂ H1(Ω) and H = L2(Ω) the inverse inequality states

Cinv(h) ≤ C/h for the classical finite element subspaces constructed over quasi-
uniform meshes.

Proof. As in the proof of the lemma, let û be the algebraic projection. Then

|ũ|L2[0,τ ;U(.)] ≤ |û|L2[0,τ ;U(.)] + |û− ũ|L2[0,τ ;U(.)]

≤ Cu|û|L2[0,τ ;U(0)] + Cinv(h)‖û− ũ‖L2[0,τ ;H(.)]

≤ CkCu|u|L2[0,τ ;U(0)] + C1/2
μ C(k, μ)τCinv(h)‖u‖L2[0,τ ;H(.)]

≤ C(μ, k)
(
C2

u|u|L2[0,τ ;U(.)] + C1/2
μ τCinv(h)‖u‖L2[0,τ ;H(.)]

)
.

4. DG scheme for an auxiliary PDE. We consider approximating implicit
parabolic equations of the form

(Mu)t + Bu = f, u(0) = u0,(4.1)

where B(.) : U(.) → U
′
(.) is the operator corresponding to the bilinear form b(.) :

U(.) × U(.) → R defined by

b(t;u, v) = η(u, v)U(t) + Cμ(u, v)H(t)

and the coefficient η ≥ 0 is constant. Since b(.) is symmetric and positive definite it
induces a norm on U(.) which is denoted as ‖u‖2

B(.) = b(.;u, u). The situation where
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η is small is important, and the estimates obtained below are valid when η = 0, which
corresponds to the situation where (4.1) is an ODE in H.

It is assumed that there exists a unique solution u ∈ L2[0, T ;U(.)]∩H1[0, T ;U ′(.)] ↪→
C[0, T ;H(.)] satisfying the associated weak problem

(u(T ), v(T ))H(T ) +

∫ T

0

−〈u, vt〉H(.) + b(.;u, v)(4.2)

= (u0, v(0))H(0) +

∫ T

0

〈f, v〉 ∀ v ∈ L2[0, T ;U(.)] ∩H1[0, T ;U ′(.)].

Given a partition 0 = t0 < t1 < · · · < tN = T of [0, T ] and a collection {Un
h }Nn=0

of subspaces of U , the DG method constructs an approximate solution uh|(tn−1,tn] ∈
Pk(t

n−1, tn;Un
h ) satisfying

(un, vn)H(tn) +

∫ tn

tn−1

(
−(uh, vht)H(.) + b(.;uh, vh)

)
− (un−1, vn−1

+ )H(tn−1)

=

∫ tn

tn−1

〈f, vh〉 ∀ vh ∈ Pk(t
n−1, tn;Un

h ).(4.3)

The next definition characterizes the local truncation error in the present context.
Definition 4.1. (1) The projection P

loc
n : C[tn−1, tn;H(.)] → Pk(t

n−1, tn;Un
h )

satisfies (Ploc
n u)n = Pn(tn)u(tn), and∫ tn

tn−1

(u− P
loc
n u, vh)H(.) = 0 ∀ vh ∈ Pk−1(t

n−1, tn;Un
h ).

Here we have used the convention (Ploc
n u)n ≡ (Ploc

n u)(tn).
(2) The projection P

loc
h : C[0, T ;H(.)] → Uh satisfies

P
loc
h u ∈ Uh and (Ploc

h u)|(tn−1,tn] = P
loc
n (u|[tn−1,tn]).

(3) Ph : {u ∈ C[0, T ;H(.)] | (Mu) ∈ H1[0, T ;U ′(.)]} → Uh is the discontinuous
Galerkin solution of (4.1) with f = ut + Bu and initial data u0 specified.

Remark 2. Notice that P
loc
n u is the solution of the DG approximation of (M(.)u)′ =

f on (tn−1, tn] with u(tn−1) specified as the initial data. It follows that suptn−1≤t≤tn |u−
P
loc
n u|H(.) (or related norms) measures the local truncation error of the scheme with

η = 0.
The following theorem estimates the error at the partition points and is the ana-

logue of [6, Theorem 2.2]. We remind the reader that Pn(t) : H(t) → Un
h is the

projection from H(t) onto the discrete space Un
h .

Theorem 4.2. Let Assumptions 1 and 2 hold, and let u and uh satisfy (4.1)
and (4.3), respectively. Then the error ên = Pn(tn)u(tn) − un at the partition points
satisfies

(1/2)|ên|2H(tn) + (1/4)

∫ tn

0

‖ê‖2
B(.) + (1/4)

n−1∑
i=0

|êi − êi+|2H(tn−1) ≤ (1/2)|ê0|2H(0)

+

n−1∑
i=0

min
(
(C(k,Cu)/τ i+1η)‖Pi+1

(
I − Pi

)
u(ti)‖2

U ′(ti), |(I − Pi)u(ti)|2H(ti)

)

+

∫ tn

0

‖(I − P
loc
h )u‖2

B(.),

where the projections in the sum are evaluated at ti (Pi = Pi(t
i) and Pi+1 = Pi+1(t

i)).
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Proof. Let e = u−uh be the total error and note that the Galerkin orthogonality
gives

(en, vn)H(tn) +

∫ tn

tn−1

(
−(e, vht)H(.) + b(.; e, vh)

)
− (en−1, vn−1

+ )H(tn−1) = 0.

Letting ê = P
loc
n u− uh = e− (I − P

loc
n )u and using the properties of P

loc
n gives

(ên, vn)H(tn) +

∫ tn

tn−1

(
− (ê, vht)H(.) + b(.; ê, vh)

)
− (ên−1, vn−1

+ )H(tn−1)

= ((I − Pn−1)u(tn−1), vn−1
+ )H(tn−1) −

∫ tn

tn−1

b(.; (I − P
loc
n )u, vh).(4.4)

Setting vh = ê and using Assumption 2, (4.4) becomes

(1/2)|ên|2H(tn) +

∫ tn

tn−1

‖ê‖2
B(.) + (1/2)|ên−1 − ên−1

+ |2H(tn−1)(4.5)

= (1/2)|ên−1|2H(tn−1) + ((I − Pn−1)u(tn−1), ên−1
+ )H(tn−1)

−
∫ tn

tn−1

(1/2)μ(.; ê, ê) + b(.; (I − P
loc
n )u, ê).

The last two terms on the right are bounded using Assumption 2 and the Cauchy–
Schwarz inequality; specifically,

∫ tn

tn−1

(1/2)μ(.; ê, ê) + b(.; (I − P
loc
n )u, ê) ≤

∫ tn

tn−1

(Cμ/2)‖ê‖2
H(.) + ‖(I − P

loc
n )u‖B(.)‖ê‖B(.)

≤
∫ tn

tn−1

(Cμ/2)‖ê‖2
H(.) + ‖(I − P

loc
n )u‖2

B(.)

+ (1/4)‖ê‖2
B(.).

The jump term on the right or (4.5) is bounded two different ways. Since ên−1 ∈ Un−1

an estimate independent of η is computed as

((I − Pn−1)u(tn−1), ên−1
+ )H(tn−1) = ((I − Pn−1)u(tn−1), ên−1

+ − ên−1)H(tn−1)

≤ |(I − Pn−1)u(tn−1)|2H(tn−1)

+ (1/4)|ên−1
+ − ên−1|2H(tn−1)

(we write Pn−1 = Pn−1(t
n−1) and similarly Pn = Pn(tn−1) below). An alternative

estimate is obtained upon writing

((I − Pn−1)u(tn−1), ên−1
+ )H(tn−1) = (Pn(I − Pn−1)u(tn−1), ên−1

+ )H(tn−1)

≤ ‖Pn(I − Pn−1)u(tn−1)‖U ′(tn−1)‖ên−1
+ ‖U(tn−1).

The following “inverse” estimate for functions in Pk(t
n−1, tn, Un) is used to bound

the ‖ên−1
+ ‖U(tn−1):

‖ên−1
+ ‖2

U(tn−1) ≤ (Ck/τ
n)

∫ tn

tn−1

‖ê‖2
U(tn−1) ≤ (CkC

2
u/τ

n)

∫ tn

tn−1

‖ê‖2
U(.).
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The finite dimensionality of Pk(t
n−1, tn) and a scaling argument shows that the con-

stant Ck appearing in the first inequality depends only upon k. It follows that

((I − Pn−1)u(tn−1), ên−1
+ )H(tn−1) ≤ (C(Ck, Cu)/τnη)‖Pn(I − Pn−1)u(tn−1)‖2

U ′(tn−1)

+ (η/2)

∫ tn

tn−1

‖ê‖2
U(.).

Substituting these estimates into (4.5), recalling the definition of b(.; ., .), and summing
completes the proof.

The following theorem compares the (global) solution, Phu, of the DG scheme
with the local projections, P

loc
n u, at arbitrary times.

Theorem 4.3. Let Assumptions 1 and 2 hold, and let u and uh satisfy (4.1) and
(4.3), respectively. Let ê = P

loc
h u− uh. Then there exists a constant

C = C(Ck, Cμ, Cu,
√
ητCinv(h))

such that

|ê(t)|2H(t) +

∫ tn

0

(
η‖ê‖2

U(.) + Cμ|ê|2H(.)

)
+

n−1∑
i=0

|[êi]|2H(ti)

≤ C
(
|ê0|2H(0) +

∫ tn

0

(
η‖(I − P

loc
h )u‖2

U(.) + Cμ|(I − P
loc
h )u|2H(.)

)

+
n−1∑
i=0

min
(
1/(τ i+1η)‖Pi+1(I − Pi)u(ti)‖2

U ′ (ti)
, |(I − Pi)u(ti)|2H(ti)

)

for any time t ∈ (tn−1, tn]. Here [êi] = êi+−êi is the jump in ê at ti, τ = max1<i≤n(ti−
ti−1), and the projections in the sum are evaluated at ti.

Proof. Given Theorem 4.2 it suffices to bound |ê(t)|H(t) for t ∈ (tn−1, tn]. Recall
inequality (4.4)

(ên, vn)H(tn) +

∫ tn

tn−1

(
− (ê, vht)H(.) + b(.; ê, vh)

)
− (ên−1, vn−1

+ )H(tn−1)

= ((I − Pn−1)u(tn−1), vn−1
+ )H(tn−1) −

∫ tn

tn−1

b(.; (I − P
loc
n )u, vh),

and rewrite it as∫ tn

tn−1

(
(êht, vh)H(.) + μ(.; ê, vh) + b(., ê, vh)

)
+ (ên−1

+ − ên−1, vn−1
+ )H(tn−1)

= ((I − Pn−1)u(tn−1), vn−1
+ )H(tn−1) −

∫ tn

tn−1

b(.; (I − P
loc
n )u, vh).

Next let vh = ẽ be the discrete approximation of χ[tn−1,t)ê characterized by equa-
tion (3.2) to get

∫ t

tn−1

(êt, ê)H(.) +

∫ tn

tn−1

μ(.; ê, ẽ) + (ên−1
+ − ên−1, ên−1

+ )H(tn−1)

= ((I − Pn−1)u(tn−1), ên−1
+ )H(tn−1) −

∫ tn

tn−1

b(.; (I − P
loc
n )u, ẽ) + b(.; ê, ẽ).
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The differentiability properties of (., .)H(.) allow the first term integrated so that

(1/2)|ê(t)|2H(t) − (1/2)

∫ t

tn−1

μ(.; ê, ê) +

∫ tn

tn−1

μ(.; ê, ẽ)

+ (1/2)|ên−1
+ − ên−1|2H(tn−1) − (1/2)|ên−1|2H(tn−1)

= ((I − Pn−1)u(tn−1), ên−1
+ )H(tn−1)

−
∫ tn

tn−1

b(.; (I − P
loc
n )u, ẽ) + b(.; ê, ẽ).

Use Lemma 3.2 and Corollary 3.4 to bound ẽ in terms of ê; specifically,
• Using Lemma 3.2 shows

∫ tn

tn−1

μ(.; ê, ẽ) ≤ Cμ‖ê‖L2[tn−1,tn;H(.)]‖ẽ‖L2[tn−1,tn;H(.)]

≤ Cμ(1 + Cke
Cμτ

n

)‖ê‖2
L2[tn−1,tn;H(.)]

so that

(1/2)

∫ t

tn−1

μ(.; ê, ê) −
∫ tn

tn−1

μ(.; ê, ẽ) ≤ CμC(k, μ)

∫ tn

tn−1

|ê|2H(.).

• Expanding the definition of b(.; ., .) and recalling Corollary 3.4 shows

∫ tn

tn−1

b(.; ê, ẽ) ≤ (1/2)

∫ tn

tn−1

‖ê‖2
B(.) +

(
η‖ẽ‖2

U(.) + Cμ|ẽ|2H(.)

)

≤ (1/2)

∫ tn

tn−1

‖ê‖2
B(.)

+ C(k, μ)
(
η
(
C4

u‖ẽ‖2
U(.) + Cμτ

2Cinv(h)2‖ê‖2
H(.)

)
+ Cμ‖ê‖2

H(.)

)

≤ (1/2)C(k, μ, u,
√
ητCinv(h))

∫ tn

tn−1

‖ê‖2
B(.).

• Similarly

∫ tn

tn−1

b(.; (I − P
loc
n )u, ẽ) ≤ (1/2)

∫ tn

tn−1

‖(I − P
loc
n )u‖2

B(.)

+ C(k, μ, u,
√
ητCinv(h))‖ê‖2

B(.).

It follows that

(1/2)|ê(t)|2H(t) + (1/2)|ên−1
+ − ên−1|2H(tn−1) − (1/2)|ên−1|2H(tn−1)(4.6)

≤ ((I − Pn−1)u(tn−1), ên−1
+ )H(tn−1)

+

∫ tn

tn−1

‖(I − P
loc
n )u‖2

B(.) + C(k, μ, u,
√
ητCinv(h))‖ê‖2

B(.).

As in the proof of Theorem 4.2 the first term on the right can be bounded by

|(I − Pn−1)u(tn−1)|2H(tn−1) + (1/4)|ên−1
+ − ên−1|2H(tn−1)
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or

C(k, u)/(τnη)‖Pn(I − Pn−1)u(tn−1)‖2
U ′(tn−1) + (η/2)

∫ tn

tn−1

‖ê‖2
U(.),

so

|ê(t)|2H(t) ≤ |ên−1|2H(tn−1) +

∫ tn

tn−1

C(k, μ, u,
√
ητCinv(h))‖ê‖2

B(.) + ‖(I − P
loc
n )u‖2

B(.)

+ 2 max
(
C(k, u)/(τnη)‖Pn(I − Pn−1)u(tn−1)‖2

U ′(tn−1), |(I − Pn−1)u(tn−1)|2H(tn−1)

)
.

The theorem then follows upon using Theorem 4.2 to bound the first two terms on
the right.

5. DG scheme for implicit parabolic equations. In this section DG ap-
proximations of (2.2) are considered. It is shown that the error for the parabolic
PDE can be bounded by the error of the DG approximation of the auxiliary equation
introduced in the previous section.

5.1. DG scheme. To approximate the solution of the weak formulation (2.2),
let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ], and on each partition construct
a closed subspace Un

h ⊂ U . The discontinuous Galerkin approximates the solution of
(2.2) on (tn−1, tn] by uh ∈ Pk(t

n−1, tn;Un
h ) satisfying

(un, vn)H(tn) +

∫ tn

tn−1

(
− (uh, vht)H(t) + a(.;uh, vh)

)

− (un−1, vn−1
+ )H(tn−1) =

∫ tn

tn−1

〈F, vh〉 ∀ vh ∈ Pk(t
n−1, tn;Un

h ).(5.1)

The stability and error estimates are established using very similar arguments; for this
reason we will just focus on the error estimate. The Galerkin orthogonality condition
shows that the error e = u− uh satisfies

(en, vn)H(tn) +

∫ tn

tn−1

(
− (e, vht)H(t) + a(.; e, vh)

)
− (en−1, vn−1

+ )H(tn−1) = 0(5.2)

for all vh ∈ Pk(t
n−1, tn;Un

h ). Decompose the error as e = ep+eh ≡ (u−Phu)+(Phu−
uh), where Ph : {u ∈ C[0, T ;H(.)] | M(.)u ∈ H1[0, T ;U ′(.)]} → Uh is the projection
introduced in Definition 4.1. The orthogonality condition (5.2) becomes

(enh, v
n)H(tn) +

∫ tn

tn−1

(
− (eh, vht)H(.) + a(.; eh, vh)

)
− (en−1

h , vn−1
+ )H(tn−1)

= −(enp , v
n)H(tn) +

∫ tn

tn−1

(ep, vht)H(.) + (en−1
p , vn−1

+ )H(tn−1)

−
∫ tn

tn−1

a(.; ep, vh).

By construction, Phu is the discontinuous Galerkin approximation of (4.1), so ep
satisfies the orthogonality condition (4.4). It follows that the first three terms of the
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right-hand side simplify to −
∫ tn

tn−1 η(ep, vh)U(.) +Cμ(ep, vh)H(.) so that (with η = ca)

(enh, v
n)H(tn) +

∫ tn

tn−1

(−(eh, vht)H(.) + a(.; eh, vh)) − (en−1
h , vn−1

+ )H(tn−1)

= −
∫ tn

tn−1

(
a(·; ep, vh) + ca(ep, vh)U(.) + Cμ(ep, vh)H(.)

)
.(5.3)

A preliminary estimate satisfied by the error at the partition points is obtained
by setting vh = eh and using the coercivity of a(.; ., .):

(5.4)

1

2
|enh|2H(tn) + cα

∫ tn

tn−1

|eh|2U(.) +
1

2
|en−1

h+ − en−1
h |2H(tn−1)

≤ 1

2
|en−1

h |2H(tn−1) −
∫ tn

tn−1

(
(1/2)μ(·; eh, eh) + a(.; ep, eh) + ca(ep, eh)U(.)

+ Cμ(ep, eh)H(.) − Cα|eh|2H(.)

)
.

Using Assumption 2 on the continuity of a(.; ., .) and μ(.; ., .) shows

(5.5)

|enh|2H(tn) + cα

∫ tn

tn−1

|eh|2U(.) + |en−1
h − en−1

h+ |2H(tn−1) ≤ |en−1
h |2H(tn−1)

+

∫ tn

tn−1

(
(1 + 2ca/cα)

(
2ca|ep|2U(.) + (2Ca + Cμ)|ep|2H(.)

)
+ 2(Cα + Cμ + Ca)|eh|2H(.)

)
.

The inequalities cα ≤ ca ≤ Ca were used to derive expressions on the right that are
independent of the coercivity constant.

Notice that the last term on the right-hand side involves |eh(s)|H(s) at times
s ∈ (tn−1, tn), so the discrete Gronwall inequality is not applicable. Below the discrete
characteristic functions developed in section 3.1 are used to obtain an expression
similar to the above with suptn−1≤s≤tn |eh(s)|H(s) on the left-hand side.

Remark 3. One way to circumvent this problem is to bound temporal derivatives
of the solution [7, 28] so that eh(s), s ∈ (tn−1, tn), can be controlled by the values at
the partition points. Bounds on the temporal derivatives of the discrete solution are
frequently obtained by assuming A to be self-adjoint. Clearly this line of argument
fails for solutions having minimal regularity.

An alternative approach developed in [16] and [2] is to construct a discrete ap-
proximation of (eh(t)−en−1

h )/(t−tn−1) in Pk(t
n−1, tn;Uh). A formal calculation with

v(t) = (eh(t) − en−1
h )/(t− tn−1 + ε) shows

∫ tn

tn−1

(e′h, v)H + (en−1
h+ − en−1

h , vn−1
+ )H =

∫ tn

tn−1

(e′h, v)H + ε|vn−1
+ |2H

= (1/2)

∫ tn

tn−1

(eh − en−1
h )2/(t− tn−1 + ε)2

+ (1/2)|enh − en−1
h |2H/(tn − tn−1 + ε) + (1/2)ε|vn−1

+ |2H ,

which was used to bound ‖eh‖L2(tn−1,tn).
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5.2. Error estimate. We are now ready to state and prove our main error
estimate for the DG approximation of (1.1).

Theorem 5.1. Let U(.) ↪→ H ↪→ U ′(.) be a dense embedding of Hilbert spaces
satisfying Assumption 1. Assume each norm ‖.‖U(.) is equivalent to ‖.‖U , and let Uh be
the subspace of L2[0, T ;U ] defined in section 3. Let the bilinear form a : U(.)×U(.) →
R and the linear form F : U(.) → R satisfy Assumption 2. Let u ∈ {u ∈ C[0, T ;H(.)] |
M(.)u ∈ H1[0, T ;U ′(.)]} be the solution of (2.1) and uh ∈ Uh be the approximate
solution computed using the discontinuous Galerkin scheme (5.1) on the partition
0 = t0 < t1 < · · · < tN = T , and set τ ≡ maxn t

n − tn−1.

Then there exist constants C > 0 and 0 < λ < 1 depending only on k (through
the constant Ck of Lemma 3.2), the constants Ca, Cα, Cμ, Cu, cu, the ratio ca/cα,
and the product

√
caτCinv(h) (defined in Corollary 3.4) such that

(1 − λ)|enh|2H(tn) + λ sup
0≤s≤tn

|eh(s)|2H(s) +

n−1∑
i=0

eC(tn−1−ti)|eih − eih+|2H(ti)

+ (1 − λ)
cα
2

∫ tn

0

eC(t−s)|eh(s)|2U(s) ds

≤
(
1 + TO(τ)

)(
eCtn |e0

h|2H(0)

+ Cλ

∫ tn

0

eC(t−s)
(
ca|ep(s)|2U(s) + (Ca + Cμ)|ep(s)|2H(s)

)
ds
)
,

provided Cτ < 1. Here eh = Phu− uh and ep = u− Phu, where Ph is the projection
defined in Definition 4.1.

Proof. Rewrite (5.3) as

∫ tn

tn−1

(
(eht, vh)H(.) + μ(.; eh, vh) + a(.; eh, vh)

)
+

(
en−1
h+ − en−1

h , vn−1
+

)
H(tn−1)

= −
∫ tn

tn−1

a(.; ep, vh) + b(.; ep, vh),

where b(t;u, v) = ca(u, v)U(t) + Cμ(u, v)H(t). Set vh = ẽh, where ẽh is the discrete
approximation of χ[tn−1,t)eh constructed in section 3.1, to obtain

∫ t

tn−1

(eht, eh)H(.) +
(
en−1
h+ − en−1

h , en−1
h+

)
H(tn−1)

= −
∫ tn

tn−1

(
μ(.; eh, ẽh) + a(.; eh, ẽh) + a(.; ep, ẽh) + b(.; ep, ẽh)

)
.

Recalling that (eht, eh)H(.) = (1/2)(d/dt)|eh|2H(.) − (1/2)μ(.; eh, eh) shows

1

2
|eh(t)|2H(t) +

1

2
|en−1

h − en−1
h+ |2H(tn−1) −

1

2
|en−1

h |2H(tn−1) =

∫ t

tn−1

1

2
μ(.; eh, eh)

−
∫ tn

tn−1

(
a(.; ep, ẽh) + a(.; eh, ẽh) + b(.; ep, ẽh)U(.) + μ(., eh, ẽh)

)
.
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Estimating the right-hand side using Lemma 3.2 and Corollary 3.4, as in the derivation
of (4.6), gives

|eh(t)|2H(tn) + |en−1
h − en−1

h+ |2H(tn−1) ≤ |en−1
h |2H(tn−1)

+

∫ tn

tn−1

(
ca|ep|2U(.) + (Ca + Cμ)|ep|2H(.)(5.6)

+ cαC
(
Ck, Cμ, Cu, ca/cα

)
|eh|2U(.) + C(...)|eh|2H(.)

)
.

Here C(...) is a constant depending upon Ca, Ck, Cμ,
√
caτCinv(h), and ca/cα. The

remainder of the proof parallels the proof of [6, Theorem 3.1]. Specifically, construct
the convex combination of (1 − λ) from (5.5) and λ from (5.6), and choose the co-
efficient, λ, so that the term involving |eh(t)|2U(.) on the right-hand side of (5.6) is

dominated by the corresponding term on the left-hand side of (5.6). Setting

λC
(
Ck, Cμ, Cu, ca/cα

)
= (1/2)(1 − λ) or λ =

1

1 + 2C
(
Ck, Cμ, Cu, ca/cα

)
leads to an estimate of the form

(1 − λ)|enh|2H(tn) + λ|eh(t)|2H(.) + (1 − λ)
cα
2

∫ tn

tn−1

|eh|2U(.) + |en−1
h − en−1

h+ |2H(tn−1)

≤ |en−1
h |2H(tn−1) + C(...)λ

∫ tn

tn−1

(
ca|ep|2U(.) + (Ca + Cμ)|ep|2H(.) + |eh|2H(.)

)
,

where C(...) may now depend additionally upon Cα. Bound the first and last terms
on the right by

|en−1
h |2H(tn) ≤ (1 − λ)|en−1

h |2H(tn−1) + λ sup
tn−2<s≤tn−1

|eh(s)|2H(s)

and ∫ tn

tn−1

|eh|2H(.) ≤ τn sup
tn−1<s≤tn

|eh(s)|2H(s), τn ≡ tn − tn−1,

respectively, and select the time t on the left so that |eh(t)|H(s) = suptn−1<s≤tn |eh(s)|H(s)

to get

(1 − λ)|enh|2H(tn) + λ(1 − C(...)τn) sup
tn−1<s≤tn

|eh(t)|2H(s)

+ (1 − λ)
cα
2

∫ tn

tn−1

|eh|2U(.) + |en−1
h − en−1

h+ |2H(tn−1)

≤ (1 − λ)|en−1
h |2H(tn−1)+ λ sup

tn−2<s≤tn−1

|eh(s)|2H(s)

+ C(...)λ

∫ tn

tn−1

(ca|ep|2U(.) + (Ca + Cμ)|ep|2H(.)).

Upon introducing a factor (1−C(...)τn) in front of the first term, this inequality takes
the form

(1 − C(...)τn)αn + βn ≤ αn−1 + fn,

and the theorem follows from the discrete Gronwall inequality.
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This theorem enables error estimates to be established in various norms. Defining

|‖e|‖2
∞ = sup

0≤s≤T
|e(s)|2H(s) + cα

∫ T

0

eC(T−s)|e(s)|2U(s) ds

and

|‖e|‖2
2 =

∫ T

0

eC(T−s)|e(s)|2H(s) ds + ca

∫ T

0

eC(T−s)|e(s)|2U(s) ds,

Theorem 4.3 shows that

|‖Phu− P
loc
h u|‖2

∞ ≤ C

(
|‖u− P

loc
h |‖2

2

+

n−1∑
i=0

min
(
|(I − Pi)u(ti)|2H(ti), 1/(τ

i+1ca)‖Pi+1(I − Pi)u(ti)‖2
U ′ (ti)

))
.

Here the initial data and constant η ≥ 0 have been selected as Ph(0) = P0(u0) and
η = ca. Similarly, Theorem 5.1 states

|‖Phu− uh|‖2
∞ ≤ C

(
|P0(u0) − u0

h|H(0) + |‖u− Phu|‖2
2

)

≤ C
(
|P0(u0) − u0

h|H(0) + |‖u− P
loc
h u|‖2

2 + |‖Phu− P
loc
h |‖2

2

)
.

Combining these estimates gives an estimate for the (total) error of the solution.
Theorem 5.2. Under the assumptions of Theorem 5.1, there exists a positive

constant C > 0 depending only on T , k (through the constant Ck of Lemma 3.2), the
constants Ca, Cα, Cμ, Cu, cu, the ratio ca/cα, and the product

√
caτCinv(h) (defined

in Corollary 3.4) such that the following estimate holds:

|‖u− uh|‖2
∞ ≤ C

(
|P0(u0) − u0

h|H(0) + |‖u− P
loc
h u|‖2

∞

+

N−1∑
i=0

min
(
|(I − Pi)u(ti)|2H(ti), 1/(τ

i+1ca)‖Pi+1(I − Pi)u(ti)‖2
U ′ (ti)

))
,

where P
loc
h u is the local projection defined in Definition 4.1 and Pn(t) : H(t) → Un

h is
the orthogonal projection. A similar estimate also holds with |‖.|‖2 in place of |‖.|‖∞.

Proof. Using the triangle inequality compute

|‖u− uh|‖∞ ≤ |‖u− P
loc
h u|‖∞ + |‖Phu− P

loc
h u|‖∞ + |‖Phu− uh|‖∞.

The estimate now follows from the estimates stated prior to the theorem and the
inequality |‖.|‖2 ≤ C(T )|‖.|‖∞.

6. Example: Diffusion on a manifold. This section illustrates how our results
apply to the example presented in the introduction. The bilinear forms associated with
this problem are

(u, v)H(.) = (M(.)u, v)L2(Sr) =

∫
Sr

uv J
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and

a(.;u, v) =

∫
Sr

(
σ(∇v)T (FTF )−1∇u− (I − n ⊗ n) · (∇xV)uv

)
J.

Here Sr ⊂ R
3 is homeomorphic to the sphere, and S(t) = x(t,Sr), where x : [0, T ] ×

Sr → R
3, determines the present position of a membrane. If X = (X1, X2) locally

parameterizes the Sr, then Fiα = ∂xi/∂Xα, J =
√

det(FTF ), and we write ∇u for
∇Xu. The matrix F = F (t,X) is related to the velocity by Ft = (∇xV)F .

Notice that (., .)H(.) and the principle part of a(.; ., .) are intrinsic in the sense
that∫
Sr

uv J =

∫
S(t)

ũṽ, and

∫
Sr

σ(∇v)T .(FTF )−1∇uJ =

∫
S(t)

σ grad(ũ).grad(ṽ),

where ũ : S(t) → R is related to u : Sr → R by the change of variables u(t,X) =
ũ(t, x(t,X)). As indicated above, geometric properties of S(t), such as the first fun-
damental form FTF , are determined by the ambient velocity field V; for example,
the unit normal n to S(t) satisfies

nt =
(
nT (∇xV)n I − (∇xV)T

)
n.

The columns of F form a basis for the tangent space of S(t), and if they become
parallel at time t̃, the first fundamental form becomes singular and the hypotheses
in Assumption 2 fail. In this situation it is necessary to redefine and triangulate a
new reference configuration. The natural choice for the new reference configuration is
S̃r = S(t̃). Since the bilinear forms are intrinsic to the manifold, such a redefinition is
covered by our theory in the sense that if Tr is the triangulation of Sr at time t̃, then
{x(t̃, K) | K ∈ Tr} becomes the triangulation of S̃r at t̃− and the (new) triangulation
T̃r of S̃r is the triangulation at t̃+. The coefficients J , etc., are continuous in the sense
that

(u, v)H(t̃−) =

∫
Sr

uv J =

∫
S̃r

ũṽ J̃ = (ũ, ṽ)H(t̃+),

where J̃(t̃, .) = 1 and u(t̃, X) = ũ(t̃, x(t̃, X)). Of course the mesh T̃r should be adapted
so that the interpolant ũ(t̃+, .) of ũ(t̃−, .) gives a good approximation.

To verify that M(.) satisfies the hypothesis of Assumption 1, recall that

Jt = J(I − n ⊗ n) · (∇xV) or ln(J)t = (I − n ⊗ n) · (∇xV).

It follows that ln(J)t ≤ 2‖∇xV‖, where ‖.‖ is the Frobenius norm, so if 0 < c0 ≤
J(0, .) ≤ C0, then

c0e
−Ct ≤ J(t, .) ≤ C0e

Ct, where C = 2‖∇xV‖L∞ .(6.1)

We verify that this problem satisfies the hypotheses of Assumption 2 when the semi-
norm |.|U(t) is defined by

|u|2U(.) =

∫
Sr

σ(∇u)T (FTF )−1∇uJ.
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1. Smoothness of M(t): For this example

μ(.;u, v) =

∫
Sr

uvJt =

∫
Sr

uv(I − n ⊗ n) · (∇xV)

so Cμ = 2‖∇xV‖L∞ .
2. Equivalence of norms on U(t): If F1 and F2 are the columns of F , F = [F1, F2],

then

|u|U(.) =

∫
Sr

σ(∇u)T (FTF )−1∇uJ =

∫
Sr

σ(∇u)T
1

J

[
|F2|2 −F1.F2

−F1.F2 |F1|2
]
∇u.

Letting cos(θ) = F1.F2/|F1||F2| and x ∈ R
2, then

(1 − cos(θ))
(
(x1|F2|)2 + (x2|F2|)2

)
≤ xT

[
|F2|2 −F1.F2

−F1.F2 |F1|2
]
x

≤ (1 + cos(θ))
(
(x1|F2|)2 + (x2|F2|)2

)
.

Since Fit = (∇xV)Fi it follows that ln(|Fi|)t ≤ ‖∇xV‖�2 , so if 0 ≤ c0 ≤
|Fi(0, .)| ≤ C0, a calculation shows that for s < t

1 − ‖cos(θ)‖L∞

1 + ‖cos(θ)‖L∞
c0e

−C(t−s) ≤
|u|U(t)

|u|U(s)
≤ 1 + ‖cos(θ)‖L∞

1 − ‖cos(θ)‖L∞
C0e

C(t−s),(6.2)

where C is a small multiple of ‖∇xV‖ and it is assumed that ‖cos(θ)‖L∞ < 1.
Notice that cos(θ) measures the amount of shear the membrane S(t) experi-
ences when deformed from the reference configuration Sr and that |(cos(θ))t| ≤
C‖∇xV‖L∞ . If the membrane is elastic, it will resist shear, so | cos(θ)| will
typically be bounded away from one. Examples of flow computations with
elastic membranes can be found in [25].

3. Continuity of the bilinear form and data:

|a(t;u, v)| ≤ σ‖u‖U(t)‖v‖U(t) + 2‖∇xV‖L∞‖u‖H(t)‖v‖H(t)

≤
(
ca|u|2U(t) + Ca|u|2H(t)

)1/2(
ca|v|2U(t) + Ca|v|2H(t)

)1/2

,

where ca = σ and Ca = 2‖∇xV‖L∞ .
Since the equation is homogeneous (f = 0), the continuity hypothesis on f is
trivially satisfied.

4. Coercivity of the bilinear form: If cα = ca = σ and Cα = Ca = 2‖∇xV‖L∞ ,
then the bilinear form satisfies

a(t;u, u) ≥ cα|u|2U(t) − Cα|u|2H(t).

Assuming the existence of constants 0 < c0 < C0 introduced above and assuming
that ‖cos(θ)‖L∞ < C1 < 1, the approximate solutions of (1.2) computed using the
discontinuous Galerkin scheme (4.3) will satisfy the error estimates stated in The-
orems 5.1 and 5.2. The estimates in (6.1) and (6.2) show that the norms ‖.‖H(.)

and |.|U(.) are equivalent to unweighted L2 and H1 norms scaled appropriately. If
classical Lagrange finite elements with polynomials of degree � > 0 are used to con-
struct subspaces of U ∼ H1(Sr) over a quasi-regular triangulation of Sr, then classical
interpolation theory shows that the initial error is bounded by

‖e0
h‖L2(Ω) ≤ C‖D�

xu0‖L2(Sr)h
�.



2498 K. CHRYSAFINOS AND NOEL J. WALKINGTON

Similarly, for 1 ≤ p ≤ ∞,

‖u− P
loc
h u‖Lp[0,T ;L2(Sr)] ≤ C

(
‖D�+1

x u‖Lp[0,T ;L2(Sr)]h
�+1 + ‖Dk+1

t u‖Lp[0,T ;L2(Sr)]τ
k+1

)
,

where h > 0 is the usual mesh parameter. The inverse inequality shows

‖u− P
loc
h u‖L2[0,T ;H1(Sr)] ≤ C

(
‖D�+1

x u‖L2[0,T ;L2(Sr)]h
� + ‖Dk+1

t u‖L2[0,T ;L2(Sr)](τ
k+1/h)

)
,

so

|‖u− P
loc
h u|‖∞ ≤ C

(√
σ
(
h� + τk+1/h

)
+ h� + τk

)
,

where the constant C depends upon T , k, �, and the norms

‖D�+1
x u‖L2[0,T ;L2(Sr)], ‖D�

xu‖L∞[0,T ;L2(Sr)],

‖Dk+1
t u‖L2[0,T ;L2(Sr)], ‖Dk

t u‖L∞[0,T ;L2(Sr)].

When σ << h the minimum of the expressions in the jump term is ‖(I − Pi)u(ti)‖L2(Ω)

and

N−1∑
i=0

‖(I − Pi)u(ti)‖2
L2(Ω) ≤ C‖D�

xu‖2
L∞[0,T ;L2(Sr)]Nh2� ≤ CT‖D�

xu‖2
L∞[0,T ;L2(Sr)]h

2�/τ.

This gives an error of size h�/
√
τ , which is typical of the discontinuous Galerkin

method for hyperbolic equations [24]. If σ is O(1), the second term in the minimum
can be bounded as ‖Pi+1(I − Pi)u(ti)‖2

U ′ (ti)
≤ C‖D�

xu‖L∞[0,T ;L2(Sr)]h
�+1, and

N−1∑
i=0

1/(στ)‖Pi+1(I − Pi)u(ti)‖2
U ′ (ti)

≤ (CT/σ)‖D�
xu‖2

L∞[0,T ;L2(Sr)]h
2�+2/τ2,

which gives the optimal O(h�+1/τ) bound (assuming τ ∼ h).
Remark 4. (1) The above estimates assume that Sr is been triangulated exactly

using a curvilinear coordinate system.
(2) The geometry of S(t) doesn’t explicitly appear in the error estimates. How-

ever, if Sr has narrow regions of high curvature, the quasi-uniform assumption on the
mesh will force a fine triangulation in such regions.

(3) If the exact solution is more regular in time, u ∈ L∞[0, T ;H�+1(Ω)], then the
jump terms will be one order of h smaller. In this situation the jump terms will be
asymptotically negligible compared with |‖u− P

loc
h u|‖∞ when σ = O(1).
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LOCALIZATION OF THE GENERALIZED SAMPLING SERIES AND
ITS NUMERICAL APPLICATION∗
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Abstract. We study the localization of the sampling series with general kernel and obtain its
error estimates. To achieve exponentially decaying accuracy for the series to approximate a band-
limited function and its derivatives, a sufficient condition is given and a rigorous criterion is provided
for the sampling to obtain any desired accuracy. The result includes several known results as special
cases and gives new results about wavelet sampling series.
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1. Introduction. Let R be the set of all real numbers, Z the set of all integers,
Z+ the set of all nonnegative integers, and N the set of all positive integers. For any
interval I ⊆ R and 1 ≤ p ≤ ∞, we let Lp(I) be the space of complex-valued Lebesgue
measurable functions f on I for which the norm

‖f‖p,I :=

{{∫
I
|f(x)|pdx

}1/p
, 1 ≤ p < ∞,

ess sup{|f(x)| : x ∈ I}, p = ∞,

is finite. When I = R we denote this norm as ‖f‖p.
Every function f ∈ L2(R) has a Fourier transform in L2(R) which we denote

by f̂ :

f̂(ω) :=

∫
R

f(x) exp(ixω)dx, w ∈ R.

A signal, that is, a function f in L2(R), is said to be band-limited with bandwidth σ

provided we have for |w| > σ that f̂(w) = 0. We denote the totality of such functions
by

Bσ := {f ∈ L2(R) : f̂(w) = 0, |w| > σ}.

We let C(R) be the space of complex-valued continuous functions on R with the
maximum norm ‖ · ‖∞. For h > 0 we define Sh : C(R) → C(R) for f ∈ C(R) by the
equation

(Shf)(x) :=
∑
k∈Z

f(kh)φ(h−1x− k), x ∈ R.(1)

We refer to Sh as a sampling operator because it uses the values f on hZ. By Cc(R)
we denote the subspace of C(R) consisting of all functions which vanish outside of

∗Received by the editors November 8, 2004; accepted for publication (in revised form) May 25,
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some finite subinterval of R. When φ ∈ Cc(R), we call (1) the Schoenberg operator
because of the work of I. J. Schoenberg [1] on spline functions. This hypothesis on
φ naturally arises in his work on spline functions. When φ = sinc, we call (1) the
cardinal operator and denote it by Ch:

(Chf)(x) :=
∑
k∈Z

f(kh)sinc(h−1x− k), x ∈ R.(2)

A fundamental result in information theory is the Whittaker–Kotel’nikov–Shannon
(WKS) sampling theorem [2, 3, 4]. It states that any f ∈ Bσ can be reconstructed
from its sampled values f(xk), where xk := kπ/σ and k ∈ Z, by the formula

f(x) =
∑
k∈Z

f(xk)sinc(σx/π − k), x ∈ R,

where

sinc(x) :=

{
sinπx
πx , x ∈ R \ {0},

1, x = 0,

and the series converges absolutely and uniformly on any finite closed interval of R.
The applications of the WKS the sampling theorem have been widely studied

[5, 6, 7, 8]. However, the sinc function in the WKS sampling series is not very
convenient for practical applications, due largely to the fact that it has a very slow
rate of decay at infinity.

An effort has been made to find replacements for the sinc kernel that have better
decay properties and are more convenient for numerical computation. It is expected
that a modification of the sinc function will yield a better convergence rate of the
WKS sampling formula. Many particular convergence factors have been considered;
see, for example, [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and references therein. Another
approach is to replace the sinc function with a sampling atom with rapid decay; see,
for example, [18, 19] and references therein.

In [20], the localization operator Gh : Bσ → L2(R), where h ∈ (0, π/σ], defined by

(Ghf)(x) :=
∑
k∈Z

f(kh)sinc(h−1x− k)φr(h
−1x− k), x ∈ R,(3)

is considered where φr := φ(r−1·). The function φ is even on R satisfying φ(0) = 1
and that φ is continuous at 0. We require φ ∈ L∞(R) ∩ L1(R), so that the sampling
series in (3) is uniformly convergent on R when f ∈ Bσ for any σ > 0. Such a function
φ can be a band-limited function or a duration-limited function.

For practical application, we consider its truncation version defined by

(Thf)(x) :=
∑

k∈Zm(x)

f(kh)sinc(h−1x− k)φr(h
−1x− k), x ∈ R,(4)

where Zm(x) := {k ∈ Z : |[h−1x]−k| ≤ m} for m ∈ N and [x] denotes the integer part
of x ∈ R. Note that the truncation terms chosen here coincide with what is applied
in [17], and it is different from what is considered in, for example, [10, 11, 12, 21],
where the truncation is made from −m to m for a given m.

For h > 0 and s ∈ Z+, we define the sth order derivative of the localization

operator by G(s)
h f := D(s)Gh, and correspondingly for the truncated form T (s)

h f :=
D(s)Th, where D(s) denotes the sth order derivative operator.
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We will study how well the operator G(s)
h or T (s)

h approximates D(s). This problem
is valuable for numerical application. To this end, we recall for p ∈ [1,∞] and s ∈ Z

+

that the Sobolev space is defined as

W s,p(R) := {f ∈ L1(R), f (k) ∈ Lp(R), 1 ≤ k ≤ s},

where for f ∈ W s,p(R) and an interval I ⊆ R, we let

‖f‖s,p,I :=

s∑
k=1

‖f (s)‖p,I.

Typically, for given m ∈ N and I := R \ [−m,m], we denote ‖f‖s,p,I by ‖f‖s,p,m.

For h > 0 and s ∈ Z+, error estimations for T (s)
h f to approximate the sth order

derivative of a band-limited function f have been obtained in [20]. When φ is the
Gaussian function G(x) := exp(−x2/2) for x ∈ R, which is proposed in [16], the
explicit error bound is given in [22]. If the sinc kernel in (4) is replaced by r1sinc(r1x)
for x ∈ R and certain r1 > 0, the error estimates are given in [23] and its numerical
application for solving Burgers’s equation is discussed in [24]. When the sinc kernel
in (4) is replaced by a modified version, which is defined for x ∈ R and λ ∈ [0, π) by
the formula S(x) := sinc(x) cos(λx), the L∞ error estimates are given in [25], which
shows that the approximation accuracy is comparable with that achieved by using
the sinc kernel.

Since different kernels have been efficiently applied and analyzed, we were moti-
vated to replace the sinc kernel in (4) by a general kernel K, that is, to consider

(Ghf)(x) :=
∑
k∈Z

f(kh)K(h−1x− k)Gr(h
−1x− k), x ∈ R.(5)

Furthermore, we consider its truncated version defined by

(Thf)(x) :=
∑

k∈Zm(x)

f(kh)K(h−1x− k)Gr(h
−1x− k), x ∈ R.(6)

We will give a sufficient condition for the kernel function K so that (6) can approxi-
mate a band-limited function f with exponentially decaying accuracy.

In the next section, we review some known results for later comparison and intro-
duce some preliminaries. Error estimates are derived in section 3. Rigorous and prac-
tical means for obtaining any desired accuracy for the sampling will be provided in
section 4, where we also give a new result of sampling series which is based on Meyer
wavelets. Section 5 provides a few numerical experiments to demonstrate the high
efficiency of the approximation. The conclusion will be given in the last section.

2. Preliminaries. We first review a basic result about approximation by the
Schoenberg operator (1). For this purpose, we let πn be the space of polynomials of
degree not exceeding n, and we denote for any h > 0 the modulus of continuity of a
function f defined on R by w(f ;h) := sup{|f(x)− f(y)| : |x− y| ≤ h}. The following
result is standard; see, for example, [20, pp. 13–14].

Theorem 2.1. If φ ∈ Cc(R) and n ∈ Z+, then there exists a positive constant c
such that for all f with f (n) ∈ C(R) and h > 0 there holds the inequality

‖Shf − f‖∞ ≤ chnw(f (n), h)
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if and only if for every p ∈ πn,

p(x) =
∑
j∈Z

p(j)φ(x− j), x ∈ R.

For later comparison, we introduce the following result [22] for (6) with a sinc
kernel to approximate a band-limited function f .

Theorem 2.2. If f ∈ Bσ, h ∈ (0, π/σ], K := sinc in (6), r > 0, m ∈ N,
m ≥ sr/

√
2, α0 := min{m/r, r(π − hσ)}, and s ∈ Z+, then

‖f (s) − T (s)
h f‖∞ ≤ β0 exp(−α2

0/2),

where β0 := eπr(s+1)!
hsπα0

(
√

2σ‖f‖2 + 2r‖f‖∞).
The following inequality about the Mills’ ratio, which is defined for x ∈ R as

M(x) := exp

(
x2

2

)∫ +∞

x

exp

(
− t2

2

)
dt,

will be essential for our later use.
Lemma 2.1. If x ≥ 0, then

π√
x2 + 2π + (π − 1)x

≤ M(x) ≤ π√
(π − 2)2x2 + 2π + 2x

.

Both bounds tend to
√
π/2 when x → 0. See, for example, [28, pp. 177–181].

Based on Lemma 2.1, we have the following result [25].
Lemma 2.2. If x0 ≥ 0, s ∈ Z+, and x ≥ max{1,

√
s}, then

∫ ∞

x

(t + x0)
s exp(−t2/2)dt ≤ (1 + s)(x + x0)

s exp(−x2/2)

x
.

3. Error estimates. For a kernel function K used in (5), we suppose that K
satisfies the following:

(1) for certain 0 ≤ a ≤ b ≤ 2π that

K̂(w) = 1, |w| ≤ a; K̂(w) = 0, |w| ≥ b; K̂(w) ∈ [0, 1], otherwise,(7)

(2) for given s ∈ Z+ and m ∈ N that

‖K‖s,∞,m < ∞.(8)

For simplicity of notation, we denote

c := min{2π − b, a},

which will be used throughout the rest of the paper. Note that from (7) we have c ≤ π.
We will derive the error bounds for (6) to approximate a band-limited function f . We
carry out the estimates in three steps.

3.1. Without truncation. The first step is to consider the operator Gh defined

in (5) and to derive for any s ∈ Z+ the estimate of the localization error f (s) −G(s)
h f .

To this end, for a given function K ∈ L1(R) and h, r > 0, we associate functions μ
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and ν defined for ω ∈ R by setting

μ(ω) :=
1√
2π

∫
R

K̂(hω − t/r) exp(−t2/2)dt(9)

and

ν(ω) := 1 − μ(ω) =
1√
2π

∫
R

[1 − K̂(hω − t/r)] exp(−t2/2)dt.

We need the following result.
Lemma 3.1. If K satisfies (7), h ∈ (0, c/σ], r(c − hσ) ≥ max{1,

√
s}, and

ω ∈ [−σ, σ], then √
|ωsν(ω)|2 +

∑
k∈Z\{0}

|(ω + 2kπ/h)sμ(ω + 2kπ/h)|2

≤ (1 + 2s+1)(1 + s)

√
2

π

(π
h

)s e−r2(c−hσ)2/2

r(c− hσ)

and

|ωsν(ω)|+
∑

k∈Z\{0}
|(ω+2kπ/h)sμ(ω+2kπ/h)| ≤ (1+2s+1)(1+s)

√
2

π

(π
h

)s e−r2(c−hσ)2/2

r(c− hσ)
.

Proof. From (7) and (9) we observe for ω ∈ [−σ, σ] that

|μ(ω)| ≤ 1√
2π

∫
|hω−t/r|≤b

exp(−t2/2)dt,

which leads to

S1(ω) : =
∑
k∈N

|(ω + 2kπ/h)sμ(ω + 2kπ/h)|

=
1√
2π

∑
k∈N

(ω + 2kπ/h)s
∫ r(2kπ+hω+b)

r(2kπ+hω−b)

exp(−t2/2)dt

≤ 1√
2π(rh)s

∑
k∈N

∫ r(hω+2kπ+b)

r(hω+2kπ−b)

(t + rb)s exp(−t2/2)dt.

Since b ≤ 2π, we have hω + 2(k + 2)π − b ≥ hω + 2kπ + b for k ∈ N and that

S1(ω) ≤ 1√
2π(rh)s

∑
k∈2N−1

∫ r(hω+2kπ+b)

r(hω+2kπ−b)

(t + rb)s exp(−t2/2)dt

+
1√

2π(rh)s

∑
k∈2N

∫ r(hω+2kπ+b)

r(hω+2kπ−b)

(t + rb)s exp(−t2/2)dt

≤ 2√
2π(rh)s

∫ ∞

r(hω+2π−b)

(t + rb)s exp(−t2/2)dt

≤ 2√
2π(rh)s

∫ ∞

r(c−hσ)

(t + rb)s exp(−t2/2)dt

≤ 2(1 + s)√
2π

(2π

h
− σ
)s exp(−r2(c− hσ)2/2)

r(c− hσ)
,(10)
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where the last step follows from Lemma 2.2. Furthermore, we have

S2(ω) : =
∑
−k∈N

|(ω + 2kπ/h)sμ(ω + 2kπ/h)|

=
1√
2π

∑
−k∈N

|ω + 2kπ/h|s
∫ r(hω+2kπ+b)

r(hω+2kπ−b)

exp(−t2/2)dt

=
1√
2π

∑
k∈N

(2kπ/h− ω)s
∫ r(2kπ+b−hω)

r(2kπ−b−hω)

exp(−t2/2)dt = S1(−ω).(11)

On the other hand, since

ν(ω) ≤ 1 − 1√
2π

∫
|hω−t/r|≤a

exp(−t2/2)dt =
1√
2π

∫
|hω−t/r|≥a

exp(−t2/2)dt,

from Lemma 2.1 we have

|ωsν(ω)| ≤ |ω|s√
2π

∫ ∞

r(hω+a)

e−t2/2dt +
|ω|s√

2π

∫ r(hω−a)

−∞
e−t2/2dt

≤
√

2

π
σs exp(−r2(c− hσ)2/2)

r(c− hσ)
≤
√

2

π

(π
h

)s exp(−r2(c− hσ)2/2)

r(c− hσ)
,(12)

where the last step follows from σ ≤ c/h and c ≤ π. Thus, combining (10), (11), and
(12) gives

|ωsν(ω)| +
∑

k∈Z\{0}
|(ω + 2kπ/h)sμ(ω + 2kπ/h)|

≤ (1 + 2s+1)(1 + s)

√
2

π

(π
h

)s exp(−r2(c− hσ)2/2)

r(c− hσ)
.

From √
|ω2sν(ω)2| +

∑
k∈Z\{0}

|(ω + 2kπ/h)2sμ(ω + 2kπ/h)2|

≤ |ωsν(ω)| +
∑

k∈Z\{0}
|(ω + 2kπ/h)sμ(ω + 2kπ/h)|,

we finish the proof.
Now, we are ready to obtain for given f ∈ Bσ the error estimates of Ghf − f and

its derivatives.
Theorem 3.1. If f ∈ Bσ, K satisfies (7), h ∈ (0, c/σ], r > 0, s ∈ Z+, and

r(c− hσ) ≥ max{1,
√
s}, then

‖f (s) − G(s)
h f‖2 ≤ (1 + 2s+1)(1 + s)

√
2

π

(π
h

)s e−r2(c−hσ)2/2

r(c− hσ)
‖f‖2

and

‖f (s) − G(s)
h f‖∞ ≤ (1 + 2s+1)(1 + s)

√
2σ

π

(π
h

)s e−r2(c−hσ)2/2

r(c− hσ)
‖f‖2.
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Proof. Since for ω ∈ R we have

K(h−1 · −k)̂(ω) = h exp(ikhω)K̂(hω)

and

Gr(h
−1 · −k)̂(ω) = hr exp(ikhω)

√
2π exp(−r2h2ω2/2),

we obtain

K(h−1 · −k)̂(ω) ∗Gr(h
−1 · −k)̂(ω)

=
√

2πh2r exp(ikhω)

∫
R

K̂(h(ω − θ)) exp(−r2h2θ2/2)dθ,

which provides for

Ghf :=
∑
k∈Z

f(kh)K(h−1 · −k)Gr(h
−1 · −k)

that

(Ghf )̂(ω) =
1

2π

∑
k∈Z

f(kh)K(h−1 · −k)̂(ω) ∗Gr(h
−1 · −k)̂(ω)

=
∑
k∈Z

f(kh)h exp(ikhω)μ(ω),(13)

where μ is defined in (9). On the other hand, since c ≤ π, function f satisfies

f̂ ∈ L2[−σ, σ] ⊆ L2[−c/h, c/h] ⊆ L2[−π/h, π/h],

and from its Fourier series expansion, we have

f̂(ω) = f̂(ω)χ[−σ,σ](ω) =
∑
k∈Z

hf(kh) exp(ikhω)χ[−σ,σ](ω), ω ∈ R.(14)

Applying (13) and (14) to E1 := f (s) − G(s)
h f gives for all ω ∈ R that

Ê1(ω) = (iω)s
∑
k∈Z

hf(kh) exp(ikhω)(χ[−σ,σ](ω) − μ(ω)).

Since f is band-limited to σ, we restrict f̂ to the interval [−π/h, π/h], extend this
function to a 2π/h-periodic function and denote the resulting function as g. Then

Ê1(ω) =

⎧⎨
⎩

(iω)sf̂(ω)ν(ω), |ω| ≤ σ,
−(iω)sg(ω)μ(ω), |ω − 2kπ/h| ≤ σ, k ∈ Z \ {0},
0 otherwise.

We observe that if ω ∈ R such that |ω − 2kπ/h| ≤ σ, where k ∈ Z \ {0}, then

g(ω) = g(ω − 2kπ/h) = f̂(ω − 2kπ/h),

which provides that

Ê1(ω) =

⎧⎨
⎩

(iω)sf̂(ω)ν(ω), |ω| ≤ σ,

−(iω)sf̂(ω − 2kπ/h)μ(ω), |ω − 2kπ/h| ≤ σ, k ∈ Z \ {0},
0 otherwise.
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Therefore, we have that

‖Ê1‖2
2 =

∫ σ

−σ

|ωsf̂(ω)ν(ω)|2dω +
∑

k∈Z\{0}

∫ σ

−σ

|(ω + 2kπ/h)sf̂(ω)μ(ω + 2kπ/h)|2dω

=

∫ σ

−σ

|f̂(ω)|2
(
|ωsν(ω)|2 +

∑
k∈Z\{0}

|(ω + 2kπ/h)sμ(ω + 2kπ/h)|2
)

dω.

Lemma 3.1 implies the L2 estimates. Since∫
R

|Ê1(ω)|dω =

∫ σ

−σ

|ωsf̂(ω)ν(ω)|dω +
∑

k∈Z\{0}

∫ σ

−σ

|(ω + 2kπ/h)sf̂(ω)μ(ω + 2kπ/h)|dω

=

∫ σ

−σ

|f̂(ω)|
(
|ωsν(ω)| +

∑
k∈Z\{0}

|(ω + 2kπ/h)sμ(ω + 2kπ/h)|
)

dω,

applying Lemma 3.1 and the Cauchy–Schwarz inequality to the above gives the L∞

estimates.
Note that if r → +∞, then exp(−r2(−hσ + c)2/2) → 0. Thus, from Theorem 3.1

we have the following result.
Corollary 3.1. If f ∈ Bσ, K satisfies (7), and h ∈ (0, c/σ], then

f(x) =
∑
k∈Z

f(kh)K(h−1x− k), x ∈ R,

and the series converges in the L2 norm and in the L∞ norm on R. It also converges
uniformly on any finite closed interval of R.

If K := sinc, then the above result reduces to the WKS sampling theorem. There-
fore, both Theorem 3.1 and Corollary 3.1 can be viewed as generalizations of the WKS
sampling theorem.

3.2. Truncated series. The next step is to estimate for h > 0 and s ∈ Z+

the truncation error G(s)
h f − T (s)

h f , where Gh and Th are defined in (5) and (6),
respectively.

Theorem 3.2. If f ∈ L∞(R) ∩ L2(R), h, r > 0, s ∈ Z+, m ∈ N, m ≥ sr/
√

2,
and K satisfies (8), then

‖G(s)
h f − T (s)

h f‖∞ ≤ 2
√
σ/πr2s!‖K‖s,∞,m

(m− 2)hs
exp(−(m− 2)2/2r2)‖f‖2.

Proof. We denote E2 := G(s)
h f − T (s)

h f . For x ∈ R and s ∈ Z+ we have

E2(x) :=
∑

|[x/h]−k|>m

f(kh)
ds

dxs
ψ(x/h− k),

where

ψ(x) := K(x) exp(−x2/2r2).

We denote the fractional part of x ∈ R by {x} and let l := [x/h] − k; then we have

E2(x) =
∑
|l|>m

f(x− lh− {x/h}h)
1

hs
ψ(s)(l + {x/h}),
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which leads to

|E2(x)| ≤ ‖f‖∞
hs

∑
|l|>m

|ψ(s)(l + {x/h})|.(15)

On the other hand, since for k ∈ N we have

dk

dxk
exp(−x2/2r2) =

(−1)k

(
√

2r)k
Hk(x/

√
2r) exp(−x2/2r2),

where Hk(x) is the kth order Hermite polynomial

exp(−x2)Hk(x) = (−1)k
dk

dxk
exp(−x2),

we obtain

ψ(s)(x) =
∑

j1+j2=s

s!

j1!j2!
K(j1)(x)

(−1)j2

(
√

2r)j2
Hj2(x/

√
2r) exp(−x2/2r2).

From [29, p. 187] we have

Hk(x) =

[k/2]∑
j=0

(−1)jk!(2x)k−2j

j!(k − 2j)!
.

For x ∈ R, k ∈ N, and j ∈ Z+ we denote aj := k!(2x)k−2j

j!(k−2j)! . Then we have Hk(x) =∑[k/2]
j=0 (−1)jaj . It is easily shown that {aj : j ∈ Z+} decrease for |x| ≥ k/2. This

leads to |Hk(x)| ≤ |a0|. Therefore, for |x| ≥ sr/
√

2, we have

|Hk(x/
√

2r)| ≤ (
√

2|x|/r)k,

which provides the estimation

|ψ(s)(x)| ≤
∑

j1+j2=s

s!

j1!j2!
K(j1)(x)

|x|j2
r2j2

exp(−x2/2r2).

For x ≥ sr
√

2 we have
∑s

n=0 |x|n/n! < e|x|. Thus, for |x| > m we have

|ψ(s)(x)| ≤ s!‖K‖s,∞,m exp(|x|/r2) exp(−x2/2r2)

≤ s!‖K‖s,∞,m exp(−(|x| − 1)2/2r2).(16)

Since m ≥ sr/
√

2, applying (16) to (15) gives

|E2(x)| ≤ s!‖K‖s,∞,m‖f‖∞
hs

{∑
l≥m

exp(−(l + {x/h})2/2r2)

+
∑
l≥m

exp(−(l − {x/h})2/2r2)

}
.
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From Lemma 2.1,

∑
l≥m

exp(−(l + {x/h})2/2r2) <

∫ ∞

m−1

exp(−x2/2r2)dx

≤ r2

m− 1
exp(−(m− 1)2/2r2).

Likewise,

∑
l≥m

exp(−(l − {x/h})2/2r2) <

∫ ∞

m−2

exp(−x2/2r2)dx

≤ r2

m− 2
exp(−(m− 2)2/2r2).

Therefore, we obtain

|E2(x)| ≤ 2r2s!‖K‖s,∞,m‖f‖∞
(m− 2)hs

exp(−(m− 2)2/2r2).

By applying the Cauchy–Schwarz inequality and the Parseval identity, we have

‖f‖∞ ≤ 1

2π

∫ σ

−σ

|f̂(ω)|dω ≤
√

2σ

2π
‖f̂‖2 =

√
σ/π‖f‖2,

from which we obtain the estimate.

3.3. Main result. For practical applications, only the truncated sampling series
can be used. Therefore, we will now turn our attention to error estimates for Th defined
in (6) to approximate a band-limited function and its derivatives.

Theorem 3.3. If f ∈ Bσ, h ∈ (0, c/σ], r > 0, s ∈ Z+, r(c− hσ) ≥ max{1,
√
s},

m ∈ N, m ≥ sr/
√

2, K satisfies (7) and (8), and α := min{r(c − hσ), (m − 2)/r},
then

‖f (s) − T (s)
h f‖∞ ≤ β exp(−α2/2)‖f‖2,

where

β := ((1 + 2s+1)(1 + s)πs−1 +
√

2/πrs!‖K‖s,∞,m)

√
2σ

αhs
.

Proof. Since

‖f (s) − T (s)
h f‖∞ ≤ ‖f (s) − G(s)

h f‖∞ + ‖G(s)
h f − T (s)

h f‖∞,

combining the error bounds in Theorems 3.1 and 3.2 gives the estimate with

α := min{r(c− hσ), (m− 2)/r}

and

β : = (1 + 2s+1)(1 + s)

√
2σ

π

(π
h

)s 1

r(c− hσ)
+

2
√
σ/πr2s!‖K‖s,∞,m

(m− 2)hs

≤ ((1 + 2s+1)(1 + s)πs−1 +
√

2/πrs!‖K‖s,∞,m)

√
2σ

αhs
.(17)

Thus, we finish the proof.
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Theorem 3.3 tells us that the approximation can achieve exponentially decaying
accuracy provided α > 0. Note that here the convergence is measured by a balance
of various parameters, which include the variance r of the Gaussian, the bandwidth σ
of f , the sampling rate h, and the truncation level m. This point of view is different
from that found in the literature, where convergence is measured by the sample rate
for functions.

In fact, if we specialize error bounds available in the literature to the class of
functions we considered, our error estimates are far superior. For example, Theorem
2.1 tells us that if the kernel function is B-splines, the error estimate is of polynomial
order. The convergence in Theorem 3.3 could be much faster for given h.

Theorem 3.3 provides great flexibility in approximation by involving many pa-
rameters that can be chosen appropriately. For application, simplified error bounds
depending only on the truncation level m for a given grid spacing h are desirable.
Since the maximal α takes when r(c − hσ) = (m − 2)/r, we can choose the optimal

scaling factor r =
√

m−2
c−hσ in the error bounds of Theorem 3.3. For this and the ef-

fects of different parameters on the error estimate, see, for example, [25]. Since the
approaches and results there are basically similar to our general cases, we omit the
details for simplicity of presentation.

As the proof of the above result mainly requires an application of the Fourier
transform, it is possible to use the distributional theory of the Fourier transform to
prove analogous results for a function that is bounded by a polynomial at infinity.
This case is valuable for the study of radial basis approximation; see, for example,
[26]. We will not require such improvements here, although they are important.

We remark that extensive numerical experiments have shown that high accuracy
of approximation still holds for not necessarily band-limited functions and their deriva-
tives. However, the explicit error estimates for the aliasing error are not available yet,
though some preliminary results have been obtained.

4. Applications. For applications in computation, we deal with finite domain.
Let I be a finite interval on R and |I| be its Lebesgue measure. For p ∈ [1,∞], the
following result gives the estimates in Lp norms for approximation on the interval I.

Theorem 4.1. If the hypotheses of Theorem 3.3 hold, α, β are given in Theorem
3.3, I ⊂ R, and p ∈ [1,∞], then

‖f (s) − T (s)
h f‖p,I ≤ βp exp(−α2/2)‖f‖2,

where

βp :=

{
|I|1/pβ, p ∈ [1,∞),
β, p = ∞.

Proof. It is obvious for p ∈ [1,∞) that

{∫
I

|f (s)(x) − (T (s)
h f)(x)|pdx

}1/p

≤ |I|1/p‖f (s) − T (s)
h f‖∞,

and for p = ∞ that

‖f (s) − T (s)
h f‖∞,I ≤ ‖f (s) − T (s)

h f‖∞.

Thus, from Theorem 3.3 we obtain the conclusion.
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We remark that the L2 estimate in Theorem 3.2, and thereafter in Theorem 3.3,
has not been obtained yet. It is not clear whether or not the L2 estimate is similar
to the L∞ estimate.

The error estimates in Theorem 4.1 are a useful guide for use in numerical com-
putations. For this purpose, we obtain the following fact, which provides rigorous
means for obtaining the desired accuracy of sampling.

Theorem 4.2. Given any ρ > 0, if the hypotheses of Theorem 4.1 hold, γp :=
lnβp, and the parameters m, r, and h are chosen such that

min{r(c− hσ), (m− 2)/r} ≥
√

2(γp + ρ ln 10),(18)

then

‖f (s) − T (s)
h f‖p,I ≤ 10−ρ.

Proof. From Theorem 4.1 the result follows directly.
By using (18), we can choose m, r, and h appropriately to attain any desired

accuracy. Roughly speaking, suppose c = π, βp = 1, and h and σ are small enough;
then we can choose r ∈ [3, 4] and m ∼ 30 to ensure the highest accuracy in a double
precision computation, that is, ρ = 16.

There are a few examples of kernel function K that satisfy the hypotheses (7)
and (8).

Example 1:

K(x) := sinc(x), x ∈ R.

This is the Shannon kernel discussed in [22]. Here a = b = c = π.
Example 2:

K(x) := r1 sinc(r1x), x ∈ R,

for r1 > 0. This is the oversampled Shannon kernel discussed in [24]. Here a = b = r1π
and c = min{2π − r1π, r1π}. When r1 := 1 it reduces to the case of Example 1.

Example 3:

K(x) := sinc(x) cos(λx), x ∈ R,

for λ ∈ [0, π). This is the modified sinc kernel studied in [25]. Here a = π − λ,
b = π + λ, and c = π − λ. When λ := 0 it reduces to the case of Example 1.

Example 4:

K(x) := sinc(x)sinc(x/3), x ∈ R.

This is the de la Vallée Poussin kernel discussed in [27]. Here a = c = 2π/3 and
b = 4π/3.

Example 5: The scaling function φ of the Meyer wavelet [30] is given by its Fourier
transform

φ̂(w) =

⎧⎨
⎩

1, |w| ≤ 2π/3,
cos[π2 θ(3|w|/2π − 1)], 2π/2 < |w| < 4π/3,
0, |w| ≥ 4π/3,

(19)
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where θ is a real-valued function satisfying θ + θ(1 − ·) = 1. Let d ∈ (1/2, 1] and

θ(w) =

{
2
πarccot

(
w−d

1−w−d

)
, 1/2 ≤ w ≤ d,

1, w > d.
(20)

Using θ + θ(1 − ·) = 1, we extend θ on [0, 1]. Then the sampling function for the
wavelet subspace [31] is

W (x) =
3 sin(πx) sin(2π(d− 0.5)x/3)

2π2(d− 0.5)x2
, x ∈ R.(21)

See [32, 21]. We have the following estimates, which provide much faster convergence
than that given in [32, 21].

Corollary 4.1. If f ∈ Bσ, K := W defined in (21), d ∈ (1/2, 1], h ∈ (0, (4 −
2d)π/3σ], r > 0, s ∈ Z+, r[(4 − 2d)π/3 − hσ] ≥ max{1,

√
s}, m ∈ N, m ≥ sr/

√
2,

and α1 := min{r[(4 − 2d)π/3 − hσ], (m− 2)/r}, then

‖f (s) − T (s)
h f‖∞ ≤ β1 exp(−α2

1/2)‖f‖2,

where β1 :=
(
(1 + 2s+1)(1 + s)πs−1 +

√
2/πrs! s(1+λ)s

λm2

)√
2σ

αhs .
Proof. Direct computing shows that W satisfies hypotheses (7) with a = c =

(4 − 2d)π/3. So we need only to estimate for s ∈ Z+ and m ∈ N the quantity
‖W‖s,∞,m. We observe for λ := 2(d− 0.5)/3 ∈ (0, 1/3] and x ∈ R that

W (x) =
cos(1 − λ)x− cos(1 + λ)x

2λx2

and

W (s)(x) =
∑

j+k=s

s!

j!k!
{(1 − λ)j cos[(1 − λ)x + jπ/2]

−(1 + λ)j cos[(1 + λ)x + jπ/2]} (−1)k(k + 1)!

2λxk+2
,

which provides

|W (s)(x)| ≤ s!

2λ

∑
j+k=s

(1 − λ)j + (1 + λ)j

j!

k + 1

xk+2
.

Since for j ∈ Z+ the function xj/j! increases on x > 0, we have

|W (s)(x)| ≤ (1 − λ)s + (1 + λ)s

2λ

s∑
k=0

k + 1

xk+2
≤ (1 + λ)s

λ

s∑
k=0

k + 1

xk+2
≤ s(1 + λ)s

λx2
.

So, we conclude that

‖W‖s,∞,m ≤ s(1 + λ)s

λm2
,

and W satisfies (8). Thus, from Theorem 3.3 we finish our proof.
There are many examples of wavelet sampling series (see, for example, [33, pp. 160–

162]) that Theorem 3.3 can be applied to obtain much faster convergence. We omit
the details. For the relation between the localized sampling and the Meyer wavelets,
we will investigate it further at another occasion.
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5. Numerical experiments. We may illustrate the approximation with nu-
merical experiments. We consider the function f := sinc7 ∈ B7π and denote the
computation domain by I ⊂ R. First, we describe the numerical scheme based on
applying the operator (6). We start by specifying the spatial grids. Let h := |I|/n
and xj := jh for 0 ≤ j ≤ n−1. Here n is the number of the grid points and we choose
n > 2m, where m is the truncation level. From (6) we have

(Thf)(xj) =
∑

k∈Zm(xj)

f(xk)K(xj − xk)Gr(xj − xk).(22)

For s ∈ Z
+, we use T (s)

h f to approximate f (s).
Note that the values {f(xk) : −m ≤ k ≤ n + m − 1} are required to implement

(22). So, we need to extend the values {f(xk) : 0 ≤ k ≤ n − 1} to {f(xk) : −m ≤
k ≤ n + m − 1}. Since the function f decays fast, we will make an antisymmetric
extension of the function f and therefore set f(xk) := −f(x−k) for −m ≤ k ≤ −1
and f(xk) := −f(x2n−k−2) for n ≤ k ≤ n + m− 1.

All the computations were done on a UNIX workstation with a Fortran 90 com-
piler. It is simple to measure the errors of the solutions in the discrete p-norms for
p ∈ [1,∞].

|f |p,I :=

⎧⎨
⎩
{
h
∑n−1

j=0 |f (s)(xj) − (T (s)
h f)(xj)|p

}1/p

, 1 ≤ p < ∞,

max{|f (s)(xj) − (T (s)
h f)(xj)| : 0 ≤ j ≤ n− 1}, p = ∞.

Similar to Theorem 4.1, we have the following estimates for the above errors.
Corollary 5.1. If the hypotheses of Theorem 3.3 hold, α and βp are given in

Theorem 3.3, I ⊂ R, and p ∈ [1,∞], then

|f (s) − T (s)
h f |p,I ≤ βp exp(−α2/2)‖f‖2.

Proof. It is obvious for p ∈ [1,∞) that

⎧⎨
⎩h

n−1∑
j=0

|f (s)(xj) − (T (s)
h f)(xj)|p

⎫⎬
⎭

1/p

≤(nh)1/p‖f (s)−T (s)
h f‖∞ = |I|1/p‖f (s)−T (s)

h f‖∞,

and for p = ∞ that

|f (s) − T (s)
h f |∞,I ≤ ‖f (s) − T (s)

h f‖∞.

Therefore, the conclusion follows from Theorem 3.3.
First, we compare the localized sampling with the WKS sampling series. The

accuracy of approximation achieved by the localized sampling in Example 1 is denoted
by LS, and the corresponding approximation accuracy obtained by using the truncated
version of the cardinal series (2),

(Ch,mf)(x) :=
∑

k∈Zm(x)

f(kh)sinc(h−1x− k), x ∈ R,

is denoted by CS. The numerical results of LS and CS approximating f ′ are reported
and compared in Table 1, from which the advantage of the localization with Gaussian
multiplier is obvious.
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Table 1

Approximation for f ′(x) on x ∈ [−5, 5], Example 1.

LS CS

Nodes m r L2 error L∞ error L2 error L∞ error

100 30 3.0 2.07(−7) 2.34(−7) 1.41(−1) 1.67(−1)
3.3 3.20(−8) 3.65(−8)
3.6 4.92(−9) 5.50(−9)
3.9 7.47(−10) 8.02(−10)

200 35 3.0 1.77(−13) 2.69(−13) 2.40(−1) 2.82(−1)
3.3 2.98(−14) 5.84(−14)
3.6 2.86(−14) 5.41(−14)
3.9 2.74(−14) 5.11(−14)

Table 2

Approximation for f(x) := sinc7(x) on x ∈ [−5, 5], Example 2.

f ′(x) f ′′(x)

Nodes m r r1 L2 error L∞ error L2 error L∞ error

100 30 2 1 2.15(−6) 3.57(−6) 1.72(−4) 3.09(−4)
1.1 1.50(−5) 2.55(−5) 3.73(−5) 6.06(−5)
1.2 1.10(−4) 1.90(−4) 3.31(−4) 5.56(−4)

3 1 9.39(−12) 1.60(−11) 3.30(−10) 4.19(−10)
1.1 4.07(−10) 6.09(−10) 2.31(−9) 2.99(−9)
1.2 1.96(−8) 3.018(−8) 1.12(−7) 1.52(−7)

200 30 2 1 1.42(−7) 2.39(−7) 2.86(−5) 6.00(−5)
1.1 1.66(−6) 2.74(−6) 7.86(−7) 1.25(−6)
1.2 1.81(−5) 2.93(−5) 1.55(−5) 2.93(−5)

3 1 4.43(−14) 8.90(−14) 3.53(−12) 1.54(−11)
1.1 1.20(−13) 2.12(−13) 3.26(−12) 1.24(−11)
1.2 1.72(−11) 3.00(−11) 3.25(−11) 5.89(−11)

Table 3

Approximation for f ′(x) on x ∈ [−3, 3], Example 4.

LMS MS

Nodes m r L2 error L∞ error L2 error L∞ error

100 30 3 2.82(−9) 4.32(−9) 4.05(−3) 4.75(−3)
3.3 1.63(−10) 2.37(−10)
3.6 1.37(−11) 2.17(−11)
3.9 9.87(−12) 2.00(−11)

200 32 3 1.89(−12) 3.30(−12) 2.57(−2) 3.01(−2)
3.3 6.04(−14) 1.49(−13)
3.6 5.71(−14) 1.52(−13)
3.9 5.60(−14) 1.55(−13)

Table 2 reports the numerical results obtained by using the kernel in Example
2. It is observed for K := r1 sinc(r1·) that if r1 ∼ 1 and h decreases, then the error
bounds decrease to the double precision accuracy. The computational results confirm
the theoretical conclusions of Theorem 4.2.

Finally, we choose d := 3/4 in Example 4. The accuracy of approximation
achieved by using the localized sampling series with kernel (21) is denoted by LMS,
and the corresponding approximation accuracy obtained by using the sampling with-
out localization is denoted by MS. The numerical results of LMS and MS are reported
and compared in Table 3. It demonstrates the superior efficiency of the localized sam-
pling in approximation.
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For any fixed parameters in Tables 1, 2, and 3, the corresponding L2 error and L∞

error are basically of the same order. This is in good agreement with the theoretical
conclusions given in Corollary 5.1.

6. Conclusion. We give a sufficient condition for the kernel K used in (6), so
that the localized sampling series can achieve exponentially decaying accuracy for
approximating band-limited functions and their derivatives.

For application, our result provides for p ∈ [1,∞] the Lp estimates for approxima-
tion on finite domain. Numerical experiments demonstrate the high accuracy achieved
by using the localized sampling series.

The general kernel obtained here includes some known kernel functions, such as
the Shannon kernel, the oversampled Shannon kernel, the modified sinc kernel, and
the de la Vallée Poussin kernel, as special cases.

Furthermore, the general kernel sampling gives new results on the interpolating
Meyer wavelets. Note that by the localization with Gaussian function, the sampling
series achieves much faster convergence for approximation.
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Abstract. The approximate solution of optimization and optimal control problems for systems
governed by linear, elliptic partial differential equations is considered. Such problems are most of-
ten solved using methods based on applying the Lagrange multiplier rule to obtain an optimality
system consisting of the state system, an adjoint-state system, and optimality conditions. Galerkin
methods applied to this system result in indefinite matrix problems. Here, we consider using modern
least-squares finite element methods for the solution of the optimality systems. The matrix equa-
tions resulting from this approach are symmetric and positive definite and are readily amenable to
uncoupling strategies. This is an important advantage of least-squares principles as they allow for a
more efficient computational solution of the optimization problem. We develop an abstract theory
that includes optimal error estimates for least-squares finite element methods applied to optimality
systems. We then provide an application of the theory to optimization problems for the Stokes
equations.
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1. Introduction. Optimization and control problems for systems governed by
partial differential equations arise in many applications. Experimental studies of such
problems go back 100 years [22], and computational approaches have been applied
since the advent of the computer age. Most of the efforts in the latter direction
have employed elementary optimization strategies, but more recently, there has been
considerable practical and theoretical interest in the application of sophisticated local
and global optimization strategies, e.g., Lagrange multiplier methods, sensitivity or
adjoint-based gradient methods, quasi-Newton methods, evolutionary algorithms, etc.

The optimal control or optimization problems we consider consist of
• state variables, i.e., variables that describe the system being modeled;
• control variables or design parameters, i.e., variables at our disposal that can

be used to affect the state variables;
• a state system, i.e., partial differential equations relating the state and control

variables; and
• a functional of the state and control variables whose minimization is the goal.

Then, the problems we consider consist of finding state and control variables that
minimize the given functional subject to the state system being satisfied. Here, we
restrict attention to linear, elliptic state systems and to quadratic functionals.
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The Lagrange multiplier rule is a standard approach for solving finite-dimensional,
constrained optimization problems. It is not surprising then that several popular
approaches to solving optimization and control problems constrained by partial dif-
ferential equations are also based on solving optimality systems deduced from the
application of the Lagrange multiplier rule. The optimality system consists of

• the state system, i.e., the given partial differential equations that relate the
unknown state and control variables;

• an adjoint or costate system which is also partial differential equations involv-
ing the adjoint operator of the state system; and

• an optimality condition that reflects the fact that the gradient of the func-
tional vanishes for optimal values of the state and control variables.

The three components of the optimality system are coupled. In the linear con-
straints/quadratic functional context we consider in this paper, the optimality system,
viewed as a coupled system, is a symmetric and weakly coercive linear system in the
state, adjoint-state, and control variables.

In the context of finite element methods, optimality systems are usually dis-
cretized using Galerkin methods, resulting in typical saddle-point-type matrix prob-
lems that are symmetric and indefinite. In many if not most practical situations, the
coupled optimality system is a formidable system to solve; compared to solving direct
problems involving the state system alone, discrete optimality systems typically in-
volve at least double the number of unknowns. For this reason, many approaches have
been proposed for decoupling, through iterative processes, the different components
of the optimality system. An extensive discussion of several such strategies in both
an abstract setting and for fluid flow problems can be found in [18].

In this paper, we discuss the use of modern least-squares finite element methods
for finding approximate solutions of the optimality system. The resulting matrix
problems are symmetric and positive definite. Moreover, their diagonal blocks are
also symmetric and positive definite, thus opening up better possibilities for devising
efficient uncoupling methods than is the case for Galerkin discretizations. In order
to develop a basic theory for least-squares finite element methods for optimization
and control problems, we focus on treating the optimality system as a fully coupled
system and only briefly discuss the application of decoupling strategies. Nevertheless,
the reader should keep in mind that amenability to efficient uncoupling strategies
is, perhaps, the chief reason to consider the application of least-squares principles
to optimization problems. The application of least-squares principles to optimality
systems was previously discussed, in a concrete setting, in [19].

The approach we have described for finding approximate solutions of optimal con-
trol and optimization problems for partial differential equations is of the differentiate-
then-discretize or optimize-then-discretize type. One first applies, at the continuous
partial differential equations level, the first-order necessary conditions for finding sad-
dle points of a Lagrangian functional, and then one uses a finite element method, be it
of Galerkin or of least-square type, to discretize the resulting optimality system. For
the alternative discretize-then-differentiate or discretize-then-optimize type approach,
one reverses the steps: One first discretizes the optimization or control problem by
some means and then applies the Lagrange multiplier rule to the resulting discrete
optimization problem. The two steps do not, in general, commute so that the discrete
systems determined by the two approaches are not the same. A discussion of the
relative merits of the two approaches can be found, e.g., in [18]. Here, we focus on
the differentiate-then-discretize approach.
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Instead of using the Lagrange multiplier rule for solving constrained optimiza-
tion problems, one may use a penalty method. Penalty/least-squares finite element
methods are the subject of the companion paper [9]; see also [20]. Other applica-
tions of least-squares finite element methods to optimization problems may be found
in [2, 3, 5, 8].

The paper is organized as follows. In section 3, we study, in an abstract set-
ting, Lagrange multiplier methods for quadratic optimization and control problems
constrained by linear, elliptic partial differential equations. In section 4, we study
least-squares finite element methods for the approximate solution of the optimality
system resulting from the application of the Lagrange multiplier rule. In section 5,
we provide concrete examples that illustrate the theory of sections 3 and 4. In pass-
ing, we briefly remark on several related topics, including decoupling strategies for
the solution of the discretized optimality system. Before we embark, however, in sec-
tion 2, we present mostly well-known results about general constrained optimization
problems and their solution via Lagrange multiplier methods. These results serve as
the foundation for the considerations of sections 3 and 4. We remark that in sev-
eral inequalities appearing in the paper, C denotes a positive constant whose value
changes with context but that is independent of any of the data or solution functions
appearing in the inequalities.

2. Linearly constrained quadratic minimization problems in Hilbert
spaces. In this section, we review the now classical theory (see [12] and also [13,16])
for finite element methods for constrained quadratic minimization problems. The
optimization and control problems that are the subject of this paper can be profitably
viewed as special cases of the types of problems treated by the classical theory.

Given Hilbert spaces V and S along with their dual spaces V ∗ and S∗, respectively,
the symmetric bilinear form a(·, ·) on V × V , the bilinear form b(·, ·) on V × S,
the functions f ∈ V ∗ and g ∈ S∗, and the real number t, we define the quadratic
functional1

J (u) =
1

2
a(u, u) − 〈f, u〉V ∗,V + t ∀u ∈ V,(2.1)

the linear constraint equation

b(u, q) = 〈g, q〉S∗,S ∀ q ∈ S,(2.2)

where 〈·, ·〉 denotes an appropriate duality pairing, and the constrained minimization
problem2

min
u∈V

J (u) subject to (2.2).(2.3)

1The value of t does not affect the minimizer of J (·). We include it in the definition of J (u) only
to facilitate, in later sections, the identification of concrete functionals with the abstract functional
(2.1).

2Such problems arise in many applications. A classical example is provided by the functional
J (v) = 1

2

∫
Ω |v|2 dΩ, the linear constraint ∇·v = f, and the minimization problem min J(v) subject

to ∇ ·v = f in Ω, where the minimization is effected over a suitable function space. For example, in
fluid mechanics, this problem is known as the Kelvin principle and, in structural mechanics (where
v is a tensor), as the complimentary energy principle. For the Kelvin principle, S is the space L2(Ω)
of all square integrable functions, and V is the space H(div,Ω) of all square integrable vector fields
whose divergencies are also square integrable, a(u,v) =

∫
Ω u ·u dΩ, b(v, q) =

∫
Ω q∇ ·v dΩ. Also, the

operators A and B defined below are the identity and divergence operators, respectively.
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The bilinear forms serve to define the associated operators

A : V → V ∗, B : V → S∗, and B∗ : S → V ∗(2.4)

through the relations{
a(u, v) = 〈Au, v〉V ∗,V ∀u, v ∈ V,

b(v, q) = 〈Bv, q〉S∗,S = 〈B∗q, v〉V ∗,V ∀ v ∈ V, q ∈ S.

The minimization problem (2.3) can then be given the form

min
u∈V

J (u) subject to Bu = g,

where the constraint equation Bu = g holds in S∗. We define the subspace

Z = {v ∈ V : b(v, q) = 0 ∀ q ∈ S}(2.5)

and make the following assumptions about the bilinear forms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(u, v) ≤ Ca‖u‖V ‖v‖V ∀u, v ∈ V,

b(u, q) ≤ Cb‖u‖V ‖q‖S ∀u ∈ V, q ∈ S,

a(u, u) ≥ 0 ∀u ∈ V,

a(u, u) ≥ Ka‖u‖2
V ∀u ∈ Z,

sup
v∈V,v �=0

b(v, q)

‖v‖V
≥ Kb‖q‖S ∀ q ∈ S,

(2.6)

where Ca, Cb, Ka, and Kb are all positive constants.

2.1. Existence of solutions. The following result is well known; see, e.g. [21].
Proposition 2.1. Let the assumptions (2.6) hold. Then, the constrained mini-

mization problem (2.3) has a unique solution u ∈ V .

2.2. Solution via Lagrange multipliers. For all v ∈ V and q ∈ S, we intro-
duce the Lagrangian functional

L(v, q) = J (v) + b(v, q)−〈g, q〉S∗,S =
1

2
a(v, v) + b(v, q)−〈f, v〉V ∗,V −〈g, q〉S∗,S + t.

Then, the constrained minimization problem (2.3) is equivalent to the unconstrained
optimization problem of finding saddle points (u, p) ∈ V × S of the Lagrangian func-
tional. These saddle points may be found by solving the optimality system{

a(u, v) + b(v, p) = 〈f, v〉V ∗,V ∀ v ∈ V,

b(u, q) = 〈g, q〉S∗,S ∀ q ∈ S.
(2.7)

The following result is also well known; see, e.g., [12].
Proposition 2.2. Let the assumptions (2.6) hold. Then, the system (2.7) has a

unique solution (u, p) ∈ V × S. Moreover,

‖u‖V + ‖p‖S ≤ C
(
‖f‖V ∗ + ‖g‖S∗

)
,(2.8)

and u ∈ V is the unique solution of the constrained minimization problem (2.3).
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In terms of the operators introduced in (2.4), the system (2.7) takes the form

{
Au + B∗p = f in V ∗,

Bu = g in S∗.

Remark 2.3. The unique solvability of (2.7) and the estimate (2.8) do not require
that the bilinear form a(·, ·) be symmetric or that it satisfy the third condition in (2.6).
Also, the fourth condition in (2.6) may be weakened to a weak coercivity condition.
However, these conditions are required to make the connection between (2.7) and the
constrained minimization problem (2.3). So, throughout, we will assume that all the
conditions in (2.6) hold.

2.3. Galerkin approximations of the optimality system. We choose (con-
forming) finite-dimensional subspaces V h ⊂ V and Sh ⊂ S, and we then restrict (2.7)
to these subspaces, i.e., we seek uh ∈ V h and ph ∈ Sh that satisfy

{
a(uh, vh) + b(vh, ph) = 〈f, vh〉V ∗,V ∀ vh ∈ V h,

b(uh, qh) = 〈g, qh〉S∗,S ∀ qh ∈ Sh.
(2.9)

This is also the optimality system for the minimization of the functional J (·) over
V h subject to b(uh, qh) = 〈g, qh〉S∗,S for all qh ∈ Sh. Let

Zh = {vh ∈ V h : b(vh, qh) = 0 ∀ qh ∈ Sh}.

In general, Zh �⊂ Z even though V h ⊂ V and Sh ⊂ S, and so the last two assumptions
in (2.6) may not be satisfied with respect to the subspaces. If V h and Sh are such
that the last two assumptions hold, then one obtains the following well-known result;
see, e.g., [12].

Proposition 2.4. Let the hypotheses of Proposition 2.1 hold and assume that

a(uh, uh) ≥ Kh
a ‖uh‖2

V ∀uh ∈ Zh(2.10)

and

sup
vh∈V h,vh �=0

b(vh, qh)

‖vh‖V
≥ Kh

b ‖qh‖S ∀ qh ∈ Sh,(2.11)

where Kh
a and Kh

b are positive constants independent of h. Then, the discrete system
(2.9) has a unique solution (uh, ph) ∈ V h × Sh, and moreover

‖uh‖V + ‖ph‖S ≤ C
(
‖f‖V ∗ + ‖g‖S∗

)
.

Furthermore, if (u, p) ∈ V × S denotes the unique solution of (2.7), then

‖u− uh‖V + ‖p− ph‖S ≤ C
(

inf
vh∈V h

‖u− vh‖V + inf
qh∈Sh

‖p− qh‖S
)
.(2.12)

The discrete problem (2.9) is equivalent to a linear system. Indeed, let {Ui}ni=1

and {Pi}mi=1, where n = dim(V h) and m = dim(Sh), denote bases for V h and Sh,
respectively, and let �u = (u1, . . . , un)T and �p = (p1, . . . , pm)T denote the vectors of
coefficients in the expansions of uh and ph in terms of the respective bases. Fur-
thermore, let fi = 〈f, Ui〉V ∗,V for i = 1, . . . , n, gi = 〈g, Pi〉S∗,S for i = 1, . . . ,m,
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�f = (f1, . . . , fn)T , and �g = (g1, . . . , gm)T , and define the elements of the n×n matrix
A and the m×n matrix B by Aij = a(Ui, Uj) for i, j = 1, . . . , n and Bij = b(Uj , Pi) for
i = 1, . . . ,m, j = 1, . . . , n, respectively. Then, (2.9) is equivalent to the linear system

(
A B

T

B 0

)(
�u
�p

)
=

(
�f
�g

)
.(2.13)

Remark 2.5. The coefficient matrix in (2.13) is symmetric and indefinite. This
is universal for discretizations of saddle-point problems arising from the use of the
Lagrange multiplier rule for constrained optimization problems.

Remark 2.6. The assumptions (2.10) and (2.11) guarantee that the (m + n) ×
(m+ n) coefficient matrix in (2.13) is invertible and that the norms of its inverse are
bounded from above independently of m and n, i.e., independently of the grid size h.

Remark 2.7. The observations made in Remark 2.3 about the bilinear form a(·, ·)
and (2.7) also apply to (2.9).

3. Quadratic optimization and control problems in Hilbert spaces with
linear constraints. In this section, we specialize the results of section 2 to the type
of optimization and control problems described in section 1. We identify the variable
u of section 2 with the pair (φ, θ), where φ and θ are the state and control variables,
respectively, of the control problem.

We begin with four given Hilbert spaces Θ, Φ, Φ̂, and Φ̃ along with their dual
spaces denoted by (·)∗. We assume that Φ ⊆ Φ̂ ⊆ Φ̃ with continuous embeddings and

that Φ̃ acts as the pivot space for both the pair {Φ∗,Φ} and the pair {Φ̂∗, Φ̂} so that

we have not only that Φ ⊆ Φ̂ ⊆ Φ̃ ⊆ Φ̂∗ ⊆ Φ∗ but also that
〈
ψ, φ
〉
Φ∗,Φ

=
〈
ψ, φ
〉
Φ̂∗,Φ̂

=
(
ψ, φ
)
Φ̃

∀ψ ∈ Φ̂∗ ⊆ Φ∗ and ∀φ ∈ Φ ⊆ Φ̂,(3.1)

where (·, ·)Φ̃ denotes the inner product on Φ̃.
Next, we define the quadratic functional

J (φ, θ) =
1

2
a1(φ− φ̂, φ− φ̂) +

1

2
a2(θ, θ) ∀φ ∈ Φ, θ ∈ Θ,(3.2)

where a1(·, ·) and a2(·, ·) are symmetric bilinear forms on Φ̂×Φ̂ and Θ×Θ, respectively,

and φ̂ ∈ Φ̂ is a given function. In the language of control theory, Φ is called the state
space, φ the state variable, Θ the control space, and θ the control variable. In many
applications, the control space is finite dimensional in which case θ is often referred
to as the vector of design variables. We note that often Θ is chosen to be a bounded
set in a Hilbert space, but for our purposes, we consider the less general situation of
Θ itself being a Hilbert space. We make the following assumptions about the bilinear
forms a1(·, ·) and a2(·, ·):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1(φ, μ) ≤ C1‖φ‖Φ̂‖μ‖Φ̂ ∀φ, μ ∈ Φ̂,

a2(θ, ν) ≤ C2‖θ‖Θ‖ν‖Θ ∀ θ, ν ∈ Θ,

a1(φ, φ) ≥ 0 ∀φ ∈ Φ̂,

a2(θ, θ) ≥ K2‖θ‖2
Θ ∀ θ ∈ Θ,

(3.3)

where C1, C2, and K2 are all positive constants. The second term in the functional
(3.2) can be interpreted as a penalty term which limits the size of the control θ.
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Given another Hilbert space Λ, the additional bilinear forms b1(·, ·) on Φ×Λ and
b2(·, ·) on Θ × Λ, and the function g ∈ Λ∗, we define the linear constraint equation

b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ.(3.4)

We make the following assumptions about the bilinear forms b1(·, ·) and b2(·, ·):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1(φ, ψ) ≤ c1‖φ‖Φ‖ψ‖Λ ∀φ ∈ Φ, ψ ∈ Λ,

b2(θ, ψ) ≤ c2‖ψ‖Φ‖θ‖Θ ∀ θ ∈ Θ, ψ ∈ Λ,

sup
ψ∈Λ,ψ �=0

b1(φ, ψ)

‖ψ‖Λ
≥ k1‖φ‖Φ ∀φ ∈ Φ,

sup
φ∈Φ,φ �=0

b1(φ, ψ)

‖φ‖Φ
> 0 ∀ψ ∈ Λ,

(3.5)

where c1, c2, and k1 are all positive constants. These assumptions suffice to guarantee
that, given any θ ∈ Θ, the constraint equation (3.4) is uniquely solvable for φ ∈ Φ;
this observation easily follows from [1] and (3.5).

We consider the optimal control problem3

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ.(3.6)

It is easy to verify that the problem (3.6) falls into the framework of section 2.
To this end, we let V ≡ Φ×Θ, S ≡ Λ, ‖{φ, θ}‖V =

√
‖φ‖2

Φ + ‖θ‖2
Θ for all {φ, θ} ∈ V ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
(
{φ, θ}, {μ, ν}

)
≡ a1(φ, μ) + a2(θ, ν) ∀φ, μ ∈ Φ, θ, ν ∈ Θ,

b
(
{φ, θ}, {ψ}

)
≡ b1(φ, ψ) + b2(θ, ψ) ∀φ ∈ Φ, θ ∈ Θ, ψ ∈ Λ,〈

f, {μ, ν}
〉
V ∗,V

≡ a1(μ, φ̂) ∀μ ∈ Φ, ν ∈ Θ,

t =
1

2
a1(φ̂, φ̂).

(3.7)

From (3.3), it follows that t ≤ (C1/2)‖φ̂‖2
Φ̂

and, also using the continuous embedding

Φ ⊆ Φ̂,

〈f, {μ, ν}〉V ∗,V

‖{μ, ν}‖V
≤ 〈f, {μ, ν}〉V ∗,V

‖μ‖Φ
=

a1(μ, φ̂)

‖μ‖Φ
≤ C1‖φ̂‖Φ̂ ∀ {μ, ν} ∈ Φ × Θ = V

so that ‖f‖V ∗ ≤ C1‖φ̂‖Φ̂, i.e., f does indeed belong to V ∗. Then, with the obvi-
ous identifications u = {φ, θ}, v = {μ, ν}, and q = {ψ}, the functionals (2.1) and
(3.2) are equivalent as are the constraint equations (2.2) and (3.4). The constrained
optimization problem (2.3) and the optimal control problem (3.6) are also equivalent.

We will use the framework and results established in section 2 to study the optimal
control problem (3.6). Many of the results we discuss are well known, but we repeat
them here to establish a context for later discussions.

3In section 5 we will consider an example where the linear constraint will be the weak form
of the Stokes equations of incompressible viscous flows. We draw attention to the fact that these
equations themselves are another example of a problem that fits the abstract setting of section 2
with J (v; f) = 1

2

∫
Ω |∇v|2 dΩ −

∫
Ω f · v dΩ, b(v, q) =

∫
Ω q∇ · v dΩ, and g = 0.
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3.1. Existence of optimal states and controls. We begin with the following
preliminary result.

Lemma 3.1. Let the assumptions (3.3) and (3.5) hold. Then the spaces V ≡
Φ × Θ and S ≡ Λ and the bilinear forms a(·, ·) and b(·, ·) defined in (3.7) satisfy the
assumptions (2.6).

Proof. Using (3.3) and the continuous embedding Φ ⊂ Φ̂, we have that

a({φ, θ}, {μ, ν}) = a1(φ, μ) + a2(θ, ν) ≤ C1‖φ‖Φ̂‖μ‖Φ̂ + C2‖θ‖Θ‖ν‖Θ

≤ C1‖φ‖Φ‖μ‖Φ + C2‖θ‖Θ‖ν‖Θ ≤ max{C1, C2}
√
‖φ‖2

Φ + ‖θ‖2
Θ

√
‖μ‖2

Φ + ‖ν‖2
Θ

for all φ, μ ∈ Φ, θ, ν ∈ Θ so that a(u, v) ≤ Ca‖u‖V ‖v‖V for all u, v ∈ V with
Ca = max{C1, C2}. Similarly, we have using (3.5) that b(u, q) ≤ Cb‖u‖V ‖q‖S for all
u ∈ V, q ∈ S with Cb = max{c1, c2}. Next, from (3.3) we have that

a({φ, θ}, {φ, θ}) = a1(φ, φ) + a2(θ, θ) ≥ a2(θ, θ) ≥ K2‖θ‖2
Θ ∀φ ∈ Φ, θ ∈ Θ

so that a(u, u) ≥ 0 for all u ∈ V . We next define the subspace Z ⊂ Φ × Θ by

Z =
{
{φ, θ} ∈ Φ × Θ : b1(φ, ψ) + b2(θ, ψ) = 0 ∀ψ ∈ Λ

}
.(3.8)

The assumptions (3.5) imply that, given any θ ∈ Θ, the problem

b1(φ, ψ) = −b2(θ, ψ) ∀ψ ∈ Λ(3.9)

has a unique solution φθ and, moreover,

‖φθ‖Φ ≤ c2
k1

‖θ‖Θ;(3.10)

see, e.g., [1]. Thus, Z can be completely characterized by (φθ, θ) ∈ Φ × Θ, where for
arbitrary θ ∈ Θ, φθ is the solution of (3.9). Then, (3.10) and (3.3) imply that

a({φθ, θ}, {φθ, θ}) = a1(φθ, φθ) + a2(θ, θ) ≥ a2(θ, θ) ≥ K2‖θ‖2

≥ K2

2
min

{
1,

k2
1

c22

}
‖{φθ, θ}‖V ∀ {φθ, θ} ∈ Z.

As a result, a(u, u) ≥ Ka‖u‖2
V for all u ∈ Z with Ka = 1

2K2 min{1, k2
1

c22
} so that the

third assumption in (2.6) is also satisfied.
To verify the last assumption in (2.6), note that

sup
φ∈Φ,φ �=0

b1(φ, ψ)

‖φ‖Φ
≥ k1‖ψ‖Λ ∀ψ ∈ Λ.(3.11)

Indeed, assumptions (3.5) imply that (see [1]), for any ψ ∈ Λ, the problem

b1(φ, μ) = (ψ, μ)Λ ∀μ ∈ Λ(3.12)

has a unique solution φψ and, moreover,

‖φψ‖Φ ≤ 1

k1
‖ψ‖Λ.(3.13)
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Using (3.12) and (3.13), it is easy to see that

b1(φψ, ψ)

‖φψ‖Φ
=

‖ψ‖2
Λ

‖φψ‖Φ
≥ k1‖ψ‖Λ ∀ψ ∈ Λ

which immediately implies (3.11). Finally, using (3.11),

sup
(φ,θ)∈Φ×Θ, (φ,θ) �=(0,0)

b({φ, θ}, {ψ})√
‖φ‖2

Φ + ‖θ‖2
Θ

≥ sup
φ∈Φ, φ �=0

b1(φ, ψ)

‖φ‖Φ
≥ k1‖ψ‖Λ ∀ψ ∈ Λ

so that

sup
u∈V, u �=0

b(u, q)

‖u‖V
≥ Kb‖q‖S ∀ q ∈ S

with Kb = k1.
Having verified the assumptions (2.6) for the optimal control problem (3.6), we

immediately have the following result.
Theorem 3.2. Let the assumptions (3.3) and (3.5) hold. Then, the optimal

control problem (3.6) has a unique solution (φ, θ) ∈ Φ × Θ.
Proof. The result immediately follows from Proposition 2.1 and Lemma 3.1.
It is instructive to rewrite the functional (3.2), the constraint (3.4), and the

optimal control problem (3.6) in operator notation. To this end, we note that the
bilinear forms serve to define operators

A1 : Φ̂ → Φ̂∗, A2 : Θ → Θ∗, B1 : Φ → Λ∗,
B∗

1 : Λ → Φ∗, B2 : Θ → Λ∗, B∗
2 : Λ → Θ∗

through the following relations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1(φ, μ) = 〈A1φ, μ〉Φ̂∗,Φ̂ ∀φ, μ ∈ Φ̂,

a2(θ, ν) = 〈A2θ, ν〉Θ∗,Θ ∀ θ, ν ∈ Θ,

b1(φ, ψ) = 〈B1φ, ψ〉Λ∗,Λ = 〈B∗
1ψ, φ〉Φ∗,Φ ∀φ ∈ Φ, ψ ∈ Λ,

b2(ψ, θ) = 〈B2θ, ψ〉Λ∗,Λ = 〈B∗
2ψ, θ〉Θ∗,Θ ∀ θ ∈ Θ, ψ ∈ Λ.

(3.14)

Then, the functional (3.2) and the constraint (3.4) take the forms

J (φ, θ) =
1

2

〈
A1(φ− φ̂), (φ− φ̂)

〉
Φ̂∗,Φ̂

+
1

2
〈A2θ, θ〉Θ∗,Θ ∀φ ∈ Φ, θ ∈ Θ(3.15)

and

B1φ + B2θ = g in Λ∗,(3.16)

respectively, and the optimal control problem (3.6) takes the form

min
(φ,θ)∈Φ×Θ

J (φ, θ) subject to (3.16).(3.17)

Assumptions (3.3) and (3.5) imply that A1, A2, B1, B2, B
∗
1 , and B∗

2 are bounded
with

‖A1‖Φ̂→Φ̂∗ ≤ C1, ‖A2‖Θ→Θ∗ ≤ C2, ‖B1‖Φ→Φ∗ ≤ c1,
‖B∗

1‖Φ→Φ∗ ≤ c1, ‖B2‖Φ→Θ∗ ≤ c2, ‖B∗
2‖Θ→Φ∗ ≤ c2

and that the operator B1 is invertible with ‖B−1
1 ‖Λ∗→Φ ≤ 1/k1. Note also that the

subspace Z ⊂ V = Φ × Θ can be defined by

Z =
{
{φ, θ} ∈ Φ × Θ : φ = −B−1

1 B2θ ∀ θ ∈ Θ
}
.
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3.2. Solution via Lagrange multipliers and the optimality system. For
all {μ, ν} ∈ V = Φ × Θ and ψ ∈ S = Λ, we introduce the Lagrangian functional

L({μ, ν}, {ψ}) = J ({μ, ν}) + b({μ, ν}, {ψ}) − 〈g, ψ〉Λ∗,Λ

=
1

2
a1(μ− φ̂, μ− φ̂) +

1

2
a2(ν, ν) + b1(μ, ψ) + b2(ν, ψ) − 〈g, ψ〉Λ∗,Λ.

Then, (3.6) is equivalent to the unconstrained optimization problem of finding saddle
points ({φ, θ}, {λ}) in V × S of the Lagrangian functional. These saddle points may
be found by solving the optimality system

⎧⎪⎨
⎪⎩

a1(φ, μ) + b1(μ, λ) = a1(φ̂, μ) ∀μ ∈ Φ,

a2(θ, ν) + b2(ν, λ) = 0 ∀ ν ∈ Θ,

b1(φ, ψ) + b2(θ, ψ) = 〈g, ψ〉Λ∗,Λ ∀ψ ∈ Λ.

(3.18)

The third equation in the optimality system (3.18) is simply the constraint equation.
The first equation is commonly referred to as the adjoint or costate equation and the
Lagrange multiplier λ is referred as the adjoint or costate variable. The second equa-
tion in (3.18) is referred to as the optimality condition since it is merely a statement
that the gradient of the functional J (·, ·) defined in (3.2) vanishes at the optimum.

Using the framework of section 2.2, the following result is immediate.
Theorem 3.3. Let the assumptions (3.3) and (3.5) hold. Then, the optimality

system (3.18) has a unique solution (φ, θ, λ) ∈ Φ × Θ × Λ. Moreover

‖φ‖Φ + ‖θ‖Θ + ‖λ‖Λ ≤ C
(
‖g‖Λ∗ + ‖φ̂‖Φ̂

)
,

and (φ, θ) ∈ Φ × Θ is the unique solution of the optimal control problem (3.6).
Proof. With the associations V = Φ × Θ, S = Λ, u = {φ, θ}, and p = {λ}, the

results immediately follow from Lemma 3.1 and Proposition 2.2.
Using the operators introduced in (3.14) and (3.1), the optimality system (3.18)

takes the form
⎧⎪⎨
⎪⎩

A1φ + B∗
1λ = A1φ̂ in Φ∗,

A2θ + B∗
2λ = 0 in Θ∗,

B1φ + B2θ = g in Λ∗.

(3.19)

3.3. Galerkin approximation of the optimality system. We choose (con-
forming) finite dimensional subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then restrict
(3.18) to the subspaces, i.e., we seek (φh, θh, λh) ∈ Φh × Θh × Λh that satisfies

⎧⎪⎨
⎪⎩

a1(φ
h, μh) +b1(μ

h, λh) = a1(φ̂, μ
h) ∀μh ∈ Φh,

a2(θ
h, νh) +b2(ν

h, λh) = 0 ∀ νh ∈ Θh,

b1(φ
h, ψh) +b2(θ

h, ψh) = 〈g, ψh〉Λ∗,Λ ∀ψh ∈ Λh.

(3.20)

This is also the optimality system for the minimization of (3.2) over Φh ×Θh subject
to the constraint b1(φ

h, ψh) + b2(ψ
h, θh) = 〈g, ψh〉Λ∗,Λ for all ψh ∈ Λh.

We next define the subspace Zh ⊂ Φh × Θh by

Zh =
{
{φh, θh} ∈ Φh × Θh : b1(φ

h, ψh) + b2(θ
h, ψh) = 0 ∀ψh ∈ Λh

}
.(3.21)
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Note that, in general, Zh �⊂ Z even though Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ. Thus, we
make the following additional assumptions about b1(·, ·) and Φh:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
ψh∈Λh,ψh �=0

b1(φ
h, ψh)

‖ψh‖Λ
≥ kh1 ‖φh‖Φ ∀φh ∈ Φh,

sup
φh∈Φh,φh �=0

b1(φ
h, ψh)

‖φh‖V
> 0 ∀ψh ∈ Λh,

(3.22)

where kh1 is a positive constant whose value is independent of h. Analogous to
Lemma 3.1, we have the following result.

Lemma 3.4. Let the assumptions (3.3), (3.5), and (3.22) hold. Then, the spaces
V h = Φh × Θh and Sh = Φh and the bilinear forms a(·, ·) and b(·, ·) defined in (3.7)
satisfy the assumptions (2.10) and (2.11).

Proof. The proof proceeds exactly as that for Lemma 3.1; the constants in (2.10)

are given by Kh
a = 1

2K2 min{1, (kh
1 )2

c22
} and Kh

b = kh1 .

We then easily obtain the following results.
Theorem 3.5. Let the assumptions (3.3), (3.5), and (3.22) hold. Then, the

discrete optimality system (3.20) has a unique solution (φh, θh, λh) ∈ Φh × Θh × Λh,
and moreover

‖φh‖Φ + ‖θh‖Θ + ‖λh‖Λ ≤ C
(
‖g‖Λ∗ + ‖φ̂‖Φ̂

)
.

Furthermore, let (φ, θ, λ) ∈ Φ × Θ × Λ denote the unique solution of the optimality
system (3.18) or, equivalently, of the optimal control problem (3.6). Then,

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

inf
μh∈Φh

‖φ− μh‖Φ + inf
ξh∈Θh

‖θ − ξh‖Θ + inf
ψh∈Λh

‖λ− ψh‖Λ

)
.

(3.23)

Proof. The results immediately follow from Proposition 2.4 and Lemma 3.4.
The discrete optimality system (3.20) is equivalent to the linear system

⎛
⎜⎝

A1 0 B
T
1

0 A2 B
T
2

B1 B2 0

⎞
⎟⎠
⎛
⎜⎜⎝

�φ

�θ

�λ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�f

�0

�g

⎞
⎟⎟⎠ ,(3.24)

where �f and �g are defined using a1(φ̂, μ
h) and 〈g, ψh〉Λ∗,Λ, respectively, and Ak and

Bk are defined in the standard manner from the bilinear forms ak(·, ·) and bk(·, ·),
k = 1, 2, respectively.

Remark 3.6. There are two sets of inf-sup conditions associated with the problems
(3.18) and (3.20). First, we have the “inner” conditions (3.5) and (3.22) that involve
only the state variable and that guarantee the unique solvability of the state equation
and the discrete state equation, respectively, i.e., of the third equations in (3.18) and
(3.20). Second, we have the “outer” conditions (2.6) and (2.11) involving the bilinear
form b(·, ·) defined in (3.7) and that involve both the state and control variables. These
latter conditions help guarantee the unique solvability of the optimality system (3.18)
and the discrete optimality system (3.20), respectively. Note that the outer conditions
and the related saddle-point nature of the optimality systems occur regardless of
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the nature of the inner problem, i.e., the state equations. For example, even if the
state equations involve a strongly coercive bilinear form b1(·, ·) so that the last two
inequalities in (3.5) can be replaced by b1(φ, φ) ≥ k1‖φ‖2

Φ for all φ ∈ Φ, we would still
have the inf-sup condition in the form of the last equation in (2.6).

Remark 3.7. As mentioned in Remark 3.6, the assumptions in (3.22) guarantee
the unique solvability of the discrete state equation (the third equation in (3.20)) for
the discrete state variable φh ∈ Φh. Thus, if the constraint equation (3.4) is a partial
differential equation problem, then the assumptions in (3.22) are the general assump-
tions on the associated bilinear form and the approximating space that are made to
guarantee the stability and convergence of Galerkin finite element discretizations; see,
e.g., [1]. Furthermore, because of the nature of the assumptions (3.3) and (3.5), the
inf-sup condition on the bilinear form b(·, ·) is satisfied merely by assuming that (3.22)
holds. Thus, by merely guaranteeing that the discrete constraint equations within the
discretized optimal control problem are uniquely solvable for any given discrete con-
trol, i.e., assuming that the “inner” inf-sup conditions hold, we have that the “outer”
inf-sup condition on the bilinear form b(·, ·) holds. The latter, of course, is crucial
to the stability and convergence of finite element approximations to any saddle-point
problem, including the optimality systems we consider here.

Remark 3.8. The discrete optimality system (3.20) or its matrix equivalent (3.24)
has the typical saddle-point structure, and thus, the stability and convergence of
the approximations they define depend on the bilinear form b(·, ·) = b1(·, ·) + b2(·, ·)
satisfying the discrete inf-sup condition (2.11) with respect to V h = Φh × Θh and
Sh = Λh. In the current context, this assumption is satisfied (see Remark 3.7) merely
by assuming that (3.22) holds for the bilinear form b1(·, ·) and for the spaces Φh and
Λh. Thus, as discussed in Remark 3.7, the stability and convergence of solutions of
(3.20) or (3.24) depends solely on the ability to stably solve, given any discrete control
variable, the discrete state equation for a discrete state variable. On the other hand, if
(3.22) does not hold, then there exists a φh

0 ∈ Φh such that φh
0 �= 0 and b1(φ

h
0 , ψ

h) = 0
for all ψh ∈ Λh. Then, b({φh

0 , 0}, {ψh}) = b1(φ
h
0 , ψ

h) = 0 for all ψh ∈ Λh so that

sup
ψh∈Λh, ψh �=0

b({φh
0 , 0}, {ψh})
‖ψh‖Λ

= 0.

It can be shown that this implies that the discrete inf-sup condition (2.11) does
not hold so that (3.20) or its matrix equivalent (3.24) may not be solvable, i.e., the
coefficient matrix in (3.24) may not be invertible. In fact, the assumptions (3.22)
imply that B1 is uniformly invertible. This and the facts (which follow from (3.3))
that the symmetric matrices A1 and A2 are positive semidefinite and positive definite,
respectively, are enough to guarantee that the coefficient matrix in (3.24) is invertible.
On the other hand, if (3.22) does not hold so that the matrix B1 has a nontrivial null
space, then under the other assumptions that have been made, one cannot guarantee
the invertibility of the coefficient matrix in (3.24).

Remark 3.9. Solving the discrete optimality system (3.20) or, equivalently, the
linear system (3.24) is often a formidable task. If the constraint equations (3.4) are a
system of partial differential equations, then the last (block) row of (3.24) represents a
Galerkin finite element discretization of that system. The discrete adjoint equations,
i.e., the first row in (3.24), are also a discretization of a system of partial differential

equations. Moreover, the dimension of the discrete adjoint vector �λ is essentially the
same as that of discrete state vector �φ. Thus, (3.24) is at least twice the size (we

have yet to account for the discrete control variables in �θ) of the discrete system cor-
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responding to the discretization of the partial differential equation constraints. Thus,
if these equations are difficult to approximate, the discrete optimality system will be
even more difficult to deal with. For this reason, there have been many approaches
suggested for uncoupling the three components of discrete optimality systems such
as (3.20) or, equivalently, (3.24). See, e.g., [18] for a discussion of several of these
approaches. We note that these approaches rely on the invertibility of the matrices
B1 and A2, properties that follow from (3.22) and (3.3), respectively.

4. Least-squares finite element methods for the optimality system.
Even if the state equation (3.4) (or (3.16)) involves a symmetric, positive definite
operator B1, i.e., even if the bilinear form b1(·, ·) is symmetric and strongly coer-
cive, the discrete optimality system (3.20) (or (3.24)) obtained through a Galerkin
discretization is indefinite. For example, if B1 = −Δ with zero boundary conditions,
then B1 is a symmetric, positive definite matrix, but the coefficient matrix in (3.24)
is indefinite. In order to obtain a discrete optimality system that is symmetric and
positive definite, we will apply a least-squares finite element discretization. In fact,
these desirable properties for the discrete system will remain in place even if the state
system bilinear form b1(·, ·) is only weakly coercive, i.e., even if the operator B1 is
merely invertible and not necessarily positive definite.

Given a system of partial differential equations, there are many ways to define
least-squares finite element methods for determining approximate solutions. Practi-
cality issues can be used to select the “best” methods from among the many choices
available. See, e.g., [6] for a discussion of what factors enter into the choice of a partic-
ular least-squares finite element method for a given problem. Here, we will consider
the most straightforward means for defining a least-squares finite element method.
When, in section 5, we consider a specific example, we will return to a discussion of
practicality issues in the choice of a least-squares finite element formulation.

4.1. A least-squares finite element method for a generalization of the
optimality system. We start with the generalized form of the optimality system
(3.19) written in operator form, i.e.,

⎧⎪⎨
⎪⎩

A1φ + B∗
1λ = f in Φ∗,

A2θ + B∗
2λ = s in Θ∗,

B1φ + B2θ = g in Λ∗,

(4.1)

where (f, s, g) ∈ Φ∗ × Θ∗ × Λ∗ is a general data triple and (φ, θ, λ) ∈ Φ × Θ × Λ is
the corresponding solution triple. In the same way that Theorem 3.3 was proved, we
have the following result.

Proposition 4.1. Let the assumptions (3.3) and (3.5) hold. Then, for any
(f, s, g) ∈ Φ∗×Θ∗×Λ∗, the generalized optimality system (4.1) has a unique solution
(φ, θ, λ) ∈ Φ × Θ × Λ. Moreover,

‖φ‖Φ + ‖θ‖Θ + ‖λ‖Λ ≤ C
(
‖f‖Φ∗ + ‖s‖Θ∗ + ‖g‖Λ∗

)
.(4.2)

A least-squares functional can be defined by summing the squares of the norms
of the residuals of the three equations in (4.1) to obtain

K(φ, θ, λ; f, s, g) = ‖A1φ + B∗
1λ− f‖2

Φ∗ + ‖A2θ + B∗
2λ− s‖2

Θ∗ + ‖B1φ + B2θ − g‖2
Λ∗ .

(4.3)
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Clearly, the unique solution of (4.1) is also the solution of the problem

min
(φ,θ,λ)∈Φ×Θ×Λ

K(φ, θ, λ; f, s, g).(4.4)

The first-order necessary conditions corresponding to (4.4) are easily found to be

B
(
(φ, θ, λ), (μ, ν, ψ)

)
= F
(
(μ, ν, ψ); (f, s, g)

)
∀ (μ, ν, ψ) ∈ Φ × Θ × Λ,(4.5)

where

B
(
(φ, θ, λ), (μ, ν, ψ)

)
= (A1μ + B∗

1ψ,A1φ + B∗
1λ)Φ∗

+(A2ν + B∗
2ψ,A2θ + B∗

2λ)Θ∗ + (B1μ + B2ν,B1φ + B2θ)Λ∗

∀ (φ, θ, λ), (μ, ν, ψ) ∈ Φ × Θ × Λ

(4.6)

and

F
(
(μ, ν, ψ); (f, s, g)

)
= (A1μ + B∗

1ψ, f)Φ∗ + (A2ν + B∗
2ψ, s)Θ∗

+(B1μ + B2ν, g)Λ∗ ∀ (μ, ν, ψ) ∈ Φ × Θ × Λ.
(4.7)

Lemma 4.2. Let the assumptions (3.3) and (3.5) hold. Then, the bilinear form
B(·, ·) is symmetric and continuous on (Φ × Θ × Λ) × (Φ × Θ × Λ), and the linear
functional F (·) is continuous on (Φ × Θ × Λ). Moreover, the bilinear form B(·, ·) is
coercive on (Φ × Θ × Λ), i.e.,

B
(
(φ, θ, λ), (φ, θ, λ)

)
≥ C(‖φ‖2

Φ + ‖θ‖2
Θ + ‖λ‖2

Λ) ∀ (φ, θ, λ) ∈ Φ × Θ × Λ.(4.8)

Proof. The symmetry and continuity of the form B(·, ·) and the continuity of the
form F (·) are clear. From (4.6), we have that

B
(
(φ, θ, λ), (φ, θ, λ)

)
= ‖A1φ + B∗

1λ‖2
Φ∗ + ‖A2θ + B∗

2λ‖2
Θ∗ + ‖B1φ + B2θ‖2

Λ∗ .(4.9)

Clearly, for any (φ, θ, λ) ∈ Φ × Θ × Λ, there exists (f, s, g) ∈ Φ∗ × Θ∗ × Λ∗ such that
(φ, θ, λ) is a solution of (4.1). This observation and Proposition 4.1 then yield that

‖φ‖2
Φ + ‖θ‖2

Θ + ‖λ‖2
Λ ≤ C

(
‖f‖2

Φ∗ + ‖s‖2
Θ∗ + ‖g‖2

Λ∗
)

= C
(
‖A1φ + B∗

1λ‖2
Φ∗ + ‖A2θ + B∗

2λ‖2
Θ∗ + ‖B1φ + B2θ‖2

Λ∗
)

∀ (φ, θ, λ) ∈ Φ × Θ × Λ.

(4.10)

Combining (4.9) and (4.10) then easily yields (4.8).
Remark 4.3. Since

K(φ, θ, λ; 0, 0, 0) = ‖A1φ + B∗
1λ‖2

Φ∗ + ‖A2θ + B∗
2λ‖2

Θ∗ + ‖B1φ + B2θ‖2
Λ∗

= B
(
(φ, θ, λ), (φ, θ, λ)

)
,

the coercivity and continuity of the bilinear form B(·, ·) are equivalent to stating
that the functional K(φ, θ, λ; 0, 0, 0) is norm-equivalent, i.e., that there exist constants
γ1 > 0 and γ2 > 0 such that

γ1(‖φ‖2
Φ + ‖θ‖2

Θ + ‖λ‖2
Λ) ≤ K(φ, θ, λ; 0, 0, 0) ≤ γ2(‖φ‖2

Φ + ‖θ‖2
Θ + ‖λ‖2

Λ)(4.11)
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for all (φ, θ, λ) ∈ Φ × Θ × Λ.
Proposition 4.4. Let the assumptions (3.3) and (3.5) hold. Then, for any

(f, s, g) ∈ Φ∗×Θ∗×Λ∗, the problem (4.5) has a unique solution (φ, θ, λ) ∈ Φ×Θ×Λ.
Moreover, this solution coincides with the solution of the problems (4.1) and (4.4) and
satisfies the estimate (4.2).

Proof. The results follow from Lemma 4.2 and the Lax–Milgram lemma.
We define a finite element discretization of (4.1) or, equivalently, of (4.5) by

choosing conforming finite element subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then
requiring that (φh, θh, λh) ∈ Φh × Θh × Λh satisfy

B
(
(φh, θh, λh), (μh, νh, ψh)

)
= F
(
(μh, νh, ψh); (f, s, g)

)
∀ (μh, νh, ψh) ∈ Φh × Θh × Λh.

(4.12)

Note that (φh, θh, λh) can also be characterized as the solution of the problem

min
(φh,θh,λh)∈Φh×Θh×Λh

K(φh, θh, λh; f, s, g).

Proposition 4.5. Let the assumptions (3.3) and (3.5) hold. Then, for any
(f, h, g) ∈ Φ∗ × Θ∗ × Λ∗, the problem (4.12) has a unique solution (φh, θh, λh) ∈
Φh × Θh × Λh. Moreover, we have the optimal error estimate

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

inf
φ̃h∈Φh

‖φ− φ̃h‖Φ + inf
θ̃h∈Θh

‖θ − θ̃h‖Θ + inf
λ̃h∈Λh

‖λ− λ̃h‖Λ

)
,

(4.13)

where (φ, θ, λ) ∈ Φ×Θ×Λ is the unique solution of the problem (4.5) or, equivalently,
of the problems (4.1) or (4.4).

Proof. The results follow from Lemma 4.2 and from standard finite element
analyses.

4.2. A least-squares finite element method for the optimality system.
The results of section 4.1 easily specialize to the optimality system (3.19). Indeed,

letting f = A1φ̂ ∈ Φ̂∗ ⊂ Φ∗ and s = 0, we have that (4.1) reduces to (3.19). We now
have the least-squares functional

K(φ, θ, λ; φ̂, g) = ‖A1φ + B∗
1λ−A1φ̂‖2

Φ∗ + ‖A2θ + B∗
2λ‖2

Θ∗ + ‖B1φ + B2θ − g‖2
Λ∗ ,

(4.14)

the minimization problem

min
(φ,θ,λ)∈Φ×Θ×Λ

K(φ, θ, λ; φ̂, g),(4.15)

and the first-order necessary conditions

B
(
(φ, θ, λ), (μ, ν, ψ)

)
= F
(
(μ, ν, ψ); (A1φ̂, 0, g)

)
∀ (μ, ν, ψ) ∈ Φ × Θ × Λ,(4.16)

where B(·, ·) and F (·) are defined as in (4.6) and (4.7), respectively.
We define a finite element discretization of (4.16) by again choosing conforming

finite element subspaces Φh ⊂ Φ, Θh ⊂ Θ, and Λh ⊂ Λ and then requiring that
(φh, θh, λh) ∈ Φh × Θh × Λh satisfy

B
(
(φh, θh, λh), (μh, νh, ψh)

)
= F
(
(μh, νh, ψh); (A1φ̂, 0, g)

)
∀ (μh, νh, ψh) ∈ Φh × Θh × Λh.

(4.17)
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Then, Proposition 4.5 takes the following form.
Theorem 4.6. Let the assumptions (3.3) and (3.5) hold. Then, for any (φ̂, g) ∈

Φ̂∗ × Λ∗, the problem (4.17) has a unique solution (φh, θh, λh) ∈ Φh × Θh × Λh.
Moreover, we have the optimal error estimate: There exists a constant C > 0 whose
value is independent of h, such that

‖φ− φh‖Φ + ‖θ − θh‖Θ + ‖λ− λh‖Λ

≤ C
(

inf
φ̃h∈Φh

‖φ− φ̃h‖Φ + inf
θ̃h∈Θh

‖θ − θ̃h‖Θ + inf
λ̃h∈Λh

‖λ− λ̃h‖Λ

)
,

(4.18)

where (φ, θ, λ) ∈ Φ×Θ×Λ is the unique solution of the problem (4.16) or, equivalently,
of the problems (3.19) or (3.18). Note also that (φ, θ) ∈ Φ × Θ is the unique solution
of the problem (3.6).

Remark 4.7. The discrete problem (4.17) is equivalent to the linear algebraic
system

⎛
⎜⎝

K1 C
T
1 C

T
2

C1 K2 C
T
3

C2 C3 K3

⎞
⎟⎠
⎛
⎜⎜⎝

�φ

�θ

�λ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�f

�h

�g

⎞
⎟⎟⎠ .(4.19)

Indeed, if one chooses bases {μh
j (x)}Jj=1, {νhk (x)}Kk=1, and {ψh

� (x)}L�=1 for Φh, Θh,

and Λh, respectively, we then have φh =
∑J

j=1 φjμ
h
j , θh =

∑K
k=1 θkμ

h
k , and λh =∑L

�=1 λ�ψ
h
� for some sets of coefficients {φj}Jj=1, {θk}Kk=1, and {λ�}L�=1 that are deter-

mined by solving (4.19). In (4.19), we have that �φ = (φ1, . . . , φJ)T , �θ = (θ1, . . . , θK)T ,
�λ = (λ1, . . . , λL)T ,

(
K1

)
ij

= (A1μi, A1μj)Φ∗ + (B1μi, B1μj)Λ∗ for i, j = 1, . . . , J,

(
K2

)
ik

= (A2νi, A1νk)Θ∗ + (B2νi, B2νk)Λ∗ for i, k = 1, . . . ,K,

(
K3

)
i�

= (B∗
1ψi, B

∗
1ψ�)Φ∗ + (B2ψi, B2ψ�)Θ∗ for i, 
 = 1, . . . , L,

(
C1

)
ij

= (B2νi, B1μj)Λ∗ for i = 1, . . . ,K, j = 1, . . . , J,

(
C2

)
ij

= (B∗
1ψi, A1νj)Φ∗ for i = 1, . . . , L, j = 1, . . . , J,

(
C3

)
ik

= (B∗
2ψi, A2νk)Θ∗ for i = 1, . . . , L, k = 1, . . . ,K,

(
�f
)
i
= (A1μi, A1φ̂)Φ∗ + (B1μi, g)Λ∗ for i = 1, . . . , J,

(
�h
)
i
= (B2νi, g)Λ∗ for i = 1, . . . ,K,

(
�g
)
i
= (B∗

1ψi, A1φ̂)Φ∗ for i = 1, . . . , L.

Remark 4.8. It easily follows from Lemma 4.2 that the coefficient matrix of (4.19)
is symmetric and positive definite. This should be compared to the linear system
(3.24) that results from a Galerkin finite element discretization of the optimality
system (3.18) for which the coefficient matrix is symmetric and indefinite.

Remark 4.9. The stability of the discrete problem (4.17), the convergence and
optimal accuracy of the approximate solution (φh, θh, λh), and the symmetry and
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positive definiteness of the discrete system (4.19) obtained by the least-squares finite
element method follow from the assumptions (3.3) and (3.5) that guarantee the well
posedness of the infinite-dimensional optimization problem (3.6) and its corresponding
optimality system (3.18). It is important to note that all of these desirable properties
of the least-squares finite element method do not require that the bilinear form b1(·, ·)
and that the finite element spaces Φh and Λh satisfy the inner (see Remark 3.6) inf-
sup conditions (3.22) that are necessary for the well posedness of the Galerkin finite
element discretization (3.20) of the optimality system (3.18). In fact, this is why
least-squares finite element methods are often an attractive alternative to Galerkin
discretizations; see, e.g., [6].

Remark 4.10. The observations made in Remark 3.9 about the possible need to
uncouple the equations in (3.24) hold as well for the linear system (4.19). Uncoupling
approaches for (3.24) rely on the invertibility of the matrices B1 and A2; the first of
these is, in general, nonsymmetric and indefinite, even when the necessary discrete
inf-sup conditions in (3.22) are satisfied. For (4.19), uncoupling strategies would rely
on the invertibility of the matrices K1, K2, and K3; all three of these matrices are
symmetric and positive definite even when (3.22) is not satisfied. An example of a
simple uncoupling strategy is to apply a block-Gauss–Seidel method to (4.19), which
would proceed as follows.

Start with initial guesses �φ
(0)

and �θ
(0)

for the discretized state and
control; then, for k = 1, 2, . . . , successively solve the linear systems

K3
�λ

(k+1)
= �g − C2

�φ
(k)

− C3
�θ

(k)
,

K1
�φ

(k+1)
= �f − C

T
1
�θ

(k)
− C

T
2
�λ

(k+1)
,

K2
�θ

(k+1)
= �h − C1

�φ
(k+1)

− C
T
3
�λ

(k+1)

(4.20)

until satisfactory convergence is achieved, e.g., until some norm of
the difference between successive iterates is less than some prescribed
tolerance.

Since the coefficient matrix in (4.19) is symmetric and positive definite, this iteration
will converge. Moreover, all three coefficient matrices K3, K1, and K2 of the linear
systems in (4.20) are themselves symmetric and positive definite so that very efficient
solution methodologies, including parallel ones, can be applied for their solution. We
also note that, in order to obtain faster convergence rates, better uncoupling iterative
methods, e.g., over-relaxation schemes or a conjugate gradient method, can be applied
instead of the Gauss–Seidel iteration of (4.20).

Remark 4.11. The discrete problem (4.17) (or equivalently, (4.19)) resulting from
the least-squares method for the optimality system (3.19) can be viewed as a Galerkin
discretization of the system

(A∗
1A1 + B∗

1B1)φ + (B∗
1B2)θ + (A∗

1B
∗
1)λ = (A∗

1A1)φ̂ + (B∗
1)g in Φ,

(A∗
2A2 + B∗

2B2)θ + (A∗
2B

∗
2)λ + (B∗

2B1)φ = (B∗
2)g in Θ,

(B1B
∗
1 + B2B

∗
2)λ + (B1A1)φ + (B2A2)θ = (B1A1)φ̂ in Λ.

(4.21)

The first equation of this system is the sum of A∗
1 applied to the first equation of the

optimality system (3.19) and B∗
1 applied to the third equation of that system. The

other equations of (4.21) are related to the equations of (3.19) in a similar manner.
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The system (4.21) shows that the discrete system (4.19) essentially involves the dis-
cretization of “squares” of operators, e.g., A∗

1A1, B
∗
1B1, etc. This observation has a

profound effect in how one chooses the form of the constraint equation in (3.6), i.e.,
the form of (3.16). We will return to this point in the next section when we consider
a concrete example.

5. Example: Optimization problems for the Stokes system. Let Ω denote
an open, bounded domain in Rs, s = 2 or 3, with boundary Γ. Let u and p denote
the velocity and pressure fields, respectively, and let θ denote a distributed control.
Then, consider the Stokes system{

−Δu + ∇p + θ = g

∇ · u = 0
in Ω, u = 0 on Γ,

∫
Ω

p dΩ = 0(5.1)

and the functionals

Case I: J1(u,θ) =
1

2

∫
Ω

|∇ × u|2 dΩ +
δ

2

∫
Ω

|θ|2 dΩ,(5.2)

Case II: J2(u,θ; û) =
1

2

∫
Ω

|u − û|2 dΩ +
δ

2

∫
Ω

|θ|2 dΩ,(5.3)

where g and û are given functions. We study the two problems of finding (u, p,θ)
that minimizes the functional in either (5.2) or (5.3), subject to the Stokes system
(5.1) being satisfied. In the first case, i.e., for the functional (5.2), the problem we
study is to find a distributed control function θ that minimizes, in the L2(Ω) sense,
the vorticity over the flow domain Ω. In the second case, i.e., for the functional (5.3),
the problem we study is to find a distributed control function θ such that flow velocity
u matches as well as possible, in the L2(Ω) sense, a given velocity field û.

In Remark 4.11, it was noted that least-squares finite element methods for opti-
mization problems result in the “squaring” of the constraint operator, in this case,
of the Stokes system (5.1). This results in biharmonic-type terms appearing in the
system corresponding to (4.21) or, equivalently, in (4.9). A conforming finite element
discretization would then require the use of continuously differentiable approximation
spaces. In order to overcome this impracticality, it has become a standard procedure
in least-squares finite element methods to write the state system in an equivalent
first-order formulation; see, e.g., [6] for a detailed discussion of this issue.

There are many ways to rewrite the Stokes system (5.1) as a first-order system of
partial differential equations. Here, we choose the velocity-vorticity-pressure formula-
tion that is the most commonly used system for this purpose. Let ω = ∇×u denote the
vorticity. Then, using the well-known vector identity −�u = ∇×∇×u−∇(∇·u) =
∇× ω −∇(∇ · u), the Stokes system (5.1) can be expressed as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∇× ω + ∇p + θ = g

∇ · u = 0

∇× u − ω = 0

in Ω, u = 0 on Γ,

∫
Ω

p dΩ = 0.(5.4)

Note that the functional (5.2) can now be written as

Case I: J1(ω,θ) =
1

2

∫
Ω

|ω|2 dΩ +
δ

2

∫
Ω

|θ|2 dΩ.(5.5)
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Thus, the optimization problems we study are to find (u,ω, p,θ) that minimizes the
functional in either (5.3) or (5.5), subject to the Stokes system in the form (5.4) being
satisfied.

5.1. Precise statement of optimization problems. We recall the space
L2(Ω) of all square integrable functions with norm ‖ · ‖0 and inner product (·, ·),
the space L2

0(Ω) ≡ {q ∈ L2(Ω) :
∫
Ω
pdΩ = 0}, the space H1(Ω) ≡ {v ∈ L2(Ω) : ∇v ∈

[L2(Ω)]s}, and the space H1
0 (Ω) ≡ {v ∈ H1(Ω) : v = 0 on Γ}. A norm for functions

v ∈ H1(Ω) is given by ‖v‖1 ≡ (‖∇v‖2 +‖v‖2
0)

1/2. The dual space of H1
0 (Ω) is denoted

by H−1(Ω). The corresponding spaces of vector-valued functions are denoted in bold
face, e.g., H1(Ω) = [H1(Ω)]s is the space of vector-valued functions each of whose
components belongs to H1(Ω). We note the following equivalence of norms [16]:

C̃1‖v‖2
1 ≤ ‖∇× v‖2

0 + ‖∇ · v‖2
0 ≤ C̃2‖v‖2

1 ∀v ∈ H1
0(Ω)(5.6)

for some constants C̃1 > 0 and C̃2 > 0.
Let Φ = Λ = H1

0(Ω) × L2(Ω) × L2
0(Ω) and Θ = L2(Ω) so that Φ∗ = Λ∗ =

H−1(Ω) × L2(Ω) × L2
0(Ω) and Θ∗ = L2(Ω). Let Φ̂ = Φ̃ = L2(Ω) × L2(Ω) × L2

0(Ω).

Then, Φ ⊂ Φ̂ = Φ̃ = Φ̂∗ ⊂ Φ∗. For φ = {u,ω, p} ∈ Φ, we define the norm

‖φ‖Φ =
(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)1/2
and likewise for the other product spaces.

We make the associations of

trial functions: φ = {u,ω, p} ∈ Φ, θ = {θ} ∈ Θ, λ = {v,σ, q} ∈ Λ,

test functions: μ = {ũ, ω̃, p̃} ∈ Φ, ν = {θ̃} ∈ Θ, ψ = {ṽ, σ̃, r̃} ∈ Λ,

data: g = {g,0, 0} ∈ Λ∗, φ̂ = {û,0, 0} ∈ Φ̂.

We next define the bilinear forms

a1(φ, μ) =

{
(ω̃,ω) for Case I
(ũ,u) for Case II

∀φ = {u,ω, p} ∈ Φ̂, μ = {ũ, ω̃, p̃} ∈ Φ̂,

a2(θ, ν) = δ(θ, θ̃) ∀ θ = {θ} ∈ Θ, ν = {θ̃} ∈ Θ,

b1(φ, ψ) = (ω,∇× ṽ) − (p,∇ · ṽ) + (∇× u − ω, σ̃) − (∇ · u, r̃)
∀φ = {u,ω, p} ∈ Φ, ψ = {ṽ, σ̃, r̃} ∈ Λ,

b2(θ, ψ) = (θ, ṽ) ∀ θ = {θ} ∈ Θ, ψ = {ṽ, σ̃, r̃} ∈ Λ.

For g ∈ H−1(Ω), we also define the linear functional

〈g, ψ〉Λ∗,Λ = 〈g, ṽ〉H−1(Ω),H1
0(Ω) ∀ψ = {ṽ, σ̃, r̃} ∈ Λ.

The operators associated with the bilinear forms are then

A1 =

⎛
⎝ 0 0 0

0 I 0
0 0 0

⎞
⎠ for Case I, A1 =

⎛
⎝ I 0 0

0 0 0
0 0 0

⎞
⎠ for Case II,

A2 = δI, B1 =

⎛
⎝ 0 ∇× ∇

∇× −I 0
−∇· 0 0

⎞
⎠ , B2 =

⎛
⎝ I

0
0

⎞
⎠ .

(5.7)
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It is now easily seen that the functionals J1(·, ·) and J2(·, ·; ·) defined in (5.5)
and (5.3), respectively, can be written in the form (3.2). Likewise, the Stokes system
(5.4) can be written in the form (3.4). Thus, the two optimization problems for the
Stokes system can both be written in the form (3.6), with J (·, ·) being either J1(·, ·)
or J2(·, ·) as appropriate. Thus, if the assumptions (3.3) and (3.5) can be verified
in the context of the two optimization problems for the Stokes system, then all the
results of section 4 will apply to those systems.

Proposition 5.1. Let the spaces Φ, Φ̂, Θ, and Λ and the bilinear forms a1(·, ·),
a2(·, ·), b1(·, ·), and b2(·, ·) be defined as in this section. Then, the assumptions (3.3)
and (3.5) are satisfied.

Proof. The four inequalities in (3.3) and the first two inequalities in (3.5) are
easily verified with C1 = 1, C2 = δ, K2 = δ, c1 = 3, and c2 = 1. The third inequality
in (3.5) is verified if, for any φ = {u,ω, p} ∈ Φ, one can find a ψ̃ = {ṽ, σ̃, r̃} ∈ Λ such
that

b1(φ, ψ̃) = (ω,∇× ṽ) − (p,∇ · ṽ) + (∇× u − ω, σ̃) − (∇ · u, r̃)

≥ k1‖φ‖Φ‖ψ̃‖Λ = k1

(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)1/2(‖ṽ‖2
1 + ‖σ̃‖2

0 + ‖r̃‖2
0

)1/2

for some constant k1 > 0. To this end, for any φ = {u,ω, p} ∈ Φ, let ψ̃ = {ṽ, σ̃, r̃} ∈ Λ
satisfy the system

∇× ṽ = ω, ∇ · ṽ = −p, σ̃ = ∇× u, and r̃ = −∇ · u

in Ω. Clearly, from the last two equations, we have that

‖σ̃‖2
0 + ‖r̃‖2

0 = ‖∇ × u‖2
0 + ‖∇ · u‖2

0 ≤ C̃2‖u‖2
1.

Also, since ṽ ∈ H1
0(Ω), we have from the first two equations and (5.6) that

C̃1‖ṽ‖2
1 ≤ (‖∇ × ṽ‖2

0 + ‖∇ · ṽ‖2
0) = (‖ω‖2

0 + ‖p‖2
0).

Combining the last two results yields that

(
‖ṽ‖2

1 + ‖σ̃‖2
0 + ‖r̃‖2

0

)
≤ max

{
1

C̃1

, C̃2

}(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)
.

Then, with φ = {u,ω, p} ∈ Φ and ψ̃ = {ṽ, σ̃, r̃} ∈ Λ, we have that

b1(φ, ψ̃) = ‖ω‖2
0 + ‖p‖2

0 + ‖∇ × u‖2
0 + ‖∇ · u‖2

0 − (ω,∇× u)

≥ ‖ω‖2
0 + ‖p‖2

0 + ‖∇ × u‖2
0 + ‖∇ · u‖2

0 − ‖ω‖0‖∇ × u‖0

≥ 1
2‖ω‖2

0 + ‖p‖2
0 + 1

2‖∇ × u‖2
0 + ‖∇ · u‖2

0

≥ 1
2 min{1, C̃1}

(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)

≥ min{1,C̃1}

2

√
max

{
1

C̃1
,C̃2

}
(
‖u‖2

1 + ‖ω‖2
0 + ‖p‖2

0

)1/2(
‖ṽ‖2

1 + ‖σ̃‖2
0 + ‖r̃‖2

0

)1/2

= min{1,C̃1}

2

√
max

{
1

C̃1
,C̃2

}‖φ‖Φ‖ψ̃‖Λ.
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Thus, with k1 = min{1, C̃1}
/
(2
√

max
{

1

C̃1
, C̃2

}
), the third inequality in (3.5) is veri-

fied. Note that k1 depends only on the comparability constants in (5.6).
Remark 5.2. We have now verified the assumptions (3.3) and (3.5) for the two

optimization problems of finding (u,ω, p,θ) that minimize either the functional in
(5.3) or (5.5), subject to the Stokes system in the form (5.4) being satisfied. Thus, all
the results of sections 3.1 and 3.2 hold. In particular, with the associations already
defined between spaces, operators, etc., we could use the Lagrange multiplier rule to
characterize the solutions of the optimization problems as solutions of the optimality
system (3.19).

Remark 5.3. We could apply, as in section 3.3, a Galerkin finite element method
for determining approximate solutions of the optimality system (3.19). Such an ap-
proach, unlike least-squares finite element discretizations, does not involve the “squar-
ing” of operators so that there is no need to transform the Stokes system (5.1) into
an equivalent first-order form as in (5.4); one would then also use the form (5.2) for
the functional J1 instead of the from (5.5). We then would have φ = {u, p}, θ = {θ},
etc., and use, instead of the operators defined in (5.7), the operators

A1 =

(
∇× 0
0 0

)
for Case I, A1 =

(
I 0
0 0

)
for Case II,

A2 = δI, B1 =

(
−Δ ∇
−∇· 0

)
, B2 =

(
I
0

)
.

(5.8)

The assumptions (3.3) and (3.5) can also be verified for the bilinear forms associated
with these operators.

Remark 5.4. As noted in section 3.3, a Galerkin discretization of the optimality
system (3.19) using either of the forms (5.7) or (5.8) for the operators requires that
the assumptions in (3.22) hold. If one uses (5.8), one can easily show that the finite
element spaces for the velocity and pressure approximations have to satisfy the inf-sup
condition [12,13,16,17]

inf
qh∈Sh,qh �=0

sup
vh∈Vh,vh �=0

∫
Ω

qh∇ · vh dΩ

‖qh‖0‖vh‖1
≥ γ(5.9)

for some constant γ > 0. This condition guarantees the unique solvability of the
discrete Stokes system and restricts the choice of finite element spaces used for the
velocity and pressure approximations; see [12, 13, 17] for details. In particular, one
cannot use piecewise polynomial spaces of the same order and defined with respect to
the same grid for the velocity and pressure approximations. If one instead uses (5.7),
an even more onerous inf-sup condition is required of the finite element spaces for the
velocity, vorticity, and pressure.

Remark 5.5. Note that (5.9) is a third level of inf-sup conditions that we have
encountered in our deliberations: (5.9) is necessary and sufficient to guarantee that
the inf-sup condition (3.22) holds; the latter is necessary and sufficient to guarantee
that the inf-sup condition (2.11) holds.

5.2. Least-squares finite element methods for the two optimization
problems. Using the associations of spaces and variables defined in section 5.1 and
the operators defined in (5.7), it is easy to see that the least-squares functional (4.14)
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is given by, for the example problems we are considering,

K
(
{u,ω, p},θ, {v,σ, q}; û,g

)
= ‖∇ × σ + ∇q + δ2(u − û)‖2

−1 + ‖∇ × v − σ + δ1ω‖2
0 + ‖∇ · v‖2

0

+‖δθ + v‖2
0

+‖∇ × ω + ∇p + θ − g‖2
−1 + ‖∇ × u − ω‖2

0 + ‖∇ · u‖2
0,

(5.10)

where

δ1 =

{
1 for Case I,
0 for Case II,

and δ2 =

{
0 for Case I,
1 for Case II.

We also have the bilinear form

B
(
{u,ω, p},θ, {v,σ, q}; {ũ, ω̃, p̃}, θ̃, {ṽ, σ̃, q̃}

)

=
(
∇× σ + ∇q + δ2u, ∇× σ̃ + ∇q̃ + δ2ũ

)
−1

+
(
∇× v − σ + δ1ω, ∇× ṽ − σ̃ + δ1ω̃

)
+
(
∇ · v, ∇ · ṽ

)

+
(
δθ + v, δθ̃ + ṽ

)

+
(
∇× ω + ∇p + θ, ∇× ω̃ + ∇p̃ + θ̃

)
−1

+
(
∇× u − ω, ∇× ũ − ω̃

)
+
(
∇ · u, ∇ · ũ

)
,

(5.11)

where (·, ·)−1 denotes the inner product in H−1(Ω), and the linear functional

F
(
{ũ, ω̃, p̃}, θ̃, {ṽ, σ̃, q̃}; û,g

)

=
(
δ2û, ∇× σ̃ + ∇q̃ + δ2ũ

)
−1

+
(
g, ∇× ω̃ + ∇p̃ + θ̃

)
−1

.
(5.12)

Then, as in (4.16), we have that the unique minimizer of the least-squares functional
(5.10) can be characterized as being the solution of the problem: Find {u,ω, p} ∈
H1

0(Ω) × L2(Ω) × L2
0(Ω), θ ∈ L2(Ω), and {v,σ, q} ∈ H1

0(Ω) × L2(Ω) × L2
0(Ω) such

that

B
(
{u,ω, p},θ, {v,σ, q}; {ũ, ω̃, p̃}, θ̃, {ṽ, σ̃, q̃}

)
= F
(
{ũ, ω̃, p̃}, θ̃, {ṽ, σ̃, q̃}; û,g

)

∀ {ũ, ω̃, p̃} ∈ H1
0(Ω) × L2(Ω) × L2

0(Ω), θ̃ ∈ L2(Ω),

{ṽ, σ̃, q̃} ∈ H1
0(Ω) × L2(Ω) × L2

0(Ω).

(5.13)

To define least-squares finite element approximations of the optimization prob-
lems, we first choose conforming finite element subspaces Vh ⊂ H1

0(Ω), Wh ⊂ L2(Ω),
Sh ⊂ L2

0(Ω), and Th ⊂ L2(Ω). We then minimize the functional in (5.10) over the
subspaces or, equivalently, solve the problem: Find {uh,ωh, ph} ∈ Vh × Wh × Sh,
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θh ∈ Th, and {vh,σh, qh} ∈ Vh × Wh × Sh such that

B
(
{uh,ωh, ph},θh, {vh,σh, qh}; {ũh, ω̃h, p̃h}, θ̃

h
, {ṽh, σ̃h, q̃h}

)

= F
(
{ũh, ω̃h, p̃h}, θ̃

h
, {ṽh, σ̃h, q̃h}; û,g

)

∀ {ũh, ω̃h, p̃}h ∈ Vh × Wh × Sh, θ̃
h
∈ Th,

{ṽh, σ̃h, q̃h} ∈ Vh × Wh × Sh.

(5.14)

Proposition 5.1 and the results of section 4 allow us to prove the following results.
Theorem 5.6. Let Φ = Λ = H1

0(Ω)×L2(Ω)×L2
0(Ω), and let Θ = L2(Ω). Then,

(i) the bilinear form B(·; ·) defined in (5.11) is symmetric, continuous, and co-
ercive on {Φ × Θ × Λ} × {Φ × Θ × Λ}.

Let û ∈ L2(Ω) and g ∈ H−1(Ω) be given. Then
(ii) the linear functional F (·) defined in (5.12) is continuous on {Φ × Θ × Λ};
(iii) the problem (5.13) has a unique solution ({u,ω, p}, θ, {v,σ, q}) ∈ Φ×Θ×Λ.

Let Vh ⊂ H1
0(Ω), Wh ⊂ L2(Ω), Sh ⊂ L2

0(Ω), and Th ⊂ L2(Ω), and let Φh = Λh =
Vh × Wh × Sh and Θh = Th. Then,

(iv) the discrete problem (5.13) has a unique solution ({uh,ωh, ph}, θh, {vh,σh, qh}) ∈
Φh × Θh × Λh;

(v) we have the error estimate

‖u − uh‖1 + ‖ω − ωh‖0 + ‖p− ph‖0 + ‖θ − θh‖0

+‖v − vh‖1 + ‖σ − σh‖0 + ‖q − qh‖0

≤ C
(

inf
ũh∈Vh

‖u − ũh‖1 + inf
ω̃h∈Wh

‖ω − ω̃h‖0 + inf
p̃h∈Sh

‖p− p̃h‖0

+ inf
θ̃
h∈Th

‖θ − θ̃
h
‖0 + inf

ṽh∈Vh
‖v − ṽh‖1

+ inf
σ̃h∈Wh

‖σ − σ̃h‖0 + inf
q̃h∈Sh

‖q − q̃h‖0

)
.

(5.15)

Proof. The results follow in a straightforward manner from Proposition 5.1 along
with Lemma 4.2, Proposition 4.4, and Theorem 4.6.

Remark 5.7. Following Remark 4.8, the discrete problem (5.13) is equivalent to
a linear algebraic system having a symmetric, positive definite coefficient matrix. In
the case of a Galerkin discretization of the optimality system, the coefficient matrix
is indefinite.

Remark 5.8. Following Remark 4.9, the results in Theorem 5.6 about the solution
of the discrete problem (5.13) follow merely from the conformity of the finite element
subspaces, i.e., merely from the inclusions Vh ⊂ H1

0(Ω), Wh ⊂ L2(Ω), Sh ⊂ L2
0(Ω),

and Th ⊂ L2(Ω). In particular, unlike the case of Galerkin finite element discretiza-
tions of the optimality system, they do not require that the finite element spaces
satisfy additional conditions such as (5.9); see Remark 5.4. In particular, in (5.13),
one can choose the same degree piecewise polynomials defined with respect to the
same grid for all variables.

Remark 5.9. The discrete problem (5.13) is a rather formidable one in that it
involves many unknowns, i.e., 10 scalar fields in two dimensions and 17 scalar fields
in three dimensions. However, following Remark 4.10, the discrete problem (5.13)
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can be efficiently uncoupled, more so than is the case for Galerkin finite element
discretizations of optimality systems.

Remark 5.10. A practical Galerkin finite element discretization of the optimality
system can use a formulation in terms of the operators defined in (5.8) while the least-
squares based discretization employs a formulation in terms of the operators defined
in (5.7). Thus, the latter approach involves more unknowns compared to the former
that involves 8 scalar fields in two dimensions and 11 scalar fields in three dimensions.
This apparent disadvantage of the least-squares approach should be balanced against
the advantages discussed in Remarks 5.7, 5.8, and 5.9.

Remark 5.11. Suppose one chooses continuous, piecewise polynomial finite ele-
ment spaces of degree r for the approximation of all variables; this is permissible for
least-squares finite element methods; see Remark 5.8. Suppose also that the solution of
the optimality system satisfies u ∈ Hr+1(Ω)∩H1

0(Ω), ω ∈ Hr(Ω), p ∈ Hr(Ω)∩L2
0(Ω),

θ ∈ Hr(Ω), v ∈ Hr+1(Ω) ∩ H1
0(Ω), σ ∈ Hr(Ω), and q ∈ Hr(Ω) ∩ L2

0(Ω). Then, the
error estimate (5.15) implies that

‖u − uh‖1 + ‖ω − ωh‖0 + ‖p− ph‖0 + ‖θ − θh‖0

+‖v − vh‖1 + ‖σ − σh‖0 + ‖q − qh‖0 = O(hr),
(5.16)

where h is a measure of the grid size.

5.2.1. Circumventing the use of negative norms. The least-squares func-
tional (5.10) makes use of the H−1(Ω) norm. As a result, both the bilinear from B(·; ·)
and the linear functional F (·) appearing in least-squares finite element discretization
(5.14) of the optimality system involve the H−1(Ω) inner product (·, ·)−1. Comput-
ing the H−1(Ω) inner product of two functions essentially requires the solution of a
Poisson problem, i.e., for two functions ω, σ ∈ H−1(Ω), we can write

(ω, σ)−1 =

∫
Ω

ωv dΩ, where − Δv = σ in Ω and v = 0 on Γ.

Having to solve a Poisson problem every time one has to evaluate the H−1(Ω) inner
product of two functions renders impractical the implementation of (5.14).

There is substantial temptation to avoid the appearance of negative norms in
the least-squares finite element formulation by simply replacing the negative norm in
(5.10) with the L2(Ω) norm, i.e., to base a least-squares finite element method on the
functional

K̃
(
{u,ω, p},θ, {v,σ, q}; û,g

)
= ‖∇ × σ + ∇q + δ2(u − û)‖2

0 + ‖∇ × v − σ + δ1ω‖2
0 + ‖∇ · v‖2

0

+‖δθ + v‖2
0 + ‖∇ × ω + ∇p + θ − g‖2

0 + ‖∇ × u − ω‖2
0 + ‖∇ · u‖2

0

instead of the functional (5.10); note that now we would have to choose Φ = Λ =
H1

0(Ω) × H1(Ω) × L2
0(Ω). Doing this would indeed lead to a discrete problem in-

volving only easily implementable L2(Ω) inner products. However, in this case, the
norm-equivalence relation does not hold (see [6,7]) so that the resulting bilinear form

associated with the minimization of the functional K̃ is not coercive. As a result, the
discrete problem will not have a (uniformly, as h → 0) positive definite coefficient
matrix, and the least-squares finite element approximations may not be stable and
will certainly not be optimally accurate.
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Another approach for avoiding the use of H−1(Ω) inner products is to replace
the velocity-vorticity-pressure formulation (5.4) of the Stokes problem with another
first-order formulation whose residuals, when measured in L2(Ω) norms, do result in
a norm-equivalent functional. Such formulations, involving additional unknowns and
redundant equations, were developed in [14, 15]. For example, if we use the velocity-
velocity gradient-pressure formulation due to [14], we would employ the least-squares
functional

K̂
(
{u,U, p},θ, {v,V, q}; û,g

)
= ‖∇ · V + ∇q + δ2(u − û)‖2

0 + ‖(∇v)T − V + δ1ω‖2
0 + ‖∇ · v‖2

0

+‖δθ + v‖2
0 + ‖ − ∇ · U + ∇p + θ − g‖2

0 + ‖(∇u)T − U‖2
0 + ‖∇ · u‖2

0

+‖∇(TrV)‖2
0 + ‖∇ × V‖2

0 + ‖∇(TrU)‖2
0 + ‖∇ × U‖2

0,

where (·)T and Tr(·) denote the transpose and the trace of a tensor and where the
components of ω can be easily expressed as linear combinations of the off-diagonal
elements of the tensor U. Instead of the vorticity ω = ∇ × u and adjoint vorticity
σ = ∇ × v, the new variables introduced to effect the first-order formulation are
U = (∇u)T and V = (∇v)T . Also, now we have that Φ = Λ = H1

0(Ω) ×Q× L2
0(Ω),

where Q = {V ∈ [H1(Ω)]9 | V×n = 0}. The equations whose residuals appear in the

last line of the definition of K̂ are all redundant in the sense that they are all already
implied by the other equations. Note that now we have even more unknowns than
that for the velocity-vorticity-pressure; e.g., in three dimensions, the least-squares
discrete problem resulting from minimizing the functional K̂ would now involve 27
scalar fields. Furthermore, the addition of redundant equations requires more regular
data and solutions and precludes the use of the least-squares methodology in, e.g.,
nonconvex polygonal domains.

A third and more practical approach to avoiding the use of H−1(Ω) inner products
is to replace the functional (5.10) by the mesh-weighted functional

K̃h

(
{u,ω, p},θ, {v,σ, q}; û,g

)
= h2‖∇ × σ + ∇q + δ2(u − û)‖2

0 + ‖∇ × v − σ + δ1ω‖2
0 + ‖∇ · v‖2

0

+‖δθ + v‖2
0 + h2‖∇ × ω + ∇p + θ − g‖2

0 + ‖∇ × u − ω‖2
0 + ‖∇ · u‖2

0.

This approach is motivated by the finite element inverse inequality C‖ωh‖0 ≤ h−1‖ωh‖−1

which leads to the norm “equivalence” Ch‖ωh‖0 ≤ ‖ωh‖−1 ≤ ‖ωh‖0 between the
H−1(Ω) and L2(Ω) norms of finite element functions. One can then show, using the
analyses developed in [6], that one obtains an optimal convergence for the functional

K̃h, even though this functional is not norm-equivalent. One possible drawback of
this approach is that the condition number of the resulting matrix may be too large
for the practical use of some iterative solution techniques.

Perhaps the most practical approach to avoiding the use of H−1(Ω) inner products
is to replace the H−1(Ω) norm terms in the functional (5.10) by more sophisticated
“equivalent” discrete norms that involve only L2(Ω) norms. Such ideas have been
widely used in the least-squares finite element literature; see, e.g., [4,10,11]. As noted
above, the computation of negative norms requires inversion of a Laplacian operator
(with zero boundary conditions). It was shown in [10] that for finite element functions,
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it is equivalent to use the discrete minus one inner product

(ωh, σh)h =
(
(Lh + h2I)ωh, σh

)
0
,

where Lh is a discrete inverse Laplacian operator (with zero boundary conditions)
that is spectrally equivalent to the inverse Laplacian operator itself. In practice, the
computation of Lhωh for any finite element function ωh is often implemented by using
a few multigrid cycles, which makes its computation very efficient. The application
of this approach in our context results in the minimization of the functional

Kh

(
{uh,ωh, ph},θh, {vh,σh, qh}; û,g

)
= ‖∇ × σh + ∇qh + δ2(u

h − û)‖2
h + ‖∇ × vh − σh + δ1ω

h‖2
0 + ‖∇ · vh‖2

0

+‖δθh + vh‖2
0 + ‖∇ × ωh + ∇ph + θh − g‖2

h + ‖∇ × uh − ωh‖2
0 + ‖∇ · uh‖2

0,

where ‖ωh‖2
h = ((Lh + h2I)ωh, ωh)0. Using the techniques of [4], it can be shown

that this functional leads to a practical least-squares finite element method yielding
positive definite coefficient matrices and an error estimate such as (5.16).

6. Concluding remarks. Optimization and control problems governed by par-
tial differential equations are most often solved by Lagrange multiplier techniques that
lead to variational equations consisting of the state system, an adjoint-state system,
and optimality conditions. Galerkin discretizations of such systems result in discrete
problems that are not only formidable in size but are indefinite so that their iterative
solution is difficult.

In this paper, we formulated a new approach for the finite element discretization
of optimality systems that is based on the application of least-squares principles. The
main advantage of this formulation is seen in the better possibilities that it affords
for the uncoupling of the discrete optimality equations and their efficient iterative
solution. Least-squares principles result in symmetric and positive definite algebraic
systems. Moreover, for the optimization and control problems considered in this
paper, these linear systems have a 3 × 3 block structure where the diagonal blocks
themselves are symmetric and positive definite. As an example of a simple but conver-
gent uncoupling strategy, we considered a block-Gauss–Seidel method. To illustrate
the issues involved in the formulation of effective and practical least-squares methods,
we considered two optimization problems for the Stokes equations.
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sufficient condition for the size of the stabilization parameters in order to ensure optimality of the
approximation when the exact solution is smooth. Moreover, we show how this method may be cast
in the framework of variational multiscale methods. We indicate what modeling assumptions must
be made to use the method for large eddy simulations.
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1. Introduction. In this paper, we advocate the use of the two-level stabi-
lization scheme (see Becker and Braack [3]) for the computation of solutions of the
Navier–Stokes equations at high Reynolds number. This is one in a group of more
recently developed stabilized methods, such as, for instance, Guermond [14], Becker
and Braack [2], Burman and Hansbo [5, 6], and Rebollo and Delgado [18].

A main advantage of this approach is that it shares similar conservation properties
with a standard Galerkin finite element method. Moreover, one does not need to resort
to space-time finite elements for time stepping in order to stay consistent but can apply
any higher-order finite difference scheme for the discretization in time. We prove
optimal order a priori error estimates for the method. The method remains stable
independent of the local Reynolds number. It should be noted that the method is not
residual based in the way the streamline upwind Petrov–Galerkin (SUPG) method
is, but is flexible with respect to the subgrid model, thus leaving open the possibility
of subgrid models that are more complex than the linear one considered here. Of
course, the possibility of using Galerkin least-squares (GLS) or residual-free bubbles
as a subgrid model remains and will be discussed.

An attractive feature of this method is that it can be cast in the framework of
the variational multiscale (VMS) method of [15] as we shall show. The stabilization is
acting only on the smallest resolved scales of the flow. Hence, contrary to the method
of [15], our large scales do not need any additional stabilization. In fact, the fine scale
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fluctuations allow for both the satisfaction of the inf-sup condition and stabilization
of the convective terms.

We begin in section 2 with the variational formulation of the Oseen equations and
their discretization by finite elements in space. The local projection stabilization for
the Oseen system is formulated in section 3. Afterwards, an a priori error analysis is
presented in section 4. There we consider the case of smooth solutions (velocities and
pressure are both in the Sobolev space H2(Ω)) and discuss the behavior of the method
for less regular solutions. We present some variants of the stabilization operator and
discuss the relation to more standard stabilization techniques in section 5. An inter-
pretation of the stabilization in terms of a VMS method is given in section 6. In a
numerical test case, discussed in section 7, we investigate the convergence order for a
given exact Navier–Stokes solution and compare the kinetic energy of a nonstationary
driven cavity flow with the numerical dissipation. We finish with a short conclusion
in section 8. In forthcoming work we will give numerical evidence of the performance
of the numerical scheme for turbulent flow in three space dimensions.

2. Variational formulation of the Oseen system. Let Ω ⊂ R
d, d ∈ {2, 3}, be

a polygonal domain with boundary ∂Ω. The velocities will be denoted by v = v(x, t)
and the pressure by p = p(x, t). The gradient in space is denoted by ∇, and the
divergence with respect to space is denoted by div. The Navier–Stokes equations read

∂tv + div (v ⊗ v) − μΔv + ∇p = f,

div v = 0

}
in Ω,(2.1)

subject to some initial condition v(·, 0) = v0 and suitable boundary conditions for v.
In the analysis, we will consider the Oseen system as an important lineariza-

tion of (2.1). For ease of presentation, we suppose homogeneous Dirichlet boundary
conditions:

σ v + div (β ⊗ v) − μΔv + ∇p = f in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭(2.2)

with some given solenoidal vector field β and σ > 0.
For the variational formulation we use the notation (·, ·) for the L2-scalar product

over Ω. The velocity is sought in the Sobolev space V := [H1
0 (Ω)]d, and the pressure

is sought in the space of square-integrable functions with zero mean, Q := L2
0(Ω).

The product space for the vector u = {v, p} is denoted by X := V ×Q.
We introduce the bilinear form A(u, ϕ) defined by

A(u, ϕ) := (σv, ψ) − (β ⊗ v,∇ψ) − (p,divψ) + (div v, ξ) + (μ∇v,∇ψ),

and consider f as an element of X ′ defined by 〈f, ϕ〉 := (f, ψ) for a test function
ϕ = {ψ, ξ} ∈ X. The variational formulation of the Oseen problem (2.2) reads

u ∈ X : A(u, ϕ) = 〈f, ϕ〉 ∀ϕ ∈ X.(2.3)

In order to solve this problem numerically we choose in the following section a finite
dimensional subspace, Xh ⊂ X.

2.1. Discrete Galerkin formulation. We consider shape regular meshes Th =
{K} of hexahedral elements K with the minimum mesh size h = min{hK : K ∈ Th}
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(quadrilateral elements for the academical case d = 2). The finite element spaces Qr
h

result from isoparametric transformations of polynomials on a reference cell K̂:

Qr
h(Ω,R) := {ϕ ∈ C(Ω,R) : ϕ|K = ϕ̂ ◦ T−1

K },

where ϕ̂ denotes an arbitrary polynomial of maximal degree r on the reference cell K̂,
and TK : K̂ → K denotes a polynomial transformation of the same type and degree r.
We will treat (bi-/tri-)linear elements (r = 1) and (bi-/tri-)quadratic elements (r = 2)
simultaneously in the analysis. These finite element spaces will simply be called Q1

in the case of r = 1 and Q2 elements in the case r = 2. The discrete pressure space
Qh is the subspace of Qr

h with zero mean, and the velocity space Vh is the subspace
with vanishing trace:

Qh := Q ∩Qr
h(Ω,R), Vh := V ∩ [Qr

h(Ω,Rd)]d.

The product space is denoted by Xh:

Xh := Vh ×Qh.

In the Galerkin formulation of (2.3) for the space Xh, a discrete solution uh ∈ Xh is
sought such that

A(uh, ϕ) = 〈f, ϕ〉 ∀ϕ ∈ Xh.

This formulation is not stable due to the following reasons: (i) violation of the discrete
inf-sup (or Babuska–Brezzi) condition for velocity and pressure approximation and
(ii) dominating advection (and reaction). Therefore, in the following we present and
analyze a stabilization technique based on local projection.

3. Definition of the local projection stabilization. The two-level finite el-
ement formulation is as follows: find uh ∈ Xh such that

A(uh, ϕ) + Sh(uh, ϕ) = 〈f, ϕ〉 ∀ϕ ∈ Xh.(3.1)

In order to specify the stabilization term Sh(·, ·), we have to introduce further nota-
tions. The discontinuous analogue of Qr

h is denoted by Qr
h,disc:

Qr
h,disc(Ω,R) := {ϕ ∈ L2(Ω,R) : ϕ|K = ϕ̂ ◦ T−1

K }.

Furthermore, let T2h be the coarser mesh obtained by a “global coarsening” of Th.
Obviously, the finer mesh Th contains 2d times more elements than T2h. The cor-
responding finite element spaces are denoted by Q2h ⊂ Qh and V2h ⊂ Vh. Let Dv

h

and Dp
h be the following space for pressure and velocities, respectively, of functions

allowing discontinuities across elements of T2h:

Dv
h := [Qr−1

2h,disc(Ω,R)]d,

Dp
h := Qr−1

2h,disc(Ω,R).

In the case r = 1, these spaces contain patchwise (K ∈ V2h) constants; for r = 2, they
contain patchwise linear elements. We will make use of the L2-projection operator

π̄h : L2(Ω) → Dp
h,
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characterized by the property

(v − π̄hv, φ) = 0 ∀φ ∈ Dp
h.

The operator giving the space fluctuations is denoted by

κ̄h := i− π̄h,

with the identity mapping i. We use the same notation π̄h, κ̄h for the mappings on
vector-valued functions, for instance, π̄h : L2(Ω)d → Dv

h.
The subgrid model is given by

Sh(u, ϕ) := (δκ̄h∇v, κ̄h∇ψ) + (ακ̄h∇p, κ̄h∇ξ).(3.2)

The parameters α and δ are taken patchwise constant and depend on the local mesh
size. The optimal choice of these stabilization parameters will be a result of the
following analysis.

We like to end this section with a brief discussion on the numerical costs of the
scheme compared to more standard stabilized schemes. Compared to the standard
Galerkin formulation, the subgrid models (3.2) lead to a larger stencil in the stiffness
matrix due to the projection κ̄h. However, no couplings between pressure and ve-
locities are introduced. Furthermore, a cheaper preconditioner may be used with a
smaller stencil as proposed and analyzed for the Stokes system in [2].

4. A priori error analysis. To tune the stabilization parameters α and δ we use
a priori error estimation. Assuming sufficient regularity of the underlying solution, the
parameters are chosen in such a way that the method has optimal convergence prop-
erties independent of the viscosity. We will prove under the assumption of sufficiently
regular pressure and velocity v ∈ [H2

0 (Ω)]3, p ∈ H2(Ω)∩L2
0(Ω), that a certain scaling

of α and δ gives optimal convergence of the velocities independent of the Reynolds
number. A similar result is then proved for the L2-norm of the pressure. We consider
only the interesting case of high Reynolds number, hence assuming that μ ≤ |β|h.
First we prove an estimate for a mesh-dependent norm including the H1-norm of the
velocities and a “subgrid model” error:

|||u||| = |||{v, p}||| :=
(
‖σ1/2v‖2 + ‖μ1/2∇v‖2 + Sh(u, u)

)1/2

,

where ‖ · ‖ stands for the L2-norm in Ω. We then use this estimate to recover control
of the pressure and show that the L2-norm error of the pressure is bounded by the
mesh-dependent norm of the error of the state vector uh.

4.1. Properties of the subgrid model. By the following coercivity result we
deduce existence and uniqueness of the discrete velocities.

Lemma 4.1. We have the coercivity property

|||u|||2 = A(u, u) + Sh(u, u) ∀u ∈ X.(4.1)

Proof. The proof follows immediately by integration by parts.
We have the following approximate Galerkin orthogonality.
Lemma 4.2. Let u ∈ X be the solution of the weak formulation of (2.2) and let

uh ∈ Xh be the solution of its discrete version (3.1). Then it holds that

A(u− uh, ϕ) = Sh(uh, ϕ), ϕ ∈ Xh.
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Fig. 4.1. A patch K of four Q2 cells in two dimensions with the linears ψi used in the proof
of Lemmas 4.4 and 4.5.

Proof. The proof is obtained by subtracting (3.1) from the weak formulation of
(2.2).

Since the method is not strongly consistent in the sense that we do not have
full Galerkin orthogonality, we must analyze the asymptotic behavior of the subgrid
model, i.e., the dependence with respect to the mesh size h. We first prove a result for
a modified Clément interpolation operator introduced in [2], here with a generalization
to P2 elements, and use this approximation result to show the asymptotic behavior
of the stabilization term.

In the next lemma, we consider for a cell K ∈ T2h, the space of functions in Qh

with support in K. This space will be denoted by Qh(K) and has the dimension
(2r− 1)d. Analogously, the subspace of Dp

h consisting of functions with support in K
will be denoted by Dp

h(K). This space has the dimension rd. For r = 1, this space
consists only of the patchwise constants. For r = 2, a possible basis of these subspaces
is indicated in Figure 4.1.

Lemma 4.3. The local L2-orthogonal projection πK : Dp
h(K) → Qh(K), charac-

terized for ψ ∈ Dp
h(K) by the property

(πKψ, φ) = (ψ, φ) ∀φ ∈ Qh(K),

is injective.
Proof. We assume πKψ = 0 for ψ ∈ Dp

h(K). Then (ψ, φ) = 0 for all φ ∈ Qh(K)
due to the orthogonality property. In the case r = 1, Dp

h(K) consists of constant
functions, so that either ψ = 0 or

∫
K
φ = 0 for all φ ∈ Qh(K). Since the latter is not

valid (for instance, taking the Lagrange nodal basis function associated to the interior
node of K), it follows ψ = 0. For r = 2, we take as φi ∈ Qh(K), i = 1, . . . , 2d,
the Lagrange nodal functions associated to the center nodes of the child cells Ki.
Since these φi have a sign, ψ must have zeros in the interior of all child cells Ki,
i = 1, . . . , 2d. For a d-linear ψ this is possible only if ψ = 0.

Lemma 4.4. Let {ψ1, . . . , ψrd} be an arbitrary basis of Dp
h(K). Then the matrix

M = (mij), i, j ∈ {1, . . . , rd}, with entries

mij = (ψi, πKψj)K ,

is symmetric and positive definite.
Proof. Since πKψj ∈ Qh(K), it follows due to the orthogonality property of the

L2-projection that

mij = (ψi, πKψj) = (πKψi, πKψj).
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It follows that M is symmetric. Furthermore, for α ∈ R
rd and ψα =

∑
αiψi it holds

that

αTMα = (ψα, πKψα)K

= (πKψα, πKψα)K

= ‖πKψα‖2
K .

Since πK is injective, M is positive definite.
Remark. The analogous results are valid for vector-valued projections πK :

Dv
h(K) → Vh(K), where Dv

h(K) ⊂ Dv
h and Vh(K) ⊂ Vh are defined analogously

as Dp
h(K) and Qh(K), respectively.
In the following, the norm in Hs(Ω) will be denoted by ‖ · ‖s. The corresponding

norms in subsets K ⊂ Ω will be denoted by ‖ ·‖s,K . Furthermore, we use the notation
� to indicate that there may arise mesh-independent constants in the estimates.

Lemma 4.5. There is an interpolation operator

jh : V → Vh

with the orthogonality property

(v − jhv, ψ) = 0 ∀ψ ∈ Dv
h, ∀v ∈ V,(4.2)

that has optimal approximation properties in the L2-norm and H1-seminorm

‖v − jhv‖ � hl‖v‖l ∀v ∈ [H l(Ω)]d, 0 ≤ l ≤ r + 1,(4.3)

‖∇(v − jhv)‖ � hl−1‖v‖l ∀v ∈ [H l(Ω)]d, 0 ≤ l ≤ r + 1,(4.4)

with r ∈ {1, 2}, and is H1-stable:

‖jhv‖1 � ‖v‖1 ∀v ∈ [H1(Ω)]d.(4.5)

Proof. The construction uses the Scott and Zhang variant of the Clément inter-
polation operator jCl

h : V → Vh (see [19] and Clément [8]), which already fulfills the
approximation properties (4.3) and (4.4), maintains homogeneous Dirichlet values,
and has the stability property (4.5). In order to ensure (4.2), we define jh in the form

jh = jCl
h + mh,

with a local projection mh : V → Ṽh onto the subspace

Ṽh :=
⊕

K∈T2h

Vh(K) ⊂ Vh.

In order to fulfill (4.2) this mapping must satisfy

(mhv, ψ) = (v − jCl
h v, ψ), ∀ψ ∈ Dv

h(K), ∀K ∈ T2h.(4.6)

If we take a basis ψK,i of Dv
h(K), mhv can be expressed on each patch K ∈ T2h as

a linear combination of the πKψK,i. Hence property (4.6) is equivalent to solving for
each K the linear system Mα = β, with the regular matrix M of Lemma 4.4 and the
right-hand side β with coefficients

βi = (v − jCl
h v, ψK,i)K .
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Hence, jh is well defined. In order to prove the approximation property in the L2-
norm (4.3) we will show that

‖mhv‖K � ‖v − jCl
h v‖K ,(4.7)

because due to (4.7) it follows:

‖v − jhv‖ = ‖v − jCl
h v + mhv‖

≤ ‖v − jCl
h v‖ + ‖mhv‖

� ‖v − jCl
h v‖.

Let us verify (4.7): The (v-dependent) solution vector α contains the coefficients of
mhv in the basis πKψK,i. Similarly, the projection of mhv onto the vectors ψK,i can
be expressed as a linear combination of the ψK,i with coefficients ᾱK,i:

π̄hmhv =

rd∑
i=1

ᾱK,iψK,i.

Now, the equality

(π̄hmhv, ψK,i)K = (mhv, ψK,i)K , i = 1, . . . , rd,(4.8)

can be written with the help of the matrix N = (nij) with coefficients nij = (ψK,i, ψK,j):

Nᾱ = Mα.

The local mass matrix N is symmetric and positive definite as well. It then follows
that

λmin(M) ‖mhv‖2
K ≤ (Mα)T ·Mα

= (Nᾱ)TNᾱ

≤ λmax(N) ‖π̄hmhv‖2
K .

We conclude that there holds on each patch K ∈ T2h

‖mhv‖2
K � ‖π̄hmhv‖2

K = (mhv, π̄h(mhv))K ,(4.9)

where the constant is independent of the mesh size. We estimate on each patch
K ∈ T2h due to (4.9):

‖mhv‖2
K �

∫
K

(v − jCl
h v)π̄hmhv dx

≤ ‖v − jCl
h v‖K ‖π̄hmhv‖K

� ‖v − jCl
h v‖K ‖mhv‖K ,

where we used the L2-stability of π̄h in the last inequality. Thus (4.7) follows.
For proving (4.4) we proceed in a similar fashion by applying an inverse estimate:

‖∇mhv‖2 �
∑

K∈Th

h−2
K ‖mhv‖2

K

=
∑

K∈Th

h−2
K ‖v − jCl

h v‖2
K

�
∑

K∈Th

h
2(l−1)
K ‖v‖2

l,K̃

� h2(l−1)‖v‖2
l .



LOCAL PROJECTION FOR THE OSEEN PROBLEM 2551

The stability (4.5) follows also due to this last estimate, the stability of jCL
h , and

(4.7).
Remark. The interpolation operator jCl

h maintains homogeneous Dirichlet condi-
tions on (parts of) ∂Ω. For polynomial Dirichlet conditions, the interpolation intro-
duced by Melenk and Wohlmuth [16] can be used. The interpolation operator jh acts
on the velocity space, but the result holds true of course for the scalar space L2(Ω).
We will therefore use the notation jh also for the interpolation operator acting on the
state variable u = {v, p}.

In the following analysis, we make use of the interpolation and stability properties
of κ̄h.

Lemma 4.6. The fluctuation operator κ̄h has the following interpolation and
stability properties:

‖κ̄h∇v‖ � hr‖v‖r+1 ∀v ∈ Hr+1(Ω),(4.10)

‖κ̄hv‖ � ‖v‖ ∀v ∈ L2(Ω).(4.11)

Proof. The interpolation property (4.10) is an immediate consequence of the
patch-wise interpolation of π̄h for the H1 function w := ∇v:

‖κ̄h∇v‖K = ‖w − π̄hw‖K � hr
K‖w‖r,K ≤ hr

K‖v‖r+1,K ∀K ∈ T2h.

Stability of κ̄h is due to the L2-stability of π̄h:

‖κ̄hv‖ ≤ ‖v‖ + ‖π̄hv‖ � ‖v‖.

Lemma 4.7. For the interpolation operator jh of Lemma 4.5 we have for all
u ∈ X ∩ [Hr+1(Ω)]d+1

Sh(jhu, jhu)1/2 � (δ1/2 + α1/2)hr(‖v‖r+1 + ‖p‖r+1).

Proof. We start with adding and subtracting u:

Sh(jhu, jhu) = Sh(u + jhu− u, u + jhu− u)

≤ Sh(u, u) + Sh(jhu− u, jhu− u) + 2Sh(jhu− u, u)

≤ 2(Sh(u, u) + Sh(jhu− u, jhu− u)).

For the first term the result follows immediately by the interpolation property (4.10):

Sh(u, u) ≤ δ‖κ̄h∇v‖2 + α‖κ̄h∇p‖2

� δh2r‖v‖2
r+1 + αh2r‖p‖2

r+1.

For the second term Sh(jhu− u, jhu− u) we have

δ‖κ̄h∇(jhv − v)‖2 � δ‖∇(jhv − v)‖2

� δh2r‖v‖2
r+1,

using the L2-stability (4.11) of the local projector κ̄h and the interpolation property
(4.4) of jh. For the pressure contribution of course the same holds.

4.2. A priori estimate for smooth velocities and pressure. In this sub-
section, we prove the following a priori estimate for the discrete solution of (3.1).
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Theorem 4.8. If the solution u = {v, p} of (2.2) satisfies u ∈ [Hr+1(Ω)]d+1,
then we have the a priori estimate

|||u− uh||| � ahr+ 1
2 (‖v‖r+1 + ‖p‖r+1)(4.12)

with

a = h−1/2(μ1/2 + δ1/2 + α1/2) + h1/2(σ1/2 + δ−1/2 + α−1/2).(4.13)

Before proceeding with the proof of this theorem, let us briefly comment on its
interpretation. An immediate consequence of the inequality (4.12) is that for con-
vection dominated flow, δ ∼ h and α ∼ h are the optimal choice of the parameters,
yielding an h-independent constant a and the (optimal) convergence order of hr+1/2.
The positive powers of δ and α in (4.13) represent the dissipative character of the
stabilization terms. It follows that too much dissipation will have a negative effect
on the precision. The presence of δ−1/2 and α−1/2 in (4.13) is due to the stabilizing
effect of the subgrid model: The dissipation of the small-scale energy into the un-
resolved scales avoids artificial energy concentrations on the small scales due to the
conservation properties of the Galerkin method. As expected, precision deteriorates
for small values of δ and α due to spurious oscillations.

Proof. In the standard fashion we decompose the error in u − uh = η + ξ into
an interpolation part η = u − jhu and a projection part ξ = jhu − uh. Clearly,
|||η||| ≤ Cahr+1/2 using the interpolation Lemma 4.5 and the asymptotic bound for the
stabilization term of Lemma 4.7. Consider now the discrete error ξ. By coercivity
(Lemma 4.1) and the Galerkin orthogonality property (Lemma 4.2) we have

|||ξ|||2 = A(ξ, ξ) + Sh(ξ, ξ)

= A(η, ξ) + Sh(jhu, ξ).

The second term on the right-hand side is bounded by applying the Cauchy–Schwarz
inequality followed by Lemma 4.7:

Sh(jhu, ξ) ≤ Sh(jhu, jhu)1/2Sh(ξ, ξ)1/2

� (μ1/2 + α1/2)hr(‖v‖r+1 + ‖p‖r+1)|||ξ|||.
For the first term on the right-hand side we use the Cauchy–Schwarz inequality and
integration by parts, writing ξp and ξv for the discrete pressure and the velocity error,
respectively:

A(η, ξ) ≤ |||η||| |||ξ||| − (p− jhp,div ξv) − (v − jhv,∇ξp) − (β ⊗ (v − jhv),∇ξv).(4.14)

We now use the orthogonality property of the quasi-interpolation operator to obtain
upper bounds:

|(p− jhp,div ξv)| = |(p− jhp,div ξv − π div ξv)|
≤ ‖δ−1/2(p− jhp)‖ ‖δ1/2(div ξv − π div ξv)‖
≤ ‖δ−1/2(p− jhp)‖Sh(ξ, ξ)1/2,

|(v − jhv,∇ξp)| = (v − jhv,∇ξp − π∇ξp)

≤ ‖α−1/2(v − jhv)‖ ‖α1/2(∇ξp − π∇ξp)‖
≤ ‖α−1/2(v − jhv)‖Sh(ξ, ξ)1/2,

|(β ⊗ (v − jhv),∇ξv)| = |(v − jhv, (β · ∇)ξv − π(β · ∇)ξv)|
≤ ‖δ−1/2(v − jhv)‖Sh(ξ, ξ)1/2.
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In summary, we get

A(η, ξ) ≤ |||η||| |||ξ||| + (‖δ−1/2(p− jhp)‖ + ‖(α−1/2 + δ−1/2)(v − jhv)‖)Sh(ξ, ξ)1/2

≤
(
|||η||| + ‖δ−1/2(p− jhp)‖ + ‖(α−1/2 + δ−1/2)(v − jhv)‖

)
|||ξ|||.

The assertion follows using interpolation properties (4.3) and (4.4) of the quasi inter-
polant jh.

We proceed and prove that the pressure also has optimal convergence properties
in the L2-norm.

Lemma 4.9. Let u = {v, p} be the solution of (2.2) and let uh = {vh, ph} be the
solution of (3.1). Then there holds

‖p− ph‖ � a|||u− uh|||,
where a = σ1/2 + |β|σ−1/2 + μ1/2 + δ1/2 + α−1/2h.

Proof. Following [12], by the surjectivity of the divergence operator there exists
vp ∈ [H1

0 (Ω)]d such that p− ph = div vp and ‖vp‖1,Ω � ‖p− ph‖. By the H1-stability
property of the quasi interpolant jh we then have

‖jhvp‖1,Ω � ‖p− ph‖.(4.15)

Consider now the equality p− ph = div vp. This gives

‖p− ph‖2 = (p− ph,div vp).

We now subtract jhvp from vp in the right-hand side and use the Galerkin orthogo-
nality property in Lemma 4.2 for the test function {jhvp, 0}:
‖p− ph‖2 = (p− ph,div (vp − jhvp)) − (μ∇(v − vh),∇jhvp)

+(σ(v − vh), jhvp) + (β ⊗ (v − vh),∇(jhvp)) − Sh(u− uh, {jhvp, 0}).
We estimate the resulting parts separately. For the first term we integrate by parts
and use the orthogonality property (4.2) of the quasi-interpolation operator jh to
obtain

(p− ph,div (vp − jhvp)) = (∇(p− ph), vp − jhvp)

= (κ̄h∇(p− ph), vp − jhvp)

≤ Sh({0, p− ph}, {0, p− ph})1/2‖α−1/2(vp − jhvp)‖
� α−1/2h|||u− uh|||‖vp‖1

� α−1/2h|||u− uh||| ‖p− ph‖,
where we used the stability property of vp in the last inequality. Furthermore, we
have

(σ(v − vh), jhvp) + (β ⊗ (v − vh),∇(jhvp))

= (σ(v − vh), jhvp) − (v − vh, (β · ∇)jhvp)

≤ (σ1/2 + |β|σ−1/2)|||u− uh||| ‖jhvp‖1.

Similarly we obtain, after application of the Cauchy–Schwarz inequality and (4.11),

(μ∇(v − vh),∇jhvp) − Sh(u− uh, {jhvp, 0})
≤ ‖μ1/2∇(v − vh)‖‖μ1/2∇jhvp‖ + Sh(u− uh, u− uh)1/2Sh({jhvp, 0}, {jhvp, 0})1/2

≤ |||u− uh||| (μ1/2 + δ1/2)‖jhvp‖1.

Collecting terms and using (4.15) gives the assertion.
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Corollary 4.10. For the solution of (3.1) there holds

‖ph‖2 � |||uh|||2 + ‖f‖2 = (f, vh) + ‖f‖2.

Hence the pressure is unique.
Proof. Modifying the proof of Lemma 4.9 considering not p − ph but simply ph

and introducing the right-hand side instead of using Galerkin orthogonality, we have

‖ph‖ � a|||uh||| + ‖f‖

and conclude by applying Lemma 4.1.

4.3. Lower regularities. The aim of the smoothness assumptions above is to
show that the discretization allows for the quasi-optimal a priori error estimates that
are characteristic for stabilized methods. However, for the case of high Reynolds
number flows this may seem overly optimistic, and we will therefore discuss what
we may prove rigorously in the case where the pressure is only in H1(Ω) and the
velocities are in [H2(Ω)]d. In order to recover optimality of the estimate, the pressure
stabilization has to be reduced to α ∼ h2. Otherwise, the error would be dominated
by the term α1/2‖p‖1, which would lead to a convergence order of only h1/2.

Lemma 4.11. In the case of less regular velocities and pressure, v ∈ [H2(Ω)]d

and p ∈ H1(Ω), and the use of the stabilization

Sh(u, ϕ) = (δ∇κhv,∇κhψ) + (α∇κhp,∇κhξ) + (κ̄hdiv vh, κ̄hdivψ),

with δ ∼ h and α ∼ h2, it holds for v ∈ [H2(Ω)]d, p ∈ H1(Ω), and high local Peclet
number that

|||u− uh||| � h3/2‖v‖2 + h‖p‖1.

Furthermore, for lower regularity v ∈ [H1+ε(Ω)]d, p ∈ L2(Ω) with ε > 0 and under
the assumption

‖v − jhv‖ � h1+ε‖v‖1+ε,(4.16)

we have at least convergence |||u− uh||| → 0 for h → 0.
Proof. We begin with the case v ∈ [H2(Ω)]d, p ∈ H1(Ω). The regularity of the

pressure is necessary only for the upper bound of the stabilizing term of Lemma 4.7.
The lower regularity gives the modified upper bound

Sh(jhu, jhu)1/2 � δ1/2h‖v‖2 + α1/2‖p‖1.

Due to the decrease of the pressure stabilization to α ∼ h2 it follows from the proof of
Theorem 4.8 that the control of the incompressibility condition has to be increased.
This is warranted due to the additional stabilization term

‖κ̄hdiv vh‖ ≤ Sh(uh, uh).(4.17)

Hence, we deduce

|(p− jhp,div ξv)| = |(p− jhp,div ξv − π div ξv)|
≤ ‖p− jhp‖Sh(uh, uh).
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For the case v ∈ H1+ε(Ω) and p ∈ L2(Ω), of course we cannot expect to get any
convergence order. On the other hand, the choice α ∼ h2 and (4.17) allow us to
prove convergence by a density argument, provided that the interpolants converge.
The Scott–Zhang operator is no longer well defined on the space of L2-functions, and
we therefore replace it by the L2-projection. Assuming quasi-uniform meshes, the
same estimate holds. First we check the stabilization operator S(jhu, jhu). Using the
stability of the projection κ̄h, the L2-projection onto a piecewise constant on element
K, π0,K , and an inverse inequality, we deduce that

S(jhu, jhu) �
∑
K

(
δK‖∇jhv‖2

K + αK‖∇jhp‖2
K

)

�
∑
K

(
hK‖∇v‖2

K + ‖jhp− π0,Kp‖2
K

)

�
∑
K

(
hK‖∇v‖2

K + ‖p− jhp‖2
K + ‖p− π0,Kp‖2

K

)

→ 0 (for h → 0).

Convergence of the other terms are achieved in a similar fashion assuming (4.16).
In the case of low local Reynolds number, i.e., |β|h < μ, and if {v, p} ∈ [H2(Ω)]d×

H1(Ω), one easily shows that the choice δ = 0 and α ∼ h2 leads to optimal a priori
error estimates in the energy norm by Theorem 4.8. An error estimate in the L2-norm
for the velocities may then be recovered using a standard Nitsche duality argument.

5. Variants of local projection stabilization.

5.1. Local projection in streamline direction. It should also be noted that
from the practical viewpoint it may be more advantageous to use the streamline
derivative in the part of the subgrid model acting on the velocity in order to minimize
crosswind diffusion; for instance,

(5.1) Sβ
h (u, ϕ) := (δκ̄h(β · ∇)v, κ̄h(β · ∇)ψ) + (δκ̄hdiv v, κ̄hdivψ)

+ (ακ̄h∇p, κ̄h∇ξ).

The following lemma states the fact that the proposed stabilization term (5.1)
involving only diffusion in streamline direction can be bounded by the triple norm.
As a consequence, taking (5.1) does not affect the order of the numerical scheme.

Lemma 5.1. If β ∈ [W 1,∞(Ω)]d, then it holds for all v ∈ Vh that

‖δ1/2
κ̄h(β · ∇)v‖ ≤ Cβ |||{v, 0}|||,(5.2)

where Cβ ∼ δ1/2‖β‖W 1,∞(Ω)σ
−1/2 + ‖β‖∞.

Proof. The proof follows by adding and subtracting π̄hβ, where π̄h denotes the
projection on Dv

h (here denoting the space of piecewise constants on the macropatches,
regardless of the approximation). We apply the triangle inequality and the H1 sta-
bility of κ̄h:

‖δ1/2
κ̄h(β · ∇)v‖ ≤ ‖δ1/2

κ̄h((β − π̄hβ) · ∇)v‖ + ‖δ1/2
κ̄h((π̄hβ)∇)v‖

� ‖δ1/2((β − π̄hβ) · ∇)v‖ + ‖δ1/2
κ̄h((π̄hβ)∇)v‖.

The second term on the right-hand side is simply bounded by

‖δ1/2
κ̄h((π̄hβ)∇)v‖ ≤ ‖β‖∞‖δ1/2

κ̄h∇v‖
≤ ‖β‖∞Sh(u, u)1/2.
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The first term can be estimated by the approximation property of π̄h and a local
inverse inequality:

‖((β − π̄hβ) · ∇)v‖ �
∑

K∈T2h

‖κ̄β‖K,∞h−1
K ‖v‖K

≤ ‖β‖W 1,∞(Ω)‖v‖.

This gives

‖δ1/2
κ̄h(β · ∇)v‖ � ‖β‖∞Sh(u, u)1/2 + δ1/2‖β‖W 1,∞(Ω)‖v‖

≤ Cβ |||{v, 0}|||

Note that this result is valid immediately (without any assumptions on β) if the
form (5.1) is used in the definition of the triple norm.

5.2. Projection onto a coarser mesh. As a further alternative we may use
the nodal interpolant πh : Qh → Q2h and take as fluctuation filter κh := i− πh. The
stabilization term for the Oseen system can now be taken as

Sh(u, ϕ) := (δ∇κhv,∇κhψ) + (α∇κhp,∇κhξ).(5.3)

When the triple norm ||| · ||| is designed with the term Sh(·, ·), the coercivity property of
Lemma 4.1 and the perturbed Galerkin orthogonality of Lemma 4.2 still hold for this
variant. Also the estimate in Lemma 4.7 is still valid if we assume that u ∈ H2(Ω)d+1

holds in order to be able to apply the nodal interpolant on u.
This variant can be considered as a generalization of the concept for advection

equations of Guermond [11, 14].

5.3. Relation to classical stabilized methods. In this section, we will show
the relation between the local projection method analyzed in this paper and the
GLS method or the residual-free bubble method. A key feature of the proposed
method is the weak consistency: The fact that the stabilization enjoys the right
asymptotic behavior without strong consistency allows us to decouple the stabilization
of the pressure and the velocities and, even more importantly, allows us to decouple
the stabilization from time-stepping terms and source terms. However, to show the
relation to the GLS we will reintroduce the strong consistency. Our aim is to show
that by using the local projection stabilization we may in fact use GLS on the fine
scales only, whereas the coarse scales are stable thanks to the interaction between
coarse and fine scales. To this end we consider the full residual

ρ(u) := σv + div (β ⊗ v) − μΔv + ∇p

in the stabilization

Sgls(uh, ϕ) := (δκ̄hρ(uh), κ̄hρ(ϕ))h + (δκ̄hdiv vh, κ̄hdivψ),(5.4)

where (·, ·)h :=
∑

K(·, ·)K . To make the formulation strongly consistent we perturb
the right-hand side and obtain

A(uh, ϕ) + Sgls(uh, ϕ) = (f, ψ + δκ̄hρ(ϕ))h ∀ϕ ∈ Xh.(5.5)

The consistency follows, because for the exact solution u we have

Sgls(u, ϕ) − (f, δκ̄hρ(ϕ))h = (δκ̄h(ρ(u) − f), κ̄hρ(ϕ))h = 0.
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We have thus reformulated the local projection method as a GLS formulation with
the stabilization acting only as a filter on the small scales. An important difference,
however, is that the local projection approach using (5.4) does not impose any artificial
boundary conditions on the solution in contrast to the case of residual-free bubbles.
This should be a definite advantage for nonlinear problems. We take as triple norm

|||u|||gls :=
(
‖σ1/2v‖2 + ‖μ1/2∇v‖2 + ‖δ 1

2 κ̄h(β · ∇v + ∇p)‖2
)1/2

.

Note that we still have coercivity. In fact, after minor modifications, Theorem 4.8
remains true for (5.4).

Lemma 5.2. It holds that

|||u− uh|||gls � hr+ 1
2 (‖v‖r+1 + ‖p‖r+1)

if δ � min(hμ ,
1
σ ) with a constant depending on the constant in the L2-stability of the

projection κ̄h and the constant in the inverse inequality.
Proof. We first note that

Sgls(u− jhu, u− jhu) = (δκ̄hρ(u− jhuh), κ̄hρ(u− jhu))h

+ (δκ̄hdiv (v − jhvh), κ̄hdiv (v − jhv))

has the right asymptotic, which is immediate, assuming optimal approximation for
the second derivatives. One may then show, using the stability of the local projection
and standard inverse inequalities, that provided δ satisfies the upper bound in the
supposition, there holds

1

2
‖δ 1

2 κ̄h(β · ∇vh + ∇ph)‖2 − 1

2
‖σ1/2vh‖2 − 1

2
‖μ∇vh‖2 � Sgls(uh, uh).

The proof now follows from (4.14) in the following fashion (considering here only the
modified terms):

A(η, ξ) ≤ |||η|||gls |||ξ|||gls − (v − jhv, β · ∇ξv + ∇ξp)

≤ |||η|||gls |||ξ|||gls − (δ−1/2(v − jhv), δ
1/2

κ̄h(β · ∇ξv + ∇ξp))

≤
(
|||η|||gls + ‖δ−1/2(v − jhv)‖

)
|||ξ|||gls.

5.4. Extension to triangular meshes. Until now, we have considered meshes
Th with quadrilateral (or hexahedral) elements. The corresponding finite elements
are d-linear (r = 1) or d-quadratic (r = 2). This raises the question of whether the
described method is applicable also on elements with triangles (d = 2) or tetrahedrons
(d = 3). Of course, the definition of the method carries over to those triangulations
without any modification if the patches are defined properly. It has to be assured
that for a patch K ∈ Th, test functions with support inside K do exist.

Bisection on triangles creates four smaller triangles out of one triangle; see Fig-
ure 5.1(a). Since no inner points are created, this strategy would not work in the case
r = 1: The spaces Vh(K) used in Lemma 4.3 would be empty in this particular case.
However, possible patches are sketched in Figure 5.1(b) and (c). In the case r = 2 and
d = 2, bisection leads to spaces Vh(K) of dimension three corresponding to the three
internal edges inside the patch; see Figure 5.1(a). The space Dh(K) has the same
dimension and can be represented by test functions corresponding to the three nodes
of K. Hence, we have dimDh(K) ≤dimVh(K), and the mapping πK can be defined
to be injective. A similar situation occurs for d = 3 and r = 2: dimVh(K) = 6 and
dimDh(K) = 4.
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(a) (b) (c)

Fig. 5.1. Possible patches of triangles: (a) bisection does not create inner nodes and is therefore
not suitable for local projection stabilization in the case r = 1; (b) and (c) create inner nodes.

6. Link to the variational multiscale method. Today one of the major chal-
lenges in computational fluid dynamics is the accurate computation of different quan-
tities in turbulent flow. Recently, several new approaches have been proposed such
as the dynamic multilevel methodology (DML) of Dubois, Jauberteau, and Temam
[10] or the VMS method of Hughes, Mazzei, and Jansen [15]. In the latter work,
reference is made to residual-free bubble techniques (see Brezzi and Russo [4]) and
subgrid viscosity as introduced by Guermond [14] to motivate an approach to large
eddy simulation (LES), where the turbulence model acts only on the fine scales. In
the following section we will show how the local projection method may be cast in
the VMS framework, leading to a stabilized finite element method suitable for high
Reynolds number flows.

6.1. Variational formulation of the Navier–Stokes equations. Let I :=
[0, T ] be the time interval. The velocities are sought in the Bochner space Vv :=
H1(I, V ), and the pressure in Vp := L2(I,Q). The product space will be denoted by
V := Vv × Vp. The test functions are in the space W := L2(I,X). The L2-scalar
product over the space-time slab ΩT := Ω × I will be denoted by (·, ·)ΩT

, and its
norm by ‖ · ‖ΩT

. Introducing now the state vector u = {v, p} ∈ V, we may write the
standard variational formulation of the Navier–Stokes equations (2.1): Find u ∈ V
such that v(·, 0) = v0 and

B(u, ϕ) = 〈f, ϕ〉 ∀ϕ ∈ W,(6.1)

where B(u, ϕ) is defined for ϕ = {ψ, ξ} by

B(u, ϕ) := (∂tv, ψ)ΩT
− (v ⊗ v,∇ψ)ΩT

+ (μ∇v,∇ψ)ΩT
− (p,divψ)ΩT

+ (div v, ξ)ΩT
.

6.2. Separation of scales on the continuous level. In the VMS formulation
as introduced in [15], a scale separation is performed and the turbulence model acts
only on the finer scales. However, as always in turbulence modeling certain model
assumptions on the interaction between the scales are made.

To clarify our model assumptions, we use the three-level partition proposed in
Collis [9]. Hence we consider a scale separation in large resolved scales denoted by v̄,
small resolved scales denoted by ṽ, and unresolved scales denoted by v̂. The solution
space is partitioned in a corresponding manner:

V = V̄ ⊕ Ṽ ⊕ V̂.
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The function space W is partitioned similarly, W = W̄ ⊕W̃ ⊕Ŵ, with corresponding
test functions, for instance, ϕ̄ = {ψ̄, ξ̄} ∈ W̄. We now write the exact equations of
motions for each scale:

B(u, ϕ̄) = 〈f, ϕ̄〉 ∀ϕ̄ ∈ W̄,(6.2)

B(u, ϕ̃) = 〈f, ϕ̃〉 ∀ϕ̃ ∈ W̃,(6.3)

B(u, ϕ̂) = 〈f, ϕ̂〉 ∀ϕ̂ ∈ Ŵ.(6.4)

Introducing the linearized Navier–Stokes operator

B′(u, u′, ϕ) := (∂tv
′, ψ̂)ΩT

− (v′ ⊗ v + v ⊗ v′,∇ψ)ΩT

−(p′,∇ · ψ)ΩT
+ (μ∇v′,∇ψ)ΩT

+ (∇ · v′, ξ)ΩT
,

the Reynolds stress projection

R(v, ψ) := (v ⊗ v,∇ψ)ΩT
,

and the cross-stress projection operator

C(v, v̂, ψ) := (v ⊗ v̂ + v̂ ⊗ v,∇ψ)ΩT
,

we may reformulate the exact equations for each scale in a fashion that makes evident
the coupling between the scales. Following Collis [9], the exact solution v̄ ∈ V̄ for the
resolved large scales fulfills for all ϕ̄ ∈ W̄ the equation

B(ū, ϕ̄) + B′(ū, ũ, ϕ̄) −R(ṽ, ψ̄) = 〈f, ϕ̄〉(6.5)

−B′(ū, û, ϕ̄) −R(v̂, ψ̄) + C(ṽ, v̂, ψ̄).

The first line in (6.5) includes the influence of the resolved scales on the large scales,
whereas the second line includes the influence of the unresolved scales on the large
scales. In the same fashion, the small resolved scales ṽ ∈ Ṽ fulfill for all ϕ̃ ∈ W̃

B′(ū, ũ, ϕ̃) −R(ṽ, ψ̃) = 〈f, ϕ̃〉 −B(ū, ϕ̃)(6.6)

−B′(ū, û, ϕ̃) −R(v̂, ψ̃) + C(ṽ, v̂, ψ̃).

The unresolved scales v̂ ∈ V̂ finally satisfy the following equation for all ϕ̂ ∈ Ŵ

B′(ū + ũ, û, ϕ̂) + R(v̂, ψ̂) = 〈f, ϕ̂〉 −B(ū + ũ, ϕ̂).

It follows that the equation for the unresolved scales is driven by the residual of the
resolved scales. With the equations written in this form it is easy to state the modeling
assumptions as follows:

(M1) The unresolved scales v̂ have no “direct” influence on the large scales. This
means that the second line of (6.5) is set to zero:

−B′(ū, û, ϕ̄) −R(v̂, ψ̄) + C(ṽ, v̂, ψ̄) = 0 ∀ϕ̄ ∈ W̄.(6.7)

(M2) The influence of the unresolved scales on the small scales is modeled by an
artificial viscosity term

S : X × X → R,

with X := (V̄ ⊕Ṽ)∪(W̄⊕W̃), acting only on the small resolved scales. Hence
we assume in (6.6) that for ϕ̃ ∈ W̃

S(ũ, ϕ̃) ≈ B′(ū, û, ϕ̃) + R(v̂, ψ̃) − C(ṽ, v̂, ψ̃).(6.8)
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The first modeling assumption (M1) can be expected to hold true when the main
features of the flow are resolved. This is the large eddy assumption. The second
modeling assumption (M2) implies that the unresolved scales only have the effect of
dissipating energy from the small resolved scales. Heuristically one may argue that
if assumption (M1) is satisfied, then the exact form or size of the subgrid model is
of less importance as long as it allows for a sufficient rate of dissipation of energy
from the resolved small scales to the unresolved scales. Insufficient dissipation may
cause buildup of energy in high frequency modes (by the conservation properties of
the Galerkin method) leading to spurious oscillations. Excessive dissipation will cause
too much damping of the resolved small scales leading to poorer resolution of the large
scales through the Reynolds stress coupling.

Using these modeling assumptions and the L2-projection Πv0 of the initial condi-
tions onto the resolved scales V̄v ⊕Ṽv we arrive at the formulation (v̄+ ṽ)(·, 0) = Πv0

and

B(ū + ũ, ϕ̄) = 〈f, ϕ̄〉 ∀ϕ̄ ∈ W̄,

B(ū + ũ, ϕ̃) + S(ṽ, ϕ̃) = 〈f, ϕ̃〉 ∀ϕ̃ ∈ W̃.
(6.9)

We choose the subgrid viscosity term to be coercive on the small resolved scales ũ,
i.e., S(ũ, ũ) ≥ c‖∇ũ‖2 for all ũ ∈ W̃, symmetric S(u, ϕ) = S(ϕ, u) for all u, ϕ ∈ X ,
and such that it vanishes on the large resolved scales

S(·, ϕ̄) = 0 ∀ϕ̄ ∈ W̄ ∪ V̄.(6.10)

6.3. Separation of scales on the discrete level. We introduce some finite
element approximation Vh of V that will represent the resolved scales Vh = V̄⊕Ṽ. This
space is then decomposed into large and small resolved scales by choosing V̄ = VH ,
where VH ⊂ Vh. To indicate its dependence on h, we equip the subgrid viscosity with
a subscript, Sh(·, ·). The same discrete space is used for the test space Wh = W̄ ⊕W̃.
The discrete version of (6.9) becomes the following: Find uh ∈ Vh such that vh(·, 0) =
πv0 and

B(uh, ϕ) + Sh(ũh, ϕ̃) = 〈f, ϕ〉 ∀ϕ ∈ Wh,(6.11)

or, using the scale separation property (6.10) of Sh(·, ·),

B(vh, ϕ) + Sh(uh, ϕ) = 〈f, ϕ〉 ∀ϕ ∈ Wh.(6.12)

Note also that by the properties of Sh(·, ·) we have Galerkin orthogonality for the
discretization error u− uh on the large resolved scales:

B(u− uh, ϕ̄) = 0 ∀ϕ̄ ∈ WH .(6.13)

Let us partition the time interval I into subintervals In = (tn−1, tn], n = 1, . . . , N ,
with 0 = t0 < t1 < · · · < tN = T and τn := tn − tn−1. We also introduce the space
time slabs Qn := In×Ω. As the time integration scheme, we use the Crank–Nicholson
scheme. It means that we choose piecewise d-linears for the ansatz functions and as
test spaces piecewise constants (discontinuous), precisely,

Vh = P 1
τ (I,Xh), Wh = P 0

τ (I,Xh).
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The spaces VH and WH are defined analogously by using XH . With these finite
element spaces we now propose the following finite element method: Find uh ∈ u0+Vh,
so that in the nth time step it holds for the restriction un = {vn, pn} := uh|In :

An(un, ϕ) + Sh(un, ϕ) = gn(un−1, ϕ) ∀ϕ ∈ Wh,(6.14)

with

An(u, ϕ) := (τ−1
n v, ψ) − (v ⊗ v,∇ψ) − (p,divψ) + (div v, ξ) + (μ∇v,∇ψ),

gn(u, ϕ) := 〈f, ϕ〉 + (τ−1
n v, ψ) − (μ∇v,∇ψ) + (v ⊗ v,∇ψ) − Sh(u, ϕ).

As mentioned before, a widely used linearization of (6.14) is the Oseen linearization
(2.3) with σ := τ−1

n and β a suitable approximation on vn (for instance, the last
iterate in the nonlinear iteration).

With these notations, we may take as subgrid model (3.2) or (5.3) with param-
eters δ and α depending on h. If triangular or tetrahedral meshes are used, both
subgrid operators satisfy (6.10) exactly and the analysis stated before shows that
they are equivalent. On quadrilateral and hexahedral meshes, the stabilization (5.3)
also satisfies (6.10) exactly. If version (3.2) is used on quadrilateral meshes, a small
residual may remain due to the cross-term of Q1 and Q2 elements. Consequently, we
do not have exact scale separation for (3.2) on quadrilaterals and hexahedrons.

7. Numerical example. Finally, we show numerical examples of this stabiliza-
tion strategy. As the first step, the convergence rates of v,∇v and of p in L2 are
checked numerically on tensor grids and on locally refined meshes. In the next step,
we investigate the difference of the kinetic energy of a nonstationary driven cavity
flow with the numerical dissipation.

7.1. Convergence order for an exact Navier–Stokes solution. In order
to check that the theoretical proven convergence order is also obtained numerically,
we consider a stationary Navier–Stokes problem with known exact smooth solution
in the unit square Ω := (0, 1)2:

vx(x, y) := − cos(x) sin(y) (2π2 + 1),

vy(x, y) := sin(x) cos(y) (2π2 − 1),

p(x, y) := 2(cos(x) + cos(y)).

The right-hand side f is obtained by applying the Navier–Stokes operator to this
solution. The solution is independent of the viscosity ν since the Laplacian applied
to v vanishes; Δv = 0. However, this is not the case for the discrete solutions. The
viscosity is set to ν = 10−6 so that this is smaller than the mesh size.

We investigate the convergence order of v in L2 and in the H1 seminorm, and for
the pressure we check the L2-error. Theorem 4.8 assures at least

‖ν∇(v − vh)‖ ≤ |||u− uh||| = O(hr+1/2).

Since ν < h, we expect at least O(hr−1/2) for ‖∇(v − vh)‖. Due to Theorem 4.9, we
get the same order of convergence for ‖p−ph‖. With a standard duality argument we
obtain one order more for the L2-error in the velocities. This expectation is summed
up in Table 7.1 (second column with label “theoretically”) for the case r = 2.

Let us first consider the case of equidistant tensor grids; see Figure 7.1 and the
third column of Table 7.1. We clearly observe for this example the superconvergence
behavior.
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Table 7.1

Theoretical and practical convergence rates for different quantities. The practical convergence
rates summarize the results of the numerical example.

Theoretically Practice Practice
Uniform meshes Nonuniform meshes

‖∇(v − vh)‖ h1.5 h2 h1.8

‖v − vh‖ h2.5 h3 h2.6

‖p− ph‖ h1.5 h2 h1.9
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Fig. 7.1. Convergence for stabilized biquadratic elements (Q2) on equidistant tensor grids in
dependence of the number of cells. Left: ‖v − vh‖ = O(h3) and ‖∇(v − vh)‖ = O(h2). Right:
‖p− ph‖ = O(h2).
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Fig. 7.2. Convergence for stabilized biquadratic elements (Q2) on randomly locally refined grids
in dependence of the number of cells. Left: ‖v − vh‖ = O(h2.6) and ‖∇(v − vh)‖ = O(h1.8). Right:
‖p− ph‖ = O(h1.9).

On locally refined meshes superconvergence cannot be expected to such an ex-
tent. Therefore, we perform the same computations on a sequence of meshes which
are obtained by refining approximately 50% of the cells by random. The meshes will
be kept quasi-uniform with a ratio between the largest and the smallest mesh size
bounded by 3. In order to compare with tensor grids we consider the “global mesh
size” h := n−1/2. In Figure 7.2 the convergence behavior is plotted on such locally
refined meshes. The observed convergence rates are listed in the last column of Ta-
ble 7.1. As expected, the convergence is reduced compared to tensor grids but is
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Fig. 7.3. One of the locally refined meshes used in the numerical example. The refinement is
performed by random.

Fig. 7.4. Flow field of the driven cavity problem at Re = 104 and t = 20 s.

still better than the theoretical results. Note that this is not a fault of the proof but
is simply due to superconvergence on parts of the domain. We show one of the used
meshes in Figure 7.3.

7.2. Driven cavity flow at Re = 105. The considered problem is a standard
nonstationary driven cavity flow in the unit square Ω = (0, 1)2 ⊂ R

2. As bound-
ary conditions, we have for the vertical velocity component homogeneous Dirichlet
conditions vy = 0 on ∂Ω; for the horizontal velocity component we have vx = 1 on
∂Ω ∩ {y = 1} and vx = 0 elsewhere.

Although the configuration has been investigated for many years, it is still not
clear when the transition to nonsteady flow exactly occurs. Auteri, Parolini, and
Quartapelle [1] found the first Hopf bifurcation at about Re = 8018 with a second-
order spectral projection method on a mesh with 1602 nodes. The computation of
Peng, Shiau, and Hwang [17] shows that the transition to a periodic solution occurs at
Re = 7 402± 4. They state that the flow becomes “chaotic” for Re > 11 000. Further
investigations can be found in [7, 13, 20], each with their own critical Reynolds number
for the first Hopf bifurcation, but all in the range between 7 400 and 8 375. Hence, in
order to guarantee a nonstationary flow we choose for our computations the Reynolds
number Re = 104.

The initial solution u|t=0 is chosen as the stationary solution at lower Reynolds
number (Re = 103). The time step in the Crank–Nicholson scheme is chosen constant
Δt = 0.05 s. In Figure 7.4 the flow is shown at time instant t = 20 s.
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Fig. 7.5. Physical dissipation (left) and artificial dissipation (right) for the driven cavity prob-
lem at Re = 104.

Table 7.2

Mean values of physical and artificial dissipation and their ratio for the sequence of meshes.

# Q2 cells 82 162 322 642 1282 2562 5122

ehart 0.299 0.162 0.0810 0.04278 0.0243 0.0149 0.00937
ehphy 0.0407 0.0536 0.0677 0.0782 0.0868 0.0934 0.0967

Ratio 7.34 3.02 1.20 0.55 0.28 0.16 0.097

We compare the physical dissipation ehphy(t) and artificial dissipation ehart(t), given
by

ehphy(t) := ν1/2‖∇vh(t)‖,
ehart(t) := Sh(uh(t), uh(t))1/2

on a sequence of equidistant tensor grids with 82 to 2562 Q2 cells (which corresponds
to 3 151 875 DOFs). In Figure 7.5, these two quantities are plotted in time. On the
coarsest mesh considered, the physical dissipation stabilizes slightly above 0.04. This
quantity increases under mesh refinement, reaching nearly 0.1 on the mesh with 2562

Q2 cells. At the same time, the artificial dissipation part ehart decreases from about
0.3 to below of 0.01.

For such time-dependent flows, physical meaningful quantities are time averages,
denoted by overbars. For example, the mean of physical dissipation will be denoted
by

ehphy :=
1

T

∫ T

0

ehphy(t) dt.

In Table 7.2, the averaged quantities and the ratio of artificial to physical dissipation
are listed. While the artificial dissipation dominates the physical dissipation on the
coarsest mesh, it becomes less than 10% on the finest mesh.

Although it cannot be expected that a solution uH on a coarse mesh TH shows
quantitatively the same information as the solution uh on the finest mesh Th, time
averages should be comparable if the mesh is reasonably fine. We may hope that
uH coincides well with the L2-projection of uh onto XH , denoted by ΠHuh. This
is illustrated in Figures 7.6 and 7.7, where the isolines of the time-averaged velocity
components are shown for the grid with 322 Q2 cells. Although the mesh size differs
by a factor of 24, the two time averages coincide quite well.
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Fig. 7.6. Time-averaged velocities on a grid with 32×32 Q2 cells; isolines of horizontal velocity
component (left) and vertical velocity component (right).

Fig. 7.7. Time-averaged solution on a grid with 512× 512 Q2 cells L2-projected onto the finite
element space with 32 × 32 Q2 cells, ΠHuh; isolines of horizontal velocity component (left) and
vertical velocity component (right).

8. Concluding remarks. We have proposed and analyzed a stabilized finite el-
ement method for the Oseen system based on local projections. To assure stability for
the equal-order interpolation of velocity and pressure and for the case of high Reynolds
number, a sufficient condition on the characteristic length scale of the subgrid model
is established. This condition coincides with the condition for optimal-order conver-
gence for the stabilized method when the underlying exact solution is smooth. We
have discussed how the choices of stabilization parameters may influence the precision
of the computation. Moreover, we have shown that the method can be formulated in
a multiscale setting, hence rigorously establishing a link between stabilized methods
and the VMS method for Navier–Stokes equations. We hope that this contribution
will give additional insight into the close relationship between VMS and stabilized
finite element methods. More extensive numerical simulations will be reported in a
forthcoming paper.
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Abstract. In this paper, error estimates for generalized Laguerre–Gauss-type interpolations are
derived in nonuniformly weighted Sobolev spaces weighted with ωα,β(x) = xαe−βx, α > −1, β > 0.
Generalized Laguerre pseudospectral methods are analyzed and implemented. Two model problems
are considered. The proposed schemes keep spectral accuracy and, with suitable choice of basis
functions, lead to sparse and symmetric linear systems.
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1. Introduction. With the extensive applications of Legendre- and Chebyshev-
spectral approximations to PDEs in bounded domains (cf. [2, 3, 4, 6, 7, 8]), consid-
erable progress has been made recently in using spectral methods for solving PDEs
in unbounded domains. Among the existing methods, the direct and commonly used
approach is based on orthogonal systems in infinite intervals, i.e., the Hermite and
Laguerre spectral methods (see, e.g., [5, 6, 9, 10, 17, 19]). In earlier studies, one usu-
ally considers Laguerre approximations in spaces weighted with e−x, which are not
the most appropriate in some cases. For instance, the approximations of some differ-
ential equations in financial mathematics, fluid dynamics, quantum mechanics, and
astronomical physics involve different weight functions for derivatives of different or-
ders. In such cases, we have to consider the generalized Laguerre approximation with
weight function ωα(x) = xαe−x, α > −1, which was used recently for two-dimensional
exterior problems; see [11]. Indeed, from both theoretical and computational points
of view, it is more interesting to consider an orthogonal system with a more general
weight function: ωα,β(x) = xαe−βx, α > −1, β > 0. One obvious advantage is that it
can provide us a variety of choices of polynomial bases to fit exact solutions of under-
lying differential equations with various asymptotic behaviors at infinity. Moreover,
as we will see later, some other good by-products can be obtained using this new
family of orthogonal polynomials.

In actual computations, it is more preferable to use the Laguerre interpolation.
As we know, there have been many results on the Laguerre polynomial approxima-
tion (e.g., see, [2, 5, 6, 8, 10, 11, 12, 13, 14, 17]), but only a few papers dealing with
the error analysis of Laguerre interpolation. Recently, some authors developed the
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Laguerre interpolation—for example, the Laguerre interpolation (α = 0, β = 1) with
its applications to approximation of differential equations (see [19]) and the standard
generalized Laguerre interpolation (α > −1, β = 1), which are very useful for approx-
imation of integral equations (see [15, 16]). The objective of this paper is to analyze
the generalized Laguerre–Gauss-type interpolation errors with a more general weight
ωα,β(x), α > −1, β > 0. In the special case of α = 0, β = 1, our new results are better
than the previous ones. Moreover, we derive the approximation results in nonuni-
formly weighted Sobolev spaces, which enables us to develop and analyze efficient
generalized Laguerre pseudospectral approximations of a large class of problems in
unbounded domains.

This paper is organized as follows. In section 2, we present some basic results
on this new generalized Laguerre–Gauss-type interpolation. In section 3, we establish
the main approximation results on the generalized Laguerre–Gauss and Laguerre–
Gauss–Radau interpolations, which provide us useful tools for numerical analysis of
generalized Laguerre pseudospectral methods for unbounded domains. Section 4 is
devoted to the generalized Laguerre pseudospectral method for unbounded domains
as an important application of the generalized Laguerre–Gauss interpolation. In sec-
tion 5, we develop a pseudospectral method for exterior problems as an application of
the generalized Laguerre–Gauss–Radau interpolation. In section 6, we present some
numerical results, which demonstrate the spectral accuracy of proposed schemes. The
final section is for some concluding remarks.

2. Generalized Laguerre–Gauss-type interpolations. In this section, we
shall introduce the new generalized Laguerre–Gauss-type interpolations, and study
the asymptotic behaviors of the interpolation nodes and weights.

2.1. Notation and preliminaries. Let Λ = (0,∞) and χ(x) be a certain
weight function on Λ in the usual sense. We define the weighted space L2

χ(Λ) as
usual with the inner product (u, v)χ and the norm ‖v‖χ. For simplicity, we de-
note ∂k

xv(x) = dk

dxk v(x), k ≥ 1. For any integer m ≥ 0, Hm
χ (Λ) = {v | ∂k

xv ∈ L2
χ(Λ),

0 ≤ k ≤ m} with the seminorm |v|m,χ and the norm ‖v‖m,χ. For any real r > 0, we
define the space Hr

χ(Λ) and its norm ‖v‖r,χ by space interpolation as in [1]. For
χ(x) ≡ 1, we drop the subscript χ in the previous notations as usual.

Let ωα,β(x) = xαe−βx, α > −1, β > 0. In particular, we denote ωα(x) =
ωα,1(x) = xαe−x. The new generalized Laguerre polynomial of degree l is defined by

L(α,β)
l (x) =

1

l!
x−αeβx∂l

x(xl+αe−βx), l = 0, 1, . . . .

Let L(α)
l (x) be the usual generalized Laguerre polynomials that are mutually

orthogonal with the weight function ωα(x). It is noted that L(α)
l (x) = L(α,1)

l (x), and

L(α,β)
l (x) = L(α)

l (y) = L(α)
l (βx), y = βx.(2.1)

Therefore, it is straightforward to derive the following properties (cf. [18]):

L(α,β)
l (0) = L(α)

l (0) =
Γ(l + α + 1)

Γ(α + 1)Γ(l + 1)
, l ≥ 0,(2.2)

∂xL(α,β)
l (x) = −βL(α+1,β)

l−1 (x), l ≥ 1,(2.3)

(l + 1)L(α,β)
l+1 (x) = (2l + α + 1 − βx)L(α,β)

l (x) − (l + α)L(α,β)
l−1 (x), l ≥ 1,(2.4)
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L(α,β)
l (x) = L(α+1,β)

l (x) − L(α+1,β)
l−1 (x) = β−1

(
∂xL(α,β)

l (x) − ∂xL(α,β)
l+1 (x)

)
, l ≥ 1.

(2.5)

The generalized Laguerre polynomials form a complete L2
ωα,β

(Λ)-orthogonal sys-
tem, (

L(α,β)
l ,L(α,β)

m

)
ωα,β

= γ
(α,β)
l δl,m, γ

(α,β)
l =

Γ(l + α + 1)

βα+1Γ(l + 1)
,(2.6)

where δl,m is the Kronecker symbol. Hence, for any v ∈ L2
ωα,β

(Λ), we can write

v(x) =

∞∑
l=0

v̂
(α,β)
l L(α,β)

l (x), v̂
(α,β)
l =

1

γ
(α,β)
l

(v,L(α,β)
l )ωα,β

.(2.7)

For integer N > 0, PN stands for the set of algebraic polynomials of degree ≤ N.
We denote by c a generic positive constant independent of N, β, and any function.

2.2. Generalized Laguerre–Gauss and Laguerre–Gauss–Radau interpo-
lations. Let ξ

(α,β)
G,N,j and ξ

(α,β)
R,N,j , 0 ≤ j ≤ N, be the zeros of L(α,β)

N+1 (x) and x∂xL(α,β)
N+1 (x),

respectively. They are arranged in ascending order. Denote ω
(α,β)
Z,N,j , 0 ≤ j ≤ N,

Z = G,R, the corresponding Christoffel numbers such that

∫
Λ

φ(x)ωα,β(x) dx =

N∑
j=0

φ
(
ξ
(α,β)
Z,N,j

)
ω

(α,β)
Z,N,j ∀φ ∈ P2N+λZ

,(2.8)

where λz = 1 and 0 for Z = G and R, respectively. In particular, the usual generalized
Laguerre–Gauss-type quadrature nodes and weights are denoted by ξ

(α)
Z,N,j := ξ

(α,1)
Z,N,j

and ω
(α)
Z,N,j := ω

(α,1)
Z,N,j , Z = G,R, respectively. Thanks to (2.1), we have ξ

(α,β)
Z,N,j =

1
β ξ

(α)
Z,N,j . We next derive the expressions of the weights. Indeed,

ω
(α,β)
G,N,j =

1

∂xL(α,β)
N+1

(
ξ
(α,β)
G,N,j

)
∫

Λ

L(α,β)
N+1 (x)

x− ξ
(α,β)
G,N,j

ωα,β(x)dx, 0 ≤ j ≤ N,(2.9)

which, along with formula (15.3.5) of [18], leads to

ω
(α,β)
G,N,j =

1

βα+1
ω

(α)
G,N,j =

Γ(N + α + 2)

βαΓ(N + 2)

1

ξ
(α,β)
G,N,j

[
∂xL(α,β)

N+1

(
ξ
(α,β)
G,N,j

)]2 , 0 ≤ j ≤ N.

(2.10)

Similarly, for the Gauss–Radau weights, we have

ω
(α,β)
R,N,j =

1

∂x

[
x∂xL(α,β)

N+1 (x)
]
|
x=ξ

(α,β)

R,N,j

∫
Λ

x∂xL(α,β)
N+1 (x)

x− ξ
(α,β)
R,N,j

ωα,β(x)dx, 0 ≤ j ≤ N,

(2.11)

which, together with formula (3.6.2) of [6], yields

ω
(α,β)
R,N,j =

1

βα+1
ω

(α)
R,N,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(α + 1)Γ2(α + 1)Γ(N + 1)

βα+1Γ(N + α + 2)
, j = 0,

Γ(N + α + 1)

βαΓ(N + 2)

1

L(α,β)
N+1 (ξ

(α,β)
R,N,j)∂xL

(α,β)
N (ξ

(α,β)
R,N,j)

, 1 ≤ j ≤ N.

(2.12)
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Note that the earlier two types of quadratures have close relations:

ξ
(α,β)
R,N,j = ξ

(α+1,β)
G,N−1,j−1, ω

(α,β)
R,N,j =

(
ξ
(α,β)
R,N,j

)−1

ω
(α+1,β)
G,N−1,j−1, 1 ≤ j ≤ N.(2.13)

Indeed, the first identity follows from (2.3). Moreover, using (2.3), (2.9), (2.13), and

the definition of ξ
(α+1,β)
G,N−1,j−1, we obtain from (2.11) that for 1 ≤ j ≤ N,

ω
(α,β)
R,N,j =

1

∂x

(
xL(α+1,β)

N (x)
)
|
x=ξ

(α,β)

R,N,j

∫
Λ

xL(α+1,β)
N (x)

x− ξ
(α,β)
R,N,j

ωα,β(x) dx

=
1

ξ
(α,β)
R,N,j∂xL

(α+1,β)
N

(
ξ
(α+1,β)
G,N−1,j−1

)
∫

Λ

L(α+1,β)
N (x)

x− ξ
(α+1,β)
G,N−1,j−1

ωα+1,β(x) dx

=
(
ξ
(α,β)
R,N,j

)−1

ω
(α+1,β)
G,N−1,j−1.

(2.14)

To obtain the interpolation error estimates, it is necessary to study the asymptotic
behaviors of generalized Laguerre–Gauss interpolation nodes and weights.

• Using Theorem 8.9.2 of [18], we can verify that for a certain fixed number
η > 0,

2β
1
2

((
ξ
(α,β)
G,N,j

)) 1
2

=
1√

N + 1

(
jπ + O(1)

)
if 0 <

(
ξ
(α,β)
G,N,j

)
≤ η

β
.(2.15)

• Theorem 6.31.3 of [18] reveals that for large j,

c1j
2

β(N + α
2 + 3

2 )
<

(
ξ
(α,β)
G,N,j

)
<

c2j
2

β(N + α
2 + 3

2 )
, c1 ∼=

π2

4
, c2 ∼= 4.(2.16)

• Let Ñ = 2(N+1)+α+1. By Theorem 6.31.2 of [18], the largest node satisfies

ξ
(α,β)
G,N,N < β−1

(
Ñ +

(
Ñ2 +

1

4
− α2

)1/2) ∼= 4β−1(N + 1).(2.17)

• We can verify from formula (15.3.15) of [18] that for a certain fixed number
η > 0,

ω
(α,β)
G,N,j

∼=
π√
βN

e−βξ
(α,β)

G,N,j

(
ξ
(α,β)
G,N,j

)α+ 1
2

if 0 <
(
ξ
(α,β)
G,N,j

)
≤ η

β
.(2.18)

• Let ξ
(α,β)
G,N,−1 := 0. By the formulae (2.4), (2.5), and (2.7) of [15],

ω
(α,β)
G,N,j =

1

βα+1
ω

(α)
G,N,j ∼

1

βα+1
ωα

(
ξ
(α)
G,N,j

)(
ξ
(α)
G,N,j+1 − ξ

(α)
G,N,j

)

= ωα,β(ξ
(α,β)
G,N,j)

(
ξ
(α,β)
G,N,j − ξ

(α,β)
G,N,j−1

)
, 0 ≤ j ≤ N.

(2.19)

• Thanks to the relation (2.13), we deduce from (2.18) and (2.19) that

ω
(α,β)
R,N,j =

(
ξ
(α+1,β)
G,N−1,j−1

)−1

ω
(α+1,β)
G,N−1,j−1

∼=
π√

β(N − 1)
e−βξ

(α,β)

R,N,j

(
ξ
(α,β)
R,N,j

)α+ 1
2

if 0 < ξ
(α,β)
R,N,j ≤

η

β
, 1 ≤ j ≤ N,

(2.20)
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and

ω
(α,β)
R,N,j =

(
ξ
(α,β)
R,N,j

)−1

ω
(α+1,β)
G,N−1,j−1

∼
(
ξ
(α,β)
R,N,j

)−1

ωα+1,β

(
ξ
(α+1,β)
G,N−1,j−1

)(
ξ
(α+1,β)
G,N−1,j−1 − ξ

(α+1,β)
G,N−1,j−2

)

= ωα,β

(
ξ
(α,β)
R,N,j

)(
ξ
(α,β)
R,N,j − ξ

(α,β)
R,N,j−1

)
, 1 ≤ j ≤ N.

(2.21)

For notational convenience, we now introduce the discrete inner product and
norm,

(u, v)ωα,β ,Z,N =

N∑
j=0

u
(
ξ
(α,β)
Z,N,j

)
v
(
ξ
(α,β)
Z,N,j

)
ω

(α,β)
Z,N,j ,

‖v‖ωα,β ,Z,N = (v, v)
1
2

ωα,β ,Z,N , Z =G,R.

By the exactness of (2.8),

(φ, ψ)ωα,β ,Z,N = (φ, ψ)ωα,β
∀φψ ∈ P2N+δZ ,(2.22)

where δZ = 1, 0 for Z = G,R, respectively. In particular,

‖φ‖ωα,β ,Z,N = ‖φ‖ωα,β
∀φ ∈ PN , Z =G,R.(2.23)

The generalized Laguerre–Gauss interpolant IZ,N,α,βv ∈ PN is defined by

IZ,N,α,βv
(
ξ
(α,β)
Z,N,j

)
= v

(
ξ
(α,β)
Z,N,j

)
, Z = G,R, 0 ≤ j ≤ N.(2.24)

3. Generalized Laguerre interpolation error estimates. In this section,
we estimate the interpolation errors in weighted Sobolev spaces, which provide useful
tools for the analysis of generalized Laguerre pseudospectral methods.

3.1. L2
ωα,β

(Λ)-orthogonal projection. We first recall the L2
ωα,β

(Λ)-orthogonal

projection PN,α,β : L2
ωα,β

(Λ) → PN , defined by

(PN,α,βv − v, φ)ωα,β
= 0 ∀φ ∈ PN .

In order to describe approximation errors precisely, we introduce the nonuniformly
weighted Sobolev space Ar

α,β(Λ). For any integer r ≥ 0, its seminorm and norm are
given by

|v|Ar
α,β

= ‖∂r
xv‖ωα+r,β

, ‖v‖Ar
α,β

=

(
r∑

k=0

|v|2Ak
α,β

) 1
2

.

For any real r > 0, we define the space Ar
α,β(Λ) by space interpolation as in [1].

We have the following basic result; see Theorem 2.1 of [12].
Lemma 3.1. For any v ∈ Ar

α,β(Λ), an integer r, and 0 ≤ μ ≤ r,

‖PN,α,βv − v‖Aμ
α,β

≤ c(βN)
μ−r

2 |v|Ar
α,β

.(3.1)

In the analysis of generalized Laguerre–Gauss–Radau interpolation approximation
(cf. the proof of Theorem 3.7), we need to estimate |PN,α,βv(0) − v(0)|.
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Lemma 3.2. For any v ∈ Ar
α,β(Λ) and an integer r > α + 1,

|PN,α,βv(0) − v(0)| ≤ c(βN)
α−r+1

2 |v|Ar
α,β

.(3.2)

Proof. Let λ
(β)
l = βl. By virtue of (2.3) and (2.6), we find that for l ≥ r,

|v|2Ar
α,β

=

∞∑
l=r

β2rγ
(α+r,β)
l−r

(
v̂
(α,β)
l

)2
, dα,βl,r :=

(λ
(β)
l )rγ

(α,β)
l

γ
(α+r,β)
l−r

≤ cβ2r.

Therefore,

∞∑
l=N+1

(
λ

(β)
l

)r
γ

(α,β)
l

(
v̂
(α,β)
l

)2
=

∞∑
l=N+1

dα,βl,r γ
(α+r,β)
l−r

(
v̂
(α,β)
l

)2 ≤ c|v|2Ar
α,β

.(3.3)

Consequently, using (2.2), (2.6), (3.3), and the Cauchy–Schwarz inequality leads to

|PN,α,βv(0) − v(0)| =
∣∣∣

∞∑
l=N+1

v̂
(α,β)
l L(α,β)

l (0)
∣∣∣

≤
( ∞∑

l=N+1

(λ
(β)
l )−r(L(α,β)

l (0))2(γ
(α,β)
l )−1

) 1
2
( ∞∑

l=N+1

(λ
(β)
l )rγ

(α,β)
l (v̂

(α,β)
l )2

) 1
2

≤ cβ
α−r+1

2

( ∞∑
l=N+1

Γ(l + α + 1)

lrΓ(l + 1)

) 1
2

|v|Ar
α,β

.

By the Stirling formula, Γ(s + 1) =
√

2πssse−s(1 + O(s−
1
5 )). Thus, for r > α + 1,

∞∑
l=N+1

Γ(l + α + 1)

lrΓ(l + 1)
≤ c

∞∑
l=N+1

lα−r ≤ cNα−r+1.

This completes the proof.

The approximation errors stated in Lemma 3.1 are measured in the space Aμ
α,β(Λ).

However, when we apply the generalized Laguerre approximation to numerical solu-
tions of differential and integral equations, we oftentimes need to estimate them in
the standard weighted Sobolev space Hr

ωα,β
(Λ), stated later.

Lemma 3.3. If v ∈ Hμ
ωα,β

(Λ)∩Ar
α−1,β(Λ)∩Ar

α−μ,β(Λ), then for integers 1 ≤ μ ≤
r,

|PN,α,βv − v|μ,ωα,β
≤ cβ− 1

2 (βN)μ−
r
2

(
|v|Ar

α−1,β
+ |v|Ar

α−μ,β

)
.(3.4)

Proof. We have

|PN,α,βv − v|1,ωα,β
≤ ‖PN,α,β∂xv − ∂xv‖ωα,β

+ ‖PN,α,β∂xv − ∂xPN,α,βv‖ωα,β
.(3.5)

By (3.1) with μ = 0, the first term at the right side of the previous inequality is

bounded above by c(βN)
1−r
2 |v|Ar

α−1,β
. Hence, it remains to estimate the second term.

To do this, let ∂xv(x) =
∑∞

l=0
ˆ̂v
(α,β)

l L(α,β)
l (x). By virtue of (2.5) and (2.7), we can
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derive that ˆ̂v
(α,β)

l = −β
∑∞

p=l+1 v̂
(α,β)
p . Thus, we follow the same lines as in [2, 8] to

deduce that

PN,α,β∂xv(x) − ∂xPN,α,βv(x) = −β

N∑
l=0

L(α,β)
l (x)

( ∞∑
p=l+1

v̂(α,β)
p

)

(3.6)

+ β
N−1∑
l=0

L(α,β)
l (x)

(
N∑

p=l+1

v̂(α,β)
p

)
= ˆ̂v

(α,β)

N

N∑
l=0

L(α,β)
l (x).

Accordingly, we use (2.6) and (3.1) with μ = 0 to obtain that

‖PN,α,β∂xv − ∂xPN,α,βv‖2
ωα,β

=
(
ˆ̂v
(α,β)

N

)2
γ

(α,β)
N

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1

≤ ‖PN−1,α,β∂xv − ∂xv‖2
ωα,β

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1
(3.7)

≤ c(βN)1−r|v|2Ar
α−1,β

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1
.

If α ≥ 0, then γ
(α,β)
l increases as l increases. In this case,

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1 ≤ N + 1.(3.8)

For −1 < α < 0, we use the Stirling formula to deduce that for a suitably large integer
M < N and l ≥ M,

γ
(α,β)
l ∼ β−α−1

(
1 +

α

l

)l+ 1
2

(l + α)α ∼ β−α−1lα.(3.9)

Hence, for certain c1 > 0,

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1 ≤ cN−α

(
c1 + c

N∑
l=M

lα

)
≤ cN−α(c1 + cN1+α) ≤ cN.(3.10)

Inserting (3.8) and (3.10) into (3.7), we obtain the desired result with μ = 1.
Now, we use induction to derive the desired result with μ ≥ 2. We shall use the

following inverse inequality:

‖φ‖r,ωα,β
≤ c(βN)r‖φ‖ωα,β

∀φ ∈ PN , r > 0.

Assume that (3.4) holds for μ− 1. Then we obtain that

|PN,α,βv − v|μ,ωα,β
≤ |PN,α,β∂xv − ∂xv|μ−1,ωα,β

+ |PN,α,β∂xv − ∂xPN,α,βv|μ−1,ωα,β

≤ cβ− 1
2 (βN)μ−1− r−1

2 (|v|Ar
α−2,β

+ |v|Ar
α−μ,β

) + c(βN)μ−1‖PN,α,β∂xv

− ∂xPN,α,βv‖ωα,β
≤ cβ− 1

2 (βN)μ−
r
2−

1
2 (|v|Ar

α−2,β
+ |v|Ar

α−μ,β
)

+ cβ− 1
2 (βN)μ−

r
2 |v|Ar

α−1,β
.

(3.11)
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By the definition of | · |Ar
α,β

, we have that

|v|Ar
α−2,β

= ‖∂r
xv‖ωα+r−2,β

≤ c(|v|Ar
α−μ,β

+ |v|Ar
α−1,β

).

This fact with (3.11) implies the desired result.

3.2. Generalized Laguerre interpolation approximations. We first study
the stability of generalized Laguerre–Gauss interpolation.

Theorem 3.4. For any v ∈ H1
ωα,β

(Λ) ∩A1
α,β(Λ),

‖IG,N,α,βv‖ωα,β
≤ c

(
β−1N− 1

2 |v|1,ωα,β
+ (1 + β− 1

2 )(lnN)
1
2 ‖v‖A1

α,β

)
.(3.12)

Proof. By (2.23) and (2.24),

‖IG,N,α,βv‖2
ωα,β

= ‖IG,N,α,βv‖2
ωα,β ,G,N =

N∑
j=0

v2
(
ξ
(α,β)
G,N,j

)
ω

(α,β)
G,N,j := AN + BN ,(3.13)

where

AN =
∑

ξ
(α,β)

G,N,j
≤ η

β

v2
(
ξ
(α,β)
G,N,j

)
ω

(α,β)
G,N,j , BN =

∑
ξ
(α,β)

G,N,j
> η

β

v2
(
ξ
(α,β)
G,N,j

)
ω

(α,β)
G,N,j .

We first estimate AN . For simplicity of statements, let

Δ
(α,β)
j =

[
ξ
(α,β)
G,N,j−1,

(
ξ
(α,β)
G,N,j

)]
, |Δ(α,β)

j | = ξ
(α,β)
G,N,j − ξ

(α,β)
G,N,j−1,

δ
(α,β)
j,+ =

(
ξ
(α,β)
G,N,j

) 1
2 + (ξ

(α,β)
G,N,j−1)

1
2 , δ

(α,β)
j,− =

(
ξ
(α,β)
G,N,j

) 1
2 − (ξ

(α,β)
G,N,j−1)

1
2 .

By (13.7) of [2], we know that for any u ∈ H1(a, b),

sup
x∈[a,b]

|u(x)| ≤ c

(
1√
b− a

‖u‖L2(a,b) +
√
b− a‖∂xu‖L2(a,b)

)
.(3.14)

Thus, by (2.18) and (3.14),

AN ≤ c√
βN

∑
ξ
(α,β)

G,N,j
≤ η

β

(
ξ
(α,β)
G,N,j

) 1
2 sup
x∈Δ

(α,β)
j

|xαv2(x)|

≤ c√
βN

∑
ξ
(α,β)

G,N,j
≤ η

β

((
ξ
(α,β)
G,N,j

) 1
2 (δ

(α,β)
j,+ )−1(δ

(α,β)
j,− )−1‖xα

2 v‖2

L2
(
Δ

(α,β)
j

)

+
(
ξ
(α,β)
G,N,j

) 1
2 δ

(α,β)
j,+ δ

(α,β)
j,−

(
‖xα

2 ∂xv‖2

L2
(
Δ

(α,β)
j

) + ‖xα
2 −1v‖2

L2
(
Δ

(α,β)
j

))).

(3.15)

We now bound the terms in the previous summation. Using (2.15) yields

(
ξ
(α,β)
G,N,j

) 1
2 δ

(α,β)
j,+ δ

(α,β)
j,− ‖xα

2 −1v‖2

L2
(
Δ

(α,β)
j

) ≤
(
ξ
(α,β)
G,N,j

) 1
2 (δ

(α,β)
j,+ )2

∫
Δ

(α,β)
j

xα−2v2(x)dx

≤ c
(
ξ
(α,β)
G,N,j

) 3
2 (ξ

(α,β)
G,N,j−1)

−2

∫
Δ

(α,β)
j

xαv2(x)dx

≤ c
√
βN‖xα

2 v‖2

L2
(
Δ

(α,β)
j

).

(3.16)
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The expression (2.15) implies that for 0 < ξ
(α,β)
G,N,j ≤

η
β ,

δ
(α,β)
j,− ∼ 1√

βN
,

(
ξ
(α,β)
G,N,j

) 1
2 (δ

(α,β)
j,+ )−1 ≤ c,

(
ξ
(α,β)
G,N,j

) 1
2 δ

(α,β)
j,+ ≤ c

β
.(3.17)

Hence, plugging (3.16) and (3.17) into (3.15) gives

AN ≤ c
∑

Δ
(α,β)
j

(
‖xα

2 v‖2

L2
(
Δ

(α,β)
j

) + β−2N−1‖xα
2 ∂xv‖2

L2
(
Δ

(α,β)
j

))

≤ c(‖v‖2
ωα,β

+ β−2N−1|v|21,ωα,β
).

(3.18)

We next estimate BN in (3.13). By (2.19) and (2.17),

BN ≤ c
∑

ξ
(α,β)

G,N,j
> η

β

v2
(
ξ
(α,β)
G,N,j

)
ωα,β

(
ξ
(α,β)
G,N,j

)(
ξ
(α,β)
G,N,j − ξ

(α,β)
G,N,j−1

)

≤ c sup
x> η

β

|v2(x)ωα+1,β(x)|
∑

ξ
(α,β)

G,N,j
> η

β

1

ξ
(α,β)
G,N,j

(
ξ
(α,β)
G,N,j − ξ

(α,β)
G,N,j−1

)

≤ c sup
x> η

β

|v2(x)ωα+1,β(x)|
∫ 4β−1(N+1)

η
β

1

x
dx.

By a similar argument as in the derivation of Lemma 2.2 of [11], we deduce that

sup
x∈Λ

|v2(x)ωα+1,β(x)| ≤ max(α + 1, 2/β)‖v‖2
A1

α,β
.(3.19)

Consequently,

BN ≤ c(1 + 1/β) lnN‖v‖2
A1

α,β
.(3.20)

The combination of (3.13), (3.18), (3.20), and the fact ‖v‖ωα,β
≤ ‖v‖A1

α,β
leads

to the desired result.
With the aid of the previous theorem, we are able to estimate the interpolation

error.
Theorem 3.5. If v ∈ Ar

α−1,β(Λ) ∩Ar
α,β(Λ), then for integer r ≥ 1,

‖IG,N,α,βv − v‖ωα,β
≤ c(βN)

1
2−

r
2

(
β−1|v|Ar

α−1,β
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.(3.21)

If, in addition, v ∈ Ar
α−μ,β(Λ), then for integers 1 ≤ μ ≤ r,

|IG,N,α,βv − v|μ,ωα,β
≤ c(βN)μ+ 1

2−
r
2

(
β−1(|v|Ar

α−1,β
+ N− 1

2 |v|Ar
α−μ,β

)

+ (1 + β− 1
2 )(lnN)

1
2 |v|Ar

α,β

)
.

(3.22)

Proof. The use of (3.12), (3.1), and (3.4) with μ = 1 leads to

‖IG,N,α,βv − PN,α,βv‖ωα,β
= ‖IG,N,α,β(PN,α,βv − v)‖ωα,β

≤ cβ−1N− 1
2 |PN,α,βv − v|1,ωα,β

+ c(1 + β− 1
2 )(lnN)

1
2 ‖PN,α,βv − v‖A1

α,β

≤ c(βN)
1
2−

r
2

(
β−1|v|Ar

α−1,β
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.

(3.23)
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Thus, using the previous formula and (3.1) with μ = 0 yields

‖IG,N,α,βv − v‖ωα,β
≤ ‖IG,N,α,βv − PN,α,βv‖ωα,β

+ ‖PN,α,βv − v‖ωα,β

≤ c(βN)
1
2−

r
2

(
β−1|v|Ar

α−1,β
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.

(3.24)

This implies (3.21). Next, by (3.4), (3.23), and the inverse inequality as before, we
deduce that

|IG,N,α,βv − v|μ,ωα,β
≤ |IG,N,α,βv − PN,α,βv|μ,ωα,β

+ |PN,α,βv − v|μ,ωα,β

≤ c(βN)μ‖IG,N,α,βv − PN,α,βv‖ωα,β
+ cβ− 1

2 (βN)μ−
r
2 (|v|Ar

α−1,β
+ |v|Ar

α−μ,β
)

≤ c(βN)μ+ 1
2−

r
2

(
β−1

(
|v|Ar

α−1,β
+ N− 1

2 |v|Ar
α−μ,β

)
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.

(3.25)

This completes the proof.
We now turn to the generalized Laguerre–Gauss–Radau interpolation. We first

study the stability of interpolation, stated later.
Theorem 3.6. For any v ∈ H1

ωα,β
(Λ) ∩A1

α,β(Λ),

‖IR,N,α,βv‖ωα,β
≤ c

(
(βN)−

α+1
2 |v(0)| + β−1N− 1

2 |v|1,ωα,β

+ (1 + β− 1
2 )(lnN)

1
2 ‖v‖A1

α,β

)
.

(3.26)

In particular, for |α| < 1,

‖IR,N,α,βv‖ωα,β
≤ c

(
β−1N− 1

2 |v|1,ωα,β
+ (1 + β− 1

2 )(lnN)
1
2 ‖v‖A1

α,β

)
.(3.27)

Proof. Let η be the positive constant in (2.15). By the exactness (2.23),

‖IR,N,α,βv‖2
ωα,β

= ‖IR,N,α,βv‖2
ωα,β ,R,N = v2(0)ω

(α,β)
R,N,0 + ÃN + B̃N ,

where

ÃN =
∑

0<ξ
(α,β)

R,N,j
≤ η

β

v2(ξ
(α,β)
R,N,j)ω

(α,β)
R,N,j , B̃N =

∑
ξ
(α,β)

R,N,j
> η

β

v2(ξ
(α,β)
R,N,j)ω

(α,β)
R,N,j .

Using the Stirling formula, we have ω
(α,β)
R,N,0 ≤ c(βN)−α−1. On the other hand, we ob-

serve from (2.13) that the interior nodes ξ
(α,β)
R,N,j , 1 ≤ j ≤ N, satisfy asymptotic prop-

erties (2.15) and (2.16), while the corresponding weights ω
(α,β)
R,N,j , 1 ≤ j ≤ N, fulfill

(2.20) and (2.21). Thus, we can follow the same lines as in the proof of Theorem 3.4
to derive that

ÃN ≤ c(‖v‖2
ωα,β

+ β−2N−1|v|21,ωα,β
), B̃N ≤ c(1 + β−1) lnN‖v‖2

A1
α,β

.

Then the result (3.26) follows from the previous statements.
We next prove (3.27). For any x ∈ [0, 1

β ] and |α| < 1,

|v(x) − v(0)| ≤
(∫ 1

β

0

x−αeβx dx

) 1
2

‖∂xv‖L2
ωα,β

(0, 1
β ) ≤ cβ

α−1
2 ‖∂xv‖L2

ωα,β
(0, 1

β ).(3.28)
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Now, let |v(x∗)| = minx∈[0,1/β] |v(x)|. Clearly, for |α| < 1,

|v(x∗)| ≤ β

∫ 1
β

0

|v(x)| dx ≤ cβ
α+1

2 ‖v‖L2
ωα,β

(0, 1
β ).(3.29)

The previous formula with (3.28) gives

|v(0)| ≤ |v(x∗)| + |v(x∗) − v(0)| ≤ c
(
β

α+1
2 ‖v‖ωα,β

+ β
α−1

2 |v|1,ωα,β

)
.(3.30)

If 0 ≤ α < 1, then by (3.30) and the fact ‖v‖ωα,β
≤ ‖v‖A1

α,β
, we derive that

(βN)−
α+1

2 |v(0)| ≤ c
(
β−1N− 1

2 |v|1,ωα,β
+ (1 + β− 1

2 )(lnN)
1
2 ‖v‖A1

α,β

)
,

which, along with (3.26), leads to (3.27) with 0 ≤ α < 1. For −1 < α < 0, we change
slightly the derivation of (3.28) to obtain that for any x ∈ [0, 1

β ],

|v(x) − v(0)| ≤
∫ 1

β

0

|∂xv(x)| dx ≤ cβ
α
2 ‖∂xv‖L2

ωα+1,β
(0, 1

β ).

Correspondingly, (3.30) becomes

|v(0)| ≤ c
(
β

α+1
2 ‖v‖ωα,β

+ β
α
2 ‖∂xv‖ωα+1,β

)
≤ cβ

α+1
2 (1 + β− 1

2 )‖v‖A1
α,β

.

Then the result (3.27) with −1 < α < 0 follows from formula (3.26) and the fact

N−α+1
2 ≤ c.

The following two theorems describe the error of interpolation IR,N,α,βv.
Theorem 3.7. If v ∈ Ar

α,β(Λ) ∩ Ar
α−1,β(Λ), then for an integer r ≥ 1 and

r > α + 1,

‖IR,N,α,βv − v‖ωα,β
≤ c(βN)

1
2−

r
2

(
β−1|v|Ar

α−1,β
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.(3.31)

In particular, if |α| < 1, then the previous result holds for all integers r ≥ 1.
Proof. As a consequence of (3.26),

‖IR,N,α,βv − PN,α,βv‖ωα,β
= ‖IR,N,α,β(PN,α,βv − v)‖ωα,β

≤ c(βN)−
α+1

2 |PN,α,βv(0) − v(0)| + cβ−1N− 1
2 |PN,α,βv − v|1,ωα,β

+ c(1 + β− 1
2 )(lnN)

1
2 ‖PN,α,βv − v‖A1

α,β
.

(3.32)

According to Lemma 3.2, the first term on the right-hand side of (3.32) is bounded
above by c(βN)−

r
2 |v|Ar

α,β
for an integer r > α + 1. The other two terms can be

estimated by using Lemmas 3.1 and 3.3 with μ = 1 (cf. the proof of (3.21)).
If |α| < 1, we use (3.27) to derive (3.32), which does not contain the term

|PN,α,βv(0) − v(0)|, and consequently does not require r > α + 1.
We can follow the same approach as for the proof of (3.22) to derive the following

result.
Theorem 3.8. If v ∈ Ar

α,β(Λ) ∩ Ar
α−1,β(Λ) ∩ Ar−1

α−μ,β(Λ), then for integers 1 ≤
μ ≤ r and r > α + 1,

|IR,N,α,βv − v|μ,ωα,β
≤c(βN)μ+ 1

2−
r
2

(
β−1

(
|v|Ar

α−1,β
+ N− 1

2 |v|Ar
α−μ,β

)

+ (1 + β− 1
2 )(lnN)

1
2 |v|Ar

α,β

)
.

(3.33)

In particular, for |α| < 1, the previous result holds for all integers r ≥ 1.
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4. Generalized Laguerre pseudospectral method for unbounded do-
mains. This section is devoted to the generalized pseudospectral method based on
the generalized Laguerre–Gauss interpolation. Throughout this section, let Ω = Λ×S
and S be the unit spherical surface, S = {(λ, θ)| 0 ≤ λ < 2π, − π

2 ≤ θ < π
2 }. The

Laplacian operator on Ω is given by

Δv(ρ, λ, θ) =
1

ρ2
∂ρ(ρ

2∂ρv(ρ, λ, θ))+
1

ρ2 cos θ
∂θ(cos θ∂θv(ρ, λ, θ))+

1

ρ2 cos2 θ
∂2
λv(ρ, λ, θ).

We consider the following problem:
{

− ΔW (ρ, λ, θ) + μW (ρ, λ, θ) = F (ρ, λ, θ), μ > 0, in Ω,

W (ρ, λ + 2π, θ) = W (ρ, λ, θ).
(4.1)

Here, we look for the solution of (4.1) such that ρ
1
2W (ρ, λ, θ) → 0 as ρ → 0 and

ρ
3
2W (ρ, λ, θ) → 0 as ρ → ∞. In addition, the solution W (ρ, λ, θ) satisfies the pole

condition, namely, ∂λW (ρ, λ, θ) = 0 for θ = ±π
2 .

It is noted that the usual weighted (with the weight e−βρ) Galerkin variational
formulation of (4.1), on which the generalized Laguerre approximations are often
based, is not well posed. One possible way to remedy this deficiency is to find a suitable
variable transform such that the weighted variational formulation of the transformed
equation becomes well posed. Motivated by [10], we make the variable transform

W (ρ, λ, θ) = e−
β
2 ρU(ρ, λ, θ), F (ρ, λ, θ) = e−

β
2 ρf(ρ, λ, θ),(4.2)

which converts (4.1) into

− ∂2
ρU(ρ, λ, θ) − 1

ρ
(2 − βρ)∂ρU(ρ, λ, θ) − 1

ρ2 cos θ
∂θ(cos θ∂θU(ρ, λ, θ))

− 1

ρ2 cos2 θ
∂2
λU(ρ, λ, θ) +

1

ρ

(
μρ + β − β2

4
ρ
)
U(ρ, λ, θ) = f(ρ, λ, θ).

(4.3)

To focus on our main idea, we consider only the spherically symmetric case, in which
U and f are independent of λ and θ, denoted by U(ρ) and f(ρ), respectively. Accord-
ingly,

−∂2
ρU(ρ) − 1

ρ
(2 − βρ)∂ρU(ρ) +

1

ρ

(
μρ + β − β2

4
ρ
)
U(ρ) = f(ρ).(4.4)

In addition, ρ
1
2U(ρ) → 0 as ρ → 0 and ρ

3
2 e−

β
2 ρU(ρ) as ρ → ∞.

With the previous general setup, we now derive a weak formulation of (4.4).
First, we observe that for any v ∈ H1

ω2,β
(Λ), we have ∂ρv(ρ) = o(ρ−

3
2 ) and v(ρ) =

o(ρ−
1
2 ) as ρ → 0, and ∂ρv(ρ) ∼ v(ρ) = o(ρ−

3
2 e

βρ
2 ) as ρ → ∞. Consequently, if

v ∈ H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ), then ρ2v(ρ)∂ρv(ρ)e
−βρ → 0 as ρ → 0,∞. Hence, we obtain

a weak formulation of (4.4). It is to find U ∈ H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ) such that

aμ,β(U, v) = (f, v)ω2,β
∀v ∈ H1

ω2,β
(Λ) ∩ L2

ω1,β
(Λ),(4.5)

where the bilinear form is defined by

aμ,β(u, v) = (∂ρu, ∂ρv)ω2,β
+
(
μ− β2

4

)
(u, v)ω2,β

+ β(u, v)ω1,β
.
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One can verify that aμ,β(·, ·) is continuous and elliptic in
(
H1

ω2,β
(Λ) ∩ L2

ω1,β
(Λ)

)2
.

Indeed,

|aμ,β(u, v)| ≤ c
(
(1 + β)‖u‖1,ω2,β

+ β
1
2 ‖u‖ω1,β

)(
(1 + β)‖v‖1,ω2,β

+ β
1
2 ‖v‖ω1,β

)
,(4.6)

and for μ > β2

4 , we have

aμ,β(v, v) ≥ c
(
‖v‖2

1,ω2,β
+ β‖v‖2

ω1,β

)
.(4.7)

Therefore, if f ∈ (H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ))′, then (4.5) admits a unique solution.

The corresponding pseudospectral scheme for (4.5) is to seek uN (ρ) ∈ PN such
that

aμ,β,N (uN , φ) = (f, φ)ω2,β ,G,N ∀φ ∈ PN ,(4.8)

where

aμ,β,N (u, v) = (∂ρu, ∂ρv)ω2,β ,G,N +
(
μ− β2

4

)
(u, v)ω2,β ,G,N + β(u, v)ω1,β ,G,N .

According to (2.22), (4.8) is equivalent to

aμ,β(uN , φ) = (IG,N,2,βf, φ)ω2,β
∀φ ∈ PN .(4.9)

Before analyzing the convergence of (4.8), we first consider a special orthogonal
projection P 1

N,β : H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ) → PN , defined by

(
∂ρ(P

1
N,βv − v), ∂ρφ

)
ω2,β

+
(
P 1
N,βv − v, φ

)
ω2,β

+
(
P 1
N,βv − v, φ

)
ω1,β

= 0 ∀φ ∈ PN .

(4.10)

To analyze its approximation error, we need the following two imbedding inequalities
which are the special cases of Lemmas 2.1 and 2.2 of [12].

• If v ∈ L2
ω0,β

(Λ), ∂ρv ∈ L2
ω2,β

(Λ), and v( 1
β ) = 0, then

‖v‖ω0,β
≤ c‖∂ρv‖ω2,β

.(4.11)

• If v ∈ H1
ω2,β

(Λ) ∩ L2
ω0,β

(Λ), then

‖v‖2
ω2,β

≤ 8β−2
(
‖∂ρv‖2

ω2,β
+ ‖v‖2

ω0,β

)
.(4.12)

Lemma 4.1. For any v ∈ H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ) ∩Ar
1,β(Λ) and integer r ≥ 1,

‖P 1
N,βv − v‖1,ω2,β

+ ‖P 1
N,βv − v‖ω1,β

≤ c(1 + β−1)(βN)
1−r
2 |v|Ar

1,β
.(4.13)

Proof. By projection theorem and the Cauchy–Schwarz inequality,

‖P 1
N,βv − v‖2

1,ω2,β
+ ‖P 1

N,βv − v‖2
ω1,β

≤ ‖φ− v‖2
1,ω2,β

+ ‖φ− v‖2
ω1,β

≤ |φ− v|21,ω2,β
+

3

2
‖φ− v‖2

ω2,β
+

1

2
‖φ− v‖2

ω0,β
∀φ ∈ PN .

Taking φ(ρ) = PN,1,βv(ρ)−PN,1,βv(
1
β ) + v( 1

β ), we have from (4.11), (4.12), and (3.1)
that

‖P 1
N,βv−v‖2

1,ω2,β
+ ‖P 1

N,βv − v‖2
ω1,β

≤ c(1 + β−2)‖∂ρ(φ− v)‖2
ω2,β

= c(1 + β−2)|PN,1,βv − v|2A1
1,β

≤ c(1 + β−2)(βN)1−r|v|2Ar
1,β

.
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We now go back to the convergence analysis of scheme (4.8). Let UN = P 1
N,βU ;

then by (4.5) and (4.10),

aμ,β(UN , φ) = −G(φ) + (IG,N,2,βf, φ)ω2,β
∀φ ∈ PN ,(4.14)

where

G(φ) =
(
μ− β2

4
−1

)
(U −UN , φ)ω2,β

+(β−1)(U −UN , φ)ω1,β
+(IG,N,2,βf −f, φ)ω2,β

.

Set ŨN = uN − UN . Then by (4.9) and (4.14),

aμ,β(ŨN , φ) = G(φ) ∀φ ∈ PN .(4.15)

Taking φ = ŨN in the previous formula and using (4.7) give

‖ŨN‖2
1,ω2,β

+ β‖ŨN‖2
ω1,β

≤ c|G(ŨN )|.(4.16)

Hence, it suffices to estimate |G(ŨN )|. For simplicity, we shall use the following nota-
tion:

B
(1)
N,β,r(v) = c(1 + β2)2(1 + β−1)2(βN)1−r|v|2Ar

1,β
,

B
(2)
N,β,r(v) = c(1 + β)2(1 + β−1)2(βN)1−r|v|2Ar

1,β
,

B
(3)
N,β,s(v) = c(βN)1−s

(
β−2|v|2

As−1
1,β

+ (1 + β−1) lnN |v|2As
2,β

)
.

By virtue of (4.13) and (3.21), for integers r, s ≥ 1,

|G(ŨN )| ≤ B
(1)
N,β,r(U) + B

(2)
N,β,r(U) + B

(3)
N,β,s(f) +

1

2
‖ŨN‖2

ω2,β
+

β

2
‖ŨN‖2

ω1,β
.

Plugging the previous formula into (4.16) leads to an estimate for ‖ŨN‖2
1,ω2,β

+

β‖ŨN‖2
ω1,β

. Since U − uN = U − P 1
N,βU − ŨN , we use (4.13) again to reach the

following conclusion.
Theorem 4.2. Let U and uN be the solutions of (4.5) and (4.8), respectively,

and let μ > 1
4β

2. If U ∈ Ar
1,β(Λ) and f ∈ As

1,β(Λ) ∩ As
2,β(Λ) with integers r, s ≥ 1,

then

‖U − uN‖2
1,ω2,β

+ β‖U − uN‖2
ω1,β

≤ c
(
B

(1)
N,β,r(U) + B

(2)
N,β,r(U) + B

(3)
N,β,s(f)

)
.

Remark 4.1. After solving uN (ρ) from (4.8), we evaluate the numerical solution

of the original problem by wN (ρ) = e−
β
2 ρuN (ρ). Indeed, a direct computation leads to

‖W − wN‖1,ω̂2 +
√
β‖W − wN‖ω̂1

≤ (1 + β)‖U − uN‖1,ω2,β
+
√
β‖U − uN‖ω1,β

= O(N
1−r
2 + (lnN)

1
2N

1−s
2 ),

where ω̂α(ρ) = ρα = ωα,0(ρ). A combination of the previous formula and (3.19) with
α = 1 yields

sup
ρ∈Λ

|ρ(W − wN )| = sup
ρ∈Λ

|(U − uN )ρe−
β
2 ρ| ≤ c‖U − uN‖A1

1,β

≤ c(|U − uN |1,ω2,β
+ ‖U − uN‖ω1,β

) = O(N
1−r
2 + (lnN)

1
2N

1−s
2 ).

Hence, a spectral accuracy is expected from theoretical analysis.
Remark 4.2. Given μ > 0, we can always choose the adjustable factor β such

that μ > 1
4β

2, which guarantees the well-posedness of our Galerkin formulation.
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5. Generalized Laguerre pseudospectral method for exterior problems.
This section is for the generalized Laguerre pseudospectral method based on Gauss–
Radau interpolation for exterior problems. As an example, we consider the following
equation induced by the spherically symmetric solution of the three-dimensional prob-
lem: ⎧⎪⎨

⎪⎩
− 1

ρ2
∂ρ(ρ

2∂ρW (ρ)) + μW (ρ) = F (ρ), μ > 0, ρ > 1,

lim
ρ→∞

ρ
3
2W (ρ) = 0, W (1) = g.

(5.1)

For simplicity, let g = 0. We first shift the interval [1,∞) to [0,∞) by using the
variable transform: ρ = x + 1, W (ρ) = V (x), F (ρ) = G(x). Then (5.1) becomes

⎧⎪⎨
⎪⎩
− 1

(x + 1)2
∂x((x + 1)2∂xV (x)) + μV (x) = G(x), μ > 0, x > 0,

lim
x→∞

x
3
2V (x) = V (0) = 0.

(5.2)

As mentioned earlier, it is necessary to make the following transformation:

V (x) = e−
β
2 xU(x), G(x) = (x + 1)−2e−

β
2 xf(x).

Then (5.2) is rewritten as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− ∂2
xU(x) − 1

x + 1
(2 − β(x + 1))∂xU(x) +

1

x + 1

((
μ− 1

4
β2

)
(x + 1) + β

)
U(x)

=
1

(x + 1)2
f(x), μ > 0, x > 0,

lim
x→∞

x
3
2 e−

β
2 xU(x) = U(0) = 0.

(5.3)

Now, let σα,β(x) = (x+1)αe−βx, and denote 0H
1
σ2,β

(Λ) := {v ∈ H1
σ2,β

(Λ) : u(0) =

0}. A weak form of (5.3) is to find U ∈ 0H
1
σ2,β

(Λ) ∩ L2
σ1,β

(Λ) such that

ãμ,β(U, v) = (f, v)ω0,β
∀v ∈ 0H

1
σ2,β

(Λ) ∩ L2
σ1,β

(Λ),(5.4)

where the bilinear form

ãμ,β(u, v) = (∂xu, ∂xv)σ2,β
+
(
μ− 1

4
β2

)
(u, v)σ2,β

+ β(u, v)σ1,β
.

One can verify readily that

|ãμ,β(u, v)| ≤ c
(
(1 + β)‖u‖1,σ2,β

+ β
1
2 ‖u‖σ1,β

)(
(1 + β)‖v‖1,σ2,β

+ β
1
2 ‖v‖σ1,β

)
,(5.5)

and for μ > 1
4β

2,

|ãμ,β(v, v)| ≥ c
(
‖v‖2

1,σ2,β
+ β‖v‖2

σ1,β

)
.(5.6)

Hence, if f ∈ (H1
σ2,β

(Λ) ∩ L2
σ1,β

(Λ))′, then (5.4) has a unique solution.

The generalized Laguerre pseudospectral scheme for (5.4) is to seek uN ∈ 0PN :=
{u ∈ PN : u(0) = 0} such that

ãμ,β,N (uN , φ) = (f, φ)ω0,β ,R,N ∀φ ∈ 0PN ,(5.7)
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where

ãμ,β,N (u, v) = (∂xu, ∂xv)ω2,β ,R,N + 2(∂xu, ∂xv)ω1,β ,R,N + (∂xu, ∂xv)ω0,β ,R,N

+
(
μ− 1

4
β2

)
(u, v)ω2,β ,R,N +

(
2μ− 1

2
β2 + β

)
(u, v)ω1,β ,R,N

+
(
μ− 1

4
β2 + β

)
(u, v)ω0,β ,R,N .

According to (2.22), (5.7) is equivalent to

ãμ,β(uN , φ) = (IR,N,0,βf, φ)ω0,β
∀φ ∈ 0PN .(5.8)

5.1. A specific orthogonal projection. We next consider a specific orthogo-
nal projection that will be used in numerical analysis of generalized Laguerre pseu-
dospectral method for exterior problems. Let 0H

1
ωα,β

(Λ) := {v ∈ H1
ωα,β

(Λ) : v(0) =

0}. Note that H1
ω2,β

(Λ)∩H1
ω0,β

(Λ) ⊆ H1
σ2,β

(Λ)∩L2
σ1,β

(Λ). The orthogonal projection

0Π
1
N,β : 0H

1
ω2,β

(Λ) ∩H1
ω0,β

(Λ) → 0PN is defined by

(
∂x( 0Π

1
N,βv − v), ∂xφ

)
σ2,β

+
(
0
Π1

N,βv − v, φ
)
σ2,β

= 0 ∀φ ∈ 0PN .(5.9)

In order to analyze approximation error of the previous projection, we need an-
other auxiliary orthogonal projection. To do this, we introduce the space H1

ω2,β ,ω0,β
(Λ),

equipped with the norm ‖v‖1,ω2,β ,ω0,β
= (‖∂xv‖2

ω2,β
+ ‖v‖2

ω0,β
)

1
2 .

The orthogonal projection P̃ 1
N,β : H1

ω2,β ,ω0,β
(Λ) → PN is defined by

(
∂x(P̃ 1

N,βv − v
)
, ∂xφ)ω2,β

+
(
P̃ 1
N,βv − v, φ

)
ω0,β

= 0 ∀φ ∈ PN .(5.10)

Lemma 5.1. If v ∈ H1
ω2,β ,ω0,β

(Λ) ∩Ar
1,β(Λ) and an integer r ≥ 1, then

‖P̃ 1
N,βv − v‖1,ω2,β ,ω0,β

≤ c(βN)
1−r
2 |v|Ar

1,β
.

Proof. By projection theorem,

‖P̃ 1
N,βv − v‖1,ω2,β ,ω0,β

≤ ‖φ− v‖1,ω2,β ,ω0,β
∀φ ∈ PN .

We take φ(x) = PN,1,βv(x) − PN,1,βv(
1
β ) + v( 1

β ). Then by (4.11) and (3.1),

‖φ− v‖1,ω2,β ,ω0,β
≤ c‖∂x(φ− v)‖ω2,β

= c|PN,1,βv − v|A1
1,β

≤ c(βN)
1−r
2 |v|Ar

1,β
.

This completes the proof.
We are ready to estimate ‖0Π

1
N,βv − v‖1,σ2,β

. We shall use the fact that for v ∈
H1

ωα,β
(Λ), v(0) = 0 and α < 1, we have (see Lemma 2.2 of [12])

‖v‖ωα,β
≤ cβ−1||∂xv||ωα,β

.(5.11)

Lemma 5.2. For any v ∈ Ar
0,β(Λ) with v(0) = 0 and an integer r ≥ 2,

‖0Π
1
N,βv − v‖1,σ2,β

≤ c(1 + β−2)(βN)1−
r
2 |v|Ar

0,β
.

Proof. By projection theorem,

‖0Π
1
N,βv − v‖1,σ2,β

≤ ‖φ− v‖1,σ2,β
≤ c(‖φ− v‖1,ω2,β

+ ‖φ− v‖1,ω0,β
) ∀φ ∈ 0PN .
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Taking

φ(x) =

∫ x

0

P̃ 1
N−1,β∂ξv(ξ) dξ ∈ 0PN ,

we have from Lemma 5.1 that

‖∂x(φ− v)‖ω0,β
= ‖P̃ 1

N−1,β∂xv − ∂xv‖ω0,β
≤ c(βN)1−

r
2 |v|Ar

0,β
,(5.12)

which, along with (5.11) with α = 0, gives

‖φ− v‖ω0,β
≤ cβ−1‖∂x(φ− v)‖ω0,β

≤ cβ−1(βN)1−
r
2 |v|Ar

0,β
.(5.13)

Moreover, thanks to (4.12) with α = 2, we have from Lemma 5.1 that

‖∂x(φ− v)‖ω2,β
= ‖P̃ 1

N−1,β∂xv − ∂xv‖ω2,β

≤ cβ−1(‖∂x(P̃ 1
N−1,β∂xv − ∂xv)‖ω2,β

+ ‖P̃ 1
N−1,β∂xv − ∂xv‖ω0,β

)

≤ cβ−1(βN)1−
r
2 |v|Ar

0,β
.

(5.14)

Furthermore, using (4.12), (5.13), and (4.13) leads to

‖φ− v‖ω2,β
≤ cβ−1(‖∂x(φ− v)‖ω2,β

+ ‖φ− v‖ω0,β
) ≤ cβ−2(βN)1−

r
2 |v|Ar

0,β
.(5.15)

Finally, a combination of (5.12)–(5.15) leads to the desired result.

5.2. Convergence analysis. Let UN = 0Π
1
N,βU. Then by (5.4) and (5.9),

ãμ,β(UN , φ) = −G̃(φ) + (IR,N,0,βf, φ)ω0,β
∀φ ∈ 0PN ,(5.16)

where

G̃(φ) =
(
μ− 1

4
β2 − 1

)
(U − UN , φ)σ2,β

+ β(U − UN , φ)σ1,β
+ (IR,N,0,βf − f, φ)ω0,β

.

Set ŨN = uN − UN . Then subtracting (5.16) from (5.8) yields

ãμ,β(ŨN , φ) = G̃(φ) ∀φ ∈ 0PN .(5.17)

Taking φ = ŨN in the previous formula and using (5.6), we obtain

‖ŨN‖2
1,σ2,β

+ β‖ŨN‖2
σ1,β

≤ c|G̃(ŨN )|.(5.18)

Thus, it suffices to estimate |G̃(ŨN )|. For simplicity, we will use the following notation:

B̃
(1)
N,β,r(v) = c(β2 + 1)2(1 + β−2)2(βN)2−r|v|2Ar

0,β
,

B̃
(2)
N,β,r(v) = c(1 + β−2)2β(βN)2−r|v|2Ar

0,β
,

B̃
(3)
N,β,s(v) = cβ−1(βN)1−s

(
β−2‖∂s

xv‖2
ωs−1,β

+ (1 + β−1) lnN |v|2As
0,β

)
.

By virtue of Theorem 3.7 and Lemma 5.2, for integers r ≥ 2 and s ≥ 1,

|G̃(ŨN )| ≤ B̃
(1)
N,β,r(U) + B̃

(2)
N,β,r(U) + B̃

(3)
N,β,s(f) +

1

2
‖ŨN‖2

σ2,β
+

β

2
‖ŨN‖2

σ1,β
.
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Plugging the previous formula into (5.18) leads to an estimate for ‖ŨN‖2
1,σ2,β

+

β‖ŨN‖2
σ1,β

. Finally, we use Lemma 5.2 again to reach the following conclusion.

Theorem 5.3. Let U and uN be the solutions of (5.4) and (5.7), respectively,
and μ > 1

4β
2. If U ∈ Ar

0,β(Λ) with U(0) = 0, and f ∈ As
0,β(Λ) and ∂s

xf ∈ L2
ωs−1,β

(Λ)
with integers r ≥ 2 and s ≥ 1, then

‖U − uN‖2
1,σ2,β

+ β‖U − uN‖2
σ1,β

≤ B̃
(1)
N,β,r(U) + B̃

(2)
N,β,r(U) + B̃

(3)
N,β,s(f).

6. Numerical results. We present numerical results to illustrate the efficiency
of the proposed schemes.

6.1. The scheme (4.8). We first take a look at the matrix form of the system

(4.8). We take the base functions ψj(ρ) = L(1,β)
j (ρ) and let PN = span{ψ0, ψ1, . . . , ψN}.

By (2.5) and (2.3), we have

ψj(ρ) =
1

β

(
∂ρL(1,β)

j (ρ) − ∂ρL(1,β)
j+1 (ρ)

)
= −L(2,β)

j−1 (ρ) + L(2,β)
j (ρ).

This fact together with (2.3) and (2.6) leads to

ajk := (∂ρψk, ∂ρψj)ω2,β
= β2γ

(2,β)
k−1 δj,k, mjk := (ψk, ψj)ω1,β

= γ
(1,β)
k δj,k,

sjk := (ψk, ψj)ω2,β
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−γ
(2,β)
k−1 , j = k − 1,

γ
(2,β)
k−1 + γ

(2,β)
k , j = k,

−γ
(2,β)
k , j = k + 1,

0 otherwise.

Next, we set

uN (ρ) =

N∑
j=0

ûjψj(ρ), u= (û0, û1, · · · , ûN )T , fj = (f, ψj)ω2,β ,G,N ,

f = (f0, f1, . . . , fN )T , A= (ajk)0≤j,k≤N , M = (mjk)0≤j,k≤N ,

S=(sjk)0≤j,k≤N .

(6.1)

Then the system (4.9) becomes

(
A +

(
μ− β2

4

)
S + βM

)
u = f .(6.2)

It is seen that this system is symmetric, tridiagonal, and easy to be inverted.
We now present some numerical results using the previous scheme to solve (4.1)

with spherically symmetric solution W (ρ). Basically, we find uN (ρ) from the sys-

tem (6.2), and then evaluate the numerical solution by wN (ρ) = e−
β
2 ρuN (ρ). In the

following computations, let μ = 5 in (4.8).

Example 1. We take the test function W (ρ) = e−γρ sinhρ, with γ > 0, which
decays exponentially at infinity. The corresponding solution of formula (4.4) is U(ρ) =
e(β/2−γ)ρ sinhρ. We measure the errors in two ways:

(i) maximum pointwise error:

max
0≤j≤N

∣∣∣(W (ξ1,β
G,N,j) − wN (ξ1,β

G,N,j)
)
ξ1,β
G,N,j

∣∣∣ ∼ sup
ρ∈Λ

|ρ(W (ρ) − wN (ρ))|;
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Fig. 6.1. Convergence rate: Example 1 with γ = 1 and h = 3 on the left. Generalized Laguerre
approximation: Example 1 with γ = 0.2 and h = 4 on the right.

(ii) discrete L2-error:

‖W − wN‖N := ‖U − uN‖ω1,β ,G,N ∼ ‖W − wN‖ω̂1
.

In the left part of Figure 6.1, we plot the log10 of maximum error and the log10

of L2-error against various N for γ = 1, h = 3, and different β. As predicted in
Theorem 4.2 and Remark 4.1, the approximate solution will converge faster than
any algebraic power, which is confirmed by the error behaviors (like e−cN , c > 0)
as shown in the figure. We also see that for fixed N, the scheme with β = 2 or
β = 1.5 produces better numerical results than that with β = 1 (the usual generalized
Laguerre approximation).

To see more clearly the role of β, we compare in the right part of Figure 6.1
the exact solution with γ = 0.2 and h = 4 with the numerical solution obtained by
our pseudospectral scheme with N = 96 and β = 1, 3. Notice that the approximation
solution with β = 1 exhibits an observable error, while the numerical solution with β =
3 is virtually indistinguishable with the exact solution. This example demonstrates
that a suitable choice of the parameter β can raise the accuracy, and also enhance
greatly the resolution capabilities of the generalized Laguerre approximations.

Example 2. We take W (ρ) = ρ
(ρ+1)k

with k > 1, which decays algebraically at
infinity. It is clear that ρ

3
2W (ρ) → 0, as ρ → ∞, if k > 5

2 .

In Figure 6.2, we plot the log10 of L2-errors vs.
√
N for different k and β. We see

that the convergence rates are of order O(e−c
√
N ) for all cases, which are somewhat

better than those predicted in Theorem 4.2 and Remark 4.1 (no more than order
k). We also observe that for larger N, better numerical result can be obtained by
choosing suitable β < 1 if the solution decays slowly (cf. the left part of Figure 6.2,
where W (ρ) = O(ρ−1.51)), while conversely for the solution decaying very fast (cf. the
right part of Figure 6.2, where W (ρ) = O(ρ−4)).

Example 3. We take W (ρ) = sinhρ
(1+ρ)k

with k > 0, which decays algebraically with

oscillation.
In Figure 6.3, we plot the log10 of L2-errors vs. log10 N. In the left part, we take

h = 3, k = 4, and β = 1, 2, 3, 4, while in the right part, we fix β = 2 and h = 3,
and test different k = 3, 4, 5. It is clear that in all cases, the errors decay at certain
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Fig. 6.2. Convergence rate of generalized Laguerre pseudospectral method: Example 2 with
k = 2.51 on the left; Example 2 with k = 5 on the right.
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Fig. 6.3. Convergence rate of generalized Laguerre pseudospectral method: Example 3 with
h = 3 and k = 4 on the left; Example 3 with h = 3 and β = 2 on the right.

algebraic rate. Once again, we see from the left part of this figure that a suitable
parameter β can produce better numerical results. On the other hand, the right part
shows that the faster the exact solution decays, the smaller the numerical errors would
be. The previous facts coincide again well with our theoretical results.

6.2. The scheme (5.8). We next describe an efficient implementation for scheme

(5.8). Set ψj(x) := L(0,β)
j (x) − L(0,β)

j+1 (x), j ≥ 0, β > 0. Clearly, ψj(0) = 0. Hence,

0PN = span{ψ0, ψ1, . . . , ψN−1}. We now study the structures of the corresponding
matrices. Thanks to (2.5), we have ∂xψj(x) = βL(0,β)

j (x), which, along with (2.3),
implies that (1 + x)2∂xψj(x) is a linear combination of L(0,β)

l , j − 2 ≤ l ≤ j + 2. This
fact with (2.3), (2.5), and (2.6) leads to

ajk := (∂xψk, ∂xψj)σ2,β
= 0 if |j − k| > 2,

bjk := (ψk, ψj)σ2,β
= 0 if |j − k| > 3,

cjk := (ψk, ψj)σ1,β
= 0 if |j − k| > 2.

(6.3)
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Fig. 6.4. Convergence rate: Example 4 with γ = 1 and h = 3 on the left; Example 5 with h = 1
and k = 5 on the right.

By setting

uN =

N−1∑
j=0

ûjψj(ρ), u= (û0, û1, . . . , ûN−1)
T,

fj = (f, ψj)ω0,β ,R,N , f = (f0, f1, . . . , fN−1)
T,

A = (ajk)0≤j,k≤N−1, B = (bjk)0≤j,k≤N−1, C = (cjk)0≤j,k≤N−1,

(6.4)

the system (5.8) becomes

(
A +

(
μ− β2

4

)
B + βC

)
u = f .(6.5)

The coefficient matrix is symmetric and has only several nonvanishing diagonals.
Moreover, the nonzero entries can be determined explicitly by using properties of
generalized Laguerre polynomials as shown in section 2.

We present below two numerical examples to show the efficiency of generalized
Laguerre pseudospectral methods for exterior problems. Let μ = 5 in (5.7).

Example 4. We take the test function W (ρ) = e−γ(ρ−1) sinh(ρ− 1) with γ > 0
and ρ ≥ 1, which decays exponentially at infinity. The corresponding solution of
(5.3) is U(ρ) = e(β/2−γ)ρ sinhρ. We denote the discrete L2-error by ‖W − wN‖N :=
‖U − uN‖ω0,β ,R,N .

In the left part of Figure 6.4, we plot the log10 of L2-error against various N for
γ = 1, h = 3, and different β. We observe a convergence rate of order O(e−cN ), as
predicted in Theorem 5.3. Moreover, for fixed N, the scheme with β = 3 or β = 2
produces better numerical results than that with β = 1.

Example 5. We take W (ρ) = sin(h(ρ−1))
ρk with k > 0 and ρ ≥ 1, which decays

algebraically with oscillation. It is clear that ρ
3
2W (ρ) → 0, as ρ → ∞, if k > 3

2 .

In the right part of Figure 6.4, we plot the log10 of L2-error vs.
√
N for h = 1, k =

5, and different β. It is seen that the convergence rates are of order O(e−c
√
N ), which

are somewhat better than what were predicted in Theorem 5.3 (no more than order
k). Once again, the error behaviors confirm that a suitable choice of β gives better nu-
merical results than that obtained from the usual generalized Laguerre approximation
(β = 1).
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7. Concluding remarks. In this paper, we established a set of results on gen-
eralized Laguerre–Gauss-type interpolation in nonuniformly weighted Sobolev spaces
with the weight function ωα,β(x) = xαe−βx, α > −1, β > 0, which provided us useful
tools in developing and analyzing generalized pseudospectral methods for a variety of
problems in unbounded domains.

Several advantages justified our choice of working on the orthogonal system

{L(α,β)
l (x)} with general parameters α > −1, β > 0.

• The parameter α played an essential part in forming the pseudospectral
schemes, which was chosen to agree with the degree of singular coefficients
of leading terms in underlying equations. For instance, we take α = 2 for
three-dimensional problems as in (4.1) and (5.1), while we should take α = 1
for two-dimensional problems.

• The adjustable parameter β offers great flexibility to match various asymp-
totic behaviors of the solutions at infinity. In fact, a suitable choice of β
depends on certain coefficients which determine the asymptotic behaviors of
solutions such as the parameter μ in (4.1) and (5.1).

• The parameter β somehow played a role similar to a scaling factor, which
could improve the numerical resolution. But they are not exactly the same.
Indeed, in the scaling method with variable transformation, one approximates

the function v(βx) by the basis {L(α)
l (βx)}. However, we approximate the

function v(x) directly.
• As shown in sections 4 and 5, we could always choose a suitable value of β

to guarantee the well-posedness of our Galerkin formulation, provided that
some conditions are fulfilled.

• From theoretical point of view, our analysis included usual Laguerre (α = 0
and β = 1) and standard generalized Laguerre (α > −1 and β = 1) approx-
imations as special cases. Moreover, our estimates improved the previously
published results for the special case α = 0 and β = 1 (cf. [19]). Roughly
speaking, the factor Nγ , γ > 0 appearing in the upper bound of the interpo-
lation error of [19] is now replaced by lnN .

In this paper, our pseudospectral method was designed for transformed equa-
tions (cf. (4.4) and (5.3)). We may also take the generalized Laguerre functions

L̂(α,β)
l (x) = e−

β
2 xL(α,β)

l (x) as the base functions that are mutually orthogonal with
the weight ω̂α(x) = xα. In this case, the weights of Gauss quadrature, ω̂

(α,β)
Z,N,j =

eβξ
(α,β)

Z,N,jω
(α,β)
Z,N,j , Z = G,R, 0 ≤ j ≤ N. Then, the pseudospectral scheme for (4.4) is

to find wN ∈ P̂N := {φ : φ = e−
β
2 xψ ∀ψ ∈ PN} such that

(∂xwN , ∂xφ)ω̂2,G,N + μ(wN , φ)ω̂2,G,N = (f, φ)ω̂2,G,N ∀φ ∈ P̂N ,

where (·, ·)ω̂2,G,N is the corresponding discrete inner product.
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Abstract. The objective of this paper is the derivation and the analysis of a simple explicit
numerical scheme for general one-dimensional filtration equations. It is based on an alternative
formulation of the problem using the pseudoinverse of the density’s repartition function. In particular,
the numerical approximations can be proven to satisfy a contraction property for a Wasserstein
metric. Various numerical results illustrate the ability of this numerical process to capture the
time-asymptotic decay towards self-similar solutions even for fast-diffusion equations.
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1. Introduction and examples. This paper focuses onto the numerical anal-
ysis of the following Cauchy problem:

∂tu = ∂xxΦ(u), u(t = 0, x) = u0(x) ≥ 0, x ∈ R, t > 0,(1.1)

where u0 ∈ L1(R) and Φ ∈ C2(R+). It is also customary to assume Φ : R
+ → R

+

to be increasing. In the special case Φ(u) = um, m > 1, one speaks about the
porous media equation which describes the flow of a gas through a porous interface
according to some constitutive relation linking its velocity to the pressure like Darcy’s
law. Another interesting situation corresponds to 0 < m < 1 and is referred to as the
fast-diffusion equation. The general case of the filtration equations can be encountered
within the theory of heat transfer assuming the thermal conductivity to be a function
of the temperature. A comprehensive introduction to these topics is provided in [25].

The numerical analysis of (1.1) is delicate for at least two reasons: the appearance
of singularities for solutions with compact support when Φ′(0) = 0, and the so-called
retention property, which means that its size keeps growing as time increases; we
shall briefly recall in section 2 theoretical results which are useful on a computational
level. Implicit discretizations are thus of common use after, e.g., [6, 14, 20, 21, 17,
16, 23] (other references of interest are [1, 2, 11, 12, 13, 15, 18, 19, 22]); it leads
to the resolution of a strictly elliptic problem for w = Φ(u) at every time-step Δt.
Unfortunately, this very stable approach is of little help when investigating the long-
time behavior of (1.1). Indeed, because of its spreading dynamics, the equation will
ask for repetitive regridding. We refer to [3, 8, 7, 9, 10, 24, 25, 26, 27] for theoretical
background on the asymptotics of (1.1), mainly in the case Φ(u) = um, m > 1. We
stress that one of the goals of the present work is to provide a tool which allows to
achieve numerical studies for the cases still unknown.
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‡Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy (giuseppe.

toscani@unipv.it).

2590



NUMERICAL IDENTIFICATION OF ASYMPTOTIC DECAY 2591

This paper is, therefore, intended to introduce a new numerical approach able
to solve both issues in a one-dimensional (1D) context. Loosely speaking, it con-
sists in considering the repartition function � of the density u, which is a monotone
function, discretizing its values and evolving in time its pseudoinverse X(t, �) which
satisfies (3.4) for t > 0. This Lagrangian strategy is explained in detail in section 3.1,
whereas stability and convergence properties are stated in section 3.2. Interestingly,
a discrete contraction principle in a Wasserstein metric is shown in section 3.3.

At last, section 4 is concerned with numerical results: we check the decay towards
a Gaussian distribution for the heat equation together with two cases of fast-diffusion
equations. Then we come to present a decay towards the so-called Barenblatt–Pattle

similarity profile for Φ(u) = u2

2 and a doubly degenerate Buckley–Leverett equation.
Finally, some concluding remarks are drawn together with possible extensions to,
e.g., viscous pressureless gas equations [4] and radial solutions of two-dimensional
(2D) filtration equations.

2. L1 theory for general porous media equations. We first notice that
there is no restriction in assuming Φ(0) = 0 in (1.1). A weak solution is generally
defined as a distribution u ∈ L2

loc(R
+;L2(R)) such that Φ(u) ∈ L2

loc(R
+;H1(R)), thus

satisfying (1.1) in a weak sense for test functions belonging to H1(R). Existence and
uniqueness results in this framework are recalled for instance in [20, 21]; we shall not
pursue in this direction here.

2.1. Existence and uniqueness with nonnegative data. We follow [25] and
are focused hereafter with the Cauchy problem for slow-diffusion equations:

∂tu = ∂xx(um), u(t = 0, .) = u0 ∈ L1(R), x ∈ R, t > 0.(2.1)

We assume m > 1 and u0 ≥ 0 in order to study nonnegative L1 solutions, (e.g.,
densities) with finite mass. In this context, asymptotics for (2.1) are now well known.

Definition 2.1. A nonnegative function u ∈ C0(R+;L1(R)) is a strong solution
of (2.1) if

• um, ∂tu, ∂xx(um) ∈ L1
loc(R

+
∗ ;L1(R)),

• ∂tu = ∂xx(um) holds almost everywhere in R
+
∗ × R,

• u(t = 0, .) = u0.

In contrast to strongly parabolic equations for which Φ′(u) �= 0, strong solutions
are not by no means classical; it is known that they are endowed with Hölder Cα

continuity in space only. In one dimension, the exponent has been found to be α =
min(1, 1/(m − 1)) [26]. Relying on the regularity properties of strong solutions to
(2.1), we deduce easily two important properties of strong solutions:

•
∫

R
u(t, x) dx =

∫
R
u0(x) dx for all t ∈ R

+
∗ (conservation of mass);

•
∫

R
max(0, u1(t, x) − u2(t, x)) dx ≤

∫
R

max(0, u1(s, x) − u2(s, x)) dx for all t ≥
s ≥ 0 (L1-contraction property).

This last property of course implies uniqueness of strong solutions in the sense of
Definition 2.1. A quite general result reads as follows.

Theorem 2.2. For all 0 ≤ u0 ∈ L1(R), there exists a unique strong solution of
(2.1), u ∈ C0(R+;L1(R)) ∩ L∞(R+

∗ × R), which satisfies

• for all 1 ≤ p ≤ +∞, u0 ∈ Lp(R) ⇒ ‖u(t, .)‖Lp(R) ≤ ‖u0‖Lp(R), t > 0;

• let v = mum−1

m−1 ; it holds that ∂xxv(t, ·) ≥ 1
(1+m)t (semisuperharmonicity).

Refined regularity properties are now given.
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Proposition 2.3. Let u0 ∈ L1 ∩ C0(R) be strictly positive and let u be its
corresponding strong solution. Then u ∈ C∞(R+

∗ ×R)∩C0(R+×R) is strictly positive
and realizes a classical solution of (2.1).

For instance, u0(x) = 1
π(1+x2) generates a unique classical solution of (2.1); this

class of initial data will be extensively studied numerically. More generally, one can
consider u0(x) =

Cp

(1+x2)p , p ≥ 1.

2.2. Asymptotic decay towards source solutions. We observe that equation
(1.1) can be rewritten as

∂tu = ∂x(D(u)∂xu), D(u) = Φ′(u).

In the special case of (2.1), D(u) = mum−1 is often called the diffusivity. It is a well-
known fact that degeneracy levels for which Φ′ vanishes, (e.g., at u = 0 for Φ(u) = um)
induce a phenomenon called finite speed of propagation.

Theorem 2.4. Let 0 ≤ u0 ∈ L1 ∩ L∞(R) and let u be the corresponding strong
solution of (2.1). Assume that u0 is supported in a bounded set of R. Then for any
positive time t > 0, the support of u(t, .) is also bounded.

The support of u(t, ·) is generally strictly bigger than the one of u0; this is the
retention property. Making use of modern analytical tools, one can be more precise [7].

Theorem 2.5. Let (u0, v0) ∈ L1 ∩ L∞(R) be nonnegative with unit masses and
u, v their corresponding strong solutions in the sense of Definition 2.1. We define

Ωu(t) = {x ∈ R such that u(t, x) > 0}

and the analogue for v. Then it holds true that for all t > 0,
• | inf(Ωu(t)) − inf(Ωv(t))| ≤ W 0

∞,
• | sup(Ωu(t)) − sup(Ωv(t))| ≤ W 0

∞,
where the constant W 0

∞ ∈ R
+ depends only on m,u0, v0.

Its proof is based on a careful use of a Monge–Kantorowich related metric that we
shall discuss in more detail later on; see section 3.3 and [28]. Indeed, as a particular
case of (2.1), one can make the following mild hypotheses on the data:

u0 ∈ L1 ∩ L∞(R),

∫
R

x.u0(x) dx = 0, Ωu(0) ⊂ compact of R.

Then, as t → +∞, the corresponding strong solution to (2.1) decays towards a simi-
larity (or source-type) solution,

U(t, x, C) =
1

tμ
max

{
0,
(
C − k

x2

t2μ

) 1
m−1

}
, μ =

1

1 + m
, k = μ

m− 1

2m
,(2.2)

the normalization constant C > 0 ensuring that U(t, ., C) has unit mass. One can
also define the so-called similarity variable α(t) solution of

α′(t) =
1

α(t)m
, α(0) = 0(2.3)

for which (2.2) reads

U(t, x, C) =
1

α(t)
max

{
0,

(
C̃ − m− 1

2m

x2

α(t)2

) 1
m−1

}
.(2.4)
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Of course, plugging U(t, x, ‖u0‖L1), t ≥ τ > 0, in place of v inside Theorem 2.5 yields
an easy bound on the support of any strong solution of (2.1).

It has recently been shown that even for the general case (1.1) for which results are
more sparse than (2.1), the third moment of u(t, x) can play the role of an auxiliary
variable in order to investigate the long-time behavior.

Theorem 2.6 (see Toscani [24]). Let 0 ≤ u0 ∈ L1∩L∞(R) be of compact support
in R, u the corresponding strong solution of (2.1), and E(t) its third moment:

E(t) =

∫
R

x2

2
u(t, x) dx.

Then the similarity variable α(t) satisfies, as t → +∞,

E(t)

α(t)2
→ EB =

∫
R

x2

2
U(t = 1, x, C) dx,

where EB is the third moment of the source solution (2.4) at time t = 1.

Hence a feasible route to study numerically the long-time asymptotics of (1.1) is
to consider its scaled solutions,

f(t, x) =
√
E(t) u

(
t, x

√
E(t)

)
,(2.5)

which can hopefully be expected to stabilize as t → +∞ onto an asymptotic profile
f∞(x) independent of t. Of course, in case one considers (2.1) with convenient initial
data, f(t, .) will converge onto the corresponding Barenblatt–Pattle similarity solution
according to the decay results of, e.g., [7, 26]; t �→ E(t) is also expected to display a
powerlike behavior.

3. An explicit numerical approximation. We consider now a slightly more
general problem than (2.1); namely, (1.1) completed by 0 ≤ u0 ∈ L1 ∩ L∞(R), com-
pactly supported with unit mass. We shall also assume for convenience that the
second moment vanishes:

∫
R

xu0(x) dx = 0.

This property propagates for t > 0, as is easily seen from the formal computation:

∂t

∫
R

xu(t, x) dx = −
∫

R

∂xΦ(u)(t, x) dx = 0.

3.1. Derivation of the numerical process. As we can already notice, the
decay towards similarity solutions can be slow, and because of the retention property,
a direct simulation of (1.1) (or even (2.1)) will surely require quite a big computational
domain with a possibly fine mesh. This clearly constitutes a numerical difficulty we
propose to overcome in an original way, as follows.

• Let us introduce the distribution function associated to the probability den-
sity u0,

�0(x) =

∫ x

−∞
u0(y) dy ∈ [0, 1], �0 ∈ W 1,1

loc (R),
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which is obviously nondecreasing in the x variable. We can thus define its
(nondecreasing) pseudoinverse:

x0 : [0, 1] → R,
�̄ �→ x0(�̄) := inf{y ∈ R such that �0(y) = �̄}.(3.1)

If (1.1) holds in the sense of distributions, then also

∂t� = ∂x(Φ(∂x�)), �(t = 0, .) = �0,(3.2)

from which one gets u(t, x) = ∂x�(t, x).
• For any �̄ ∈ [0, 1], we can define the reciprocal mapping,

X : R
+ → R,
t �→ X(t, �̄),

by means of the implicit function theorem in case ∂x� �= 0 such that

X(t = 0, �̄) = x0(�̄), �(t,X(t, �̄)) = �̄.(3.3)

From the second condition in (3.3), one deduces easily

d

dt
�(t,X(t, �̄)) = (∂t� + ∂tX.∂x�)(t,X(t, �̄)) = 0.

This yields the time evolution of X(., �) (we drop the overbar for ease of
reading),

∂tX = − ∂t�

∂x�
= −∂x(Φ(∂x�))

∂x�
⇒ ∂tX + ∂�

(
Φ

(
1

∂�X

))
= 0,(3.4)

since ∂�X = 1/∂x� holds for smooth enough functions.
Therefore, our numerical approach to (1.1) with convenient (unit mass, centered)
initial data stems from computing the pseudoinverse of �0, X(t = 0, ·), evolving it in
time by means of an explicit marching scheme for (3.4) in order to deduce the values
of �(t,X(t, .)) ∈ [0, 1] thanks to (3.3). Working on this pseudoinverse X(t, .) allows
us to pass through the expanding support issue for any arbitrary large time t > 0
since the computational domain is now fixed, � ∈ [0, 1]. The retention phenomenon
manifests itself through the constant increase of | sup�(X(t, �))| and | inf�(X(t, �))| as
t grows.

We now discretize the � and t axes and define

Xn
k  X(tn, �k), tn = nΔt for k ∈ K ⊂ N, n ∈ N.(3.5)

A numerical scheme for (3.4) reads

Xn+1
k = Xn

k − Δt

|Ck|

{
Φ

(
�k+1 − �k
Xn

k+1 −Xn
k

)
− Φ

(
�k − �k−1

Xn
k −Xn

k−1

)}
,(3.6)

where |Ck| = �k+ 1
2
−�k− 1

2
stands for the width of the control cell centered on �k with

�k+ 1
2

= �0(xk+ 1
2
). As �0 is at least absolutely and Lipschitz continuous, a convenient

choice is given by linear interpolation, �k+ 1
2

= 1
2 (�k + �k+1), which yields

|Ck| =
1

2
(�k+1 − �k−1).



NUMERICAL IDENTIFICATION OF ASYMPTOTIC DECAY 2595

Equation (3.6) should be completed with boundary conditions at the edges of the com-
putational domain � ∈ [0, 1]. For convenience, we selected Neumann-type conditions:
Φ(u) = Φ(∂x�) = 0 in � = 0 and � = 1. This gives on the left side

Xn+1
0 = Xn

0 − Δt

|C0|
Φ

(
�1 − �0

Xn
1 −Xn

0

)
≤ Xn

0 ,

together with a similar expression on the right side. This furthermore yields,

∀n ∈ N,
∑
k

|Ck|Xn
k =

∑
k

|Ck|X0
k 

∫ 1

0

X(t = 0, �) d� =

∫
R

xu0(x) dx.

We stress that the �k’s stand for a cumulative mass variable and thus do not depend
on time. In order to reconstruct �̃(tn, .), an approximation of �(t, .) at a given time
t  tn, one has to interpolate the family of numerical values �k, X

n
k , t

n, since

�̃(tn, Xn
k ) = �k  �(tn, Xn

k ),

up to the numerical truncation errors on Xn
k coming from the discretization (3.6).

Then one deduces u(tn, .) by centered divided differences; such a numerical differen-
tiation process may weaken the convergence though. An obvious consequence of this
discretization is that the total variation in space of �̃(t, .) is constant in time.

Other useful quantities for the study of the asymptotic behavior of (2.1) are the
moments m2n+1(t) =

∫
R
x2nu(t, x) dx, n ∈ N, which satisfy

d

dt
m2n+1(t) = 2n(2n− 1)m2n−1(t) for Φ(u) = um.

In the general case of (1.1), one still has

d

dt
m3(t) = 2

∫
R

Φ(u)(t, x) dx, m3(t) = 2E(t) =

∫ 1

0

X(t, �)2 d�.(3.7)

This last equality provides us with a very convenient way to compute the scaled
solution f(tn, .) (2.5) relying on our marching scheme (3.6).

3.2. Stability and consistency of the scheme. To fix ideas, we introduce
now a regular computational mesh determined by Δx > 0, xk := kΔx, k ∈ N. Then
we compute the sequence u0

k = u0(xk) and thus X0
k = X(0, �k) = xk with �0(xk) = �k.

Of course, because of the retention property, the derivation of bounds for the
Xn

k ’s is doomed in advance because we expect sup� X(t, �) to diverge when t → +∞.
However, we can prove that the scheme (3.6) is monotonicity-preserving.

Lemma 3.1. Let 0 < u0 ∈ L1 ∩ L∞(R) and let Φ ∈ C1(R) be an increasing
function; we denote 0 < a := infk∈K

(
X0

k+1 −X0
k

)
. Then, under the CFL condition,

Δt

a2
sup
k

{
�k+1 − �k

|Ck|
Φ′

(
�k+1 − �k
X0

k+1 −X0
k

)}
≤ 1,(3.8)

the scheme (3.6) is monotonicity-preserving. Moreover, there hold, for n ∈ N,

∑
k

|δXn
k+ 1

2
|
∣∣∣∣∣
δ�k+ 1

2

δXn
k+ 1

2

∣∣∣∣∣
p

≤ ‖u0‖pLp(R), p ≥ 1,(3.9)
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and the uniform Lipschitz estimate

sup
k

∣∣∣∣∣
δ�k+ 1

2

δXn
k+ 1

2

∣∣∣∣∣ ≤ ‖u0‖L∞(R).(3.10)

The estimates (3.9) and (3.10) are of course the discrete analogues of the contin-
uous ones recalled in Theorem 2.2.

Proof. We first want to prove that Xn+1
k+1 −Xn+1

k is a positive combination of
its neighbors at time tn. To this end, we proceed by induction: let us assume that
Xn

k+1 −Xn
k ≥ a > 0; from (3.6) we get

Xn+1
k+1 −Xn+1

k =Xn
k+1 −Xn

k −
{

Δt

|Ck+1|

(
Φ
( �k+2 − �k+1

Xn
k+2 −Xn

k+1

)
− Φ

( �k+1 − �k
Xn

k+1 −Xn
k

))

− Δt

|Ck|

(
Φ
( �k+1 − �k
Xn

k+1 −Xn
k

)
− Φ

( �k − �k−1

Xn
k −Xn

k−1

))}
.

Thanks to the hypothesis, we can apply the mean-value theorem to the function Φ in
the preceding expression. We introduce some notation: δXn

k+ 1
2

:= Xn
k+1 −Xn

k ≥ 0,
δ�k+ 1

2
:= �k+1 − �k ≥ 0, and so on. This boils down to

δXn+1
k+ 1

2

= δXn
k+ 1

2
−
{

Δt

|Ck+1|
Φ′

k+1

(
δ�k+ 3

2
δXn

k+ 1
2

− δ�k+ 1
2
δXn

k+ 3
2

δXn
k+ 3

2

δXn
k+ 1

2

)

− Δt

|Ck|
Φ′

k

(
δ�k+ 1

2
δXn

k− 1
2

− δ�k− 1
2
δXn

k+ 1
2

δXn
k+ 1

2

δXn
k− 1

2

)}
,

where Φ′
k+1, Φ′

k stand for some midpoint values of the derivative of Φ at time tn. Now,
taking into account the signs of all the present quantities and rearranging terms, we
obtain

δXn+1
k+ 1

2

= δXn
k+ 1

2

{
1 −

ΔtΦ′
k+1

δXn
k+ 3

2

δXn
k+ 1

2

δ�k+ 3
2

|Ck+1|
− ΔtΦ′

k

δXn
k+ 1

2

δXn
k− 1

2

δ�k− 1
2

|Ck|

}

+
ΔtΦ′

k+1

δXn
k+ 3

2

δXn
k+ 1

2

δ�k+ 1
2

|Ck+1|
δXn

k+ 3
2

+
ΔtΦ′

k

δXn
k+ 1

2

δXn
k− 1

2

δ�k+ 1
2

|Ck|
δXn

k− 1
2
.

From this positive combination, we infer that

δXn+1
k+ 1

2

δ�k+ 1
2

=
δXn

k+ 1
2

δ�k+ 1
2

{
1 −

ΔtΦ′
k+1

δXn
k+ 3

2

δXn
k+ 1

2

δ�k+ 3
2

|Ck+1|
− ΔtΦ′

k

δXn
k+ 1

2

δXn
k− 1

2

δ�k− 1
2

|Ck|

}

+
ΔtΦ′

k+1

δXn
k+ 3

2

δXn
k+ 1

2

δ�k+ 3
2

|Ck+1|

(
δXn

k+ 3
2

δ�k+ 3
2

)
+

ΔtΦ′
k

δXn
k+ 1

2

δXn
k− 1

2

δ�k− 1
2

|Ck|

(
δXn

k− 1
2

δ�k− 1
2

)
,

which is the desired convex combination under the condition (3.8); this ensures Xn+1
k+1−

Xn+1
k ≥ a > 0. Since R

+
∗ � x �→ 1/x is a convex function, the estimates (3.9) and

(3.10) follow by Jensen’s inequality.
We stress that the monotonicity property of the Xn

k ’s is crucial in order to define
an approximation �̃(tn, .) as being the graph of a monovalued function, which is the
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least one may expect in this context. In particular, for p = 1, (3.9) boils down to
supk �k ≤ 1.

Of course, in practice, one could obey the restriction (3.8) according to the real
value of infk

(
Xn

k+1 −Xn
k

)
at time tn in order to allow Δt to vary in an adaptive way as

times increase. We took advantage of this in the numerical tests shown subsequently.
In order to keep Δt > 0, one needs to assume that X(t, .) is strictly increasing, which
implies that u0 > 0. This can be partially dropped in practice; see section 4.

The next lemma is an important step towards the convergence result.
Lemma 3.2. The scheme (3.6) is consistent with (3.2).
Proof. Let us define the function �Δx defined by C1 interpolation of the values

∀ (k, n) ∈ K × N, �Δx(tn, Xn
k ) = �k.(3.11)

From the very definition of �Δx (3.11) and the scheme (3.6), one derives

�Δx(tn, Xn
k ) = �Δx(tn+1, Xn+1

k )

= �Δx

(
tn+1, Xn

k − Δt

|Ck|

{
Φ
( �k+1 − �k
Xn

k+1 −Xn
k

)
− Φ

( �k − �k−1

Xn
k −Xn

k−1

)})
.

Then the mean-value theorem gives for some ζn+1
k = λXn

k + (1 − λ)Xn+1
k , λ ∈ [0, 1],

�Δx(tn+1, Xn+1
k ) = �Δx(tn, Xn

k )

+
Δt

|Ck|
∂x�

Δx(tn+1, ζn+1
k )

{
Φ
( �k+1 − �k
Xn

k+1 −Xn
k

)
− Φ

( �k − �k−1

Xn
k −Xn

k−1

)}
.

We now observe that

∂x�
Δx(tn+1, ζn+1

k )

|Ck|
=

∂x�
Δx(tn+1, ζn+1

k )

�Δx(tn+1, Xn+1
k+ 1

2

) − �Δx(tn+1, Xn+1
k− 1

2

)
=

1

Xn+1
k+ 1

2

−Xn+1
k− 1

2

up to high-order terms. Replacing the other values �k inside (3.6) by the corresponding
�Δx(tn, .) leads to the following finite volume discretization of (3.2):

�Δx(tn+1, Xn
k ) = �Δx(tn, Xn

k ) +
Δt

Xn+1
k+ 1

2

−Xn+1
k− 1

2

(3.12)

×
{

Φ
(�Δx(tn, Xn

k+1)− �Δx(tn, Xn
k )

Xn
k+1 −Xn

k

)
−Φ

(�Δx(tn, Xn
k )− �Δx(tn, Xn

k−1)

Xn
k −Xn

k−1

)}
.

We now derive a time-modulus of equicontinuity for the aforementioned scheme.
Lemma 3.3. Under the assumptions of Lemma 3.1 and the CFL restriction (3.8),

the scheme (3.12) satisfies

sup
k

|�Δx(tn+1, Xn
k ) − �Δx(tn, Xn

k )| = O(
√

Δt).(3.13)

Proof. This readily follows from the expression (3.12), the CFL condition, and
the Lipschitz estimate (3.10).

Theorem 3.4. Under the assumptions of Lemma 3.1 and the CFL restriction
(3.8), the sequence of approximate solutions �Δx is relatively compact as Δx → 0 in
Lp
loc(R

+
∗ ×R); it converges towards the unique solution in the sense of distributions of

∂t� = ∂x(Φ(∂x�)), �(t = 0, .) = �0 ∈ W 1,p(R), 1 ≤ p ≤ +∞.
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Proof. The proof is a bare consequence of the preceding lemmas together with a
time-modulus of equicontinuity, as we explain now. Let us start from (3.12); multi-
plying by a smooth function with compact support ϕ(tn+1, Xn

k ) and summing gives

1

Δt

∑
k,n

|Xn+1
k+ 1

2

−Xn+1
k− 1

2

|ϕ(tn+1, Xn
k )

(
�Δx(tn+1, Xn

k ) − �Δx(tn, Xn
k )

)

=
∑
k,n

ϕ(tn+1, Xn
k )

{
Φ

(
δ�k+ 1

2

δXn
k+ 1

2

)
− Φ

(
δ�k− 1

2

δXn
k− 1

2

)}
.

Summing by parts yields

1

Δt

∑
k,n

�Δx(tn, Xn
k )

(
− ϕ(tn+1, Xn

k )|Xn+1
k+ 1

2

−Xn+1
k− 1

2

| + ϕ(tn, Xn
k )|Xn

k+ 1
2
−Xn

k− 1
2
|
)

=
∑
k,n

Φ

(
δ�k+ 1

2

δXn
k+ 1

2

)(
ϕ(tn+1, Xn

k ) − ϕ(tn+1, Xn
k+1)

)
.

We deduce, using the preceding notation,

1

Δt

∑
k,n

�Δx(tn, Xn
k )

(
− ϕ(tn+1, Xn

k )δXn+1
k + ϕ(tn, Xn

k )δXn
k

)

−
∑
k,n

Φ

(
δ�k+ 1

2

δXn
k+ 1

2

)(
ϕ(tn+1, Xn

k ) − ϕ(tn+1, Xn
k+1)

)
= 0.

We can rewrite this in integral form as follows:

∑
k,n

∫ tn+1

tn

∫ Xn

k+ 1
2

Xn

k− 1
2

�Δx(tn, Xn
k )

(
− ϕ(tn+1, Xn

k ) − ϕ(tn, Xn
k )

Δt

)

+ Φ

(
δ�k+ 1

2

δXn
k+ 1

2

)(ϕ(tn, Xn
k+1) − ϕ(tn, Xn

k )

δXn
k

)
dx dt

= Δt
∑
k,n

�(tn, Xn
k )ϕ(tn, Xn

k )(δXn+1
k − δXn

k )

+ Φ

(
δ�k+ 1

2

δXn
k+ 1

2

)(
ϕ(tn+1, Xn

k ) − ϕ(tn+1, Xn
k+1) − ϕ(tn, Xn

k ) + ϕ(tn, Xn
k+1)

)
.

At this point, we use the fact that Φ(δ�/δX) and �(tn, Xn
k ) are bounded, and ϕ is

smooth in both variables; then we rewrite the first term of the right-hand side as

−
∑
k,n

Δt

∫ Xn

k+ 1
2

Xn

k− 1
2

(�Δxϕ)(tn, Xn
k ) − (�Δxϕ)(tn−1, Xn−1

k ) dx

and the second term as

−
∑
k,n

Δt

∫ tn+1

tn

∫ Xn
k+1

Xn
k

Φ

(
δ�k+ 1

2

δXn
k+ 1

2

)
∂txϕ(τ, ξ) dξ dτ.

Now, since 0 < u0 ∈ L1 ∩ L∞(R), �0 is a strictly increasing Lipschitz function of x;
hence the family (Xn

k )k covers the whole axis R. Then, by regularity, |Xn
k+1−Xn

k | → 0
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and |Xn+1
k −Xn

k | → 0 for n ∈ N as Δx → 0 since by Lemma 3.1, (3.6) is a convex com-
bination. This is enough to derive the weak form of the equation. Uniqueness in the
limit follows from the classical argument of Oleinik for weak solutions; see [25].

We close this section by mentioning that the assumption u0 > 0 in Lemma 3.1
is essentially needed in order to ensure that (Xn

k )k∈N permits us to cover the whole
real line as Δx → 0. We shall consider in section 4.4 initial data of compact support
which are strictly positive only inside their support; in this case, only the support of
u(nΔt, .) can be expected to be recovered.

3.3. Study of the Wasserstein metric. We mainly follow [7, 10, 28] to study
contraction properties of the scheme (3.6) within the Wasserstein metric framework.
Denoting Pp(R) as the set of all probability measures on R with moments of order
1 ≤ p < +∞ and Π(ν1, ν2) as any of the probability measures on R

2 admitting
ν1,2 ∈ Pp(R) as marginal distributions, the Wasserstein p-metric reads

Wp(ν1, ν2) :=

(
inf

π∈Π(ν1,ν2)

∫
R2

|x− y|p dπ(x, y)

) 1
p

, 1 ≤ p < +∞.(3.14)

Any probability measure admits a distribution function, which can be chosen right-
continuous, nondecreasing, and taking values inside [0, 1]. A nondecreasing pseudo-
inverse can be defined as for (3.1). Hence if X1, X2 stand for the pseudoinverses of
the repartition functions of ν1, ν2 ∈ Pp(R), the distance (3.14) can be rewritten as

Wp(ν1, ν2) :=

(∫ 1

0

|X1(�) −X2(�)|p d�
) 1

p

, 1 ≤ p < +∞.(3.15)

According to (1.1), a formal computation leads easily to a contraction property for
the metric W2(., .). Let X(t, �), Y (t, �) stand for two reciprocal mappings associated
to nonnegative and centered initial data of (1.1) u0, v0 ∈ L1 ∩ L∞(R) with unit mass

d

dt

∫ 1

0

|X(t, �) − Y (t, �)|2 d� = −2

∫ 1

0

(X − Y )∂�

{
Φ
( 1

∂�X

)
−Φ

( 1

∂�Y

)}
(t, �) d�

= 2

∫ 1

0

∂�(X − Y )

{
Φ
( 1

∂�X

)
−Φ

( 1

∂�Y

)}
(t, �) d�

≤ 0,

because Φ is increasing. Then a similar property can be shown to hold for the outcome
of the explicit scheme (3.6).

Theorem 3.5. Let u0, v0 be two nonnegative initial data in L1∩L∞(R) for (1.1)
and let X,Y be their reciprocal mappings. Under the CFL restriction (3.8), the scheme
(3.6) is contractive in any Wasserstein metric Wp; more precisely, there holds,

∀n ∈ N,
∑
k

|Ck||Xn+1
k − Y n+1

k |p ≤
∑
k

|Ck||Xn
k − Y n

k |p, p ≥ 1.(3.16)

Proof. Mimicking the preceding formal computation, we aim at establishing

δWp :=
1

Δt

∑
k

|Ck|
{
|Xn+1

k − Y n+1
k |p − |Xn

k − Y n
k |p

}
≤ 0.
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We get from (3.6) that

Xn+1
k − Y n+1

k = Xn
k − Y n

k −
{

Δt

|Ck|

(
Φ
( �k+1 − �k
Xn

k+1 −Xn
k

)
− Φ

( �k − �k−1

Xn
k −Xn

k−1

))

− Δt

|Ck|

(
Φ
( �k+1 − �k
Y n
k+1 − Y n

k

)
− Φ

( �k − �k−1

Y n
k − Y n

k−1

))}

= Xn
k − Y n

k − Δt

|Ck|

{(
Φk+ 1

2
(Xn

k+1 −Xn
k ) − Φk+ 1

2
(Y n

k+1 − Y n
k )

)

−
(
Φk− 1

2
(Xn

k −Xn
k−1) − Φk− 1

2
(Y n

k − Y n
k−1)

)}
,

where we used the notation

Φk+ 1
2
(δX) := Φ

(�k+1 − �k
δX

)
.

Thanks to the bound given by Lemma 3.1, we know that δX ≥ a > 0, so the function
Φk+ 1

2
is smooth and the mean-value theorem can be applied. The outcome is

Xn+1
k − Y n+1

k = (Xn
k − Y n

k )

(
1 +

Δt

|Ck|
(
Φ′

k+ 1
2

+ Φ′
k− 1

2

))

− Δt

|Ck|
Φ′

k+ 1
2
(Xn

k+1 − Y n
k+1) −

Δt

|Ck|
Φ′

k− 1
2
(Xn

k−1 − Y n
k−1),

with Φ′
k+ 1

2

standing for some midpoint value of the derivative of Φk+ 1
2

with respect

to δX. Hence, since

Φ′
k+ 1

2
(δX) = −�k+1 − �k

δX2
Φ′

(�k+1 − �k
δX

)
,

the CFL condition (3.8) ensures that the last expression is a convex combination. By
means of Jensen’s inequality, and thanks to the fact that the fluxes are null on the
borders of the domain, this yields δWp ≤ 0 and we are done.

A consequence of this is that in case one would want to use the discretization (3.6)
for a problem (1.1) with a partly atomic probability measure, one can initialize the
scheme with a somewhat smoother initial data relying on this contraction property.
Moreover, this also ensures that the propagation speed of the free boundaries is correct
relying on Theorem 2.5.

We stress that the estimate (3.16) doesn’t imply a decay of the support (Xn
k )k∈K

which would somewhat contradict the retention phenomenon. Indeed, the CFL con-
dition (3.8) cannot allow us to choose Y n

k ≡ 0.

4. Numerical results. All the following tests have been carried out relying on
the explicit scheme (3.6); the initial data u0 is sampled on a set of 257 points, which
gives a space-step Δx equal to the length of the domain divided by 256. The �k’s are
then deduced by numerical quadrature. The time-step is chosen in an adaptive way,
as explained after the proof of Lemma 3.1.

4.1. Validation: The heat equation. In order to test the scheme on a simple
and well-known case, we set up (1.1) with Φ(u) = u

2 . The initial data is chosen rather
far away from the expected equilibrium state:

u0(x) =
1

2

(
1

π(1 + (x− 5)2)
+

1

π(1 + (x + 5)2)

)
, x ∈ [−20, 20].(4.1)
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Fig. 1. (a) Numerical values for X(t, x) for t = 1, 5, 15, 25, 45, 65; (b) scaled initial data
f(t = 0, .) (dotted line) and stationary solution f∞ (solid line); (c) evolution of E(t) with time t;
(d) evolution of Δt with time t.

We observe that even if
∫

R
x2u0(x) dx isn’t bounded, one can set up the scheme

(3.6) for x inside a compact interval of R. The results at time t = 85 are displayed
in Figure 1. Along with the evolution of Xn

k as tn = 1, 5, 15, 25, 45, 65, we observe a
linear increase of t �→ E(t) as shown theoretically and a correct decay onto a Gaussian
distribution for the scaled solution f(t, .). We show the corresponding (numerically)
stationary profile. The time-step decreases a lot when the two bumps merge but
increases afterwards as the solution u(t, .) no longer changes its shape.

4.2. Two cases of fast-diffusion equations. We now display in Figures 2 and
3 a similar experiment with two fast-diffusion equations, respectively, Φ(u) =

√
u and

Φ(u) = u
1
4 . The initial data and the computational domain are still given by (4.1).

Several major differences show up in this case compared to the heat equation:
• the support of the solution extends much more quickly as the exponent m is

decreased, as can be seen on the graphs of the Xn
k ’s;

• the scaled solutions f(t, .) stabilize at much earlier times (t  25–30);
• the asymptotic profile is more peaked with a lower value of m;
• the mapping t �→ E(t) now looks convex.

However, as for the heat equation, the asymptotic solution has infinite support and
is thus C∞ as a consequence of Proposition 2.3; see also [26]. We stress that the tails
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Fig. 2. (a) Numerical values for X(t, x) for t = 0.5, 2, 5, 10, 15, 25, 35, m = 0.5; (b) scaled
initial data f(t = 0, .) (dotted line) and stationary solution f∞ (solid line); (c) evolution of E(t)
with time t; (d) evolution of Δt with time t.

of the initial data can be seen to be close to the ones of the asymptotic profile; see
[24] for remarks in this direction.

4.3. The porous media equation and Barenblatt’s solution. We investi-

gated the case of the classical porous medium equation, namely, Φ(u) = u2

2 with the
data (4.1). Since it isn’t compactly supported, we didn’t observe the well-known de-
cay towards the corresponding Barenblatt–Pattle solution, but instead, f∞ exhibits
a similar profile with two tails on each side, as shown in Figure 4. Also the map-
ping t �→ E(t) looks concave and the stabilization time is much greater than in the
two preceding examples (t  200). The variations of the time-step are moderate in
comparison with the fast-diffusion equations.

4.4. Buckley–Leverett’s doubly degenerate equation. Finally, we studied
a more singular problem given by (1.1) with

Φ(u) =
u2

u2 + 0.5(1 − u)2
.

The derivative Φ′ vanishes at two points u = 0 and u = 1. We set up the following
smooth initial data extended by zero outside of [−1, 1]:

u0 = cos(πx/2)2, x ∈ [−1, 1].
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Fig. 3. (a) Numerical values for X(t, x) for t = 0.5, 1, 2, 5, 10, 15, 20, m = 0.25; (b) scaled
initial data f(t = 0, .) (dotted line) and stationary solution f∞ (solid line); (c) evolution of E(t)
with time t; (d) evolution of Δt with time t.

In this case, even if this hasn’t been rigorously proven yet, we may expect to observe
a decay of this compactly supported function towards a Barenblatt–Pattle profile
asymptotically. This can be observed in Figure 5. We can also check that this
problem shares other features with the slow-diffusion equation since the mapping
t �→ E(t) seems concave. However, the support of the solution grows more quickly as
times increase.

5. Conclusion and outlook. We introduced and studied analytically in this
paper a new numerical scheme for 1D filtration equations of the type (1.1). As a main
feature, it allows us to observe the asymptotic decay of solutions towards self-similar
ones without requesting important changes of the computational domain (as it would
be the case for a conventional discretization; see, e.g., [14, 17, 16, 18, 20, 21, 23]).
Moreover, a contraction property in Wasserstein metrics can be easily established. As
a final remark, let us stress that a similar derivation can be applied to 1D nonlinear
Fokker–Planck equations,

∂tu = ∂x(∂xV (t, x)u) + ∂xx(Φ(u)),

for which the evolution of the reciprocal mapping X(t, �) would be given by (see [10])

∂tX + (∂xV )(t,X) + ∂�(Φ(1/∂�X)) = 0,
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Fig. 4. (a) Numerical values for X(t, x) for t = 1, 5, 15, 25, 45, 65, 95, 125, 155; (b) scaled initial
data f(t = 0, .) (dotted line) and stationary solution f∞ (solid line); (c) evolution of E(t) with time
t; (d) evolution of Δt with time t.

thus only asking for mild changes with respect to (3.4)–(3.6). Very fast diffusion
equations could also be handled within the present framework, i.e., ∂tu+∂xx(u−m) =
0, 0 < m < 1.

From this last computation, one can, moreover, extract information concerning
radial solutions of 2D equations; let u(t, x, y) solve ∂tu = ΔΦ(u), Δ standing for
the Laplace operator in R

2, while meeting the requirement that u(t, x, y) = ũ(t, r),

r =
√
x2 + y2. Then one deduces easily an equation on ũ, namely, ∂tũ = ∂rrΦ(ũ) +

1
r∂rΦ(ũ), for which the last term creates a difficulty with respect to the aforementioned
Fokker–Planck computation. This can be circumvented as follows: one observes that

�(t, r) =

∫ r

0

s ũ(t, s) ds, ∂t

∫ ∞

0

s ũ(t, s) ds ≡ 0.

Then it is possible to define R as the reciprocal mapping such that,

∀�̄ ∈ [0, 1], �(t, R(t, �̄)) = �̄,

and satisfying the equation

∂tR + R∂�Φ

(
1

R∂�R

)
= 0.
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Fig. 5. (a) Numerical values for X(t, x) for t = 0.05, 0.1, 0.2, 0.5, 0.88; (b) scaled initial data
f(t = 0, .) (dotted line) and stationary solution f∞ (solid line); (c) evolution of E(t) with time t;
(d) evolution of Δt with time t.

A third possible extension is suggested in [4, 5] for “viscous pressureless gas equa-
tions”; in this case, the pseudoinverse evolves according to

∂tX = v0(�) − ∂�(Φ(1/∂�X)),

where Φ can be computed explicitly from the Eulerian viscosity term. The function
Φ(u) = u ln(u) is of special interest as it corresponds to a linear perturbation in
Eulerian coordinates. In this context, v0(�) is implicitly defined from the initial
velocity in Eulerian coordinates via v0(�) = u0 ◦X(t = 0, �).
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GALERKIN METHODS BASED ON HERMITE SPLINES FOR
SINGULAR PERTURBATION PROBLEMS∗
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Abstract. We develop Galerkin methods for solving the singularly perturbed two-point bound-
ary value problem of high-order elliptic differential equations. These methods are based on Hermite
splines with knots adapted to the singular behavior of the solution of the problem. We prove an
optimal order of uniform convergence for the method with respect to the perturbation parameter.
Specifically, we present a sufficient condition on the mesh of grid points that ensures the correspond-
ing approximate solution has the optimal order of uniform convergence in the energy norm. We also
construct optimal meshes that satisfy the sufficient condition. Numerical examples are presented to
illustrate the method and the corresponding theoretical estimates.
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order of uniform convergence
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1. Introduction. The numerical solution of the singularly perturbed two-point
boundary value problem is a challenging task. The effect of the boundary layers makes
it difficult to develop numerical methods for solving the problem with an optimal
order of uniform convergence (cf. [B, LT, O, SO1, SO2, TT]). Many authors have
tried to tackle this difficulty. Bakhvalov [B] introduced special grids based on mesh
generating functions and used them to develop numerical methods for solving the
problems. Uniformly convergent classical difference schemes on the special meshes
may be found in [G, V]. The Shishkin mesh is one of the simplest piecewise equidistant
meshes. The uniform convergence of the Shishkin mesh has been discussed in [MOS,
RST, S]. For the Shishkin mesh, Sun and Stynes [SS1, SS2] provided almost optimal
uniform convergence results for the finite element methods for the singularly perturbed
high-order elliptic two-point boundary value problem based on piecewise polynomial
approximations. Their results show that the traditional finite element methods using
the Shishkin mesh are suitable for the high-order singularly perturbed problems. Tang
and Trummer [TT] proposed a pseudospectral methods for treating the boundary
layer problem for the singular perturbation problem. A recent paper of Roos and
Linss [RL] studied convergence properties of the simple upwind difference scheme and
a Galerkin method on generalized Shishkin grids. Sufficient conditions on the mesh-
characterizing function for the convergence of the method, uniformly with respect
to the perturbation parameter, are proposed. The idea was extended in [L] to the
two-dimensional case.
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We introduce in this paper an optimal Galerkin method for solving the singularly
perturbed high-order elliptic two-point boundary value problem of reaction-diffusion
type using Hermite splines with knots adapted to the boundary layer behavior of the
solution. The main results of this paper include a simple sufficient condition on the
mesh-sizes which ensures the optimal order of uniform convergence of the Galerkin
method based on the Hermite splines built on the mesh. The order is the same
as the approximation order of the Hermite spline space with uniform knots. We also
construct an optimal mesh which realizes the sufficient condition. In this construction,
we combine ideas from [QS, QST, RST, SS1, SS2, V] and those from [CHX]. That is,
we choose the mesh-size for each of the subintervals so that the error of the Hermite
spline approximation on each subinterval is bounded in an optimal order uniformly
with respect to the perturbation parameter. In this development, we use estimates of
the derivatives of the exact solution to guide the design of the mesh.

This paper is organized into five sections. In section 2, we outline a setting of
reaction-diffusion-type problems and describe the Galerkin methods for solving such
problems. We propose in section 3 a sufficient condition on the mesh-size which
ensures the optimal order of uniform convergence of the approximate solution. In
section 4, we construct a specific mesh which satisfies the condition and generates a
Hermite spline approximate solution having the optimal order of uniform convergence.
Finally, in section 5, we present numerical experiments that demonstrate the methods
and confirm the theoretical estimates.

2. The Galerkin method based on Hermite splines of arbitrary knots.
We describe in this section the Galerkin method for solving reaction-diffusion prob-
lems using the Hermite splines of arbitrary knots. For this purpose, we describe the
singularly perturbed high-order elliptic two-point boundary value problem of reaction-
diffusion type. Let m ≥ 2 be an integer, let ε ∈ (0, 1] be a perturbation parameter,
and let aj , j ∈ Z2(m−1)+1 with Zm := {0, 1, . . . ,m− 1}, and f be sufficiently smooth
functions defined on I := [0, 1]. We introduce the differential operator Lε by

Lεu := (−1)mε2u(2m) + (−1)m−1
(
a2(m−1)u

(m−1)
)(m−1)

+

m∑
k=2

(−1)m−k
(
a2(m−k)+1u

(m−k+1) + a2(m−k)u
(m−k)

)(m−k)

and consider the boundary value problem

(Lεu)(x) = f(x), x ∈ (0, 1),(2.1)

u(j)(0) = u(j)(1) = 0, j ∈ Zm.

We denote by L2(I) the space of real-valued square integrable functions on I
with the associated inner product (·, ·). Let Hk(I), k = 1, 2, . . . ,m, be the Sobolev
spaces on I with the norm ‖ · ‖k and the seminorm | · |k (see, for example, [C]). For
convenience, we let H0(I) := L2(I) and ‖ · ‖0 := ‖ · ‖L2(I). We denote by ‖ · ‖∞ the

essential maximum norm on L∞(I) and by ‖ · ‖k,∞ the maximum norm on Ck(I) for
k ∈ Zm, i.e., ‖u‖k,∞ :=

∑k
j=0 ‖u(j)‖∞. Let Hm

0 := Hm
0 (I) be the closure of the set

{v ∈ Cm(I) : v(k)(0) = v(k)(1) = 0, k ∈ Zm} in the Sobolev norm ‖ · ‖m. The energy
norm is defined by ‖v‖ε := {ε2|v|2m + ‖v‖2

m−1}1/2.
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The bilinear form Aε(·, ·) is defined by

Aε(u, v) :=
(
ε2u(m), v(m)

)
+
(
a2(m−1)u

(m−1), v(m−1)
)

+
m∑

k=2

(
a2(m−k)+1u

(m−k+1) + a2(m−k)u
(m−k), v(m−k)

)
.

We now present a sufficient condition that guarantees the coercivity of the bilinear
form. To this end, we introduce an index set by I+ := {j : αj ≥ 0, j ∈ Zm}, where
constants αm−1 ≤ a2(m−1) and αm−k ≤ a2(m−k) − 1

2a
′
2(m−k)+1, k = 2, 3, . . . ,m. We

assume that there is a decomposition for αj , j ∈ I− := Zm \ I+, that is,

αj =
∑

k∈I+∩{j+1,j+2,...,m−1}
αj,k

such that ηk ≥ 0, for k ∈ I+ \ {m− 1}, and ηm−1 > 0, where

ηk := αk +
∑

j∈I−,j<k

αj,k2
−(k−j) for k ∈ I+.

Then, by making use of the estimate

|v|2s−1 ≤ |v|2s
2

, v ∈ Hm
0 (I), s ∈ Nm := {1, 2, . . . ,m},

we have the coercivity of the bilinear form Aε(·, ·), i.e.,

Aε(v, v) ≥ ε2|v|2m + ηm−1|v|2m−1.

By integration by parts, we rewrite boundary value problem (2.1) in a variational
form in which we seek u ∈ Hm

0 such that

Aε(u, v) = (f, v) for all v ∈ Hm
0 .(2.2)

The solution of (2.2) is a weak solution of (2.1). Equation (2.2) will serve as the basic
equation for numerical computation of the solution. Under the hypotheses on aj , it
can be proved that there exist positive constants c1, c2 such that

|Aε(v, w)| ≤ c1‖v‖ε‖w‖ε, v, w ∈ Hm
0 ,(2.3)

and

Aε(v, v) ≥ c2‖v‖2
ε, v ∈ Hm

0 .(2.4)

Thus, the bilinear form Aε(·, ·) is coercive with respect to ‖ · ‖ε. By the Lax–Milgram
theorem, existence and uniqueness of the solution of (2.2) are guaranteed. Since the
coefficient functions ak, k ∈ Z2(m−1)+1, and f are sufficiently smooth, we know that
the solution is also sufficiently smooth [Gr, GT], and thus it is identical to the classical
solution. For this reason, we will not distinguish the weak solution from the classical
one.

We now introduce the space of the Hermite splines. Let N be a positive integer
and let 0 = x0 < x1 < · · · < xN = 1 be an arbitrary mesh of the interval I with
hi := xi − xi−1, i ∈ NN , and h := max{hi : i ∈ NN}. We denote by Ii the interval
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[xi−1, xi). For a positive integer r, we let P2r(Ii) denote the space of polynomials of
degree 2r − 1 on Ii. The space of the Hermite splines is defined by

VN := {v(x) ∈ Hr
0 (I) : v|Ii ∈ P2r(Ii), i ∈ NN}.(2.5)

It can be seen that VN ⊂ Hr
0 (I) and by the Sobolev embedding theorem, VN ⊂

Cr−1
0 (I). The dimension of VN is r(N − 1). For v ∈ Cr−1

0 (I) we denote by Πv its
Hermite spline interpolant from VN satisfying the conditions (Πv)(k)(xi) = v(k)(xi),
k ∈ Zr, i ∈ NN−1. It is well known (cf. [Sc]) that there exists a positive constant c
such that for all v ∈ C2r

0 (Ii),

|v − Πv|j,∞,Ii ≤ ch2r−j
i |v|2r,∞,Ii , j ∈ Z2r+1,(2.6)

where |v|k,∞,Ii denotes the maximum norm of v(k) on the interval Ii. Here and in what
follows, constant c is used to denote the generic positive constant that is independent
of ε and the mesh.

In order to have a conforming Galerkin method, we require r ≥ m through out
the rest of this paper. The Galerkin method based on the Hermite splines is to seek
uN ∈ VN such that

Aε(uN , v) = (f, v), v ∈ VN .(2.7)

Recalling that u satisfies (2.2), we have that Aε(u − uN , v) = 0, v ∈ VN . By Cea’s
lemma [C], this equation implies that

‖u− uN‖ε ≤ c inf
v∈VN

‖u− v‖ε.(2.8)

We next consider the discrete Galerkin method, which takes into account the
effect of numerical integration required for computing the inner products. We let
aNk , k ∈ Z2(m−1)+1, and fN be the Hermite spline interpolation of degree 2�−1 to ak
and f , respectively, with uniform knots j

N , j ∈ ZN+1. Then we have the approxima-
tion orders

‖aNk − ak‖∞ ≤ cN−2�‖ak‖2�,∞ and ‖fN − f‖∞ ≤ cN−2�‖f‖2�,∞.(2.9)

The discrete bilinear form is

AN
ε (u, v) :=

(
ε2u(m), v(m)

)
+
(
aN2(m−1)u

(m−1), v(m−1)
)

+

m∑
k=2

(
aN2(m−k)+1u

(m−k+1) + aN2(m−k)u
(m−k), v(m−k)

)
.

Correspondingly, the discrete Galerkin method is to seek uN
N ∈ VN such that

AN
ε (uN

N , v) = (fN , v), v ∈ VN .(2.10)

It was proved in Lemma 4.1 of [SS1] that AN
ε (·, ·) is coercive with respect to ‖ · ‖ε.

This leads to the following estimate of error between uN and uN
N .

Theorem 2.1. Let uN and uN
N be the solution of (2.7) and (2.10), respectively.

Suppose that ak and f are approximated by aNk and fN , respectively, with errors (2.9).
Then

‖uN − uN
N‖ε ≤ cN−2�(‖f‖2�,∞ + ‖u‖ε).
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Proof. To prove this theorem, we set Bε(v) := AN
ε (uN

N , v)−Aε(uN , v) and observe
from (2.7) and (2.10) that

Bε(v) = (fN − f, v), v ∈ VN .(2.11)

Using the definition of Aε and AN
ε with a rearrangement of terms leads to the equation

Bε(v) = AN
ε (uN

N − uN , v) +

m∑
k=1

((
aN2(m−k) − a2(m−k)

)
u

(m−k)
N , v(m−k)

)

+

m∑
k=2

((
aN2(m−k)+1 − a2(m−k)+1

)
u

(m−k+1)
N , v(m−k)

)
.

Letting v = uN
N − uN in the equation above and using the coercivity of AN

ε and the
first estimate of (2.9), we conclude that

c‖uN − uN
N‖2

ε − cN−2�‖uN‖m−1‖uN − uN
N‖ε ≤ Bε

(
uN
N − uN

)
.

On the other hand, by (2.11) and the second estimate of (2.9), we have that

Bε

(
uN
N − uN

)
=

(
fN − f, uN

N − uN

)
≤ cN−2�‖f‖2�,∞‖uN

N − uN‖ε.

Combining the above two estimates, we obtain that

‖uN − uN
N‖ε ≤ cN−2�(‖f‖2�,∞ + ‖uN‖m−1).(2.12)

Noting that

‖uN‖m−1 ≤ ‖uN‖ε ≤ ‖u− uN‖ε + ‖u‖ε ≤ ‖u‖ε + c inf
v∈VN

‖u− v‖ε ≤ c‖u‖ε,

the desired estimate follows from (2.12).

3. The optimal order of uniform convergence. In this section, we derive a
sufficient condition on the meshes having O(N) number of grid points that ensures the
corresponding approximate solution uN having optimal order of uniform convergence.
For this purpose, we recall properties of the solution for the singularly perturbed
boundary value problems (2.1). From the book [O], we may write the solution u of
problem (2.1) in terms of sufficiently differentiable functions E, F , G for which

u = E + F + G,

and such that for all x ∈ I and for j ∈ N = {0, 1, . . . },

|G(j)(x)| ≤ c, |E(j)(x)| ≤ cεm−1−j exp (−αx/ε),(3.1)

|F (j)(x)| ≤ cεm−1−j exp (−α(1 − x)/ε).

Here, constant α = αm−1. Clearly, functions G, E, F describe, respectively, the
reduced problem solution and two boundary layers at endpoints 0, 1.

Based on estimates (3.1), we introduce a generating function defined by

h0(x) :=
ε

N
exp

( αx

2rε

)
,(3.2)
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and choose the mesh-sizes hi, i ∈ NÑ , to satisfy the condition that

hi ≤ min{h0(xi−1), h
0(1 − xi), 1/N}(3.3)

and

Ñ ≤ cN.(3.4)

Meshes having this property are called optimal meshes. A construction of optimal
meshes will be presented in the next section. The construction of these meshes is
motivated by the equal distribution of errors in the subintervals. We remark that
these meshes improve the convergence order of the well-known Bakhvalov meshes
and Shishkin meshes. We will prove that they lead to the optimal order of conver-
gence and linear complexity. Recall that the Bakhvalov-type meshes map equidistant
grids to nonuniform meshes by using the layer functions or their modifications. The
Shishkin meshes, which are piecewise uniform meshes, are particularly simple in their
constructions. It is not clear in the literature from a theoretical point of view if
the Bakhvalov-type meshes give the optimal order of uniform convergence. Nonethe-
less, it is known from [SS1, SS2] that the Shishkin meshes give the optimal uniform
convergence order up to a logarithmic factor.

Lemma 3.1. Let E, F, and G be functions satisfying the condition (3.1) and let
hi be chosen according to (3.3). Then

‖E − ΠE‖j ≤ cN−2r+j , j ∈ Zr, ‖E − ΠE‖ε ≤ cN−2r+m,(3.5)

‖F − ΠF‖j ≤ cN−2r+j , j ∈ Zr, ‖F − ΠF‖ε ≤ cN−2r+m,(3.6)

and

‖G− ΠG‖j ≤ cN−2r+j , j ∈ Zr, ‖G− ΠG‖ε ≤ cN−2r+m max{ε,N−1}.(3.7)

Proof. The proof for (3.7) is standard. We present only the proof for the estimate
for E, since the one for F is obtained similarly. To this end, we first estimate |E −
ΠE|m,∞,Ii , i ∈ NÑ . By estimate (2.6), there exists a positive constant c such that

ε|E − ΠE|m,∞,Ii ≤ cε|E|2r,∞,Iih
2r−m
i .(3.8)

Using (3.3), we obtain that

hi ≤ h0(xi−1) =
ε

N
exp

(αxi−1

2rε

)
.(3.9)

Substituting the bound on |E|2r,∞,Ii and (3.9) into the right-hand side of (3.8) yields

ε|E − ΠE|m,∞,Ii ≤ cε(εm−1−2r) exp
(
−αxi−1

ε

) [ ε

N
exp

(αxi−1

2rε

)]2r−m

≤ cN−2r+m.

Next, we estimate |E − ΠE|j,∞,Ii for j ∈ Zr. By using Lemma 2.6, the bound
(3.9) on hi and the hypothesis on the function E, we have that

|E − ΠE|j,∞,Ii ≤ |E|2r,∞,Iih
2r−j
i ≤ cN−2r+jεm−j exp

(
−jαxi−1

2rε

)
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for j ∈ Zr. Thus, we have for j ∈ Zr that

|E − ΠE|j,∞,Ii ≤ cN−2r+j .(3.10)

It follows from (3.10) that

‖(E − ΠE)(j)‖2 ≤

⎛
⎝ Ñ∑

i=1

|E − ΠE|2j,∞,Ii |Ii|

⎞
⎠

1/2

≤ cN−2r+j ,

which yields the desired results.
We now use Lemma 3.1 to estimate the error of interpolation Πu, where u is the

solution of problem (2.1).
Proposition 3.2. Let u be the solution of problem (2.1) and let hi, i ∈ ZÑ+1,

be chosen according to (3.3). Then there exists a positive constant c independent of ε
or N such that

‖u− Πu‖j ≤ cN−2r+j , j ∈ Zr, and ‖u− Πu‖ε ≤ cN−2r+m.(3.11)

Proof. Since the solution u of problem (2.1) has the form u = E + F + G, where
functions E, F, and G satisfy condition (3.1), using the estimates in Lemma 3.1 for
the functions E, F, and G, respectively, we conclude the desired estimate in the
proposition.

Our next task is to establish an error bound on ‖Πu− uN‖ε.
Lemma 3.3. Let u and uN be the solutions of problems (2.2) and (2.7), respec-

tively. Suppose that the mesh satisfies condition (3.3). Then

‖Πu− uN‖ε ≤ cN−2r+m.

Moreover, if r = m, then

‖Πu− uN‖m−1 ≤ cN−m−1 and |Πu− uN‖ε ≤ cN−m−1.

Proof. To prove the first estimate, we note that Aε(u − uN ,Πu − uN ) = 0, and
observe that

‖Πu− uN‖2
ε ≤ cAε(Πu− uN ,Πu− uN ) = cAε(Πu− u,Πu− uN ).(3.12)

Inequality (3.12) implies that ‖Πu − uN‖ε ≤ c‖Πu − u‖ε. By Proposition 3.2, we
conclude the first estimate.

To obtain the special results when r is chosen as m, we estimate Aε(Πu−u,Πu−
uN ). To do this, we first prove that

(
(Πu− u)(m), (Πu− uN )(m)

)
= 0.(3.13)

Recall that the function Πu−u has the interpolation property that (Πu−u)(j)(xi) = 0,
j ∈ Zm, i ∈ ZÑ+1. Using integration by parts with this interpolation property, we
conclude for any polynomial p of degree m− 1 on interval Ii that

∫ xi

xi−1

(Πu− u)(m)(x)p(x) dx =

∫ xi

xi−1

(Πu− u)(x)p(m)(x) dx = 0.
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Since (Πu − uN )(m)|Ii is a polynomial of degree m − 1, i ∈ NÑ , we see that (3.13)
holds. Combining (3.13) and the formula of Aε(Πu− u,Πu− uN ), we obtain that

Aε(Πu− u,Πu− uN ) =
(
a2(m−1)(Πu− u)(m−1), (Πu− uN )(m−1)

)

+

m∑
k=2

(
a2(m−k)(Πu− u)(m−k) + a2(m−k)+1

×(Πu− u)(m−k+1), (Πu− uN )(m−k)
)
.

It follows that

Aε(Πu− u,Πu− uN ) ≤ c‖Πu− u‖m−1‖Πu− uN‖m−1.

Using the first estimate of Proposition 3.2, we find that

Aε(Πu− u,Πu− uN ) ≤ cN−m−1‖Πu− uN‖ε.(3.14)

Combining (3.12) and (3.14) proves this third estimate. The second estimate follows
directly from the third.

Next we estimate the errors u− uN and u− uN
N .

Theorem 3.4. Let u, uN , and uN
N be the solutions of problems (2.2), (2.7), and

(2.10), respectively. Suppose that the mesh satisfies condition (3.3). Then

‖u− uN‖ε ≤ cN−2r+m, ‖u− uN
N‖ε ≤ c(N−2r+m + N−2�).

Moreover, if r = m, then

‖u− uN‖m−1 ≤ cN−m−1, ‖u− uN
N‖ε ≤ c(N−m + N−2�),

‖u− uN
N‖m−1 ≤ c(N−m−1 + N−2�).

Proof. The estimate on ‖u− uN‖ε is a direct consequence of Proposition 3.2 and
Lemma 3.3, while the estimate on ‖u − uN

N‖ε is obtained by using the first estimate
of this theorem and Theorem 2.1.

Next, we prove the special results when we choose r = m. According to Proposi-
tion 3.2, if r = m, we have that ‖u − Πu‖m−1 ≤ cN−m−1. Combining this estimate
with the first estimate in Proposition 3.2, we arrive at the inequality

‖u− uN‖m−1 ≤ ‖u− Πu‖m−1 + ‖Πu− uN‖m−1 ≤ N−m−1.

The estimates on ‖u− uN
N‖ε follow directly from the second estimate of this theorem

with r = m. To prove the last estimate, we note that

‖u− uN
N‖m−1 ≤ ‖u− uN‖m−1 + ‖uN − uN

N‖m−1 ≤ ‖u− uN‖m−1 + ‖uN − uN
N‖ε.

The third estimate in this theorem and the result of Theorem 2.1 ensure the last
estimate.

Theorem 3.4 suggests that the Hermite spline approximations of an appropriate
order for ak and f must be used to ensure optimal order of approximation of uN

N .
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4. A construction of optimal meshes. We describe a specific construction
of a mesh of interval I and prove that it is optimal in the sense that it satisfies both
conditions (3.3) and (3.4).

We define the grid points according to the generating function h0 by the recursive
formula

x0 := 0, xi := xi−1 + h0(xi−1), i = 1, 2, . . . ,M,(4.1)

where M is a positive integer such that

h0(xM−1) < 1/N and h0(xM ) ≥ 1/N.(4.2)

We consider two cases. In the first case where xM < 1/2, x0 < x1 < · · · < xM forms
a mesh for the interval [0, xM ] and by symmetry, 1 − xM < 1 − xM−1 < · · · < 1 − x0

forms a mesh for the interval [1 − xM , 1]. For the middle interval [xM , 1 − xM ], we
define a uniform mesh with N1 := �(1− 2xM )N�+ 1 grid points such that the mesh-
size h̃ := (1−2xM )/N1 ≤ 1/N , where �x� denotes the largest integer not greater than
x. Thus, points

xj = xj−1 + h̃, j = M + 1,M + 2, . . . ,M + N1,

subdivide the middle interval. Set xM+N1+j := 1−xM−j , j ∈ ZM+1. Hence the mesh

Δ : 0 = x0 < x1 < · · · < x2M+N1
= 1

is the desired mesh for I, which consists of three parts, the left and right meshes for
the boundary layers and the middle uniform mesh. We now describe a construction
when the second case xM ≥ 1/2 occurs. In this case, there is no middle uniform mesh.
Note that there exists a nonnegative integer μ such that

xM−μ−1 <
1

2
≤ xM−μ < · · · < xM .

We let M ′ := M − μ and observe that

xM ′−1 < 1/2 and xM ′ ≥ 1/2.(4.3)

We use M ′ to replace M in (4.1). Clearly, the integer M ′ satisfying condition (4.3) is
less than or equal to the integer M satisfying condition (4.2). We redefine xM ′ := 1/2
and xM ′+j = 1 − xM ′−j , j ∈ NM ′ . Thus, in this case

Δ : 0 = x0 < x1 < · · · < x2M ′ = 1

is a desired mesh for interval I.
The main purpose of this section is to show that the Hermite spline interpolation

developed based on the mesh constructed above has an optimal order of convergence
and the linear order of computational complexity measured by the number of grid
points. For this purpose, we consider a sequence xn generated by a given generating
function g. Suppose that y0 is given and g is a real-valued function defined on the
real line. We define a sequence xn by letting

x0 = y0, xn = xn−1 + g(xn−1), n ∈ N.
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We call xn the sequence generated by y0 and g. The next lemma is concerned with
this sequence.

Lemma 4.1. Suppose that y0 < y1 and g is a real-valued nondecreasing function
on R. Let xn be the sequence generated by y0 and g. If g(y0) > 0, then there exists a
unique integer Mg such that

xMg
≤ y1 and xMg

+ g(xMg
) > y1.

Proof. By the definition of sequence xn and the hypothesis on g, we find that xn

is a strictly increasing sequence. Set g0 := g(y0) and observe by induction that xn ≥
x0 +ng0 for n ∈ N. Thus, by hypothesis that g0 > 0 we obtain that limn→∞ xn = ∞.
It follows that there exists a positive integer n such that xn > y1. Choose n0 as the
smallest of such integers n. We conclude that xn0 > y1 and xn0−1 ≤ y1, proving the
lemma.

We will call (y0, y1, g) an admissible triple if y0 < y1, g is nondecreasing and
g(y0) > 0, and call Mg the index determined by the admissible triple in the last
lemma. Let A denote the class of admissible triples. We define a mapping M from
A to positive integers by assigning to each triple the index Mg and denote it by

Mg = M(y0, y1, g).(4.4)

Lemma 4.1 ensures that the integer Mg is well defined. In the next lemma, we compare
two indices Mg1 and Mg2 corresponding to two generating functions g1 and g2.

Lemma 4.2. Suppose that (y0, y1, g1) and (y0, y1, g2) are two admissible triples.
If g1 ≤ g2, then

M(y0, y1, g1) ≥ M(y0, y1, g2).

Proof. Let Mgi := M(y0, y1, gi) for i = 1, 2. Suppose that for each i = 1, 2, xi
n,

n ∈ ZMgi
+1, there are two sequences generated by y0 and gi. It can be shown by

induction on n that x1
n ≤ x2

n, n ∈ N. Thus, the result of this lemma follows.
We next consider a specific generating function g which is an affine function.
Lemma 4.3. Suppose that y0 < y1 and for k > 0 and h0 := ky0 + b > 0, and

define g(x) = kx + b. Let Mg := M(y0, y1, g). Then

(
(1 + k)Mg − 1

k

)
h0 ≤ y1 − y0.

Proof. Suppose that xn, n ∈ ZMg+1, is the sequence of points generated by the
nondecreasing function g and set hn := xn+1 − xn. Hence, hn = g(xn) = g(xn−1 +
hn−1). By the definition of g, we have that

hn = kxn−1 + khn−1 + b = g(xn−1) + khn−1 = hn−1 + khn−1 = (1 + k)hn−1.

Repeatedly using this equation, we obtain the formula that hn = (1 + k)nh0. Conse-
quently, we conclude that

xMg − y0 =

Mg−1∑
j=0

hj = h0

Mg−1∑
j=0

(1 + k)j =

(
(1 + k)Mg − 1

k

)
h0.

Noting that xMg ≤ y1, this completes the proof.
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To estimate the complexity of the Hermite spline interpolation based on the grid
points constructed at the beginning of this section, we need to estimate the integer M
appearing in the mesh. To this end, we consider a special admissible triple (x∗, x′, h0),
where h0 is defined by (3.2) and

x∗ :=
ε

β
log

(
N

β

)
and x′ :=

ε

β
log

(
1

ε

)
with β :=

α

2r
.

Lemma 4.4. Suppose that ε and N satisfy the condition

e

e2γ(N−1)
< ε <

β

N
(4.5)

for some positive constant γ independent of ε and N . Then M(x∗, x′, h0) < γ(N−1).
Proof. The hypothesis ε < β/N ensures that x∗ < x′ and thus (x∗, x′, h0) is

an admissible triple. We will use Lemmas 4.2 and 4.3 to estimate the index Mh0

generated by h0.
Let y0 := x∗, y1 := x′. It can be verified that

h0(y0) =
ε

β
and

d

dx
h0(y0) = 1.

Choose k = 1, h0 := ε
β , and b := h0 − ky0 and define g(x) := kx + b. Thus (y0, y1, g)

is an admissible triple. Note that the straight line y = g(x) passes through the point
(y0, h

0(y0)) with slope k = 1. It is easily confirmed that g(x) < h0(x) for all x > y0.
By Lemma 4.2, we have that

M(y0, y1, h
0) ≤ M(y0, y1, g).

Let Mg := M(y0, y1, g). It follows from Lemma 4.3 that h0

(
2Mg − 1

)
≤ y1 − y0 ≤ y1.

This leads to the estimate

Mg ≤ log2

(
ln

(
1

ε

)
+ 1

)
.(4.6)

By hypothesis that e

e2
γ(N−1) < ε, we conclude that log2(ln(1/ε)+1) < γ(N −1). This

proves the result of this lemma.
We are now ready to prove the main result of this section.
Theorem 4.5. Let u be the solution of problem (2.1), let Δ be the mesh con-

structed as above, and let Π be the piecewise polynomial interpolation operator asso-
ciated with the mesh Δ. Then Πu satisfies the error bound (3.11). If, in addition, the
condition (4.5) is satisfied, then the number of grid points is bounded by cN .

Proof. By the construction of the mesh Δ, it is ready to verify that the mesh
satisfies condition (3.3) and thus, by Proposition 3.2, Πu satisfies the error bound
(3.11).

It remains to prove the bound on the number of grid points in the mesh Δ.
Recalling that the number of the grid points in the mesh is Ñ = 2M + N1 for case
one and Ñ = 2M ′ for case two, it suffices to prove that N1, M, and M ′ are bonded
by a constant multiple of N . Because

N1 = �(1 − 2xM )N� + 1 ≤ N + 1 ≤ 2N and M ′ < M

we need only to show that M ≤ cN .
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We consider one case in the construction of the mesh. Recalling the definition of
x∗, we divide the interval [0, xM ] into two intervals I1 := [0, x∗] and I2 := [x∗, xM ] and
estimate the number of grid points in these intervals separately. Let M1 and M2 denote
the number of grid points in intervals I1 and I2, respectively. Then xM1 ≤ x∗ ≤ xM1+1

and M = M1 + M2.
We now estimate the value of M1 with the help of the integral of function φ(x) :=

1/h0(x), x ∈ I. To this end, we introduce a piecewise linear function

φ(x) := φ(xi−1)
xi − x

xi − xi−1
, x ∈ [xi−1, xi), i ∈ NM1 .

Using the definition of φ and noticing that φ is decreasing on [0, xM1 ], we find for
x ∈ (xi−1, xi) that

φ′(x) := − β

εh0(x)
= −β

ε
φ(x) ≥ −β

ε
φ(xi−1).

Also, for x ∈ (xi−1, xi), we have that φ′(x) = −φ2(xi−1). Condition xi < x∗ implies
that β/ε ≤ φ(xi−1). It follows from this inequality and the fact that φ is decreasing
on [xi−1, xi) that φ′(x) ≥ φ′(x) for x ∈ (xi−1, xi). This estimate with the fact that
φ(xi−1) = φ(xi−1) implies that

φ(x) ≤ φ(x), x ∈ [0, xM1).(4.7)

By the construction of the grid points xi and the definition of function φ, we obtain
that

∫ xM1

0

φ(x) dx =
1

2

M1∑
i=1

φ(xi−1)(xi − xi−1) =
M1

2
.(4.8)

On the other hand, we have the estimate∫ xM1

0

φ(x) dx ≤
∫ 1

0

dx

h0(x)
≤ N

β
.(4.9)

Combining (4.7), (4.8), and (4.9), we conclude that M1 ≤ 2N
β .

We next prove that M2 < γN . Recalling the mesh generating procedure, we have
that h0(x) ≤ 1/N , x ∈ [0, xM−1]. The definition of x′ implies that h0(x′) = 1/N .
Noting that h0 is a strictly monotone increasing function, from inequalities

h0(xM−1) < h0(x′) =
1

N
≤ h0(xM )

we immediately obtain that xM−1 < x′ ≤ xM . By Lemma 4.4, we conclude that
M2 < γN . Therefore, in this case we have that M ≤ ( 2

β + γ)N, completing the proof
of this theorem.

We remark that the mesh generating function can be modified to be

h0(x) = S
ε

N
exp

( αx

2rε

)
,

where S is a constant. The purpose of introducing the constant S is to adjust the
number of grid points to be distributed in the boundary layers at two ends. For
example, if S is larger, then by our construction, fewer grid points will be generated
for the boundary layer. Its effect is illustrated in the numerical examples given in the
next section. The constant S does not affect the convergence order, nor the order of
the number of grid points.
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5. Numerical examples. In this section, we present numerical examples to
demonstrate the method and to verify the theoretical results proved in this paper. We
begin with an introduction of the space of the cubic Hermite splines which correspond
to r = 2. For x ∈ [−1, 1] we assume

ψ10(x) := (x + 1)2(1 − 2x), ψ11(x) := (1 − x)2(2x + 1),

ψ20(x) := x(x + 1)2, ψ21(x) := x(x− 1)2

and define two cubic splines φ1 and φ2 on R by

φ1(x) :=

⎧⎨
⎩
ψ10(x), x ∈ [−1, 0],
ψ11(x), x ∈ (0, 1],
0, x ∈ R \ [−1, 1],

and φ2(x) :=

⎧⎨
⎩
ψ20(x), x ∈ [−1, 0],
ψ21(x), x ∈ (0, 1],
0, x ∈ R \ [−1, 1].

It can be verified that they satisfy the Hermite interpolation conditions

φ1(j) = δ(j), φ′
1(j) = 0, φ2(j) = 0, φ′

1(j) = δ(j), j ∈ Z,

where for j ∈ Z, δ(j) = 0 if j 
= 0 and 1 if j = 0. Applications of the Hermite cubic
splines in the numerical solution of boundary value problems of ordinary differential
equations may be found in [JL]. On a mesh 0 < x0 < x1 < · · · < xÑ = 1, we may
scale and shift φ1, φ2 to construct the basis functions for the space VÑ by

φ1,i(x) :=

⎧⎨
⎩
ψ10(

x−xi

xi−xi−1
), x ∈ [xi−1, xi],

ψ11(
x−xi

xi+1−xi
), x ∈ (xi, xi+1],

0, x ∈ I \ [xi−1, xi+1],

and

φ2,i(x) :=

⎧⎪⎨
⎪⎩
ψ20(

x−xi

xi−xi−1
), x ∈ [xi−1, xi],

hi+1

hi
ψ21(

x−xi

xi+1−xi
), x ∈ (xi, xi+1],

0, x ∈ I \ [xi−1, xi+1],

for i ∈ NÑ−1. According to the interpolation properties of φ1 and φ2, we may verify
for i ∈ NÑ−1 and j ∈ ZÑ+1 that

φ1,i(xj) = δ(i− j), φ′
1,i(xj) = 0, φ2,i(xj) = 0, φ′

2,i(xj) =
1

hi
δ(i− j).

The space VÑ of the cubic (corresponding to m = 2) Hermite splines is defined by
VÑ := span{φi,j : i = 1, 2, j ∈ NÑ−1}. It is easily seen that VÑ is a dense subspace

of H2
0 (I).
Example 1. In this example, we consider the reaction-diffusion problem given by

ε2u(4)(x) + ((1 + x(1 − x))u′)′ = f(x), x ∈ (0, 1),

u(0) = u′(0) = u(1) = u′(1) = 0,

where f is chosen so that this problem has the exact solution

u = ε

(
exp(−x/ε) + exp(−(1 − x)/ε)

1 + exp(−1/ε)
− 1

)
+

1 − exp(−1/ε)

1 + exp(−1/ε)
x(1 − x) + x2(1 − x)2.
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Fig. 1.

The solution exhibits two boundary layers near x = 0 and x = 1. The weak form of
this problem corresponds to m = 2.

The generating function for this example is chosen as

h0(x) =
4ε

N
exp

( x

4ε

)
,

that is, we choose S := 2m
α = 4. We first present a figure that shows the distribution

of the grid points for this problem. In this figure we choose α = 1 and ε = 3.905×10−3

and N = 21. Correspondingly, the total number of grid points is 64. According to
our method, we have 21 grid points distributed in each of the two boundary layers
near x = 0 and x = 1. The graph in Figure 1 shows the distribution of 64 grid
points.

To illustrate the optimal order of the uniform convergence of the proposed method,

we set eÑ := u−uÑ
Ñ

. In Table 1, we compare the values of ‖eÑ‖ε and the convergence
order O of the proposed method based on the optimal mesh with those results based
on the Shishkin mesh (see p. 126 of [SS1]). The convergence order O is computed
numerically by the formula

O = log

(
eÑ1

eÑ2

)
/ log

(
Ñ2

Ñ1

)
,

where Ñ1, Ñ2 are two neighboring numbers of grid points in the table. The numerical
results show evidently that the proposed optimal mesh provides the optimal order O ≈

m = r = 2 of convergence for ‖eÑ‖ε, and it performs better than the Shishkin mesh.
To verify the estimate in norm ‖ · ‖m−1, a result in Theorem 3.4, we list in

Table 2 the values of ‖eÑ‖1 and convergence order O. We observe that the computed
convergence order is O = 3.

Example 2. We consider the second order reaction-diffusion problems

−ε2u′′(x) + (2 + sin(x))u(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0,



SINGULAR PERTURBATION PROBLEMS 2621

Table 1

Comparison of convergence orders for numerical methods using the proposed mesh and the
Shishkin mesh.

Proposed mesh Shishkin mesh

ε Ñ ‖eÑ‖ε O Ñ ‖eÑ‖ε O

63 1.13-4 64 1.80-3

127 2.72-5 2.03 128 6.78-4 1.40

3.905-3 255 6.78-6 1.99 256 2.41-4 1.49

511 1.68-6 2.01 512 8.09-5 1.57

1026 4.17-7 2.00 1024 2.59-5 1.64

63 1.79-5 64 2.24-4

127 3.97-6 2.14 128 8.47-5 1.40

6.104-5 255 9.58-7 2.04 256 3.01-5 1.49

513 2.34-7 2.02 512 1.01-5 1.58

1023 5.86-8 2.01 1024 3.24-6 1.64

64 8.65-6 64 5.62-5

126 1.33-6 2.76 128 2.12-5 1.40

3.816-6 254 2.61-7 2.32 256 7.53-6 1.49

510 6.07-8 2.09 512 2.53-6 1.57

1023 1.48-8 2.02 1024 8.11-7 1.64

Table 2

Convergence order for ‖eÑ‖1 for Example 1.

ε Ñ ‖eÑ‖1 O

64 1.32-5

127 1.58-6 3.10

3.905-3 254 1.99-7 2.99

510 2.40-8 3.03

1027 2.95-9 2.99

66 1.64-5

129 1.95-6 3.18

6.104-5 256 2.35-7 3.09

511 2.88-8 3.04

1024 3.51-9 3.03

63 1.96-5

128 2.06-6 3.18

3.816-6 257 2.39-7 3.09

512 2.90-8 3.06

1029 3.48-9 3.04

where f is chosen so that

u(x) = exp(−x/ε) + exp(−(1 − x)/ε) + x(1 − x) − (1 + exp(−1/ε))

is the exact solution. In this case, m = 1. Since r = 2, according to the theoretical

estimate the optimal convergence order is ‖u− uÑ
Ñ
‖ε ≤ cN−3. The numerical results

shown in Table 3 confirms this estimate.
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Table 3

Convergence order for ‖eÑ‖ε for Example 2.

ε Ñ ||eÑ ||ε O

65 3.35-6

128 4.59-7 2.93

3.905-3 255 6.27-8 2.89

513 8.12-9 2.92

1025 1.07-9 2.93

63 5.51-7

126 7.05-8 2.97

6.104-5 256 9.01-9 2.90

512 1.21-9 2.90

1024 1.60-10 2.92

63 1.38-7

125 1.89-8 2.90

3.816-6 257 2.25-9 2.95

512 3.01-10 2.92

1026 4.03-11 2.89
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MULTIADAPTIVE GALERKIN METHODS FOR ODES III:
A PRIORI ERROR ESTIMATES∗

ANDERS LOGG†

Abstract. The multiadaptive continuous/discontinuous Galerkin methods mcG(q) and mdG(q)
for the numerical solution of initial value problems for ordinary differential equations are based on
piecewise polynomial approximation of degree q on partitions in time with time steps which may vary
for different components of the computed solution. In this paper, we prove general order a priori
error estimates for the mcG(q) and mdG(q) methods. To prove the error estimates, we represent the
error in terms of a discrete dual solution and the residual of an interpolant of the exact solution. The
estimates then follow from interpolation estimates, together with stability estimates for the discrete
dual solution.
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1. Introduction. This is part 3 in a sequence of papers [32, 33] on multiadap-
tive Galerkin methods, mcG(q) and mdG(q), for approximate (numerical) solution of
ODEs of the form

u̇(t) = f(u(t), t), t ∈ (0, T ],

u(0) = u0,
(1.1)

where u : [0, T ] → R
N is the solution to be computed, u0 ∈ R

N a given initial
condition, T > 0 a given final time, and f : R

N × (0, T ] → R
N a given function that

is Lipschitz-continuous in u and bounded.
In the previous two parts of our series on multiadaptive Galerkin methods, we

proved a posteriori error estimates, through which the time steps are adaptively de-
termined from residual feedback and stability information, obtained by solving a dual
linearized problem. In this paper, we prove a priori error estimates for mcG(q) and
mdG(q). We also prove the stability estimates and interpolation estimates which are
essential to the a priori error analysis.

Standard methods for the time-discretization of (1.1) require that the resolution
is equal for all components Ui(t) of the computed approximate solution U(t) of (1.1).
This includes all standard Galerkin or Runge–Kutta methods; see [9, 4, 23, 24, 41,
2]. Using the same time step sequence k = k(t) for all components could become
very costly if the different components of the solution exhibit multiple time scales of
different magnitudes. We therefore propose a new representation of the solution in
which the difference in time scales is reflected in the componentwise time-discretization
of (1.1), that is, each component Ui(t) is computed using an individual time step
sequence ki = ki(t).
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The multiadaptive Galerkin methods mcG(q) and mdG(q) first presented in [32]
are formulated as extensions of the standard continuous and discontinuous Galerkin
methods cG(q) and dG(q), studied earlier in detail by Hulme [28, 27], Jamet [29],
Delfour, Hager, and Trochu [7], Eriksson, Johnson, and Thomée [16, 30, 11, 12, 10,
13, 14, 15, 8], and Estep et al. [17, 18, 19, 21, 20]. As such, the analysis of the
mcG(q) and mdG(q) methods can be carried out within the existing framework, but
the extension to multiadaptive time-stepping leads to some technical challenges, in
particular, proving the appropriate interpolation estimates.

Local (multiadaptive) time-stepping has been explored before to some extent for
specific applications, including specialized integrators for the n-body problem [37, 5, 1]
and low-order methods for conservation laws [39, 22, 6]. Early attempts at local
time-stepping include [25, 26]. Recently, a new class of related methods, known as
asynchronous variational integrators (AVI) with local time steps, has been proposed
[31].

1.1. Main results. The main results of this paper are a priori error estimates
for the mcG(q) and mdG(q) methods, respectively, of the form

‖e(T )‖lp ≤ CS(T )
∥∥k2qu(2q)

∥∥
L∞([0,T ],l1)

(1.2)

and

‖e(T )‖lp ≤ CS(T )
∥∥k2q+1u(2q+1)

∥∥
L∞([0,T ],l1)

(1.3)

for p = 2 or p = ∞, where C is an interpolation constant, S(T ) is a (computable) sta-
bility factor, and k2qu(2q) (or k2q+1u(2q+1)) combines local time steps ki = ki(t) with
derivatives of the exact solution u. The norm L∞(I, ‖ · ‖) is defined by ‖v‖L∞(I,‖·‖) =
supt∈I ‖v(t)‖. These estimates state that the mcG(q) method is of order 2q and that
the mdG(q) method is of order 2q + 1 in the local time step. We refer to section
6.2 for the exact results. It should be noted that superconvergence is obtained only
at synchronized time levels, such as the end-point t = T . For the general nonlinear
problem, we obtain exponential estimates for the stability factor S(T ). In [34], we
prove that for a parabolic model problem, the stability factor remains bounded and
of unit size, independent of T (up to a logarithmic factor).

1.2. Notation. The following notation is used throughout this paper. Each
component Ui(t), i = 1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1)
is a piecewise polynomial on a partition of (0, T ] into Mi subintervals. Subinterval j
for component i is denoted by Iij = (ti,j−1, tij ], and the length of the subinterval is
given by the local time step kij = tij − ti,j−1. This is illustrated in Figure 1. On each
subinterval Iij , Ui|Iij is a polynomial of degree qij and we refer to (Iij , Ui|Iij ) as an
element.

Furthermore, we shall assume that the interval (0, T ] is partitioned into blocks
between certain synchronized time levels 0 = T0 < T1 < · · · < TM = T . We refer to
the set of intervals Tn between two synchronized time levels Tn−1 and Tn as a time
slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.
We denote the length of a time slab by Kn = Tn − Tn−1. We also refer to the entire
collection of intervals Iij as the partition T .

Since different components use different time steps, a local interval Iij may contain
nodal points for other components, that is, some ti′j′ ∈ (ti,j−1, tij). We denote the
set of such internal nodes on a local interval Iij by Nij .
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Fig. 1. Individual partitions of the interval (0, T ] for different components. Elements between
common synchronized time levels are organized in time slabs. In this example, we have N = 6 and
M = 4.

1.3. Outline of the paper. The outline of this paper is as follows. In section 2,
we give the full definition of the multiadaptive Galerkin methods mcG(q) and mdG(q).
We also introduce the dual methods mcG(q)∗ and mdG(q)∗, which are of importance
to the a priori error analysis. In sections 3 and 4, respectively, we then prove existence
and stability of the discrete solutions as defined in section 2.

In section 5, we prove the interpolation estimates that we later use to prove the
a priori error estimates in section 6. Proving the interpolation estimates is technically
challenging, since the function to be interpolated may be discontinuous within the
interval of interpolation. To measure the regularity of the interpolated function, it is
then necessary to take into consideration the size of the jump in function value and
derivatives at each point of discontinuity.

Finally, in section 7, we present some numerical evidence for the a priori error
estimates by solving a simple model problem and showing that we obtain the predicted
convergence rates, k2q and k2q+1, respectively, for the mcG(q) and mdG(q) methods.

2. Definition of methods. In this section, we give the definitions of the mul-
tiadaptive Galerkin methods mcG(q) and mdG(q). The multiadaptive methods are
obtained as extensions of the standard (monoadaptive) Galerkin methods cG(q) and
dG(q) by extending the trial and test spaces to allow individual time step sequences
for different components.

As an important tool for the a priori error analysis in section 6, we also introduce
the discrete dual problem and the discrete dual methods mcG(q)∗ and mdG(q)∗.

2.1. Multiadaptive continuous Galerkin, mcG(q). To formulate the mcG(q)
method, we define the trial space V and the test space V̂ as

V =
{
v ∈ [C([0, T ])]N : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N

}
,

V̂ =
{
v : vi|Iij ∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N

}
,

(2.1)

where Pq(I) denotes the linear space of polynomials of degree q on an interval I ⊂ R.
In other words, V is the space of vector-valued continuous piecewise polynomials of
degree q = (qi(t)) with qi(t) ≥ 1 on the partition T , and V̂ is the space of vector-
valued (possibly discontinuous) piecewise polynomials of degree q− 1 = (qi(t)− 1) on
the same partition.
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We now define the mcG(q) method for (1.1) as follows: Find U ∈ V with U(0) =
u0 such that ∫ T

0

(U̇ , v) dt =

∫ T

0

(f(U, ·), v) dt ∀v ∈ V̂ ,(2.2)

where (·, ·) denotes the R
N inner product. With a suitable choice of test function v, it

follows that the global problem (2.2) can be restated as a sequence of successive local
problems for each component: For i = 1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij)
with Ui(ti,j−1) given such that∫

Iij

U̇iv dt =

∫
Iij

fi(U, ·)v dt ∀v ∈ Pqij−1(Iij),(2.3)

where the initial condition is specified for i = 1, . . . , N by Ui(0) = ui(0).
We define the residual R of the approximate solution U by Ri(U, t) = U̇i(t) −

fi(U(t), t). In terms of the residual, we can rewrite (2.3) in the form∫
Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N,(2.4)

that is, the residual is orthogonal to the test space on each local interval. We refer to
(2.4) as the Galerkin orthogonality of the mcG(q) method.

2.2. Multiadaptive discontinuous Galerkin, mdG(q). For mdG(q), we de-
fine the trial and test spaces by

V = V̂ =
{
v : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N

}
,(2.5)

that is, both trial and test functions are vector-valued (possibly discontinuous) piece-
wise polynomials of degree q = (qi(t)) with qi(t) ≥ 0 on the partition T . By definition,
the mdG(q) solution U ∈ V is left-continuous.

We now define the mdG(q) method for (1.1) as follows: Find U ∈ V with U(0−) =
u0 such that

N∑
i=1

Mi∑
j=1

[
[Ui]i,j−1vi

(
t+i,j−1

)
+

∫
Iij

U̇ivi dt

]
=

∫ T

0

(f(U, ·), v) dt ∀v ∈ V̂ ,(2.6)

where [Ui]i,j−1 = Ui(t
+
i,j−1) − Ui(t

−
i,j−1) denotes the jump in Ui(t) across the node

t = ti,j−1, and where v(t+) = lims→t+ v(s).
The mdG(q) method in local form, corresponding to (2.3), reads as follows: For

i = 1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij) such that

[Ui]i,j−1v(ti,j−1) +

∫
Iij

U̇iv dt =

∫
Iij

fi(U, ·)v dt ∀v ∈ Pqij (Iij),(2.7)

where the initial condition is specified for i = 1, . . . , N by Ui(0
−) = ui(0).

The residual R is defined on the inner of each local interval Iij by Ri(U, t) =

U̇i(t) − fi(U(t), t). In terms of the residual, (2.7) can be restated in the form

[Ui]i,j−1v
(
t+i,j−1

)
+

∫
Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij (Iij)(2.8)

for j = 1, . . . ,Mi, i = 1, . . . , N . We refer to (2.8) as the Galerkin orthogonality of the
mdG(q) method.
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2.3. The dual problem. The dual problem is the standard tool for error anal-
ysis, a priori or a posteriori, of Galerkin finite element methods for the numerical
solution of differential equations; see [8, 3]. For the a posteriori error analysis of the
multiadaptive Galerkin methods mcG(q) and mdG(q) in [32], we formulate a continu-
ous dual problem. For the a priori error analysis of this paper, we formulate instead a
discrete dual problem. The discrete dual problem was first introduced for the family
of discontinuous Galerkin methods dG(q) in [16]. As we shall see, the discrete dual
problem can be expressed as a Galerkin method for a continuous problem.

The discrete dual solution Φ : [0, T ] → R
N is a Galerkin approximation of the

exact solution φ : [0, T ] → R
N of the continuous dual problem

−φ̇(t) = J�(πu, U, t)φ(t) + g(t), t ∈ [0, T ),

φ(T ) = ψ,
(2.9)

where πu is an interpolant or a projection of the exact solution u of (1.1), g : [0, T ] →
R

N is a given function, ψ ∈ R
N is a given initial condition, and

J�(πu, U, t) =

(∫ 1

0

∂f

∂u
(sπu(t) + (1 − s)U(t), t) ds

)
�,(2.10)

that is, an appropriate mean value of the transpose of the Jacobian of the right-hand
side f(·, t) evaluated at πu(t) and U(t). Note that by the chain rule, we have

J(πu, U, ·)(U − πu) = f(U, ·) − f(πu, ·).(2.11)

The data (ψ, g) of the dual problem allow us to obtain error estimates for different
functionals Lψ,g of the error e = U − u.

We define below two new Galerkin methods for the dual problem (2.9): the dual
methods mcG(q)∗ and mdG(q)∗. We will later use the mcG(q)∗ method to express
the error of the mcG(q) solution of (1.1) in terms of the mcG(q)∗ solution of (2.9).
Similarly, we will express the error of the mdG(q) solution of (1.1) in terms of the
mdG(q)∗ solution of (2.9).

2.4. Multiadaptive dual continuous Galerkin, mcG(q)∗. In the formula-
tion of the dual method of mcG(q), we interchange the trial and test spaces of mcG(q).
With the same definitions of V and V̂ as in (2.1), we thus define the mcG(q)∗ method
for (2.9) as follows: Find Φ ∈ V̂ with Φ(T+) = ψ such that

∫ T

0

(v̇,Φ) dt =

∫ T

0

(J(πu, U, ·)v,Φ) + Lψ,g(v)(2.12)

for all v ∈ V with v(0) = 0, where

Lψ,g(v) ≡ (v(T ), ψ) +

∫ T

0

(v, g) dt.(2.13)

Notice the extra condition that the test functions should vanish at t = 0, which is
introduced to make the dimension of the test space equal to the dimension of the trial
space. Integrating by parts, (2.12) can alternatively be expressed in the form

N∑
i=1

Mi∑
j=1

[
−[Φi]ijvi(tij) −

∫
Iij

Φ̇ivi dt

]
=

∫ T

0

(J�(πu, U, ·)Φ + g, v) dt.(2.14)
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2.5. Multiadaptive dual discontinuous Galerkin, mdG(q)∗.With the same
definitions of V and V̂ as in (2.5), we define the mdG(q)∗ method for (2.9) as follows:
Find Φ ∈ V̂ with Φ(T+) = ψ such that

N∑
i=1

Mi∑
j=1

[
[vi]i,j−1Φi

(
t+i,j−1

)
+

∫
Iij

v̇iΦi dt

]
=

∫ T

0

(J(πu, U, ·)v,Φ) dt + Lψ,g(v)(2.15)

for all v∈V with v(0−)=0. Integrating by parts, (2.15) can alternatively be expressed
in the form

N∑
i=1

Mi∑
j=1

[
−[Φi]ijvi

(
t−ij

)
−
∫
Iij

Φ̇ivi dt

]
=

∫ T

0

(J�(πu, U, ·)Φ + g, v) dt.(2.16)

3. Existence of solutions. To prove existence of the discrete mcG(q), mdG(q),
mcG(q)∗, and mdG(q)∗ solutions defined in the previous section, we formulate fixed
point iterations for the construction of solutions. Existence then follows from the
Banach fixed point theorem if the time steps are sufficiently small.

Lemma 3.1 (fixed point iteration). Let Tn be a time slab with synchronized
time levels Tn−1 and Tn. With time reversed for the dual methods (to simplify the
notation), the mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗ methods can all be expressed
in the following form: For all Iij ∈ Tn, find {ξijn} (the degrees of freedom for Ui on
Iij) such that

ξijn = ui(0) +

∫ ti,j−1

0

fi(U, ·) dt +

∫
Iij

w[qij ]
n (τij(t))fi(U, ·) dt,(3.1)

where τij(t) = (t − ti,j−1)/(tij − ti,j−1) and {w[qij ]
n } is a set of polynomial weight

functions on [0, 1].
Proof. The result follows from the definitions of the mcG(q), mdG(q), mcG(q)∗,

and mdG(q)∗ methods, using an appropriate basis for the trial and test spaces. See
[34] for details.

Theorem 3.2 (existence of solutions). Let K = maxKn be the maximum time
slab length and define the Lipschitz constant Lf > 0 by

‖f(x, t) − f(y, t)‖l∞ ≤ Lf‖x− y‖l∞ ∀t ∈ [0, T ] ∀x, y ∈ R
N .(3.2)

If now

KCLf < 1,(3.3)

where C = C(q) > 0 is a constant depending only on the order and method, the
fixed point iteration (3.1) converges to the unique solution of (2.2), (2.6), (2.12), and
(2.15), respectively.

Proof. The result follows by Lemma 3.1 and an application of the Banach fixed
point theorem. See [34] for details.

4. Stability of solutions. Write the dual problem (2.9) for φ = φ(t) in the
form

−φ̇(t) + A�(t)φ(t) = g, t ∈ [0, T ),

φ(T ) = ψ.
(4.1)
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For simplicity, we consider only the case g = 0. With w(t) = φ(T − t), we have
ẇ(t) = −φ̇(T − t) = −A�(T − t)w(t), and so (4.1) can be written as a forward
problem for w in the form

ẇ(t) + B(t)w(t) = 0, t ∈ (0, T ],

w(0) = w0,
(4.2)

where w0 = ψ and B(t) = A�(T − t). Below, w represents either u or φ(T − ·) and,
correspondingly, W represents either the discrete mc/dG(q) approximation U of u or
the discrete mc/dG(q)∗ approximation Φ of φ.

4.1. A general exponential estimate. The general exponential stability esti-
mate is based on the following version of the discrete Gronwall inequality.

Lemma 4.1 (discrete Gronwall inequality). Assume that z, a : N → R are non-
negative, a(m) ≤ 1/2 for all m, and z(n) ≤ C +

∑n
m=1 a(m)z(m) for all n. Then

z(n) ≤ 2C exp(
∑n−1

m=1 2a(m)) for n = 1, 2, . . . .

Proof. By a standard discrete Gronwall inequality [38], z(n) ≤ C exp(
∑n−1

m=0 a(m))

if z(n) ≤ C +
∑n−1

m=0 a(m)z(m) for n ≥ 1 and z(0) ≤ C. Here, (1 − a(n))z(n) ≤
C +

∑n−1
m=1 a(m)z(m), and so z(n) ≤ 2C +

∑n−1
m=1 2a(m)z(m), since 1 − a(n) ≥ 1/2.

The result now follows if we take a(0) = z(0) = 0.

Theorem 4.2 (stability estimate). Let W be the mcG(q), mdG(q), mcG(q)∗, or
mdG(q)∗ solution of (4.2). Then there is a constant C = C(q), depending only on
the highest order max qij, such that if KnC‖B‖L∞([Tn−1,Tn],lp) ≤ 1 for n = 1, . . . ,M ,
then

‖W‖L∞([Tn−1,Tn],lp) ≤ C‖w0‖lp exp

(
n−1∑
m=1

KmC‖B‖L∞([Tm−1,Tm],lp)

)
(4.3)

for n = 1, . . . ,M , 1 ≤ p ≤ ∞.

Proof. By Lemma 3.1, we can write the mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗

methods in the form ξijn′ = wi(0) +
∫ ti,j−1

0
fi(W, ·) dt +

∫
Iij

w
[qij ]
n′ (τij(t))fi(W, ·) dt.

Applied to the linear model problem (4.2), we have ξijn′ = wi(0) −
∫ ti,j−1

0
(BW )i dt−∫

Iij
w

[qij ]
n′ (τij(t))(BW )i dt, and so

|ξijn′ | ≤ |wi(0)| +
∣∣∣∣
∫ ti,j−1

0

(BW )i dt

∣∣∣∣ +

∣∣∣∣
∫
Iij

w
[qij ]
n′ (τij(t))(BW )i dt

∣∣∣∣
≤ |wi(0)| + C

∫ tij

0

|(BW )i| dt ≤ |wi(0)| + C

∫ Tn

0

|(BW )i| dt,

where Tn is smallest synchronized time level for which tij ≤ Tn. It now follows that

for all t ∈ [Tn−1, Tn], we have |Wi(t)| ≤ C|wi(0)| + C
∫ Tn

0
|(BW )i| dt, and so

‖W (t)‖lp ≤ C‖w0‖lp + C

∫ Tn

0

‖BW‖lp dt = C‖w0‖lp + C

n∑
m=1

∫ Tm

Tm−1

‖BW‖lp dt.

The result now follows by letting W̄n = ‖W‖L∞([Tn−1,Tn],lp).

Remark 4.1. See [34] for an extension to multiadaptive time-stepping of the
strong stability estimate Lemma 6.1 for parabolic problems in [11].
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5. Interpolation estimates. In this section, we introduce a pair of carefully
chosen interpolants, π

[q]
cG and π

[q]
dG, which are central to the a priori error analysis

of the mcG(q) and mdG(q) methods. The interpolants are defined in section 5.1.
In section 5.2, we discuss the interpolation of piecewise smooth functions, that is,
the interpolation of functions which may be discontinuous within the interval of in-
terpolation, and then present the basic general interpolation estimates for the two
interpolants π

[q]
cG and π

[q]
dG.

For the a priori error analysis of the mcG(q) and mdG(q) methods, we will also
need a special interpolation estimate for the function ϕ = J�Φ, where J is the
Jacobian of the right-hand side f of (1.1) and Φ is the discrete dual solution as
defined in section 2, including estimates for the size of the jump in function value and
derivatives for the function ϕ at points of discontinuity. These estimates are proved in
section 5.3, based on a representation formula for the mcG(q) and mdG(q) solutions
of (1.1).

5.1. Interpolants. The interpolant π
[q]
cG : V → Pq([a, b]) is defined by the fol-

lowing conditions:

π
[q]
cGv(a) = v(a) and π

[q]
cGv(b) = v(b),∫ b

a

(
v − π

[q]
cGv

)
w dx = 0 ∀w ∈ Pq−2([a, b]),

(5.1)

where V denotes the set of functions that are piecewise Cq+1 and bounded on [a, b].
In other words, π

[q]
cGv is the polynomial of degree q that interpolates v at the end-

points of the interval [a, b] and additionally satisfies q− 1 projection conditions. This
is illustrated in Figure 2. We also define the dual interpolant π

[q]
cG∗ as the standard

L2-projection onto Pq−1([a, b]).
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Fig. 2. The interpolant π
[q]
cGv (dashed) of the function v(x) = x sin(7x) (solid) on [0, 1] for

q = 1 (left) and q = 3 (right).

The interpolant π
[q]
dG : V → Pq([a, b]) is defined by the following conditions:

π
[q]
dGv(b) = v(b),∫ b

a

(
v − π

[q]
dGv

)
w dx = 0 ∀w ∈ Pq−1([a, b]),

(5.2)

that is, π
[q]
dGv is the polynomial of degree q that interpolates v at the right end-point of

the interval [a, b] and additionally satisfies q projection conditions. This is illustrated
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Fig. 3. The interpolant π
[q]
dG

v (dashed) of the function v(x) = x sin(7x) (solid) on [0, 1] for
q = 0 (left) and q = 3 (right).

a bx1 x2

v

πv

Fig. 4. A piecewise smooth function v and its interpolant πv.

in Figure 3. The dual interpolant π
[q]
dG∗ is defined similarly, with the difference being

that the left end-point x = a is used for interpolation.

5.2. Basic interpolation estimates. To estimate the size of the interpolation
error πv − v for a given function v, we express the interpolation error in terms of the
regularity of v and the length of the interpolation interval, k = b − a. Specifically,
when v ∈ Cq+1([a, b]) ⊂ V for some q ≥ 0, we obtain estimates of the form

∥∥(πv)(p) − v(p)
∥∥ ≤ Ckq+1−p

∥∥v(q+1)
∥∥, p = 0, . . . , q + 1,(5.3)

where ‖ · ‖ = ‖ · ‖L∞([a,b]) denotes the maximum norm on [a, b]. This estimate is
a simple consequence of the Peano kernel theorem [40] if one can show that the
interpolant π : V → Pq([a, b]) ⊂ V is linear and bounded on V and that π is exact on
Pq([a, b]) ⊂ V , that is, πv = v for all v ∈ Pq([a, b]).

In the general case, where the interpolated function v is only piecewise smooth
(see Figure 4), we also need to include the size of the jump [v(p)]x in function value
and derivatives at each point x of discontinuity within (a, b) to measure the regularity
of the interpolated function v. In [34], we prove the following extensions of the basic
estimate (5.3).

Lemma 5.1. If π is linear and bounded on V and is exact on Pq([a, b]) ⊂ V ,
then there is a constant C = C(q) > 0 such that for all v piecewise Cq+1 on [a, b] with
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Iijti,j−1 tij

Φi(t)

Φl(t)

Fig. 5. If some other component l �= i has a node within Iij , then Φl may be discontinuous
within Iij , causing ϕi to be discontinuous within Iij .

discontinuities at a < x1 < · · · < xn < b,

∥∥(πv)(p) − v(p)
∥∥ ≤ Ckr+1−p

∥∥v(r+1)
∥∥ + C

n∑
j=1

r∑
m=0

km−p
∣∣[v(m)

]
xj

∣∣(5.4)

for p = 0, . . . , r + 1, r = 0, . . . , q.
Lemma 5.2. If π is linear and bounded on V and is exact on Pq([a, b]) ⊂ V ,

then there is a constant C = C(q) > 0 such that for all v piecewise Cq+1 on [a, b] with
discontinuities at a < x1 < · · · < xn < b,

∥∥(πv)(p)
∥∥ ≤ C

∥∥v(p)
∥∥ + C

n∑
j=1

p−1∑
m=0

km−p
∣∣[v(m)

]
xj

∣∣(5.5)

for p = 0, . . . , q.

Lemmas 5.1 and 5.2 apply to both the π
[q]
cG interpolant (for q ≥ 1) and the π

[q]
dG

interpolant (for q ≥ 0) defined in section 5.1. The linearity of both interpolants follows
directly from the definition of the interpolants. The proofs that both interpolants are
bounded and exact on Pq([a, b]) are given in detail in [34] and [35].

5.3. A special interpolation estimate. To prove a priori error estimates for
mcG(q) and mdG(q) in section 6, we need to estimate the interpolation error πϕ−ϕ
for the function ϕ defined by

ϕi = (J�(πu, u, ·)Φ)i =

N∑
l=1

Jli(πu, u, ·)Φl, i = 1, . . . , N.(5.6)

We note that ϕi may be discontinuous within Iij if Iij contains a node for some other
component, which is generally the case. This is illustrated in Figure 5. Note that on
the right-hand side f is linearized around a mean value of πu and u.

An interpolation estimate for πϕ−ϕ follows directly from Lemma 5.1. To use this
estimate, we need to estimate the size of the jump in function value and derivatives at



2634 ANDERS LOGG

each internal node tij of the partition T . To obtain this estimate, we need to make a
number of additional assumptions on the right-hand side f of (1.1) and the partition
T . These assumptions are discussed in section 5.3.2. Based on the assumptions and
the representation formula presented in section 5.3.1, we obtain the jump estimates
in section 5.3.3 and, finally, in section 5.3.4, the interpolation estimate for ϕ.

5.3.1. A representation formula. The proof of jump estimates for the multi-
adaptive Galerkin methods mcG(q) and mdG(q) is based on expressing the solutions
as certain interpolants. These representations are obtained as follows. Let U be the
mcG(q) or mdG(q) solution of (1.1) and define, for i = 1, . . . , N ,

Ũi(t) = ui(0) +

∫ t

0

fi(U(s), s) ds.(5.7)

Similarly, for Φ the mcG(q)∗ or mdG(q)∗ solution of (2.9), we define, for i = 1, . . . , N ,

Φ̃i(t) = ψi +

∫ T

t

f∗
i (Φ(s), s) ds,(5.8)

where f∗(Φ, ·) = J�(πu, U, ·)Φ + g. We note that ˙̃U = f(U, ·) and − ˙̃Φ = f∗(Φ, ·).
It now turns out that U can be expressed as an interpolant of Ũ . Similarly, Φ

can be expressed as an interpolant of Φ̃. We present these representations in Lemmas

5.3 and 5.4. We remind the reader about the interpolants π
[q]
cG, π

[q]
cG∗ , π

[q]
dG, and π

[q]
dG∗ ,

defined in section 5.1.
Lemma 5.3. The mcG(q) solution U of (1.1) can expressed in the form U = π

[q]
cGŨ .

Similarly, the mcG(q)∗ solution Φ of (2.9) can be expressed in the form Φ = π
[q]
cG∗Φ̃,

that is, Ui = π
[qij ]
cG Ũi and Φi = π

[qij ]
cG∗ Φ̃i on each local interval Iij.

Proof. The representation formulas follow by the definitions of the mcG(q) and

mcG(q)∗ methods and the interpolants π
[q]
cG and π

[q]
cG∗ . See [34] for details.

Lemma 5.4. The mdG(q) solution U of (1.1) can expressed in the form U = π
[q]
dGŨ .

Similarly, the mdG(q)∗ solution Φ of (2.9) can be expressed in the form Φ = π
[q]
dG∗Φ̃,

that is, Ui = π
[qij ]
dG Ũi and Φi = π

[qij ]
dG∗ Φ̃i on each local interval Iij.

Proof. The representation formulas follow by the definitions of the mdG(q) and

mdG(q)∗ methods and the interpolants π
[q]
dG and π

[q]
dG∗ . See [34] for details.

5.3.2. Assumptions. To estimate the size of the jump in function value and
derivatives for the function ϕ defined in (5.6), we make the following assumptions.
Given a time slab T , assume that for each pair of local intervals Iij and Imn within
the time slab, we have

qij = qmn = q̄(A1)

and

kij > α kmn(A2)

for some q̄ ≥ 0 and some α ∈ (0, 1). The dependence on α in the error estimates is
weak (see Remark 5.1), so assumption (A2) does not prevent multiadaptivity.

We also assume that the problem (1.1) is autonomous,

∂fi/∂t = 0, i = 1, . . . , N,(A3)
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noting that the dual problem nevertheless will be nonautonomous in general. Fur-
thermore, we assume that

‖fi‖Dq̄+1(T ) < ∞, i = 1, . . . , N,(A4)

where ‖ · ‖Dp(T ) is defined for v : R
N → R and p ≥ 0 by ‖v‖Dp(T ) = maxn=0,...,p

‖Dnv‖L∞(T ,l∞), with the norm ‖Dnv‖L∞(T ,l∞) defined by ‖Dnv w1 · · ·wn‖L∞(T ) ≤
‖Dnv‖L∞(T ,l∞)‖w1‖l∞ · · · ‖wn‖l∞ for all w1, . . . , wn ∈ R

N , and Dnv the nth-order
tensor given by

Dnv w1 · · ·wn =

N∑
i1=1

· · ·
N∑

in=1

∂nv

∂xi1 · · · ∂xin

w1
i1 · · ·w

n
in .

Furthermore, we choose Cf ≥ maxi=1,...,N ‖fi‖Dq̄+1(T ) such that

‖dp/dtp(∂f/∂u)�(x(t))‖l∞ ≤ CfC
p
x(5.9)

for p = 0, . . . , q̄, and

∥∥[dp/dtp(∂f/∂u)�(x(t))]t
∥∥
l∞

≤ Cf

p∑
n=0

Cp−n
x

∥∥[x(n)
]
t

∥∥
l∞

(5.10)

for p = 0, . . . , q̄− 1 and any given x : R → R
N , where Cx > 0 denotes a constant such

that ‖x(n)‖L∞(T ,l∞) ≤ Cn
x for n = 1, . . . , p. Note that Cf = Cf (t) defines a piecewise

constant function on the partition 0 = T0 < T1 < · · · < TM = T . Note also that
assumption (A4) implies that each fi is bounded by Cf .

We further assume that there is a constant ck > 0 such that

kijCf ≤ ck(A5)

for each local interval Iij . We summarize the list of assumptions as follows:
(A1) the local orders qij are equal within each time slab;
(A2) the local time steps kij are semiuniform within each time slab;
(A3) f is autonomous;
(A4) f and its derivatives are bounded;
(A5) the local time steps kij are small.

5.3.3. Estimates of derivatives and jumps. To estimate higher-order deriva-
tives, we face the problem of taking higher-order derivatives of f(U(t), t) with respect
to t. In Lemmas 5.5 and 5.6, we present basic estimates for composite functions v ◦ x
with v : R

N → R and x : R → R
N . The proofs are based on a straightforward

application of the chain rule and Leibniz rule and are given in full detail in [34].
Lemma 5.5. Let v : R

N → R be p ≥ 0 times differentiable in all its variables,
let x : R → R

N be p times differentiable, and let Cx > 0 be a constant such that
‖x(n)‖L∞(R,l∞) ≤ Cn

x for n = 1, . . . , p. Then there is a constant C = C(p) > 0 such
that ∥∥∥∥d

p(v ◦ x)

dtp

∥∥∥∥
L∞(R)

≤ C‖v‖Dp(R)C
p
x.(5.11)

Lemma 5.6. Let v : R
N → R be p+1 ≥ 1 times differentiable in all its variables,

let x : R → R
N be p times differentiable, except possibly at some t ∈ R, and let
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Cx > 0 be a constant such that ‖x(n)‖L∞(R,l∞) ≤ Cn
x for n = 1, . . . , p. Then there is

a constant C = C(p) > 0 such that

∣∣∣∣
[
dp(v ◦ x)

dtp

]
t

∣∣∣∣ ≤ C‖v‖Dp+1(R)

p∑
n=0

Cp−n
x

∥∥[x(n)
]
t

∥∥
l∞

.(5.12)

We now prove estimates for derivatives and jumps of the mcG(q) or mdG(q)
solution U of the general nonlinear problem (1.1), under the assumptions listed in
section 5.3.2. Similarly, one can obtain estimates for the discrete dual solution Φ and
the function ϕ defined in (5.6), from which the desired interpolation estimates follow.

To obtain estimates for the multiadaptive solution U , we first prove estimates for
the function Ũ defined in section 5.3.1. The estimates for U then follow by induction.

To simplify the estimates, we introduce the following notation. For given p > 0,
let CU,p ≥ Cf be a constant such that

∥∥U (n)
∥∥
L∞(T ,l∞)

≤ Cn
U,p, n = 1, . . . , p.(5.13)

For p = 0, we define CU,0 = Cf . Temporarily, we assume that there is a constant
c′k > 0 such that for each p,

kijCU,p ≤ c′k.(A5′)

This assumption will be removed in Lemma 5.9. In the following lemma, we use
assumptions (A1), (A3), and (A4) to derive estimates for Ũ in terms of CU,p and Cf .

Lemma 5.7 (derivative and jump estimates for Ũ). Let U be the mcG(q) or
mdG(q) solution of (1.1) and define Ũ as in (5.7). If assumptions (A1), (A3), and
(A4) hold, then there is a constant C = C(q̄) > 0 such that

∥∥Ũ (p)
∥∥
L∞(T ,l∞)

≤ CCp
U,p−1, p = 1, . . . , q̄ + 1,(5.14)

and

∥∥[Ũ (p)
]
ti,j−1

∥∥
l∞

≤ C

p−1∑
n=0

Cp−n
U,p−1

∥∥[U (n)
]
ti,j−1

∥∥
l∞

, p = 1, . . . , q̄ + 1,(5.15)

for each local interval Iij, where ti,j−1 is an internal node of the time slab T .

Proof. By definition, Ũ
(p)
i = dp−1

dtp−1 fi(U), and so the results follow directly by
Lemmas 5.5 and 5.6, noting that Cf ≤ CU,p−1.

By Lemma 5.7, we now obtain the following estimate for the size of the jump in
function value and derivatives for U .

Lemma 5.8 (jump estimates for U). Let U be the mcG(q) or mdG(q) solution
of (1.1). If assumptions (A1)–(A5) and (A5′) hold, then there is a constant C =
C(q̄, ck, c

′
k, α) > 0 such that

∥∥[U (p)
]
ti,j−1

∥∥
l∞

≤ Ckr+1−p
ij Cr+1

U,r , p = 0, . . . , r + 1, r = 0, . . . , q̄,(5.16)

for each local interval Iij, where ti,j−1 is an internal node of the time slab T .
Proof. The proof is by induction. We first note that at t = ti,j−1, we have

[
U

(p)
i

]
t
= U

(p)
i (t+) − Ũ

(p)
i (t+) + Ũ

(p)
i (t+) − Ũ

(p)
i (t−) + Ũ

(p)
i (t−) − U

(p)
i (t−)

≡ e+ + e0 + e−.
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By Lemma 5.3 (or Lemma 5.4), U is an interpolant of Ũ and so, by Lemma 5.1, we
have

|e+| ≤ Ckr+1−p
ij

∥∥Ũ (r+1)
i

∥∥
L∞(Iij)

+ C
∑

x∈Nij

r∑
m=1

km−p
ij

∣∣[Ũ (m)
i

]
x

∣∣

for p = 0, . . . , r+1 and r = 0, . . . , q̄. Note that the second sum starts at m = 1 rather
than at m = 0, since Ũ is continuous. Similarly, we have

|e−| ≤ Ckr+1−p
i,j−1

∥∥Ũ (r+1)
i

∥∥
L∞(Ii,j−1)

+ C
∑

x∈Ni,j−1

r∑
m=1

km−p
i,j−1

∣∣[Ũ (m)
i

]
x

∣∣.

To estimate e0, we note that e0 = 0 for p = 0, since Ũ is continuous. For p = 1, . . . , q̄+

1, Lemma 5.7 gives |e0| = |[Ũ (p)
i ]t| ≤ C

∑p−1
n=0 C

p−n
U,p−1‖[U (n)]t‖l∞ . By assumption (A2),

it then follows that (5.16) holds for r = 0.
Assume now that (5.16) holds for r = r̄ − 1 ≥ 0. Then, by Lemma 5.7 and

assumption (A5′), it follows that

|e+| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ + C
∑

x∈Nij

r̄∑
m=1

km−p
ij

m−1∑
n=0

Cm−n
U,m−1

∥∥[Un]x
∥∥
l∞

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ + C
∑

km−p
ij Cm−n

U,m−1k
(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1

≤ Ckr̄+1−p
ij C r̄+1

U,r̄

(
1 +

∑
(kijCU,r̄−1)

m−1−n
)
≤ Ckr̄+1−p

ij C r̄+1
U,r̄ .

Similarly, we obtain the estimate |e−| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ . Finally, we use Lemma 5.7
and assumption (A5′) to obtain the estimate

|e0| ≤ C

p−1∑
n=0

Cp−n
U,p−1

∥∥[Un]t
∥∥
l∞

≤ C

p−1∑
n=0

Cp−n
U,p−1k

(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1

= Ckr̄+1−p
ij C r̄+1

U,r̄

p−1∑
n=0

(kijCU,r̄)
p−1−n ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ .

Summing up, we thus obtain |[U (p)
i ]t| ≤ |e+| + |e0| + |e−| ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ , and so

(5.16) follows by induction.
By Lemmas 5.7 and 5.8, we now obtain the following estimate for derivatives of

the solution U .
Lemma 5.9 (derivative estimates for U). Let U be the mcG(q) or mdG(q) solution

of (1.1). If assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0
such that

∥∥U (p)
∥∥
L∞(T ,l∞)

≤ CCp
f , p = 1, . . . , q̄.(5.17)

Proof. By Lemma 5.3 (or Lemma 5.4), U is an interpolant of Ũ and so, by Lemma
5.1, we have

∥∥U (p)
i

∥∥
L∞(Iij)

=
∥∥(πŨi)

(p)
∥∥
L∞(Iij)

≤ C ′∥∥Ũ (p)
i

∥∥
L∞(Iij)

+ C ′
∑

x∈Nij

p−1∑
m=1

km−p
ij

∣∣[Ũ (m)
i

]
x

∣∣
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for some constant C ′ = C ′(q̄). For p = 1, we thus obtain the estimate

‖U̇i‖L∞(Iij) ≤ C ′‖ ˙̃U i‖L∞(Iij) = C ′‖fi(U)‖L∞(Iij) ≤ C ′Cf

by assumption (A4), and so (5.17) holds for p = 1.
For p = 2, . . . , q̄, assuming that (A5′) holds for CU,p−1, we use Lemmas 5.7 and

5.8 (with r = p− 1) and assumption (A2) to obtain

∥∥U (p)
i

∥∥
L∞(Iij)

≤ CCp
U,p−1 + C

∑
x∈Nij

p−1∑
m=1

km−p
ij

m−1∑
n=0

Cm−n
U,m−1

∥∥[U (n)
]
x

∥∥
l∞

≤ CCp
U,p−1 + C

∑
km−p
ij Cm−n

U,m−1k
(p−1)+1−n
ij C

(p−1)+1
U,p−1

≤ CCp
U,p−1

(
1 +

∑
(kijCU,m−1)

m−n
)
≤ CCp

U,p−1,

where C = C(q̄, ck, c
′
k, α). This holds for all components i and all local intervals Iij

within the time slab T , and so∥∥U (p)
∥∥
L∞(T ,l∞)

≤ CCp
U,p−1, p = 1, . . . , q̄,

where by definition CU,p−1 is a constant such that ‖U (n)‖L∞(T ,l∞) ≤ Cn
U,p−1 for n =

1, . . . , p− 1. Starting at p = 1, we now define CU,1 = C1Cf with C1 = C ′ = C ′(q̄). It
then follows that (A5′) holds for CU,1 with c′k = C ′ck, and thus∥∥U (2)

∥∥
L∞(T ,l∞)

≤ CC2
U,2−1 = CC2

U,1 ≡ C2C
2
f ,

where C2 = C2(q̄, ck, α). We may thus define CU,2 = max(C1Cf ,
√
C2Cf ). Continu-

ing, we note that (A5′) holds for CU,2, and thus∥∥U (3)
∥∥
L∞(T ,l∞)

≤ CC3
U,3−1 = CC3

U,2 ≡ C3C
3
f ,

where C3 = C3(q̄, ck, α). In this way, we obtain a sequence of constants C1, . . . , Cq̄,
depending only on q̄, ck, and α, such that ‖U (p)‖L∞(T ,l∞) ≤ CpC

p
f for p = 1, . . . , q̄,

and so (5.17) follows if we take C = maxi=1,...,q̄ Ci.
Having now removed the additional assumption (A5′), we obtain the following

version of Lemma 5.8.
Lemma 5.10 (jump estimates for U). Let U be the mcG(q) or mdG(q) solution

of (1.1). If assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0
such that ∥∥[U (p)

]
ti,j−1

∥∥
l∞

≤ Ckq̄+1−p
ij C q̄+1

f , p = 0, . . . , q̄,(5.18)

for each local interval Iij, where ti,j−1 is an internal node of the time slab T .
Similarly, we obtain estimates for the discrete dual solution Φ and the function

ϕ. In Lemma 5.11, we present the estimates for the function ϕ.
Lemma 5.11 (estimates for ϕ). Let ϕ be defined as in (5.6). If assumptions

(A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0 such that∥∥ϕ(p)
i

∥∥
L∞(Iij)

≤ CCp+1
f ‖Φ‖L∞(T ,l∞), p = 0, . . . , qij ,(5.19)

and ∣∣[ϕ(p)
i

]
x

∣∣ ≤ Ck
rij−p
ij C

rij+1
f ‖Φ‖L∞(T ,l∞) ∀x ∈ Nij , p = 0, . . . , qij − 1,(5.20)

with rij = qij for the mcG(q) method and rij = qij + 1 for the mdG(q) method. This
holds for each local interval Iij within the time slab T .
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5.3.4. Interpolation estimates. Using the basic interpolation estimate of sec-
tion 5.2, we now obtain the following important interpolation estimates for the func-
tion ϕ.

Lemma 5.12 (interpolation estimates for ϕ). Let ϕ be defined as in (5.6). If
assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0 such that

∥∥π[qij−2]
cG ϕi − ϕi

∥∥
L∞(Iij)

≤ Ck
qij−1
ij C

qij
f ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 2,(5.21)

and

∥∥π[qij−1]
dG ϕi − ϕi

∥∥
L∞(Iij)

≤ Ck
qij
ij C

qij+1
f ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 1,(5.22)

for each local interval Iij within the time slab T .
Proof. To prove (5.21), we use Lemma 5.1, with r = qij − 2 and p = 0, together

with Lemma 5.11, to obtain

∥∥π[qij−2]
cG ϕi − ϕi

∥∥
L∞(Iij)

≤ Ck
qij−1
ij

∥∥ϕ(qij−1)
i

∥∥
L∞(Iij)

+ C
∑

x∈Nij

qij−2∑
m=0

kmij
∣∣[ϕ(m)

i

]
x

∣∣

≤ Ck
qij−1
ij C

qij
f ‖Φ‖L∞(T ,l∞) + C

∑
x∈Nij

qij−2∑
m=0

kmij k
qij−m
ij C

qij+1
f ‖Φ‖L∞(T ,l∞)

= Ck
qij−1
ij C

qij
f ‖Φ‖L∞(T ,l∞) + Ck

qij
ij C

qij+1
f ‖Φ‖L∞(T ,l∞),

from which the estimate follows. The estimate for π
[qij−1]
dG ϕi − ϕi is obtained simi-

larly.
Remark 5.1. Note that there is only a weak dependence on ck and α, since the

jump term contains an extra factor kij. If higher-order terms can be ignored, then the
dependence on ck and α can be removed.

6. A priori error estimates. To prove a priori error estimates for the mcG(q)
and mdG(q) methods, we derive error representations in section 6.1 and then obtain
the a priori error estimates in section 6.2 for the general nonlinear case. We refer to
[34] for a sharp a priori error estimate in the case of a parabolic model problem.

6.1. Error representation. For each of the two methods, mcG(q) and mdG(q),
we represent the error in terms of the discrete dual solution Φ and an interpolant πu of
the exact solution u of (1.1), using the special interpolants πu = π

[q]
cGu or πu = π

[q]
dGu

defined in section 5.
We write the error e = U − u in the form

e = ē + (πu− u),(6.1)

where ē ≡ U−πu is represented in terms of the discrete dual solution and the residual
of the interpolant. An estimate for the second part of the error, πu−u, follows directly
from an interpolation estimate.

In Lemma 6.1, we present the error representation for the mcG(q) method, and
then present the corresponding representation for the mdG(q) method in Lemma 6.2.
The error representations are obtained directly by choosing ē as a test function for
the discrete dual problems (2.12) and (2.15).

Lemma 6.1 (error representation for mcG(q)). Let U be the mcG(q) solution of
(1.1), let Φ be the corresponding mcG(q)∗ solution of the dual problem (2.9), and let
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πu be any trial space approximation of the exact solution u of (1.1) that interpolates
u at the end-points of every local interval. Then

Lψ,g(ē) ≡ (ē(T ), ψ) +

∫ T

0

(ē, g) dt = −
∫ T

0

(R(πu, ·),Φ) dt,

where ē ≡ U − πu.
Lemma 6.2 (error representation for mdG(q)). Let U be the mdG(q) solution of

(1.1), let Φ be the corresponding mdG(q)∗ solution of the dual problem (2.9), and let
πu be any trial space approximation of the exact solution u of (1.1) that interpolates
u at the right end-point of every local interval. Then

Lψ,g(ē) = −
N∑
i=1

Mi∑
j=1

[
[πui]i,j−1Φi

(
t+i,j−1

)
+

∫
Iij

Ri(πu, ·)Φi dt

]
,

where ē ≡ U − πu.
With a special choice of interpolant, πu = π

[q]
cGu and πu = π

[q]
dGu, respectively, we

obtain the following versions of the error representations.
Corollary 6.3 (error representation for mcG(q)). Let U be the mcG(q) solution

of (1.1) and let Φ be the corresponding mcG(q)∗ solution of the dual problem (2.9).
Then

Lψ,g(ē) =

∫ T

0

(
f
(
π

[q]
cGu, ·

)
− f(u, ·),Φ

)
dt.

Proof. Integrate by parts and use the definition of the interpolant π
[q]
cG.

Corollary 6.4 (error representation for mdG(q)). Let U be the mdG(q) solution
of (1.1) and let Φ be the corresponding mdG(q)∗ solution of the dual problem (2.9).
Then

Lψ,g(ē) =

∫ T

0

(
f
(
π

[q]
dGu, ·

)
− f(u, ·),Φ

)
dt.

Proof. Integrate by parts and use the definition of the interpolant π
[q]
dG.

6.2. A priori error estimates for the general nonlinear problem. Using
the error representations of section 6.1, the stability estimates of section 4, and the
interpolation estimates of section 5, we now prove our main results: a priori error
estimates for general order mcG(q) and mdG(q).

Theorem 6.5 (a priori error estimate for mcG(q)). Let U be the mcG(q) solution
of (1.1) and let Φ be the corresponding mcG(q)∗ solution of the dual problem (2.9).
Then there is a constant C = C(q) > 0 such that

|Lψ,g(ē)| ≤ CS(T )
∥∥kq+1ū(q+1)

∥∥
L∞([0,T ],l2)

,(6.2)

where (kq+1ū(q+1))i(t) = k
qij+1
ij ‖u(qij+1)

i ‖L∞(Iij) for t ∈ Iij, and where the stability

factor S(T ) is given by S(T ) =
∫ T

0
‖J�(π

[q]
cGu, u, ·)Φ‖l2 dt. Furthermore, if assump-

tions (A1)–(A5) hold, then there is a constant C = C(q, ck, α) > 0 such that

|Lψ,g(ē)| ≤ CS̄(T )
∥∥k2q ¯̄u(2q)

∥∥
L∞([0,T ],l1)

,(6.3)
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where (k2q ¯̄u(2q))i(t) = k
2qij
ij C

qij−1
f ‖u(qij+1)

i ‖L∞(Iij) for t ∈ Iij, and where the stability

factor S̄(T ) is given by

S̄(T ) =

∫ T

0

Cf‖Φ‖L∞(T ,l∞) dt =

M∑
n=1

KnCf‖Φ‖L∞(Tn,l∞).

Proof. By Corollary 6.3, we obtain

Lψ,g(ē) =

∫ T

0

(
f
(
π

[q]
cGu, ·

)
− f(u, ·),Φ

)
dt =

∫ T

0

(
π

[q]
cGu− u, J�(π[q]

cGu, u, ·
)
Φ
)
dt.

By Lemma 5.1, it now follows that

|Lψ,g(ē)| ≤ C‖kq+1ūq+1‖L∞([0,T ],l2)

∫ T

0

∥∥J�(π[q]
cGu, u, ·

)
Φ
∥∥
l2
dt,

which proves (6.2). To prove (6.3), we note that by definition, π
[qij ]
cG ui−ui is orthogonal

to Pqij−2(Iij) for each local interval Iij , and so, recalling that ϕ = J�(π
[q]
cGu, u, ·)Φ,

Lψ,g(ē) =
∑
i,j

∫
Iij

(
π

[qij ]
cG ui − ui

)
ϕi dt =

∑
i,j

∫
Iij

(
π

[qij ]
cG ui − ui

)(
ϕi − π

[qij−2]
cG ϕi

)
dt,

where we take π
[qij−2]
cG ϕi ≡ 0 for qij = 1. By Lemmas 5.1 and 5.12, it now follows

that

|Lψ,g(ē)| ≤
∫ T

0

∣∣(π[q]
cGu− u, ϕ− π

[q−2]
cG ϕ

)∣∣ dt
=

∫ T

0

∣∣(kq−1Cq−1
f

(
π

[q]
cGu− u

)
, k−(q−1)C

−(q−1)
f

(
ϕ− π

[q−2]
cG ϕ

))∣∣ dt
≤ C

∥∥k2q ¯̄u(2q)
∥∥
L∞([0,T ],l1)

∫ T

0

Cf‖Φ‖L∞(T ,l∞) dt

= CS̄(T )
∥∥k2q ¯̄u(2q)

∥∥
L∞([0,T ],l1)

,

where S̄(T ) =
∫ T

0
Cf‖Φ‖L∞(T ,l∞) dt =

∑M
n=1 KnCf‖Φ‖L∞(Tn,l∞).

Similarly, we obtain the following a priori error estimate for the mdG(q) method.
Theorem 6.6 (a priori error estimate for mdG(q)). Let U be the mdG(q) solution

of (1.1) and let Φ be the corresponding mdG(q)∗ solution of the dual problem (2.9).
Then there is a constant C = C(q) > 0 such that

|Lψ,g(ē)| ≤ CS(T )
∥∥kq+1ū(q+1)

∥∥
L∞([0,T ],l2)

,(6.4)

where (kq+1ū(q+1))i(t) = k
qij+1
ij ‖u(qij+1)

i ‖L∞(Iij) for t ∈ Iij, and where the stability

factor S(T ) is given by S(T ) =
∫ T

0
‖J�(π

[q]
dGu, u, ·)Φ‖l2 dt. Furthermore, if assump-

tions (A1)–(A5) hold, then there is a constant C = C(q, ck, α) > 0 such that

|Lψ,g(ē)| ≤ CS̄(T )
∥∥k2q+1 ¯̄u(2q+1)

∥∥
L∞([0,T ],l1)

,(6.5)

where (k2q+1 ¯̄u(2q+1))i(t) = k
2qij+1
ij C

qij
f ‖u(qij+1)

i ‖L∞(Iij) for t ∈ Iij, and where the

stability factor S̄(T ) is given by

S̄(T ) =

∫ T

0

Cf‖Φ‖L∞(T ,l∞) dt =

M∑
n=1

KnCf‖Φ‖L∞(Tn,l∞).
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Using the stability estimate proved in section 4, we obtain the following bound
for the stability factor S̄(T ).

Lemma 6.7. Assume that KnCqCf ≤ 1 for all time slabs Tn, with Cq > 0 the
constant in Theorem 4.2, and take g = 0 in (2.9). Then

S̄(T ) ≤ ‖ψ‖l∞eCqC̄fT ,(6.6)

where C̄f = max[0,T ] Cf .
Proof. By Theorem 4.2, we obtain

‖Φ‖L∞(Tn,l∞) ≤ Cq‖ψ‖l∞ exp

(
M∑

m=n+1

KmCqCf

)
≤ Cq‖ψ‖l∞eCqC̄f (T−Tn),

and so

S̄(T ) =

M∑
n=1

KnCf‖Φ‖L∞(Tn,l∞) dt ≤ ‖ψ‖l∞
M∑
n=1

KnCqC̄fe
CqC̄f (T−Tn)

≤ ‖ψ‖l∞
∫ T

0

CqC̄fe
CqC̄f t dt ≤ ‖ψ‖l∞eCqC̄fT .

Finally, we rewrite the estimates of Theorems 6.5 and 6.6 for special choices of
data ψ and g. We first take ψ = 0. With gn = 0 for n = i, gi(t) = 0 for t ∈ Iij , and

gi(t) = sgn(ēi(t))/kij , t ∈ Iij ,

we obtain Lψ,g(ē) = 1
kij

∫
Iij

|ēi(t)| dt and so ‖ēi‖L∞(Iij) ≤ CLψ,g(ē) by an inverse esti-

mate. By definition, it follows that ‖ei‖L∞(Iij) ≤ CLψ,g(ē) +Ck
qij+1
ij ‖uqij+1

i ‖L∞(Iij).
Note that for this choice of g, we have ‖g‖L1([0,T ],l2) = ‖g‖L1([0,T ],l∞) = 1.

We also make the choice g = 0. Noting that ē(T ) = e(T ), since πu(T ) = u(T ),
we obtain

Lψ,g(ē) = (e(T ), ψ) = |ei(T )|

for ψi = sgn(ei(T )) and ψn = 0 for n = i, and

Lψ,g(ē) = (e(T ), ψ) = ‖e(T )‖l2

for ψ = e(T )/‖e(T )‖l2 . Note that for both choices of ψ, we have ‖ψ‖l∞ ≤ 1.
With these choices of data, we obtain the following versions of the a priori error

estimates.
Corollary 6.8 (a priori error estimate for mcG(q)). Let U be the mcG(q)

solution of (1.1). Then there is a constant C = C(q) > 0 such that

‖e‖L∞([0,T ],l∞) ≤ CS(T )
∥∥kq+1ū(q+1)

∥∥
L∞([0,T ],l2)

,(6.7)

where the stability factor S(T ) =
∫ T

0
‖J�(π

[q]
cGu, u, ·)Φ‖l2 dt is taken as the maximum

over ψ = 0 and ‖g‖L1([0,T ],l∞) = 1. Furthermore, if assumptions (A1)–(A5) and the
assumptions of Lemma 6.7 hold, then there is a constant C = C(q, ck, α) such that

‖e(T )‖lp ≤ CS̄(T )
∥∥k2q ¯̄u(2q)

∥∥
L∞([0,T ],l1)

(6.8)
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for p = 2,∞, where the stability factor S̄(T ) is given by S̄(T ) = eCqC̄fT .
Corollary 6.9 (a priori error estimate for mdG(q)). Let U be the mdG(q)

solution of (1.1). Then there is a constant C = C(q) > 0 such that

‖e‖L∞([0,T ],l∞) ≤ CS(T )
∥∥kq+1ū(q+1)

∥∥
L∞([0,T ],l2)

,(6.9)

where the stability factor S(T ) =
∫ T

0
‖J�(π

[q]
dGu, u, ·)Φ‖l2 dt is taken as the maximum

over ψ = 0 and ‖g‖L1([0,T ],l∞) = 1. Furthermore, if assumptions (A1)–(A5) and the
assumptions of Lemma 6.7 hold, then there is a constant C = C(q, ck, α) such that

‖e(T )‖lp ≤ CS̄(T )
∥∥k2q+1 ¯̄u(2q+1)

∥∥
L∞([0,T ],l1)

(6.10)

for p = 2,∞, where the stability factor S̄(T ) is given by S̄(T ) = eCqC̄fT .
The stability factor S(T ) that appears in the a priori error estimates is obtained

from the discrete solution Φ of the dual problem (4.1), and can thus be computed
by solving the discrete dual problem. Numerical computation of the stability factor
reveals the exact nature of the problem, in particular, whether or not the problem is
parabolic; if the stability factor is of unit size and does not grow, then the problem is
parabolic by definition; see [36].

6.3. A note on quadrature errors. The error representations presented in
section 6.1 are based on the Galerkin orthogonalities of the mcG(q) and mdG(q)
methods. In particular, for the mcG(q) method, we assume that

∫ T

0

(R(U, ·),Φ) dt = 0.

In the presence of quadrature errors, this term is nonzero. As a result, we obtain an
additional term of the form ∫ T

0

(f̃(U, ·) − f(U, ·),Φ) dt,

where f̃ is the interpolant of f corresponding the quadrature rule that is used. A
convenient choice of quadrature for the mcG(q) method is Lobatto quadrature with
q+ 1 nodal points [32], which means that the quadrature error is of order 2(q+1)−2 =
2q and so (super)convergence of order 2q is obtained also in the presence of quadrature
errors. Similarly for the mdG(q) method, we use Radau quadrature with q + 1 nodal
points, which means that the quadrature error is of order 2(q + 1) − 1 = 2q + 1, and
so the 2q + 1 convergence order of mdG(q) is also maintained under quadrature.

7. A numerical example. We conclude by demonstrating the convergence of
the multiadaptive methods in the case of a simple test problem.

Consider the problem

u̇1 = u2,

u̇2 = −u1,

u̇3 = −u2 + 2u4,

u̇4 = u1 − 2u3,

u̇5 = −u2 − 2u4 + 4u6,

u̇6 = u1 + 2u3 − 4u5

(7.1)
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Fig. 6. Convergence of the error at final time for the solution of the test problem (7.1) with
mcG(q) and mdG(q), q ≤ 5.

Table 1

Order of convergence p for mcG(q).

mcG(q) 1 2 3 4 5
p 1.99 3.96 5.92 7.82 9.67
2q 2 4 6 8 10

Table 2

Order of convergence p for mdG(q).

mdG(q) 0 1 2 3 4 5
p 0.92 2.96 4.94 6.87 9.10 –

2q + 1 1 3 5 7 9 11

on [0, 1] with initial condition u(0) = (0, 1, 0, 2, 0, 3). The solution is given by u(t) =
(sin t, cos t, sin t+ sin 2t, cos t+ cos 2t, sin t+ sin 2t+ sin 4t, cos t+ cos 2t+ cos 4t). For
given k0 > 0, we take ki(t) = k0 for i = 1, 2, ki(t) = k0/2 for i = 3, 4, and ki(t) = k0/4
for i = 5, 6, and study the convergence of the error ‖e(T )‖l2 with decreasing k0. From
the results presented in Figure 6 and Tables 1 and 2, it is clear that the predicted
order of convergence is obtained.

REFERENCES

[1] S. G. Alexander and C. B. Agnor, n-body simulations of late stage planetary formation with
a simple fragmentation model, ICARUS, 132 (1998), pp. 113–124.

[2] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

[3] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation
in finite element methods, Acta Numer., 10 (2001), pp. 1–102.

[4] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations—Runge–Kutta
and General Linear Methods, Wiley, New York, 1987.



MULTIADAPTIVE GALERKIN METHODS FOR ODES III 2645
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Abstract. We analyze the Ritz–Galerkin method for symmetric eigenvalue problems and prove
a priori eigenvalue error estimates. For a simple eigenvalue, we prove an error estimate that depends
mainly on the approximability of the corresponding eigenfunction and provide explicit values for
all constants. For a multiple eigenvalue we prove, in addition, what is apparently the first truly
a priori error estimates that show the levels of the eigenvalue errors depending on approximability
of eigenfunctions in the corresponding eigenspace. These estimates reflect a known phenomenon
that different eigenfunctions in the corresponding eigenspace may have different approximabilities,
thus resulting in different levels of errors for the approximate eigenvalues. For clustered eigenvalues,
we derive eigenvalue error bounds that do not depend on the width of the cluster. Our results are
readily applicable to the classical Ritz method for compact symmetric integral operators and to finite
element method eigenvalue approximation for symmetric positive definite differential operators.
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1. Introduction. We revisit the classical subject of a priori eigenvalue error
estimates for the Ritz–Galerkin approximation of symmetric eigenvalue problems,
with application to finite element method (FEM) eigenvalue approximation. A priori
estimates have traditionally been used to prove the convergence of FEM eigenvalue
approximation and to determine the convergence rate when the mesh is refined. These
estimates are typically based on the approximability of the eigenfunctions by the
FEM subspace and can be used to explain certain interesting features of eigenvalue
approximation. For example, see [1, 2, 3, 4] for explanations of why the third vibration
mode of an L-shaped membrane is easier to approximate than the first two, and why
two Ritz values approximating a double eigenvalue may converge at different rates.

The main result of the present paper—briefly stated—is that the eigenvalue errors
depend mainly on just the approximability of the corresponding invariant subspaces,
whether the eigenvalues are well separated, multiple, or clustered. Our results differ
from those in [2, 3, 4] in particular in that the information required by the new
estimates is minimal and is covered by explicitly given constants that can be relatively
easily obtained a posteriori from approximate eigenvalues and eigenfunctions. The
question of whether our theorems give completely computable eigenvalue bounds thus
is reduced to explicitly estimating the main factor, namely the approximability of
invariant subspaces.
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Computing the approximability is, however, difficult except in fairly trivial sit-
uations. One traditional approach is to use approximation theory results based on
the smoothness of the eigenfunctions. Many results of this type are known, but usu-
ally the constants in the estimates are generic and not easily computable in practice.
Assessing the smoothness of the eigenfunctions, meaning obtaining an estimate for
an appropriate higher Sobolev norm of the eigenfunction in question, can be done
using an appropriate regularity theory for the underlying partial differential equation.
Much is known about the regularity of the eigenfunctions, but, again, the constants
are typically generic and cannot be easily estimated, with rather trivial exceptions.
Nevertheless, a priori eigenvalue error analysis is a classical approach that has proved
to be useful.

Early examples of a priori eigenvalue error estimates can be found, e.g., in [17].
Later, it became clear that the eigenvalue error was governed by the approximability
of the exact eigenfunctions by the approximation space. In [5], Birkhoff et al. showed
that the error for the jth eigenvalue was bounded by a constant times the sum of the
norms squared of the approximation errors of the all eigenfunctions corresponding to
the first j eigenvalues. In [22], Weinberger improved this result, showing that in the
estimate for the relative eigenvalue error the constant simply equals one; see Remark
2.1 for the exact formulation. Knyazev in [11] (see also [8]) further improved this
result by replacing the norms of the approximation errors of individual eigenfunctions
with the angle that measures the approximability of the invariant subspace spanned
by these eigenfunctions. We reproduce this latter result by Knyazev in the present
paper, in Theorem 2.4, and show that it is sharp.

The estimates of [5, 22, 11] suggest that the jth eigenvalue error depends on the
approximability of all the eigenfunctions in the corresponding eigenspace, as well as
of all the eigenfunctions corresponding to the previous eigenvalues. In reality, this is
not the case. Numerical experiments for the L-shaped membrane eigenvalue problem
show that the accuracy of approximation for the third eigenvalue is significantly better
than for the first two. This can be explained as follows. We first note that the first two
eigenfunctions of the L-shaped membrane eigenvalue problem are singular because of
the re-entrant corner, but the third eigenfunction is analytic because of symmetry,
and hence easily approximated, especially by the p-method (see [1]). Second, Vainikko
in Krasnosel’skii et al. [16] and Chatelin [7] derive estimates of the eigenvalue error
mainly in terms of just the approximability of the eigenfunctions in the corresponding
eigenspace. Coupling this approximability result with this eigenvalue error estimate,
we obtain the accurate eigenvalue approximation for the third eigenvalue.

Moreover, Vainikko in Krasnosel’skii et al. [16] and Chatelin [7] show that the
multiplicative constant in the estimate of the relative eigenvalue error approaches 1
under the approximability assumption on the family of the approximating spaces; see
section 3.2 for details. In [3], Babuška and Osborn determine that the closeness of the
constant to 1 depends on the approximability of the operator of the original problem
by the Ritz method; again, see section 3.2.

Our first main results—Theorems 2.7 and 3.2—clarify the estimate of [3] and
improve the constant. All our constants are explicitly given, and no asymptotic
assumptions are made. In the FEM context, our results are readily applicable for a
fixed mesh without making the traditional assumption, cf. Strang and Fix [2], that
the mesh size is small enough.

When the eigenvalue of interest is of multiplicity q > 1, different eigenfunctions in
the corresponding eigenspace may have different approximabilities, thus resulting in
different levels of error for the approximate eigenvalues; i.e., the q Ritz values, corre-
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sponding to the multiple eigenvalue, may approach the eigenvalue with different rates.
It is important to have eigenvalue error estimates that capture this phenomenon.

The error bounds of Krasnosel’skii et al. [16] and Chatelin [7] effectively require
approximability of all eigenfunctions in the corresponding eigenspace that provides an
estimate for the largest eigenvalue error only. In [2, 3, 4], Babuška and Osborn perform
analysis that differentiates levels of eigenvalue error depending on approximability of
different eigenfunctions in the eigenspace, but their estimates are not truly a priori,
except for the estimate for the smallest eigenvalue error, which depends mainly on the
approximability of the most easily approximated eigenfunction within the eigenspace.

Our results for multiple eigenvalues—Theorems 2.11 and 3.3—clarify and improve
these results of [2, 3, 4]. For example, if the eigenspace is spanned by three eigen-
functions of different approximation qualities, our results estimate the corresponding
quality of each of the three Ritz values.

Error estimates for clustered eigenvalues are not well examined in the literature.
The results presented in this paper are valid for clustered eigenvalues, as well as for
multiple eigenvalues, and give error estimates that do not depend on the width of the
cluster. Ovtchinnikov in [19], independently derives similar estimates, which he calls
“cluster robust.” Our estimates, compared to those of [19], are more compact and
use less information.

In our proofs, we heavily use approximation error estimates for eigenspaces and
invariant subspaces obtained by Knyazev in [13].

The paper intentionally contains some material that may be considered redun-
dant, in order to improve readability. A critic once wrote about Beethoven’s Sym-
phony No. 2 in D major, op. 36 that it “would surely benefit from the abbreviation of
some passages and the deletion of others.” If we are allowed to use musical terms in
our defense and to compare our paper to a symphony, it consists of four movements:

The first, fast, movement is subsections 2.1–2.5. Subsection 2.1 sets the stage for
an abstract setting of a compact symmetric operator on a Hilbert space. We briefly
introduce the angles instruments in the developmental subsection 2.2 and then, in
subsection 2.3, the main theme, a priori estimates for eigenvalues. Subsection 2.4 is
the most important in the first movement—it brings us the main theme in its most
“ideal” form in Theorem 2.7, without a proof. Theorem 2.7 is an error estimate for
a jth eigenvalue mainly in terms of the approximation error of the corresponding
eigenfunctions. In subsection 2.5, the theme appears with slight variations for mul-
tiple and clustered eigenvalues. It becomes apparent that a major development is
needed.

The second, slow, movement is the massive subsection 2.6. The main theme is
significantly extended and generalized, with a complete vigorous proof, to carry a
considerable improvement, in Theorem 2.11, for multiple and clustered eigenvalues.
A number of possible variations surface at the end of the second movement.

The third, dance-like, movement is subsection 3.1, which is a brief reminiscence
of the first two movements. The same theme is essentially repeated, but in a different
key, for the variational Galerkin method in a context applicable to FEM eigenvalue
approximation for second order symmetric positive definite differential operators. Our
last main results—Theorem 3.2 and Theorem 3.3—appear in this subsection.

The fast finale, subsection 3.2, takes the material of the previous movement and
contrasts it from earlier work. It opens in a relaxed manner and cites several well-
known results. In closing, it reaches a climax by showing how to obtain differential
levels of eigenvalue error depending on approximability of different eigenfunctions in
the eigenspace.
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It would, of course, be appealing to have practical numerical examples of our a
priori analysis providing computable eigenvalue bounds, e.g., for the Laplacian in a
polygonal domain. It is known that the eigenfunctions of the Laplacian are smooth
(analytic, in fact) inside the domain, but are generally singular in the corners. In
certain cases, however, the eigenfunction is smooth, e.g., the already discussed third
eigenfunction of the Laplacian in the L-shaped domain is smooth. It is very interesting
to try to use this kind of information to compute eigenvalue bounds. But due to the
difficulties of computing the approximability of invariant subspaces, discussed in the
first paragraphs of the introduction, such a project lies beyond the scope of this paper.
For some computational examples we refer to [3, 4].

2. Estimates for a compact symmetric operator.

2.1. An abstract eigenvalue problem. We consider in this section a com-
pact symmetric positive definite operator T defined on a real separable Hilbert space
H, with inner product (u, v) and norm ‖u‖ =

√
(u, u). The spectral theory of such

operators is well known; see, e.g., [9]. The spectrum consists of nonzero eigenval-
ues of finite multiplicity, together with 0, which is in the continuous spectrum. The
eigenvectors can be chosen to be orthonormal. We denote the eigenvalues and corre-
sponding eigenvectors of T by μ1 ≥ μ2 ≥ · · · > 0 and u1, u2, . . . , where (ui, uj) = δij .
We are interested in approximating the eigenpairs (μi, ui) of T by the Ritz method.
Given a finite-dimensional subspace Ũ of H, referred to as the trial subspace, the
Ritz approximation to T is the operator T̃ = (Q̃T )|Ũ , where Q̃ is the orthogo-

nal projector onto Ũ . The operator T̃ is symmetric positive definite. The eigen-
pairs of T̃ are called the Ritz pairs of T ; we regard them as approximations of the
eigenpairs of T . We denote the eigenvalues and corresponding eigenvectors of T̃ by
μ̃1 ≥ μ̃2 ≥ · · · ≥ μ̃n > 0, where n = dim Ũ , and ũ1, ũ2, . . . , ũn, where (ũi, ũj) = δij .
The numbers μ̃i are called the Ritz values and the vectors ũi are called the Ritz vec-
tors. In this paper we are specifically concerned with approximating the eigenvalues
of T by Ritz values as μi ≈ μ̃i. It is an immediate consequence of the max-min
characterization of eigenvalues that μ̃i ≤ μi, i = 1, . . . , n.

We make the assumptions that operator T is positive definite and compact just
to simplify the arguments. The majority of our results in this section can be easily
modified to hold without these assumptions. The most important modification is a
replacement of the ratios such as (μj − μ̃j)/μj that appear in the left-hand sides of
most of our estimates below with (μj−μ̃j)/(μj−μinf ), where μinf is the algebraically
smallest point of the spectrum of T (when T is positive definite, evidently μinf = 0).
Such a modification makes our estimates invariant with respect to a scalar shift T−αI
in T for any real scalar α.

2.2. Principal angles between subspaces. If M and N are nontrivial finite-
dimensional subspaces of H, we will quantify the approximability of M by N using
the sine of the largest principal angle from M to N , which is defined by

sin � {M ;N} = sup
u∈M,‖u‖=1

dist (u,N) = sup
u∈M,‖u‖=1

inf
v∈N

‖u− v‖.(2.1)

For nonzero vectors u and v, if M = span{u}, we write sin � {u;N} for sin � {M ;N};
and if M = span{u} and N = span{v}, we write sin � {u; v} for sin � {M ;N}.

It is immediate that 0 ≤ sin � {M ;N} ≤ 1 and that sin � {M ;N} = 0 if and only
if M ⊆ N . If dimM > dimN , then sin � {M ;N} = 1. If dimM = dimN < ∞, then
sin � {M ;N} = sin � {N ;M}. In the remainder of this paper, we will typically have
dimM ≤ dimN .



NEW A PRIORI FEM ERROR ESTIMATES FOR EIGENVALUES 2651

We will need the following simple observations; cf. Lemma 3.4 of [6].
Lemma 2.1. Let the subspace M be split into an orthogonal sum of subspaces

M = M1 ⊕M2. Then (see [15]),

sin2 � {M ;N} ≤ sin2 � {M1;N} + sin2 � {M2;N}.(2.2)

Applying (2.2) recursively, we immediately obtain the following.
Corollary 2.2. Let vectors {ui, i = 1, . . . ,dimM} form an orthogonal basis for

the subspace M . Then

sin2 � {M ;N} ≤
∑
i

sin2 � {ui;N}.(2.3)

We call angle � {M ;N} the largest since it is also well known (see, e.g., [14]),
so that smaller angles between subspaces can be defined as follows. Using P and Q,
the orthogonal projectors onto M and N , respectively, the sine of the largest angle
equals the largest singular value of the operator (I −Q)P . Introducing the notation
s1((I−Q)P ) ≥ s2((I−Q)P ) ≥ · · · ≥ sdimM ((I−Q)P ) for the dimM largest singular
values of the operator (I−Q)P , we define the ith angle from subspace M to subspace
N using its sine: sin � i{M ;N} = sdimM−i+1((I −Q)P ), i = 1, . . . ,dimM, assuming
that all angles lie on the closed interval [0, π/2]. The complete set of dimM angles
from subspace M to subspace N gives detailed information on approximability of M
by N ; e.g., if the smallest angle vanishes, the subspaces M and N have a nontrivial
intersection.

Later in the paper we use the following property of angles (see [14]):

� j{M ;N} = inf
L⊆M, dimL=j

� {L;N}, j = 1, . . . ,dimM.(2.4)

Finally, we will also need the following generalization of Corollary 2.2.
Lemma 2.3. Let vectors {ui, i = 1, . . . ,dimM} form an orthogonal basis for the

subspace M and be arranged in such a way that

� {u1;N} ≤ · · · ≤ � {udimM ;N}.

Then

sin2 � j{M ;N} ≤
j∑

i=1

sin2 � {ui;N}, j = 1, . . . ,dimM.(2.5)

Proof. We deduce from (2.4) that

sin2 � j{M ;N} ≤ sin2 � {span{u1, . . . , uj};N}.

Now, the statement of the lemma, (2.5), immediately follows from (2.3) applied to
M = span{u1, . . . , uj}.

2.3. Estimates based on the approximability of all previous eigenvec-
tors. Sharp eigenvalue error estimates are usually derived under the assumption that
the eigenvector corresponding to the eigenvalue being estimated is well approximated
by the trial subspace.

We derive an estimate for the error in approximating μj , the jth eigenvalue of

T , by μ̃j , the jth Ritz value of T , i.e., the jth eigenvalue of T̃ . Let U1,...,j denote
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the span of the eigenvectors u1, . . . , uj , and let P1,...,j be the orthogonal projector
onto U1,...,j . For u 	= 0, let μ(u) = (Tu, u)/(u, u) = (u, u)T /(u, u) be the Rayleigh
quotient associated with T . Here (·, ·)T is a second inner product on H. We will refer
to orthogonality in (·, ·)T as T -orthogonality. Note that μ(u) > 0 since T is positive
definite.

Our first theorem is known; it was proved in [11] and reproduced in [8]. For the
particular case j = dim Ũ , a different proof was then suggested in [10, 12].

Theorem 2.4. For j = 1, 2, . . . , n = dim Ũ we have

0 ≤ μj − μ̃j

μj
≤ sin2 � {U1,...,j ; Ũ} = ‖(I − Q̃)P1,...,j‖2.(2.6)

The estimate (2.6) is sharp; see [15].
Remark 2.1. By Corollary 2.2 we have

sin2 � {U1,...,j ; Ũ} ≤
j∑

i=1

sin2 � {ui; Ũ} =

j∑
i=1

‖(I − Q̃)ui‖2;

therefore, the estimate

μj − μ̃j

μj
≤

j∑
i=1

‖(I − Q̃)ui‖2(2.7)

follows directly from Theorem 2.4. Estimate (2.7) is well known (see, e.g., [20, 22]);
on the right-hand side we have the sum of the squares of the approximation errors for
the eigenvectors u1, . . . , uj . If j = 1, the estimates (2.6) and (2.7) are identical.

2.4. Estimates based mainly on the approximability of the target eigen-
vector. Theorem 2.4 has a major weakness; namely, the right-hand side of estimate
(2.6) for the target eigenvalue μj involves the approximability of all functions in U1,...,j .
The result thus suggests that the eigenvalue error (μj−μ̃j)/μj depends on the approxi-
mation errors for all eigenfunctions u1, . . . , uj . We now mention two results suggesting
that this is not the case; that, in fact, the ratio (μj − μ̃j)/μj depends mainly on just
the approximation error for uj , the target eigenfunction. First, consider the following

Lemma 2.5. For j = 1, 2, . . . , n = dim Ũ , the estimate

μj − μ̃j

μj
= ‖(I − P̃j)uj‖2 − 1

μj
((I − Pj)ũj , T (I − Pj)ũj)

≤ sin2 � {uj , ũj}(2.8)

holds, where P̃j is the orthogonal projector onto span{ũj}.
The first line of (2.8) follows from the chain of identities in the proof of Lemma

3.5 of [6].
Next consider the following lemma.
Lemma 2.6. If (ũj , uj) 	= 0, the estimate

μj − μ̃j

μj
= ‖(I − Q̃)uj‖2 +

1

μj

(
T (I − Q̃)uj ,

(I − Pj)ũj

‖Pj ũj‖

)

≤
(

1 +
‖(I − Q̃)T‖

μj

tan � {uj , ũj}
sin � {uj , Ũ}

)
sin2 � {uj , Ũ}(2.9)

holds, where Pj is the orthogonal projector onto span{uj}.
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The identity in the first line of (2.9) is based on an argument from the proof of
Theorem 4.1 in [3] (see also [18]). For a complete proof, see [15].

It is informative to compare (2.8) with (2.9). The first term on the right-hand side
of the first line of (2.8) is larger than that of (2.9). However, the second term in the
first line of (2.8) is negative, and thus is dropped in the second line of (2.8). The second
term on the right-hand side in the first line of (2.9), while generally not negative, in
typical applications (when ‖(I − Q̃)T‖ is small) is significantly smaller compared to
the first term; in other words, the term added to 1 in the second line of (2.9) in such
applications is small because of the multiplier ‖(I − Q̃)T‖. We conclude that both
(2.8) and (2.9) suggest that (μj − μ̃j)/μj depends mainly on the approximation error
for uj .

Both estimates (2.8) and (2.9), in addition to being dependent on the eigenfunc-
tion uj , depend explicitly on the approximate eigenfunction ũj : (2.8) in the main
term and (2.9) in the constant. Our next theorem is based on a novel alternative
technique, where the approximate eigenfunction ũj is not used in the proof and does
not appear in the theorem statement.

Theorem 2.7. For a fixed index j such that 1 ≤ j ≤ n = dim Ũ , suppose that

min
i=1,...,j−1

|μ̃i − μj | 	= 0.(2.10)

Then

0 ≤ μj − μ̃j

μj
≤ ‖(I − Q̃ + P̃1,...,j−1)uj‖2(2.11)

≤
(

1 +
‖(I − Q̃)T P̃1,...,j−1‖2

mini=1,...,j−1 |μ̃i − μj |2

)
sin2 � {uj ; Ũ},

where P̃1,...,j−1 is the orthogonal projector onto Ũ1,...,j−1 = span{ũ1, . . . , ũj−1} (if

j = 1, we define P̃1,...,j−1 = 0 and do not use (2.10)).
For brevity, we do not prove the theorem here, but instead refer to [15], and to

our proof of Theorem 2.11 later in the paper, which is a generalization of Theorem
2.7.

Since ‖(I − Q̃ + P̃1,...,j−1)uj‖ ≤ ‖(I − P̃j)uj‖, our new estimate (2.11) clearly
improves (2.8). A direct comparison of the constants in (2.9) and (2.11) in a general
case does not appear to be simple because of the unresolved dependence of (2.9) on
ũj . However, we have

‖(I − Q̃)T P̃1,...,j−1‖2

mini=1,...,j−1 |μ̃i − μj |2
≤ ‖(I − Q̃)T‖2

mini=1,...,j−1 |μ̃i − μj |2

≤ ‖(I − Q̃)T‖
μj

,

assuming

‖(I − Q̃)T‖ ≤ mini=1,...,j−1 |μ̃i − μj |2
μj

.(2.12)

Since tan � {uj , ũj} ≥ sin � {uj , Ũ}, we can conclude that our estimate (2.11) is sharper
than (2.9) under the assumption (2.12). We note that in the FEM context assump-
tion (2.12) is realistic as, for typical problems, ‖(I − Q̃)T‖ vanishes when the mesh
parameter tends to zero.
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Let us finally comment that the ratio

‖(I − Q̃)T P̃1,...,j−1‖2

mini=1,...,j−1 |μ̃i − μj |2
=

‖(I − Q̃)(T/μj)P̃1,...,j−1‖2

mini=1,...,j−1 |μ̃i/μj − 1|2

in (2.11) is “dimensionless,” i.e., invariant with respect to scaling of T . Here, the
quantity in the denominator, mini=1,...,j−1(μ̃i/μj−1), in the limit, where all μ̃i → μi,
turns into μj−1/μj − 1, the one-sided relative gap in the spectrum at μj .

2.5. Corollaries of Theorems 2.4 and 2.7 for multiple eigenvalues. Here
we address in details the case when the eigenvalue μj is a multiple of multiplicity
q > 1. Our Theorems 2.4 and 2.7 hold for multiple eigenvalues since we never assumed
the eigenvalues were simple. However, the case of multiple eigenvalues has special
features, which we want to highlight. Let us start with the simplest case, where we
are interested only in estimates for the largest eigenvalue μ1. From Theorem 2.4 we
easily derive the following.

Corollary 2.8. Let

μ1 = μ2 = · · · = μq > μq+1

and q ≤ n = dim Ũ . For j = 1, 2, . . . , q we have

0 ≤ μ1 − μ̃j

μ1
≤ inf

U1,...,j⊂U1,...,q

dimU1,...,j=j

sin2 � {U1,...,j ; Ũ}

= sin2 � j{U1,...,q; Ũ}.(2.13)

Estimate (2.13) has two important properties. First, it controls the error for every
Ritz values corresponding to the first eigenvalue μ1. Second, it shows that different
Ritz values may have different approximation qualities, depending on approximability
of the eigenspace U1,...,q by the trial subspace Ũ of the Ritz method, where the ap-

proximability is measured by the angles from U1,...,q to Ũ and, thus, can be estimated
a priori.

In general, the multiple eigenvalue of interest may not be the largest:

μp−1 > μp = μp+1 = · · · = μj = · · · = μp+q−1 > μp+q.(2.14)

Applying Theorem 2.4, we obtain the following.
Corollary 2.9. Suppose (2.14) is satisfied and p + q − 1 ≤ n. For any index

j = p, p + 1, . . . , p + q − 1 we have

0 ≤ μp − μ̃j

μp
≤ inf

U1,...,p−1⊂U1,...,j⊂U1,...,p+q−1

dimU1,...,j=j

sin2 � {U1,...,j ; Ũ}.

Proof. The subspace U1,...,j has a fixed part U1,...,p−1 ⊂ U1,...,j , but the rest of it
we can choose within Up,...,min{p+q−1,n} as we like.

Corollary 2.9 preserves the desired properties of Corollary 2.8; i.e., it provides a
different estimate for each Ritz value of interest, but it requires approximability of all
previous eigenvectors.

Let us now turn our attention to Theorem 2.7. The only relevant assumption
in Theorem 2.7 is that (2.10) is satisfied so that the denominator in the constant in
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Theorem 2.7 is not zero. Let us analyze the likely behavior of this constant for the
particular case q = 2 so that

μp−1 > μp = μp+1 > μp+2.(2.15)

There are two relevant possibilities for j in Theorem 2.7: j = p or j = p+1. Assuming
that all Ritz values μ̃i approximate the corresponding eigenvalues μi, which is typical
for FEM applications (see section 3.2 for details), we observe that in (2.10)

min
i=1,...,j−1

|μ̃i − μj | ≈ μj−1 − μj .

Thus, if j = p, the denominator is asymptotically positive; specifically, it is asymp-
totically equal to μp−1 −μp, and the estimate of Theorem 2.7 is asymptotically valid;
while if j = p + 1, the denominator in the constant in Theorem 2.7 asymptotically
vanishes. This discussion demonstrates that Theorem 2.7 provides an asymptotically
valid estimate only for one out of the q = 2 Ritz values. On the positive side, however,
we can freely choose the eigenvector uj within the eigenspace corresponding to μp to
minimize the right-hand side of (2.11). Let us reformulate Theorem 2.7 to reflect
these observations.

Corollary 2.10. Suppose that the eigenvalue μp, where p > 1, has multiplicity
q > 1 so that (2.14) holds, and that p + q − 1 ≤ n, and denote the corresponding
eigenspace by Up,...,p+q−1. As in Theorem 2.7, suppose that

min
i=1,...,p−1

|μ̃i − μp| 	= 0.

Then

0 ≤ μp − μ̃p

μp
≤ min

u∈Up,...,p+q−1, ‖u‖=1
‖(I − Q̃ + P̃1,...,p−1)u‖2

≤
(

1 +
‖(I − Q̃)T P̃1,...,p−1‖2

mini=1,...,p−1 |μ̃i − μp|2

)
min

u∈Up,...,p+q−1, ‖u‖=1
sin2 � {u; Ũ}

=

(
1 +

‖(I − Q̃)T P̃1,...,p−1‖2

mini=1,...,p−1 |μ̃i − μp|2

)
sin2 � 1{Up,...,p+q−1; Ũ}.(2.16)

Proof. We take j = p in Theorem 2.7 and notice that we can choose uj to be any
normalized vector in the eigenspace Up,...,p+q−1 and finally use (2.4).

It is useful to compare Corollary 2.9 with Corollary 2.10. Corollary 2.9 gives
different estimates for every Ritz value out of the q Ritz values corresponding to
the multiple eigenvalue μp, but requires approximability of all previous eigenvectors.
In Corollary 2.10, the approximability of previous eigenvectors appears only in the
constant, but it gives an estimate only for the largest Ritz value out of the q.

We want to obtain a result that combines the advantages of Corollaries 2.9 and
2.10 and removes their weaknesses. E.g., if q = 3 and the eigenspace corresponding
to the triple eigenvalue μp is spanned by eigenfunctions of different approximation
quality, we want to have three error estimates for μp reflecting it and not depending
strongly on approximability of previous eigenfunctions.

2.6. A new estimate that covers multiple and clustered eigenvalues.
Our new result is a generalization of Theorem 2.7 that gives us the desired estimates
for a multiple eigenvalue corresponding to an eigenspace spanned by eigenfunctions
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of different approximation quality. In addition, the new estimate also covers the case
of clustered eigenvalues, i.e., the constant in the new estimate does not depend on the
width of the eigenvalue cluster.

Theorem 2.11.
1 For fixed indexes j and m satisfying 1 ≤ j ≤ n and 1 ≤ m ≤ j,

let Uj−m+1,...,j be the m-dimensional invariant subspace corresponding to eigenvalues
μj−m+1 ≥ · · · ≥ μj and Pj−m+1,...,j be the orthogonal projector on Uj−m+1,...,j . If

min
i=1,...,j−m

|μ̃i − μj | 	= 0,(2.17)

then

0 ≤ μj − μ̃j

μj
≤ ‖(I − Q̃ + P̃1,...,j−m)Pj−m+1,...,j‖2

≤
(

1 +
‖(I − Q̃)T P̃1,...,j−m‖2

mini=1,...,j−m |μ̃i − μj |2

)
‖(I − Q̃)Pj−m+1,...,j‖2,(2.18)

where P̃1,...,j−m is the orthogonal projector onto Ũ1,...,j−m = span{ũ1, . . . , ũj−m} (if

j = m, we set P̃1,...,j−m = 0 and do not use (2.17)). If m = j, the present theorem
turns into Theorem 2.4; if m = 1, it turns into Theorem 2.7.

Proof. The operators I−Q̃+ P̃1,...,j−m and Pj−m+1,...,j are orthogonal projectors;

thus, ‖(I − Q̃ + P̃1,...,j−m)Pj−m+1,...,j‖ ≤ 1. If ‖(I − Q̃ + P̃1,...,j−m)Pj−m+1,...,j‖ = 1,
the first estimate in (2.18) is trivially true. Now we suppose

‖(I − Q̃ + P̃1,...,j−m)Pj−m+1,...,j‖ < 1.(2.19)

Then, since dimUj−m+1,...,j = m, the subspace (Q̃ − P̃1,...,j−m)Uj−m+1,...,j is also
m-dimensional by Theorem 6.34 in Chapter I in [9].

We choose a normalized vector ū such that

ū ∈ (Q̃− P̃1,...,j−m)Uj−m+1,...,j , μ(ū) = min
w∈(Q̃−P̃1,...,j−m)Uj−m+1,...,j\{0}

μ(w),

and introduce the orthogonal and T -orthogonal decomposition

ū = u + v, u ∈ U1,...,j , v ∈ U⊥
1,...,j .

Since ū ∈ (Q̃ − P̃1,...,j−m)Uj−m+1,...,j , ‖ū‖ = 1, and u = ū − v is the orthogonal
projection of ū onto U1,...,j , we see, using again Theorem 6.34 in Chapter I in [9], that

‖v‖ = sin � {ū;U1,...,j}
≤ sin � {ū;Uj−m+1,...,j}
≤ sin � {(Q̃− P̃1,...,j−m)Uj−m+1,...,j ;Uj−m+1,...,j}
= ‖(I − Q̃ + P̃1,...,j−m)Pj−m+1,...,j‖.

(2.20)

It now follows from (2.19) and (2.20) that ‖v‖ < 1; thus u 	= 0, and μ(u) is defined.
We next prove the following chain of inequalities:

μ(ū) ≤ μ̃j ≤ μj ≤ μ(u).(2.21)

1It came to our attention that a similar result was independently obtained in the revised version
of [19] to appear in Linear Algebra and Its Applications.
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Indeed, the first inequality,

μ(ū) = min
w∈(Q̃−P̃1,...,j−m)Uj−m+1,...,j\{0}

μ(w)

≤ max
W⊆Im(Q̃−P̃1,...,j−m)

dimW=m

min
w∈W\{0}

μ(w) = μ̃j ,

follows from the min-max principle for Ritz values, since the dimension of the subspace
(Q̃ − P̃1,...,j−m)Uj−m+1,...,j is m. The second inequality, μ̃j ≤ μj , is an immediate
consequence of the max-min principle. The third inequality, μj ≤ μ(u), follows from
the fact that u ∈ U1,...,j .

The identity

μ(ū) =
(Tu, u) + (Tv, v)

(u, u) + (v, v)

can be rewritten as

μ(u) − μ(ū) =

{
[μ(ū) − μ(v)]

(v, v)
(u, u)

, v 	= 0,

0, v = 0.
(2.22)

For v 	= 0, it follows directly from (2.21) and (2.22) that

0 ≤ μj − μ̃j ≤ μ(u) − μ(ū)

= [μ(ū) − μ(v)]
(v, v)

(u, u)

≤ μ̃j
‖v‖2

‖u‖2
(since μ(v) > 0);

hence, since ‖v‖2 + ‖u‖2 = 1 and (μj − μ̃j)(1 − ‖v‖2) ≤ μ̃j‖v‖2, we get

0 ≤ μj − μ̃j

μj
≤ ‖v‖2.(2.23)

If v = 0, then from (2.22) we see that μ(u) = μ(ū), which, together with (2.21), shows
that μ̃j = μj . Thus, estimate (2.23) is also valid for v = 0.

Combining estimates (2.20) and (2.23), we obtain the first estimate in (2.18).
Finally, by Lemma 2.1,

‖(I−(Q̃−P̃1,...,j−m))Pj−m+1,...,j‖2 ≤ ‖(I−Q̃)Pj−m+1,...,j‖2+‖P̃1,...,j−mPj−m+1,...,j‖2.

The second term can be estimated using Theorem 3.2 of [13]:

‖P̃1,...,j−mPj−m+1,...,j‖ ≤ ‖(I − Q̃)T P̃1,...,j−m‖
mini=1,...,j−m |μ̃i − μj |

‖(I − Q̃)Pj−m+1,...,j‖.

Combining the first estimate in (2.18) with the last two inequalities completes the
proof.

Alternatively, Lemma 2.1 can be used to estimate ‖P̃1,...,j−mPj−m+1,...,j‖, which
results in

‖P̃1,...,j−1Pj−m+1,...,j‖2 =

∥∥∥∥∥
j−1∑
i=1

P̃iPj−m+1,...,j

∥∥∥∥∥
2

≤
j−1∑
i=1

‖P̃iPj−m+1,...,j‖2.
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Every term ‖P̃iPj−m+1,...,j‖2 in the sum above can be estimated using results of [13].
For simplicity, let m = 1; then by Theorem 2.1 in [13],

‖P̃iPj‖ ≤ ‖T ũi − μ̃iũi‖
|μ̃i − μj |

sin � {uj ; Ũ},

where ‖ũi‖ = ‖uj‖ = 1, so we get

0 ≤ μj − μ̃j

μj
≤

(
1 +

j−1∑
i=1

‖T ũi − μ̃iũi‖2

|μ̃i − μj |2

)
sin2 � {uj ; Ũ},

which in some cases may provide a smaller constant compared to that of (2.18) with
m = 1.

Remark 2.2. A careful examination of the proof of the first estimate in (2.18)
of Theorem 2.11 shows that we can replace the orthoprojector Pj−m+1,...,j with an
orthoprojector PL to any m-dimensional subspace L of U1,...,j : the argument still
holds and the first estimate in (2.18) can be improved:

0 ≤ μj − μ̃j

μj
≤ inf

L⊆U1,...,j , dimL=m
‖(I − Q̃ + P̃1,...,j−m)PL‖2.(2.24)

The right-hand side of (2.24) allows a nice geometric interpretation, using definition
(2.4) of the angles between subspaces:

inf
L⊆U1,...,j , dimL=m

‖(I − Q̃ + P̃1,...,j−m)PL‖2 = sin2 � m{U1,...,j ; Ũ ∩ (Ũ1,...,j−m)⊥}.

This may lead to a potential improvement of the second estimate (2.18)—provided
one can estimate the right-hand side of (2.24) using terms similar to those of the
second estimate in (2.18).

We can derive a simple estimate of the right-hand side of (2.24), using the fact,
which follows from dimensionality arguments, that

dim (Ũ1,...,j−m)⊥ ∩ U1,...,j ≥ m.

Since

‖(I − Q̃ + P̃1,...,j−m)u‖ = ‖(I − Q̃)u‖, u ∈ (Ũ1,...,j−m)⊥ ∩ U1,...,j ,

restricting the choice of L to the intersection above in (2.24) we derive that

0 ≤ μj − μ̃j

μj
≤ inf

L⊆(Ũ1,...,j−m)⊥∩U1,...,j , dimL=m
‖(I − Q̃)PL‖2.(2.25)

In FEM applications typically (because of the approximability assumption) we have
dim((Ũ1,...,j−m)⊥ ∩ U1,...,j) = m so the inf in (2.25) is then redundant.

Estimate (2.25) improves (2.6). We note that m is a free parameter in (2.25) and
can be chosen arbitrarily, 1 ≤ m ≤ j. We finally note that (2.25) is not truly an a
priori estimate since the right-hand side of it depends on the Ritz vectors ũ1, . . . , ũj−m

that are not known a priori.
Let us now reformulate Theorem 2.11 in the context of the multiple eigenvalue in

order to obtain a generalization of Corollary 2.10. Theorem 2.11 gives us enough flexi-
bility to establish a different error estimate for each of the q Ritz values corresponding
to the multiple eigenvalue of multiplicity q.
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Corollary 2.12. Suppose that the eigenvalue μp, where p > 1, has multiplicity
q > 1 so that (2.14) holds and that p + q − 1 ≤ n. Suppose that

min
i=1,...,p−1

|μ̃i − μp| 	= 0.

Then, for j = p, . . . , p + q − 1, we have

0 ≤ μp − μ̃j

μp
≤ ‖(I − Q̃ + P̃1,...,p−1)Pp,...,j‖2

≤
(

1 +
‖(I − Q̃)T P̃1,...,p−1‖2

mini=1,...,p−1 |μ̃i − μp|2

)
‖(I − Q̃)Pp,...,j‖2,(2.26)

where P̃1,...,p−1 is the orthogonal projector onto Ũ1,...,p−1 = span{ũ1, . . . , ũp−1} and
Pp,...,j is the orthogonal projector onto any (j − p + 1)-dimensional subspace of the
eigenspace Up,...,p+q−1 corresponding to the eigenvalue μp. The optimal choice of the

projector Pp,...,j allows us to replace the term ‖(I−Q̃)Pp,...,j‖2 in estimate (2.26) with

sin2 � j−p+1{Up,...,p+q−1, Ũ}.
Proof. We simply take m = j − p + 1 in Theorem 2.11.
To see the improvement of Corollary 2.12 over Theorem 2.7, consider the following

situation. Suppose μ2 has multiplicity 2, so p = q = 2. Then

min
i=1,...,p−1

|μ̃i − μp| ≈ μ1 − μ2 > 0,

provided μ̃1 is close enough to μ1. Taking j = 2 in Corollary 2.12 yields

μ2 − μ̃2

μ2

<∼

(
1 +

‖(I − Q̃)T P̃1‖2

(μ1 − μ2)2

)
‖(I − Q̃)P2‖2,(2.27)

while taking j = 3 yields

μ3 − μ̃3

μ3
=

μ2 − μ̃3

μ2

<∼

(
1 +

‖(I − Q̃)T P̃1‖2

(μ1 − μ2)2

)
‖(I − Q̃)P2,3‖2.(2.28)

In (2.27), the eigenvalue error is bounded by a constant that is slightly larger than 1
times the square of the best approximation error for u2; while in (2.28), we have the
square of the best approximation error for span{u2, u3} = the eigenspace for μ2 = μ3.
Note that estimating (μ3 − μ̃3)/μ3 with Theorem 2.7 yields no asymptotically valid
estimate (cf. the discussion preceding Corollary 2.10).

Results giving different estimates for (μp− μ̃j)/μp, j = p, . . . , p+ q− 1 (cf. Corol-
laries 2.9 and 2.12) were first proved in [2]; see also [3, 4]. Our presentation simplifies
and clarifies the analysis in [2, 3] and provides explicit constants. In section 3.2 we
compare these results in detail. For an example of a multiple eigenvalue with eigen-
functions of differing approximabilities, see [2, 4].

Let us finally highlight the opportunities that Theorem 2.11 provides for error
estimates of clustered eigenvalues in the following situation. Let

μ1 > μ2 ≈ μ3 > μ4,

and suppose we are interested in error estimates for μ2 and μ3, assuming that μ̃1 ≈ μ1

and μ̃2 ≈ μ2. We do not even need Theorem 2.11 to estimate the error for μ2: Theorem
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2.7 with j = 2 already gives us an asymptotically valid estimate (2.27), and the fact
that μ2 is clustered (or multiple as above) is irrelevant. Theorem 2.7 with j = 3
does not provide an asymptotically valid estimate for the error in μ3 since the term
|μ3 − μ̃2| ≈ 0 appears in the denominator.

Applying Theorem 2.11 with j = 3 we have the option of choosing the free
parameter m = 1, 2, or 3. Taking m = 1 reduces Theorem 2.11 to Theorem 2.7,
which does not work well in this situation as we just discussed. Taking m = 2 yields
a good estimate

μ3 − μ̃3

μ3

<∼

(
1 +

‖(I − Q̃)T P̃1‖2

(μ1 − μ3)2

)
‖(I − Q̃)P2,3‖2.(2.29)

Taking m = 3 reduces Theorem 2.11 to Theorem 2.4,

μ3 − μ̃3

μ3
≤ ‖(I − Q̃)P1,2,3‖2.(2.30)

Comparing the right-hand sides of (2.29) and (2.30), we see that (2.29) provides
a sharper estimate than (2.30) if μ1 − μ3 is large enough and u1 cannot be well
approximated by the trial subspace. To summarize, choosing different m in Theorem
2.11 allows us to reduce the constants in estimating errors for clustered eigenvalues
at the cost of enlarging the invariant subspace that needs to be well approximated by
the trial subspace. Note that in neither (2.29) nor (2.30) does the constant depend on
the width of the eigenvalue cluster μ2 ≈ μ3. Ovtchinnikov in [19] calls such estimates
“cluster robust.”

3. Application to the variational Galerkin method and comparisons.
We now consider the previous abstract results in two important contexts. First, sup-
pose we have an eigenvalue problem for a symmetric positive compact integral operator
T defined on H = L2 and apply the classical Ritz method for integral operators. All
our results apply immediately and provide relative eigenvalue error estimates for the
largest eigenvalues in terms of L2 approximability of the corresponding eigenfunctions.

Our second application is to the variational Galerkin method for symmetric posi-
tive definite differential operators. Here, we essentially need to reformulate our results
for the inverse of T , but the operator T cannot be just simply replaced with its inverse
since this would change the Ritz values. A proper inversion involves a simultaneous
change of the scalar product as it is implicitly done in the next subsection. Our es-
timates of the previous section have to be somewhat rewritten in this context, since
they are not invariant with respect to such an inversion.

3.1. The variational Galerkin method. Suppose, as above, that H is a real
separable Hilbert space with inner product (u, v) and norm ‖u‖ =

√
(u, u), and

suppose we are given two symmetric bilinear forms B(u.v) and D(u, v) on H × H.
The bilinear form B(u, v) is assumed to satisfy

|B(u, v)| ≤ C1‖u‖‖v‖ for all u, v ∈ H(3.1)

and

C0‖u‖2 ≤ B(u, u) for all u ∈ H with C0 > 0.(3.2)

It follows from (3.1) and (3.2) that ‖u‖B =
√
B(u, u) and ‖u‖ are equivalent norms on

H. For the remainder of this section we use B(u, v) and ‖u‖B as the inner product and



NEW A PRIORI FEM ERROR ESTIMATES FOR EIGENVALUES 2661

norm, respectively, on H, and denote the resulting space by HB . We also measure
all angles in HB , i.e., with respect to B(u, v). Regarding D(u, v) we assume that
0 < D(u, u) for all nonzero vectors u ∈ H and that the unit ball of the norm || · ||D is
compact in H.

We consider the following variationally formulated symmetric eigenvalue problem:{
Seek λ ∈ R and 0 	= u ∈ HB satisfying
B(u, v) = λD(u, v) for all v ∈ HB .

(3.3)

Under our assumptions, problem (3.3) has eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ↗ +∞ and
corresponding eigenvectors u1, u2, . . . , which satisfy B(ui, uj) = λiD(ui, uj) = δij .

We are interested in approximating the eigenpairs of (3.3) by the variational Ritz
method. Toward this end, we suppose we are given a finite-dimensional subspace Ũ of
HB , and consider the following finite-dimensional, variationally formulated eigenvalue
problem:

{
Seek λ̃ ∈ R and 0 	= ũ ∈ Ũ satisfying

B(ũ, v) = λD(ũ, v), for all v ∈ Ũ .
(3.4)

Problem (3.4), being a finite-dimensional eigenvalue problem, has n = dim Ũ positive
eigenvalues λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃n, and corresponding eigenvectors ũ1, ũ2, . . . , ũn, which
satisfy B(ũi, ũj) = λ̃iD(ũi, ũj) = δij , i, j = 1, . . . , n. The Poincaré inequalities λi ≤
λ̃i, i = 1, . . . , n, and the min-max characterization of eigenvalues of problems (3.3)
and (3.4) hold under our assumptions. We then view λ̃i as an approximation to λi,
i.e., λi ≈ λ̃i, i = 1, . . . , n.

Next we introduce the operator T : HB → HB defined by{
Tf ∈ HB ,
B(Tf, v) = D(f, v) for all v ∈ HB

(3.5)

and the operator T̃ : Ũ → Ũ defined by
{

T̃ f ∈ Ũ , f ∈ Ũ ,

B(T̃ f, v) = D(f, v) for all v ∈ Ũ .
(3.6)

The operator T is the solution operator for the “boundary value problem” corre-
sponding to the eigenvalue problem (3.3). By our assumption, the unit ball of ‖ · ‖D
is compact in H and, therefore, in HB , thus, the operator T is compact in HB . Of
course, T̃ , being an operator on a finite-dimensional space, is also compact. It follows
directly from definition (3.5) that T is symmetric and positive definite on HB and
from definition (3.6) that T̃ is symmetric and positive definite on Ũ (with respect to
B(u, v)). It is easily seen that, if, as above, Q̃ is the orthogonal projector of HB onto
Ũ , then T̃ = (Q̃T )|Ũ .

The eigenvalues of problem (3.3) and of the operator T are reciprocals: λi =
1/μi, i = 1, 2, . . . ; problem (3.3) and the operator T have the same eigenvectors ui.
Likewise, the eigenvalues of problem (3.4) and of the operator T̃ are reciprocals: λ̃i =
1/μ̃i, i = 1, 2, . . . , n; problem (3.4) and the operator T̃ have the same eigenvectors ũi.
As in the previous section, we choose {ui} and {ũi} to be orthonormal systems, in
the context of the present section, that is, in HB .

The FEM approximation of eigenvalue problems for symmetric differential oper-
ators can be viewed as a variational Ritz method, and the FEM eigenvalue errors can
be estimated using the theorems of the previous section.
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We can utilize Theorems 2.4 and 2.7, applied to T and T̃ on HB , to estimate
the eigenvalue error (λ̃i − λi)/λ̃i. Here U1,...,j denotes the span of the eigenvectors
u1, . . . , uj , and P1,...,j is the HB orthogonal projector onto U1,...,j .

Theorem 3.1. For j = 1, . . . , n = dim Ũ we have

0 ≤ λ̃j − λj

λ̃j

≤ sin2 � B{U1,...,j ; Ū} = ‖(I − Q̃)P1,...,j‖2
B .(3.7)

Remark 3.1. By analogy with Remark 2.1, from Theorem 3.1 we get the following
estimate, mathematically equivalent to estimate (2.7):

0 ≤ λ̃j − λj

λ̃j

≤
j∑

i=1

‖(I − Q̃)ui‖2
B ,

which can be rewritten as

0 ≤ λ̃i − λi

λi
≤

∑j
i=1 ‖(I − Q̃)ui‖2

B

1 −
∑j

i=1 ‖(I − Q̃)ui‖2
B

,(3.8)

assuming that the denominator in the latter expression is positive. Estimate (3.8) is
well known (see, e.g., Theorem 2.1 in Chapter 4 of [22]); a similar estimate is proved
in [5].

To formulate the next theorem—an analogue of Theorem 2.7—we recall that
P̃1,...,j−1 is the orthogonal projector of HB onto Ũ1,...,j−1 = span{ũ1, . . . , ũj−1}, where
ũi are eigenvectors of (3.4).

Theorem 3.2. For a fixed index j such that 1 ≤ j ≤ n = dim Ũ , suppose

min
1,...,j−1

|λ̃i − λj | 	= 0.(3.9)

Then

0 ≤ λ̃j − λj

λ̃j

≤ ‖(I − Q̃ + P̃1,...,j−1)uj‖2
B

≤
(

1 + max
i=1,...,j−1

λ̃2
iλ

2
j

|λ̃i − λj |2
‖(I − Q̃)T P̃1,...,j−1‖2

B

)
sin2 � B{uj ; Ũ}.(3.10)

Similarly, we can apply Theorem 2.11 to obtain the following.
Theorem 3.3. For fixed indexes j and m satisfying 1 ≤ j ≤ n and 1 ≤ m ≤ j,

let Uj−m+1,...,j be the m-dimensional invariant subspace corresponding to eigenval-
ues λj ≥ · · · ≥ λj−m+1, and let Pj−m+1,...,j be the HB orthogonal projector on
Uj−m+1,...,j . If

min
i=1,...,j−m

|λ̃i − λj | 	= 0,(3.11)

then

0 ≤ λ̃j − λj

λ̃j

≤ ‖(I − Q̃ + P̃1,...,j−m)Pj−m+1,...,j‖2
B(3.12)

≤
(

1 + max
i=1,...,j−m

λ̃2
iλ

2
j

|λ̃i − λj |2
‖(I − Q̃)T P̃1,...,j−m‖2

B

)
‖(I − Q̃)Pj−m+1,...,j‖2

B ,
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where P̃1,...,j−m is the HB orthogonal projector onto Ũ1,...,j−m = span{ũ1, . . . , ũj−m}
(if j = m, we set P̃1,...,j−m = 0 and do not use (3.11)). If m = j, the present theorem
turns into Theorem 3.1; if m = 1, it turns into Theorem 3.2.

Let us finally reformulate Theorem 3.3 in the context of the multiple eigenvalue
by analogy with Corollary 2.12.

Corollary 3.4. Suppose that the eigenvalue λp, where p > 1, has multiplicity
q > 1, so that

λp−1 < λp = λp+1 = · · · = λp+q−1 < λp+q(3.13)

holds, and that p + q − 1 ≤ n. Suppose that

min
i=1,...,p−1

|λ̃i − λp| 	= 0.

Then, for j = p, . . . , p + q − 1, we have

0 ≤ λ̃j − λp

λ̃j

≤ ‖(I − Q̃ + P̃1,...,p−1)Pp,...,j‖2
B

≤
(

1 + max
i=1,...,p−1

λ̃2
iλ

2
p

|λ̃i − λp|2
‖(I − Q̃)T P̃1,...,p−1‖2

B

)
‖(I − Q̃)Pp,...,j‖2

B ,(3.14)

where P̃1,...,p−1 is the HB orthogonal projector onto Ũ1,...,p−1 = span{ũ1, . . . , ũp−1}
and Pp,...,j is the HB orthogonal projector onto any (j − p + 1)-dimensional subspace
of the eigenspace Up,...,p+q−1 corresponding to the eigenvalue λp. The main term, the

multiplier ‖(I−Q̃)Pp,...,j‖2
B, in (3.14) can be replaced with sin2 � j−p+1{Up,...,p+q−1, Ũ}

by choosing the projector Pp,...,j in the optimal way, where the angle is measured in
HB.

3.2. Comparison with known asymptotic estimates for eigenvalues. Es-
timate (3.10) should be compared with estimates of Vainikko in Krasnosel’skii et al.
[16], Chatelin [7], and Babuška and Osborn [3], all of which address a slightly different
context that we now describe.

In addition to all assumptions of the previous subsection, let {Uh} be a family of
finite-dimensional subspaces of HB depending on a parameter h > 0 called the mesh
parameter. For a fixed h, we use Uh = Ũ as the trial subspace for the variational Ritz
method. Let Qh = Q̃ be the HB orthogonal projector on Uh. We make the following
approximability assumption on the family {Uh}:

‖(I −Qh)u‖HB
= inf

vh∈Uh
‖u− vh‖HB

→ 0 as h → 0 for each u ∈ HB .(3.15)

To be consistent with our new h-based notation, we denote the approximate eigen-
values by λh

j = λ̃j and the corresponding eigenvectors by uh
j = ũj . It is well known

that under assumption (3.15) we have λh
j → λj as h → 0 for each fixed j.

We compare our results to estimates of [3, 7, 16] that are asymptotic, h → 0,
upper (and lower) bounds for the ratio (λh

j − λj)/λ
h
j in [7, 16] and for the ratio

(λh
j − λj)/λj (notice a slightly different denominator) in [3]. Since

λh
j − λj

λj
=

λh
j − λj

λh
j

+
(λh

j − λj)
2

λjλh
j

,
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where the second term in the sum on the right can be asymptotically ignored, the
results of [7, 16] asymptotically estimate the same eigenvalue errors as those of [3].
Results of [3] provide upper bounds for (λh

j −λj)/λj that trivially serve also as upper

bounds for (λh
j − λj)/λ

h
j . Moreover, it is possible to show that the lower bounds for

(λh
j − λj)/λj in [3] also hold for (λh

j − λj)/λ
h
j without any changes. Here, we will

formulate all the results (except for (3.23)) in terms of (λh
j − λj)/λ

h
j to be consistent

with our estimates.
We start our discussion with the case of a simple eigenvalue λj and later turn

our attention to the case of multiple eigenvalues. The convergence rate for a simple
eigenvalue is determined by the following well-known result: let real rhj be defined by

0 ≤
λh
j − λj

λh
j

=
(
1 + rhj

)
‖(I −Qh)uj‖2

B ;(3.16)

then rhj → 0 as h → 0; see subsection 18.6 (pp. 285–286) of [16] and subsection 6.2
(pp. 315–317) of [7]. Babuška and Osborn [3] showed that

|rhj | ≤ dj sup
‖g‖D=1

‖(I −Qh)Tg‖2
B → 0(3.17)

and that (cf. (2.9))

|rhj | ≤ dj sup
‖g‖B=1

‖(I −Qh)Tg‖B → 0,(3.18)

where dj > 0 are unknown generic constants.
Our present estimate (3.10) using the h notation takes the form (3.16) with

rhj ≤ max
i=1,...,j−1

(λh
i )2λ2

j

|λh
i − λj |2

‖(I −Qh)TPh
1....,j−1‖2

B .(3.19)

The first multiplier in the right-hand side of (3.19) is asymptotically (as h → 0) a
constant,

(λh
i )2λ2

j

|λh
i − λj |2

→
λ2
j−1λ

2
j

|λj−1 − λj |2
,

provided that the eigenvalue λj is simple. The second multiplier is bounded by

‖(I −Qh)TPh
1....,j−1‖2

B ≤ ‖(I −Qh)T‖2
B

= sup
‖g‖B=1

‖(I −Qh)Tg‖2
B

≤ 1

λ1
sup

‖g‖D=1

‖(I −Qh)Tg‖2
B ;

thus, our estimate (3.19) is an improvement of both estimates (3.17) (our constant is
explicitly written) and (3.18) (we have the small multiplier squared) of [3]. However,
our estimate (3.19) provides only an upper bound for rhj , while (3.17) and (3.18) also

give the lower bounds because they estimate the absolute value |rhj |. Let us note that

the denominator |λj−1−λj |2 may be small, but the term in the numerator is bounded
from above by a constant times sup‖g‖D=1 ‖(I −Qh)Tg‖2

B → 0 as h → 0.
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Now suppose eigenvalue λp has multiplicity q so that (3.13) holds, and let Pp,...,p+q−1

be the HB orthogonal projector on the q-dimensional eigenspace, corresponding to
λp = λp+1 = · · · = λp+q−1 as in Corollary 3.4 in subsection 18.6 (pp. 285–286) of
Krasnosel’skii et al. [16] and Chatelin in subsection 6.2 (pp. 315–317) of [7] prove that

0 ≤
λh
j − λp

λh
j

=
(
1 + rhj

) ‖(I −Qh)Pp,...,p+q−1u
h
j ‖2

B

‖Pp,...,p+q−1uh
j ‖2

B

, j = p, . . . , p+q−1,(3.20)

where rhj → 0 as h → 0. An evident difficulty in using estimate (3.20) for a priori

error analysis is that the approximate eigenfunctions uh
j+i−1 are not known a priori.

If we consider the worst case, it leads to the estimate, which bounds the error for all
q Ritz values, using

‖(I −Qh)Pp,...,p+q−1‖2
B = sin2 � {Up,...,p+q−1;Uh}.(3.21)

Let us remind the reader that an angle without an index denotes the largest an-
gle, according to our agreement in subsection 2.2, and that in this and the previous
subsections all angles are measured in HB .

In some cases (see [2, 4] for examples), the eigenspace may be spanned by eigen-
functions of different approximation qualities, and it is interesting to analyze how
this affects the error for different Ritz values. As mentioned in the introduction, such
results were first proved by Babuška and Osborn in [2]. In [3], they completed such
an analysis for the smallest of the q Ritz values, using

inf
u∈Up,...,p+q−1, ‖u‖B=1

‖(I −Qh)u‖2
B = sin2 � 1{Up,...,p+q−1;Uh},(3.22)

which depends on the approximability of the most easily approximated eigenfunction
in the eigenspace. Thus, estimates based on (3.21) and (3.22) represent two extremes:
(3.21) uses the largest angle and serves to estimate the largest error (thus effectively
all q errors at once), while (3.22) uses the smallest angle and can estimate only one,
the smallest, eigenvalue error.

For the intermediate multiple eigenvalue error, Babuška and Osborn in [3] estab-
lished the following result: for j = p, . . . , p + q − 1 let the quantities rhj be redefined
by

0 ≤
λh
j − λp

λp
=

(
1 + rhp

)
inf

u∈Up,...,p+q−1,

u∈(Uh
p,...,j−1

)⊥B ,

‖u‖B=1

‖(I −Qh)u‖2
B ;(3.23)

then

|rhj | ≤ dj sup
‖g‖B=1

‖(I −Qh)Tg‖B ,(3.24)

with generic constants dj > 0, and where the orthogonal complement
(
Uh
p,...,j−1

)⊥B

is taken in HB . In [4], it is shown that rhj in (3.23) are bounded, but more detailed
estimates (3.24) appear only in [3].

We note that the constraints on u in (3.23) are similar to those in (2.25) except
that (2.25) involves orthogonalization to all previous Ritz vectors, while (3.23) needs
only orthogonalization to previous Ritz vectors corresponding to the multiple eigen-
value under consideration. Both (2.25) and (3.23) are not truly a priori estimates
since their right-hand sides depends on Ritz vectors that are not known a priori.
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In contrast, our estimate (3.14) can be formulated as follows: let for j = p, . . . , p+
q − 1 the quantities rhj be yet again redefined by

0 ≤
λh
j − λp

λh
j

=
(
1 + rhj

)
sin2 � j−p+1{Up,...,p+q−1, U

h};(3.25)

then

rhj ≤ max
i=1,...,p−1

(λh
i )2λ2

p

|λh
i − λp|2

‖(I −Qh)TPh
1,...,p−1‖2

B .

We have already shown that our upper bound for rhp is better than that given by
estimate (3.24): the constant is explicitly written and the h-dependent part is smaller.
Let us turn our attention to the main term of the right-hand side of (3.25), namely,
the sin2 � j−p+1{Up,...,p+q−1, U

h} multiplier, and demonstrate that it is smaller than
the main term of the right-hand side of (3.23) and that it can be easily estimated
from above using (2.5).

We first highlight again that this multiplier can be estimated a priori since it does
not depend on Ritz vectors, contrary to the main term of estimate (3.23). Second,
we can directly compare the main terms in (3.23) and (3.25). Indeed, by (2.4), and

since dim{
(
Uh
p,...,j−1

)⊥ ∩ Up,...,p+q−1} ≥ j − p + 1, we have for j = p, . . . , p + q − 1:

sin2 � j−p+1{Up,...,p+q−1, U
h} = inf

L⊆Up,...,p+q−1, dimL=j−p+1
sin2 � {L;Uh}

≤ sin2 � {
(
Uh
p,...,j−1

)⊥ ∩ Up,...,p+q−1;U
h}

= inf
u∈Up,...,p+q−1,

u∈(Uh
p,...,j−1)

⊥
,

‖u‖B=1

‖(I −Qh)u‖2
B ,

so our estimate (3.25) is sharper than (3.23).
Using the term sin2 � j−p+1{Up,...,p+q−1, U

h} has yet another advantage: namely,
it permits the application of (2.5). Suppose the vectors {ui, i = p, . . . , p+ q− 1} form
an orthogonal basis for the subspace Up,...,p+q−1 and are arranged in such a way that

� {up;U
h} ≤ · · · ≤ � {up+q−1;U

h}.

Then, by (2.5),

sin2 � j−p+1{Up,···,p+q−1;U
h} ≤

j∑
i=p

sin2 � {ui;U
h}, j = p, . . . , p + q − 1.

In other words, if the eigenspace Up,...,p+q−1 is spanned by eigenfunctions of different
approximation qualities, our result assesses the quality of each of the Ritz values
corresponding to the multiple eigenvalue.

Conclusions. We derive eigenvalue error bounds for the Ritz method that have
several novel features:

• For a simple eigenvalue, our estimates improve those previously known and
provide explicit values for all constants.
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• For a multiple eigenvalue we prove, in addition, what is apparently the first
truly a priori error estimates that show the levels of the eigenvalue errors de-
pending on approximability of eigenfunctions in the corresponding eigenspace.

• For clustered eigenvalues, our results provide elegant eigenvalue error bounds
that do not depend on the width of the cluster.

In the FEM eigenvalue approximation context, our results improve earlier known
results and are readily applicable for a fixed mesh without making the traditional
assumption about the mesh size being small enough.

REFERENCES
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mathématique, Mém. Sci Math. 49, (1931), pp. 1–69.

[18] J. E. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), pp.
712–725.

[19] E. Ovtchinnikov, Cluster Robust Error Estimates for the Rayleigh–Ritz Approximation
II: Estimates for Eigenvalues, Tech. report 210, Center for Computational Mathe-
matics, University of Colorado at Denver, Denver, CO, 2004. Available online at
http://math.cudenver.edu/ccm/reports/rep210.pdf.gz Linear Algebra Appl., to appear.

[20] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, PA, 1998.
[21] G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice–Hall, Englewood

Cliffs, NJ, 1973.
[22] H. F. Weinberger, Variational Methods for Eigenvalue Approximation, SIAM, Philadelphia,

1974.



SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 43, No. 6, pp. 2668–2689

SHARP CONVERGENCE ESTIMATES FOR
THE PRECONDITIONED STEEPEST DESCENT METHOD

FOR HERMITIAN EIGENVALUE PROBLEMS∗
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Abstract. The paper is concerned with convergence estimates for the preconditioned steepest
descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available
estimates are reviewed and new estimates are introduced that improve on the known ones in certain
respects. In addition to the estimates for the error reduction after one iteration, we consider esti-
mates for the so-called asymptotic convergence factor defined as the upper limit of the average error
reduction per iteration. The paper focuses on sharp estimates, i.e., those that cannot be improved
without using additional information.
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1. Introduction. The steepest descent method is a classical method for finding
minima of smooth real-valued functionals that is based on the following simple and
natural idea. Let ψ(v) be a real-valued smooth functional in a Euclidean space E ,
which we for the moment assume for simplicity to be real. Given an approximation
ui to the minimum point u of ψ(v), we look for the next approximation ui+1 in the
direction in which ψ(v) decreases faster than in any other direction. Since ψ(v) is
assumed to be smooth, this steepest descent direction is opposite to the direction of
the gradient of ψ(v) at v = ui, which we denote ∇ψ(ui). Hence, we arrive at the
iterative scheme

ui+1 = ui − ωi∇ψ(ui),(1.1)

where ωi are suitably chosen parameters. A natural choice for ωi is the minimum
argument of ψi(ω) ≡ ψ(ui−ω∇ψ(ui)), and it is this particular choice that has become
associated with the term “steepest descent method.”1

The steepest descent method can be used to solve the linear system Lu = f with
a Hermitian positive definite operator L owing to the fact that the solution u of this
system minimizes the functional φ(v) = (Lv, v) − 2(v, f). It can also be used to find
the smallest eigenvalue λ1 of a Hermitian operator L, which minimizes the Rayleigh
quotient functional λ(v) = (Lv, v)/(v, v).

The gradient of a functional ψ at a point v is orthogonal to the level set of ψ
to which v belongs, i.e., the set of w such that ψ(w) = ψ(v). Hence, one way to
understand the convergence behavior of the steepest descent method is to analyze the
shape of the level sets. In the case of the linear system Lu = f with a Hermitian
positive definite L, we have ψ(v) = φ(v) = φ(u) + (L(v− u), (v− u)), and hence each

∗Received by the editors December 3, 2004; accepted for publication (in revised form) July 25,
2005; published electronically January 27, 2006.

http://www.siam.org/journals/sinum/43-6/62064.html
†University of Westminster, London HA1 3TP, UK (eeo@wmin.ac.uk).
1A more proper term would be “locally optimal steepest descent method” because “steepest”

actually refers to the direction of the descent rather than to any particular point in that direction.
In this paper the term “steepest descent” is used in the general sense in order to cover the results in
[1] and [7, 8], which are given for a different choice of ωi.
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level set is an ellipsoid with the center at u and the axes collinear to the eigenvectors
uj of L. The respective lengths of the semiaxes are 1/

√
λj , where λj are the respec-

tive eigenvalues. If the condition number of L; i.e., the ratio λ−1/λ1 of the largest
eigenvalue2 λ−1 to λ1 is large then the level sets of φ(u) in the plane span{u1, u−1}
look like those of a very narrow ravine, and the convergence can be slow. Indeed, if
we take u0 = u + (1/λ1)u1 + (1/λ−1)u−1 as the initial guess and use locally optimal
ωi, then the iterates ui approach u zigzagging across the bottom of the “ravine” (the
axis collinear to u1), and the convergence is slow.

Introducing a new scalar product in E changes the geometry of this space and
hence the shape of the level sets of functionals. Indeed, if we introduce the scalar

product (·, ·)L = (L·, ·) and the corresponding norm ‖ · ‖L = (·, ·)1/2L , then φ(v) =
φ(u) + ‖v − u‖2

L, i.e., the level sets are spherical, and hence the steepest descent
direction at any u0 ∈ E points to the solution u. In the general case, if we use the scalar
product (·, ·)N , where N is a Hermitian positive definite operator, then the shape of
the level sets depends on the condition number of N−1L: the smaller the condition
number, the closer the level sets to spherical, and hence the faster the convergence.
Denoting K = N−1, we have in the above scalar product ∇φ(u) = 2K(Lu − f),
and the iterative scheme (1.1) becomes what is known as the preconditioned steepest
descent (PSD):

ui+1 = ui − τiKri, ri = Lui − f.(1.2)

In a similar way, in the case of the functional λ(u) we arrive at the iterative scheme

ui+1
1 = ui

1 − τiKri1, ri1 = (L− λi
1)u

i
1,(1.3)

where ui
1 approximate u1, λ

i
1 = λ(ui

1), and τi minimizes λi(τ) ≡ λ(ui
1 − τKri1).

Since Kri = KLui −Kf , (1.2) can be viewed as an iterative scheme for solving
the system KLu = Kf . This a more familiar interpretation of the preconditioning
for a linear system that also explains the terminology: K (or, sometimes N = K−1)
is called the preconditioner because the multiplication of the system by K changes
the condition number of this system. In the case of an eigenvalue problem, however,
such an interpretation is not very helpful because the multiplication of Lu = λu by
K results in KLu = λKu, and it is not so obvious why the solution of the latter
generalized eigenvalue problem is any easier than that of the former standard eigen-
value problem. Turning to the above geometrical interpretation and assuming λ1 to
be simple, we observe first that the level sets of λ(v) in the vicinity of u1 are coax-
ial cones with the axis collinear to u1 and ellipsoidal cross-sections. Considerations
similar to the above suggest that the speed of convergence of the steepest descent
iterations is determined by the “roundness” of the level sets, which is reflected by
the “roundness” of their orthogonal cross-sections. It is not difficult to see that if
v lies in an orthogonal cross-section, i.e., v − u1 is orthogonal to an eigenvector u1

corresponding to λ1, then

λ(v) = λ1 + ((L− λ1)(v − u1), (v − u1)) + O
(
‖v − u1‖4

)
= λ1 + (K(L− λ1)(v − u1), (v − u1))N + O

(
‖v − u1‖4

)
.

Hence, one is led to the conclusion that asymptotically the convergence of (1.3) is
determined by the condition number of the operator K(L − λ1) restricted to the

2In using this negative index for the largest eigenvalue we follow the notation of [13].
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subspace orthogonal to u1, and indeed, the asymptotic estimate from [14] shows that
this is the case.

The nonasymptotic quantitative convergence analysis of the preconditioned steep-
est descent method for eigenvalue problems proved to be much more difficult than the
above simple considerations and several decades had passed before a nonasymptotic
convergence result equivalent to that in [14] was obtained. A comprehensive review
of the convergence results that were obtained in those decades can be found in [1]—in
this paper we only mention some of them, focusing on their accuracy. Special at-
tention is paid to the convergence estimates that are sharp, i.e., cannot be improved
without using additional information. Such estimates have obvious theoretical im-
portance, being pieces of ultimate knowledge about the convergence properties of the
PSD method. Recent research in which the author takes part suggests that the accu-
racy of the convergence estimates for PSD may be of indirect practical importance, as
these estimates can be employed in the a posteriori error estimation. It is observed
in [4] that λ̃1 − λ1 ≤ (λ̃1 − λPSD)/(1 − qPSD), where λ̃1 is an approximation to λ1,
λPSD is the new approximation to λ1 computed by the PSD method and qPSD is
the upper bound for the eigenvalue error reduction after one PSD iteration. Hence,
the accuracy of the bound qPSD affects the accuracy of the above eigenvalue error
estimate.

In this paper we show that the convergence estimate in [14] is asymptotically
sharp, i.e., the main term in the error bound it provides cannot be made smaller
without using additional information. We show that the same holds for some other
available convergence results. Further, we present sharp estimates for the so-called
asymptotic convergence factor (cf. section 5), which, in a sense, represents the average
error reduction per iteration, and, in this particular respect, gives one a better idea
about the long-term convergence behavior than the worst error reduction after one
iteration. Finally, we present new sharp nonasymptotic convergence estimates and
compare them with the available ones.

It should be noted that the results of this paper can also be applied to the PSD for
the generalized eigenvalue problem L̂û = λM̂û with Hermitian L̂ and Hermitian posi-
tive definite M̂ . Indeed, the gradient of the Rayleigh quotient λ̂(v̂) = (L̂v̂, v̂)/(M̂v̂, v̂)

in the scalar product (K̂−1·, ·) is proportional to K̂(L̂− λ̂(v̂)M̂)v̂ and hence the iter-
ations (1.1) become

ûi+1
1 = ûi

1 − τiK̂r̂i1, r̂i1 = (L̂− λ̂(ûi
1)M̂)ûi

1.(1.4)

Denoting ui
1 = M̂1/2ûi

1, L = M̂−1/2L̂M̂−1/2, and K = M̂1/2K̂M̂1/2 we have λ̂(ûi
1) =

λ(ui
1) and K̂r̂i1 = M̂−1/2Kri1 and hence (1.4) transforms into (1.3).
The outline of the paper is as follows. In section 2 we discuss the very first

convergence result for the iterations (1.3), obtained in asymptotic form by Samok-
ish [14], and its remarkable features, in particular, its relation to the superlinearly
convergent (exact) Jacobi–Davidson method [15]. In section 3 we review and com-
pare some available nonasymptotic convergence results. In section 4 we analyze the
asymptotic accuracy of the estimate by Samokish and two nonasymptotic estimates:
one by Knyazev in [5] and the other by the author in [11]. We show that all three
are asymptotically sharp under their respective assumptions by providing for each a
simple example whereby the ratio of the two consecutive eigenvalue errors asymptot-
ically coincide with its theoretical upper limit given in the respective estimate. In
section 5 we strengthen the above asymptotical sharpness results by showing that in
each case the aforementioned ratio remains asymptotically close to its upper limit at
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all iterations. In section 6 we introduce new sharp convergence estimates using what
appears to be a novel approach to the convergence analysis of the PSD iterations
(1.3). We introduce a Hermitian positive definite operator that maps the residual
vector onto the error vector ui

1 − ωu1, where ω is a nonzero scalar, and we estimate
the reduction in the eigenvalue error after one iteration (1.3) via the closeness of the
preconditioner to the above “ideal” preconditioner. We note that in the case where L
is positive definite, the closeness of K to the “ideal” preconditioner can be easily esti-
mated via the condition number of KL, thus producing a convergence result given in
more familiar terms. Finally, in section 7 we consider some block versions of the PSD
method and discuss available convergence results. Using the asymptotical results of
sections 4 and 5, we show that the convergence estimate for a particular block version
of PSD obtained by the author in [12] is asymptotically sharp.

In the paper we enumerate the eigenvalues λi in increasing order and, apart
form section 7, without taking multiplicity into account, i.e, λ2 is the second distinct
eigenvalue etc. The eigenvectors are assumed to be normalized. As already specified
above, the operator L is assumed to be Hermitian and, for some results, positive
definite. The preconditioner K is always assumed to be Hermitian positive definite.
Below, E is no longer assumed to be real.

2. The estimate by Samokish. The first convergence result for the iterations
(1.3) in a Hilbert space was obtained in 1958 by B. A. Samokish3 [14]. For the reader’s
convenience, this result is reproduced below in the nonasymptotic form and in the
finite-dimensional (Euclidean) case.

Theorem 2.1. Let κ1 and κ−1 be, respectively, the smallest positive and largest
eigenvalue of K(L − λ1). Denote εi =

√
‖K‖(λi

1 − λ1), where λi
1 = λ(ui

1) and the
sequence ui

1 is generated by (1.3) with locally optimal τi. If

τ(
√
κ−1 + εi)εi < 1,(2.1)

where τ = 2/(κ1 + κ−1), then

λi+1
1 − λ1 ≤

(
γ1 + τ

√
κ−1εi

1 − τ(
√
κ−1 + εi)εi

)2

(λi
1 − λ1),(2.2)

where

γ1 =
1 − ξ1
1 + ξ1

, ξ1 =
κ1

κ−1
.(2.3)

Proof. Denote L1 = L− λ1, u = ui
1, λ = λi

1, r = (L− λ)u, u′ = ui+1
1 , λ′ = λi+1

1

and ε = εi, and assume ‖u‖ = 1. We have

u′ = u− τKr = (1 − τKL1)u + τ(λ− λ1)Ku.(2.4)

It is easy to see that

‖(1 − τKL1)v‖2
L1

≤ γ1‖v‖2
L1

(2.5)

3Essentially the same estimate was later reproduced independently in [10] in the context of the
generalized Davidson method and in the finite-dimensional case (cf. [11]).
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and that ‖v‖2
L1

= (λ(v) − λ1)‖v‖2. Hence,

‖u′‖L1 =
√
λ′ − λ1‖u′‖ ≤ γ1‖u‖L1 + τ(λ− λ1)‖Ku‖L1

≤ γ1

√
λ− λ1 + τ(λ− λ1)

√
κ−1‖u‖K

≤ γ1

√
λ− λ1 + τ(λ− λ1)

√
κ−1‖K‖

= (γ1 + τ
√
κ−1ε)

√
λ− λ1.

Since ‖u′‖ ≥ 1 − τ‖Kr‖, it remains to estimate ‖Kr‖. We have r = (L − λ)u =
L1u− (λ− λ1)u, and hence

‖Kr‖ ≤ ‖KL1u‖ + (λ− λ1)‖Ku‖ ≤
√

‖K‖‖L1u‖K + (λ− λ1)‖K‖
≤

√
κ−1‖K‖‖u‖L1 + (λ− λ1)‖K‖ =

√
κ−1ε + ε2,

and we arrive at (2.2).
The above simple estimate, obtained by Samokish in the asymptotic form, is a

very remarkable one. First of all, it is the first ever convergence estimate for an
iterative method for eigenvalue problems using what is essentially the preconditioning
technique in all but name.4 At the same time, as we will see in the next section, until
quite recently it remained asymptotically more accurate than any of the estimates
for the PSD method that have been obtained ever since. Another remarkable feature
of (2.2) is its similarity to the convergence estimate for the PSD method for linear
systems. Indeed, in the case of the degenerate system (L− λ1)u = f we have

‖ui+1 − u‖L−λ1
≤ γ1‖ui − u‖L−λ1

,(2.6)

whereas in the case of the eigenvalue problem Lu = λu we have (cf. the proof of
Theorem 2.1):

‖ui+1
1 − u1‖L−λ1

≤ γ1‖ui
1 − u1‖L−λ1

+ O
(
‖ui

1 − u1‖2
L−λ1

)
.

Yet another remarkable fact about (2.2) is that until quite recently it remained the
only estimate for the preconditioned steepest descent that predicted superlinear con-
vergence for certain preconditioners. Indeed, consider the preconditioner K given
by

K = (αP1 + (L− λ1))
−1,(2.7)

where α > 0 and P1 is the orthogonal projector onto the invariant subspace cor-
responding to λ1. We have ξ1 = 1 and hence γ1 = 0, and by Theorem 2.1 the
convergence of (1.3) is superlinear. We note that the PSD with the preconditioner
given by (2.7) (which might be called quasi-optimal since it delivers superlinear con-
vergence) is closely related to the Jacobi–Davidson method [15], whereby g = Kri1 is
computed by approximately solving the system

Lig ≡ (αP1,i + (1 − P1,i)(L− λi
1)(1 − P1,i))g = ri1,

where P1,i is the orthogonal projector onto span{ui
1} and α > 0 is an arbitrary

parameter.5 It is easy to see that L−1
i converges to K given by (2.7) as i → ∞,

4Strictly speaking the term “preconditioning” should not be used in the context of [14], where
the steepest descent is applied to an unbounded operator in a Hilbert space.

5It is not difficult to see that g does not depend on α and α may actually be excluded from the
computations; this parameter is introduced here merely to make the operator Li positive definite.
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which, in particular, implies that if this system is solved exactly, then the Jacobi–
Davidson method converges superlinearly (for the case of inexact solution, see, e.g.,
[9, 11]; see also [10] where the above is used as a motivation for rediscovering the
Samokish estimate).

3. Some other estimates. We have seen above that obtaining an asymptotical
convergence estimate for PSD is a relatively simple task. As mentioned in the in-
troduction, obtaining nonasymptotic convergence estimates proved to be much more
difficult. Until quite recently one of the best available nonasymptotic convergence
results for this method has been the following estimate by D’yakonov and Orekhov
[3]: assuming that L is positive definite and that λi

1 < λ2, we have

λi+1
1 − λ1 ≤ q(λi

1)(λ
i
1 − λ1),(3.1)

where

q(λ) = max

⎧⎨
⎩1 − ξ

λ2 − λ1

λ2
,

1 − ξ
λ2−λi

1

λ2

1 + ξ
λ2−λi

1

λ2

λi
1−λ1

λ1

⎫⎬
⎭ , ξ = cond(KL)−1.

Compared to (2.2), the above estimate is asymptotically less accurate. Indeed, in the
subspace orthogonal to the invariant subspace corresponding to λ1 we have

λ2 − λ1

λ2
L ≤ L− λ1 ≤ λ−1 − λ1

λ−1
L.

Hence, ξ1 ≥ ξ̃1, where

ξ̃1 = ξ
λ2 − λ1

λ2

λ−1

λ−1 − λ1
≥ ξ

λ2 − λ1

λ2
,(3.2)

and we see that the error reduction factor in (2.2) is asymptotically less than a square
of that in (3.1).

Recent papers [7, 8, 6] consider a version of PSD, referred to as PINVIT (for
Preconditioned INVerse ITerations), whereby τi = 1 and K is scaled so that the
smallest and largest eigenvalues of KL are, respectively, 1 − γ and 1 + γ for some
γ < 1. A sharp convergence estimate for PINVIT is given in [8]; the explicit form of
this estimate is fairly cumbersome, but the two-dimensional analysis in section 5 of
[7] implies that it can be formulated as follows:

Δk(λ
i+1) ≤ q(γ, λk, λk+1, λ

i)2Δk(λ
i), Δk(λ) =

λ− λk

λk+1 − λ
,(3.3)

where k is such that λk ≤ λi < λk+1 and q(u, v, w, t) is the solution of the equation

q =
v

w
+ u

(
1 − v

w

)√
cos2 α + q2 sin2 α, sin2 α =

w

t

t− v

w − v
.

If k = 1, then, according to (3.3), the error in λ1 is reduced by a factor that approaches
(γ+(1−γ)λ1/λ2)

2 as λi approaches λ1. We observe that the above asymptotic factor
is noticeably smaller than that by (3.1), but is still greater than that in (2.2).

The next estimate of this section is a particular case of the estimate of Theorem 3.3
in [5]. Assuming that λi

1 < λ2 we have

Δ1(λ
i+1
1 ) ≤

(
1 − (1 − γ̃2

1) max{ξ, gi}
)
Δ1(λ

i
1), γ̃1 =

1 − ξ̃1

1 + ξ̃1
,(3.4)
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where Δ1(λ) is the same as in (3.3), ξ̃1 is given by (3.2), and

gi = (1 + ηγ̃2
1εi)

−1

(
1 +

η2ξεi
4

)−1
(

1 + η

√
γ̃2
1εi

ξ + (γ̃2
1 − ξ)εi

)−1

,

where η = ξ−1 − 1 and εi = (λ2/λ
i
1)(λ

i
1 − λ1)/(λ2 − λ1). By the above estimate, the

error in λ1 is reduced after each iteration by a factor that approaches γ̃2
1 as i → ∞.

This asymptotic factor is smaller than those in the previous two estimates. Still, the
estimate (3.4) is less accurate than (2.2) in the sense that γ̃1 ≥ γ1 and, furthermore,
γ̃1 is always positive, whereas γ1 = 0; e.g., for K given by (2.7).

The last convergence result of this section approaches the estimate by Samokish
much closer than any of the above: assuming λi

1 < λ2, and denoting by κ−1,α the
largest eigenvalue of K(αP1 + (L− λ1)), we have [11]

λi+1
1 − λ1 ≤ γ2

1,i,α(λi
1 − λ1),(3.5)

where

γ1,i,α =
1 − ξ1,α(1 − εi)

1 + ξ1,α(1 − εi)
, ξ1,α =

κ1

κ−1,α
,

εi =
(σ + 4)δi

σδi + (1 + δi)2
, δi =

λi
1 − λ1

λ2 − λ1
, σ =

λ2 − λ1

α
.

We observe that

γ1,i,α = γ1,α + O
(
λi

1 − λ1

)
, γ1,α =

1 − ξ1,α
1 + ξ1,α

,

and hence if K is the pseudoinverse of L−λ1, in which case κ1 = κ−1,α = 1 and γ1,α =
0, then λi+1

1 = O
(
(λi

1 − λ1)
3
)
, i.e., the convergence is cubic (in this respect (3.5) is

even more accurate than (2.2), which predicts quadratic convergence). Furthermore,

substituting
√
λi

1 − λ1 for α, we obtain γ1,i,α = γ1 +O
(√

λi
1 − λ1

)
, i.e., the estimate

(3.5) is asymptotically equivalent to (2.2).

4. Asymptotical sharpness. The estimates (2.2), (3.4), and (3.5) are rather
cumbersome and difficult to grasp—however, their asymptotics is fairly simple. In-
deed, it is not difficult to see that (2.2), (3.4), and (3.5) imply, respectively, the
following three estimates:

λi+1
1 − λ1 ≤

(
γ1 + O

(√
λi

1 − λ1

))2

(λi
1 − λ1),(4.1)

λi+1
1 − λ1 ≤

(
γ̃1 + O

(√
λi

1 − λ1

))2

(λi
1 − λ1),(4.2)

λi+1
1 − λ1 ≤

(
γ1,α + O

(
λi

1 − λ1

))2
(λi

1 − λ1).(4.3)

We remind the reader that

γ1 =
1 − ξ1
1 + ξ1

, γ̃1 =
1 − ξ̃1

1 + ξ̃1
, γ1,α =

1 − ξ1,α
1 + ξ1,α

,(4.4)
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where ξ1 is the ratio of the smallest positive to the largest eigenvalue of K(L−λ1), ξ̃1
is given by (3.2) with ξ = cond(KL)−1, and ξ1,α is the ratio of the smallest positive
eigenvalue of K(L − λ1) to the largest eigenvalue of K(αP1 + (L − λ1)). In this
section we show that the previous three estimates are asymptotically sharp, i.e., the
main terms on the right-hand side cannot be made smaller without using additional
information. We start with (4.1) and (4.3).

Theorem 4.1. For any 0 ≤ γ < 1 there exist ui
1 and K such that γ1 = γ and

λi+1
1 − λ1 =

(
γ1 + O

(
λi

1 − λ1

))2
(λi

1 − λ1).

Proof. Let K = (ωP1+(L−λ1)P2+κ−1(L−λ1)P )−1, where ω > 0, Pi = (·, ui)ui,
i = 1, 2, P = 1 − P1 − P2, and κ ≥ 1. In the notation of Theorem 2.1, we obviously
have κ1 = 1 and κ−1 = κ, and hence ξ1 = κ−1 and γ1 = (κ − 1)/(κ + 1). To
simplify the notation, let us denote u = ui

1, λ = λi
1, ũ = ui+1

1 , and λ̃ = λi+1
1 . Let

u = u1 + x2u2 + x3u3, where x2 and x3 are real numbers. Elementary calculations
show that

τ =
(λ2 − λ1)x

2
2 + κ(λ3 − λ1)x

2
3

(λ2 − λ1)x2
2 + κ2(λ3 − λ1)x2

3

+ δτ ≡ τ∗ + δτ ,

where |δτ | ≤ cτ ε
2, ε =

√
x2

2 + x2
3, and cτ does not depend on x2 and x3; we observe

that κ−1 ≤ τ∗ ≤ 1. Thus, ũ = x̃1u1 + x̃2u2 + x̃3u3, where x̃1 = 1 − τ(λ1 − λ)/ω and

x̃2 =

(
1 − τ

λ2 − λ

λ2 − λ1

)
x2 = (1 − τ∗ + δ2)x2

=

(
κ(κ− 1)(λ3 − λ1)x

2
3

(λ2 − λ1)x2
2 + κ2(λ3 − λ1)x2

3

+ δ2

)
x2,

x̃3 =

(
1 − τκ

λ3 − λ

λ3 − λ1

)
x3 = (1 − κτ∗ + δ3)x3

=

(
(1 − κ)(λ2 − λ1)x

2
2

(λ2 − λ1)x2
2 + κ2(λ3 − λ1)x2

3

+ δ3

)
x3,

where |δi| ≤ ciε
2 and ci does not depend on x2 and x3, i = 2, 3. Now, if (λ2−λ1)x

2
2 =

κ(λ3 − λ1)x
2
3, then 1 − τ∗ = κτ∗ − 1 = (κ− 1)/(κ + 1) and we have

x̃2 =

(
κ− 1

κ + 1
+ δ2

)
x2, x̃3 = −

(
κ− 1

κ + 1
− δ3

)
x3,

and hence

λ̃ = λ(ũ) =
λ1 + λ2x̃

2
2 + λ3x̃

2
3

x̃2
1 + x̃2

2 + x̃2
3

= λ1 +
(λ2 − λ1)x̃

2
2 + (λ3 − λ1)x̃

2
3

1 + ε2

= λ1 +

(
κ− 1

κ + 1
+ O

(
ε2
))2

(λ2 − λ1)x
2
2 + (λ3 − λ1)x

2
3

1 + ε2

= λ1 +

(
κ− 1

κ + 1
+ O

(
ε2
))2

(λ− λ1) = λ1 + (γ1 + O (λ− λ1))
2
(λ− λ1).

Theorem 4.2. For any 0 ≤ γ < 1 there exist ui
1 and K such that γ1,α = γ and

λi+1
1 − λ1 =

(
γ1,α + O

(
λi

1 − λ1

))2
(λi

1 − λ1).
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Proof. We just use the proof of Theorem 4.1 with ω = α, observing that κ1 = 1
and κ−1,α = κ, and hence ξ1,α = κ−1 and γ1,α = (κ− 1)/(κ + 1).

Theorem 4.3. Let L be positive definite. For any 0 < ξ ≤ 1 there exist ui
1 and

K such that cond(KL) = ξ−1 and

λi+1
1 − λ1 =

(
γ̃1 + O

(
λi

1 − λ1

))2
(λi

1 − λ1).(4.5)

Proof. Using the notation of the proof of Theorem 4.1, let us take K = L−1(1 −
P ) + κL−1P , where κ ≥ 1. The smallest eigenvalue of KL is obviously 1 and the
largest is κ; hence ξ = κ−1. Let u = u1 +x2u2 +x−1u−1, where u−1 is an eigenvector
of L corresponding to its largest eigenvalue λ−1, and x2 and x−1 are real numbers.
Elementary calculations show that the locally optimal value of τ is

τ =

(λ2−λ1)
2

λ2
x2

2 + κ (λ−1−λ1)
2

λ−1
x2
−1

(λ2−λ1)3

λ2
2

x2
2 + κ2 (λ−1−λ1)3

λ2
−1

x2
−1

+ O
(
ε2
)
,

where ε =
√
x2

2 + x2
−1. Thus, ũ = x̃1u1 + x̃2u2 + x̃−1u−1, where x̃1 = 1−τ(λ1−λ)/λ1

and

x̃2 =

(
1 − τ

λ2 − λ

λ2

)
x2 =

⎛
⎝
(
κλ−1−λ1

λ−1
− λ2−λ1

λ2

)
κ (λ−1−λ1)

2

λ−1
x2
−1

(λ2−λ1)3

λ2
2

x2
2 + κ2 (λ−1−λ1)3

λ2
−1

x2
−1

+ O
(
ε2
)
⎞
⎠x2

x̃−1 =

(
1 − τκ

λ−1 − λ

λ−1

)
x−1 =

⎛
⎝
(

λ2−λ1

λ2
− κλ−1−λ1

λ−1

)
(λ2−λ1)

2

λ2
x2

2+

(λ2−λ1)3

λ2
2

x2
2 + κ2 (λ−1−λ1)3

λ2
−1

x2
−1

+ O
(
ε2
)
⎞
⎠x−1.

If x2 and x−1 are such that

(λ2 − λ)2

λ2
x2

2 = κ
(λ−1 − λ)2

λ−1
x2
−1,

then

x̃2 =

(
κλ−1−λ1

λ−1
− λ2−λ1

λ2

λ2−λ1

λ2
+ κλ−1−λ1

λ−1

+ O
(
ε2
))

x2 =
(
γ̃1 + O

(
ε2
))

x2,

x̃−1 =

(
λ2−λ1

λ2
− κλ−1−λ1

λ−1

λ2−λ1

λ2
+ κλ−1−λ1

λ−1

+ O
(
ε2
))

x−1 = −
(
γ̃1 + O

(
ε2
))

x−1,

and we arrive at (4.5).
Remark 1. The fact that (4.2) is sharp does not contradict the fact that it is

less accurate than (4.1) because (4.2) uses less accurate information about K and L;
instead of ξ1, the ratio of the smallest positive to the largest eigenvalue of K(L− λ1)
that is used in (4.1), the estimate (4.2) uses its lower bound ξ̃1.

5. Sharp upper bounds for the asymptotic convergence factor. For any
nonzero u0

1 that is not an eigenvector of L corresponding to λ1 the following quantity
can be introduced:

q1(u
0
1) = lim

i→∞
q1,i(u

0
1), q1,i(u

0
1) ≡

(
λi

1 − λ1

λ0
1 − λ1

) 1
i

,
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where ui
1 is the sequence generated by (1.3) starting with the initial guess u0

1, and
λi

1 = λ(ui
1). In this paper we refer to q1(u

0
1) as the asymptotic convergence factor

(a.c.f.) for the sequence {ui
1}∞i=0. We observe that

q1,i(u
0
1) =

(
λi

1 − λ1

λi−1
1 − λ1

λi−1
1 − λ1

λi−2
1 − λ1

· · · λ
1
1 − λ1

λ0
1 − λ1

) 1
i

;

i.e., q1,i(u
0
1) is the geometrical average of the error reductions on the first i iterations

(1.3). The estimates (4.1), (4.2), and (4.3) imply that γ2
1 , γ̃2

1 , and γ2
1,α are upper

bounds for the a.c.f. q1(u
0
1). In this section we show that these bounds are sharp

in the sense that by a proper choice of K each of them can be made equal to the
supremum of q1(u

0
1) taken over all initial guesses u0

1 for which ui
1 converge to an

eigenvector corresponding to λ1. Below we denote the latter quantity by q1, i.e.,

q1 ≡ sup
u0

1∈E:λ(u0
1)>λ1,q1(u0

1)<1

q1(u
0
1).(5.1)

Theorem 5.1. For any γ ∈ [0, 1) there exists K such that q1 = γ2
1 = γ2.

Proof. First, let us show that q1 ≤ γ2
1 . In view of the condition q1(u

0
1) < 1 we

only need to consider sequences ui
1 that converge to an eigenvector corresponding to

λ1. Denote by γ2
1,i the coefficient in front of λi

1 − λ1 in (2.2). For any sequence of ui
1

in focus there exists i0 such that λi0
1 < λ2 and γ1,i0 < 1. Hence, using (2.2) for i ≥ i0

and the fact that λi+1
1 ≤ λi

1, we have

ln
λi

1 − λ1

λ0
1 − λ1

≤ ln
λi

1 − λ1

λi0
1 − λ1

≤ ln

i−1∏
j=i0

(
γ1 + τ

√
κ−1εj

1 − τ(
√
κ−1 + εj)εj

)2

(5.2)

≤ 2((i− i0) ln γ1 + δi)

where

δi =

i−1∑
j=i0

(ln(1 + τ
√
κ−1εj/γ1) − ln(1 − τ(

√
κ−1 + εj)εj)).

Denoting a = τ
√
κ−1/γ1 and b = τ(

√
κ−1 + εi0) and using elementary estimates

ln(1 + x) ≤ x and − ln(1 − x) ≤ x(1 − ln(1 − x)) we obtain for δi the upper bound
that does not depend on i:

δi ≤
i−1∑
j=i0

(aεj + bεj(1 − ln(1 − bεj))) ≤
a

1 − γ1,i0

εi0 +
b(1 − ln(1 − bεi0))

1 − γ1,i0

εi0 .

Hence, dividing (5.2) by i and passing to the limit i → ∞, we obtain q1(u
0
1) ≤ γ2

1 .
Now, let us take the same K as in the proof of Theorem 4.1, in which case γ1 = γ.

If γ1 = γ = 0, then q1(u
0
1) = 0 for any sequence u0

1 that converges to an eigenvector
in I1 (cf. above), and hence q1 = 0. Below we consider the case γ1 > 0, i.e., κ > 1.
Let u0

1 = u1 + x2,0u2 + x3,0u3, where x2,0 and x3,0 are real numbers such that

(λ2 − λ1)x
2
2,0 = κ(λ3 − λ1)x

2
3,0.

From the proof of Theorem 4.1 we see that ui
1 = x1,iu1 + x2,iu2 + x3,iu3 for some

real x1,i, x2,i and x3,i, and that the ratio of x2
2,i + x2

3,i to x2
1,i decreases on each
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iteration. Let us rescale ui
1 so that x1,i = 1. Denoting εi =

√
x2

2,i + x2
3,i, we have

x2,i = εi cosψi and x3,i = εi sinψi. Consulting the proof of Theorem 4.1, we observe
that ui+1

1 = x1,i+1u1 + x2,i+1u2 + x3,i+1u3, where

x1,i+1 = 1 + δ1,i,

x2,i+1 =

(
κ(κ− 1)(λ3 − λ1)x

2
3,i

(λ2 − λ1)x2
2,i + κ2(λ3 − λ1)x2

3,i

+ δ2,i

)
x2,i,

x3,i+1 =

(
(1 − κ)(λ2 − λ1)x

2
2,i

(λ2 − λ1)x2
2,i + κ2(λ3 − λ1)x2

3,i

+ δ3,i

)
x3,i,

|δj,i| ≤ cε2i , and c does not depend on ψi and εi. From the above relationships we
obtain

tanψi+1 =
(1 − κ) tan2 ψ0 + δ3,i(tan2 ψ0 + κ tan2 ψi)

(κ− 1) tan2 ψi + δ2,i(tan2 ψ0 + κ tan2 ψi)
tanψi.(5.3)

Hence, denoting ti = | tanψi/ tanψ0|, we have

ti+1 =

∣∣∣∣∣
1 − δ3,i

κ−1 (1 + κt2i )

1 +
δ2,i
κ−1 (κ + t−2

i )

∣∣∣∣∣ t−1
i .

Recalling that |δj,i| ≤ cε2i , and denoting εi = cε2i /(κ − 1), we observe that if εi(κ +
t−2
i ) < 1, then

ti+1 ≤ 1 + εi(1 + κt2i )

1 − εi(κ + t−2
i )

t−1
i ,

and if εi(1 + κt2i ) < 1, then

t−1
i+1 ≤ 1 + εi(κ + t−2

i )

1 − εi(1 + κt2i )
ti.

Assume that λ0
1 is close enough to λ1 so that γ1,0 < 1. Since γ1,i ≤ γ1,j for i > j, we

have λi
1 − λ1 ≤ γ2i

1,0(λ
0
1 − λ1). Further,

ε2i = tan2(ui
1, u1) ≤ (λi

1 − λ1)/(λ2 − λi
1)

(cf., e.g., [5]), and thus

ε =
∞∑
i=0

εi =
c

κ− 1

∞∑
i=0

ε2i =

∞∑
i=0

O
(
λi

1 − λ1

)
= O

(
λ0

1 − λ1

)
.

Hence, applying Lemma A.1, we have tan2 ψi = tan2 ψ0 (1 + O (ε)) and

x̃2,i+1 =

(
(κ− 1) tan2 ψi

tan2 ψ0 + κ tan2 ψi
+ δ2,i

)
x2,i =

(
κ− 1

κ + 1
+ O (ε)

)
x2,i,

x̃3,i+1 =

(
(1 − κ) tan2 ψ0

tan2 ψ0 + κ tan2 ψi
+ δ3,i

)
x3,i =

(
1 − κ

κ + 1
+ O (ε)

)
x3,i,
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and hence

λi+1
1 − λ1 =

(λ2 − λ1)x̃
2
2,i+1 + (λ3 − λ1)x̃

2
3,i+1

x̃2
1,i+1 + x̃2

2,i+1 + x̃2
3,i+1

=

(
κ− 1

κ + 1
+ O (ε)

)2 (λ2 − λ1)x
2
2,i + (λ3 − λ1)x

2
3,i

1 + O (ε2i )

= (γ1 + O (ε))
2 (

1 + O
(
ε2i
))

(λi
1 − λ1)

= (γ1 + O (ε))
2
(λi

1 − λ1) = (γ1 + O (ε))
2(i+1)

(λ0
1 − λ1).

Thus, q1 ≥ (γ1 − δ)2, where δ = O (ε) = O
(
λ(u0

1) − λ1

)
, provided that λ(u0

1) − λ1 is
small enough and, by taking supremum over all such u0

1, we obtain q1 = γ2
1 = γ2.

By introducing certain modifications into the above calculations, we obtain the
respective results in terms of γ1,α and γ̃1.

Theorem 5.2. For any γ ∈ [0, 1) there exists K such that q1 = γ2
1,α = γ2.

Proof. We just need to use the proof of Theorem 5.1 with ω = α in the definition
of K.

Theorem 5.3. For any ξ ∈ [0, 1) there exists K such that q1 = γ̃2
1 , where γ̃1 is

given by (4.4) with ξ̃1 = ξ.
Proof. Let K be the same as in the proof of Theorem 4.3. Comparing the formulas

for x̃2 and x̃3 in the proof of Theorem 4.1 with those for x̃2 and x̃−1 in the proof of
Theorem 4.3, we observe that the latter formulas can be obtained by changing κ in
the former as follows:

κ → κ
λ2

λ2 − λ1

λ−1 − λ1

λ−1
.

It is not difficult to verify that in order to prove Theorem 5.3 we just need to change
κ in the above way in the proof of Theorem 5.1.

6. New sharp estimates. We have already seen in section 2 that with some
preconditioners the convergence of PSD can be superlinear. Actually, there even exists
a preconditioner that delivers one-step convergence: assuming that λ0

1 = λ(u0
1) < λ2,

let us consider

K = (αP1 + (L− λ0
1)(1 − P1))

−1,

where α > 0. Taking τ0 = 1, we have

u1
1 = u0

1 −K(L− λ0
1)u

0
1 = u0

1 −K((L− λ0
1)P1 + (L− λ0

1)(1 − P1))

= u0
1 − (αP1 + (L− λ0

1)(1 − P1))
−1((λ1 − λ0

1)P1 + (L− λ0
1)(1 − P1))

= u0
1 −

(
λ1 − λ0

1

α
P1 + 1 − P1

)
u0

1 =

(
1 +

λ0
1 − λ1

α

)
P1u

0
1

(note that the above assumption on λ0
1 implies P1u

0
1 �= 0), and hence λ1

1 = λ1. The
result below shows that in the case of a general Hermitian positive K the reduction
in the eigenvalue error on ith iteration can be estimated via the closeness of K to (a
multiple of) (αP1 + (L− λi

1)(1 − P1))
−1.

Theorem 6.1. Let P1 be the orthogonal projector onto the invariant subspace of
L corresponding to λ1, and denote

Lα,λ = αP1 + (L− λ)(1 − P1).
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If λi
1 < λ2, then the following estimate is valid for iterations (1.3) with the locally

optimal choice of τi:

Δ(λi+1
1 ) ≤

γ2
α,λi

1

1 +
(
1 − γ2

α,λi
1

)
λi

1−λ1

α

Δ(λi
1),(6.1)

where α > 0,

Δ(λ) =
λ− λ1

λ2 − λ
, γα,λ =

1 − ξα,λ
1 + ξα,λ

, ξα,λ =
κ1,α,λ

κ−1,α,λ
,

and κ1,α,λ and κ−1,α,λ are, respectively, the smallest and the largest eigenvalue of
KLα,λ. The estimate (6.1) is sharp in the sense that for any L, λ ∈ [λ1, λ2), α > 0,
and γ ∈ [0, 1] there exist K and ui

1 such that γα,λi
1

= γ, λ(ui
1) = λ, and both sides of

(6.1) coincide.
Proof. See section A.1.
Note that if L is positive definite, then

α0L ≤ αP1 + (L− λ)(1 − P1) ≤ α0L,

where

α0 = min

{
α

λ1
,
λ2 − λ

λ2

}
, α0 = max

{
α

λ1
,
λ−1 − λ

λ−1

}
.

The above relationship shows that ξα,λ ≥ cond(KL)−1α0/α
0.

The arbitrariness of the parameter α reflects the fact that one-step convergence
discussed at the beginning of this section takes place for any nonzero value of α. Below
we use two particular choices of α to obtain estimates that are sharp and at the same
time rather simple in appearance.

Theorem 6.2. Assuming that λi
1 ≡ λ(ui

1) < λ2, the following estimate is valid
for iterations (1.3) with the locally optimal choice of τi:

λi+1
1 − λ1 ≤ γ2

λ,i(λ
i
1 − λ1), γλ,i =

1 − ξλ,i
1 + ξλ,i

,(6.2)

where ξλ,i is the inverse of the condition number of the operator

K((λ2 − λi
1)P1 + (L− λi

1)(1 − P1)),

and P1 is the orthogonal projector onto the invariant subspace of L corresponding to
λ1. The estimate (6.2) is sharp in the sense that for any L, λ ∈ [λ1, λ2) and γ ∈ [0, 1]
there exist K and ui

1 such that γλ,i = γ, λi
1 ≡ λ(ui

1) = λ, and both sides of (6.2)
coincide.

Proof. For α = λ2 − λi
1 we have (λi

1 − λ1)/α = Δ(λi
1). Hence, denoting tan2 φi =

Δ(λi
1) and tan2 φi+1 = Δ(λi+1

1 ), we obtain

tan2 φi+1 ≤
γ2
λ,i tan2 φi

1 + tan2 φi − γ2
1,i tan2 φi

=
γ2
λ,i sin

2 φi

1 − γ2
λ,i sin

2 φi

,

which implies sin2 φi+1 ≤ γ2
λ,i sin

2 φi, i.e.,

λi+1
1 − λ1

λ2 − λ1
≤ γ2

λ,i

λi
1 − λ1

λ2 − λ1
.

The sharpness of (6.2) follows trivially from the sharpness of (6.1).
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A different choice of α leads to the following estimate in terms of the inverses
μj = 1/λj of the eigenvalues of L.

Theorem 6.3. In the notation and under the assumptions of Theorem 6.2, with
the additional assumption that L is positive definite, the following estimate is valid
for the inverses μi

j = 1/λi
j of the approximate eigenvalues generated by (1.3):

μ1 − μi+1
1 ≤ γ2

μ,i(μ1 − μi
1), γμ,i =

1 − ξμ,i
1 + ξμ,i

,(6.3)

where ξμ,i is the inverse of the condition number of the operator

K

(
μi

1 − μ2

μ1
P1 + (μi

1L− I)(1 − P1)

)
,

and μj = 1/λj. The estimate (6.3) is sharp in the sense that for any L, μ ∈ [μ2, μ1),
and γ ∈ [0, 1] there exist K and ui

1 such that γμ,i = γ, μi
1 ≡ μ(ui

1) ≡ 1/λ(ui
1) = μ,

and both sides of (6.3) coincide.
Proof. For α = (μi

1 − μ2)/(μ1μ
i
1) we have

λi
1 − λ1

α
=

μ1 − μi
1

μi
1 − μ2

.

Hence, substituting the above α into (6.1) we arrive at (6.3) in the same way as in
the proof of Theorem 6.2. Again, the sharpness of (6.3) follows from the sharpness of
(6.1).

Since

(μi
1 − μ2)L ≤ μi

1 − μ2

μ1
P1 + (μi

1L− I)(1 − P1) ≤ (μi
1 − μ−1)L,

the above result has the following corollary.
Corollary 6.4. In the notation and under the assumptions of Theorem 6.3, the

following estimate is valid:

μ1 − μi+1
1 ≤ γ̃2

μ,i(μ1 − μi
1),(6.4)

where

γ̃μ,i =
1 − ξ̃μ,i

1 + ξ̃μ,i
, ξ̃μ,i = ξ

μi
1 − μ2

μi
1 − μ−1

,

and ξ is the inverse of the condition number of KL.
Let us compare the new estimates with those discussed previously in this paper.
Compared with the original asymptotic estimate by Samokish, the new estimates

have the obvious advantage of being nonasymptotic, i.e., not containing unknown
asymptotically insignificant terms. Compared with the estimate (2.2) reproducing the
estimate by Samokish in nonasymptotic form, the new estimates have the advantage
of being valid under a weaker assumption λi

1 < λ2 as compared to (2.1). Yet another
advantage of (6.2) and (6.3) is the fact that these estimates are sharp, i.e., cannot be
further improved without using additional information. At the same time, it should
be admitted that the main asymptotic term in (2.2) is generally smaller than those
in the new estimates.
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Turning to the estimates (3.3) and (3.4), we observe first that they should be
compared with the estimate (6.4), which is given in the same terms. It is not difficult
to verify that the main asymptotic term in (6.4) coincides with that in (3.4) and
is smaller than that in (3.3). At the same time, (6.4) is the simplest of the three
estimates at hand.

7. Estimates for block versions of PSD. The block PSD (BPSD) meth-
ods combine the idea of the preconditioned steepest descent with the Rayleigh–Ritz
method in the following manner: the new subspace Hi+1 spans the first n Ritz vec-
tors (enumerated in the ascending order of the corresponding Ritz values) in a trial
subspace that contains the subspace

Hi+ 1
2 = span{ui

j − τijKrij}nj=1,(7.1)

where ui
1, . . . , u

i
n are the Ritz vectors of L in Hi corresponding to the Ritz values

λi
j , and rij = r(ui

j) = Lui
j − λi

ju
i
j . We remind the reader that the Ritz values and

vectors in a subspace V, denoted below by λj(V) and uj(V), are the eigenpairs of the
projection of L onto V, i.e., of the problem

(Luj(V), v) = λj(V)(uj(V), v) ∀ v ∈ V.(7.2)

In [1, 6] a version of the BPSD method is studied where τij = 1 and Hi+1 = Hi+ 1
2 ;

below we refer to this version as “the simple BPSD.” In [2], Hi+1 is defined in the
same way but with each τij being locally optimal, i.e., minimizing λ(ui

j − τijKrij). In

yet another BPSD method, Hi+1 is defined as follows:

Hi+1 = span{uj(H
i+ 1

2

lo )}nj=1, Hi+ 1
2

lo = Hi + span{Krij}nj=1.(7.3)

We note that Hi+ 1
2

lo ⊃ Hi+ 1
2 for any τij , and hence, by the minimax principle, the

Ritz values in Hi+ 1
2

lo are not greater, and hence not further away from the exact ones,

than those in any Hi+ 1
2 of the form (7.1). Hence, (7.3) might be called locally optimal

BPSD.
In [1] one can find the following asymptotic convergence estimate6 for the simple

BPSD:

λi
k − λk ≤ cε (q(γ, λk, λn+1, λk) + ε)

2i
,(7.4)

where q(u, v, w, t) is the same as in (3.3), and ε is an arbitrary small positive real
number. By considering the initial subspace

H0 = span{u1, . . . , uj−1, uj + τun+1, uj+1, . . . , un}(7.5)

it is not difficult to verify that (7.4) is asymptotically (as sin(H0, In) → 0, where
In = span{u1, . . . , un}) sharp in the sense that q(γ, λk, λn+1, λk) cannot generally
be replaced with any smaller value. In [6] one can find the following much more
pessimistic estimate that essentially coincides with (3.3):

Δk(λ
i+1
j ) ≤ q(γ, λk, λk+1, λ

i
j)

2Δk(λ
i),(7.6)

6The cited paper also has a nonasymptotic estimate, which is more cumbersome and is not
reproduced here for simplicity of presentation.
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where k is such that λk ≤ λi
j < λk+1 and q(u, v, w, t) and Δk(λ) are the same as in

(3.3). Surprisingly, the above estimate is sharp, which appears to be in contradiction
with the previous estimate. The explanation of this “contradiction” is actually quite
simple: (7.4) assumes that H0 is sufficiently close to In, whereas (7.6) makes no
assumptions about the subspace Hi (cf. [1]), and it is not difficult to verify that in
the case

Hi = span{u1, . . . , uj−1, uk + τuk+1, uk+2, . . . , un+1},(7.7)

the factor q(γ, λk, λk+1, λ
i
j)

2 cannot be replaced by any smaller value. Note also that
if we define the a.c.f. for λk as

qk(H0) = lim
i→∞

(
λi
k − λk

λ0
k − λk

) 1
i

,(7.8)

then q(γ, λk, λk+1, λk)
2 is an upper bound for qk(H0) taken over all H0 for which

kth Ritz value λi
k converges to λk, as can be seen from the estimate (7.6) and the

example of the initial subspace given by (7.7). However, if we reduce the set of initial
subspaces H0 to those for which Hi converges to In, then we have a smaller upper
bound q(γ, λk, λn+1, λk)

2.
Apart from the assumptions on the subspace Hi, the above two estimates differ

in the following: (7.6) is recursive, i.e., it estimates the reduction in the error after
one iteration, whereas (7.4) is not. Recursive estimates are more convenient than
nonrecursive in certain respects, but, as has been pointed out in [12], it is not generally
possible to obtain for BPSD iterations a convergence estimate of the form λi+1

j −λj ≤
q(λi

j−λj) even if we make assumptions that would guarantee that λi
j converges to λj .

The latter observation has led to the idea to look for estimates for groups of eigenpairs
rather than for individual ones. This novel approach to the convergence analysis of
subspace iterations resulted in the following estimate7 for the locally optimal BPSD
(7.3): assuming that L is positive definite and μi

k > μk+1 and μi
m > μm+1 (where μ’s

are the inverses of λ’s) for some k ≤ m, one has

k∑
j=1

(μj − μi+1
j ) ≤

γ2
k,m + εk,m,i

1 + εk,m,i

k∑
j=1

(μj − μi
j),(7.9)

where

γk,m =
1 − ξk,m
1 + ξk,m

, ξk,m = ξ
μk − μm+1

μk − μ−1
(7.10)

and

εk,m,i = O
(
tan2(Ii

k, Ik)L
)

+ O
(
sin2(Ii

m, Im)L
)

+ O

⎛
⎝ k∑

j=1

‖rij‖2
L−1

⎞
⎠ ,

where Ii
l = span{ui

1, . . . , u
i
l} and Il = span{u1, . . . , ul}. The above estimate is cluster

robust in the sense that εk,m,i does not depend on the distances between μ1, . . . , μk;
moreover, for k < m any distances between consecutive eigenvalues (precisely, those

7For simplicity, here we present this result in asymptotic form.
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between μk and μk+1 and between μm and μm+1) appear only in the asymptotically
insignificant term εk,m,i.

From (7.9) it is not difficult to derive the following estimate for the a.c.f. defined
by (7.8):

qk(H0) ≤ γ2
k,m ∀ H0 ⊂ E : λm(H0) < λm+1, 1 ≤ k ≤ m ≤ n = dimH0.(7.11)

The assumption on λm(H0) in the above estimate is essential and reflects the positive
effect of the convergence of λi

m to λm on the convergence of λi
k to λk for k < m.

Indeed, if λi
m converges to λm for some m > k, then for some i0 we have λi0

k < λk

and λi0
m < λm (cf. [12]) and the a.c.f. is bounded from above by γ2

k,m, whereas in the

case of H0 given by (7.7) we can only take m = k, which yields a larger upper bound
γ2
k,k, similar to that following from (7.6).

Using the results of the previous section, it is easy to show that the estimate
(7.11) is sharp in the following sense.

Theorem 7.1. For any ξ ∈ [0, 1) there exists K such that

qk = sup
H0:Ii

m→Im

qk(H0) = γ2
k,m,(7.12)

where γk,m is given by (7.10) with ξk,m = ξ.
Proof. From (7.11) it follows that qk ≤ γ2

k,m. To prove that qk = γ2
k,m, consider

the case of H0 given by

H0 = span{u1, . . . , uk−1, uk + τum+1, uk+1, . . . , um, um+2, . . . , un+1}.

Let P be the orthogonal projector onto the invariant subspace corresponding to λm+2

and let K = L−1(1−P )+ ξL−1P . It is easy to see that with such K and H0 we have
ui
j = uj for j = 1, . . . , k−1, k+1, . . . ,m, whereas ui

k is computed recursively by (1.3).
Let L′ be the restriction of L to the subspace orthogonal to u1, . . . , uk−1, uk+1, . . . , um.
The eigenvalues of L′ listed in increasing order are λk, λm+1, λm+2, . . ., and PSD
iterations for computing the minimal eigenvalue of L′ started from u0

k produce the
same sequence ui

k as (7.3). It remains to be noted that the value of γ̃1 for L′ coincides
with γk,m. Hence, by applying Theorem 5.3 to these iterations, we see that qk =
γ2
k,m.

Appendix A. Auxiliary results.

A.1. The proof of Theorem 6.1. To simplify the notation, let us denote
u = ui

1, λ = λi
1, u′ = ui+1

1 , λ′ = λi+1
1 , κ1 = κ1,α,λi

1
, κ−1 = κ−1,α,λi

1
, γ = γα,λi

1
,

and Lλ = Lα,λi
1

(we note that Lλ is positive definite in view of the assumption that

λ < λ2).

Denoting v = L
1/2
λ u and v′ = L

1/2
λ u′, and taking τi = τ∗ ≡ 2/(κ1 +κ−1), we have

v′ = v − τL
1/2
λ KL

1/2
λ L

−1/2
λ (L− λ)L

−1/2
λ v = v − K̂(−εP1 + P⊥

1 )v,

where ε = (λ − λ1)/α, P⊥
1 = 1 − P1 and K̂ = τ∗L

1/2
λ KL

1/2
λ ; we note that 1 − γ ≤

K̂ ≤ 1 + γ. Hence,

v′ = v − (−εP1 + P⊥
1 )v − (K̂ − 1)(−εP1 + P⊥

1 )v = (1 + ε)P1v − w,

where w = (K̂ − 1)(−εP1 + P⊥
1 )v. From the above relationship we have

‖P1v
′‖ ≥ (1 + ε)‖P1v‖ − ‖P1w‖, ‖P⊥

1 v′‖ = ‖P⊥
1 w‖,
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and for w we have

‖w‖ ≤ γ‖(−εP1 + P⊥
1 )v‖ = γ

√
ε2‖P1v‖2 + ‖P⊥

1 v‖2 = γ‖P1v‖
√
ε2 + t2,

where t = ‖P⊥
1 v‖/‖P1v‖. Since

‖P1v‖2 = ‖P1L
1/2
λ u‖2 = ‖L1/2

λ P1u‖2 = ‖P1u‖2
Lλ

= α‖P1u‖2

and

‖P⊥
1 v‖2 = ‖P⊥

1 u‖2
Lλ

= ((L− λ)P⊥
1 u, P⊥

1 u) = (λ− λ1)‖P1u‖2,

we have t2 = ε, and hence

‖w‖ ≤ γ‖P1v‖
√
ε(1 + ε).

Now, denoting cosω = ‖P1w‖/‖w‖, ω ≥ 0, we have

‖P1v
′‖ ≥ (1 + ε)‖P1v‖ − ‖w‖ cosω, ‖P⊥

1 v′‖ = ‖w‖ sinω,

and hence

‖P⊥
1 v′‖2

‖P1v′‖2
≤ ‖w‖2 sin2 ω

((1 + ε)‖P1v‖ − ‖w‖ cosω)2
≤ γ2ε(1 + ε) sin2 ω(

1 + ε− γ
√

ε(1 + ε) cosω
)2

=
ε

1 + ε
γ2 sin2 ω(

1 −
√

ε
1+εγ cosω

)2 = a2 1 − x2

(1 − ax)2
≡ f(x),(A.1)

where a = γ
√
ε/(1 + ε) ≤ 1 and x = cosω. Elementary calculations show that the

maximum of f(x) on [0, 1] is achieved at x = a, hence the right-hand side of (A.1) is
not greater than

f(a) =
a2

1 − a2
=

εγ2

1 + (1 − γ2)ε
=

γ2

1 + (1 − γ2)λ−λ1

α

λ− λ1

α
.

It remains to estimate the left-hand side of (A.1) from below. We have (cf. the above
calculations for ‖P1v‖ and ‖P⊥

1 v‖):

‖P1v
′‖2 = ‖P1u

′‖2
Lλ

= α‖P1u
′‖2

and

‖P⊥
1 v′‖2 = ((L− λ)P⊥

1 u′, P⊥
1 u′) = ((L− λ1)P

⊥
1 u′, P⊥

1 u′) − (λ− λ1)‖P⊥
1 u′‖2

= (λ′ − λ1)‖u′‖2 − (λ− λ1)‖P⊥
1 u′‖2 = (λ′ − λ1)‖P1u

′‖2 − (λ− λ′)‖P⊥
1 u′‖2.

Let us now verify that λ′ ≤ λ. Assuming that the opposite is true, we would have
‖P⊥

1 v′‖2 ≥ (λ′ − λ1)‖P1u
′‖2 and (A.1) would imply

λ′ − λ1

α
≤ ‖P⊥

1 v′‖2

‖P1v′‖2
≤ γ2

1 + (1 − γ2)λ−λ1

α

λ− λ1

α
≤ λ− λ1

α
,
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which is a contradiction. Hence, λ′ ≤ λ and, using the well-known estimate (see, e.g.,
[5])

‖P⊥
1 u′‖2

‖P1u′‖2
= tan2(u′, I1) ≤

λ′ − λ1

λ2 − λ′ ,

where I1 is the invariant subspace corresponding to λ1, we obtain

‖P⊥
1 v′‖2

‖P1v′‖2
=

1

α

(
λ′ − λ1 − (λ− λ′)

‖P⊥
1 u′‖2

‖P1u′‖2

)

≥ 1

α

(
λ′ − λ1 − (λ− λ′)

λ′ − λ1

λ2 − λ′

)
=

λ′ − λ1

λ2 − λ′
λ2 − λ

α
,

which, together with the above estimate for the right-hand side, leads to (6.1).
To prove that (6.1) is sharp, let us denote φ = arctan

√
ε > 0, where ε =

(λ − λ1)/α, and consider the case v = x1u1 + x2u2 + x3u3, where u1, u2, and u3

are eigenvectors corresponding to λ1 < λ2 < λ3 (any of these eigenvalues may be
multiple), and

x1 = cosφ, x2 = − γ sinφ√
1 + (1 − γ2) tan2 φ

, x3 =

√
1 − γ2 tanφ√

1 + (1 − γ2) tan2 φ

(note that x2
2 + x2

3 = sin2 φ). Let cosω = γ
√
ε/(1 + ε) = γ sinφ, and denote ŵ =

cosω · u1 + sinω · u2, v
⊥ = −εP1v + P⊥

1 v (we have (v⊥, v) = −ε‖P1v‖2 + ‖P⊥
1 v‖2 =

− tan2 φ cos2 φ + sin2 φ = 0, hence the notation) and v̂⊥ = v⊥/‖v⊥‖. Let K =

L
−1/2
λ K̂L

−1/2
λ , where K̂ is defined by

K̂u = u + γ(u− 2(u, z)z), z = ‖v̂⊥ − ŵ‖−1(v̂⊥ − ŵ).

It is easy to verify that κ1 = 1 − γ and κ−1 = 1 + γ (hence τ∗ = 1) and that
(K̂ − 1)v̂⊥ = γŵ. Since

‖v⊥‖2 = ε2‖P1v‖2 + ‖P⊥
1 v‖2 = tan4 φ cos2 φ + sin2 φ = tan2 φ

we have

w = (K̂ − 1)v⊥ = ‖v⊥‖(K̂ − 1)v̂⊥ = γ tanφ

(
γ sinφ · u1 +

√
1 − γ sin2 φ · u2

)

= γ2 tanφ sinφ · u1 + γ tanφ

√
1 − γ sin2 φ · u2

= γ2 tan2 φ cosφ · u1 + γ sin
√

1 + (1 − γ2) tan2 φ · u2

and hence

v′ = (1 + ε)P1v − w = (1 + (1 − γ2) tan2 φ) cosφ · u1 − γ sin
√

1 + (1 − γ2) tan2 φ · u2

= (1 + (1 − γ2) tan2 φ)(x1u1 + x2u2)

Since v′ ∈ span{u1, u2}, and therefore u′ ∈ span{u1, u2}, we have

‖P⊥
1 v′‖2

‖P1v′‖2
=

x2
2

x2
1

=
γ2 tan2 φ

1 + (1 − γ2) tan2 φ
,

‖P⊥
1 u′‖2

‖P1u′‖2
=

λ′ − λ1

λ2 − λ′ .
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Further,

‖P⊥
1 v′‖2

‖P1v′‖2
=

((L− λ)P⊥
1 u′, P⊥

1 u′)

α‖P1u′‖2
=

λ2 − λ

α

‖P⊥
1 u′‖2

‖P1u′‖2
=

λ2 − λ

α

λ′ − λ1

λ2 − λ′ .

Recalling that tan2 φ = ε2 = (λ− λ1)/α, and observing that λ′ is a function of λ, γ,
and α, we arrive at the identity

Δ(λ′) =
γ2

1 + (1 − γ2)λ−λ1

α

Δ(λ), λ ∈ [λ1, λ2), γ ∈ [0, 1], α > 0.

It remains to be shown that λ′ ≤ λ(u − τK(L − λ)u) for any τ . Let us denote v′τ =

v−τK̂v⊥ and u′
τ = L

−1/2
λ v′τ . Using the fact that v′ = (1+(1−γ2) tan2 φ)(x1u1+x2u2)

(cf. above), we have

v′τ = v − τ(v⊥ + w) = v′ − (τ − 1)(v⊥ + w) = v′ − (τ − 1)(v − v′)

= v′ − (τ − 1)((1 + (1 − γ2) tan2 φ)−1v′ + x3u3 − v′) ≡ βv′ − (τ − 1)x3u3,

and hence u′
τ = βu′ − (λ3 − λ)−1/2(τ − 1)x3u3. Since u′ ∈ span{u1, u2}, this implies

λ(u′
τ ) ≥ λ(u′) = λ′.

A.2. Auxiliary result used in Theorem 5.1.
Lemma A.1. Let ε be a sequence of positive real numbers such that

ε =

∞∑
i=0

εi < ∞.

Let κ be a positive real number and let ti be a sequence of positive real numbers starting
with t0 = 1 and satisfying the following conditions: if εi(κ + t−2

i ) < 1, then

ti+1 ≤ 1 + εi(κt
2
i + 1)

1 − εi(κ + t−2
i )

t−1
i(A.2)

and if εi(κt
2
i + 1) < 1, then

t−1
i+1 ≤ 1 + εi(κ + t−2

i )

1 − εi(κt2i + 1)
ti.(A.3)

If ε is small enough, then

t−1 ≤ ti ≤ t = 1 + c ε,(A.4)

where c > 0 does not depend on i and ε.
Proof. Consider the following function:

Φε(t) = F (ε(κt2 + 1)) + F (ε(κ + t2)), F (x) = x(1 − ln(1 − x)).(A.5)

For ε < εκ ≡ min{(4κ + 1)−1, (κ + 4)−1}, the definition domain of Φε(t) (as a real
function of the real argument t) includes the interval [1, 2]. Obviously, Φε(t) → 0
as ε → 0: let ε < εκ be small enough so that Φε(2) < ln 2. Since Φε(1) > ln 1, the
equation Φε(t) = ln t has a solution t = t(ε) ∈ [1, 2] that has the following asymptotics
in ε: t = exp(F (ε(κt2 + 1)) + F (ε(κ + t2))) = 1 + O (ε).
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Let us now denote a = κt2 + 1 and b = κ + t2, and consider the sequence un

defined as follows:

u0 = 1, un =

n−1∏
k=0

1 + ε2k+1a

1 − ε2k+1b

1 + ε2kb

1 − ε2ka
, n > 0

(note that εia ≤ ε(4κ+ 1) < 1 and εib ≤ ε(κ+ 4) < 1). Using elementary inequalities
ln(1 + x) ≤ x and − ln(1 − x) ≤ x(1 − ln(1 − x)), we have

lnun =

n−1∑
k=0

(ln(1 + ε2k+1a) + ln(1 + ε2kb) − ln(1 − ε2k+1b) − ln(1 − ε2ka))

≤
n−1∑
k=0

(ε2k+1a + ε2kb + ε2k+1b + ε2ka− ε2k+1b ln(1 − ε2k+1b) − ε2ka ln(1 − ε2ka))

and, since ln(1 − x) ≤ 0 for 0 < x ≤ 1 and εi ≤ ε,

lnun ≤ (a(1 − ln(1 − εa)) + b(1 − ln(1 − εb)))

n∑
k=0

(ε2k + ε2k+1)

≤ (a(1 − ln(1 − εa)) + b(1 − ln(1 − εb)))ε = Φε(t) = ln t;

i.e., un ≤ t. By similar arguments, for the sequence

v0 = 1, vn =

n−1∏
k=0

1 + ε2k+1b

1 − ε2k+1a

1 + ε2ka

1 − ε2kb
, n > 0

we have vn ≤ t.
Let us now turn to the sequence ti. Since t0 = 1 ≤ t and ε0(κ+t−2

0 ) < ε(κ+4) < 1,
we have

t1 ≤ 1 + ε0(κt
2
0 + 1)

1 − ε0(κ + t−2
0 )

t−1
0 ≤ 1 + ε0(κt

2 + 1)

1 − ε0(κ + t2)
≤ 1 + ε1(κ + t2)

1 − ε1(κt2 + 1)

1 + ε0(κt
2 + 1)

1 − ε0(κ + t2)
= v1 ≤ t

and, since ε0(κt
2
0 + 1) < ε(4κ + 1) < 1, we have

t−1
1 ≤ 1 + ε0(κ + t−2

0 )

1 − ε0(κt20 + 1)
t0 ≤ 1 + ε0(κ + t2)

1 − ε0(κt2 + 1)
≤ u1 ≤ t.

Using the above two estimates we, in turn, obtain

t2 ≤ 1 + ε1(κt
2
1 + 1)

1 − ε1(κ + t−2
1 )

t−1
1 ≤ 1 + ε1(κt

2
1 + 1)

1 − ε1(κ + t−2
1 )

1 + ε0(κ + t−2
0 )

1 − ε0(κt20 + 1)
t0

≤ 1 + ε1(κt
2 + 1)

1 − ε1(κ + t2)

1 + ε0(κ + t2)

1 − ε0(κt2 + 1)
= u1 ≤ t

t−1
2 ≤ 1 + ε1(κ + t−2

1 )

1 − ε1(κt21 + 1)
t1 ≤ 1 + ε1(κ + t−2

1 )

1 − ε1(κt21 + 1)

1 + ε0(κt
2
0 + 1)

1 − ε0(κ + t−2
0 )

t−1
0

≤ 1 + ε1(κ + t2)

1 − ε1(κt2 + 1)

1 + ε0(κt
2 + 1)

1 − ε0(κ + t2)
= v1 ≤ t

etc.
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